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Abstract

Cherenkov light plays a crucial role in particle physics and is used in a wide variety of

neutrino experiments to observe the secondary charged particles created after neutrino

interaction. In this thesis, we consider two ways to improve both the simulation of

Cherenkov light and the design of devices for its detection.

First, we examine the approximation of the Cherenkov light coherent emission

along the whole track of a charged particle used by the MC simulation tools, Geant4

in particular. We use a more physically accurate scattering model to precisely simulate

particle propagation in a medium and calculate the Cherenkov light profile as the

interference of the electromagnetic waves. We conclude that the Cherenkov radiation

is coherent when electrons with energies down to 0.3 MeV travel in water, but a

choice of a scattering model used for the simulation significantly changes the angular

distribution of the emitted Cherenkov light. As a result, we develop a new Cherenkov

radiation model for MC simulations and tune it in the 2.2 - 6.1 MeV energy range

using SNO+ calibration data obtained from AmBe and 16N radioactive sources. With

this model we resolve a previously observed tension in the isotropy of the Cherenkov

light in SNO+, significantly improving how the simulation describes the data.

With future Cherenkov detectors in mind, we also develop a simulation to assist in

the design of silicon photomultipliers (SiPMs). The specific goal is to reduce the level of

optical crosstalk (OCT) in the devices. The code is verified by comparing the obtained

crosstalk levels to data from two SiPMs Hamamatsu VUV4 and FBK HD3 SiPMs.

The code will be used to find the optimal geometry parameters to minimize OCT

levels of possible future SiPM designs that will be capable of better light detection.
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Preface

The work described in this thesis was done in conjunction with 2 different experimental

collaborations: SNO+ and JADDE. Usage of work other than the author’s is properly

cited in the text.

The theoretical results and discussions in Chapter 2 are a review of the literature

at the time of writing the thesis. All the simulations and calculations were performed

by the author. The results from this chapter were presented at CAP 2021.

The SNO+ calibration group deployed the 16N and AmBe sources mentioned in

Chapter 3. The calibration data was gathered by the SNO+ detector, which requires

the effort of the whole collaboration. The author used these data to produce custom

simulations and calibrate the model proposed in Chapter 3. Reconstruction algorithms

and selection criteria used for 16N and AmBe events identification were developed

by the SNO+ collaboration. An abstract describing the results of this chapter was

accepted to 11th International Workshop on Ring Imaging Cherenkov Detectors.

In Chapter 4, the simulation work was originally started in TRIUMF in the group

of Fabrice Retière. The author expanded the possibilities of the simulation code and

develops a new analysis technique with the help of JADDE collaboration members.

The results of this chapter work were presented at CAP 2022.
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of teaching and managing me and explaining how the science works. I appreciate him

giving me a lot of scientific freedom but always being there for avid, and somehow

intense discussions when I was stuck on a problem. Also, thanks to Aksel Hallin and

Carsten Krauss for the many comments and feedback they gave me during the group

meetings. I would like to thank Jie Hu and Yang Zhang for helping me figure out

how the SNO+ analysis works. Big thanks to the other members of the University

of Alberta SNO+ group: Ankit Gaur, David Auty, John Wilson, Karl Yazigi, and

Shaokai Yang – who were patient with me and my long presentations. It was also a

pleasure to work with and learn about the lab hardware from Logan Sibley.

I would like to thank Fabrice Retière for the advice and insight regarding the

development of new SiPMs, and for the conference rehearsal at the pool. I want to

mention Aleksey Sher, who introduced me to the simulation software; Paolo Agnes,

Frédéric Vachon, and Giacomo Gallina for the private discussions and a lot of feedback

during the meetings. I also would like to express my gratitude to all of the other

members of the SNO+ and JADDE collaborations, whose input contributed to my

work.

I’d like to say thank you, again, to Juan Pablo and Caitlin, who were there for

me from my very first day in Canada, helping me to figure out a whole new life and

instilling love to spicy food. Thanks to my very first friend in Edmonton and my office

mate Nakul. We both had hardships of COVID, moving, classes, research and having

someone who was going through the same thing was so important to me. I am grateful

iv



to Tatiana for many fun trips and helping me make it through the COVID times

sane. I want to mention an amazing group of incredible people who made my life in

Edmonton so much better: Abraham, Alex, Karl, Santiago, Lupita – thank you for

everything, and for H2O nights in particular. I will be missing long training sessions

with Pol and Elisabeth, who endured my whining and became my friends. I want to

thank Tian, who’s the best labmate and the best white elephant player. Thank you,

Kalley, for understanding and being around unconditionally, and, of course, for the

proofreading.

I want to say a huge thanks to my family, who by all means made it possible for

me now being able to write this thesis. Especially to my mother Olena, who supported

my studies even in the hardest time of her life. Also, thanks for the huge, even though

remote, support to my old good friends Igor, Nadia, Alex, and Vita.

Last but not least I want to thank Volodymyr Aushev for being the person who

believed in me and guided me into particle physics.

v



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Objectives and Outline . . . . . . . . . . . . . . . . . . . . . . 4

2 Influence of scattering and interference effects on Cherenkov light

emission 5

2.1 Cherenkov light and its simulation . . . . . . . . . . . . . . . . . . . 5

2.1.1 Cherenkov light classic theory . . . . . . . . . . . . . . . . . . 5

2.1.2 Simulation of Cherenkov light in Geant4 . . . . . . . . . . . . 6

2.2 Scattering models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Comparison of scattering models in Geant4 . . . . . . . . . . . . . . . 8

2.4 Cherenkov light coherence studies . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Taking into account interference between segments . . . . . . 14

2.4.2 Geant4 setup and integration . . . . . . . . . . . . . . . . . . 17

2.4.3 Comparing to the default light emission simulation . . . . . . 17

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Corrections to Cherenkov model in SNO+ simulations 19

3.1 SNO+ and Calibration data . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 SNO+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 SNO+ water phase events . . . . . . . . . . . . . . . . . . . . 21

3.1.3 SNO+ Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 23

vi



3.1.4 16N and AmBe calibration sources . . . . . . . . . . . . . . . . 24

3.1.5 Isotropy and the β14 parameter . . . . . . . . . . . . . . . . . 24

3.1.6 β14 discrepancy in SNO+ . . . . . . . . . . . . . . . . . . . . . 26

3.2 Implementing SS sampling within Geant4 . . . . . . . . . . . . . . . . 27

3.2.1 Scattered angle and free mean path distributions . . . . . . . 28

3.2.2 Cherenkov light sampling . . . . . . . . . . . . . . . . . . . . 30

3.2.3 Comparing MS model with sampling to SS model . . . . . . . 31

3.2.4 Fitting the model to the SNO+ data . . . . . . . . . . . . . . 34

3.2.5 Comparison between data and MC . . . . . . . . . . . . . . . 37

3.3 Conclusions and potential use in the scintillator phase . . . . . . . . . 41

4 Optical crosstalk in SiPMs as a challenge for Cherenkov light detec-

tion 47

4.1 SiPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 What is a SiPM . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 Optical crosstalk (OCT) . . . . . . . . . . . . . . . . . . . . . 49

4.1.3 Prediction of the optical crosstalk . . . . . . . . . . . . . . . . 50

4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Geometry and simulation process . . . . . . . . . . . . . . . . 51

4.2.2 Physics involved . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Analysis (Simulation verification) . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Calculation of the optical crosstalk probability . . . . . . . . . 55

4.3.2 Acquiring light emitted from the SiPM . . . . . . . . . . . . . 57

4.3.3 Comparison to the data . . . . . . . . . . . . . . . . . . . . . 60

4.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . 62

5 Conclusions 65

Bibliography 67

vii



Appendix A: SiPM geometry variation 72

Appendix B: Selection criteria 76

B.1 16N selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.2 AmBe selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

viii



List of Tables

2.1 Detailed comparison of the distributions from fig. 2.3 and fig. 2.5. . . 13

3.1 Coefficients of eq. (3.2) obtained after fit to the data. . . . . . . . . . 30

3.2 A complemented with Cherenkov light sampling model table 2.1 that

characterizes distributions on fig. 2.3, fig. 2.5, and fig. 3.12. . . . . . 34

3.3 β14 mean values and σ from a Gaussian fit comparison. . . . . . . . . 46

4.1 List of geometry variables used in the simulation and if they are provided

by the manufacturer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Limits on the SiPM dimensions that are not provided by a manufacturer. 55

4.3 Dimensions used in the simulation of the FBK HD3 and Hamamatsu

VUV4 SiPMs that corresponds to the results demonstrated on fig. 4.9.

Taken from [65]. Some guesses were made for the parameters listed in

table 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



List of Figures

2.1 Radioactive dose profile of 0.5 MeV electron beam in Tantalum as a

function of scaled thickness R/R0, where R is the actual thickness and

R0 is the total width of the media [27]. Simulation results where single

scattering model was used for the electrons propagation (magenta

line) fit data the best comparing to the multiple scattering models

(other colors). In multiple scattering models the comparison is done

between the multiple scattering (MS) model used in Geant4 by default

(Default); a MS model with minimal step limitations (Stand EMV),

approximately 20 times bigger steps than in Default; Opt3 that has

the strictest possible step limitations for the MS model (See [31, 32] for

further details); Wentzel-VI MSC that is a mix of the default MS and

SS models where the degree of mixing between two models is defined

by an additional parameter described in [27], but the default value is

used to obtain the blue line. . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Blue water sphere with an electron injected in the middle. Green lines

are trajectory of the emitted photons. One can see the pattern of

Cherenkov ring on the surface of the sphere. . . . . . . . . . . . . . . 11

2.3 A comparison of Cherenkov light distributions obtained from using SS

and SNO+ default MS models for electrons propagation as it would

be observed in a spherical detector if we injected thousands of Ee =

0.3, 0.5, 1, 5 MeV electrons along the z-axis. The green and red regions

specify FWHM zones for each distribution. . . . . . . . . . . . . . . . 11

x



2.4 MS (left) and SS (right) simulated electrons trajectories for 2 MeV

electrons in the water. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 A comparison of simulated Cherenkov light distributions emitted by

an electron moving in the water as it would be observed in a spherical

detector if we injected thousands of several MeV electrons along the

z-axis. We use default Geant4 light emission method (red line) and

light emission that takes into account interference effects between track

segments (blue line). The energy of the electrons is specified on each

subplot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 SNO+ schematics from [40]. 6 m radius acrylic vessel (blue) surrounded

by support structure (green) and is held by ropes (pink). Ropes pictured

in red are used in the scintillator phase to compensate buoyancy of the

AV filled with scintillator. . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 An example of a dynode system operation from [41]. There is an electri-

cal potential difference between each dynode. First, a photoelectron hits

the first dynode and makes several more electrons escape the dynode.

Then, these escaped electrons travel to the next dynode and get multi-

plied. It repeats until the multiplied charge reaches the final dynode –

anode and gets collected. . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 An example of a neutrino candidate event with a Cherenkov ring in

SNO. Event display shows the PMTs that detected the light in different

projections. The histogram shows the time distribution of the PMT

hits and the colour of the hit codes the time of the light arrival. . . . 22

3.4 The 16N decay chamber schematics. The 16N decays occur in the bottom

region, bounded by 3 mm of a cylindrical shell of plastic scintillator.

The upper volume contains a PMT that detects scintillator light. Taken

from [44]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xi



3.5 The image is taken from [42]. It explains θij angles within Cherenkov

ring event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 The image is taken from [46]. Data and MC β14 distributions of 214Bi

and 208Tl decays. These decays are distinguished by β14. . . . . . . . 26

3.7 Discrepancy between data and MC of 16N source adapted from [47]

(left). Discrepancy in mean values of β14 of 16N and AmBe sources

(right) with an attempt to fix it by smearing the Cherenkov emission

angle [48]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 An example of θss distribution for 1 MeV energy electron. . . . . . . 28

3.9 Fitted λss(Ee) distribution. . . . . . . . . . . . . . . . . . . . . . . . . 29

3.10 Schematics of θss angles. First point is the point of the injection of

electron with energy E0. The solid arrows represent electron’s steps. We

record an angle of each scattering with respect to previous step. In the

end when electron leaves the water volume it has energy approximately

equal to the initial E0. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.11 Process of Cherenkov light sampling by changing the direction with

respect to which Cherenkov photons injection is happening. . . . . . . 32

3.12 A comparison of simulated Cherenkov light distributions emitted by

an electron moving in the water as it would be observed in a spherical

detector if we injected thousands of electrons with 0.3, 0.5, 1, and 5MeV

energies along the z-axis. Default Geant4 light emission method with

the SS model (red line) and modified Cherenkov light emission with

the default SNO+ MS model (green line). The energy of the electrons

is specified on each subplot. . . . . . . . . . . . . . . . . . . . . . . . 33

3.13 A comparison of simulated Cherenkov light distributions by Cherenkov

light sampling with different α emitted by an electron moving in the

water as it would be observed in a spherical detector if we injected

thousands of 1 MeV electrons along the z-axis. . . . . . . . . . . . . . 35

xii



3.14 The plot demonstrates the simulated β14 mean value as the function of

the tuning parameter α. Calibration sources with γ - rays of energies

2.2 MeV (Delayed), 4.4 MeV (Prompt), and 6.1 MeV (16N) are used.

Optimal value for α is calculated and pictured with the pink dashed line. 37

3.15 Comparison of data, the default MC and modified MC β14 distributions

of 16N source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.16 Comparison of data, the default MC and modified MC β14 distributions

of AmBe source prompt (left) and delayed (right) events. . . . . . . 38

3.17 A schematics that demonstrates how we obtain θ for direction resolution. 39

3.18 A comparison of cos θdir obtained from the default simulation, Cherenkov

light sampling model with tuned α and data. . . . . . . . . . . . . . . 40

3.19 A comparison of cos θPMT obtained from the default simulation, Cherenkov

light sampling model with tuned α and data for 16N source. . . . . . 41

3.20 A comparison of cos θPMT obtained from the default simulation, Cherenkov

light sampling model with tuned α and data for AmBe source prompt

(left) and delayed (right) events. . . . . . . . . . . . . . . . . . . . . 42

3.21 Comparison of reconstructed position coordinates, ITR, and number of

hits distributions of 16N source obtained from the default simulation,

the modified MC and data. . . . . . . . . . . . . . . . . . . . . . . . 42

3.22 Comparison of reconstructed position coordinates, ITR, and number of

hits distributions of Prompt events of AmBe source obtained from the

default simulation, the modified MC and data. . . . . . . . . . . . . . 43

3.23 Comparison of reconstructed position coordinates, ITR, and number of

hits distributions of Delayed events of AmBe source obtained from the

default simulation, the modified MC and data. . . . . . . . . . . . . . 44

xiii



4.1 Left figure [56] shows a SiPM schematics, which consists of SPADs

separated by trenches and electronics. Right figure [57] shows schematics

of a SiPM cell, illustrating long and short wavelength photons detection. 48

4.2 Left figure illustrates how a SiPM does photon counting. Right figure

demonstrates the signal one obtains from a SiPM. One photoelectron

(p.e.) peak corresponds to 1 photon detection. If 2 photons were detected

the signal sums up and results in a higher 2 p.e. peak. Both images

were taken from [57]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Illustration of the optical crosstalk mechanism in SiPM. A photon

(violet) creates an avalanche that emits secondary photons (red lines).

The secondary photons can be absorbed in the silicon bulk, in a trench

or in another cell, creating a secondary avalanche. . . . . . . . . . . . 50

4.4 Dimension variables from table 4.1 . . . . . . . . . . . . . . . . . . . 51

4.5 To inject light we divide a cell of the SiPM into Nbin × Nbin bins.

Schematics on the left and a render from Geant4 on the right. . . . . 54

4.6 The simulation verification steps diagram. . . . . . . . . . . . . . . . 55

4.7 The light produced within the avalanche region (red dotted lines) leaves

the SiPM and hits the aperture of a measuring device. . . . . . . . . 59

4.8 Schematics description of bins and reusing the initial cell data. The

double lines depict trenches and single lines show bins boundaries. On

the left we have uniformly distributed initial data. The avalanches

probabilities map in the middle specifies a fraction of data we take from

the initial bins cells. By just recombining the initial cell data we obtain

the photons distribution as if we simulated avalanches in this cell. The

probabilities illustrated on the schematics are arbitrary and are not

taken from data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xiv



4.9 FBK HD3 and Hamamatsu VUV4 SiPMs measured (adapted from [55])

and simulated probabilities of OCT as the functions of over voltage.

The error bars for the probabilities are present but small and smaller

than the marker size. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.10 Hamamtsu VUV4 (HPK) optical cross talk with 7V overvoltage as the

function of trenches depth and width (left) and OCT as the function of

trenches depth with trench width fixed at 0.2 µm (right). . . . . . . . 62

4.11 Comparison between simulated (5 x 5 cells) and measured (adapted

from [75]) light emitted from the SiPM surface. Top corresponds to

FBK and bottom to Hamamatsu detectors. For Hamamatsu SiPM we

see artifacts that were caused by changing trenches materials from poly

silicon to tungsten. The circular pattern one can see on the simulated

images is probably caused by a strict restriction on the emitted light

acceptance to reproduce the aperture width of a measuring device (see

fig. 4.7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.12 Simulated light emitted from the surface of FBK with one (left) and

two (right) orders of OCT taken into account. . . . . . . . . . . . . . 64

A.1 Optical cross talk as the function of trenches depth and width. . . . . 73

A.2 Optical cross talk as the function of trenches depth and width with a

different avalanche region depth. . . . . . . . . . . . . . . . . . . . . . 74

A.3 Optical cross talk as the function of trenches depth and width with a

different avalanche region width . . . . . . . . . . . . . . . . . . . . . 75

xv



Chapter 1

Introduction

The history of Cherenkov light starts at the beginning of the 1930s when Pavel

Cherenkov began studying luminescence of uranyl salt solutions that were irradiated

by γ-rays of a radium source. During the experiments, Cherenkov noticed a faint

blue light-induced by electrons created by γ - radiation in one of the solutions.

Further observations confirmed that this light does not depend on the concentration,

temperature, and viscosity of the liquid. This light was clearly distinguishable from

the luminescence light and turned out to be partially polarized. The polarization plane

was mostly parallel to the direction of γ-rays propagation [1, 2].

The results of the Cherenkov investigation were explained theoretically by Tamm

and Frank in 1937 [3]. Based on classical electrodynamics they established a spatial

asymmetry of the radiation and the proportionality between the electron path in a

medium and its radiated light intensity. Both of these predictions were confirmed in

later experiments [4]. The results were also confirmed by Railing [5] and Wyckoff and

Henderson [6].

In the 1930s only an eye could detect dim Cherenkov light, but photomultiplier

tube (PMT) development in the 40s made it possible to detect the very weak flux of

light on the level of single photons. This led to the emergence of detectors based on the

Cherenkov effect. Threshold Cherenkov detectors and later Ring-imaging Cherenkov

detectors appeared [7] and became a mechanism to distinguish different types of
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charged particles in high energy physics experiments.

Apart from that, the Cherenkov effect is used in a variety of astroparticle physics

experiments like IceCube, SNO+, and Super Kamiokande. These detectors intend to

detect neutrino – a neutral, spin-1/2 fermion that interacts only via weak interactions

and gravity. The experiments use water or ice as the active region where charged

particles from neutrino interactions with the medium produce Cherenkov light. Then

the light is detected by arrays of photomultipliers, and through the analysis of the

acquired light, the properties of the charged particles are obtained. To make more

precise measurements possible with a new generation of astroparticle Cherenkov

detectors we need to reassess the accuracy of our modeling of Cherenkov light, as well

as improve our photodetectors to have better time and charge resolution than PMTs.

A technology that qualifies for that is a silicon photomultiplier (SiPM) [8]. It is widely

used in medicine, and biology, and is being considered for use in some particle physics

experiments [9]. It has improved charge and time resolution compared to the PMTs,

however, the comparatively high intrinsic noise poses challenges for its use in neutrino

experiments.

1.1 Motivation

Neutrinos are elementary particles in the most successful theory that describes the

properties and interactions of all elementary particles we have so far observed – the

Standard Model (SM). The existence of the neutrino was proposed in 1930 by Pauli

with the first experimental detection in 1956 from a nuclear reactor [10]. As of now,

evidence from particle decays [11, 12] suggest there are only three light, active neutrino

types (flavors). Neutrinos are produced via the weak force in particle decays. Nature

produces them abundantly in the Sun, cosmic ray interactions in the atmosphere,

Earth’s core, and astrophysical objects, while scientists use nuclear reactors and

accelerators to create neutrinos [13]. Studying these sources led to the confirmation

that neutrinos are changing their type on their way through the space and matter
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[14, 15]. This discovery tells us that neutrinos have a non-zero mass, which albeit

small contradicts the original SM postulate and brings up new questions on their mass

generation mechanism as well as the structure behind the mixing of their mass and

flavor states. These questions are among the most pressing ones in particle physics

today, and testing theories that seek to address them [16, 17] is a very active field of

experimental research.

Particle physics experiments observe and identify particles by the way they interact

with matter. Neutrinos are neutral and have a very small mass, thus for their detection

we need to rely on the particles they produce when they interact. Since they only

interact weakly, their interaction probability is small, so detectors have to be massive.

One way to overcome the large masses required is to instrument large volumes of

water with photomultiplier tubes to detect the Cherenkov light emitted as a result of

neutrino interactions. Cherenkov photons are emitted in a direction that is correlated to

the charged particle responsible for it, so using it one can infer the particle’s direction.

Moreover, the number of Cherenkov photons is proportional to the path length, which

can be connected to the particle’s energy. Experiments like Super Kamiokande [18],

IceCube [19], and ANTARES [20] utilize this effect. Some efforts seek to combine it

with other detection techniques, like the use of scintillation light, to take advantage of

event direction reconstruction and high sensitivity in low energy region. THEIA [21]

experiment is going to use both Cherenkov light and scintillation techniques at the

same time as the detection mechanism.

An important part of the analysis techniques in these experiments is Monte-Carlo

simulations. The most widely used package for this task in particle physics is Geant4

[22]. The further development of this package and its improvement continues constantly

thanks to the contribution of people from different particle physics experiments. The

Sudbury Neutrino Observatory (SNO+) also uses this framework as the basis for its

simulation software and has observed a discrepancy between Monte-Carlo and data

Cherenkov light distributions. We study this discrepancy to improve the experiment’s
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systematic errors and contribute to Geant4, making the simulation more accurate,

which is necessary for future, more sensitive Cherenkov light detectors. To contribute

more towards a new generation of detectors we also look into SiPMs development and

collaborate with other Canadian institutions to improve the light detection capabilities

of such a device.

1.2 Thesis Objectives and Outline

The goal of this work is to improve Cherenkov light simulation and detection, and,

as the result, decrease systematic errors in the SNO+ experiment as well as enable

increased precision in next-generation water-neutrino detectors. The thesis is divided

in 3 parts:

1. We explore the nature of Cherenkov light as an interference effect and investigate

the influence of scattering of a charged particle on the total angular distribution

of the radiation. We also study whether the Geant4 assumptions for production

of Cherenkov light hold for low energy electrons propagating in water.

2. We study the Geant4 simulation of the SNO+ detector and use its calibration

data to understand the MC output response to changes in the Cherenkov light

emission. We develop a new Cherenkov light radiation model for Geant4, resolving

the tension between the data and Monte-Carlo simulation.

3. We describe the principles of SiPMs operation and challenges of its development,

introducing optical crosstalk. We design a simulation tool for its prediction and

verify the simulation. Thus, we contribute to SiPM simulations design that is

required for the development of new models tailored for specific particle physics

applications.
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Chapter 2

Influence of scattering and
interference effects on Cherenkov
light emission

2.1 Cherenkov light and its simulation

Cherenkov radiation is a widely used tool in particle physics, astrophysics, nuclear

physics, and medicine. Some of the astrophysics experiments are based on detection

of the Cherenkov light rings to access the direction of the light emitter movement.

This require high precision simulations where the correct Cherenkov radiation profile

is necessary.

2.1.1 Cherenkov light classic theory

According to [3, 23] in a dielectric material with the refractive index n a charged

particle that moves in a straight line with the constant speed β = v
c
will emit photons

in Cherenkov angle θC between the direction of particle propagation and photon

emission. This angle is defined as

cos θC =
1

βn
. (2.1)

Note, that n = n(ϵp) is a function of the photon’s energy. The average number of

emitted photons is given by

dN =
αz2

ℏc
sin2 θdϵdx =

αz2

ℏc
(1− 1

n2β2
)dϵdx ≈ 370z2(1− 1

n2β2
)dϵdx, (2.2)
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where α is fine-structure constant, z is an atomic charge of the medium, ℏ is Planck’s

constant, and c is the speed of light. After integrating eq. (2.2) over ϵ we get the

number of photons emitted per unit of length

dN

dx
≈ 370z2

∫︂ ϵmax

ϵmin

dϵ

(︃
1− 1

n2β2

)︃
= 370z2

[︃
ϵmax − ϵmin −

1

β2

∫︂ ϵmax

ϵmin

dϵ

n2(ϵ)

]︃
, (2.3)

where ϵmin is defined by n(ϵmin) = 1
β
and ϵmax is the maximum energy of emit-

ted photons that are still transparent to the medium and will not be immediately

reabsorbed.

2.1.2 Simulation of Cherenkov light in Geant4

Geant4 [22] is a very versatile and reliable package that is used for the simulations

of many particle physics experiments. It is capable of simulating interactions of

elementary particles propagating though the medium on the energy scale from eV

to TeV. In particular, it is used for simulations of the water filled neutrino detector

SNO+ described in Section 3.1.

Following [24], in order to simulate Cherenkov radiation with Geant4, we calculate

the Cherenkov angle and the number of photons per track length using eq. (2.1) and

eq. (2.3). The simulation of particle propagation in Geant4 is done in steps. The

package takes the conditions of the particle at an initial point, then calculates its

displacement, energy loses, and possible changes of the state; creating a post-step

point that is the initial point for the next step. To get the number of photons per

step, Geant4 uses eq. (2.3) and finds the mean value ⟨N⟩ = StepLength · dN
dx
, where

StepLength is the length of the Geant4 step. Using this mean value, Geant4 samples

the number of photons per step from a Poisson distribution.

The Cherenkov photons are emitted into a cone with the half angle of θC , calculated

with eq. (2.1), with respect to the charged particle trajectory. Therefore, we also need

to explore the way particles are propagated in the simulation and study its influence

on the Cherenkov light emission.
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2.2 Scattering models

Monte-Carlo simulations of particle propagation through a medium can be divided

into two groups, detailed and condensed [25]. The latter describes the averaged

particle displacement and energy loses after several physical interactions, while the

detailed algorithms simulate each interaction and are more accurate. Within Geant4

these models are called scattering models. The model defines a step size and lateral

displacement of a particle along the step. Since the detailed simulation has many

more simulation steps than the condensed algorithm, it is extremely computationally

expensive. Therefore, for propagation of high energy particles with high number

of interactions, Geant4 usually uses condensed simulation algorithms, in particular,

Multiple Scattering (MS) models like Urban [25], Penelope [26], Wentzel [27]. The

step size of the condensed model can be shortened artificially to increase the precision

of the simulation. The results of such a tuning can be seen on fig. 2.1 for energy

deposition profile of low energy electrons [27]. Decreasing the step size makes the

radioactive dose profile agree better with data. However, the most precise simulation

is obtained by using the Single Scattering (SS) model. It is a Geant4 implementation

of a detailed simulation model based on a Mott cross-section calculation that describes

every interaction of an electron with the matter while propagating within a medium.

From [28], the differential Mott cross section for the SS model is given by

dσMott(θ)

dΩ
=

dσRut

dΩ
F2(θ)RMott|F (q)|2. (2.4)

For the basis, it takes a Rutherford cross section:

dσRut

dΩ
=

(︃
Ze2

2mc2β2γ

)︃2
1

sin4(θ/2)
, (2.5)

where m is electron rest mass, Z is the atomic number of the target nuclei, γ is Lorentz

factor and θ is the scattering angle of the electron.

RMott is a Mott correction to the Rutherford model to obtain an approximated

differential cross section that takes into effects related to the spins of electrons. In [28],
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authors use Lijian’s, Quing’s and Zhengming’s [29] interpolated expression, which is

valid for electron energy from several keV to hundreds MeV

RMott =
4∑︂

j=0

aj(Z, β)(1− cos θ)j/2, (2.6)

where

aj(Z, β) =
6∑︂

k=1

bk,j(Z)(β − β)k−1, (2.7)

with β as the mean β of electrons within the model validity range and with bk,j(Z)

coefficients listed in [29]. Because of the complicated charge distribution of atoms,

they also take into account for effective change of the potential with the screening

factor:

F2(θ) =
sin2 θ/2

As,M + sin2 θ/2
, (2.8)

which depends on a screening parameter As,M and scattering angle θ. Detailed discus-

sion on As,M can be found in Section 4 of [30]. Finally, they consider the finite nuclear

size by introducing a nuclear form factor F (q), which depends on the momentum

transfer q from electron to the target. Many types of possible form factors are described

in Section 2.3 of [28] and references therein. However, they conclude that any of the

models are expected to be appropriate for electron single scattering mechanism.

The Urban MS model, with such a step limit that only 4 Cherenkov photons on

average can be emitted along the step, is used in SNO+ simulations by default and

we will refer to it as ”the default SNO+ MS model” further in the text. We explore

how switching from the default MS model to the SS model for electrons propagation

influences the Cherenkov light angular distribution.

2.3 Comparison of scattering models in Geant4

From [24], we know that in order to create a Geant4 application for particle propagation,

there are necessary parts that one has to define:
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Figure 2.1: Radioactive dose profile of 0.5 MeV electron beam in Tantalum as a
function of scaled thickness R/R0, where R is the actual thickness and R0 is the total
width of the media [27]. Simulation results where single scattering model was used for
the electrons propagation (magenta line) fit data the best comparing to the multiple
scattering models (other colors). In multiple scattering models the comparison is done
between the multiple scattering (MS) model used in Geant4 by default (Default); a
MS model with minimal step limitations (Stand EMV), approximately 20 times bigger
steps than in Default; Opt3 that has the strictest possible step limitations for the MS
model (See [31, 32] for further details); Wentzel-VI MSC that is a mix of the default
MS and SS models where the degree of mixing between two models is defined by an
additional parameter described in [27], but the default value is used to obtain the blue
line.
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1. Geometry - volumes, materials the volumes are made of, physical properties of

the material, such as refractive index (RI).

2. List of particles to be simulated.

3. List of processes to be simulated for a given particle list.

4. How the primary particles should be produced.

In our simulation, we want to obtain the angular distribution of Cherenkov light

emitted by electrons travelling in the water. For that purpose, we create a sphere

of 6 m radius filled with water. We use the same water refractive index as the

function of photon wavelength as SNO+ in its simulation code (see [33] and references

therein). We add electrons, optical photons, and γ - rays to the particle list. To the

list of processes, we include relevant physics for electrons propagation: transportation,

ionization, bremsstrahlung, and Cherenkov light production. On top of it, for electron’s

scattering, we add up one of the two mentioned scattering models: the default SNO+

MS model or the SS model. We do not define any physical processes for the optical

photons except transportation, because we want to obtain light distribution as it is –

not disturbed by other effects related to photon propagation. Electrons are injected at

the point in the middle of the sphere along z-axis with energy Ee. Finally, we get the

coordinates of the photons that have reached surface of the water sphere and save it

to build the θ angular distribution. Figure 2.2 shows the geometry and an example

event.We run two series of the simulations, first with the SS model and second with the

MS model, for different Ee from the range of 0.3 - 5 MeV, injecting 1000 electrons at

a time. Figure 2.3 and table 2.1 show the difference between Cherenkov light angular

distributions of several MeV electrons propagated with the MS and SS models.

Clearly, one can see that the default SNO+ MS model has a sharper peak for energies

of electrons in range 0.3 - 1 MeV, with a smaller fraction of photons emitted into angle

> π/2 (tail fraction) and a smaller full width half maximum of the peak (FWHM).
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Figure 2.2: Blue water sphere with an electron injected in the middle. Green lines are
trajectory of the emitted photons. One can see the pattern of Cherenkov ring on the
surface of the sphere.

Figure 2.3: A comparison of Cherenkov light distributions obtained from using SS
and SNO+ default MS models for electrons propagation as it would be observed in a
spherical detector if we injected thousands of Ee = 0.3, 0.5, 1, 5 MeV electrons along
the z-axis. The green and red regions specify FWHM zones for each distribution.
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However, the distributions match much better at the energy of 5 MeV. This happens

because Geant4 with the MS model for the electron propagation produces a large

straight step for low energy electrons and emits most of the light into the Cherenkov

angle with respect to this step. After that step electrons are either below or really close

to the Cherenkov threshold energies and cannot emit more light. However, electrons

propagated with the SS model have smooth trajectories with many scatterings (see

fig. 2.4) and emit Cherenkov light along the whole track. At the higher energies, the

electrons undergo enough steps, even with the MS model, and are able to emit light

in different directions before they reach the Cherenkov threshold. Therefore, changing

of the scattering model for electron propagation does highly influence the Cherenkov

light emission. Since SNO+ data indicates that light withing events in data is more

isotropic than the Geant4 prediction, the exact SS model can be further tested with

SNO+ simulations and compared to the calibration data.

2.4 Cherenkov light coherence studies

The classical eq. (2.1) is obtained with the assumption that a charged particle travels

in a straight infinite line with a constant speed [3, 23]. In reality, an electron that

travels in a medium interacts with it and scatters many times while experiencing

energy losses. As we described before, when Geant4 propagates a particle using MS

models, it assumes some mean deviations from the trajectory with some StepLength >

mean free path of a particle and connects initial and final points of the step with a

straight line. However, the real trajectory of the particle is a bent line with many more

interactions points. Figure 2.4 demonstrates the difference between MS and SS models’

trajectories for an electron traveling in water. To see how the electron scattering

influences the assumed coherence, we calculate the Cherenkov angular distribution

profile considering the physical origin of Cherenkov light as an interference effect,

using the exact SS model for particle transportation.

12



Item MS SS Coherent

0.3 MeV

Peak position 0.21 ± 0.03 0.31 ± 0.03 0.29 ± 0.03

FWHM 0.05+0.06
−0.05 0.29 ± 0.06 0.25 ± 0.06

Tail fraction 0.0001 ± 6e-5 0.0051 ± 0.0004 0.0083 ± 0.0006

0.5 MeV

Peak position 0.52 ± 0.03 0.57 ± 0.03 0.57 ± 0.03

FWHM 0.04+0.06
−0.04 0.46 ± 0.06 0.46 ± 0.06

Tail fraction 0.036 ± 0.002 0.045 ± 0.002 0.040 ± 0.002

1 MeV

Peak position 0.69 ± 0.03 0.71 ± 0.03 0.71 ± 0.03

FWHM 0.29 ± 0.06 0.55 ± 0.06 0.59 ± 0.06

Tail fraction 0.089 ± 0.001 0.081 ± 0.001 0.084 ± 0.001

5 MeV

Peak position 0.77 ± 0.03 0.77 ± 0.03 0.78 ± 0.03

FWHM 0.46 ± 0.06 0.47 ± 0.06 0.50 ± 0.06

Tail fraction 0.099 ± 0.001 0.092 ± 0.001 0.092 ± 0.001

Table 2.1: Detailed comparison of the distributions from fig. 2.3 and fig. 2.5.

Figure 2.4: MS (left) and SS (right) simulated electrons trajectories for 2 MeV electrons
in the water.
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2.4.1 Taking into account interference between segments

First, we need to derive an appropriate expression that we will use to calculate the

emitted Cherenkov light. In this section, we closely follow a SNO internal note of R.J.

Komar [34] as well as derivations of Schiff [35] and Dedrick [36].

Schiff starts with defining the current density of a point charge e that starts moving

with a constant speed v along z-axis at t = 0 and at r = 0 is:

Jx(r, t) = Jy(r, t) = 0 (2.9)

Jz(r, t) = evδ(x)δ(y)δ(z − vt) (2.10)

To calculate the angular distribution of the Cherenkov radiation, they use the exact

expression for the average energy radiated at position r by a harmonically time-varying

current distribution in a homogeneous isotropic dielectric medium [36]:

Pkω(r) =
nk2

2πr2c
|
∫︂

J⊥k(r
′)exp(−ink · r′)dτ ′|2, (2.11)

where Pkω is the energy flow per unit area and angular frequency in the direction of

observation (parallel to k or r), |k| = ω/c, n is the index of refraction for the medium,

and J⊥k is the component of the current density perpendicular to k. Then they replace

the density in eq. (2.10) by the Fourier amplitude of angular frequency ω

Jzω(r, t) =
e

2π
δ(x)δ(y) exp (iwz/v) (2.12)

and put J⊥k = Jzω sin θ into eq. (2.11). Thereby, they get the energy flow per unit

area and angular frequency

2πPkω(r) =
ne2ω2 sin2 θ

4π2r2c3
|
∫︂
(exp(−iωz′(

1

v
− n cos θ

c
)dz′|2. (2.13)
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For a pathlength L centered on the origin, the integral is evaluated to be∫︂ L/2

−L/2

e−iωz′( 1
v
−n cos θ

c )dz′ =
2 sin [ωL

2
( 1
v
− n cos θ

c
)]

ω( 1
v
− n cos θ

c
)

. (2.14)

This is the definition of the delta function in the limit of L → ∞

lim
L→∞

2 sin [ωL
2
( 1
v
− n cos θ

c
)]

ω( 1
v
− n cos θ

c
)

= 2πδ(
1

v
− n cos θ

c
), (2.15)

which leads to the classical expression eq. (2.1).

As the result, from eq. (2.13) the radiated power is proportional to:

L2 sin2 θ
sin2 χ

χ2
and χ =

ωL

2
(
1

v
− n cos θ

c
) ≡ πL

λ′ (
1

nβ
− cos θ), (2.16)

where λ′ = 2πc/nω is the wavelength in the medium. The behaviour of (eqn. 2.16) is

different for small and large L. For L ≫ λ′, the angular distribution is sharply peaked

at the Cherenkov angle θ0 and has a full width at half maximum

δθ ≃ λ′

L sin θ0
.

However, when the pathlength decreases and L ≪ λ′, the sin2 χ/χ2 becomes constant

and the radiation is emitted over a dipole angular distribution.

To estimate ratio between the straight pathlength of a charged particle and wave-

length of emitted light to achieve full light output on a segment, they integrate over

the angular distribution eq. (2.16). The integral over sin2 χ/χ2 goes to π when χ limits

approaching ±∞. However, most of the integral value lays between χ = ±π. Therefore

from eq. (2.16), we get the conditions on the pathlength to preserve a high level of

coherence

|L
λ′ (

1

nβ
± 1)| > 1, (2.17)

which, for β = 1 and n = 4/3, becomes

L > 4λ′ (2.18)
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PMTs are able to detect light with the wavelengths up to λ = 720nm. Hence, we need

straight pathlengths L ≈ 3µm to get full coherence. From the SS model we used, the

mean free path between scattering of electrons in the water is ≈ 1.3µm (see fig. 3.9),

which is at the same order as our estimate of the minimal L.

To consider interactions between small segments of a track, we will use the formulae

developed by Dedrick [36]. Equation (2.11) transforms into a sum of integrals over

each straight path segment ν

Pkω(r) =
nk2

2πr2c
|

N∑︂
ν=1

Iν |2, (2.19)

where

Iν =
e

2π
sinΘνe

i(δν+χν)lν
sinχν

iχν

(2.20)

and the phase angles are given by

χν =
ωlν
2

(
1

vν
− n

c
cosΘν) ≡

πlν
λ′ (

1

nβν

− cosΘν), (2.21)

δν = ωtν − nk(xν sin θ cosφ+ yν sin θ sinφ+ zν cos θ). (2.22)

Now, the expression for the total energy radiated is composed not only from terms

of the form IνI
∗
ν but also (IνI

∗
µ + I∗νIµ) that represent interference effects between

segments.

Equation (2.19) can be conveniently applied to a step-based Monte-Carlo simulation

to calculate the total angular distribution of Cherenkov light. Hence, we decided

to make a hybrid simulation of Cherenkov light emission using the radiation model

described above and Geant4 using the SS model for electron transportation. The

difference from the algorithm described in Section 2.1 is that now we get the power of

emitted Cherenkov light from a track as the whole instead of considering simulation

steps independently.
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2.4.2 Geant4 setup and integration

To propagate the electrons, we use the same Geant4 geometry setup as described in

Section 2.3, but only with the SS model for propagation of electrons. However, instead

of getting information about emitted photons, we record each electron’s position, time,

and β = v/c at each step point. We run each simulation with 1000 electrons with the

initial energies E0 = 0.3, 0.5, 1, 5 MeV. We use the stored trajectories to calculate

the sum of the integrals Iν (2.20) for λ = 400nm. As a result of the calculations, we

obtain angular dependence of the Cherenkov light power as it would be observed in a

spherical detector.

2.4.3 Comparing to the default light emission simulation

Since we calculate power distribution only for a single wavelength, we have to change

the Geant4 setup described in Section 2.3 and make it emit photons of the single

wavelength λ = 400nm. Then, we run simulations with 1000 electrons with the initial

energies E0 = 0.3, 0.5, 1, 5 MeV. Figure 2.5 and table 2.1 show the result of the

simulations.

The simulation with the default SNO+ MS model for particle propagation has a

more noticeable difference from the SS model with the default light emission method

than the model that takes into account interference effects. Therefore, we will be using

the SS model with the default light emission as the reference since it has minimal

deviations from the more physically accurate one and is already implemented in

Geant4.

2.5 Conclusions

There are significant differences in Cherenkov light distribution emitted by electrons

using multiple (MS) and single scattering (SS) models that we discussed in Section 2.4.3

and in the end of Section 2.3. The more physically accurate calculations, which take into
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Figure 2.5: A comparison of simulated Cherenkov light distributions emitted by an
electron moving in the water as it would be observed in a spherical detector if we
injected thousands of several MeV electrons along the z-axis. We use default Geant4
light emission method (red line) and light emission that takes into account interference
effects between track segments (blue line). The energy of the electrons is specified on
each subplot.

account the interference nature of Cherenkov light radiation, have minimal deviations

from the current simulation tools with the SS model for electrons propagation (MS

is used by default in SNO+). The results are also in agreement with the studies on

”Effects of electron scattering on Cherenkov light output” by M.G.Bowler [37], where

the authors studied if the coherence violation due to electron scattering can cause a

decrease in Cherenkov light output in the water. Therefore, for the propagation of

electrons of several MeV energies in the water, one can use Geant4 approximation for

Cherenkov photons emission. However, we need to change the scattering model from

the default SNO+ MS to SS and explore the effects of the changes on the data.
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Chapter 3

Corrections to Cherenkov model in
SNO+ simulations

As we concluded in the previous chapter, the single scattering model has to be used

instead of the default SNO+ multiple scattering model for the simulation of electron

with energy up to 5 MeV propagation in the water in order to make it more physically

accurate. By doing this, we can estimate the effect of changing the scattering model

by comparing the modified SNO+ MC simulation to the existing one and to SNO+

calibration data.

3.1 SNO+ and Calibration data

SNO+ (Sudbury Neutrino Observatory) experiment [38] is an ongoing low-background

neutrino experiment tailored for the detection of MeV energy depositions. The experi-

ment has several stages, including a water phase where the detection volume consisted

of water and Cherenkov light was used to detect neutrinos. To describe an event in

the water phase, SNO+ uses Cherenkov light position and arrival time to infer the

characteristics of the particle that has created the light. The data for this work comes

from the water phase only.
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Figure 3.1: SNO+ schematics from [40]. 6 m radius acrylic vessel (blue) surrounded by
support structure (green) and is held by ropes (pink). Ropes pictured in red are used
in the scintillator phase to compensate buoyancy of the AV filled with scintillator.

3.1.1 SNO+

SNO+ is the successor of the SNO experiment [39] and inherits most of its infras-

tructure. The detector consists of a spherical 6 m-radius acrylic vessel (AV) filled

with about 900 tonnes of pure water for the water phase. It is surrounded by 9,394

inward looking photomultiplier tubes (PMTs) that give about 50% photo coverage.

The PMTs are mounted on a support structure around the AV with an average radius

of 8.4m. The cavity where the detector is installed is also filled with water to decrease

backgrounds from natural radioactivity of rocks, PMTs, and auxiliary structures. To

decrease the muon, a long lived charged particle, background, SNO+ is built about

6,000 m of water equivalent depth under the ground. There are also 90 outward looking

PMTs located on the support structure that help to detect and reject atmosphere

muons. Figure 3.1 shows the schematics of the detector.
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Figure 3.2: An example of a dynode system operation from [41]. There is an electrical
potential difference between each dynode. First, a photoelectron hits the first dynode
and makes several more electrons escape the dynode. Then, these escaped electrons
travel to the next dynode and get multiplied. It repeats until the multiplied charge
reaches the final dynode – anode and gets collected.

3.1.2 SNO+ water phase events

The detection of the neutrinos in the water phase of the SNO+ detector happens

through the observation of Cherenkov light. A photon hitting a PMT may create

a photoelectron with the probability that depends on quantum efficiency of the

photocathode. Then, the photoelectron is accelerated to the dynode system and gets

multiplied by secondary emission (see fig. 3.2); creating an output signal. The signal

is recorded with the information about a PMT, which has detected the signal, and a

timestamp. This data forms a PMT hit and a set of PMT hits recorded in a specified

time window after each valid set of conditions on detection (global trigger) is called an

event. Figure 3.3 shows an example Cherenkov ring event on a SNO+ event display.

Every event is characterized by position vertex, direction, energy, and isotropy. The

position vertex is determined based on the time difference between PMTs signals.

The direction is calculated by the angular distribution of the PMT hits. The energy

is proportional to the number of PMT hits within an event [42]. The event isotropy,

which is an important concept for this thesis, will be discussed briefly in a following

section.
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Figure 3.3: An example of a neutrino candidate event with a Cherenkov ring in SNO.
Event display shows the PMTs that detected the light in different projections. The
histogram shows the time distribution of the PMT hits and the colour of the hit codes
the time of the light arrival.
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Figure 3.4: The 16N decay chamber schematics. The 16N decays occur in the bottom
region, bounded by 3 mm of a cylindrical shell of plastic scintillator. The upper volume
contains a PMT that detects scintillator light. Taken from [44].

3.1.3 SNO+ Monte Carlo

In SNO+, the simulation is handled by Geant4 [22] also using GLG4sim, a package

for precise scintillator light simulations [43]. The detector geometry is accurately

reproduced in the simulation. Generators allow the injection of selected particles in

an arbitrary spot, with specified kinematics and timestamps. When the particles are

generated, Geant4 propagates them through the detector volume and simulates any

physical processes, such as Cherenkov light emission, scattering, absorption, and PMT

response. Finally, front-end electronics, trigger system and event builder are simulated

[40]. Detector conditions for each physical run – such as date, PMT and electronics

calibrations, trigger conditions – are stored in a detector database. Therefore, one

can simulate the Monte-Carlo data that corresponds to specific conditions and this

simulated data can be analyzed the same way as the real data.
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3.1.4 16N and AmBe calibration sources

The detector is planned to undergo calibrations during its lifetime to make sure it

works properly and measurements are accurate. To conduct calibrations that depend

on the detected particle energy, SNO+ uses 16N [44] and AmBe [45] radioactive sources.

The 16N is produced via the (n, p) reaction on 16O of CO2. It provides nearly

monoenergetic 6.13 MeV γ-rays that follow the β-decays of 16N. The γ-ray Compton

scatters producing electrons of roughly 5 MeV energy that emit Cherenkov light within

the detector. The source is placed into an enclosure (see fig. 3.4), which includes plastic

scintillator that captures the electron from the β-decay. The scintillation signal is

picked up by a PMT installed inside the enclosure. This signal is used as an internal

tag for an 16N event and allows easy calibration event identification.

The 241Am9Be is a neutron source. 241Am emits an α-particle that may be absorbed

by 9Be target, which then will decay into 12C through neutron emission. 12C is produced

in an excited state and immediately de-excites by emitting a 4.4 MeV γ-ray. The

neutron thermalizes and gets captured by a proton within the medium in about

200µs producing 2.2 MeV γ. Therefore, the AmBe source creates 2 consecutive events,

referred to as prompt (4.4 MeV γ) and delayed (2.2 MeV γ). The coincidence in a

specified time window makes it possible to identify these calibration events.

3.1.5 Isotropy and the β14 parameter

In the water phase, the projection of Cherenkov light on PMTs is expected to have a

well defined circle shape with a high degree of anisotropy, but the average number of

PMT hits in an event is ∼9 hits/MeV of energy of a charged particle. It is therefore

hard to distinguish different signatures of Cherenkov cones smeared by electron

scattering and identify the origin of an event. To overcome this, we can quantitatively

characterize the isotropy of the light within an event using the angular distribution

of PMTs with hits. Figure 3.5 shows a schematic representation of PMT hits in a

Cherenkov ring event and quantities that we define. Here ri and rj are vectors that
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Figure 3.5: The image is taken from [42]. It explains θij angles within Cherenkov ring
event.

connect fit vertex with i-th and j-th PMT hits respectively and u is the normalized

fit direction. With these quantities, we can define θij that is the angle between ri and

rj, so cos θij =
rirj

|ri||rj | .

We introduce βl parameters that are invariant to rotations and give information

about the spatial distribution of hits within the event

βl =
2

N(N − 1)

[︄
N−1∑︂
i=1

N∑︂
j=i+1

Pl(cos θij)

]︄
, (3.1)

where N is number of hits in the event and Pl is Legendre polynomial. From [42]

we know that the best separation between different events signatures is achieved by

using β14 = β1 + 4β4 parameter. For example, Figure 3.6 shows β14 distributions of

two naturally occurring radioactive isotopes 214Bi and 208Tl. The distributions have

different characteristics, like position of the peak and width, and therefore can be

separated using β14. In the event with higher isotropy, we expect the light angular
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Figure 3.6: The image is taken from [46]. Data and MC β14 distributions of 214Bi and
208Tl decays. These decays are distinguished by β14.

distribution to be broader.

3.1.6 β14 discrepancy in SNO+

The β14 is a useful parameter for event selection, however, during the calibration

phase a discrepancy between data and Monte-Carlo was found [47]. Figure 3.7(left)

shows the difference in β14 distributions for 16N source simulation and data. The

data has a lower mean value of the parameter, which means it has a higher degree of

isotropy. Figure 3.7(right) demonstrates an attempt to fix the difference by smearing

the Cherenkov emission angle, increasing the isotropy of the event. It helps to match

mean values for 16N data, but it doesn’t match β14 for lower energy calibration sources.
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Figure 3.7: Discrepancy between data and MC of 16N source adapted from [47] (left).
Discrepancy in mean values of β14 of 16N and AmBe sources (right) with an attempt
to fix it by smearing the Cherenkov emission angle [48].

3.2 Implementing SS sampling within Geant4

From the β14 discrepancy, we know that data has a higher degree of isotropy than the

default SNO+ Monte-Carlo. From the previous chapter, we also know that switching

to the single scattering model for electron propagation makes the total Cherenkov light

angular distribution more broad, increasing FWHM as was shown on fig. 2.3. Therefore,

we want to use the single scattering model in SNO+ MC. However, the direct usage

of the SS model for electron propagation within SNO+ simulations faces several

challenges. Firstly, SNO+ uses software with a deprecated Geant4 version (10.0.0p3)

that does not have the same SS model implementation for low energy electrons as

the new Geant4 versions – therefore, we cannot explicitly use the model. Secondly, as

described in Section 2.2, the SS model is significantly more computationally expensive

than MS models. A comparison of run time of Geant4 simulations with electrons

propagation using the default SNO+ MS model and SS model shows that the latter

takes about 7 times longer. That means we cannot afford to use it for generating

large MC samples needed for analysis, which contain millions of simulated electrons

trajectories. In order to overcome these limitations, we modify the Geant4 Cherenkov

light injection model in a way that the total Cherenkov light distribution corresponds
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Figure 3.8: An example of θss distribution for 1 MeV energy electron.

to the one obtained by using the SS model for electron propagation. Further in the

text, this model will be referred to as ”Cherenkov light sampling”.

3.2.1 Scattered angle and free mean path distributions

To implement the algorithm we first need to know the scattering angle of an electron

θss = θss(Ee) and the free mean path of the electron λss = λss(Ee) as the functions of

the electron’s energy. Since we want the sampling to work fast, we do not use the exact

calculations of the cross-section as described in Section 2.2. We know, a priori, that

electrons in the SNO+ simulation are propagated in the water. We also know from

Chapter 2 that usage of the SS model produces different Cherenkov light distribution

at the energy scale of electron from few MeV up to approximately 5 MeV. We use

this knowledge and build distributions of θss(Ee) (see fig. 3.8) with a step of 50 keV

and λss(Ee) (see fig. 3.9) with a step of 100 keV, where the step sizes are an arbitrary

choice, for electrons travelling in water with energies from 0.3 MeV to 6 MeV.

We obtain these distributions numerically by running a Geant4 simulation. Similarly
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Figure 3.9: Fitted λss(Ee) distribution.

to the simulation construction described in Section 2.3, we have to define geometry,

processes and particles lists. The lists include only electrons and the SS model, as well

as transportation for the particle propagation. The geometry is a 5× 5 cm cube of

water so electrons with energy of few MeV, which are injected in the centre of cube,

deposit a negligible amount of energy before escaping the volume and are no longer

being tracked. We run the simulation injecting several thousand electrons and record

the scattering angle θss after each interaction (see fig. 3.10) and a step length until

they leave water volume. We run several simulations for different energies in the range

from 0.3 MeV to 6 MeV and find the average of obtained step lengths to get λss for

the specified energy (see fig. 3.9). To find λss as a smooth function of energy, we use

the model described in Section 2.2 and fit it to the data. λss(E) ∼ 1/σ(E), where

σ(E) is total cross-section of single scattering. Combining this with eq. (2.4) we obtain

an energy dependence of λss:
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Coefficient Value Uncertainty

κ1 2.45e+05 0.33e+05

κ2 -2.94e+04 0.31e+04

κ2 1.26e+03 0.72e+03

κ4 4.14e-05 0.36e-05

κ5 -1.33e-02 0.11e-02

κ6 1.14e-02 0.03e-02

Table 3.1: Coefficients of eq. (3.2) obtained after fit to the data.

λss(E) ∼ 1/σ(E) =
E2∑︁6

k=1 κkE
k−1
2

, (3.2)

where κk are free parameters. After the fit (see fig. 3.9) we get the values of κk

coefficients, which are listed in table 3.1. We also interpolate θss(Ee) distributions by

nearest-neighbour interpolation.

3.2.2 Cherenkov light sampling

As was mentioned in Section 2.1, Cherenkov photons are emitted with respect to the

direction of particle movement p⃗0. This is a momentum vector in the starting point of

the step or difference between the coordinates of the end point of the step and the

starting point of the step normalized to one. To reproduce the SS model Cherenkov light

distribution we sample ∆θ from θss(Ee) distribution by inverse transform sampling

and change p0⃗ by ∆p0⃗(∆θ). We do this Nθ times and emit a photon in the Cherenkov

angle with respect to a new p⃗0 (see fig. 3.11). We repeat these steps ⟨n⟩ times until all

photons from the step are emitted. After the mean number of photons per steps ⟨n⟩ is

calculated, the new algorithm is as follows:

(1.) Divide a step i into sub-steps of an average length required to emit one photon

LengthPerPhoton = StepLength
⟨n⟩ .
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(2.) Calculate the mean energy of the particle on a sub-step Eij, where i is step

number and j = [1, ⟨n⟩] is sub-step number. Eij = Ei − (j − 1
2
)Ei−Ei+1

⟨n⟩ .

(3.) For the sub-step j calculate number of scatterings Nθ =
LengthPerPhoton

λss(Eij)

(4.) Sample ∆θ from θss(Eij) and build a unit momentum displacement vector

∆p⃗0 = (1;∆θ; ∆φ), where ∆φ is a random value from 0 to 2π. Then change the

direction of p⃗0 by ∆p⃗0.

(5.) Repeat (4.) Nθ times and then emit a photon to Cherenkov angle θC with respect

to p⃗0

(6.) Repeat (2.) - (5.) for all sub-steps, so j goes through values from 1 to ⟨n⟩.

(7.) Record the last value of p⃗0 after the last sub-step in a step.

(8.) Repeat (1.) - (7.) for the next i+1 simulation step starting with p⃗0 value obtained

in the end of the previous i step.

3.2.3 Comparing MS model with sampling to SS model

To assess how accurate sampling reproduces Cherenkov light distribution obtained

with the SS model for electron propagation, we conduct MC simulations as described in

Section 2.1. Geant4 was modified to use a new Cherenkov light generation algorithm,

described in Section 3.2.2, to the simulation with the default SNO+ MS model.

Figure 3.12 and table 3.2 demonstrate and characterize obtained distributions.

One can see that the light distribution obtained with the Cherenkov light sampling

is different from the SS model with the default light emission method. The biggest

difference is for electrons of 0.3 MeV energy and, again, the difference for 5 MeV

becomes negligibly small. However, the 0.3 MeV electrons have small light output

and do not contribute much to the final light distribution. The simple benchmark

mentioned in the beginning of Section 3.2 shows a 7% increase of computation time
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Figure 3.10: Schematics of θss angles. First point is the point of the injection of electron
with energy E0. The solid arrows represent electron’s steps. We record an angle of
each scattering with respect to previous step. In the end when electron leaves the
water volume it has energy approximately equal to the initial E0.

Figure 3.11: Process of Cherenkov light sampling by changing the direction with
respect to which Cherenkov photons injection is happening.
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Figure 3.12: A comparison of simulated Cherenkov light distributions emitted by an
electron moving in the water as it would be observed in a spherical detector if we
injected thousands of electrons with 0.3, 0.5, 1, and 5MeV energies along the z-axis.
Default Geant4 light emission method with the SS model (red line) and modified
Cherenkov light emission with the default SNO+ MS model (green line). The energy
of the electrons is specified on each subplot.
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Item MS SS Coherent Sampling

0.3 MeV

Peak position 0.21 ± 0.03 0.31 ± 0.03 0.29 ± 0.03 0.38 ± 0.03

FWHM 0.05+0.06
−0.05 0.29 ± 0.06 0.25 ± 0.06 0.55 ± 0.06

Tail fraction 0.0001 ± 6e-5 0.0051 ± 0.0004 0.0083 ± 0.0006 0.0054 ± 0.0004

0.5 MeV

Peak position 0.52 ± 0.03 0.57 ± 0.03 0.57 ± 0.03 0.59 ± 0.03

FWHM 0.04+0.06
−0.04 0.46 ± 0.06 0.46 ± 0.06 0.57 ± 0.06

Tail fraction 0.036 ± 0.002 0.045 ± 0.002 0.040 ± 0.002 0.045 ± 0.002

1 MeV

Peak position 0.69 ± 0.03 0.71 ± 0.03 0.71 ± 0.03 0.72 ± 0.03

FWHM 0.29 ± 0.06 0.55 ± 0.06 0.59 ± 0.06 0.62 ± 0.06

Tail fraction 0.089 ± 0.001 0.081 ± 0.001 0.084 ± 0.001 0.090 ± 0.001

5 MeV

Peak position 0.77 ± 0.03 0.77 ± 0.03 0.78 ± 0.03 0.76 ± 0.03

FWHM 0.46 ± 0.06 0.47 ± 0.06 0.50 ± 0.06 0.46 ± 0.06

Tail fraction 0.099 ± 0.001 0.092 ± 0.001 0.092 ± 0.001 0.102 ± 0.001

Table 3.2: A complemented with Cherenkov light sampling model table 2.1 that
characterizes distributions on fig. 2.3, fig. 2.5, and fig. 3.12.

comparing to the unmodified light emission, which is a more efficient solution than

usage of the SS model for particle propagation that increases computational time by

700%. Therefore, we use this model and introduce an effective parameter to tune the

model to the data, which is described in the next section.

3.2.4 Fitting the model to the SNO+ data

We develop the Cherenkov radiation model described in the previous sections consider-

ing the SS effect on Cherenkov light emission. However, it does not exactly reproduce

the process and therefore it is an effective model. To complete the model we should

tune it to the measured data. In Section 3.1.5 we introduced the β14 parameter. While

34



Figure 3.13: A comparison of simulated Cherenkov light distributions by Cherenkov
light sampling with different α emitted by an electron moving in the water as it would
be observed in a spherical detector if we injected thousands of 1 MeV electrons along
the z-axis.
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total angular distribution of Cherenkov light that we were comparing so far is the

average quantity over all the events, β14 is sensitive to the way light is distributed

within an event. Also, one of the goals of this thesis is fixing β14 discrepancy between

data and MC. For that reason, to tune the model, we use calibration sources 16N and

AmBe (see Section 3.1.4) and fit its β14 mean values of the MC simulation with the

new model for Cherenkov light emission to the β14 mean value of the calibration data.

In order to do this, we introduce an effective parameter α that scales the mean free

path of an electron in water λ′
ss(E) = αλss(E). Changing this parameter will change

the number of scatterings per Cherenkov photon and smear the resulting Cherenkov

light angular distribution (see fig. 3.13).

We run simulations with different α in a range from 0.1 to 1 for 16N and AmBe

sources with the run numbers corresponding to the sources placed in the middle of

the detector. For the 16N events selection we require event to have a tag as described

in Section 3.1.4. For the AmBe events selection, we require two consecutive events

with the time difference of less than 200µs, time big enough for a neutron capture to

happen but small enough to not pick up a lot of background, and distance of less than

1m between the event vertices. The run numbers for corresponding data and detailed

selection criteria for data and MC one can find in appendix B. As the result we obtain

β14 as the function of α for 3 different energies of γ - rays. Figure 3.14 shows that to

match the data α should be chosen in between 0.5 and 0.6. Therefore, we fit β14(α) for

each γ-ray energy with β14(α) = a
√
α+ b in the specified range. To find an optimal

value of α, we then minimize the function:

χ2(α) =
∑︂
i

(β14i(α)− βdata
14i

)2

σ2
datai

+ σ2
MCi

, (3.3)

where i = 16N, Prompt, Delayed; σ2
data and σ2

fit are errors of β14 data and MC

respectively. We obtain α = 0.556± 0.005. Figure 3.14 shows the result of the fitting

and simulations for the α value we have found.
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Figure 3.14: The plot demonstrates the simulated β14 mean value as the function
of the tuning parameter α. Calibration sources with γ - rays of energies 2.2 MeV
(Delayed), 4.4 MeV (Prompt), and 6.1 MeV (16N) are used. Optimal value for α is
calculated and pictured with the pink dashed line.

3.2.5 Comparison between data and MC

In order to cross-check the correctness of modifications, we also take a look at some

quantities, which characterize an event, mentioned in Section 3.1.2.

β14 distributions

In the previous section, we were considering only the mean value of β14. To see how good

the modification fits the data, we look into the distributions of β14. When we compare

β14 distribution of 16N default simulation and simulation with sampling to the data, we

obtain χ2
default = 1085.6/80 and χ2

sampling = 90.4/80, respectively. For the AmBe source

Promptχ2
default = 141.6/80 and Promptχ2

sampling = 69.6/80, and Delayedχ2
default = 117.6/80

and Delayedχ2
sampling = 78.4/80 for AmBe Prompt and delayed, respectively. This

demonstrates that data is in much better agreement with the modified and tuned MC

than with the default one for both 16N and AmBe calibration sources. One can see

the distributions of β14 on Figure 3.15 and Figure 3.16.
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Figure 3.15: Comparison of data, the default MC and modified MC β14 distributions
of 16N source.

Figure 3.16: Comparison of data, the default MC and modified MC β14 distributions
of AmBe source prompt (left) and delayed (right) events.
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Figure 3.17: A schematics that demonstrates how we obtain θ for direction resolution.

Direction resolution

Compton electrons have high colinearity with the initial direction of the γ-ray that

produced them [49]. SNO+ uses this fact for determination of systematic errors of

the reconstructed direction u⃗fit. The reconstructed position of electron x⃗fit defines

the point where Compton scattering took place. In this assumption, the vector from

the source position x⃗source to the reconstructed vertex defines the γ - ray direction

and a presumable direction of the event. Then, we calculate the angle between the

presumable and reconstructed direction cos θdir as:

cos θdir =
x⃗fit − x⃗source

|x⃗fit − x⃗source|
· u⃗fit (3.4)

Figure 3.17 demonstrates mentioned vectors and angles.

We calculate these angles using the default and modified MC with the developed

Cherenkov light emission model simulations, as well as using data. 16N source placed

in the middle of the SNO+ detector and the selection criteria mentioned in the

previous section. Figure 3.18, shows the obtained distribution, where we can see that

the sampling model demonstrates better agreement with the data than the default

MC. We also calculate χ2 between the default MC and the data χ2
default = 225.34/100

and between the sampling and the data χ2
sampling = 106.37/100 that confirms our
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Figure 3.18: A comparison of cos θdir obtained from the default simulation, Cherenkov
light sampling model with tuned α and data.

observation.

Cos θ PMT

cos θPMT is the distribution of light within the event in a particle’s coordinate system.

We obtain it from a dot product:

cos θPMT = u⃗fit ·
x⃗PMT − x⃗fit

|x⃗PMT − x⃗fit|
, (3.5)

where x⃗PMT is the coordinate of the the triggered PMT. This quantity essentially gives

us the information about resulting integrated Cherenkov light distribution, similar to

figs. 2.4 and 2.5 or figs. 3.12 and 3.13. However, it also takes into account the SNO+

detector response: geometry, PMTs response, photons transportation. Figure 3.19

shows the cos θPMT distribution for 16N source. The χ2 value for the default MC

χ2
default = 8706/200 when for χ2

sampling = 1772/200. However, fig. 3.20 shows that

modification of MC does not make significant impact on the cos θPMT distribution

of prompt and delayed AmBe events with the χ2 value for the prompt events being

Promptχ2
default = 9312/200 and Promptχ2

sampling = 7523/200 and for the delayed events
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Figure 3.19: A comparison of cos θPMT obtained from the default simulation, Cherenkov
light sampling model with tuned α and data for 16N source.

Delayedχ2
default = 12374/200 and Delayedχ2

sampling = 10763/200

Reconstructed position and number of hits

Since we do not change the number of emitted photons, the number of PMT hits

will not change. We also do not expect to see any difference in the reconstructed

position plots, which relies on the time difference between PMT signals and not

spatial distribution of Cherenkov light. Plots on figs. 3.21 to 3.23 demonstrate that

the modification does not change data and MC agreement, which agrees with our

assumptions.

3.3 Conclusions and potential use in the scintillator

phase

In this chapter, we described development of a new Cherenkov light emission method

based on the results obtained using the single scattering model for electron propa-

gation. The model is relevant for electrons of energy less than 6 MeV travelling in
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Figure 3.20: A comparison of cos θPMT obtained from the default simulation, Cherenkov
light sampling model with tuned α and data for AmBe source prompt (left) and delayed
(right) events.

Figure 3.21: Comparison of reconstructed position coordinates, ITR, and number of
hits distributions of 16N source obtained from the default simulation, the modified
MC and data.
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Figure 3.22: Comparison of reconstructed position coordinates, ITR, and number
of hits distributions of Prompt events of AmBe source obtained from the default
simulation, the modified MC and data.
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Figure 3.23: Comparison of reconstructed position coordinates, ITR, and number
of hits distributions of Delayed events of AmBe source obtained from the default
simulation, the modified MC and data.
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water, and depends on pre-built tables, which makes it work as fast as the default

simulation; reproducing the light emission of exact electron transportation simulation.

We implemented the method in the Geant4 package and used SNO+ calibration data

to tune the free parameter α. As the result, we were able to match data and MC

mean values from Gaussian fit of β14 parameter for 16N and AmBe calibration sources

with the values specified in table 3.3. We also improved agreement between data and

MC of total angular distribution (see fig. 3.19) and directionality plot (see fig. 3.18),

while the other variables remained unaffected in comparison to the default MC. The

fix of the β14 discrepancy, which is used in water analysis for separation of different

types of events, as well as improvement of direction resolution (see fig. 3.18), may

decrease total systematic error. For example, in nucleon decay analysis [50], β14 has a

contribution of 3% to 10% to the count rate systematic uncertainty, depending on

the decay mode. The other major contribution to the systematic error in this analysis

is direction systematic that contributes from 10% to 30%. So, we can expect total

improvement of the systematic error by 15% to 40%.

The proposed method may also be used in the scintillator phase if usage of Cherenkov

light for event reconstruction will be justified. Instead of water, the electron will be

travelling in a new material – scintillator. Therefore, one has to build new tables and

tune the parameter of the model again, following the steps described in the current

chapter.
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Calibration source 16N AmBe Prompt AmBe Delayed

Data β14 0.4176 ± 0.0004 0.3969 ± 0.0026 0.3497 ± 0.0038

Default MC β14 0.4414 ± 0.0005 0.4224 ± 0.0022 0.3866 ± 0.0032

Sampling β14 0.4177 ± 0.0007 0.3986 ± 0.0025 0.3669 ± 0.0035

Data σ 0.1727 ± 0.0003 0.2008 ± 0.0020 0.2899 ± 0.0032

Default MC σ 0.176 ± 0.0003 0.2089 ± 0.0017 0.2967 ± 0.0027

Sampling MC σ 0.1714 ± 0.0005 0.2067 ± 0.0018 0.2923 ± 0.0030

Table 3.3: β14 mean values and σ from a Gaussian fit comparison.
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Chapter 4

Optical crosstalk in SiPMs as a
challenge for Cherenkov light
detection

Photodetectors are devices whose purpose is to convert light or electromagnetic

radiation into a measurable signal like current or voltage [51]. They are commonly used

in particle physics detectors exploiting Cherenkov and scintillator light. Development

of photodetectors made possible pattern recognition of Cherenkov rings created

by low energy electrons, which lead to the creation of large water-filled neutrino

detectors, including SNO+. However, new generation experiments require improvement

of the light detecting systems. For example, SNO+ would be able to make use of

Cherenkov light even in the scintillator phase if the PMTs had a better time resolution

[52, 53]. One way of addressing this problem is to consider using SiPMs or hybrid

photodetectors [54]. In this chapter, we give an introduction to the operational

principles of silicon photomultipliers (SiPMs) and the challenges of using them. We

describe the phenomenon of optical crosstalk and develop a way of predicting it by

means of a Monte-Carlo simulation. To verify the simulation, we use the optical

crosstalk measurements of HPK VUV4 and FBK HD3 SiPMs [55].
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Figure 4.1: Left figure [56] shows a SiPM schematics, which consists of SPADs sepa-
rated by trenches and electronics. Right figure [57] shows schematics of a SiPM cell,
illustrating long and short wavelength photons detection.

4.1 SiPM

4.1.1 What is a SiPM

Silicon photomultipliers (SiPMs) are photodetectors of low intensity light down to a

single photon. They consist of arrays of single-photon avalanche diode (SPAD) cells

(see fig. 4.1 (left)) separated by trenches and readout electronics. SPADs are designed

specifically for single photon detection. They generate current or voltage with internal

photoeffect when the thick, weakly doped depleted region is irradiated by light and

as the result charge carriers (electrons or holes) are created. Reverse biased voltage

is applied to photodiode, and normally the gain of a semiconductor photodetector

is linearly proportional to the biased voltage. However, when the voltage passes a

critical value, called breakdown voltage, the detector starts generating a self-sustaining

cascade of secondary charge carriers. SiPMs are operating this regime, called Geiger

mode. As one can see on fig. 4.1 (right), because of the potential difference, charge

carriers drift towards a highly doped metallurgical junction region. When crossing this

region, they create an avalanche that generates thousands of new charge carriers and

gives a gain of 105 − 106 [7]. In this regime, the detector can only specify that one or

more photons were detected, but cannot count them. The avalanche is a self-sustaining

process – without a quenching the current flow would be constant. So, the discharged

created by the avalanche is quenched by a quenching resistor located in every pixel
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Figure 4.2: Left figure illustrates how a SiPM does photon counting. Right figure
demonstrates the signal one obtains from a SiPM. One photoelectron (p.e.) peak
corresponds to 1 photon detection. If 2 photons were detected the signal sums up and
results in a higher 2 p.e. peak. Both images were taken from [57].

(see fig. 4.1). The current created by the discharge makes the operating voltage drop

below the breakdown voltage and SiPM enters the recovery phase. After typically

≤ 100ns [7] it’s over the breakdown voltage again and ready to detect new photons.

The discharge and recharge from each activated SPADs create a waveform that is

depicted on fig. 4.2. The height of the 1 p.e. waveform corresponds to one count in

a SiPM. SiPMs make use of this binary operational mode of cells and sum up the

waveform, forming the final output signal as one can see on fig. 4.2 (right). Cells have

typical dimensions of 15-70µm [58] and the size of the SiPM active area varies from

1.3 mm × 1.3 mm to 6 mm × 6 mm [59], so a typical SiPM consists of thousands of

SPADs.

4.1.2 Optical crosstalk (OCT)

SiPMs are robust and low cost detectors, however, they suffer from an unwanted

process of optical crosstalk. When the amplification process happens, due to the high

acceleration in the electric field, thousands of secondary charge carriers may emit

photons, known as secondary photons. These photons may be absorbed within the

cell or a trench, be emitted out of the SiPM surface or travel through the SiPM to
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Figure 4.3: Illustration of the optical crosstalk mechanism in SiPM. A photon (violet)
creates an avalanche that emits secondary photons (red lines). The secondary photons
can be absorbed in the silicon bulk, in a trench or in another cell, creating a secondary
avalanche.

another cell and trigger it (See Fig. 4.3). This causes an additional signal that can be

misinterpreted as the detection of more photons.

This process sets the limits on the density of SiPMs cells so prediction of the optical

crosstalk rates is an important task for designing new models of SiPMs. Further details

on optical crosstalk one can find, for example, in [60].

4.1.3 Prediction of the optical crosstalk

The appearance of the optical crosstalk process is unavoidable, however, we can

characterize and minimize this effect. It is possible to measure OCT in the lab [55,

61], but this is possible only after the construction of a detector. For the development

of a new model of SiPM, we would like to know OCT levels a priori to optimize the

geometry and minimize the effect. To predict possible levels of OCT, some analytical

models (see Sec.2 of [62]) and calculations [63, 64] were done. We complement them

and create a tool by using a Monte-Carlo simulation.
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Figure 4.4: Dimension variables from table 4.1 .

4.2 Simulation

This work was started in TRIUMF [65] and gave the first estimates of the OCT

in HPK VUV4 and FBK HD3 SiPMs. The simulation process includes creation of

photons in the avalanche region, and its propagation and tracking inside of a SiPM

with a defined geometry. We take this code as the starting point, eliminate errors,

modify it, and develop a different analysis technique. For the simulation verification we

also use HPK VUV4 and FBK HD3 SiPMs, whose characteristics were measured by

our collaborators in TRIUMF [55]. We use Monte-Carlo simulations with the Geant4

package [22], therefore, we need to set up geometry, materials and its properties, give

a particle list, and processes that the defined particles will be involved.

4.2.1 Geometry and simulation process

The geometry of the SiPM can be described with a square grid Ncell ×Ncell identical

cells that represent SPADs. The schematics of a cell can be found on fig. 4.4. The main

bulk of the detector is silicon, and the boundaries of the silicon at the top and bottom
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of the detector are thin silicon oxide layers. Trenches can be made from different

materials and they can be changed, but we consider only tungsten (for HPK VUV4)

and polysilicon (for FBK HD3). The space around the SiPM is filled with air. The

variables specified on the schematics are different for every specific SiPM model and

can be effortlessly changed in the code. The dimensions used for the simulation of HPK

VUV4 and FBK HD3 are given in table 4.3. We also divide each SPAD to Nbin ×Nbin

bins, so a geometrical grid appears as shown on fig. 4.5. We inject the photons at the

AvD in each bin separately and then they are propagated within the SiPM until they

are either absorbed or leave the simulation region. In any case, we record their initial

position, initial momentum, wavelength, final step position (absorption point), second

last step position (the track point right before absorption happened) to be able to

reconstruct the direction of the last step.

The code of the simulation and analysis scripts are uploaded to GitHub [66, 67].

Prerequisites and short instructions for running the code are given in the README.md

file.

4.2.2 Physics involved

Scintillation

To mimic the avalanche region, which we assume emits secondary photons isotropically,

we add scintillator properties to the silicon bulk and inject low energy (several

eV) electrons in the avalanche region to create light. Each electron produces about

1000 scintillation photons before getting absorbed in silicon within ∼nm depth. The

refractive index and mean free path of photons depend on its wavelength. Therefore,

we need to set up the scintillation emission spectrum of secondary avalanches. So far,

we used a uniform distribution, but it can be changed to a user defined one.
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Absorption and Boundary scattering

Absorption kills photons depending on the absorption length of a material. Boundary

scattering is an important part of the current simulation and a possible direction to

explore in order to improve accuracy. Currently we assume that a photon’s transition

between SiPM regions happens through perfectly smooth surfaces of dielectric materials

[68]. To calculate these, we need to know refractive index (RI or n) and extinction

coefficient k of the materials. RI and k for silicon and polysilicon were taken from [69]

p.113-118 and [70]. Polysilicon RI and k can be anywhere between crystalline silicon

(c-Si) and amorphous silicon (a-Si) depending on the polysilicon crystal structure

disorder. Therefore, the true values of coefficients for poly-Si will depend on the

fabrication process. Information regarding Tungsten properties was taken from [71].

For the air, we use refractive index RI = 1 and absorption length of 1m.

Optical processes that are assumed to have negligible contribution

1. Rayleigh scattering - interaction length is metres for the used materials and

specified wavelengths region, so it is not relevant for mm scale geometry.

2. Mie scattering takes place when the scattering media consists of particles that

are compatible in size to the incident photons wavelength. Atoms of silicon are

much smaller than hundreds of nm photons we are interested in, so the process

is irrelevant for our studies.

4.3 Analysis (Simulation verification)

To understand and verify the simulation, we compare it to the measured performance

of real SiPM models. The verification steps are shown on fig. 4.6. From the param-

eters listed on fig. 4.4 and in table 4.1 there are only few that are provided by the

manufacturer. The others were measured and have some tolerance. We also cannot

be sure that we precisely know the properties of the materials, as was mentioned
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Figure 4.5: To inject light we divide a cell of the SiPM into Nbin×Nbin bins. Schematics
on the left and a render from Geant4 on the right.

Item Variable Name Manufacturer information

Pitch width Pitch Yes

Silicon thickness SiTh Yes

Silicon dioxide front thickness SiO2Fth Yes

Silicon dioxide back thickness SiO2Bth Yes

Trench base width TrBW No

Trench top width TrTW No

Trench depth TrD No

Avalanche region depth AvD No

Avalanche region thickness AvTh No

Avalanche region width AvW No

Number of cells CellNum Yes

Emission spectrum User-defined No

Refractive indices – No

Trench material Poly Si or W Yes

Table 4.1: List of geometry variables used in the simulation and if they are provided
by the manufacturer.
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Figure 4.6: The simulation verification steps diagram.

TrBW TrTW TrD AvD AvW

HPK VUV4 0.1 - 1 µm 0.1 - 1 µm 1 - 5 µm 0.8 ± 0.2 µm 0.7-0.9 · Pitch

FBK HD3 0.1 - 1 µm 0.1 - 1 µm 1 - 5 µm 0.145 ± 0.01 µm 0.7-0.9 · Pitch

Table 4.2: Limits on the SiPM dimensions that are not provided by a manufacturer.

in Section 4.2.2. Therefore, we put the geometry and materials information that we

know (such as dimensions of the SiPM, size of the pitch) to the simulation unchanged,

and at the same time we have several parameters that we can vary in the limits we

consider reasonable for the tested models (see table 4.2), including the fact that the

avalanche region thickness is close to zero. The simulation gives an estimation of

crosstalk level so we can find the geometry parameters combinations that match the

estimated crosstalk level with the measured OCT. Since there are many variables that

are not provided by a manufacturer we may find more than one combination of the

parameters that give the correct answer.

4.3.1 Calculation of the optical crosstalk probability

The avalanche in the active region can be caused both by electrons and holes. However,

the probability Ph(z) of creating a holes-driven avalanche and probability Pe(z) of
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creating an electrons-driven avalanche are the functions of the distance from the

surface of a SiPM. Therefore, the probability of creating an avalanche is given by [72]

Pav(z) = Ph(z) + Pe(z)− Ph(z)Pe(z), (4.1)

where Ph(z) and Pe(z) are the probabilities of initiating a chain reaction of ionization

(avalanche) by holes and electrons respectively. Crosstalk is the probability of creating

a secondary avalanche in a nearby cell. The formula is then

Pavsec(z) = Phsec(z) + Pesec(z)− Phsec(z)Pesec(z), (4.2)

where Phsec(z) and Pesec(z) are the probabilities of initiating a secondary avalanche by

holes or electrons respectively.

According to [73], we can simplify the model by dividing active region into two

parts that do not intersect, considering effective depth parameters. The division into

electron and holes avalanche generating regions is illustrated on fig. 4.4. The avalanche

creating probability is constant within each of these effective regions and zero outside

of it. The probability Phh(z) of secondary photon hitting holes-driven avalanche region

or probability Peh(z) of secondary photon hitting electrons-driven avalanche region are

defined by the number of photons absorbed in each of the effective regions. Therefore,

the probability for a photon to cause a secondary hole driven avalanche is

Phsec(z) = Ph(z)Phh(z) = Ph(z)
Nphh

Nphtot

, (4.3)

where Nphh
is the number of secondary photons that ended up in the holes-driven

avalanche region – Nphtot is the total number of photons. By analogy, the probability

for a photon to cause a secondary electron driven avalanche is

Pesec(z) = Pe(z)Peh(z) = Pe(z)
Nphe

Nphtot

, (4.4)

where Peh(z) is the probability of secondary photon hitting electrons-driven avalanche

region, Nphe is the number of secondary photons that ended up in the electrons-driven
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avalanche region. The average number of photons emitted in each avalanche Nph is

the function of over voltage and can be calculated as

Nph = G(V )γy, (4.5)

where G(V ) is gain of the SiPM and γy is the light yield of one charge carrier in

avalanche. Considering this, the probability of an avalanche induced by one or more

photons is:

Pavfull(≥ 1γ) = 1− (1− Pavsec)
Nph (4.6)

To manipulate data efficiently, we divide the x-y plane of a SPAD into N2
bin bins

of the same size. For each bin, we calculate Phsec and Pesec . Using the eq. (4.6),

we can calculate the probability of an avalanche being induced in a specific bin

Pavfullbin(≥ 1γ). If Pavfullbin(≥ 1γ) ≪ 1, meaning the bin size is small, we can neglect

the probability of several photons hitting the same bin and also calculate the avalanche

probability in a cell as a direct sum of probabilities for the bins because the cross-terms

Pavfullbin,i(≥ 1γ) · Pavfullbin,j(≥ 1γ) will be negligible. Then

Pavcell(≥ 1γ) ≃
Nbin∑︂
i

Pavbin,i(≥ 1γ) (4.7)

To get the full cross talk probability with at least one avalanche, neglecting second

order PiPj terms, we are summing up the probabilities for the cross talk in each cell

– neglecting a possibility that several photons could hit the same cell during a one

photodetection:

PCT =

Ncell∑︂
i

Pavcell,i(≥ 1γ) (4.8)

The effective depth parameters, Pe and Ph are taken from [73].

4.3.2 Acquiring light emitted from the SiPM

Another way to use simulation is to estimate the amount of light emitted from the

surface of the SiPM as the consequence of OCTs. As shown on fig. 4.7, we assume

that secondary photons are emitted isotropically and some of them are able to leave
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Item Hamamatsu VUV4 [µm] FBK HD3 [µm]

Pitch width 50 35

Silicon thickness 300 300

Silicon dioxide front thickness 1 1

Silicon dioxide back thickness 1 1

Trench base width 1 1

Trench top width 1 1

Trench depth 5 3

Avalanche region depth 1 0.1

Avalanche region thickness 0.01 0.01

Avalanche region width 40 32

Number of cells 25 25

Emission spectrum Uniform Uniform

Trench material Tungsten Polysilicon

Table 4.3: Dimensions used in the simulation of the FBK HD3 and Hamamatsu VUV4
SiPMs that corresponds to the results demonstrated on fig. 4.9. Taken from [65]. Some
guesses were made for the parameters listed in table 4.2.
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Figure 4.7: The light produced within the avalanche region (red dotted lines) leaves
the SiPM and hits the aperture of a measuring device.

the SiPM. In order to build an image of the light emitted from the SiPM, we record

the direction of photons leaving the photodetector and then select those with an angle

to a normal vector of the SiPM surface equal or less to θaperture, which corresponds to

the aperture acceptance angle of a device that records the photons.

First, we inject light that corresponds to an initial avalanche and calculate OCT

levels for each bin, as described in Section 4.3.1. As for the result, we obtain a map that

describes the probability of absorbing a photon and creating a secondary avalanche. It

is schematically pictured on fig. 4.8 (middle), which is essentially a binned probability

density function (PDF) of having a secondary avalanche as the function of X and Y

coordinates. A real SiPM consists of hundreds and thousands of cells but we simulate

only the few closest to the initial one and consider our SiPM endless in X and Y

coordinates so the boundary effects can be neglected. Therefore, we can reuse the

initial cell data. We shift it to the corresponding bins of other cells by assigning the

weights obtained from the photon’s absorption map. Schematics of this process can be
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Figure 4.8: Schematics description of bins and reusing the initial cell data. The double
lines depict trenches and single lines show bins boundaries. On the left we have
uniformly distributed initial data. The avalanches probabilities map in the middle
specifies a fraction of data we take from the initial bins cells. By just recombining
the initial cell data we obtain the photons distribution as if we simulated avalanches
in this cell. The probabilities illustrated on the schematics are arbitrary and are not
taken from data.

found on fig. 4.8. The light from the secondary avalanches may also induce OCT. We

can take this into account by getting the last positions of the photons created in the

secondary avalanches and following steps of Section 4.3.1 and in this subsection above.

If needed, it can be repeated for tertiary and higher order avalanches. In the obtained

data set, we select the photons that hit the aperture, as depicted on fig. 4.7, and then

put the positions of them escaping the surface of the SiPM into a 2D histogram.

4.3.3 Comparison to the data

In order to proceed through the verification steps, as described in the previous section,

we use FBK HD3 and Hamamatsu VUV4 SiPMs as a reference. With the dimensions

specified in table 4.3, we run the simulation and go through the analysis steps described

in Section 4.3.1 and Section 4.3.2. As was mentioned in Section 4.3.1, the resulting

PCT = PCT (V ) is the function of voltage, so we are able to build a plot of optical

crosstalk vs voltage using eq. (4.6), G(V ) from [73, 74], and γy from [55]. Figure 4.9

shows the simulated OCT levels in comparison to the measured [55]. We can see that
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Figure 4.9: FBK HD3 and Hamamatsu VUV4 SiPMs measured (adapted from [55])
and simulated probabilities of OCT as the functions of over voltage. The error bars
for the probabilities are present but small and smaller than the marker size.

by using the parameters from table 4.3, the simulated crosstalk for the FBK SiPM is

higher than the measured one – but the Hamamatsu SiPM simulation underestimates

the OCT level. Therefore, further fine calibration, as shown on fig. 4.6, may be able

to help achieve the agreement.

We explored how changing the trench depth and width influences the crosstalk in

Hamamatsu SiPM with the results presented on fig. 4.10. One can see that there is a

strong dependence of OCT on trenches depth. If we fix a trenches width parameter

(fig. 4.10(right)), and choose a value for trenches depth between 1 µm and 2 µm, we

will be able to fit it to the experimental OCT level of about 3.7% measured at 7V

overvoltage.

For building a picture of the light emitted from the SiPM surface, as described in

Section 4.3.2, we conduct a simulation with the same parameters listed in table 4.3

at 7V overvoltage. We use θaperture = arcsin 0.45 and take into account two orders

of OCT. As the result, we obtain images that are shown on fig. 4.11. Qualitatively,

simulated light emission for FBK is in a good agreement with the measured data. Due
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Figure 4.10: Hamamtsu VUV4 (HPK) optical cross talk with 7V overvoltage as the
function of trenches depth and width (left) and OCT as the function of trenches depth
with trench width fixed at 0.2 µm (right).

to the high OCT levels in the FBK SiPM, taking into account second order cross talk

significantly changes the picture (see fig. 4.12), which means that a cross structure

one can see on fig. 4.11(top) for the FBK is probably caused by second and higher

orders of OCT. For the Hamamatsu detector, we see artifacts that appear because

we change the trench material from poly silicon to tungsten. It may be caused by

incorrect material properties, but so far we were not able to address this issue.

4.4 Conclusions and future work

In this chapter we described the development of a simulation tool for estimation

of optical cross talk levels in SiPMs. The code outputs the OCT levels but is also

capable of measuring the light emitted from the surface of the photodetector. We

compared, measured, and simulated OCT levels for FBK HD3 and Hamamatsu VUV4

SiPMs. They do not match for the default parameters from table 4.3, but as a proof

of concept, it was demonstrated with the Hamamatsu detector that the agreement

can be achieved by varying trenches depth and width (see fig. 4.10). More examples

of varying parameters can be found in appendix A. However, the full analysis should

include studies of how all the parameters that we do not know precisely (see table 4.1)
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Figure 4.11: Comparison between simulated (5 x 5 cells) and measured (adapted from
[75]) light emitted from the SiPM surface. Top corresponds to FBK and bottom to
Hamamatsu detectors. For Hamamatsu SiPM we see artifacts that were caused by
changing trenches materials from poly silicon to tungsten. The circular pattern one
can see on the simulated images is probably caused by a strict restriction on the
emitted light acceptance to reproduce the aperture width of a measuring device (see
fig. 4.7).
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Figure 4.12: Simulated light emitted from the surface of FBK with one (left) and two
(right) orders of OCT taken into account.

influence the OCT for both SiPM models.

To decrease uncertainty, we can also reconstruct the emission spectrum by the

means of simulation. We have spectra of the light leaving a SiPM [55] and we also can

get the spectra of the light emitted from the SiPM from the simulation. To match

simulated spectrum to the measured one, we assign a weight to each wavelength bin.

We apply the weights to the known initial distribution of injected light (uniform) and

can obtain the true emission spectra of avalanches in SiPMs.

We built images of emitted light from FBK HD3 and Hamamatsu VUV4 SiPMs

(see fig. 4.11). The FBK HD3 simulation repeats the cross structure of the emitted

light we see in the data – which can be explained by secondary and higher levels of

OCT (see fig. 4.12). Another reason for that is polysilicon trenches that may serve as

wave guides and let the light travel further into other cells. This can be checked with

the simulation code by tracking the secondary photons to see if they had multiple

reflections within trenches. The Hamamatsu VUV4 image does not correspond to the

data and why changing trenches material to tungsten disturbs the image of emitted

light has to be understood.
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Chapter 5

Conclusions

In the first part of this thesis, we studied the mechanism of Cherenkov light emission

and concluded that scattering of electrons of the MeV energies in water does not

influence the coherence of the radiation, down to electrons of 0.3 MeV energy, which

are near the threshold for Cherenkov light production, and are below the detection

threshold for SNO+ (water phase). However, we found out that the choice of the

scattering model for propagation of electron in Geant4 significantly changes the total

Cherenkov light angular distribution. We developed a new Geant4 Cherenkov light

radiation model that corresponds to the light emission of electron propagated with

the physically accurate and computationally expensive Single Scattering model, but

with computation time of the default Multiple Scattering method. The model has a

parameter that can be adjusted and it effectively scales the scattering cross section. We

tuned the parameter to the SNO+ water phase calibration data and implemented the

model in the SNO+ analysis framework. By using this model, we resolved a previously

observed tension between Monte-Carlo and data in β14 parameter for 16N and prompt

events of AmBe source (see table 3.3). We also reduced the error in cos θ PMT

(fig. 3.19) and directionality (fig. 3.18) distributions. These improvements potentially

can reduce the systematic errors of the water phase analyses. For example, the total

contribution of mentioned factors to the nucleon decay analysis [50] is from 15% to

40%. The implemented method can also be used in the scintillator phase but need
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to be tuned to a new material. Moreover, these studies may also help to improve the

precision of the simulations in new generation Cherenkov light astroparticle detectors,

such as Hyper Kamiokande [76], since the detectors will gather more data and extract

more precise information, and may be affected by the mismodeling of the angular

distribution of Cherenkov light.

In the second part, we developed a code for the simulation of optical crosstalk

in SiPMs. We compared simulation results to the measured levels of OCT and

light emission from the surface of Hamamatsu VUV4 and FBK HD3 SiPMs and

demonstrated the method to make them fit by varying the geometry parameters we do

not know precisely. We also listed possible applications of the code such as exploring

the influence of the trenches materials on photons propagation, getting the emission

spectra of the avalanche photons, prediction of the OCT levels of new models of SiPMs.

New measurements are underway at TRIUMF that will be used to further validate the

methods and the current code will be also used towards the development of ”back-side

illuminated” SiPMs [77] targeting keV scale electron detection.
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simulation of multiple elastic scattering of electrons,” Nuclear Instruments and
Methods in Physics Research Section B: Beam Interactions with Materials and
Atoms, vol. 73, no. 4, pp. 447–473, 1993.

[32] O. Kadri, V. Ivanchenko, F. Gharbi, and A. Trabelsi, “Geant4 simulation of
electron energy deposition in extended media,” Nuclear Instruments and Methods
in Physics Research Section B: Beam Interactions with Materials and Atoms,
vol. 258, no. 2, pp. 381–387, 2007.

[33] M. Anderson et al., “Optical calibration of the SNO detector in the water phase
with deployed sources,” Journal of Instrumentation, vol. 16, no. 10, P10021,
2021.

[34] R. J. Komar, “The Effects of Electron Scattering on Cherenkov Light Output,”
University of British Columbia, Vancouver, Tech. Rep., 1995.

[35] L. Schiff, Quantum Mechanics. McGraw-Hill book company, 1949.

[36] K. G. Dedrick, “The Influence of Multiple Scattering on the Angular Width of
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Appendix A: SiPM geometry
variation

In Chapter 4 we discuss a possible influence of varying geometry and material param-

eters in the simulation on the optical crosstalk. In this appendix we put examples of

effect of varying Hamamatsu VUV4 SiPM (HPK) geometry. We vary trenches depth

and width on fig. A.1 and also trying another avalanche region depth and width on

fig. A.2.
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Figure A.1: Optical cross talk as the function of trenches depth and width.
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Figure A.2: Optical cross talk as the function of trenches depth and width with a
different avalanche region depth.
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Figure A.3: Optical cross talk as the function of trenches depth and width with a
different avalanche region width
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Appendix B: Selection criteria

The modifications of the code and analysis were done and calibrated with RAT 6.18.12.

Using other versions of RAT may need recalibration and different value of α parameter.

Conditions that will replicate the same selection for 16N and AmBe sources as in

chapter 3.

B.1 16N selection

For 16N we used central run 107055 and selection for the events:

• FitValid and WaterValid

• ((dcApplied & 0xFB0000017FFE) & dcFlagged) == (dcApplied & 0xFB0000017FFE)

• (triggerWord & 0x6)

• −0.5 < β14 < 1.5

• Event tagged by calibration source

• nhits > 5

B.2 AmBe selection

For AmBe we used central run 109133 with the selection criteria:

• FitValid and WaterValid

• ((dcApplied & 0xFB0000017FFE) & dcFlagged) == (dcApplied & 0xFB0000017FFE))
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• (triggerWord & 0x401400) == 0x0 && (triggerWord != 0x40)

• −0.5 < β14 < 1.5

For prompt specifically:

• NhitCleaned ≥ 12

For delayed coincidence:

• Nhits ≥ 4

• timeDiff < 200µs

• posDiff < 1m
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