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- Abstract

This thesis describes an e#perimental study of the
electron-coupled nuclear—nuclear interactions and the
Knight Shift in white tin using macroscopic rotation
techniques. A description is given of a high-speed gas
turbine capable of operating to speeds in excess of 5 kH=z
at the ‘magic' angle within a Varian crossed—coil probe.

117 and Sn119 resonances

Using this turbine.the Sn
were observed in tin metal. The lineshape is governed by
the spin-lattice relaxatioﬂ time and the 'pseudo-exchange'
coupling between nuclei. The theoretical lineshape has
been synthesized assuming the ﬁhdgrman—Kittel model. By
comparing the experimental and theoretical lineshapes it
was found that the nearest—neighbour 'pseudo-exchange'’
coupling was 1.89 = 0.09 kHz. This suggests that Alloul
and Deltour have misinterpreted their data in obtaining a
value of 4.1 kHz.

The room-temperature isotropic Knight Shifts of the

117 119

Sn isotopes were determined to be 0.724 * 0.003

and Sn

and 0.726 £ 0.003 respectively. A redetermination of the

119 117

ratio of the Sn and Sn magnetogyric ratios gave the

value 1.046535 * 0.000003.
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CHAPTER 1. INTRODUCTION

When an ensemble of non-interacting spin %
nuclei is placed in a steady magnetic field Ho' the two

magnetic energy levels of the system are sepaiated by
AE=Yn’ﬁ H, = hv

where vy, is the magnetogyric ratio of the nuclei. The
application of an rf magnetic field, of frequency v, per-
pendicular to the main field, induces transitions between
the levels. This would imply that the nmr spectrum of such
a system consists of an infinitely éharp line at.frequency
v. If the nuclei are interacting with each other, the nmr
spectrum ceases to be a sharp line andAbecomes spread orx
broadened over a band of frequencies.

A common source of broadening in solids arises
from the nuclear magnetic dipole—dipole interactions. A
nuclear magnetic dipqle produces, at a neighbouring lattice
site, an effective additional magnetic field with an angular
variation of (3 cosze - 1) where 6 is the angle between
the applied field and the internuclear vector. The
presence of neighbouring nuclei can thus alter thé resonance
absorption lineshape. It was obgerved, however, that in many
cases, the line would suddenly narrow when the sample was

heated. This was taken as evidence of relative motion



between nuclei or groups of nuclei in the solid. a
given neighbouring nucleus would then see only a time
averaged field, and this, in general, is smaller than the
static field. Gutowsky and Pake (1948) showed that when
the frequency of motion became greater than the width of
the absorption line (measured in frequency units), narrowing
occurred.

Andrew, Bradbury and Eades (1958) and independently
Lowe (1959) found that a similar narrowing was also obtained
when the sample was macroscopically rotated. Further
analysis (Andrew and Newing, 1958) showed that the maximum
narrowing occurred when the axis of rotation was at the so-
called 'magic' angle cos_l(l//§) to the main magnetic field.

In metals there is an additional éource of broaden-
ing above that of the dipolar. This'arises from the inter-
action of the nuclei with the conduction electrons. This
interaction is normally stronger than the dipolar inter-
action, so that the broadening arising from it dominates.
There are.three types of broadening; one more important at
low temperatures, another at high temperatures and the third
in large magnetic fields. AThe presence of the applied mag-
neﬁic field polarises the conduction electrons in the metal.
This éolarizafion results in an additional magnetic field
at the nuclear'sité,'giving the nucleus a shift in resonant
frequehcy relative to the samé nucleus in a non-metallic
salt; This shift is known as the Knight Shift (Knight,

1949) . When the nucleus is in a non—-cubic environment, this



shift depends upon the angle between the main field and
the crystallographic axes of the metal. In a powder,
therefore, a spread of resonant freguencies would result
from the crystallites being randomly orientated. This
broadeping increases i# pfopoition ta the applied field.

At high temperatures, the electron-nuclear interaction
gives a finite lifetime to the nuclear states. This results
in broadening due ﬁo the short spin—-lattice relaxation

time Ty- As the relaxation time is inversely proportional
to temperature (Korringa, 1950) this source of broadening
is relativély unimportant at low temperatures. The third
effect is the electron—-coupled nuclear—-nuclear interaction,
which at low temperatures and fields has a dominaﬁt effect
on the metal spectrum.(Bloembergen and Rowland, 1953;
Rudermann and Kittel, 1954). This arises from an electron,
scattered by its hyperfine interaction with one nucleus,
interacting with a second nucleus, and effectively coupling
the nuclei together. Whilst historically this effect was
first seen in ﬁigh resolution spectrometry in liquids

(Hahn and Maxwell, 1952; Gutowsky, McCall and Slichter,
1953) it has since been noticed in many metals. In general
this interaction has an anisotropic contribution.

In a similar fashion to the narrowing of lines
bréadened by dipole interactions, the macroscopic rotation
of samples leads to the removal of other anisotropic
interactions. This enables a study to be made of the scalar

part (or pseudo-exchange) of the electron-coupled nuclear-



nuclear interaction without the necessity of considéring
a spectrﬁm complicated by the presence of any anisotropic
interaction.

In this thesis we describe an experiment conducted
to measure the scalar 'pseudo-exchange' coupling in white
(metallic) tin. Chapter 2 gives details of the theory and
experimentation involved in the method of macroscopic
rotation. Chapter 3 gives a bfief account of the electron- .
coupled nuclear-nuclear interaction. Chapter 4 gives the
analysis of the data obtainéd from tin. The results are

discussed and a conclusion given in Chapter 5.



CHAPTER 2. MACROSCOPIC ROTATION

A) Theory

A number of studies have been undertaken to
examine the electron-coupled interactions in tin (steady-
state measurements: XKarimov and Shchegolev, 1961l; Sharma,
Williams and Schone, 1269; pulse measurements: MclL,achlan, 1968;
Alloul and Deltour, 1969). The measurements have involved
both the anisotropic and scalar couplings. Whilst in
principle it would be possible to remove the anisotropic
interactions with a series of pulses (cf removal of
dipolar line broadening: Mansfield and Ware, 1966; Ostroff
and Waugh, 1966) , in practice there are difficulties.

If measurements were made using a single metal crystal
there would be the difficulty of overcoming signal distor-
tions due to the finite skin depth. On the other hand, if
a powder was used, then the line shape would be complicated
by the presence of the anisotropic Knight Shift. This is

a macroscopic rather than a microscopic broadening of the
line and therefore cannot be removed by a system of pulses
(Andrew, 1970). Removing'the'anisétropic broadening by'
rotation therefore offers certain advantages.

It is interesting to note that historically the
first measurements involving sample rotation were not
made for the specific purpose of narrowing the line.

Instead, Andrew, Bradbury and Eades (1958) used the



technique to confirm the theoretical predictions of
Anderson (1954) and Pake (1956) that internal ﬁotion in a
solid narrowed the dipolar-broadened spectrum in such a
manner that its second moment remained constant, whilst
its fourth moment increased. When Andrew et al. rotated
a sample of NacCl, they found that the central part of the
spectrum narrowed but satellite lines appeared. These
were separated froﬁ the main line by multiples of the
rotation frequency. This increase in intensity in the wings
keeps the second moment invariant whilst increasing the-
fourth moment.

The effect of rotation is best seen by considering
the simple case of an ensemble of pairs of nuclei with
spin % arranged in a static array wifh their internuclear
vectors parallel to eachlother. The nmr spectrum of each
pair of non-rotating nuclei consists of two lines of equal

intensity at the angular frequencies

w, = v [H_ * en R 3(3 cos®e - 11, (1)

where Ya is the magnetogyric ratio of the nuclei at
resonance, Eo,is the constant applied field, Uy is the
magnetic moﬁgnt of the nuclear neighbour in each pair, R
is the internuclear vector, © is the angle between H

and R and e is 3/2 if the nuclei in the pair are identical
and 1 if they are not (Pake, 1948). Thus the spectrum

of this static array can be considered to arise from the



presence, at the site of the nuclei at resonance, of an

effective local field whose component along H g is given by

_ 2, _ - _ v
Hloc = + c(3 cos”0 1) | (2)
— -3 '
where c=¢€u, R (3)

Instead of considering a static array, let the nuclei
be capable of Eeing rotated about an axis making an angle
a to H_, and, for simplicity, perpendicular to the inter-
nuclear vector of the pair (see figure (2.1a)). Imagine
that when there is no rotation, the nuclear pairs are
distributed with random, but fixed, azimuth ahgle ¢ about
the rotation axis. The spectrum for each pair, with a
given ¢, consists of two lines given by equation (1), in

which we set
cos® = sin a cosd . (4)

The spectrum for all pairs, taking all ¢ with equal

probability, has a second moment

2w
S, = 1 J czy 2(9 sin4acos4¢ - 6 sinzacosz¢ + 1)d¢
2 2% o a
= 2y 2 (&L sina - 3sin®c + 1). ‘ (5)

If all the pairs are now allowed to rotate with the same

uniform angular velocity W, We then have

¢ = ¢, + w .t s (€)



Figure (2.1)

(a) A system of two nuclei A and B capable of being rotated

about an axis at an angle a to the main magnetic field H-

(b) Nmr spectrum for the above pair of nuclei when they are
rotating at a rate w,. about an axis perpendicular to their

internuclear vector. The frequencies Wy and wy are vy, H

2

and % c Yy (3 cos“a - 1) respectively.
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so that each nucleus experiences a local field which
consists of static and fluctuating components. The Larmor
frequency of the nuclei is then given by (Andrew and

Newing, 1958)

w = Ya(Ho + Hloc)

= w, + w; * w, cos 2w t (7)
where
w, = Yg Hg
- 2.
wy, = F ¢ Ya(3 cos ‘o 1) (8)

£
]

.3 .2
2 3 € Y, sin"a .

We note that the Larmor frequency is frequency-modulated
at 2mr. Thus the spectrum consists of two carrier com-
ponents at frequencies we + wy, each of which has an infi-
nite set of sidebands situated at multiples of 2mr (see
figure (2.1b)). The intensity of the nth sideband relative
to that of the central component is an(m)/Joz(m) where

Jn(m) is the Bessel function of order n, and m is given by
m = m2/2wr. (9)

The second moment of this spectrum is

+oo
_ 1 . 2 2
s, =35 Z:{(w1 + 2nmr) I, (m)

n=--co “

+ (mwy + 2nwr2)2 an(m)} (10)



which, by making use of the theorems of Watson (1922),

becomes
Wy . ‘ (11)

Making use of equations (8) and (11) one finds that the
second moment is identical to that of the static array.
As w,. increases, the sidebands move out and become less
intense. If we ignore their contributions, the spectrum
then consists of two carrier frequencies. The second
moment of these is wlz, which is smaller than the static
second moment.- We can generalize this a#alysis to a mofe
random array of nuclei, whose spectrum is broad ratherxr
than consisting of delta functions, and see that rotation
would lead to a narrower line. We note from equation (8)

that if
o = cos 1(1/v/3) = 54°44" (12)

the centre lines collapse into a single line at Wy r and
the dipolar second moment (excluding the contribution of
the sidebands) reduces to zero.

We shall now proceed to consider macroscopic rota-
tion in a more general fashion. Theoretical considerations
have been made on the narrowing of dipolar-broadened lines
(Andrew and Newing, 1958; Andrew and Jenks, 1962) and on
the removal of the anisotropic Knight Shift (schwind, 1967),

but the most general comprehensive study has been undertaken
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by Andrew and Farnell (1968) who were able to point out a
limitation to the rotation technique in removing aniso-
tropic effects.

The truncated Hamiltonian which aetermines the nmr

spectrum is , excluding gquadrupole interactions,

H = Hz + [HD]trunc.+ HJ ° (13)

HZ is the Zeeman interaction between the nuclei and the

applied field:

)y . H (14)

Yi‘ﬁ I; - ¢ i —o

N
e
flb=
|
IR

where Ii is the spin operator of the nucleus i, Y; is the

magnetogyric ratio, and giis the Knight Shift tensor. HD

is the truncated dipolar interaction (Van Vlieck, 1948;

Slichter, 1963):

[Hy] = Z hI, .D

trunc. . - X N (15)
i<j

t =d

where D, is the truncated dipolar interaction tensor, all

terms of which contain the factor (3 coszeij - 1), with

eij being the angle between go and- the internuclear vector

. HJ is the indirect electron-coupled nuclear—nucleaxr

spin interaction:

R..

H,. = £ hI. . J.. . ZI. (16)
J i<j i =1J .
where gij is the indirect interaction tensor.

When the sample is rotated, the Hamiltonian becomes
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time-dependent. It can then be expressed as’
H=H+ H(t) (17)

where H is the time~averaged Hamiltonian, and H(t) is the
time-dependent interactidn whose average value is zero.
H(t) , which is small compared to H when the main field is
strong, is responsible for the generation of the satellite
lines discussed above. H, which determines the central
part of the spectrum, is given by the sum of H

3 ﬁz and

ﬁD. We shall consider the case where the satellites are
-sufficiently far removed from the centre of the spectrum,
so that they are not observed; i.e. only the time—-averaged
Hamiltonian will be examined. Since the Knight Shift
components are so small, only the components along Ho need

to be considered (2bragam, 1961) and H may be written as

H=-h i vi (1 - K3 0T, Hy

+ I £ (h J,

ok 32 ijap + DijaB)IianB (18)

where o and B are suffixes for cartesian axes in the lab

frame and

2 L x'2a2 (19)

e = ' 2 v
K K + Kz l3 + Kx Al v 22

zz

with.)tp being the direction cosines of the principal axes

of the anisotropic Knight Shift relative to H

H,., Ké is the

pth component of the anisotropic Knight shift tensor K'
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and K is the isotropic Knight Shift.
Now, when the sample is rotated with an angular
velocity w,. about an axis inclined at an angle'oz3 to Eo’

and at an angle Hyr U, and H3 to the principal axes of K',

we have that

Ai.= cosa3cosui.+ sina3sinu£cos(wrt + wf) (20)

where wi.is the azimuth angle of the ith principal axis at

€t = 0. Using egn. (20) in equation (1l9) we find

= K + sin?

=

] ] L]
z2 oL3(Kx + Ky + Kz )

1 2 . 2 |
+ 5(3cos Qg 1) g'Ki,cos Yo (21)

A

When o, has the special value, cos-l(l//§), the so-called

magic angle, this mean value reduces to

Kzz = K (22)

as K/ + K'! + K! = 0.
X v z

The dipolar interaction is treated in a similar

fashion;
XY I D,. I. T.
i>35 af ijap “ia" 3B
_ 2 3,-1 7 oy (I..I. - 3T, I. ). (23)
—_Z.Yin(Bn Ty ) “(3cos eij 1) i°=3j iz"j=z
1>3
Since
coseij = cosa3cosnij + 51na351n9ijcos(mrt + ¢ij) (24)
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Figure (2.2)

A diagram of a general system of rotating axes to illustrate the

nomenclature used in Chapter 2.

i 2 TN
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where Qij is the angle between the axes of rotation and

R.., with ¢ being the azimuth angle, at zero time, of

—ij ij
R.., we find that
2 _ 1 2 _ C 2 _ 1
cos eij = 6(3005 oy 1) (3cos Qij 1) + 3 (25)
Thus, at the 'magic angle',
) _ .
(3cos“0.. — 1) =0 (26)

1]
and the dipolar contribution vanishes.

The J tensor must be treated differently. It may

be split into three parts;

.i.

d =J1 + g% + J - (27)
where

J = 1/3 trace J

g =1 (3 + 39 - 31

= 2 "= = =

+__1; — 1

3 =35 -g"
in which J' is the transpose of J.. Clearly this divides
d into an isotropic part Jl, a symmetric part g* and an

antisymmetric part g+.

In tin, symmetry.considerations show that
g+ should be-zero (see Appendix II). (In fact, no case
has yet been observed in solids where this is not the case

(2ndrew, 1970).) We shall therefore take g+ as zero.



The component J1 is unaffected by the rotation. The term

li . gij . Ej can be wr%tten as
z I. . J*¥. . XI. = I = J¥
i>j 1 =1] J i<j aB JaB ia JB
= ¥ X% C.. C..,T. T. J.._. (28)
i<j n aB ijan ijBn iac jB ijn

where C an are the direction cosines of the nth principal
axis of the tensor J.j relative to the laboratory axes.
For each set (i, j) there are 27 térms, not all of which
correspond to transitions near the main resonance line.

Truncating as for the dipolar term we obtain’

* —_ -
28 Ji 'B ia jB]trun. - [l 3( Cij33 1) (29)
ij1) Ci332 ~ 1331’] (L;-Z5- 3T;,T52) -

When the crystal is rotated, the direction cosines become

time-dependent and the average value of their squares is

P S
Cij3n

o=
W=

(30)

(3coszo(.3-l)(3coszu.j -1) +

where u'jn are the angles between the axis of rotation and

the pr1nc1pal axes of the tensor J% ij° Thus, at the magic

16
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angle,

= 0. (31)

[.2 ﬁ J;jaBIianB]trun

i<j oB
Collecting terms, we see that on macroscopic rota-

tion at the magic angle the resonance line is determined

by the time—averaged Hamiltonian

H= - y; I, (L -K)H)H_+ £ J..h I, . I.. (32)

i Z
i

M

We find that the nmr spectrum is detefmined by the Knight
shift K and the coupling constant J as in fhe case of an
isotropic liguid. (In a liquid the Knight Shift is
replaced by the scalar chemical shift.) Wé shall attempt
to analyse the data using a Hamiltonian of this form in
chapter 4.

Andrew, Carplan and Randall (l1971la, 197lb) have
. undertaken the only other study of this kind. Their

63 65

measurements were made on Cu and Cu in metallic copper

and the value of the J coupling was obtained by measuring the
second moment of the resonance absorption. However, as will be
seen in Chapter 4, we have used an éntirely different

approach in obtaining the value of the J coupling.
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B) Experimentation

To obtain a spectrum determined by the 'ligquid-
like' Hamiltonian, it is necessary to rotate the sample
relétive to the external field. This may be achieved by
rotating either the sample or the field. The field may be
rotated electrically much faster than the sample can be
mechanically spun. Bradbury, Eades and McCarten (1968)
report generating a 270 gauss field rotating at 27kHz.
However, the problem here is to create a field that is
large enough to be useful. Overcoming this problem, by
spinning the sample, limits the speeds to about iOkHz.' The
sample is normaliy held in some type of coﬁtainer which is
suspended upon a set of air bearings. This means that
if the sample is slightly unbalancea, it can choose its
own axis of rotation and spin freely.

If the sample was mounted on a rigid shaft as is
shown in figure (2.3a) then a 51ight imbalance would, at
high speeds, create such large forces that the mechanical
bearings supporting the shaft would guickly fail. Instead
of making use of air bearings, it is possible to rotate a
sample that is suspended on magnetic bearings (Beams, 1964) .
However, this type of suspension is not suitable because,
even if the sample was sufficiently magnetic to be
supported, the need to use a magnetic field gradient is in
conflict with the homogeneous field required'in nmx; the

axis of rotation is normally in such a direction that



Figure (2.3)

(a) Schematic of stiff-shaft turbine.

(b) Simplified version of air turbine.

The thrust gases are issuing at a velocity v.

19
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the field gradients would not be averaged out. .Furthermore,
this fact also implies that the rotation would not be at
the "'magic angle'.

Details of an early air turbine were given by
Henriot and Huguenard (1925). A simple adamzwiﬁlof their
turbine (Beams, 1937) is shown in figure (2.3b). The tur-
bine or rotor is supported by a series of air jets in the
lower support or stator. These jets are angled away from
the vertical in suéh a manner as to provide both support
and propulsion. The turbinz, when spinning steadily, is
very stable and will actually operate upside~down. However,
when it starts it does not normally spin centrally on the
stator but instead tends to bounce around. This motion
must be damped out before the turbine will achieve its
highest speeds. The most efficient and easiest method of
doing this is to use the tips of the fingers. Mechanical
self-starting was tried, but when it was used needed
constant readjustment due to turbine wear.. (Fingers have
the advantage of being naturally self-repairing.)

- The turbine system used in the measurements is an
adépﬂ#ﬁcnof that used by Beams (1937) to support a rotating
mirror. It was modified to allow its use inside the Varian
crossed—-coil probes provided with the Varian nmr spectro-
meter. It was felt that as the sample need not rotate in
the vertical position, it would be preferable to orient it

at 54°44' to a horizontal magnetic field rather than risk
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straining the magnét yoke in orientating the field at the
magic angle to a vertically spinning sample (contrast
Andrew, 1970). The fact that the sample spins stably can
be explained in terms of Bernoulli's principle. Referring
to the simplified version of the air turbine and bearing

shown in figure (2.3b) we see that

2 -
P1ower surface T PV /2 = Patmos (20)

and therefore the atmospheric Pressure prevents
the turbine from being ejected from the stator by
the propelling gas. If we now suppose that the tuxbine
shifts away from the centre of the stator, then there is
a decrease in the velocity of air flowing through the gap
between the turbine and stator. The resulting pressure
increase recentralizes the rotor.

Details of the construction of the rotor are shown
in figure (2.4). The turbine (figure (2.4a)) is constructed
_from nylon. Great care and precision is needed to insure
that the flutes are all milled equally deep, uniformly wide
and correctly placed on the surface of the rotor relative
to the air holes in the stator. (Despite this careful
construction, there was often a failure rate of one in two.)
The hollow in the centre of the turbine is used to.contain
the sample. It is necessary to construct the stator in
two parts. The upper piece (figure (2 .4c)) contains the

jets to spin the turbine.
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Figure (2.4)

Construction of the turbine used in the macroscopic rotation

of the nmr sample.

(a)

(b)

(c)

(a)

Diagram of the turbine.

Diagram of the lower part of the stator.

Diagram of the upper part of the stator showing position

of air jets.

Diagram showing the total turbine assembly as used

experimentally.
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The piece shown in figure (2.4c) is set on top of
the lower stator part (figure 2.4b)) at an angle of about
50° to the central axis of the lower piece. Rotating the
whole statox, therefore, allows the axis of rotation of the
turbine to be turned so that it makes an angle between 50°
to 90° to a magnetic field applied perpendicular to the sta-
tor axis. The-two stator pieces, which are made of nylon,
are fused together, after cleaning with trichloroethylene,
with formic acid. Provided that the two surfaces have not
been machined 'optically flat', this creates a very effective
seal. After fusing, the pieces are machined to fit down the

3/4" sample-hole of the Varian probe. The assembled stator

"is mounted on a piece of perspex tubing as is shown in

figure (2.44d). This is necessary as it is not normally
possible to start the turbine inside the probe. It is
therefore started outside the probe and then brought down
level with the receiver coils inside the probe. Unfortunate-
ly, this t&pe of motion is one against which the turbine

is the least stable. If the movement is jerky, the rotor
will touch the stator and fly out. As the turbing circum-—
ference is often travelling near the velocity of sound in

the propelling medium, the turbine travels a great distance
along the floor. It is therefore advisable to enclose the

magnet to prevent loss of the rotor. The enclosure can
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also provide increased thermal stability for the magnet.

Of the turbines that spin, only 50% will do so inside the
probe. This is apparently due to the unbalancing effect of
the air stream from the stator being reflected back onto
the turbine from the probe walls.

The maximum theoretical rotation rate for the tur-
bine occurs when its circumference is travelling aﬁ the
velocity of sound in the propelling medium. Normally this.
maximum is not reached as a number. of speed-limiting factors
are present. Imbalance will cause the rotor to spin un-—
stably or 'jump'. Frictionai forces acting on the sides of
the rotor will counterbalance the thrust provided by the
jets. The stator support may vibrate causing the turbine
and stator to touch. In addition, when the propulsion
pressure is high, it is likely that'there will be a certain
amount of turbulence in the pipes supplying air to the
turbine, which is capable of upsetting the turbine. It
should therefore be expected that Helium gas would generate
higher speeds than Nitrogen. or Air. This was found to be
the case experimentally. Figure (2.5) shows the variation
of rotation speeds measured as a function of thrusting press-
ure for both Helium and Nitrogen. Hydrogen is even more
effective but because of the danger involved, it is not
normally used. (Sparks may be generated when the stator
and turbine touch.)

The actual rotation rates are easy to measure.
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Figure (2.5)

Variation of rotational rate as a function of thrust when

Helium and Nitrogen are used as propelling gases.
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At low speeds, it is possible to use a stroboscope to 'stop'
the motion. At speeds much greater than 100,000 xrpm it is
not easy to determine at what harmonic of the stroboscope
flash rate the turbine is turning. If the turbine is
painted half matt-black and half silver, then light reflected
from the turbine onto a photo-transistor creates sufficient
signal to trigger a counter. Héwever, when the turbine is
sitting at an angle deep inside the probe, there is in-—
sufficient light reflected back to the transistor. On
hearing the turbine rotate, it becomes obvious what is
another method of measuring the rotation rate. Small
imperfections on the rotor surface set up an audio signal
with tones egual to the fundamental rotation rafe and its
harmonics. (We have detected up to the 12th harmonic.)
At high rotation rates the harmonics are not perceived and
it is then a simple manner to beat the signal against that
.of-an oscillator whiqh feeds both a counter and a loud-
speaker. At very high speeds even the fundamental may be
difficult to detect. The greatest speed obtained was
12kHz (720,000 rpm), but this was with a solid rotor rather
than one containing a sample. That particular turbine
'blew' up at a later time when '"turning over' at 7.2kH=z.

If the sample is nonmetallic, it may be packed
tightly into the centre of the turbine and capped. At low
speeds, plastic wood is very useful but at high speeds

the edges of the turbine begin to creep, allowing the cap
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to shift. This either unbalances the turbine and/or
scatters the sample. A better method is to mix the sample
with an epoxy which is then allowed to set in the turbine.
A good room—-temperature-setting epoxy is STYCAST 2850FT
manufactured by Emerson and Cﬁming, Inc., Canton, Mass.,
U.S.A. When used in conjunction with catalyst 24, it is
very liguid with a pot 1life of'about 45 mins. The fact
that the epoxy flows freely means that a large amount of
sample may be mixed in before the epoxy is too stiff to
pour. To prevent the formation of air bubbles, which

would unbalance %he turbine, it is placed, after

filling,in a bell jar,which is then evacuated;‘ This improves
the number of turbines that rotate after filling'to SO%froﬁ
the 10% that would spin beforehfhe evaquation technique
"was used. This number could be even further_incfeased'if-
less sample was mixed in with the epéxy. The decrease in
sample volume is, however, undesirable, as it decreases the
filling factor and hence the signal-to—noise ratio. IE£f an-
enriched sample was to be ﬁixed in with the'epoxy, it would
be advisable to leave the epoxy very liquid to avoid wasting
the sample. Using epoxy rather than plastic wood offers

a large number of advantages. The epoxy has very good
mechanical strength. Even if the turbine - breaks up, the
epoxy will hold together, preventing the sample from con-
thﬁinating the probe. When a metal powder sample is used,

the high resistance of the epoxy efficiently isolates the
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particles from each other, alleviating any problem of skin.
depth. The epoxy is distributed evenly throughout the
turbine rather than sitting on top as a cap would. ‘This,
together with the fact thét the epoxy binds onto the edges
of the nylon preventing them from spreading, leads to a
greater mechanical stability at high speeds.

The problem of a poor filling-factor, when using
a sample-epoxy mix, could be avoided if it were possible to
machine the whole turbine from the mix. This was tried, but
it was found that the epoxy, especially when metal particles
were added, was so abrasive that it was impossible to machine
the turbines to any accuracy . To overcome the signal-to-
noise problem, it was necessary to employ signal averaging.

The actual experimental set-up is shown as a block
diagram in figure (2.6). The turbine is driven with air
supplied by a compressor with an operating output pressure
fluctuating between 90 and 110 lbs/sq in. By the use of a
series of regulators and storage tanks, the air flow to the
turbine could be regulated. Over a day the rotation rate
was stable to around 1 part in 104L To gain the stability
needed for long-term signal-averaging, the frequency of the
Varian spectrometer, operating at 6MHz, is phase-locked
to a 1MHz frequency standard and is stable to
1 part in 107. The magnet field is controlled by the
varian Mark II Fieldial via a Hall probe sensing element.

We have attached@ a blackened disk with small silver markings
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Figure (2.6)

Block diagram of experimental arrangement used when nmr

 samples are being macroscopically rotated.
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to the shaft of the Fieldial potentiometer used to sweep
the field. By the reflection of light from these markings
onto a phototransistor, a trigger signal is generated for
controlling the Fabri-Tek 1062 instrument computer. The
generated signél was squared up to give a pulse with a good
rise-time so thét the computer would trigger consistently
at the same point in the field sweep. The microswitch
provided by Varian in the Fieldial was.found to be insuf-
ficiently accurate for this purpose. Pulses from points on
the disk other than the starting position could be fed into
the computer and superimposed on the resonances to provide
calibration markings. The sweep rates of the magnet field
were altered to match up with the available sweep times on

the Fabri-Tek. This provides for the most efficient use of

30

the computer; its 'dead time’ relative to the field sweep time

is less than 6%. The nmr signal is audio-detected in the
Varian spectrometer and then fed into a narrow-band
amplifier and lockin detector of the type described by
Schuster (1951).

In the case of tin, it was often necessary to make
2048 runs over a period of 48 hrs to achieve an adequate

signal-to—noise ratio.
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CHAPTER 3. THEORY OF THE ELECTRON-COUPLED

NUCLEAR-NUCLEAR INTERACTION

In a study made on thallium oxide, Bloembergeﬁ and
Rowland (1953) found that the linewidth of one of the
thallium isotopes was much greater than that of the other.

203 compared to 71205 was

The extra width of T1
surprising as their magnetic moments only differ by 1%, so
that it could be expected that both isotopes would interact
with their surroundings to the same extent. The only mannér
in which the isotopes differ greatly is in their natural

203 is 30% abundant compared to 70% for

203

abundances . The T1

205

the T1 » so that a Tl nucleus will on average have a

larger number of unlike neighbours compared to a 1205
nucleus. The experimental data may be explained if there
is an exchange interaction. Exchange interactions between
unlike nuclei broaden the resonance. line whilst those
between like neighbours narrow it (Van Vleck, 19248). Hahn
and Maxwell (1952) and independently Gutowsky, McCall and
Slichter (1953) have shown that there exists a coupling
between the magnetic moments of two nuclei in a molecule,
via their hyperfine interaction with the surrounding

electrons. Ruderman and Kittel (1954) showed that a simi-

lar coupling could arise in a metal with the nuclear spins

interacting with the conduction electrons. The existence

of such a coupling can best be explained in terms of a
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simple ﬁodel.

We take as a model a metallic crystal in which only
two of the nuclei are magnetic. The electron wave.function
in the periodic lattice will be scattered by the interaction
with each magnetic nucleus. The effect of the magne-
tic moment of a nucleus at any lattice site is to make that
site favourable for an electron of parallel magnetic moment but
unfavourable for an electron with anti-parallel moment. In
order to take advantage of the magrietic interaction, an
electxron of parallel spin will diétort its wave function so
that the wave function is slightly larger in the wvicinity of
the nucleus. The distortion is brought about by mixing in
other states of the same spin orientation. The wavefunctions
of the additional Bloch states are added in phase with the
unperturbed function at the nucleus in order to interfere
constructively at that point, but because of the spread in
wavelengths, they gquickly get out of step as one moves away
from the nucleus. 2as a result of the difference Eetween
the unperturbed and perturbed functions, the original uni-
form distribution of spin density is changed to have a damped
oscillatory behaviour. The total electron wavefunction seen
by one magnetic nucleus will therefore depend upon the
spin orientation of the other, thus establishing an indirect
spin-dependent coupling between the nuclei.

The strength of the coupling in the general case

may be calculated from the total electron—-nuclear Hamiltonian.
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This interaction between the nuclei and the electrons 2

is written as

Hep = 2 ¢; I3 - I8, 8(zy — By)
i 2 .
+ I D. I. . £ A . 8, , (1)
i 3 =i 9 =Qi =9
where
c. = 8 223 | (2)
i Ye¥i ’ .
D. = vy _v: B2 ' (3)
i Ye¥i ’
(xr,~R.) (xr ,—-R.)
and Bg; = Z = }R B =2 =i ;SL e S (4)
£ =L =i lzy-R; | '

The first term in equation (1) is the ‘'contact’' interaction
between the electrons and nuclei, whilst the second term
gives the dipolar interaction. Equation (1) may be rewritten

in the form

H =
en

He ™M

I; °c_;—i=§Hi (5)

where gi does not involve the nuclear spin coordinates.

The interaction energy associated with He is given, to

n
second order, by

2 -1
AE = <o0|H_ |O> + i' [<nlE__|0>]|“(E -E )" (6)

The terms in AE such as <o0]|H, |[0>

and ~|<n|1-1j_|o>|2(En-Eo)-1 are just those that would
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arise if each nucleus was isolated from the other nuclei.
This energy is associated with parts of the electron-nucleus

interaction which give rise to the Knight Shift and the

relaxation processes in metals.

The cross terms, i.e.
those involving two nuclei e.g. <0|Hi|n> <n|Hj|0>(En—E°)_1

L4
represent the interaction energy associated with the electron-

coupled nuclear-nuclear interaction. These may be expressed
as

AEOa = .E

(OaIHilna')(na'lHjIOa)

z - + c.c., ) (7)
. ' C
1>]) no E0+Ea En Ea'

where |[na') is a product of a many-electron state |n) with

energy En and the many-nucleus state |a') with energy Ea
|oa) being the ground state.

] L4

Substituting equation (5) into
equation (7) we obtain

Bg,- (OIGiBIn) (nlc;iB. o) (Eo-En)"l

ig jB,la) + c.c. (8)
where the nuclear energies have been ignored in comparison
with the electron energies. This energy AEOa is just that
which would be expected from a first-order perturbation

contribution of an extra term in the nuclear Hamiltonian
Heff given by
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(0fG,,In) (n]G.,.,]0)
Hoge = 5, L T.0T.a, I ig iB"* + c.o.
i>j BB" J n E-E,
= z I. . J.. - I, (a)
i>j =i =ij =3

where gij

nuclei. Taking the electron wave functions to be products

is the spin coupling tensor between the i and jJj

of Bloch functions, it is possible to calculate the gij
(Abragam, 1961; Slichter, 1963).

The most important term arises from the croés terms
involving the contact intéraction between the nuclei and

the electrons. This is given by

Hcontact—contact = .Z c.cj

. . (0]zs, §(x,—R.) |n)
i>j i i !r_z —2 =i l
— ’ — _l
x (n[i:'_s_g’s(_x_-z gj)|0) . Ej(Eo E) + c.c.
= X I. - I-.J--h (10)
i>3 =i =3 ij
where
(c.c.) g..h = z|u_,(0)]%]u (0)]%cos{(k-k').(R;~R.)}
i’j ij kk' E' k == —J —1i°

x £(k) (1 - £(k")) (B, -E, ,)"1 . (11)

Uk(O) is the value of the épatial part of the electron
wave function at the nucleus and £(k) is the Fermiprobability
function. It can be seen from the form of H

contact—contact
that it has the appearance of an exchange interaction.
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Hence its name of.'pseudo—exéhange' coupling.

It is not possible to evaluate the summation with-
out either some further approximations oxr some explicit
information on the k dependence of the wave functions and
energy. We assume that the energy surfaces are spherical
"and there is an effective mass m*(k). As the greatest
contribution to Jij comes when k = k' = kg, |UE(0)|2
and |U .(0)|2 may be replaced by a value appropriate to k
and Ef—hear the Fermi surface and ;heAsums may then be

evaluated (Slichter, 1963). This leads to a value of the

scalar coupling constant Jij given by

_ _32 2 2 4, 4
h J;5 = = ve® Yy yyRTm* |ka(0)| ke F(Zkflgijl) (12)

= Z . (13) .

This is the Ruderman -Kittel approximation (Ruderman and
Kittel, 1954). The oscillatory part F(x) is plotted in

figure (3.1). The dependence on |U_ (0)]4 shows that the
£

coupling will be greatest for a nucleus with a large Z.
The second term from Heff arises from the cross-
terms between the contact and dipolar interactions. This

is giveh by

H T (B,

. + B..)+ cc
i>3 iy Jji

contact-dipolar =



Figure (3.1)

The spatial dependence of the Ruderman—Kiﬁtel 'pseudo-—
exchaﬁge' interaction F(x). The figure also shows the
distances of the neighbouring nuclei in white tin.
(xo)Sn indicates the value of x taken for the start

of the continuum, as discussed in chapter 4.
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where

B.. = c¢c.D. T
n

i3 iP5 (o[a(fz—_lgi) (S, - I;)Im

z
2

x (nlgy - Bgq - L3100 (B BT (14)

Summing over the electron spins as previously, we obtain a

traceless coupling (Abragam, 1961) li . ggu . lj where
giﬁ - is proportional to gij + gji + cc with
- - _ -1 '
Bij = kﬁ" (k|6 (xy RYIE" (k' [y 1K) (B By ) . (15)

This coupling will be removed by the macroscopic rotation
(see chapter 2). In special cases, (Bloembergen and
Rowland, 1955) it may be shown that this coupling takes

the form of a pséudo—dipolar interaction

Jv T = ' . {3(;_1.'13'13) (']‘:'J .'13'13) i
.I_'i. - 255 - I3 = Dij = 5 - E-i . '];'J} (16)
13 ’

but there is no group theoretical argument that this is
always the case (Abragam, 1l961). - _

The final terms in Aan involve the cross-products
between the electron-nuclear dipole.interaction terms.
This may be expressed as a sum of two tensors,one with the
form of Jij 1l and the otheér with the form g;j . These
terms.are rmuch smaller than those already considered and

may be thought of as correction terms (Abragam, 1961).
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CHAPTER 4. TIN

A) Theoretical analysis

Vvan Vleck (1948) showed that spin-spin coupling

between nuclei, corresponding to a Hamiltonian of the form

Hss = J h Il . X

has two effects on the resonance line-shape. If the coup-
ling is between unlike nuclei, the second moment is

increased, implying that the line is broadened. When the

nuclei are alike, however, the coupling produces an increase

in the fourth moment but leaves the second moment unchanged.

This means the line narrows but there is an intensity shift
towards the wings. A number of studies have been made.on
tin spectra using the 'method of moments' (Karimov and
Schegolev, 1961; McLachlan, 1968; Schone, 1969; Sharma
et al., 1969; Alloﬁl and Deltour, 1969). This approach
is difficult. The experimental line shape is somewhat
Lorentzian, implying that there is considerable intensity
in the wings which makes accurate determination of moments
difficult (Sharma et al., 1969). In addition, interpreta-
tion of the results is complicated by the necessity of
unravelling the effects of the spin-spin scalar coupling
from those of the spin-spin 'pPseudo-dipolar’' coupling.

A second approach which has been used to determine

the scalar coupling is to apply the Anderson-Weiss theory
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(Andexrson and Weiss, 1953). This, being useful when the
line is very exchange-narrowed, is only applicable to
resonances from isotopically enriched tin. The experimental

line width 8w is given in this theory by
sw = m<AwZ>//3 J (1)

where <Aw?> is the theoretical second moment in the absence
of exchange narrowing and J,6 is an average value of the
scalar coupling constanfs over thg_nearest neighbours
(MclL.achlan, 1968; Sharma et al., 1969).

In this thesis an entirely different approach is
used. An attempt is made to build up the tin spectrum
from first principles. This is possible in natural tin
because of the low isotopic abundance of the magnetically
active nuclei (Snll7, 7.67%; Snllg, 8.68%2) and the fact that
the macroscopic rotation has given the Hamiltonian the
same form as for a ligquid. This allows the pbssibility
of applying high resolution nmr spectroscopy techniques
in a situation where they would not normally prove ﬁseful,
The low isotopic abundance permits the splitting of the
sample into groups of interacting nuclei; each group being
effectively isolated from the next. The distances from a
nucleus to iﬁs.four shells of nearest néighbours are
3.016 8, 3.175 8, 3.7608 and 4.140R8 (see figure (4.1)).

From an examination of the form of the Ruderman- Kittel

interaction (figure (3.1)) we see that after the third



Figure (4.1)

piagram of the tin crystal structure. The numbers 1,

3 and 4 indicate the nearest neighbour relationships.
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nearest neighbour, the spin-spin coupling is small. We
therefore consider in some detail the effects on a central
nucleus of its neighbours in the first three shells and
treat the other nuclei as part of a continuum. The
analysis is facilitated by the fact that Sn;17‘and sntl?
both have spin %. However, provided the'macroscopic
rotation has removed any effect of quadrupolar coupling,
the technique could easily be extended to cover specdtra
involving nuclei with I > %.

The nuclei interacting with the central nucleus
are situated in shells having 4, 2 and 4 sites respectively.
We can determine the probability of finding certain groupings
of nuclei in the sample. These are given in table Y. With
techniques similar to High Resolution'nmr it is possible
to calculate the spectra that arise from these configurations.
In metallic tin, the presence of the electron—nuclear
interaction very effectively relaxes the nuclei; this
broadens the resonance and leaves little possibility of
resqlving individual lines.

Taking one of the isolatea groups we construct an
ensemble of systems each with the Hamiltonian H of the

group,
H = Eo + El + G(t) + Hrf(t) (2)

The time independent term E is the Hamiltonian of the

isolated nuclei. It has eigen—functions ¢&., wé., etc.



43

Table I

Probability of finding certain configurations of tin nuclei

in a sample of natural tin.
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with eigenvalues a', B', etc. The time~-independent term
E, is produced by the electron-nuclear interactions and

is responsible for the Knight Shift and the electron-
induced spin-spin coupling. By use of perturbation theory
it is possible to determine the eigen—functions wa’ ?B'
etc. of the Hamiltonian Eo + El' The ﬁermitian perturbation
G(t) is random in time. It takes into account the effect
on the nuclei of the random magnetic fields produced by
the electrons. G(t) is therefore . responsible for the
electron part of the nuclear relaxation. The externally
applied rf field Hamiltonian is denoted by Hrf(t)° In

general the wave functions of the ensemble can be written

T=czc,. (3)
[« 3

We define the density matrix in the Schrodinger represen-

tation by

= <c; c_,> . (4)

Paa? o

where <> indicates an ensemble average. The density ma-—

trix elements satisfy the following differential equaﬁion

AP ar .
B at i(B . - Ex) Poat

+ i [paa"(a"lﬂrf(t)[a') - (aIHrf(t)Ia")paua. ]

z
a”

* I, T Rogrpge lrggs = Pgge(T) 1] (5)



where pBB,ér) is the thermal equilibrium value of Prg

(Redfield, 1957). The R's are defined by

2 _ —_nt -
2h Rua'BB' - JaBa'B'(a' B') + JaBa'B'(a 8)

The J's are the random-field spectral densities and are
defined by
00
Togarpt (@) = J <(a|G(t) [B) (B'|G(t+T) |aYrexp(-inwt)dr, (7)
aBa'B —eo.
It may be shown (Redfield, 1957) that:Raa.BB.= 0 unless

(Ea—Eal_EB"'EBl) Tc << h, (8)

where Tc is the correlation time of the random fields. We
may use the density matrix in determining the expectation value
of an operator M. It is given by

<M> = z

[o] ' PR
ao a
: a,a',a" a”.

Having introduced the density matrix we make use of it
in determing the tin spectrum.

Case 1: No active nuclei in next three shells.

In this instance there is no spin-spin coupling
rFresent and the spectrum is a single line whose width is

determined by relaxation broadening. We shall however
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treat this simple case in some detail to show the approach
to be used in the more complicated systems.

The Hamiltonian of the single nucleus is
H= -vyh Iz(l—f) Ho + G(t) + Hrf(t) (10)

where K is the isotropic Knight Shift constant. The
isolated nucleus has two energy states, with its spin
either parallel to the magnetic field (state [1) ) or
antiparallel (state |2)). The density matrix therefore
has four elements Py117 P27 Pyar Po3- The rf field

produces transitions between states |1) and |2). Writing
(1] H_.(t) 12) = Hyy » (11)

we have from equation (5)

de, 5
—ac

dp
11 _
g T8

=TH Ryy330p33-p31(T)) + T Ryy,5(p55-055(T))
+ ilpyHyy = Py Hypds - (12)

- dpy o

& = h R

1212 Pi1z * H(Ey; = Ej) oy, + ilpy; = ppo)H;5 (13)
and

— *
P12 = P21 (14)
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In the limit of small rf fields, i.e. ignoring terms of

the order Hiz, we have from egquation (12),

P11 = P11 (T (15a)
Paz = Pap(T). | (15b)

Taking E2 > El and assuming that Hrf(t) is sinusoidal at a

frequency w, we try a solution of the form

P12 = ¥312° (16a)
_ -iwt
Po1 T T21° . (16b)
Taking Hrf(t) = V cos wt = V(exp(iwt) + exp(-iwt))/2 (17)
we have
Tipiw = (Rypyp + iugdryy + Viplegy = 033) 72 (18)
where E, - E; = ‘A w,- To evaluate the R's it is necessary

to make a number of approximations. First is that the
random fields produced at the nuclear sites by the elec-
trons do not have any preferred direction. (This
assumption will be discussed in‘detail later.) We also
assume that the frequency spectrum of the random fields is
white to frequencies much greater than the Larmof
frequencies of the nucleus. This implies that inequality

(8) is satisfied. As

. 8 -1 -11
(Ea—EB)/h = 10 sec —Tand To 10

sec

R
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(To being the electron spin-lattice relaxation
iimeL this is not unreasonable. We can now evaluate

the R's. From eguation (6)

2 —_ -—
= Tyypp (@) = Tyoy5(w) = JTyn55,(0), . (19)
Now G(t) = -~ y;hn H (t) . I : ' | (20)

where H is the random magnetic field produced by the

"electrons at the nuclear site, so that

+co
Jaargt (@ =_i<(a|E£(t),£|s)(B'IEE(t+T),£|a') >
x ynzﬁz exp(;imt)dr
= % 2n2y 2(a|I IBY(B']T_ ,|a")k (w) (21)
qa’ n a q' aq’
where
=}-c0
2qu.(w) =_£ <Hrq(t)Hrq'(t+T) > exp(-iwTt)drt (22)

and H? (t) is the gth component of'Hr(t). If the random
q S——
field in perpendicular directions are assumed to be un-

correlated then

< H_ (£)H. (t+1) > =0 (23)
rq rq|

unless q' = g. We have that
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JTy7111 (@) = ~J3955w) = Ynzhzkzz(w)/Z (24)
and J,159 (@) = v 2P O (@) + Kk, () /2 . (25)

The assumption of a white freguency spectrum for the

random fields leads to
k = .
qq(w) qu(O) (26)

If the random fields have values independent of direction

then
k = k =k o . (27)

and Ryz12 = ~ Yn

where W = Ynzkzz' Substituting eguation (28) back into

equation (18) we obtain

xi, = =iV, (py4-py,) [{i(w —w) - 2wizn]l~t. (29)
Now
P31 = exp(—El/kmj{exp(-El/kT) + exp(—}z:z/k-r)}’""l
='{exp(—E1/kT)}/2 - (30)
so that 11" P22 ='ﬁwo/2kT, | (31)

Using the density matrix we find that the magnetization in



S0

the x direction is

<M (E)> = p;,(2|M [1) + Pyy (1M | 2)

r12(2|Mx|1)exp(iwt) + r21(lLMxL2)exp(—iwt)

2 Real [rlzfexP(iwt)(2LMxLl)], ’ (32a)
which by definition equals the real part of

x(w) H__exp(iwt). (32b)

X0

Therefore, we have

x(w) = 2r;,(2lmM |1y /., (33)
Using the fact that
Vip = = (1M H_|2) : (34)
leads to a value of the nuclear susceptibility
x(w) = if(1|m|2) Izw'{ZkT(i(w -w) —2W) }'.l
X _ x o o
..". _ . 3 . . _ _ -1
= 44i z, {;(mo w) 2w} (35)

where Z_ is defined as Yn%ﬁ2w0(32kT)—l. We see that the
line is, as expected, a Lorentzian with a width proportional

to W.
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We now suppose that there is an other magnetically-
active nucleus within the first three shells. In this
case we would expect two types of spectra; one when the
two nuclei are alike, the other when they are not. In
the first instance, the presence of the spin-spin coupling
does not change the spectrum from that of an isolated
nucleus, but in the other case, the system produces what
a chemist would call an AX spectrum. As the nuclei are
unlike, their resonance lines do not overlap and can be
treated separately. The effect of the J coupling of the
A nucleus on the X spectrum is to split it into two lines.
It is as though the X nucleus would be found in Fwo magne—
tic environments; one when the A nucleus hés spin parallel
to the main field, and the other when antiparallel. The J
coupling from A acts as an 'extra' magnetic field at the
X site. The random fields at the A nuclear site can be
thought of as flipping it from spin up to spin down and
vice-versa. This change effectively switches the magnetic
environment of nucleus X. If the f£lip rate is high
enough, the effect is to decouple the X nucleus from the
A so that the X doublet collapses int§ a line centered at
the natural frequency of X. The coalescing of the liines
is a common enough effect in high resolution nmr
(@rnold, 1956). There,it is often produced by the jumping
of nucleus X from a molecule where the A spin is up to
another where it is down. This aléo has the effect of

changing the X magnetic environment. In liquids the
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~collapse of the lines is very apparent, but in a metal
the effect of the relaxation broadening (determined by W)
is so great that the multiplets will not be resolved and
their collapse will be manifested only by a slight
narrowing of the line.

Tt should be realized that there is a differenée
between the disappearance of the satellites underxr this
flipping process and the disappearancé of the dipolar
broadening when the sample is spun. Rotation keeps the
relative spin positions unchanged and produces a spa&ial
average leaving the multiplet structure. The £lipping
however changes the spin positions and thus collapses
the multiplet.

We shall now proceed to show that when the two
nuclei are identical there is only one line. The
Hamiltonian has the form

H = -Y hI, (1—1(1,;)Ho -y

A _A'—hIZ (l—KA.)Ho

AI

+J..,hI. - I

an'PIa Al + G(t) + Hrf(t)' (36)

—

The time—ihdependent part of the Hamiltonian has four
eigenfunctions. Three of these are associated with a total
spin of 1, ahd the other is of spin 0. It is not possible
for the applied rf field to induce transitions between
states of different total spin. The nmr lines will there-

fore only be produced by transitions between the states
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of total spin 1 corresponding to m, = -1, 0 and +1 where
m, is the z component of the total spin. It can be shown

that these states have energies YAﬁéﬁ + JAA]h/4’

JAA,h/4, and —YAnéﬁ + J..,h/4 respectively. It follows
that the energy required to induce transitiomns is indepen-—
dent of Jant and the spectrum is the same as for the

isolated nucleus.

For non—identical nuclei the Hamiltonian becomes

H = —Yéﬁl (l—KA)Ho - Yiﬁ Iz (1 - Kx)Ho
A - X

+ JAxh I, » Iy + c(t) + Hrf(t) . (37)

The eigenfunctions of the time-independent part of the
Hamiltonian are |++), |[+-), |-+) and |--) which we

number |1), |2), |3) and |4) res_pectively. The enexgy
level schemg is shown in figure (4.2) where we have chosen
e, - E2| > |E4 - E3|, without loss of generality. The
presence of the random fields produces transitions between

the eigenfunctions. We take the simplest form of G(t)

which is a sum of 'single-nucleus ' operators
G(t) = iﬁ(YAEA}t) . {A‘+ ngzft) . EK) (38)

where HA and Hx are the random fields at the A and X

nuclear sites. We shall assume that the random fields at

the two sites are independent. From the form of G(t) we



54

Figure (4.2)

Energy level diagram for the AX type grouping of nuclei

showing the allowed transitions.
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note that HA will induce transitions between [4) and |2)

and also |3) and |.1) whilst Hx induces transitions between
|4) and |.3) and also |2) and Il) . Imagine that we are
looking at the X spectrum; then the guantity of interest is

the x component of the magnetization of the X nucleus.

<M _(t)>, = plz(lexll) + 921(1lmxlz)
+ pgatalm _[3) + 943(3|Mx|4)

= 2 Real{p,,(2[M_[|1) + p34(4|Mx|3)} . (38)

Terms such as (1|M_|3) deal with lines of the A spectrum
and will be zero near the X lines. Making use of equations

(5), (6) and (7) we obtain, in the low rf field approxi-

mation,
Py = Py (T , i=1- 4, (39)
Eg%g = dwyyp35 + (Py3=Py ) Hyy /M
* Ryo32P15 * Ryp3gPzy v (20)
Ag%%i = iwg,p3y + (p337py)Hy5/M
* R3434P34 * R3412P12 (41)

where Wy = mx = Tax™ and Wiy = wx + JAX,TT with wx being
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the natural frequency of the X nucleus. Evaluating the

R's leads to the equations

a
__g}:_z = dwy035 * 1(py37Py5)Hy /R
- pq 20y + W) + pgaWy ' (42)
and o
= = fwggP3g *+ 1(P3370,4)Hyz/h
~ Py, (2Wy + W) + 0 W,. (43)

The W's are as previcusly defined with the suffixes denoting
the nNuclei with which the random fields are associated with.
Ignoring terms involving WA' the equations for P12 and P34
look just like those for the density matrix of a two-spin
system with the nuclei isolated (see equation (13)). The
form of the lines is Lorentzian with a linewidth determined
by 2Wk. The coupling tefms, which involve War produce the
collapsing of tﬁe lines, a phenomenon which might well be
called 'relaxation narrowing'. Trying a solution similar

to that for the single nucleus we take
Hrf(t) = V cos ot
Pyp = T3y exp (iwt)
P3g = T3y exp (iwt)

which leads to



A12%1
and W-rlé
where Aij =
Now

Pii T
so that

Pii ~

From equation

and ryo

o * W rg, = -iV,,(py,-py5) /2R
+ A34T34 = “1V3,4(p33-p,,) /20
1(wij—w) - 3W.

a
exp(-E. /kT) / £ exp(-E./kT)
i 5=1 j
Pit1,i+l = HW,/4KT.

(44) we obtain

2,~-1

ZLZOHXO(Alz—w)(A12134—W )

My - 2
leOon(134 9)(A12A34 W

We therefore have

x(w) = 2(xy,(2]m|1) + Ty, (4lm | 3))H, 7

= 2i

Zolhgy + 235 = 2W (X352 3,

(vH) ™

) "L (yE) ~

- W9
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(44a)
(4 :b)

(44c)

(45a)

(45b)

(46a)

(46b)

(47)

If W is small compared to 27J, equation (47) describes a

spectrum consisting of lines at wy + TJ broadened by W.

If 27J is small compared to W, equation (47) describes a

spectrum with a line at wx.broadened by J and W.
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Case 3: Two active nuclei in next three shells.

When both nuclei are alike and identical to the
central nucleus, we again find that the nmr spectrum of
the group is a single line. The spectrum is, however, split
into a total of 15 lines When only two of the nuclei are
the same isotope. It is possible to gain an insight on
how this spectrum arises by considering the case where all
the nuclei are ﬁery different. In'this, so called AMX spectrum,
the line from the A nucleus is split into two by the Jam
coupling, and each of these lines is further split by the
5AX coupling. A similar thing happens to the M and X lines,
giving rise to a total of 12 lines. As we let the A and
M nuclei become more alike, the A and M spectrum come
together to give 8 lines near (wAfwM)/Z. This gives the
AA' part of the AA'X spectrum. The four lines near Wy
become six by the appearance of two other lines associated
with the simultaneous flipping of the A and A' nuclei.
The fifteenth line is a combination line (near wAfmA,—m#)
involving A, A' and X nuclei.and has. zero intensity unless

X is similar to A.

The Hamiltonian for the three nuclei A, A' and X is

H=-A =X v:I. (1-K.)H_+ G(t)
i=a,a',x t ?%j o
* h(Tpp i Tp Tpr + JTpyla-TIy + JTpuxlas-Ty)

+ H f(t). . (48)
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"The eigen—functions of the time-independent part of the
Hamiltonian are given in table II. The determination of
the eigen-functions is greatly simplified by the fact that
the basis product functions with different X spins cannot
be mixed . Figure (4.3) shoﬁs schematically the wvarious
allowed transitions produced by an external rf field. The
transition fregquencies have been given by Pople, Schneider
and Bernstein (1959) and are shown in table III.

Let us first imagine that we are considering the

X part of the spectrum.' This meané that the X atom is at
the centre, surrounded by the ten sites. The lattice
structure in tin is such that the probability of finding
the A' and A nuclei closer together than tﬁe fourth—nearest
neighbour is small. We can therefore simplify the calcu-
lation by assuming that J,,, is zero. This means the X
spectrum now only consists of four lines. In this case we

have
H o Xx(w) = 2 Z.pi-(lexli) (49)

where ij take the values 12, 36, 45 and 78. Proceeding

as before, and taking

G(t) = - z Y ’ (50)
k=a,a',x ¥ K Tk

we f£ind that Xyor r36, X5 and r78 satisfy the simultaneous

equation (with coefficients given in matrix form)



Table IX

Wave functions for the AA’X type grouping of nuclei.

Key

27 J

2w J

27 J

A'X
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WAVE FUNCTIONS FOR AA'X SPECTRUM
1) = 1++4) 17)=1——+)
l2)= |++—) ' |8)= l———)
|3)=COS¢+ l+ —+) +sin(i)+l—++)
'4)=—Sln¢+|+—+)—|—Cos(l)+]_++)
'5 )= COS¢_'+——) + S]n(i)—]_ + =)
16 )= —Sin¢_l+——)+ cos (I)+|_+_)
where
D,cos2Q, = (J,— J/ 4
Dism 2¢¢= J, /12

2 2 a2
D=(CL-L) /4 +J7 )72
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Figure (4.3)

Energy level diagram for the AA'X grouping of nuclei showing

the allowed and forbidden transitions.
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Table IIXI

Transition frequencies for the AA'X grouping of nuclei.



TRANSITION FREQUENCIES FOR AA' SPECTRUM

Weg = w, - (24 +dp+d3)/4 - D
w,, T w, -~ (2Jl —-J2+J3 N4 - D+
W = W, + (2J1'—J2+J3)/4- - D .
wyg = wy + @4+ 4 )4 - D,
Wy = W " (2J +J_+J )4 + D_
Wy, = w, - (2J1 —J2+J3 N4 +D,
| wye = w, * (24 —J2—J3)/4 + D

u)1'4= N +(2J1+J2+J3)/4 +,D+

TRANSITION FREQUENCIES FOR X SPECTRUM

w_, = w - (J2 + J3)/2
wis = w, F D,f D
w46 = W - D++ D_.
w12 = w +(J2 + %)/2
WYs= Y% -~ D+ -D_-
Wiz, = Wy + D +D“

FORBIDDEN LINE

wy, = 20— wy
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Hyo W -W 0 1
W H3e 0 w iZo i 1
= v (51)
-W 0 u45 W -1
0 w -W Hog 1
where uij = i(wij—w) - 4W. Using eguation (51) we have
that
x(w) = —21Zo(1[wx—w] - 4WwW)
x [4W{i(wg-w) = 4W} - wugu3g = Uj5Hqe]
% (Hyoloalanlar — 4AW2{i(w,-w) - 4w} 1 (52)
12778745736 X -

We now examine the AA' part of the AA'X spectrum.
This is in general asymmetric about Wp - If, however, we
imagine that the A nucleus is at the centre, then A' and
X are so far apart that JA'x is zero. This has the effect
of symmetrizing the spectrum. Proceeding as before we have
that

x(w)H_ = 2 pnq(qlMxln) (53)

ng

where ng take the values 68, 47, 25, 13, 58, 37, 26 and 14.

Setting

pnq = rnq exp (int) (54)

we find that the rnq's satisfy the simultaneous equations

shown in table IV (case 1l). There is nothing to be gained
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by'attempting to solve this equation algebraicélly and the
solution is therefore obtained by computation at each point
in the spectrum. The problem is not difficult as the matrix
of the coefficients of the r's has a number of special

properties. The method of analysis is given in appendix I.
Case 4: The effect of more distant neighbours.

In the previous analyses of tin data (McLachlan, 1968;
Alloul and Deltour. 1969 ; Sharma et al., 1969) the effect
of far distant neighbours on the spectrum has been ignored.
Approaching the analvsis from the 'high resolution nmr'
side shows that the distant neighbours may actually have a
pronounced effect upon the line shape. .

We may approximate the effect of an X nucleus in
the 'continuum' on an A nucleus at the centre of a group by
examining‘the AX spectrum in the limit of high flip rates

(i.e. W >> 2wJAX). We find, after considerable mathemati-

cal manipulation; that#*

Xp (@) = 142 (ilwy-w0} - awny) 1

where 2W' = 2W + 4ﬂ2JAX2/2W. ‘The 2W in the denominator of

the term involving JAX arises from the fact that the X

nucleus is changing its spin direction at a rate 2W. Equation

*T would like to thank Dr. McClung of the Department of

Chemistry for bringing this expression to my attention.
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(57) implies that the multiplet has collapsed into a

single Lorentz line whose width is slightly greater than

the normal linewidil: because of the presence of the residual
linewidth. Each interaction with an unlike nucleus in the
continuum increases the apparent linewidth. Summing over

the continuum we have that

B ] —
(2w )apparent = 2W + B | (58)
2.2
where B = ZAaTy JAN/ZW (59)
N

with the summation being over all the X type lattice sites

in the continuum. Now
2 ®. 3 2.2
T J%N = S 2n°pr°J° (xr)dr (60)
N r
o

where p is the number of unlike active nuclei per unit
volume of the continuum and r is the distance to the
start of the continuum from the A lakttice site (approximately

4th nearest neighbour distance). From chapter 3 we have

2nJ(xr) = A F(2kcX) (61)
so that
2 . a2 3, 3,-1
5 2y = atnzmkx % (62)
where x = 2kfro. Now Jl’ the nearest neighbour spin-spin

coupling constant, is given by

2n3, = A F(2k.r,) _ (63)

1
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so that

2 2
zJ = pJd
N AN 1

3
g F

1

[127k 2(2kfrl)xij— (64)

Taking typical values for the constants for tin

(ke = 1.65 x”loscm -1, F(2kgry) = 8.4 X 10'4,0 = 3.2 x 102t

miclei em™3, T, = 150 usec, J, = 3.1 x 10° Hz and x, = 15).

leads to

1

(2W') = 2W + 1050 sec . _ (65)

apparent

As 2W is approximately 6700 sec =l 4e see that the addition-
al width from the far neighbour; is important and should not
be ignored. .

| We‘shall now txry to computé the effects of the
like nuclei in the continuum. Returning for a moment to the
simple AA' spectrum, we find that the effect of Jp,. is to
make the A and A' nuclei.exchange their spins at a rate
4WJAA,. If the A nucleus is in a group and the A' nucleus
ijs in the continuum, then half of the time the exchange of
spins between A and A’ leaves A in a different magnetic
environment in the group (i.e. the A épin flips). The rest
of the time A and A' exchange equivalent spins so that the
magnetic environment of A is unchanged. We may apéroximate
the effect of the A' on the A as an increased flip rate of

A . The actual effect of the A' on an AX spectrum is shown

in figure (4.4). The upper spectrum shows the AA' part
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Figure (4.4)

Spectra showing the effect of exchange coupling between like

nuclei.

(a) The spectrum for a group of A,A' and X nuclei when there
is a coupling between the A and X nuclei, and the A’

nucleus is isolated from the others.

(b) The same spectrum except that there is now an exchange

coupling between the A and A' nuclei.
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when the A' is not coupled to the A nucleus. The A' line
is not shifted. The Jax coupling splits the A line into
two. Introducing the J,., coupling narrows the spectrum.
The narrowing could be brought about by an increased jump
rate of the Aspin, but-in this case the lines would not
- remain sharp but would become broadened. As this is only
an approximation of what is actually happening, there is,
unfortunately, no theoretical expression equivalent to
equation (57). The apparent increased flip rate must there-—
fore be estimated. ﬁow a Jay coupling splits the A line,
of half width 2W, by an amount Z"JAX but after collapse
the spectrum becomes, from equation (57), a Lorentz line
with half-width 2W + 4n2J§X/W. We can approximate this line
by two Lorentz lines of linewidth 2W separated by the extra
‘half-width, i.e. a splitting of szJix/W. This effectively
is the same as cutting the strength of the J coupling by a
fraction wJ/W. The effect of the JAA' coupling was’ to’
exchange thé spins at a rate 4ﬂJAA, but if we introduce
the effect of the conduc;ion electrons then the exchange
rate drops to 4w2J§A./W. We can now use this expression to
determine the r%te AW at which exchangé'between the A nucleus
at the centre and the A' nuclear spins in the continuum
occurs: It is given by

AW = fl 2.121r2/w. : : - (66)

arises as only half "of the A' nuclei

Nk

whexre the factor of



69

have spins such that their exchange with A changes the

A environment. It follows that

3

. 2 ) 3.2 3,1
AW = w7pd, [Gka F (2kfr1)x° I

(67)

If, for example, we include the effects of nuclei in the

continuum on the AX spectrum then we f£find that
(AIZ#WHB)rlz + (W + AW)r34 = Zizo/yﬁ (68a)
(Ww + Aw)r12 + (1341W43)r34 = zizo/yﬁ. (68b)

The extra broadening term B produces an increased width,
whilst the increased jump rate AW increases the terms which
collapse the multiplets in the séectrum (but are not
included in the terms which broaden the spectrum ).

The treatment has, however, been slightly
inconsistent as the nuclei in the continuum surrounding A
are affected i.e. flipped by 'their® coﬁtinuum and local
neighbours. We must therefore make the expressions for B

and AW self-consistent. This implies that
B' = B 2w(2w + Aw') 1 (70a)
AW' = (AW)2w(2w + AW') "L + AW~ (70b)

where AW" is. the effect, on the nuclei in the continuum,’

of their local neighbours. %Ye can estimate this bv taking
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2.2 ry—1,
J(2W + AW') >average over

sample.

AW" = <I T (71)

sum over
local neighbours

A plausible value for AW" is 0.13 J12(2W + AW')—l.

Substituting this wvalue back into equation (70b) leads to

2 lzw—z) (72a)

AW"® AW(L + 0.07™

1

R

and B' B 2W(2W + AW(Ll + o.o7n2J12w_2))" (72b)

We can now use these expressions to correct the values of
X{w) for the effect of far distant neighbours (cf McConnell,

1957) . Defining

We =W + AW} } (73)

’ 7
then the isolated nucleus spectrum becomes

X(w) = i4z_[i(w_-w) - 2w - B'1 L, (74)
The X part of the AX spectrum becomes
Xg(®) = 22 (A3, +A3, —2W_) (A7, A5, -w 51 (75)
where
A'ij =‘i(mij—w) - 2W - We - B'

Equation (52) describing the X part of the AA'X spectrum

must be modified to read

. ' v J L I
X(w) = -2iZ Y (AW Y = u,5 H3g — Uyy Hgygo)

(] ] (] v 2.2, -1
x (U135 Hgyg Mys M36 WY) (76)
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where Y = i(w,~w) - 2W - 2We - B' (77)

X

and = i(w..—-w) - 2W - 2We - B' (78)

L]
Mij ij
The new equations for the AA' part of the AA'X spectrum have

been given in Table IV (case 2).

Case 5: Other configurations.

These account for the remaining 20% of the assemblies.
If the nuclei in the grouping are identical, only a single
line is expected. In other cases the spectra could be
calculated but the proliferation of lines to be considered
makes the calculation impractical. Furthermore, the pro- -
bability of occurrence of each configuration is small. To
.ignore them entirely would be incorrect, so instead, we
group them with the configurations which they most closely
resemble. Any configuration with one unlike and two or more
like nuclei is treated as if it consisted of one like and
one unlike nucleus. All others are included in the two un-

like nuclei group.

Determination of a value for W

In metals at room.temperature, the spin-lattice re-
laxation time is mainly determined by the conduction
electrons. We have, for an isolated nucleus being relaxed

by the electrons (Slichter, 1963), that

T, = 1/(kzz + k&y) (79)

so that 2W is equal to the reciprocal of the spin—lattice
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relaxation time. The assumption, made in the first part

of this chapter, that

Koy = kyy = k,, (80)

implies that'Tl'is isotropic and this can be tested by
measuring the orientation dependence of T, This has been
done by MclLachlan (1968) who finds that there is little

variation. The absolute value of his T, data must be

1
considered sﬁspeéﬁ as it appears that when compared
to other work there is evidence of some systematic erxrror
(Spokas and Slichtexr, 1959; Dickson, 1969; App, 1970).
However, a systematic error should not affect the observa-
tion of an orientation dependence of T«

There are a number of values of T, in the literature.
McLachlan (1968) together with Asayama and Itoh (1962) find
values of Ty thatat room temperature are equivalent to
112 useé. This is close to the theorstical value of T,
as determined using the known tin Knight Shift and the
Korringa relationship (Korringa, 1950). However, Spokas
and Slichter (1959), Dickson (1969), Alloul and Deltour
(1969) and App*(1970) £find values close to 150 usec.

App's work was actually performed using the same crystal

. *I would like to thank Dr. Williams of the Department of

Y

Physics at U.B.C. for bringing my attention to this work.
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used bv McLachlan. Dickson (1969) tested two othef samples
of tin, one of high purity and the other of low purity,
and obtained Tl's consistent, within experimental error,
with his original result. We shall, thergfore, use his

value of Tl in the determination of W.
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B) Experimental Results

A typical absorption derivative nmr signal from a tin
metal sample spun at 5 kHz at the 'magic! angle is shown in
figure (4.5a). Figure (4.5b).shows the resonancé of an
unspun sample to'the same scale. The complete resonance
of the unspun sample, shown in figure (4.5c), clearly shows
the lineshape asymmetfy produced by the anisotropic Knight
Shift.

The lineshape for both the tin isotopes were Lorentz-
like with a peak-to-peak width of 1.70 + 0.05 kHz for
sn217 and 1.90 + 0.05 kHz for Sn''?. If the lineshapes had
been totally determined by the spin—-lattice relaxation times

of the nuclei, the widths, corresponding to T.'s of 164

1
usec and 150 usec, would have been 1.14 kHz and 1.25 kHz

117

respectively. The Sn nuclear relaxation time was cal-

culated using the fact that (T;)g,117/(T;)g 119 = Yilg/yil7.
It was found that there was no change in the resonance
lineshape on increasing the rotation speed from 4.2 kHz to
5.7 kHz. This was taken as evidence that the rotational-
satellite lines were sufficiently wéak and far from the
centre line, so that the spectrum could be described by the
'1iquid-like' Hamiltonian used in the first part of this
chapter (see also apééndix II). The variation of the reso-
nance linewidth, as the turbine was tilted relative to the
magnetic field, gave an insensitive determination of the

‘magic' angle. Instead, the disappearancé of the lineshape

asymmetry, associated with the anisotropic Knight Shift, was used.
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Figure (4.5)

IR

Experimental Sn resonances :

(a) Resonance from a powder sample spun at 5 kHz. The
resonance frequency is 6 MHz. The frequency scale is
574 Hz/div. The resonance was obtained by making 2048 runs

over a period of 48 hrs.
(b) Resonance from an unspun sample to the same scale as (a).

(c) A resonance from an unspun sample on a smaller scale.
The asymmetry produced by the anisotropic Knight shift is

clearly seen.
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With the line being narrowed by the rotation, it
was an excellent opportunity to accurately measure the room-—
temperature isotropic Knight Shift. Previous measurements
have been complicated by the anisotropic Knight shift (Borsa
and Barnes, 1964) or skin-depth problems (Jones and Williams,
1964) . The applied field, corresponding to a metallic tin
resonance at 6 MHz,was determined by measuring the reéonant
frequency of an undoped saturated aqueous solution of

7 gnpll7?

LiCl. Knowledge of the ratios of the Li’, 119

and Sn

magnetogyric ratios lead to a value for the Sn Knight Shifts.

117 119

The values for the Sn and Sn magnetic moments from the

literature (Varian Associates NMR Wall Chart, 5th ed., 1965) gave
values for the Knight Shifts of 0.733% and 0.747% respec-

tively. This difference corresponds to a hyperfine structure

-2

anomaly A of 1.6 x 10 for the tin nuclei, in contrast to

the expected value of the order of 10—4 (Eisenger and
Jaccarinb, 1958) . Redetermination of the ratio of the Sn117
and Sn119 magnetic moments removed this discrepancy. The

ratio, determined using a M/3 agueous solution of FeCls

saturated with Snclz, was found to be
-YSn119/ySnll7 = 1.046535 + 0.000003.
Using the wvalue

Yr,i7/Ygnl19 = 1.0428555

. quoted by Borsa and Barnes (1964), the isotropic Knight shifts
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for the sn*'? ana sn1l? were found to be 0.745 + 0.001%

and 0.747 + 0.00l%lrespectively, the difference being attri-
buted to experimental error. It was not necessary to correct
the measured fesénance frequencies for shifts due to x°' since the
symmetry of the line indicated a negligible contribution.

'To determine the value of the spin-spin coupl?ng
constant J it was necessary to compare the calculated spectra
with those found experimentally. A smooth curve is drawn
through each experimental curve and is fitted against the
calculated spectrum. To facilitate the drawing of this curve,
advantage was taken of the symmetry of the line in the follow-
ing way. Each resonance was read out of the Fabri-Tek
memory twice. One graph was turned relative to the other,
and the smooth curve drawn through the superimposed curves.
This has the effect of 'ieducing' the noise
by a factor of V2. The experimental curves are taken in the
form of derivatives.and for this reason it is necessary to
calculate the theoretiéal spectrum in the same form. The
computer programme for calculating the spectrum is given in
appendix III. The final theoretical curve is 'assembled' by
weighting the spectra from the various configurations of
nuclei according to table I. Cérrections were made to these
values to take account of the 20% of the nuclei whose spectfa
was not directly calculated. The final probabilities are
given in table V. Before this spectrum is compared to the
experimental curve, it is broadened to allow for the effect

of the finite field modulation and rf observing power (éee
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Table V

Final probabilities of the various nuclear configurations
used to calculate the theoretical lineshape. These were

used instead of those given in Table I.
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second and third nearest neighbour couplings. Whilst it
would be desirable to treat all these values as unrelated
parameters to be determined separately, this approach leads
to computational problems and, more serious, is hot justified
by the present signal-to-noise ratio. Two models were used.
In the first model, it is assumed that only the second-
nearest neighbours interact, and there is therefore only one
parameter J, to be determined (Jl, J3, B' and AW' are taken
-as zero). This model was considered in view of the suggestion
made by Sharma et al. (1969) that the second nearest neigh-
bour interaction is dominant on account of the shape of tﬁe
tin Fermi surface. This model gives a'J2 value of 3 kHz but
the fit is poor. The theoretical curve is'not as broad as
the experimental one, peaking'too early and fading too
guickly in the wings. In the second modél, it is assumed
that the couplings have the form k F(x) whére F(x) is the
Ruderman-Kittel relationship (see chapter 3) and k is a

constant. The ratio of the J values are therefore
Jl : JZ H J3 s 1.00 : 0.440 : -0.631,

and the extra broadening factor B' has the form
B' = BI(21232) /W.

The undetermined constant BJ is approximately 0.02 when one
takes the typical values of the tin parameters given in the
first part of this chapter. Using the second model it was

found that the first nearest neighbour interaction Jq in
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appendix IV). The spect;um is then compared to the experi-
mental curve by a least squares fit.

The theoretical curves are determined by the para-
meters Jl' J2, J3, B', AW' and Tl' defined in the first part
of this chapter. It is also necessary to allow for the
differences in the spin-lattice relaxation times of the two
isotopes. This may be appreciated by noting that the T,
of the observed nucleus produces the lifetime-broadening
effect, whilst the Tl of the unlike nuclei produces the
collapse of the satellite lines and a resultant narrowing.

It is difficult to determine the appropriate values of the
'broadening factor' B' or the extra'flip'rate AW' and these
were therefore taken as unknowns. It was foﬁnd tha; taking
reaéonable values of AW' (= 0.05 W) produced little change in
the theoretical lineshape. This result could be anticipated

by noting that AW' must add onto the effect of the nuclear
relaxation processes. This parameter was therefore set as zero.
The same comment cannot be made for the factor B' which has

a more pronounced effect on the lineshape.

Snll7

Of the two isotopes, should lead to a better

value of the spin-spin coupling.consfant. This is because
the lifetime broadening is smaller ( (Tl)sn117 > (Tl)Sn119)
whilst the effect of the J coupling is larger. (A Sn117
nucleus has on the average more unlike neighbours than a

Sn119

nucleus in tin metal.)
In the calculation of the theoretical curves it is

necessary to know or assume the ratios between the first,
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6n117 nad the values of -2.21, —2.04, -1.88, -1.76 and -1.65
(+ 0.09) kHz when BJ was 0.00, 0.01, 0.02, 0.03 and 0.04
respectively. The negative sign of the coupling is inherent
in the Ruderman-Kittel model. Values from the'Sn119 resonance
are —-2.40, -2.09 and -1.94 (+ 0.09) kHz when BJ was 0.00,
0.01 and 0.02. As can be seen from figure (4.6) the discre-
pancy between the experimental and theoretical resonances
is of the order of the reading error in determining the values
of the smoothed experimental curves. Figure (4.7) shows
the theoretical curves superimposed.on an experimental
resonance. J

It would be possible to calculate the theoretical
curves corresponding to J values obtained frbm models
other than those considered. However, consideration of
mére detailed models is not justified.by the present signal-

to-noise ratio.
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Figure (4.6)

A graph of the normalized rms discrepancy between experiment
and theory for a number of Sn117 resonance plots.

The parameter BJ was taken as 0.02. The normalization is
obtained by taking the peak-to-peak height of the experi-
mental resonances equal to 2. The dashed-line gives an
indication of the error to be expected if the smoothed
experimental cﬁrve differed everywhere from the calculated

spectra by an amount equal to a reading error of 0.25 mm.



NORMALIZED RM.S. DISCREPANCY ({arbitrary units)

1.5 20 2.5
NEAREST NEIGHBOUR COUPLING
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Figure (4.7)

117

Experimental Sn resonance obtained by making 1250 runs

over a period of 29 hrs. The sample was spun at 5 kHz and
the resonance frequency was 6 MHz. The frequency scale is
549 Hz/cm. The smooth curve is a theoretical fit with

Jl = 1.75 kXHz and BJ = 0.02.
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. Chapter 5. Discussion and Conclusion

In this thesis we have given details of the con-
struction of a high-speed gas turbine. This turbine was
capable of rotating nmr samples at the 'magic' angle
54°44" within a Varian crossed-coil probe at speeds in
excess of 5 kHz; Rotation at the magic angle at speeds
greater than the equivalent frequency spréad of the reso-
nance linewidth removes the effects of the anisotropic
Knight Shift, dipolar interactions and the pseudo-dipolar
part of the electron-coupled nuclear—-nuclear interactions.
Measurements of the narrowed resonances gave.accurate wvalues

of the room-temperature isotropic Knight shifts of the Sﬁ117

and Sn119

isotopes. In addition, the removal of the aniso—
tropic interactions enabled the pseudo-exchange coupling in
tin metal to be measured. The spectrum of the rotating
sample is determined by a '1iquid¥like' Hamiltonian, and
enables the use of technigues usually more appropriate to

bigh—resolution nmr to compute the lineshape of the Sn117

and Sn119

resonances. It was found that the lineshape

is partly determined by the effect of the finite life-

time of the nuclear spin-states caused by the spin-

lattice relaxation time in tin at room temperature. It
would be interesting to repeat the measurements and remove
the broadening effect of the short T, by spinning the sample

at temperatures near liquid nitrogen or lower. This could

be achieved by driving the turbine using cooled helium gas.
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However, it would not be possible, because of space limita-
tions inside the Varian probe, té convert the present system
to such an operation. Two turbine systems, capable of
operating at low temperatures, have been described in the
literature by Beams (1971) and Potter (1971). Potter's tur-
bine may even be propelled by ligquid Helium to give operation
at temperatures near 1.2°K, although with a limited speed
range. Both these turbines differ in construction from the
_turbine described in this thesis. The propelling and
supporting gas streams are separated from each other. This
offers the advantage that at high flow rates of the propelling
gas stream, the turbine does not shift its position, so that
the flutes and gas stream remain fixed with respect to each
other. This provides more effecient use of the propelling
gas stream and, if the turbine remains balanced,.higher
rotation rates. If construction of low temperature turbines
was attempted it would be advisable to prepare the sample
container as large as possible to obtain the maximum signal-
to-noise ratio. The problem of poor signal-to-noise ratio
was one that placed the major limitation on the accurate
determination of the pseudo—-exchange coupling in our
measurements.

The measurements of the Knight Shifts made when the
metallic tin resonance was narrowed by rotation indicated,

at first, that there was a significant difference in the

117 119

values for the Sn and Sn isotopes. However, a re—

determination of the ratio of the Sn117 and Sn119 magneto-
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gyric ratios removed this difference. Our measured value

of the ratio was

YllQ/Y117 = 1.046535 + 0.000003,

in contrast to previous values of 1.04639 (Lindgren, 1965)

and 1.04648 (Varian NMR Table, fifth edition, 1965) . The
resonance frequencies of the rotated tin samples were

measured relative to both an undoped LiCl solution and an undoped
,SnClz solution. Using the LiCl reference sample and the

ratio

/v = 1.0428555

N .
i’ (ric1)’ sa''?(snc1,)

quoted by Borsa and Barnes (1964) leads to values of the room-—

temperature isotropic Knight Shifts for Sn117 119

and Sn of
0.745 + 0.001% and 0.747 + 0.001% respectively. This is in
good agreement with the room—temperature value of
0.750 + 0.002% obhtained by Borsa and Barnes for the snt19
isotope. However, we have redetermined the ratio

v o4 /v 119 using undoped aqueous solutions of LiCl and
Li

Sn
SnCl2 and found the value

v /v = 1.04264 + 0.00003.
Li’ Sn119 -

which gives the Knight Shifts of N.724+0.003% and 0.726+2.003%
which are in closer agreement with the value of 0.7351+0.002%
obtained at room temperature by Sharma et al (1969).

Dr. Williams (private communication) has indicated that their

measurements were made with direct reference to a

5
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paramagnetically-doped aqueous solution of SnC12, without

correcting for the effects of paramagnetic susceptibility.

It appears from our measurements that the ratio of Li7

Sn119 resonance frequencies taken by Borsa and Barnes is

incorrect to about 2 parts in 104. Using our corrected

and

ratio the Knight Shift measurements of Boxrsa and Barnes
come in close agreement with both our measurements and those
of Sharma et al.

The synthesis of the theoretical lineshape, correspond-
ing to a *'liquid-like' Hamiltonian,by techniques of high
resolution nmr spectroscopy was made possible by the small

abundance of Sn117 and Snllg

. The analysis showed that distant
unlike nuclei had a significant effect on the resonance
lineshape. Taking a value of 0.02, a reasonable value of

the parameter BJ describing the effect of distant unlike
neighbours, we have found experimentally that the nearest-
neighbour pseudo—exchange coupling is -1.89 * 0.09 kHz.

This can be compared with the values of 2.5 kﬁz (Karimov and
Schegolev, 1961) and 2.0 * 0.5 kHz (McLachlan, 1968) obtained
using second moment techniques. The latter values are rather
high due possibly to the neglect of the faf neighbour inter-
actions. The broadening effect of these interactions means
that a smaller value of pseudo—exchange coupling is needed to
account for the width of the resonance line. Alloul and
Deltour (1969) obtained a value of -4.1 kﬁz using a pulse
method. This is of great interest as it should in principle

lead to measurements of greater accuracy than the second moment
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method. The technique in the pﬁlse method is to examine the
spin—echo envelopes of the tin nuclei in tin allovs. The
presence of the impurity atoms leads to a spatial distri-
bution of tin Knight Shifts related to fhe oscillation of
the dhafge density of the conduction electrons (Froidevaux
and Weger, 1964). The spatial distribution of Knight Shifts,
provided they are large enough, makes neighbouring nuclei
dissimilar, even-if they are the same tin isotope. The
coupling between unlike nuclei leads to a modulation of

- the spin—echo envelope. This was clearly shown in the en-

velopes obtained from Pt195

in platinum alloys (Froidevaux
and Weger, 1964). In contrast to platinum, tin has two
magnetically active isotopes, so that there should be a
small modulation in the spin—-echo envelope of pure tin metal.
There is some evidence of such a modulation in the data shown
by Alloul and Deltour (1969) though they do not draw attention
to it. The modulation amplitude in tin increases on the
addition of the impurity but, even so, the modulation is

not as dramatic as it is in the platinum alloys. This is
partly due to the difficulty in producing stable solid solu-
tions with sufficient impurity conceﬁtrations to provide a
large distribution of Knight Shifts. In platinum alléys

the spin-echo envelope modulation shows fine structure
(Froidevaux and Weger, 1964) but in the tin alloys the
modulation dies away so fast that only the fastest modula-
tion period will be seen. Alloul and Deltour have attributed

the tin modulation to nearest-neighbour interactions.
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Sharma et al. (1969) have suggested that it in fact arises
from a dominant second nearest-neighbour interaction. They
base this upon the presence of a flat region 6n the tin Fermi
surface in the [001l] direction which could lead to signifi-
cant deviations from the Ruderman -Kittel interaction (Roth,
Zeiger and Kaplan, 1966). We have shown in this thesis that
the assumption of a second nearest-—neighbour interaction far
stronger than the other interactions does not give good
agreement with the data obtained with the resonances from
the spinning tin samples. It is therefore necess-
ary to offer an explanation for the discrepancy of a factor
of 2 between Alloul and Deltour and ourselves.  Froidevaux
and Weger (1964) have shown that the modulation of the spin-
echo envelope is determined by

N

z A.r cosr(ZﬂJT),
r=0

E(2T)

where A is the probability of having r nearest neighbour
magnetic nuclei. The probability of having two magnetic
nearest neighbours is close to that of having one magnetic
nearest neighbour. In the case of two neighbours, the enve-
lope will have twice the modulation'éeriod than where there
is only one nearest neighbour. Because of the répid decay
of the modulation and the poor signal-to-noise ratio, it is
probable that only the faster modulation period was observed,
giving rise to a period determined by 2J rather than J.

This interpretation of Alloul and Deltour's data would

bring their value of J into closer agreement with ours.
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However, it must be pointed out that the analysis of Alloul
and Deltour's data is compliicated by the fact that in an
unspun sample it is necessary to consider the pseudo—-dipolar
and dipolar interactions. These have the effect of modify-
ing the frequency of the modulation. It is also interesting
to note that Froidevaux and Weger (1964) mention that their
results on platinum alloys gave results which were a factor
of two greater than those determined by steady-state measure-
ments. A second possible explanaﬁion of the discrepancy may
be offered if it is assumed that the modulation frequency has
" been correctly assigned by Alloul and Deltour. The frequency
is determined by both Ty the nearest neighbour scalar
coupling constant, and Bl’ the nearest neighbour ‘'dipolar
and pseudo-dipolar" couéiing constant. To determine these
quantities separately it is necessary to have an additional
relationship between them. Alloul and Detour calculated

that M2' the theoretical second-moment of the resonance line-

shape, is given by

2 2
M2 = 0.4OBl + 0.133Jl .

As we have previously mentioned, the experimental determination
of the second moment is rather difficult. Alloul and Deltour's
value of 2.5%0.3 (kHz)2 can bz compared with the wvalue |
1.2%0.2 (kHz)2 obtained by Karimov and Shchegolev (l96l).

Using the modulation period determined by Alloul and Deltour

and our value of Jl = -1.9 kHz we f£ind that Bl = -1.8 kHz.
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Phese values lead to a second moment of 1.8 (kHz)z, which is
between the two experimental values. Taking this value of
By, it follows that the pseudo-dipolar coubling between
nearest neighbours is -2.3 kHz. It must be pointed out that
the negative sign of Jq is inherent in the Ruderman—-Kittel
model and cannot be determined from the calculated spectrum.
Jf we take the positive sign for J,, then this leads to a
pseudo-dipolar coupling constant of 1.3 kHz.

It should be practical to repeat Alloul and Deltour's
measurements in alloys for cases where the contribution from
Bl has been remoyed by macroscopic rotation.o; by é multiple
pulse sequence. This would léad to a spin—echo evelope
determined by J; only and it would thereforé be hoped that
a more accuréte vélue of £he pseudo—exchange coupling would
be obtained. |

In conclusion, we suggest that it would prove useful
to attempt to obtain confirmation of the J values obtained
jin this thesis by applying the second moment technique to
the resonances of the spinning samples. It would, howevér,
be necessary to correct the lineshape for the broadening
effect of the Tl of the nuclei being observed. It is not’
necessary to remove the effect of T, on the neighbouring
nuclei, as this interaction produces relaxation narrowing,
which, in a similar fashion to the motional narrowing, leaves
the second moment unchanged. However, the narrowing will tend
to produce a lineshape that is somewhat Lorentzian, with the
associated difficulty in making accurate determination of the

second moment.



92

Appendix I: Calculation of the AA' part of the

AA'X spectrum.

The.rnq's satisfy the simultaneous'equations given
in table IV. The solution of the egquations is not diffi-
cult as the matrix A has a numbexr of special properties.

It is symmetric, and both the imaginary parts, and the only
guantity which varies at each point of tﬁe spectrum, lie

along the diagonal. The eguations for r may be written

. U
%o T Zog(vﬁ) _ (1)

4

- X = H

where A and P are given in table IV. The nuclear suscep-

tibility x(w) has the form

H.  x(w) =x . P YA . (2)

H, o x"(w) = -D . P YA . (3)

Splitting matrix A into real and imaginary parts we have

g
I
=

+ i

o]

(4)
so that D satisfies

-1

li

+
IQ
e
I

) D = B. (5)

It is necessary to solve for D for each value of w. This
is easy .siuce E is not a function of w and G is a

diagonalmatrix and can be expressed as
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(6)

0]

= (k - w)

Il

where I is the unit matrix

k= (0ggrty 0,503, 0581037,056109,) (7

and w = ol . ) (8)

For computational ease it is better to keep both A and A’
parts of the specfrum (which gives a symmetric solution)
rather than just the A line. This is Jjustified as it will
be necessary later to take account of the A' resonance.
To avoid including the A' nuclei twice, the relative weight
given to the AA' spectrum in determining the main spectrum
must be decreased by a factor of two over the
probability for finding an A nucleus at the centre position
given in table I, éolumn 3.

Experimentally, it is 3x"(w) /3w that is of
interest. It is then necessary to solve for 93D/3w which

satisfies the eguation

(e+cEtep=-(-eten. (9)

L
()]
o
9]
(o]
g
I

It is necessary, first, to solve equation (5) for D and then

substitute these values into equation (9).
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Appendix II: Proof that the antisymmetric part g+ of the
indirect nuclear spin-spin tensor in white

tin is zero.

To have a spectrum that is determined by the
'1iQuid—like' Hamiltonian, it is necessary that the anti-
symmetric part g+ of the electron-coupled nuclear spin-spin
interaction tensor be zero. Since the point group symmetry
for white tin is 42 2 m (Pearson, 1967), it is easy to show

T must be zero.

that J
Consider a general tensor T referred to the usual

crystallographic axes of tin. Applying 41 symmetry requires

that
T=1["Tn T12 0]
—T12 T22 0
| o 0 Tys)

whilst m symmetry further requires that

o )

L= |Tna
0 T, 0
[P 0 T33].

This implies that any second-rank tensor describing a

physical property of white tin must be symmetric and g+

must be zero.
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APPENDIX III :+ Program for calculating the theoretical lineshape.

LIST CURVE(1,50) s
CALCULATIOIN OF THE LORENTZ-LIKE LIKE-SHAPE UNDER COFEDITIOI’S OF

1 c
2 ¢ J COUPLING,RELAXATIOIi NARROWIIG AFD RRELAXATION BROADEHNILG
3 ¢ THE PROGRAI WILL ACCOMADATE BOTH THE CALCULATIOR OF ¥HE REAL AND
L C ITiMAGINARY PARY¥S OF THE NUCLEAR SUSCEPIIBILITY
5 C THE LINESHAPES ARFE GENERATED IF THE DERIVATIVE FORMN
'8 C OCil!LY ONF HALF OF THE LIFE-SHAPE IS GENFERATED AS THE RESOFANCE
7 ¢ IS SYKKEETRIC
e c
9 C THE PROGRAIi TAXES INY0 ACCOURT THE 10 KEAREST NEIGHBOUR
10 ¢ LATTICE SITES IN TIW THESE SITES ARE SPLIT ILT0O THREE SHELLS
11 C OF 4,2 AND 4 SITES RESPECTIVELY
12 C TIHE PROGRAIN CENERATES SPECTRA TAKING IFETO ACCOUET UP TO TIC
13 C OYHER ACTIVE HUCLKEI IFN THE OUYER SIHELLS
14 c »
15 - COMPLEX CB
16 DIMENSIOR CB(1600),CK(1600)
17 DIMENSICY G(18),GG(12),X(106)
18 c
19 C NUMBER OF THFEORETICAL CURVES 70 BE CALCULATED IS FRUK
20 ¢ HNUMBER CF POINTS O THFCRRTICAL CURVFE IS HNUK
21 c
22 READ(S ,904)NRUN T UM
23 S04 FPORMAT(2I2)
2y PI=3.141593
25 NUKL1=UL!
26 NUM2=NUK%*19
27 DO 950 FKF=1,l/RUN
28 c
2¢ C VALUE OF FIRST NEAREST NEIQHBOUR J-COUPLIIIG IS5 ASSUMNED TO BE RJ HZ
30 c
31 READ(5,802)RJ
32 902 FORIKAT(TF10.14)
33 : SJI= 2%PI*RJ
3 c ,
35 C IF CALCULATIOI IS ©0 BFE PERFORKED OF TFE BASIS OF SECCHND KEARESY
36 C HEIGEBOUR INTERACTICIS OHLY SET i#2=2 FOR IDENTIFICATICI
37 ¢ OTHERWISE SRBT 12=0
38 c
39 RFEAD(5,80u)N2
Lo c
ui ¢ IHNTERVAL BETWKKEN THEORETICAL FOIL'TS IS SET AS PP EHZ
u2 c :
43 READ(S5 ,502)FPP .
Ly P@=2%*PI*PP
us DO 1 I=1,8Uld
40 1 X(IL)=(I-1)%1@
u7 (5 .
ug C SPIR-LATWICE RELAXATION TIME IS T1 SECS
: (1] C
! 50 READ(5,902)7'1

'END OF FILE
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JIST CURVE(51,92)

51 ¥=0.5/T1

52 c

53 ¢ WNJ MAY BE USED ON TWHO COURTS _

54 C THE FIRST IS 70 ACCOUNT FOR TEE DIFFERENCES IN THE SPIN-LAYTICE
5E C RELAXATIOF TIKES BETWEFEHN THE TWO ISOTOPES

56 C AND SECOKD TO TAKE ACCOUNT OF TEE EFFECT OF LIKE HUCLEI IF THE
57 C CONTINIUL

58 c

59 C EXTRA BROADENINWNG FACTOR B=BJ*2+PIxPI*J1*J1/W 10 TAKE ACCOUNT OF THE
60 ¢ UHLIKE WEIGRBOURS Il TEE COLDINIULS

61 c

62 READ(5,902) ¥ ,BJ

63 Sl =% (1+HJ)

6L Wi=Wi1%xii

65 c .

66 C READ Il ASSUMED RATIOS OF 7TIE RUDERIFAN -KIYTEL J VALUES

67 ¢ THE RATIOS FCR IRTERACTICNS BRETWEEN UI’LIRKE NUCLEI ARE FED I¥ VIA G
68 C RATIOS FOR UELIKE NUCLFEI VIA GG GG(1) T0 ¢G(u) ARE ZERC
69 c

70 READ(5,9802)(G(I),I=1,19)

71 READ(5,962)(GG(T),I=1,19)

72 c _

73 C CALCULATICH OF AX SPECTRUL AND A SPECTRU

74 c

75 CALL AX(i/ WA ,BJ ,8JI ,CB,NUI ,NUM1 ,¥VF,C,X)

76 c

77 C CALCULATIOI] OF THE X PARY OF THE AA'X SPECTRUM

78 c

79 CALL XAAX(E ,571 ,Bd JHJ ,5JI ,CB JUM,FUIL ,FI/,G,CC,X

80 c

81 C CALCULATION OF THE A A' PART OF THE AA‘'X SPECTRUY

82 c

83 CALL AAAX(W .51 ,BJ ,SIIL,CB HUH JFUML W 3G ,CG,X ,FJ)

8u 962 DO 8su JJ=1,NUl2

85 asy CK(JJTI=AIIIAG(CB(JIJI))

86 c .

87 C TEIS IS 76 READ OUT THE CALCULATED SPECTRA WITH IDERTIFIIG PARAMETERS
88 c

89 CALL DUMP(RJ J12,PP 21 ,HJ ,BJ ,CK ,NUI)

80 950 COFTIRUE

91 sTOoP

g2 END

'ND OF FILE
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LIS?” CURVE(S3,111)

93 SUBROUTIKE AX(W ,F1,BJ ,SIIT,CB FUMN ,FUHL W ,G,X)
oy COMPLEX CB,U12,U34
g5 DINENSION CB(1600),G(19),X(100)
96 Q=2% i+ Wi1+BRJI*xSJI*S5JI*0.5/¥F
97 DO 20 J=1,u ‘
g8 GI=G(J)*SJT
99 IF(J.EQ.1)GC 70O 25
100 IF(G(J).FQ@.0.)GO TO 22
101 25 DO 2i JJ=1,HU¥1
102 U12=-Q-X(JJ)*(0.,1.)
103 U3L=(U12+4+GT%(0.,1.)/2)*(U12-GIJ*(0.,1.)/2)-W¥W
104 CB(TTH+(T-1)*HUH)=ux(1-2%x(UL2~K)*xU12/U34)*10000/U34
105 21 COETIRUE
106 GO 70 20
107 22 DO 23 JJ=1,dUu1
108 23 CR(JIT+(J-1)*HU#)=(0.,0.)
109 20 COJTINUE
110 RETURH
111 . END

END OF FILE

LISf CURVE(112,139) ’
112 SUBROUTINF XAAX(VW ,W1,Bd ,Wd ,SJI, CB BUMHUML WV ,G,GG,X)

113 COMPLEX BX,CB,Uus ,U36,Ui2,U78,DEN E.rOP
114 PIMENSIOi 03(1600),G(19),GG(19)-X(100)
115 DO 40 J=5,10

116 GI=G(J)

117 GGI=GG(J)

118 IF(GJ.EQ.0..AlD.GGJ .E'Q.0. GO fo 21

119 DO ui JJ=1,i/UkL )
120 X1=SJI*(GIJ+GGT) /2

121 X2=8SJI*(GJ~-GGJ)/2

122 Q 2%k +2% W1 +BI *SJI*3TJIT*0.5/VW

123 K=-@-(0.,1.)*xX(JJ)

124 UHS (C.,1.)*X1+BK

125 U36=(0.,-1.)*X1+BK

126 U12=(0.,1.)*xX2+3X

127 U78=(0.,-1.)*X2+BK

128 DEF=U12%U36%xULS* 78 ~-U4*/i/*BK*EK

129 POP=L4*F1*xBK-Uu5%U36-U12*U78

130 E=-(2xTCP+8*BH*(W1-BK)- 2*an’OB*(2*7F*(012*b78+b45*03c) 8%, *BK)
131 C/DEN) /DER

132 CB(JJT+(J~-1)* Uit)=E%*10C00

133 u1 CONTIHUE

134 GO 70 &0

135 21 DO 23 JJ=1,KUiil

13€ 23 CB(ITT+(J-1)*EUIT) = (0.,0 )

137 40 CORTIRUE

138 RETUEN

138 END

TND OF FILE
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LIST CURVE(140,189)

140 SUBROUYLIFF AAAZ(H,Ui,BJ,SJI,CB,HUH,EUHl,WW,G,GG,Z,WJ)
141 COEPLEX CR

142 DIEEHSION CB(1600),G(19),GG(19),A(8,8),AI(8,8),TA(8,8),TC(8,8),
143 CTB(S,S),TZ(8,8),TZZ(B,S),SX(iOO),X(iOO)

iy DILENSICH FF(8),.FE(8),DD(8),pPDD(8)

145 DO S0 J=11,19

146 GCI=CG(JT ) *SJL

147 CI=SQRT(G(I)*G(JI*STI*SJI) .

148 IF(CI.EQ.0..AFD.GCJ .EQ.0.)CGC TO 21

149 D=0.5%(3GRT(0.25*%GCI*CCIT+GI *GJ))

150 912 SPP=0.5*GJ*F1/D

151 SHlII=8PP

152 CP1i=SPP

153 CPP=0.25*GGJ /D

i54 ‘CHMid=~-CPP

155 SPli=~-CPP* 1

156 CH=8QRT(0.5+Ciii/2)

157 SH=SQRT(0.5-Cif/2)

158 . CP=5SQR7(0.5+CPP/2)

159 SP=SGR7(C.5-CPP/2) )
160 W@eP=2%l +3% 1 /2+F1=CPP*CPP/2+BI*SJI*SEJI*0.5/W
161 CPP=CPP*¥W1

162 Cliii=-CDPP

163 DO 71 L=1,8

i64 DO 70 If=1,8

165 AIT(L ,)=0.

166 ACL ,})=0.

167 IF(L.EQ.¥) GO PC ©9

168 GO 70 70

169 69 AI(L,H)=1.

170 ACL ,#)=-1QP

171 70 COiTIFUE

172 71 CONTINUE

173 83 A(1,2)=CPL

174 A(1,3)=Crid

175 A(1,6)=SPii

176 AQ1,7)=-SLiii ,
177 A(2,4)=CPP

178 A(2,5)=~-SPi!

178 A(2,8)=-SPP

180 A(3,4)=CPi!

i81 , A(3,5)=8Fii

182 A(3,8)=-5PH

183 A(L4 ,5)=5FP

184 ACL,7)=5Pi

185 A(S5 ,6) =Cl

1€6 A(5,7)=Ciit

187 ACE,8)=CPP

188 A(7,8)=CPEK

189 82 COHTINUE

EWD OF FILE
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LIST CURVE(180,239)

190 DO 74 L=1,8

191 DO 73 KE=1i,L

192 TACL ,I)=A(CL M)

193 TA(H,LY=ACL ,i7)

194 73 ACH,L)=A(L &)

195 74 COETINUE

196 FF(1)=-0.25*%(2*%GJ+GCGJ)-D

197 FF(2)=FF(1)+0.5*GGd

198 FF(3)=FF(1)+GJd

199 FFP(u4)=FF(2)+GJ

200 FF(5)=FF(1)+2%D

201 FF(6)=FF(2)+2*D

202 FF(7)=FF(3)+2*D

203 FF(8)=Fr(u)+2*D

204 . EE(1)=8ii-Cii :

205 EE(2)=8P-CP

206 EE(3)=-(Ci+5!)

207 EE(u4)=-(CP+5P)

20¢& ZE(5)=FFE(3)

208 EEB(6)=EZ(nh)

210 EE(7)=EE(1)

211 EE(8)=EE(2)

212 c

213 ¢ CALCULATIOF OF THE [JORMAL RESOHARCE CURVE
214 c

215 c

216 C CELGC IS A SUBRCUTINE FROI! THE FCRTRAN SCIENTIFIC SUBROUYLIIE PACKAGE
217 c

218 CALL GELG(AI,TA,8,8,1.E-6,IER)

219 Do 76 L[=1,8

220 DO 75 #1=1,8

221 TBCL i) =A(L )Y +FF(L)»FF(M)*AT (L ,If)

222 75 - TCCL 2 =AI(L 2)*(FF(L)+FF(FK))

223 76 COHTINUE

224 DO 80 JJ=1,0UML

225 XXTT=X(IJ)

226 DO 79 L=1,8

227 DD(L)=FEE(L)*10000

228 DO 78 IM=1,8

229 PZCL M) =TB(L J1) ~XXTT*TC(L M) +XXT T xX XTI *AT(L ,E)
230 78 PZZCL ,#)=TZ(L ,If)

231 7¢ CONYIIIUR

232 CALL CELG(DD,TZ,8,1,1.5-7,IFR)

233 ° PO 196 L=1,8

234 DDD(L)=0.

235 DO 195 i’=1,8

236 195 DDDCL)=DDD(L)-(2*XXJT*AI(L ,;)-TC(L ,i7) )*DD(¥&)
237 126 CORTINUE

238 c

23¢9 C CALCULATION GF WHE DERIVATIVE RFSCHANCE CURVE

.ZED OF FILE



JIST CURVE(240,251)

240
241
242
243
244
245
246
247
248
249
250
251

HD OF FILE

(4

30
80

21

90

CALL GELG(DDD,TZZ,8,1,1.E-6,IER)

100

sx( JJ)= 1x(DDD(1)*EL(1)+DDD(2)*EE(2)+DDD(3)*FE(3)+DDD(4)*EE(4
C)+DDD(5)*EE(S5)+DDD(6)*EE(E)+DDD(7)*EE(7)+DDD(L)Y*EE(8))

CB(IJT+(JT-1)*HUii)=(0. ,1.)*xSX(JJ)
COITIKUFE

GO 70O 90

DO 23 JJ=1,0UrM1
CB(J.J'I‘(J"l)*Iu’UITi’)'—'(O. ,0.)
CONTIHUE

RETURH

EAD

;1IST CURVE(252,265)

252
253
254
255
256
257
258
259
260
2¢1
262
263
284
265

902
o904
sio

WD CF FILE -

SUBROUTIFE DUNP(RJ J2,PP,T1,WJ ,BJ ,CK JIUK)
DIMEIISTON CK(1600)

WRITE(6,3902)RJ

WRITE(6,904)N2

WRITE(6,302)PP

WRITE(6,910)T1

FWRITE(G6 ,S02)¥WJ ,Bd

RUM2=FUi**19 <
WVRITE(6,910)(CK(JJ) ,JI=1,FUI2)
FOREMAT(7F10.4) )

FORIMAT(2I3)

FORMAT(7E10.4)

RETURN

END
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Appendix IV : Correction for saturation and modulation effects.

Modulation and saturational broadening differ in
their effect on the resonance line—shape. The saturation
broadening, which is produced by the action of the rf field
on the population distribution of the nuclear spin-states,
directly affects the sample whilst the modulation broadening
is totally instrumental. We therefore correct the theoretical
resonances to allow for the saturation effects and then moau—
" lation broaden the resulting line-shape.

The nuclear absorption x", in the presence of a
linear polarized rf field 2Hl and frequency v, is determined

by (Bloembergen, Purcell and Pound (BPP), 1948)

2.2

X" (v,H)) = x"(v,0) [1 + y?HIT g (v) /2171

(1)

where x" (v,0) is the unsaturated susceptibility, determined
by a normalized lineshape function g(v). The BPP theory is
known to be incorrect for solids where the spin-lattice inter-
actions are much weaker than the spin-spin interactions
(Redfield, 1955). This is not the case in metallic tin,

and, in this case,the saturated derivative lineshape f

(v),

aX" (v, H;) sat
proportional to —5v— —’ is given by
£ _.(v) = Ag' (V) [L + pHZ g(v)/g(v__ )12 (2)
sat 1 . max
where A is the gain of the system, o is YzTig(vmax)/z and
v is the frequency of one of the extrema of g'(v) provided

max

W the frequency of the magnetic field modulation, satisfies
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mel << 1. We may therefore use the calculated derivative

lineshape f£(v) to determine the theoretical 'saturated’

lineshape
v

5 V ) max
£ = £V [1 + pHY éf(v )dv {g

£(vyav' 1172, (3)

The proportionality constant p must be determined from

experiment. From equation (2) we have that

Cna Joxp = T Opax) loxp [T + PHIT 2

[fsat max’ “exp max’ “e

(4

so that a plot of the peak-to-peak intensity of the derivative
line as a function of Hi gives pexp' Allowance must be made
for the intrinsic increase in the signal intensity with H,.
In the experiment oﬁ tiq,PHi was 0.045, implying that the
correction to the lineshape was small.

The technique used to calculate the modulation broad-
ening is that given by Flynn and Seymour (1960). The modula-

tion peak-to-peak amplitude is taken as 2a (in frequency units),

so that
v+a
= 2 _ _uyry241/2 ' '
fsat(v) = Ni_a(a (v=v*)“) fsat(v )av (5)

where N is a normalization constant.
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