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ABSTRACT

L We propose the "artificial regression model" as an alternative conditional mean
specification for asset returns. Our objectives are two-fold. First, we analytically
demonstrate the benefit of this nonlinear specification in mitigating heteroskedasticity by
incorporating return sign predictability. In the limit, perfect prediction of a return’s sign
is shown to completely eliminate heteroskedasticity. Second, we show how this model
provides closed-form solutions for the traditional GARCH parameters and thus provides
a simpler estimation approach for the popular class of GARCH models.

The major advantage of the artificial regression specification is that it generalizes
to a multivariate approach in a natural way and enables large systems to be estimated
with ease. Furthermore, this model is a flexible specification and can handle long decay
structures that the traditional GARCH model cannot.

In the Monte Carlo analysis, we find that the artificial regression model is
comparable to the popular approach in generating GARCH estimates. In the empirical
analysis we test the impact of market direction in reducing heteroskedasticity. The
results indicate that a richer information set and precision of the sign component help the
mean and reduce the volatility. We also find that the proposed model is sensitive to

misspecification of the underlying volatility process.

I We examine the inter-day dynamic linkages among stock returns, return volatility
and trading activity (hereafter volume) in the Canadian market in a multivariate
framework and investigate the ability of volume to account for the persistence in stock-

return volatility. We report a threshold-type nonlinearity in both returns and volume and



document significant linear and nonlinear causality from stock returns and return
volatility to volume. A surprising result is that volume is heteroskedastic. We also show
that the U.S. stock returns serve as an effective public information measure for the
Canadian market.

The multivariate analysis reveals that the economic significance of volume as an
information flow measure is questionable. Volatility itself would be a more appropriate
information flow measure. We find overwhelming evidence supporting the sequential
information flow and the positive feedback trading hypotheses. We also document the

inability of volume to explain the persistence in return volatility.
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CHAPTER1

INTRODUCTION

This thesis presents two papers representing research on asset pricing and capital
markets. The unifying theme of the thesis is the nonlinearity of asset returns and its
implications for theoretical and empirical asset pricing. From a specification point of
view, the results of this research must be viewed as supportive of the premise that asset
returns depend on the sample information as a nonlinear function of the variables in the
information set.

In the second chapter, The Estimation and Econometric Specifications of Asset
Return Moments, we propose the "artificial regression model" as an alternative nonlinear
conditional mean specification, for asset returns. This chapter was motivated first, by the
estimation problems encountered in the existing class of nonlinear models, specifically
the Generalized Autoregressive Conditional Heteroskedastic (GARCH) class of models,
in a multivariate setting and second, by the potential significance of return sign
predictability on the heteroskedasticity of asset returns. The central idea underlying this
model is the error decomposition into magnitude and sign components resulting in a
threshold model in the mean. The uniqueness of this paper is that we then proceed to
show the benefit of this nonlinear specification in mitigating heteroskedasticity in the
residuals by incorporating return sign predictability. In the limit, perfect prediction of a
return’s sign is shown to completely eliminate heteroskedasticity. In addition, we show
how this model provides closed-form solutions for the GARCH parameters and thus

provides a simpler estimation approach for the popular class of GARCH models. The



Monte Carlo studies and empirical data analysis lend support to the proposed model. The
major advantage of the artificial regression specification is that it generalizes easily to a
multivariate approach and enables large systems to be estimated with ease. Furthermore,
this model is a flexible specification and can handle long decay structures that the
traditional GARCH model cannot.

In the third chapter, The Informational Role of Volume in Financial Markets:
An Empirical Study of the Canadian Stock Market, we examine the inter-day dynamic
linkages among stock returns, return volatility and trading activity in the Canadian
market in a multivariate framework and investigate the ability of volume to account for
the persistence in stock-return volatility. This study was motivated by the conflicting
findings regarding the informational role of various trading variables. The primary
contribution of our study is that we use a different estimation and inference approach,
various trading activity measures, and a new data set, the Canadian market aggregates.
We report a threshold-type nonlinearity in both returns and volume. We also find that
volume is heteroskedastic. In addition, we also show that the U.S. stock returns serve as
an effective public information measure for the Canadian market. The multivariate
analysis reveals that the role of volume as an information flow measure is questionable.
We find strong support for the sequential information flow and the positive feedback
trading hypotheses. We also document the inability of volume to explain the persistence
in return volatility. This finding suggests that the artificial regression model proposed in
the preceding chapter could be a candidate model for investigating the inter-day

dynamics for the Canadian markets. Chapter 4 concludes the thesis.



CHAPTER 2
THE ESTIMATION AND ECONOMETRIC SPECIFICATIONS
OF ASSET RETURN MOMENTS
2.1. INTRODUCTION

Recent empirical research in financial markets has increasingly focused on the
econometric modeling of temporal variations in higher moments, more specifically the
conditional variance.! In particular, the Autoregressive Conditional Heteroskedastic
(ARCH) family of models introduced by Engle (1982) is a popular specification for
capturing volatility dependence. This approach has its merits since efficient econometric
estimation of the conditional mean requires the correct specification of the conditional
variance.” However in a multivariate setting, this class of models necessitates imposition
of various constraints and is oftentimes computationally difficult to estimate. More
specifically, the existing approaches for estimating Generalized ARCH
(GARCH, Bollerslev 1986) systems include the maximum likelihood (ML) and the
generalized method of moments (GMM), which use a numerical search procedure and
often do not converge.

In this chapter, the “artificial regression model” is proposed as an alternative
nonlinear conditional mean specification for asset returns. Our objectives are two-fold.

First, we analytically demonstrate the benefit of this nonlinear specification in mitigating

! See Bollerslev, Chou, and Kroner (1992) for an extensive survey of models on temporal variation in
financial market volatility.

* Heteroskedasticity of security returns reduces the efficiency of empirical tests in which homoskedasticity
is assumed. Pagan and Sabau (1987) show that an incorrect functional form of the ARCH process for
errors of a regression model can result in inconsistent maximum likelihood estimators of the regression
parameters. Stambaugh (1993) finds that conditional heteroskedasticity can produce large increases in the
asymptotic variances of sample autocorrelations.



heteroskedasticity by incorporating return sign predictability. Second, we provide a
simpler alternative estimation approach for the popular class of GARCH models. The
intuition underlying the model is that increasing the precision of information should
shrink volatility and lessen heteroskedasticity in the error structure that is caused by
misspecifying the nonlinear conditional mean. Our formulation begins with an error
decomposition into magnitude and sign components as in Granger and Ding (1996). The
resultant model is a threshold model in the mean, which incorporates an indicator variable
reflecting market direction. Conditional volatility is lessened on average through time as
the precision of the prediction of the sign component increases. With perfect sign
prediction, the error in the conditional mean is homoskedastic.

The major advantage of the “artificial regression” specification is that it simplifies
the estimation procedure and enables large systems to be estimated with ease,
circumventing the problem of non-convergence associated with numerical searches.
Furthermore, this model is a flexible specification and can handle long decay structures
that the traditional GARCH model cannot.’ In addition, the artificial regression model
has the advantage that any restriction including GARCH (1,1) can be imposed directly on
the regression coefficients. Finally, estimation can be done by OLS, which should
perform better in terms of convergence than ML and GMM in large systems.

The remainder of the paper is organized as follows. Section 2.2 describes the

motivation and background material for the proposed model. Section 2.3 presents the

? Granger and Ding (1996) have found long memory temporal properties in absolute returns in many
different speculative markets suggesting that shocks to the conditional variance die out at a slow hyperbolic
rate of decay. In contrast, in traditional GARCH models, shocks die out at an exponential rate.



model development. Section 2.4 presents a Monte Carlo application. The practical
importance of the model is explored in section 2.5, where we report the results of
empirical applications to daily and monthly U.S. and Canadian stock index returns.

Section 2.6 concludes.

2.2. MOTIVATION AND BACKGROUND MATERIAL

2.2.1. Motivation for Model

Despite the fact that predictability of conditional variance is not exploitable for
point prediction of returns, GARCH models have aroused considerable interest as they
capture many empirical regularities of financial data returns such as nonlinear
dependence, leptokurtosis, skewness, and volatility clustering.* The appeal of GARCH
lies in the intuition that big surprises of either sign increase market uncertainty and
therefore will be more likely to be followed by big surprises. These models permit
nonlinear relationships in the second moments wherein forecasts of future volatility are
made, but not the direction of price changes. The most general GARCH model assumes
that the econometrician’s information set consists of exogenous and lagged endogenous
variables, being conditional economic variables and past innovations to the excess return.

In these models, both conditional mean and variances jointly evolve over time. The brief

* Nonlinear models in the conditional mean include the threshold autoregressive model (TAR, Tong, 1990)
and the bilinear process of Weiss (1986) and are forecastable. The TAR model has a functional form
which may be regarded as a piecewise-linear approximation to a general nonlinear first order model. The
bilinear terms include cross-product terms of the instrument variables and lags of error terms and thus
affect the conditional mean. Bera and Higgins (1997) have shown the poor predictive ability of bilinear
models.



review of the literature that follows is indicative of this area of research and is not an
attempt at a complete review of all related research.’

Many variants of the GARCH model have been proposed. An important class of
models is the ARCH-M specification as in Engle, Lilien and Robins (1987), which
models a process with feedback from the conditional variance to the conditional mean.
Risk premia are not time invariant but vary with the agent's perception of underlying
uncertainty. Nelson’s (1991) exponential GARCH (EGARCH) and Glosten, Jagannathan
and Runkle’s (1993) GARCH (GJR) improved on the GARCH formulation as their
models captured the leverage effect in asset returns.” Hentschel (1995) develops a
parametric family of GARCH models nesting the most popular symmetric and
asymmetric GARCH models. He also provides evidence that the two types of
asymmetry, shift and rotation of the news impact curve are distinct. According to
Hentschel (1995), the shift is the dominant source of asymmetry for small shocks, while
the rotation is more important for large shocks and when combined in one news impact
curve, they can either reinforce or offset each other. Recent models include Bollerslev
and Mikkelson’s (1996) fractionally integrated GARCH model, which accommodates
slow decay and Dueker’s (1994) specification, where a compound GARCH/Markov
switching process captures the mean reversion aspect of volatility.

The estimation of the various GARCH models can be problematic and some

5 Bollerslev, Chou, and Kroner (1992) provide an extensive but dated survey of the applications of this

methodology.

¢ Leverage effect refers to the asymmetric response of stock return volatility to positive and negative return
shocks i.e. stock return volatility tends to be negatively correlated with past returns, possibly due to the
increased leverage following a fall in the stock price. The leverage effect in stock returns has been
documented among others by Black (1976), Christie (1982), and Schwert (1989).



estimation issues relating to these models still remain unresolved. These models could be
estimated by feasible generalized least squares (FGLS), one-step efficient estimation
(Engle 1982), and maximum likelihood. The popular approach for estimating GARCH
models is the latter approach i.e. by maximizing the conditional likelihood function. To
obtain second order efficiency, an iterative procedure such as the Berndt, Hall, Hall, and
Hausman (1974) (BHHH) algorithm can be used. Common distributional assumptions
for the estimation of these models are the Gaussian or the t-distribution. However,
French, Schwert and Stambaugh (1987) and Singleton and Wingender (1986) among
others have documented violations of these distributional assumptions. Baillie and
Bollerslev (1992) report that higher order deviations from conditional normality are
important under high volatility scenarios. In order to overcome the distributional
assumption problem, Bollerslev and Woolridge (1988) have shown that quasi-maximum
likelihood estimation (QMLE) is consistent but not efficient. But, Engle and Gonzalez-
Rivera (1991) show that in QMLE the loss of efficiency, due to misspecification of the
density, could be as high as 84 per cent. They provide a semi-parametric approach that
improves on QMLE, but the approach is still not efficient.

Going beyond estimation problems, Lamoureux and Lastrapes (1990) find that
GARCH models, which do not allow for structural changes, will pick up high persistence
due to misspecification. They have shown that occasional discrete shifts in the mean
level of volatility cause substantial upward bias in the estimation of volatility persistence.

In terms of predictive power, ARCH models despite imputing high persistence to
stock volatility, give poor forecasts. West and Cho (1995), report that for a one-week

horizon, GARCH models tend to make slightly more accurate forecasts for weekly



exchange rates, but for longer horizons, do no better than naive or ARMA models. Kim
and Kon (1994) find that among the inter-temporal dependent models, the Glosten,
Jagannathan and Runkle (1993) specification is the most descriptive for individual daily
stock returns while Nelson’s (1990) EGARCH is most appropriate for indexes. Pagan
and Schwert (1990) looking at monthly stock returns find that non-parametric estimation
procedures tend to give better in-sample explanations of the squared returns than any of
the parametric models, but fared worse in out-of-sample predictions. They report the
parametric methods use the persistent, smoother aspects of conditional volatility, while
the nonparametric methods use a highly nonlinear response to large shocks.

Finally, in a univariate setting, we have a plethora of models but the
computational complexities of GARCH have constrained their extension to a multivariate
setting. However, asset-pricing models, asset-allocation models, and hedging strategies
require multivariate generalizations of the GARCH model. While empirical work on
asset pricing considers large numbers of assets and instruments, the existing GARCH
models frequently use fewer asset-return series and simple specifications.” Furthermore,
restrictions are imposed in order to reduce the number of estimated parameters. Often,
such restricted multivariate GARCH models with the simplest specifications do not
converge when estimated with ML or GMM.

Given the popularity of the GARCH functional form in modeling conditional
volatility and keeping in mind its limitations, we ask two questions in the paper. First, is

it possible to find a conditional mean specification that reduces heteroskedasticity in the

7 See Bollerslev, Engle and Woolridge (1988), Engle, Ng, and Rothschild (1990), and Turtle, Buse and
Korkie (1994) for multivariate generalizations of the GARCH model in an asset-pricing context.



error term?® Second, is there a simpler estimation approach for the popular GARCH
specification? Compared to the typical GARCH specification, our proposed “artificial
regression” model is motivated by the following considerations: rationality in conditional
moments, flexibility in the specification and ease of estimation. Our method is not
subject to the lack of convergence problem because it provides an analytical solution for
the GARCH estimates. Before moving on to the specifics of the GARCH (1,1) model,
we provide an analytical proof for a proposition regarding the equivalence of various time

series specifications of asset conditional moments.

2.2.2, The Equivalence of Econometric Specifications of Asset Conditional Moments
According to Engle (1982), serial dependence in higher moments may be the
result of misspecification in the conditional mean caused by omitted variables. Consider
this simple example from Mills (1993). Suppose that the true process is a bilinear model
that is nonlinear in the conditional mean and is given by
Ip =Bife—Ue—1 +U¢s 2.2.1)

where,

E(u,)=0, E(u? )=02 and cov(u,u.)=0k>0. (.2.2)
Suppose this model is mistaken for the linear model,

r, =1, (2.2.3)

¥ Previous work on nonlinear models in the conditional mean include the nonlinear moving average model
of Robinson (1977), the bilicear model of Weiss (1986), the asymmetric moving average model of Wecker
(1981) and the threshold autoregressive model of Tong (1990). Weiss (1986) notes that ignoring the
bilinearity in the conditional mean can lead to residuals that appear to have ARCH errors even though they
may not be autocorrelated; he proposes a specification which combines bilinearity and ARCH.
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Substituting from equation (2.2.3) in (2.2.1), we get

Uy =Byl juey +u, (2:2.4)
Then, squaring (2.2.4) and taking expectations, it follows that

E(@? |- Te_psm) =02 +BPo2T2 (2.2.5)
This suggests that U, is ARCH (1) as the expectation implies that the squares of the

residuals are autocorrelated. In general, equation (2.2.5) is similar to Engle's (1982)

ARCH (1) test wherein residuals are regressed on the intercept and a lag of squared

residuals with the appropriate test statistic T.R?,being distributed as a xz 1. T
represents the number of terms in the series being analyzed and R? is the squared multiple
correlation coefficient between the squared residuals and the lagged squared residuals.
Note that for a normally distributed error term, the squares of the residuals will not be
autocorrelated. Thus, assuming a linear mean specification when the mean is nonlinear
may indicate ARCH even though the true model is homoskedastic. We next present the
specific propositions.

Our purpose in this section is to show that a specification that requires the first
and second moments to be specified, can be closely approximated by one where only the
first moment is specified. Such a specification would have appealing economic and
statistical properties. Furthermore in a multivariate setting, this would provide a
parsimonious framework, consistent with rational expectations and current financial

theory.
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Proposition la:

A specification with a constant conditional mean and time varying conditional variance
is approximately equivalent to one with a time varying conditional mean and a constant
variance.

Proof: See Appendix I

Proposition 1b

A specification with a time varying conditional mean and a constant variance is
approximately equivalent to one with a constant conditional mean and time varying
conditional variance.

Proof: See Appendix I

In Appendix I, we show analytically that, without distributional assumptions for
disturbances, it is not possible to distinguish between models with time varying
conditional means and time varying conditional variances and models with only time
varying conditional means or only time varying conditional variances.

Our motivation is in the spirit of Granger’s (1991) argument of treating
nonlinearity in the conditional mean on an equal footing with nonlinearity in the
conditional variance. We provide weak proofs for approximate equivalence of functional
moments using second-order Taylor series approximations. This equivalence appears
consistent with empirical evidence favoring the existence of either additive [nonlinear
moving average model (Robinson, 1977), asymmetric moving average model (Wecker,
1981), and the threshold autoregressive model (Tong, 1990)] or multiplicative nonlinear

models (ARCH family) or a combination of both (Weiss, 1986).
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In the proofs in Appendix I, only the weakest rationality conditions are imposed on the
conditional means and variances, so that forecasts of either variable contain no systematic
errors.’ Any further extensions, such as comparisons of the magnitude of the coefficients
require specifying the error structure and the information instruments. Next, we focus on
a popular specification in section 2.2.3, where we introduce the artificial regression

model.

2.2.3. Introduction to Artificial Regression
We propose an artificial regression model, also called the Gauss-Newton
regression (GNR), as an alternative to a GARCH (1,1) specification. In this model, the
regressors and regressands are constructed in a linear regression to calculate one-step
efficient estimates of the parameters in an asset’s conditional first moment specification.
Our brief review of the artificial regression model is based on the discussions in

Davidson and MacKinnon (1993). Consider the univariate nonlinear regression model
ye =xB)+u;, u ~IDO,6%D (2.2.6)
Taking a first-order Taylor series approximation of (2.2.6) around some parameter
[3‘ yields,
e =x(B") +X(B")B-B") + higher order terms +u, 2.2.7)

where X(B) is a matrix with the i" element being the derivative of x(B) with respect to B;.

Equation (2.2.7) can also be written as

e =x¢(B") = X(B")b + residuals 2.2.8)

% See Korkie and Turtle (1996) for the rationality conditions in a GMM framework.
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where (8 —[3‘) is replaced by a vector b. Equation (2.2.8) is the GNR in its popular form

and if B’ is the initial estimate from (2.2.6) and b’ the estimate from the regression
(2.2.8), then the one-step efficient estimator of B is B =PB'+b’. Note that if [3' =[*, the

GNR will not have any explanatory power. When B' is close to B‘ and the sample is large
enough, B should be close to the NLS estimator. Davidson and MacKinnon (1993) show

that the one-step efficient estimator, B is asymptotically equivalent to the nonlinear least
squares (NLS) estimator. However, the authors caution that the finite sample properties
for the two approaches are similar only if the sample size is large and the initial estimator

is good. Using this approach, we now present the formal development of our model.

2.3 THE PROPOSED ‘ARTIFICIAL REGRESSION* MODEL

Our goal is to first specify an alternative nonlinear functional form to capture an
asset’s return as a function of readily available information. Second, we demonstrate that
incorporating return sign predictability in the conditional mean equation reduces the
heteroskedasticity of the residuals.

We assume that return predictability manifests in asset returns in a nonlinear
fashion. The endogenous variable in the model is the excess asset return and the
information set consists of exogenous economic variables and lagged endogenous
variables including past innovations to the excess return. Rationality conditions are
imposed on the conditional means and variances, such that forecasts of either variable

contain no systematic errors.



14

We choose the GARCH (1,1) specification as it is the most widely used model for
a wide range of financial data. The univariate GARCH model consists of two equations.
The mean equation describes the observed returns as a function of instrument variables
and an error term. The variance equation specifies the conditional variance of the error
term from the mean equation as a function of past conditional variances and lagged

squared errors.

The discussion that follows is a departure from the traditional GARCH model,

and focuses on our contribution through the respecification of the conditional moments.

2.3.1. The Granger-Ding Decomposition and the Impact of Forecasting
Market Direction

Let r, represent the security return in period t. ¢, is the econometrician’s
information set at time t, and consists of a vector of exogenous economic variables and
lagged endogenous variables in the conditional mean equation. The return r, from an
asset is given by

rp=a+BX,_| +u,, 23.1)
where,

pe =Elr [@e 1 J=a +BX (2.3.2)
is the conditional mean, which is typically assumed to be linear. However, a nonlinear

functional form could also be used. The error term, u,, is heteroskedastic and has

conditional variance, crtz , which is known at time t, where

v =c?+e,; £ ~(0,62) (2.3.3)



As in Granger and Ding (1996), a decomposition of the error term into a
magnitude and a sign component gives,'®

= -1 if r, < p, = u, <0and where
in a GARCH specification. (2.3.5)

|ut| =!V°’% +&;

After substitution, the return equation (2.3.1) becomes

r, = i +Dijuyl, (2.3.6)
which allows one to separate the sign, D,, and magnitude,|u|, components of the return
error, u,.

The next step is to expand the square root function in equation (2.3.5).

2.3.2. Respecifying the GARCH (1,1) Model

The stochastic version of Bollerslev’s (1986) GARCH (1,1) specification is

uZ =y +y,ul| +002 | +¢, (2.3.7)
where the conditional variance is

o2 =yg +yue ) +002 " (2.3.8)
Here we approximate this by a conditional variance that depends on n lags of utz_l as

follows:

15

' Granger and Ding (1996) propose the decomposition of the error term, but their main concern is with the
magnitude component. They are not concerned with the sign component, which is an important part of this

study.
"' The nonnegativity requirement is satisfied if y¢ > 0 and Y) and 6 =2 0. The covariance stationarity

requirement is satisfied if y; +0<1.
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o2= yo(1+6+62+63 +...)~i-~nut2_l +yleuf_2 +7162uf_3 +.. (23.9)

Combining (2.3.5) and (2.3.9), we get,

[u [= \[{0(1+6+92 +03+.) +ylu%_1 +yleuf'_2 +7162u%_3 +..+€&; (2.3.10)

and combining (2.3.6) and (2.3.10), the return equation may be expressed as

f, =it + Dy 1o +0+02 +6% +.) +yul +7,0ulp +...+&, (23.11)

At this point, we have consolidated the mean and variance into one return
equation. In order to simplify estimation and ensure convergence, we use a Taylor series
approximation of the square root in order to obtain |u as a linear function of squared
lagged residuals. This results in a mean specification that is linear in the squared lag
residuals and the estimation may proceed using OLS, as is shown next.

We consider |u,| as an n-dimensional, first order, Taylor series approximation in

2 2 2

Uy ,Up 5s-nUp 1, and & expanded about (vq,Yg,Yg,----0), resulting in'

1 140402 +..+0""2)2+v,)?
e _\/m( e+y? |

2 (I+v1)
12 (2.3.12)

n-1 710 Ui €¢

+
i=1 2\/70(1+yl)(1+e+..+e“'2) 2\/yo(1+yl)(l+6 +..+6“"2)

12 A second order Taylor series expansion of f(z) about z, is given by

f(z)=f(z0)+£(z:!ﬂ(z-zo)+ﬂ-z;ﬂ(z—zo)2 +Ra



Substituting (2.3.12) in (2.3.6) and rearranging

I, —U,; =l\/yo(1+9+62 +..+9°"2)(2+yl)2 N
D, 2 (t+7vy1)

2

t-j

+
2y L4y +0+6% +.40%2)  2[yo(l+y)1+0+.+672)

(2.3.13)

j—1
n-l Y leJ u St

Hence, (2.3.13) may be written as the artificial regression model,

- n-1
HSFt=bot T bjulj+E, (2.3.14)
t j=1
where,
& = &
t 2 n-2
2y +y)1+040° +............. +6°7°°)

is the homoskedastic error. Altematively, (2.3.14) may be written as

Ty _ My nol 5
L =ZLibyg+ T bus . +& (2.3.15)
D, D, jop

Notice from (2.3.15) that D, impacts both the slope and the intercept in the

.\ 5 . o X
conditional mean specification, £t = X 4+ 2581

=D, D, If one can predict D, , the
conditional mean expression will incorporate the predictable part of D, and the
conditional volatility will be lessened through time, as is demonstrated in Section 2.3.3.
Hence, a decomposition into sign and magnitude components would simplify the
specification to one where only the first moment needs to be specified. Such a

decomposition may prove helpful in the estimation of complex, heavily parametrized,

multivariate systems.
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2.3.3. The Impact of Forecasting Market Direction

If the direction of the market, given by the sign of D,, is partially predictable then
the conditional variance and the heteroskedasticity are reduced as is shown next. Perfect
prediction of market direction completely eliminates the heteroskedasticity.

Let F (D) be the time (t-1) forecast of D, (conditional on some information set)
and d, is the forecast error. Consequently, F_,(D)) = *1 and d, =0, +2, because of the
identity

D, = F_1(D¢) +d, (2.3.16)

Substituting for D, in (2.3.15) and rearranging gives the equation

n-1 n-1
r = po +F (D(bo + £ bjul_j) +d(bg + T bjui_;)+ D& (2.3.17)
j:[ j:[

From this, we can infer the new conditional moments.

The predicted asset return, given the forecastability of D, is

n-1
e = +F_1(D)(bg + L bjuf_;) (2.3.18)
j=t

and the new forecast error is
. n-l 2
j=1
and its square is
n-1 n—1
u? =df(Po + I bjui;)’ +2d;De(bo + T b jut-E+EF  (2.3.20)
J=

J=

The conditional variance of the forecast error may be obtained by taking the expectation

of uzz at time t-1; i.e.,
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2 n—1
g p—— 2 2542
Elu) = +(bo+ 2 bjti-) E(d?) 2321)

where E(d% ) is the expected squared error in the market direction, which depends upon

the richness of the forecast F, (D).
Let q be the probability that F, (D, is a correct forecast, then the event tree

relating to forecasts and outcomes appears in figure 2.3.1."

Market Direction Actual Forecast Error

Forecast Market Direction
dt=0

Dt=1,q

F-1)D(t) =1

dt=-2
dt=0

F{t-1)D(t) =-1
Dt=1,(1-q) t=2
Figure 2.3.1
If the forecast is F,_ (D) = 1,
E(d?|F,—1(D¢) = 1) =4(1-q) 2.3.22)
and if the forecast is F, (D) = -1, then
E(d?|F,_;(D,) = —1) = 4(1—q), the identical result (2.3.23)

So, the new conditional variance at time t is

"*Note that our model assumes that the accuracy of the forecast is independent of the return on the asset.
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n-1
or” =0} +4(1-q)(bg + ¥ bjul_;)? (2.3.24)
=1
Notice that if the prediction is perfect, q = 1, and 0':2 = cé , Which is
homoskedastic. If the prediction is random, q = 0.5, then
n-1
12 =of +2(bg + ¥ bju’_ i) (2.3.25)
j=t

Therefore, increasing precision of the forecast of market direction close to 1 decreases the
conditional variance in any period t and reduces the heteroskedasticity because of the
attenuation to zero of
n-1
4(1-q)(bg + j5=_:1b jul_;)?
that occurs as the precision q, of the forecast increases. Next, we show how this model
provides a simpler alternative estimation approach for the popular class of GARCH (1,1)

models.

2.3.4. Alternative Approach to Estimating GARCH Parameters

The advantage of the specification in equation (2.3.15) is that the return is a linear
function of endogenous and exogenous X, that can be estimated by OLS, rather than
using maximum likelihood or GMM and a numerical algorithm. Contrary to section
2.3.3, we now assume that D, is not in the information set at t-1. However, the artificial
regression model allows us to implicitly estimate both the conditional mean and GARCH

parameters, in a traditional GARCH (1,1) model.
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Running the regressions (2.3.14) or (2.3.15) and using the b; coefficient estimates,
the implied values for yg,y;and6, may be calculated resulting in an overidentified

system of n equations with three unknowns. The values are given by

by

6:-—:

1

L7 (2.3.26)
3

N

. 4b3(1+7)
(1+6+02% +03 +....+6n'2)(2‘*"¥1)2

(2.3.27)

and,

Y1 =-1+2bgb, +1+4(bgb;)? (2.3.28)

Equation (2.3.28) is a solution to a quadratic equation and we consider only the positive
component of the square root.

The solutions for yq,y; and & do not depend upon the dimensions of the Taylor

series, but the parameters, b i do. Our solution assumes the accuracy of the order (but not

the dimension) of the Taylor series approximation.' It is possible that the expansion
point of the Taylor series approximation could affect the artificial regression model. In
order to test this, we have also derived the artificial regression model and the implied
values of the GARCH parameters using a Taylor series approximation for the variance of
the error term about the unconditional variance. These analytics are presented in

Appendix II.

" In addition, we have also derived analytic solutions for the second order Taylor series approximation.
For brevity, we report only the models using the first order Taylor series approximation in this study.
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In addition we have also derived the artificial regression model when [u}] is first obtained
as a first order Taylor series approximation consisting of lags of squared residuals and
lagged conditional variance terms. The substitution for the conditional variance in terms
of the lagged squared residuals is done next and the implied values of the GARCH

parameters are obtained. These analytics are also presented in Appendix II.

2.3.5. A Summary of the Artificial Regression Approach

We have presented the fundamental ideas behind the artificial regression model.
The intuition underlying this model is that misspecification of the mean manifests as
heteroskedasticity in the residuals. Hence, an increase in the precision of information
should lessen heteroskedasticity in the error structure. Our model is more in the tradition
of Tong (1990) and Hamilton (1991). Tong (1990) proposes the threshold model in the
mean and Hamilton (1991) develops the regime switching process, where it is shown that
regime switching is the primary source for conditional heteroskedasticity. However, we
adopt a different approach and focus on the decomposition of the residual into sign and
magnitude components and then proceed to show that this results in the artificial
regression model, a nonlinear specification. We then demonstrate that the benefit of this
nonlinear specification is that it mitigates heteroskedasticity in the residuals by
incorporating return sign predictability. In addition, we show how this model provides a
simpler estimation approach for the popular class of GARCH models.

Notice that our approach considers assets with time varying first and second

moments and simplifies the econometric specification to one where only the first moment
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needs to be specified. Hence, estimation can be done by OLS. Thus, multivariate
extensions of the artificial regression model are straightforward in theory and application.
Hence, compared to the typical GARCH specification, our estimation approach would
model large systems and instrument variables and thus facilitate more complexity in
modeling.

In the next two sections, we propose to test the effectiveness of the artificial
regression model on two criteria.”’ First, we use a Monte Carlo study to test the
effectiveness of the artificial regression model as a tool to obtain GARCH estimates. In
effect, we test the tradeoff between easy econometrics and the costs of the Taylor se:ies
approximation. Second, using stock return data, we test the impact of market direction

forecast on reducing heteroskedasticity in the artificial regression model.

2.4. MONTE CARLO SIMULATIONS

2.4.1. The Monte Carlo Design

In this section, using a simple Monte Carlo experiment, we examine the
performance of the artificial regression model framework in estimating the GARCH (1,1)
parameters. First, we generate a time series with a GARCH (1,1) data generating process.
Next, we estimate the GARCH (1,1) parameters using the traditional numerical

maximization approach. We then, estimate the artificial regression model using OLS.

15 In this study, we are not comparing the predictive power of the proposed artificial regression model with
the traditional GARCH model. Future work would include out-of-sample tests of the models. As shown in
West and Cho (1995), GARCH models have poor predictive power. However, the significant predictive
power of simpler linear models as in Breen, Glosten, and Jagannathan (1994) and Beveridge and Bauer
(1994) suggests that the proposed model should have better predictive powers.
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Substituting the coefficient estimates from the preceding artificial regression model in
equations (2.3.26) to (2.3.28), we obtain the corresponding implied values of the GARCH
parameters. Finally, we compare the values of the GARCH parameters obtained using
the two approaches with the true values. The mechanics of the Monte Carlo design are

presented next.

In order to focus on the estimation properties for conditional variance parameters,
we adopt a constant conditional mean. The Monte Carlo experiment is based on a
GARCH (1,1) data generating process specified as,

rp=PBg+uy;; up = c%.vt, where v, ~ N(0,1)

o =yq +yul | +007 (2.4.1)

where u,is the mean equation innovation at time t, cf is the conditional variance at time

t, v, is the normalized residual at time t that is generated from a standard normal
distribution, r, is the simulated return at time t, and By, ¥, ¥, and 0 are constant
parameters.

In order to determine how the specification responds to changes in persistence, we
examine the artificial regression framework in two scenarios. Hence, we perform Monte
Carlo simulations for high and medium persistence in volatility [c.f., Brock, Hsieh, and
LeBaron (1991) and Engle and Ng (1993)]. We choose two sets of parameter values to
reflect large variations in persistence: high persistence where (y,, 1,, 8) = (0.05,0.05,0.90),
and medium persistence where (y,, v;, 6) = (0.35,0.05,0.60). The parameter values chosen

correspond to the empirical findings in the estimation of weekly financial stock returns
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(c.f., Brock, Hsieh, and LeBaron, 1992). Thus, in this experiment for each scenario, we
run 100 simulations for each of the three samples of size 300, 1000 and 6000.'
Under the assumption of conditional normality, the log-likelihood function for the

GARCH (1,1) model is given by

T 2
L(9) == ¥ (log(c?)+—L) (24.2)
2 t=I Ct

For each replication, a GARCH (1,1) model is estimated by numerical
maximization of the conditional log-likelihood function in equation (2.4.2). Maximums
are obtained using the BHHH algorithm, in accordance with the estimation methodology
found in the literature [see for example Bollerslev (1986)]. For each draw, the artificial
regression model in equation (2.3.15) is estimated using OLS as a two-step (T-S)
procedure, as shown next.

Step 1: Since our purpose is to examine the performance of the conditional variance

parameters, we use a constant mean, 3."

=Bg +u
r=Po+u 2.4.3)

The next step is to regress the return series r, on a constant. From the residual j  define
D, as,

D,=1,if 4,>0,else D,=-1.

'6 We have chosen the number of runs for the Monte Carlo study arbitrarily. However, increasing the runs
is likely to improve the estimates for the smaller sample sizes. We do not anticipate significant changes in
the results for the larger samples in our study.
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Step 2:
a. Form the artificial regression
For a given D, from step 1, we estimate the artificial regression model (2.4.4),

using OLS,

T, ~ N ~
S 2 =b0 +dlDt +blﬁt2—l +b2u%__2 +b3ﬂ%_3 +b4u;2_4 S TSI
D, (2.4.4)

+bysi_| +&,, whereg, ~ N(0,0%)

b. Estimate the optimum number of lags, k, of ﬁ% in equation (2.4.4) based on the
length at which the Schwartz Information Criterion (SIC) is minimum.'®

c. Using the new efficient estimate of Bg,b , the two-step procedure can be
iterated for efficiency as in Ferson and Foerster (1994).

Notice that the coefficient of D, in equation (2.4.4) is equivalent to By in
equation (2.4.3). As an aside, note that the traditional GARCH estimation approach
imposes positivity and stationarity constraints during estimation. However, the artificial
regression approach tested in this study imposes no constraints on the system. Thus, our
Monte Carlo study is by design biased in favor of the BHHH estimates because we

estimate under a true null hypothesis.
We would like to point out that the two-step procedure simply replaces the

unobserved component D, from the auxiliary model (2.4.3). It is well know that

' In the Monte Carlo study we have not experimented any further with instruments in the mean equations.
We focus on this aspect and its impact on the artificial regression model in the next section, when we
examine stock returns data.

18 The Akaike’s (1974) information criterion which is defined as AIC = -2max L () + 2k, tends to
overparametrize models (Hannan, 1980). We therefore choose the SIC where

SIC = -2max L (y) + k In(T) where L is the log-likelihood function, k is the number of parameters in the
estimated model, and T is the number of observations and y is the parameter vector.
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estimated standard errors and related test statistics based on these procedures are
inconsistent. However, the iterated approach suggested by Ferson and Foerster (1994)

used in step 2c. will yield consistent estimates.

2.4.2. The Monte Carlo Results
The results from the Monte Carlo simulation for both the high and the medium
persistent univariate GARCH (1,1) models are tabulated in Tables 2.1 and 2.2 for three

sample sizes, representative of weekly stock return data. Based on the SIC criterion, for

high persistence, we find that 15 lags of ﬁtz are optimal and for medium persistence, 5

lags are optimal. We report the GARCH parameters obtained using the maximum
likelihood GARCH estimation technique (hereafter, BHHH) and the implied GARCH
estimates (hereafter, AR), obtained analytically from the estimation of the artificial
regression model using the Taylor expansion in equations 2.3.24 to 2.3.26'. We also
present the corresponding t-statistic for each estimate and the results of testing the
difference of means between the estimates and the true values. All the estimation results
are based on 100 replications. For the artificial regression models, as the diagnostics in

the simulations indicated that the residuals were homoskedastic, we performed only one

9 Theoretically g=22-23 _ b4 _ However, empirically we have not imposed this constraint. 8.

Hence, the Monte Carlo simulation setup is biased towards GARCH. The results indicate that 6= %2— has
1

the least variability. We report this value of 8. As discussed in Section 2.4.3, it seems further
improvements in the model could come from imposing the theoretical constraints on 8. Moreover, in the
proposed model, it is easy to impose such restrictions,
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iteration.

24.2.A. GARCH (1,1): High persistence (y,=0.05, v,=0.05, 6=0.90)

We now turn to the results for high persistence in Table 2.1. In Panel A, fora
sample size of 6000, compared to the BHHH, the AR estimates are closer to the true
values. However, both BHHH and AR estimates are significantly different from the true
values. Notice, that with no constraints imposed on the AR system, the mean value of 6
is greater than one and this is a violation of the positivity constraint. From Panel B, for a
educed sample size of 1000, we find that the variability of the estimates increases.
However, while the BHHH estimate for y; is closer to the true parameter value compared
to the AR, the 6 estimate from AR is significantly closer to the true value. Finally, in
Panel C we find that as the sample size is reduced to 300, the BHHH and the AR
estimates for ygand y,are significantly different from the true values, but in contrast to
BHHH, the AR estimate for 0 is not significantly different from the true value

One can see that there are comparative advantages and disadvantages to both
approaches. With large sample sizes, the AR seems to be performing better; but, with

small sample sizes, both models seem to perform badly.

2.4.2.B. GARCH (1,1): Medium persistence (y,=0.35, y,=0.05, 6=0.60)
We next report the results for moderate persistence in volatility in Table 2.2. As
before, results are presented for the univariate GARCH (1,1) for three different sample

sizes of 6,000, 1000 and 300 respectively, representative of weekly stock return data.
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For a sample size of 6,000, in a departure from the earlier case of high persistence
in volatility, the artificial regression model requires only 5 lags of squared residuals to
minimize the SIC. Further, the BHHH estimates are closer to the true values than the AR
estimates. With a sample size of 1,000 both the BHHH and AR estimates are
significantly different from the true value for vy but are not significantly different from
the true values for ygand 6. As in the high persistence case, the variability of the
estimates increases considerably as the sample size is reduced to 300. The AR estimate is
significantly different from the true value for y,. However unlike the BHHH estimates,
the AR estimates are not significantly different from the true values for ygand 0.

The simulation results suggest that the BHHH and AR estimates are comparable
for high persistence in volatility in large samples. Both approaches perform poorly for
reduced sample sizes. However, in the case of medium persistence, AR seems to
outperform BHHH. While BHHH outperforms AR for large samples, for smaller sample

sizes, AR performs better.

2.4.3. Summary of Monte Carlo analysis

In summary, based on the difference of means between the estimates and the true
values of the GARCH parameters, the results illustrate that the artificial regression model
seems to work as well as the popular approach in generating GARCH estimates.
Although the model is a natural one and is mathematically straightforward, it is surprising
that it does as well as it does, given that the simulation design is biased in favor of the

BHHH, in as much as no restrictions are imposed on the coefficients of the artificial
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regression model. This is particularly promising as various asset return series exhibit a
long memory property and the artificial regression model with no restrictions imposed
should reveal this property.”

Some aspects about the artificial regression model remain troubling. For one
thing, the estimated parameters, especially 0 seems to be excessively sensitive to the
sample size and tend to behave badly. Three approaches come to mind as possible
solutions to this problem.

First, it is possible that the problem lies in the approximation used. We provide

the analytics for the model using the Taylor series approximation about the

_Yo_
1-y; -6’

unconditional variance in Appendix II. As the revised expansion point is now
involving three parameters, the analytics are relatively more complex, compared to the
Taylor expansion. However, we do not find significant improvements in AR estimates
using this approach (results not reported here). On the other hand, the results indicate
that the model would perform better if constraints were imposed on the AR estimates.
Second, we look at higher-order Taylor series expansions, specifically the
second-order Taylor series expansion. The analytics get very unwieldy and are not
reported here. In addition, the estimates are more sensitive than before to non-imposition

of constraints in the AR system. Hence, increasing the complexity of the approximation

takes away the simplicity of our approach, while reducing the tractability of the model.

* In particular, it may be observed that for series exhibiting the long memory property, the GARCH
restrictions are not true. Specifically, consider the implied parameter 6 which is the ratio of adjacent
coefficients. For a series with long memory property, this restriction would not be true and the artificial
regression model would capture it.
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Third, selecting the lags in the artificial regression model, using SIC on a draw
specific basis could yield the “best” estimates for each run. We have not tested this
approach, but we would like to point out that our lag selection was made based on 20
random runs. These first-pass tests do not indicate that the lag specification would yield
significant improvements.

That said, it seems further improvements in the behavior of the estimates could
come only from imposing the constraints in the AR model. While this does detract from
the model, the advantage is that restrictions are easier to impose in our system.
Furthermore, ease in imposing constraints gives additional flexibility as the artificial
regression model could then accommodate various GARCH specifications.

Finally, it would be interesting to compare the properties of the estimators if
errors were generated from a quasi-normal distribution. Since the QMLE is inefficient
when the distribution is misspecified, we would expect the artificial regression model to
outperform the BHHH estimator.

We are now ready to test the model on stock returns data. In the next section,
we test the impact of market direction forecast on reducing heteroskedasticity in the

artificial regression model.

2.5. EMPIRICAL ANALYSIS: CANADIAN AND U.S. STOCK INDEX RETURNS
2.5.1. Data and Estimation

Our objective in this section is to test the effectiveness of market direction
forecasting on reducing heteroskedasticity in the artificial regression model. The data we

analyze are the time series of the daily and monthly closing values of the TSE300 Total
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Return Index (TRI) for the period January 1977 to December 1994 and the CRSP value
weighted index for the period July 1962 to December 1994. Both indexes are value-
weighted composite indexes with distributions. The first difference of the natural
logarithm of the closing values of the index is used as the stock return measure.

In this part of the analysis, we adopt the following approach. For each of the four
return series, we first estimate the benchmark model, which is the linear autoregressive

model in the mean (2.5.1).

r, =8g + 86X, +w,;where w, ~N(0,6?%) (2.5.1)

Next, we estimate the univariate GARCH (1,1) model. We then, estimate the
corresponding artificial regression model. Next, we examine the diagnostics for each
specification to check the reduction in heteroskedasticity. Finally, we compare the
GARCH estimates obtained using the two approaches.

For the Canadian and U.S. indexes, we estimate univariate GARCH (1,1) models

for daily and monthly returns as follows:

rp =Bo +PX¢_y +uguy = 0’% .vy,where v; ~ N(0,1) 2.5.2)

GF =70 +Y1ui_ +607

Our choice of a mean specification is guided by prior empirical work. For
example, Lo and MacKinlay (1990) show that nonsynchronous trading in the stocks that
constitute the index leads to serial dependence in the index returns. Seasonality effects
including the day-of-the-week effect and January effect have been well documented.
Hence, our benchmark information set (¢g ), for the mean equation consists of the

following instruments: lagged returns, a seasonal dummy and an October 1987 crash
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dummy. Our larger information set (¢ ) includes the lag of the squared returns in
addition to the preceding instruments. Our purpose in using the two information sets is to
test the impact of the information set on the precision of the sign component and its
implications for heteroskedasticity.

As in the Monte Carlo study, the GARCH (1,1) model is estimated by numerical
maximization of the conditional log-likelihood function in equation (2.4.2) using the
BHHH algorithm. This model is hereafter referred to as BHHH.

Using the same information set, the artificial regression model in equation (2.5.2)
(hereafter, AR) is also estimated using OLS in the two-step approach similar to that used

in the Monte Carlo study.
r, =g +BXg +Uy; U ~ NQ©,02)

D, =1if i, >0, and 1, otherwise.

— =+ 4 b+ Y b L+ 2.5.3
D, D, D, ° j§1 Pe-j o @:33)

Notice that D, here, does not indicate perfect foresight for D' The precision of D,
depends on the instruments in the information set.

Moving on to diagnostics, residual and squared residual correlations are
commonly employed in the specification and diagnostic checking of GARCH-type

models.? Ljung and Box (1978) portmanteau tests for serial correlation in the

' D, could also be estimated using a procedure similar to Breen, Glosten, and Jagannathan (1989) or
Beveridge and Bauer (1994). They use interest rates in the information set to forecast stock retumns.

2 Bollerslev and Mikkelsen (1996) find that AIC and SIC model selection criteria and the portmanteau
tests for residual autocorrelation work effectively in specification tests in GARCH-type models.



34

-~

standardized residuals - and the squared standardized residuals are a popular
Gy

diagnostic check.? Ifthe AR specification is the correct specification, then the
diagnostics should indicate that the residual, &,, in equation (2.5.2) is homoskedastic. If

the conditional variance is correctly specified in the GARCH (1,1) form, the standardized

-

residuals, S in equation (2.5.2) should behave as white noise.
Gy

We introduce the benchmark model (2.5.3) for two reasons. First, it gives a
benchmark to interpret the improvement in the mean equation in the artificial regression
model after the introduction of the return’s sign component. Second, it serves as a

baseline to gauge the reduction of heteroskedasticity in the AR and BHHH approaches.

2.5.2. Analysis and Results

Table 2.3 gives the summary statistics for the four return series. It is clear that the
normality assumption is inappropriate for the returns data, as the series exhibit significant
leptokurtosis and second-order dependence. The results suggest that the monthly and
daily return series are not normally distributed.

Tables 2.4 and 2.5 provide residual-based diagnostic tests to evaluate the
statistical adequacy of the models i.e. reduction of heteroskedasticity, for the daily and
monthly return series. We first report the results for the benchmark, linear auto-

regressive model (hereafter BM) estimated by OLS. This is the benchmark model for the

3 Following Ljung and Box (1978), when testing the residuals from an ARCH-type model, the
portmanteau test is asymptotically chi-square distributed with K-k degrees of freedom, where k denotes the
estimated ARCH parameters and K, the number of observations in the series.
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conditional mean equation. We then, provide comparative results for the AR and BHHH
models. Specifically, we report the Ljung-Box (1978) (LB) portmanteau test statistics
associated with the standardized residuals, Q(p) and the squared residuals, Q*(p)
respectively?. The first one tests for linear dependence, while the second one is designed

to pick up higher order dependence and the presence of conditional heteroskedasticity.

Both these statistics are distributed as xg . For the AR specification, we report the Ljung-
Box statistics for 8 lags of the raw residuals &, , and raw squared residuals, §% . For the

BHHH model, similar diagnostics are presented for the standardized residuals, i 4 and

Ot
uy
the squared standardized residuals, —5 - For the BM model, diagnostics are provided
Gt

for the residual, w,.

Table 2.4 presents the comparative diagnostics for the daily return models.
Specifically, we examine Canadian daily returns in Panel A, for the small information set.
The sample autocorrelations for the BM model indicate that the conditional mean is
adequately specified. The Ljung-Box, Q(p) statistic indicates that the mean explains a
significant part of the linear dependence. However the Q*(p) statistics suggests strong
nonlinearity in the data. In the AR model, the R-squared is substantially higher compared
to the BM model. Notice that, the basic difference between the BM and AR models is the

introduction of the sign component. However, the Ljung-Box diagnostics suggest that

m
¥ Q=T(T+2)X(T-k) -1 f'lf where T is the number of observations in the series being investigated, fy is
k=1

the sample autocorrelation of the residuals and m=8 for the present study.
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the correlation for both residuals and squared residuals has increased. We next look at
the BHHH model. Obviously the GARCH (1,1) is not an inadequate specification as the
Ljung-Box statistic for the squared residual is significant for the BHHH model. Moving
on to Panel B and the U.S.returns, we note that the BHHH model now seems well
specified and performs better than the AR model. However, the AR model seems a big
improvement over the corresponding BM model.

We now check if expanding the information set has any impact. The most notable
feature for both daily U.S. and Canadian returns is the significant reduction in the Ljung-
Box statistic for the AR model, when the larger information set is considered. This
suggests that as the precision of D, increases, the errors will tend to be homoskedastic.
This is consistent with Stambaugh’s (1993) findings that, in the presence of
heteroskedastic regression disturbances, it is possible that expanding the set of
instruments used to compute an instrumental variables estimator can produce efficiency
gains.

Overall the BHHH model outperforms the AR model for both U.S. and Canadian
daily returns in both information sets in reducing the heteroskedasticity. Note that the
artificial regression model does not provide a sufficient fit, as the squared standardized
residuals are significantly correlated. Notice also that in the case of daily U.S. returns
using a larger information set, ¢ , the BHHH model does not converge.

In the case of monthly returns, the results in Table 2.5 indicate that the AR
model’s performance is comparable to BHHH for Canadian monthly returns in the larger

information set. As before, the heteroskedasticity as indicated by the Box-Pierce



37

statistics is reduced in the artificial regression model relative to the benchmark model.
For Canadian returns, once again the AR model with the larger information set has a
significant reduction in heteroskedasticity.

The empirical results suggest that heteroskedasticity is linked to the precision of
the sign component and the data is illustrative of the convergence of the estimates in this
specification. Using an expanded instrument set similar to Turtle, Buse and Korkie
(1994) or Lo and MacKinlay (1995) or using the methodology of Breen, Glosten and
Jagannathan (1989) in predicting the sign component should improve the specification.
Further, the estimation problem of the BHHH model is evident, as the model does not
converge for the large information set in daily U.S. returns.

Next we assume that the process is a GARCH (1,1) and we use real data to
estimate the GARCH parameters with the AR and BHHH approaches. These results are
presented in Table 2.6. In Panel A, we first compare the parameter estimates for the
smaller information set. It is evident that the estimate of the parameter y; using the AR
approach is smaller than the BHHH estimate for all the series. The values of the constant
in the mean equation and the parameter v are similar; however, the values of 8 obtained
from the two approaches are significantly different.

In the larger information set, the values of 0 seem comparable; but, the
Y1 (AR) parameter is negative for daily returns.

Linking up the results from tables 2.4-2.6, it appears that when the diagnostics
support the GARCH (1,1) specification for a return series, the parameters obtained using

the AR and BHHH approach seem comparable. Notice for example that from tables 2.4
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and 2.5, the GARCH (1,1) seems a better specification for the CRSP value-weighted
returns compared to the TSE 300 TRI return. Interestingly, from table 2.6, the estimates
from the two approaches are more divergent for the TSE 300 returns. Hence, the AR

approach is sensitive to the correctness of the volatility specification.

2.5.3. Summary of the Empirical Analysis:

The results imply that a richer information set and precision of the sign
component help the mean and reduce the volatility. Recent research (Bollerslev and
Mikkelsen, 1996) has shown that an appropriate model for daily return series is the
fractionally integrated GARCH model. For monthly series, the GARCH (1,1) might be
an adequate specification. Hence, we would conjecture that since the AR model behaves
better for the monthly series, the artificial regression model is more sensitive to
misspecification of the underlying volatility process. This is supported by our findings in
both the Monte Carlo study and the empirical analysis, where the AR model behaves

well, when the underlying volatility process is correctly specified.

2.6 CONCLUSIONS
In this paper, we propose an “artificial regression model” as an alternative
nonlinear specification for asset returns. The central idea underlying this model is the
error decomposition into magnitude and sign components resulting in a threshold model
in the mean. The uniqueness of this paper is that we then proceed to show the benefit of
this nonlinear specification in mitigating heteroskedasticity in the residuals by

incorporating return sign predictability. In the limit, perfect prediction of a return’s sign
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is shown to completely eliminate heteroskedasticity. In addition, we show how this
model provides closed-form solutions for the GARCH parameters and thus provides a
simpler estimation approach for the popular class of GARCH models.

The economic intuition here is that increasing the precision of information should
shrink volatility and lessen heteroskedasticity in the error structure that is caused by
misspecifying the nonlinear conditional mean. From a specification point of view, the
results of this research must be viewed as supportive of the premise that asset returns
depend on the sample information as a nonlinear function of the variables in the
information set. Incorporating these nonlinearities may increase the predictability of the
dependent variable, whereas presence of GARCH does not necessarily provide additional
forecastability of the dependent variable.

The artificial regression model simplifies the econometric specification from a
two-moment (time-varying) specification to one where only the first moment needs to be
specified. Hence, estimation can be done by OLS. Thus, an important practical
importance of the model is that it generalizes to a multivariate approach in a natural way
and there is a major reduction in computational complexity in estimation. Hence,
compared to the typical GARCH specification, our estimation approach would model
large systems and instrument variables and thus facilitate more complexity in modeling.
Given that many issues in finance particularly asset pricing deal with multivariate
systems, our proposed framework has important practical implications.

Further, the artificial regression model is a flexible specification as restrictions
can be easily imposed. Hence it can handle long decay structures that the traditional

GARCH model cannot.
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We then proceed to test our model on two criteria. First, we use a Monte Carlo
experiment to test the effectiveness of the artificial regression model in generating
GARCH estimates. Our overall findings are that our model works as well as the popular
approach for generating GARCH estimates. Additional comparisons could be made from
out-of-sample tests of the differences between the artificial regression and GARCH (1,1)
model in predicting conditional means and volatilities. The out-of-sample testing has
been left for future research. That said, it seems further improvements in the behavior of
the estimates could come only from imposing the constraints in the artificial regression
model.

Second, we test the model on stock returns data to study the impact of market
direction forecast on reducing heteroskedasticity in the artificial regression model. The
results suggest that heteroskedasticity is linked to the precision of the sign component. A
richer information set improves the precision of the sign component and helps the mean
and reduces the volatility. Our analysis also indicates that the artificial regression model
is more sensitive to misspecification of the underlying volatility process. The bottomline
then, is that in the tradeoff between easy econometrics and the costs of the Taylor series
approximation, we are better off using the artificial regression model.

Areas of future research that appear promising include the following: firstly
testing the model in a multivariate setting; secondly, testing how a specification that

incorporates the inherent nonlinearity in the data affects asset pricing tests; and finally,



extending the artificial regression model to other popular GARCH models such as the

exponential GARCH specification.”

* In terms of implementing the artificial regression model procedure with larger multivariate models, the
major obstacle would be the assumption of the covariance matrix. Adopting the approach used in
multivariate GARCH, first a constant correlation covariance matrix could be assumed, followed by more
complicated covariance matrices.

41
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Table 2.4: Comparison of Model Diagnostics:
Daily return series for the CRSP Value-Weighted (VWT) Index [July 1962-December 1994]
and TSE 300 Total Return Index (TRI) [January 1977-December 1994]-

This table presents specification diagnostics for the GARCH (1,1) model using the BHHH and the artificial regression (AR)
approaches.

The sample period spans 4536 return observations from January 1977-December 1994 for the TSE 300 total return index and 8179
return observations from July 1962-December 1994 for the CRSP value-weighted index.

SMALL INFORMATION SET INSTRUMENTS, ¢ : Lagged Returns (CRSP- 4, TSE-3) , Seasonal dummy, and Crash Dummy
LARGE INFORMATION SET INSTRUMENTS, @, : Lagged Retums, Lagged Squared Retumns (CRSP- 4, TSE-3),
Seasonal dummy, and Crash Dummy

Residual analysis refers to w, for BM, — for BHHH, and Z, for OLS.
T
BENCHMARK MODEL (Estimation by OLS) - BM
I, =8y + 86X, +w;where  w, ~ N(0, %)
TRADITIONAL GARCH (1,1) MODEL - (Estimation by maximum likelihood ~ numerical algorithm) - BHHH

=P80 +BXy+ u'p;u't= ‘, o%.v(,whcre ve ~ N(O,1); ctz =y0 + nu'%_li-ecf_l

1T o u
ML estimation by BHHH - L(8)=~— X (log(a{)+—)
ARTIFICIAL REGRESSION MODEL - Estimation by OLS - AR

n =70 +1X¢ +up;where  up ~ N(O,o’tz)

A bX, Kk 2 -
L =bg +d;D, + —t+ ¥ byu;; +E&,, whereg, ~ N(0,0z
D=1.ifu>0,elseD,=-1. D ° V' D, gm crET™ =~ N(0g)

SMALL INFORMATION SET, ¢g LARGE INFORMATION SET, ¢
BM AR BHHH BM AR BHHH

PANEL A - TSE300 Retumns

Adj. R*/ Log-Likelihood R>=0.0894 R>=0.2665 L=-99.4968 R>=0.1501 R*=0.3804 L=-63.0378

Residual Diagnostics:

Ljung-Box stats (8lags) Q(8) 134195 147.1160 12,5721 15.6375 33.2609 12.3310

p-value 0.0506 0.0000 0.1274 0.0479 0.0001 0.1370

Squared residual Diagnostics:

Ljung-Box stats (8lags) Q*(8) 902.2313  1014.7726 514145 1443.6712 639.6085 16.1953

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0397

PANEL B — CRSP VWT retumns

Adj. R*/ Log-Likelihood R=0.0560 R’=(0.2449 L=36578.7766 R>=0.1129 R>=0.3286 No
Convergence

Residuals Diagnostics:

Ljung-Box stats (8lags) Q(8) 6.6732 402.6331 10.3238 12.1853 18.7491

p-value 05722 0.0000 0.2430 0.1431 0.01626

Squared residuals Diagnostics:

Ljung-Box stats (8lags) Q%(8) 3059.6553 1083.9341 9.2826 1786.3581 650.9206

p-value 0.0000 0.0000 0.3190 0.0000 0.0000
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Table 2.5: Comparison of Model Diagnostics:
Monthly return series for the CRSP Value-Weighted (VWT) Index [July 1962-December 1994]
and TSE 300 Total Return Index (TRI) [January 1977-December 1994]

This table presents specification diagnostics for the GARCH (1,1) model using the BHHH and the artificial regression (AR)
approaches.

The sample period spans 467 return observations from January 1977-December 1994 for the TSE 300 total retum index and 828
retumn observations from July 1962-December 1994 for the CRSP value-weighted index.

SMALL INFORMATION SET INSTRUMENTS , ¢g : Lagged Retums (CRSP- 4, TSE-3), Seasonal dummy, and Crash Dummy
LARGE INFORMATION SET INSTRUMENTS, @ - Lagged Retumns, Lagged Squared Returns (CRSP- 4, TSE-3),
Seasonal dummy, and Crash Dummy

Residual analysis refers to w, for BM, L for BHHH, and &, for OLS.
ot
BENCHMARK MODEL (Estimation by OLS) - BM
r, =5y + 86X, + wwhere w, ~ N(0,0%)
TRADITIONAL GARCH (1,1) MODEL - (Estimation by maximum likelihood — numerical algorithm) - BHHH

=B +BX¢+ u'tsu'g= "cf‘ v¢.where vi ~ N(0,1); o% =70 +7|“'tz-l+ Go%_l

1 I u2
ML estimation by BHHH - L(9)=—= 5 (log(c?) + 2L
2 of

ARTIFICIAL REGRESSION MODEL - Estimation by OLS - AR

)

r =70 + X +ug;where ug ~ N(O,ctz)

K
li=b0 +diD¢ +%+kz

2 = 2
Zt, where & ~ N(O,
D,=1, ifu, >0, else D, =-1. D, biu;_p + &t where £ ~ N( og)

SMALL INFORMATION SET, ¢g LARGE INFORMATION SET, ¢,

BM AR BHHH BM AR BHHH
PANEL A - TSE300 Retums
Adj. R?/ Log-Likelihood R>=0.0943 R>=0.2856 L=1241.2947 R>=0. 1003 R>=0.2639 L=1243.9318
Residuals Diagnostics:
Ljung-Box stats (8lags) Q(8) 10.4079 19.5861 11.3099 9.9011 18.5895 11.7698.
p-value 0.2376 0.0120 0.1847 0.2720 0.0172 0.1618
Squared residuals Diagnostics:
Ljung-Box stats (8lags) Q*(8) 37.7776 27.2113 14.9509 28.8284 17.4399 15.4493.
p-value 0.0000 0.0006 0.0601 0.0003 0.0258 0.0510
PANEL B - CRSP VWT returns
Adj. R? / Log-Likelihood R=0.0432 R*=0.2673 =2087.0209 R*=0.0545 R*=0.3410 2093.3332
Residuals Diagnostics:
Ljung-Box stats (8lags) Q(8) 9.0880 15.3509 8.7007 10.9344 7.4069 10.6613
p-value 0.3349 0.0527 0.3682 0.2054 0.4934 0.2216

Squared residuals Diagnostics:
Ljung-Box stats (8lags) Q*(8) 271.1222 75.6155 10.0350 208.4354 84.8070 10.6730
p-value 0.0000 0.0000 0.2626 0.0000 0.0000 0.2209
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Appendix L.

Approximate Equivalence of Econometric Specifications

of Conditional Asset Return Moments

Propositions and Proofs

We first set out the notation as follows.

r, is the security return in period t,

X, represents the information instruments in the conditional mean equation
Y, is a vector of information instruments in the conditional variance equation,
a is the parameter vector in the conditional mean equation ,

B is the parameter vector in the conditional variance equation and

¢ is the information set at time t.

Consider the following three univariate models:

Model 1: Time-varying conditional mean and constant variance:

Tat =0a0 + a1 Xapp +ooeee + 0 g Xakt + Uat (Al.la)

2
uz =Bag + Var (Al.1b)

Model 2: Time-varying conditional mean and time-varying conditional variance:

Tpe = Cpg +Ap Xpg +eeeeen+ AL XpLt + Ubt (Al.2a)

2
ubt =Bb0 +Bblel[ Feeienenn. +Bmebmt +Vpe (Al.2b)
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Model 3: Constant conditional mean and time-varying conditional variance:

Ty =Q +u
ct c0 ct (A1.3a)

2
uge =PBco +PBe1Yerr +-eeee +PBen Yenr + Vet (A1.3b)

Only weak rationality requirements are imposed,; that is the errors and information
instruments are pairwise uncorrelated and that u;, and v; in each model are uncorrelated.
Hence, we do not make any distributional assumptions regarding the error terms other

than the following:
E(uj) =0, E(vy)=0,and E(vizt )= ciz , where i €{a, b, c}

and

E(ul)= o2, Eul.) =Byo + 5 Py; Yoy, and E(u2) = 5B Vi
at) = Oa» bt/ = PO T lel bit > an (uct)—BcO"'_ Bei Yeit
i=

1=

Proposition 1: Without distributional assumptions regarding model disturbances,
models with time-varying conditional means and constant variances and models with
constant conditional means and time-varying conditional variances are empirically
indistinguishable.

Using second-order Taylor series approximations, we now furnish a weak proof of

the approximate equivalence of Models 3 and 1.
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Proposition la: Model (3) = Model (1)

A specification with a constant conditional mean and time-varying conditional variance

is approximately equivalent to one with a time varying-conditional mean and a constant

variance.

Proof:

The time-varying standard deviation for Model 3 can be written as f(z) = z1/2

where,

2
z=ug =B +Bei Yerr +-ooeee +Ben Yent + Vet

Consider a second order Taylor series expansion of f(z) about z,= B,

£2) =f(zo>+5"’l),ﬂ(z—zo)+f%’,'zﬂ(z—zo)2+Rz

—1/2 1 .~1/2 -3/2 2
Ut =[3c0 B Ber Yerr +overeene + 2[3 Ben Yent — B Bcchlt
-3/2 1,372
Toeneens ﬁ 3 Bcn 4B BerYereVet =-eeeeer - (Al.4)

1. -3/2 -172,, l,-3/2. 2
4[3 Ben cnltvct+[ B ! ct_SBO Ve +R3]

Assuming that X's, the instruments in the conditional mean equation consist of Y's, Y?s

and cross-products of Y's and v's, from equation (A1.4) it follows that u is of the form,

Ugt =Yc0 +Yc1Xclt +Yc2Xcat +emmmennn +YcpXcpt +Oct - (A1.5)

172, _1g-3/22
@ is the disturbance term [ Beo' Vet — 3 2Beo Vet *Ralfrom equation (A1.4).

Substituting u,, from equation (A1.5) into equation (A1.3a) yields a linear model in the

instruments,
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*
It =0c0 Ut =Yc0 +YcrXclt Fooeeenenns YepXept +Tet (Al.6)

-3/2
We add the expected portion of the disturbance o ,(E(R5) — (&g—-} E(vift )) to the

constant ¥ :0 in equation (A1.6). This implies that the disturbance in equation (A1.6) is
mean zero ( E(w)=0). Therefore, equation (A1.6) has a functional form approximately

equivalent to equation (Al.la). Q.E.D.
We have fumnished this weak proof making minimal assumptions.
Any further extensions, such as comparisons of magnitudes of coefficients require

specifying the error structure and information instruments.

Proposition 1b: Model (1) = Model (3)

A specification with a time-varying conditional mean and a constant variance is
approximately equivalent to one with a constant conditional mean and time-varying

conditional variance.

Proof:

Equation (Al.la) may be written as,
I = 0,0 + 0,1 Xapt +eeeeees + g Xt +Ua =0a0 +E5¢

where ¢, is the ‘unconditional disturbance’.

2 2
€ar = (@21 X5yt Fooeee F g Xgpp +Ugt)

Assuming Efu,|@._1]=0 and Efu,X,;lee—1]1=0 ,
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2 2 2 2 2 52
g3t =E[ugz I(Pt—l]+aalxalt Foeeee +aakxakt 201 XanUar

, ) (A1.7)
e+ 20 g1 X g U +(uge —Elug; (@1 1)
Equation (A1.7) is of the form,
2
€at = Ya0 '*'YalYalt +Ya2Ya2t Forenennen +YakYapt +Va (AL.8)

Therefore, equation (A1.8) has a functional form approximately equivalent to equation
(A1.3b). Q.ED.

Propositions 1a and 1b together show that Model (1) <> Model (3).

Proposition 2: Without distributional assumptions regarding model disturbances,
models with time-varying conditional means and time-varying conditional variances
and models with constant conditional means and time-varying conditional variances
are empirically indistinguishable.

We use a similar approach to that used in proving proposition 1.

Proposition 2a: Model (3) — Model (2)

A specification with a constant conditional mean and time varying conditional variance
is equivalent to one with a time-varying conditional mean and a time-varying conditional
variance.

In eqn. (A1.3b) let

2 2
et =ugt —BeaYear —or-—Ben Yent =Beo +Bc1 Yere +Ver (AL.9)



1/2
fe =0gg +E¢ =0co +[Beo +Becr Yert +Verl

Consider a second order Taylor series expansion of f(z)=z'"*

1 .-3/2
= 4 B Ba Yeutver

1/2 ~1/2 =3/ 2
f(z) =Bco B Ber Yert — B 3282 v,

o [3—1/2 B—3/2 2

Substituting €, from (Al.11) into (A1.10) yields,
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(A1.10)

=g about z,= f,.

(Al.11)

1/2 -1/2 —3/2p2 2
=0c +Ph "+ B BeiYere — B BAYS: -

-3/2
B BcchltV3t+§ct

Equation (A1.12) can be written as,

2
Ip= Yco +Yecl Yeit +Yc2Yeat +Ye3YereVer +8et

(Al.12)

(Al.13)

Without distributional assumptions on u, and v, equation (A1.13) is approximately

equivalent to (Al.2a).

Proposition 2b: Model (2) — Model (3)

Q.E.D.

A specification with a time-varying conditional mean and time-varying conditional

variance is equivalent to one with a constant conditional mean and a time-varying

conditional variance.
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Proof:

As above, write equation (Al.2a) as r, =apg + €y
and,
£g, = (prXp1e + oo+ X1 Xplg +Upe)”
=g XE,, +(Bbo +Bbi Yoir + - +Bom Yome + Vor) + (Al.14)

172
20 X1t Bbo +Bbi Ybit +---+Bom Ybomt +Vbe)  ~ +-

Without distributional assumptions on u,, and v,,, (A1.14) is approximately equivalent to

Al1.3b. Q.EE.D.

Proposition 3: Without distributional assumptions regarding model disturbances,
models with time-varying conditional means and time-varying conditional variances
and models with time-varying conditional means and constant conditional variances

are empirically indistinguishable.

Proposition 3a: Model (2) — Model (1)

A specification with time-varying conditional means and conditional variances is

equivalent to one with time-varying conditional means and a constant variance.

Proof:

The time-varying standard deviation for Model 2 can be written as

1/2 2
f(@)=2"7, z=uy, =Puo +Bo1Ybit +++Pbm Yomt + Vor-

Consider a second order Taylor series expansion about z,= B,
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172 , Lo—-1/2 1.,-3/2
f(z) =up =Bwo Y BorYoie =7 Bpo  Pot Yoievor ==

R L o) .
Substitution u,, from (A1.15) into (A1.2a) yields,
Iy =Qpg +ﬁi,/02 +ap Xpie +01Ypit +L1Yb1e Ve *‘[-]'Ylflt +()
which is of the form,
It =Yb0 +Yb1Zbit +Yb2Zb2t + Y6323t +YbaZbat + Ot (Al.16)

Without distributional assumptions on u,, and v,,, equation (A 1.16) is approximately

equivalent to equation (Al.la).

Q.E.D.

Proposition 3b. Model (1) — Model (2)

A specification with time-varying conditional means and constant conditional variance
is equivalent to one with time-varying conditional means and a time-varying conditional
variance.

Proof:

As in proposition 2b above, arbitrarily move K;< K mean regressors into the variance

specification and the result follows. Q.E.D.
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Appendix II

Artificial Regression model: Taylor series first-order approximation of the variance of the

_To

error term about the unconditional variance, n 5

We expand [u] as an n-dimensional, first order, Taylor series approximation in
2 2 2 .ps .
Ug_j,Ut—2,---Ut_pn+jand €, about the unconditional variance

( Y0 Yo Yo

yeeeee-s,0) il @N approach similar to that considered for the

Taylor series approximation about (yg,Yg,Yq------0) -

This results in,

_l_\/(270 172 +6+62 +..+0%72)

lue = +
2 (Yo +171) A21)
o) el . & '
=120 + 1) +0+62 +.+68%72)  2(yo +7y)(1+ 0 +..+0772)
where,
o
Y I—Yl -0

The artificial regression model is now given as

I —He _ _1_\/(2*{0 +w1)2(1+6+62 +..4+0%72) N
D, 2 (Yo +vr1)
1.2 (A2.2)

n-| Yle ut_j St

+
= 2\/(y0 +W1)(1+9+92 +..+0772) 2J(70 +yy)(1+8 +.+0772)

Hence, (A2.2) may be written as the artificial regression model,
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- -1 A2
t =1
where,
ét 2\/( 2 n-2
Yo+ )A+0+07 +. +67)

is the homoskedastic error. Alternatively,

T n—l
o bor Thul g, (A2.4)
D; D, =1

Running the regression A2.4 and using the b; coefficient estimates, the implied values for

Yo,.Y1 and 6 may be derived. The values are given by,

[on
[=n

g=02_bs _bs (A2.5)
1 by b3
y1 =1-0+(1-6)2 +4bgb; (1-6) (A2.6)
and
Y-y, -6)
1 1 (A2.7)

Y0 =
462 (1-0)(1+6+6% +0° +...+6%72)

Notice that, while the value of 8 remains unchanged from that obtained from the Taylor

expansion, the values of yg and y; are different.
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Artificial Regression model: Taylor series first-order approximation of Ju,| followed by

substitution of the conditional variance term:

We expand |u,| as a 3-dimensional, first order, Taylor series approximation in

u%—l’c’%—l and g, about (yg,70,0)-

This results in,

lu, |= Y0¥ 2V0Y1 +2Y00 Y011 —Y08 | nuin
2Jvo(1+y, +90) 2Jyo(l+y; +9)
2
foi-) + Et
2yo(l+7,+6)  2\/y9(1+7, +6)

(A2.8)

Recursively substituting for lags of 62 in (A2.8), we now obtain the artificial regression
g g t

model as,

L —He _ 2Y0 +YoY1 +706(2+9+62 +...+6n"2)

Dy 2o +7, +8)

<+

. (A2.9)

n-1 Ylej—luf_ : &

T — L

F12V10(L+71+8)  2\fyo(l+y, +6)
Hence, (A2.9) may be written as the artificial regression model,

I —H nl 2

5 =bo+ T bjur;+& (A2.10)
t =1
where,
€t

S vy
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CHAPTER 3
THE INFORMATIONAL ROLE OF VOLUME IN FINANCIAL MARKETS:

AN EMPIRICAL STUDY OF THE CANADIAN STOCK MARKET
3.1. PURPOSE OF THE STUDY

The market meltdowns in the past decade highlight the strong inter-relationships
among stock returns, return volatility and trading volume.' 1987, 1989, and 1997
witnessed sharp drops in prices, high trading volume and increased future volatility.
Despite these strong linkages, while the informational role of stock prices has long been a
subject of theoretical and empirical research, the informational role of volume in
explaining asset prices continues to be peripheral in the financial economics literature.
The exception has been Blume, Easley, and O’Hara (1994) who show that volume is
informative by itself, as it serves as a signal of precision of beliefs. In particular, the
authors show that volume provides information about the quality of traders’ information
that cannot be deduced from the price statistic.

In fact, Ross (1989) suggests that volume serves as a proxy for the rate of
information flow. However, subsequent studies seem to suggest otherwise. For example,
Mitchell and Mulherin (1994) in their rigorous empirical study do not find a significant
relationship between dollar volume and public information. In addition, Jones, Kaul, and
Lipson (1994) report that transactions per se and not their size generates volatility, a

surprising result given that size of trades has been assumed in theoretical models to be

! Recent studies investigating the joint dynamics of stock returns and volume in U.S. are Gallant, Rossi,
and Tauchen (1992) and Andersen (1996). See Karpoff (1987) for an excellent review of earlier research.
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positively correlated with the precision of information of informed traders. Their study
suggests that different trading variables, such as number of shares, dollar volume or
number of transactions have different information implications. While these authors
suggest that their findings support the mixture of distributions hypothesis (MDH),
Lamoureux and Lastrapes (1994) and Hiemstra and Jones (1994) find contradictory
evidence.? To confound the situation further, the linear and nonlinear causality results
reported in Hiemstra and Jones (1994) and Gallant, Rossi, and Tauchen (1992) for U.S.
markets are not in agreement.

In addition, earlier work has mainly focused on the U.S. markets. Evidence from
a new sample such as the Canadian markets, which has similar market structures and
security regulations as the U.S., reduces the data snooping bias connected to financial
models. Furthermore, the U.S. market captures international influences and can serve as
an information flow measure for the Canadian market, assuming that any event of
international importance to Canada that does not originate in the U.S. will also be
important to the U.S. and will therefore be reflected in the U.S. market.®> In addition,
while previous empirical work (see Gallant, Rossi, and Tauchen, 1992 ) did indicate that
prices and volume should be investigated together, the focus of popular research has
been on intra-day patterns rather than interday dynamics. Typically there are few explicit

predictions regarding the relations between these variables at the daily frequency.

? The MDH is primarily statistical in nature and asserts that volatility and volume are positively correlated
because both are positively related to the number of information arrivals.

} Foerster and Karolyi (1993) have found that Canadian securities are priced to reflect their exposure to the
US market. Karolyi (1995) showed that the magnitude and persistence of S&P500 shocks is greater for
non-interlisted stocks, but overall the influence on the volatility of Canadian financial markets of US based
stock price movements is weaker than previously understood and has declined over time.
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In this paper, we combine these strands of literature and re-examine the
informational role of volume in financial markets by empirically investigating the
inter-day dynamic linkages between stock returns, return volatility and trading volume
using a popular econometric model and a new data set, the Canadian market aggregates.*
According to Gallant, Rossi, and Tauchen (1992) “theoretical models have not evolved
sufficiently to guide the specification of an empirical model of daily stock market data.”
The task of current research is to develop a suitable parametric framework for using
volume to understand market behavior.” As in Blume, Easley, and O’Hara (1994)
volume is important in our model since it affects the behavior of the market rather than
merely describing it. Our model assumes that stock returns and volume are not equal in
their capacity to discover new information about asset prices. Traders use the
information contained in volume. Traders learn from volume and use volume in their
decision making. The volume statistic conveys information that is not contained in the
price statistic.

This paper examines the short-run dynamic relationships among prices, volatility
and trading volume in the Canadian stock market.® In particular, we investigate (i) the
asymmetries and nonlinear dependencies in stock returns, return volatility and volume;

(11) the impact of U.S. returns on Canadian prices, volatility and volume; (iii) the

* We study market aggregates instead of individual stocks first, because our objective is to study the
market-wide impact of information, in particular the effectiveness of volume proxying for rate of
information flow. Furthermore we are interested in assessing the robustness of findings in the U.S. markets
considering the similarities between U.S. and Canadian markets.

5 Gallant, Rossi, and Tauchen (1992) in their study use nonparametric methods throughout.

¢ Trading volume refers to number of shares traded, dollar volume, number of transactions, size (share),
and size (value).
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importance of volume in price formation after using new proxies for information flows;
(iv) the relationship between contemporaneous returns, volume and volatility in a
parametric estimation context that accounts for conditional heteroskedasticity; (v) the
interdependencies in return and volume volatility and (vi) the differences in information
content in trading volume variables as reflected in prices. To our knowledge, this is the
first comprehensive study investigating these issues. Furthermore, this is the first such
study using Canadian data.

The remainder of the paper is organized as follows. In the next section we present
the data description and the descriptive statistics. In section 3.3, we briefly review the
stylized facts on the stock return-volatility-volume relationship in the U.S. markets and
then present our results for the Canadian data. Here, we examine the correlation and
asymmetric relationships among these variables. The results for the causality
relationships are presented in section 3.4. Next, we present the univariate models in an
estimation context that accounts for the heteroskedasticity in these variables in section
3.5. Sections 3.3-3.5 provide the motivation for section 3.6, where we present the
empirical framework for analyzing the stock return-volume dynamics in a multivariate
framework using the multivariate generalized autoregressive conditional heteroskedastic
(MGARCH) family of statistical models. The advantage of this specification is that it
permits the volatility of price changes and volume, as well as price changes and volume
themselves to interact, while reflecting the asymmetric and causality relationships in
returns and volume themselves. While our study is descriptive in nature, we believe that
investigating the joint dynamics of stock prices and volume, will provide further insights

into the role of volume. Section 3.7 concludes.
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3.2. DATA DESCRIPTION AND SAMPLE CHARACTERISTICS

We investigate the Canadian aggregate stock market during the period 1980 to
1995.7 Since the U.S. and Canadian markets are highly correlated and have similar
market structures and security regulations, we can use the U.S. market to capture
international influences and to serve as a proxy for the amount of daily public information
that flows into the Canadian market.* We assume that any event of international
importance to Canada that does not originate in the U.S. will also be important to the U.S.
and will therefore be reflected in the U.S. market.” Moreover, our focus is on public
information, since we are dealing with market aggregates. In addition, since the markets
we examine are trading in the same time zone, we do not have the measurement problems
associated with asynchronous trading.

All series analyzed in this study represent daily data. Canadian stock index
returns and volume data have been obtained from the TSE-Monthly Review and the TSE
300 Index publications of the Toronto Stock Exchange. U.S. stock return data has been
obtained from the tapes provided by the Center for Research on Security Prices (CRSP).
We use the time series of closing values of daily TSE300 Total Return Index (TRI) and
the CRSP value weighted index for the period January 2, 1980 to December 29, 1995.
Both indexes are value-weighted composite indexes with distributions. The first

difference of the natural logarithm of the closing values of each index series is used as a

7 While return and share volume data for the Canadian market is available from 1977, transaction data is
available only from 1980. Hence, we choose the period 1980-1995 for the analysis.

8 Cheung and Kwan (1992) find that absence of public information due to the closing of U.S. markets
affects both volatility and trading volume in the Canadian markets.

? Our assumption is consistent with Hamao, Masulis, and Ng (1990) who investigate correlations between
price changes and volatility in intemational markets and report that U.S. markets lead the Japanese
markets.
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measure of return. TSE returns will be hereafter referred to as returns and the CRSP
value-weighted index returns will be hereafter referred to as U.S. returns.'® We include
daily returns for which the respective close-to-close trading periods in New York and
Toronto are perfectly aligned. Although 30% of stocks listed in the TSE index are dually
listed on either the AMEX or NYSE, Jorion and Schwartz (1986) could not reject the
hypothesis that the behavior of the interlisted and purely domestic stocks is the same.
However, Karolyi (1995) reports that the impact of U.S. innovations is different for
interlisted and noninterlisted stocks. In as much as we are examining the joint dynamics
of stock returns and volume in the Canadian market, we ignore the effect of any
interdependence between the Canadian and U.S. markets due to interlisting of Canadian
stocks in the U.S.

The raw trading volume represents the volume of all the stocks in the TSE300.
We are interested in volume levels rather than changes in volume because, in the financial
literature, the rate of information flow is revealed by the degree of price volatility (see
Ross, 1989)."" As volume is positively correlated with volatility, it in turn implies that
trading volume is a proxy for the rate of information flow. For example, share volume
proxies for information via its correlation with price volatility; value being a product of

share volume and share price could reflect price or quantity volatility, both of which

' The series represent own currency returns. Karolyi (1995) has shown that there is no significant
difference in his results in his study of international transmission of return and volatility, whether he used
U.S. $-denominated returns or own currency returns.

" It may be noted that our preliminary analysis with differenced trading variable series did not indicate
siginficant differences from detrended levels of trading variables. In as much as we are interested in the
informational role of volume in this study, we preferred to work with detrended levels in this study.
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proxy for information. In addition, we are also interested in working with stationary
series to avoid making spurious inferences. However, the volume series exhibits a trend
and significant trend related variability. We therefore, take the natural log to stabilize the
variance and detrend by subtracting a forty day backward moving average from the log
volume series.”? While trend is removed, considerable persistence remains.

We also consider value, transactions and size, as additional proxy variables for
trading."® Earlier research as in Mitchell and Mulherin (1994) and Jones, Kaul, and
Lipson (1994) suggests that various trading variables might be capturing different
portions of the information flow with differing accuracies. Our study is also motivated
by the premise that different trading variables might differ in their quality by capturing
different portions of the information flow. For example, in contrast to volume, value and
size (value) might better reflect the impact of institutional trading versus non-institutional
trading. Transactions and volume might more effectively capture the impact of noise and
feedback traders.

The trading variable, value is the difference from the forty-day backward moving
average of the natural log of the aggregate trading value of the stocks in the TSE 300
composite index. Likewise, the variable, transaction is the difference from the forty-day
backward moving average of the natural log of the aggregate number of transactions of

all the stocks in the Toronto stock exchange. Similarly, the variable, size (shares) is the

12 Campbell et al. (1993) shows that detrended volume has superior explanatory power to total volume.
LeBaron (1992) shows that the qualitative features of the time series of the trading volume measure are
fairly robust to the method of detrending. Note that hereafter volume, value, transactions and size refer to
the respective detrended variables.

13 Mitchell and Mulherin (1994) while examining the impact of public information on the stock market
consider value as a trading variable. Jones, Kaul, and Lipson (1994) show that the volatility of daily
returns is more closely related to the number of transactions than to volume.
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difference from the forty-day moving average of the natural log of the aggregate trading
volume divided by the aggregate number of transactions of all the stocks in the Toronto
stock exchange, while the variable, size (value) is the difference from the forty-day
moving average of the natural log of the aggregate trading value divided by the aggregate
number of transactions of all the stocks in the Toronto stock exchange. This procedure
for detrending will not remove a unit root if one is present, but the Dickey-Fuller tests
suggest that none of the series under analysis have a unit root.'* Our model does not seek
to explain the source of market growth of trading volume, value or transactions that could
be due to market growth, institutional changes, increased adoption of risk management
techniques, mutual funds, etc. Our model seeks to explain the fluctuations around the
growth trend.

Returns observed after holidays in either markets and on weekends are denoted by
separate dummy variables. As in Karolyi (1995), we eliminate the four influential daily
observations from October 16 to October 21, 1987 around the market crash. Our

complete data set consists of 3,921 observations."

3.2.1. Summary Statistics and Autocorrelations of Returns and Trading Variables
In Table 3.1 we present the univariate descriptive statistics for the daily stock
returns of the TSE300 TRI index, the CRSP value-weighted index, volume, value,

transactions and size. All series are significantly negatively skewed and fat-tailed clearly

" We do not report these results here for brevity. For each series, the joint hypotheses test that each
detrended data series has a unit root was rejected at a 1% significance level.

' As an aside, note that in our preliminary estimations in a multivariate GARCH framework in section 3.6,
we used the entire series, without eliminating outliers. We used dummy variables for the crash days.
However, in most cases, the models failed to converge
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indicating that the unconditional distribution of these series is not the normal distribution.
The significant excess kurtosis indicates that both returns and volume might have time
varying conditional volatility. In this context, Pagan and Schwert (1990) emphasize that
the underlying assumption, that the unconditional variance of the series is constant,
should be tested before testing for conditional volatility. Following Pagan and Schwert
(1990), we use the Cumulative Sum (CUSUM) tests and find that the stock return and the
trading activity series are variance stationary.

Table 3.1 also reports the first-order sample autocorrelations and Ljung-Box (LB)
portmanteau test statistics for up to 12 lags for all the series being investigated. For
Canadian and U.S. returns series, the sample autocorrelations are positive and significant,
possibly due to nonsynchronous trading. All the trading activity variables also exhibit
strong positive first order autocorrelation. The Ljung-Box (LB) portmanteau statistics for
the residuals at lags 6 and 12 indicate that all the trading activity series are highly
persistent, consistent with Ajinkya and Jain’s (1989) empirical findings for U.S. data.
The LB statistics also show that the autocorrelation in the trading variables is much
higher than that in the squared returns, implying a mixture model for returns and
volume.'® This autocorrelation in trading variables could also arise if traders receive
information and rebalance their portfolios with a lag or if traders choose to trade

periodically to minimize trading costs, as suggested by Admati and Pfleiderer (1988).

'¢ The mixture of distribution hypothesis (MDH) is primarily statistical in nature and asserts that volatility
and volume are positively correlated only because both are positively correlated to the number of daily
information arrivals which is the mixing variable
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The significant autocorrelations of the squared residuals from ARMA models suggest
nonlinear dependence in the returns, volume, value, size and transaction series that arise
possibly due to time-varying conditional variance. It may be noted that the size series
exhibit the least heteroskedasticity. A class of models permitting dependence in second-
order moments is the autoregressive conditional heteroscedasticity (ARCH) model
introduced by Engle (1982). Univariate and multivariate ARCH tests indicate that all the
series are conditionally heteroskedastic and imply that a GARCH specification might be
appropriate to characterize their behavior over time. "’

In general, the univariate analysis indicates that the Canadian series exhibit
properties similar to that of U.S. However, we document the heteroskedasticity of the
trading activity series. This has not been done for the U.S. markets. If volume is
proxying for rate of information, the heteroskedasticity in the series perhaps suggests that
information arrives in clusters. In summary, the preceding results indicate that the returns
and volume series exhibit conditional heteroskedasticity and an ARCH type formulation

might be appropriate to describe their behavior over time.

3.3. STYLIZED FACTS - THE CANADIAN SCENARIO-I
3.3.1. Contemporaneous Cross-Correlation Analysis- Canadian Markets
Previous empirical work on U. S. markets has documented a positive
contemporaneous correlation between stock returns and trading volume and between

absolute value of stock price changes and volume. This relationship has been

'7 We use the procedure suggested by Engle (1982) to test for ARCH in the univariate series. We follow
Engle and Susmel’s (1993) procedure to conduct multivariate ARCH tests. These results are not reported.
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investigated at various frequencies.'"® Among others Karpoff (1987), Gerety and
Mulherin (1992), and Gallant, Rossi, and Tauchen (1992) have documented the positive
contemporaneous correlation between volume and price volatility in U.S. markets. It is
hypothesized that volume is related to volatility because volume reflects the extent of
disagreement about a security’s value based on either differential information or
differences in opinion.

Table 3.2. presents the contemporaneous correlations between the series. This
table includes two additional series, the absolute TSE300 TRI index return series and the
squared return series. Both, the absolute returns and squared returns series are commonly
used as proxies for stock return volatility. The intuition underlying the analysis of
squared returns correlations is similar to the intuition underlying ARCH, that news or
information comes in clusters. While the innovations are serially uncorrelated, they are
not likely to be independent since information tends to be positively autocorrelated. The
clustering in information arrival sequences could likely arise due to a number of common
macro factors impacting the overall economy. In fact, recent findings by Andersen and
Bollerslev (1997) support the interpretation of volatility as a mixture of numerous
heterogeneous short-run information arrivals.

The TSE returns and volatility are positively contemporaneously correlated with
the trading variables, with magnitudes similar to that found in U.S. markets. This
suggests that days with high volume are associated with high price volatility. In fact, the

sizes of the correlations suggest that transactions, volume and value might be a better

18 Karpoff (1987) and Tauchen and Pitts (1983) provide surveys.
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proxy for information flow when compared to size in capturing information flow with
greater accuracy. Our subsequent analysis indicates that different trading variables
appear to be capturing different portions of the information flow. However, considering
the low sizes of the correlations, it is likely that volatility might be a better proxy for
information flow as suggested by Ross (1989). Interestingly, contemporaneous returns
and the proxy volatilities are negatively contemporaneously correlated. This is similar to
the findings of Nelson (1991), who uses a well-specified econometric model to show that
in the case of daily retumns, the relation between conditional mean and conditional
variance is significantly negative.

The preceding findings suggest that in addition to volume, transactions, value and

size could also proxy for rate of information flows.

3.3.2. Contemporaneous Cross-Correlation Analysis- Canadian Markets with U.S.
Stock Returns

The contemporaneous correlation between the U.S. and Canadian stock return
series is positive and strongly significant, not surprisingly considering the significant
integration of these two markets. Further, like TSE returns, U.S. returns are positively
albeit, less strongly contemporaneously correlated with the trading variables.
Interestingly, contemporaneous U.S. returns and Canadian return volatilities are
negatively contemporaneously correlated, a relationship similar to that found between

Canadian returns and volatility.
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3.3.3. Non-contemporaneous Cross-Correlation Analysis- Canadian Markets

In contrast to contemporaneous relationships, lead-lag relationship between stock
prices and volume has received much less attention. Black (1976) and Christie (1982)
investigating stock returns and volatility have shown the well known leverage effect,
where stock volatility tends to fall subsequent to an increase in stock prices and rise
following a decline in stock prices. Investigating the lead-lag relationships between
absolute stock returns and volume, Smirlock and Starks (1988) find a lead-lag
relationship from volatility to volume.

In Table 3.3 we report the non-contemporaneous cross-correlations between
returns, the squared return series and the trading variables. The leverage effect is clearly
apparent as returns are significantly negatively correlated with future stock volatility.
Panel A also indicates the asymmetry in the trade-return relationship with stronger
positive feedback from returns to volume, value, transactions and size (value). The effect
on size (shares) is symmetric and short-lived. Similarly, Panel B suggests the asymmetry
in the trade-volatility relationship with stronger positive transmission of movements from
return volatility to all trade variables contemporaneously and to volume, value and
transactions at lag 1 in contrast to that found by Smirlock and Starks (1988). Panel C
indicates the expected significant positive correlation between volume, value, size and
transaction contemporaneously and at leads and lags. These correlations indicate the
importance of considering both returns and return volatility in modeling the joint
dynamics of returns and volume.

Overall, the correlation analysis indicates a difference with the U.S. market in that

there is a unidirectional lead-lag effect from return volatility to volume. The analysis also



76

suggests that in addition to volume, value, transactions, and size (value) could also proxy

for information. Size (shares) seems to behave differently.

3.3.4. Non-contemporaneous Cross-Correlation Analysis- Canadian Markets with
U.S. Stock Returns

Interestingly, panel C also shows the strong positive lead effect of U.S. stock
returns on volume. Further, the effect of lagged U.S. returns on TSE returns and volume,
imply that lagged U.S. return could serve as an information measure for the Canadian
markets. The correlation analyses suggest possible interesting causality relationships that

are discussed in the next section.

3.3.5. Asymmetries in Canadian Markets

Karpoff (1987) reports that previous researchers have found that volume is higher
when prices increase than when prices decrease for U.S. markets, possibly due to short
sale constraints. This effect could be shown via the following simple regressions:

Vi =B1o +B1iR +up (3.3.1)

Ve =Bag +B21 [ Ry [+uy, (3.3.2)
where, V, represents the trading variable, R,, stock returns and |R |, absolute value of
stock returns. Estimates of | and B, if positive, would support the preceding
hypothesis. While previous research has focused on the above two relationships,

Assogbavi et al. (1995) and Chamberlain et al. (1991) indicate that the impact of any
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asymmetry in the volume-price relationship can be tested directly using the following
regression:
Vi =B30 +B31 Ry [ +32DR [Ry [ +u3, (3.3.3)
In addition, we test the model in (3.3.4) to identify the precise nature of the nonlinearity.
Vi =Ba4g +Bar [ R | +B42DR¢ [ Ry | +B43DR ¢ +uy (3.3.4)
DR, is a dummy variable with DR, = 1 when R, >0 and = 0 otherwise. Coefficients 83;,

B42, and P43 if positive would support Karpoff's findings. We reproduce these
specifications, with the addition of calendar dummies and lagged volume to account for
the autocorrelation, to see if asymmetry holds for Canada. Model 1 of table 3.5 reveals
that B3, is significant at the 1% level suggesting an asymmetry in the relationship. This
supports Assogbavi et al’s (1995) conclusion that there could be an influence of short
sales on volume in contrast to Chamberlain et al’s (1991) findings. In addition, model 2
in table 3.5 reveals that B43 is significant at the 10% level hinting at a stronger
asymmetry in the relationship. Considering the significant asymmetry in the trading
volume-return relationship, what may be also be occurring is an asymmetry in the pricing
mechanism itself. We proceed to test it next.

Daily returns on the Canadian market are well specified by model 1 in Table 3.4

(p-values in parentheses), in as much as the errors terms are not serially correlated.
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R, =-0.069—0.1443 M, —0.0928H, +0.0693R,_; +0.1122DR,_; +
(0.0029) (0.0000) (0.0800)  (0.0171) (0.0004)

0.2539DR,_; *R,_j +1s,
(0.0000)

(3.3.5)

where M, and H, are dummy variables for Mondays and holidays, respectively. Thisis a
threshold autoregressive process (TAR) indicating that positive returns have a larger
impact on next day’s returns than do negative returns. A one percent increase today on
average pushes up tomorrow’s return by one third of a percent whereas the same
magnitude fall in return causes tomorrow’s return to diminish by under one-tenth of one
percent. An old market adage is “buy on rumor, sell on news” and equation (3.3.5) may
be the result as rumors are much more plentiful than news. Another possibility is that
short sales restrictions have an impact on returns.

The U.S. experience is similar to the Canadian one. As shown in model 2 in
Table 3.4, a regression similar in specification to (3.3.5) using daily returns on the CRSP
value weighted index found the slope shifter dummy variable significant at the 5% level.
The intercept dummy variable is not significant, neither is the lag of the return. Thus
there appears to be a threshold type nonlinearity in both markets. In the U.S. it shows up
most strongly in return’s impact on trading activity whereas in the Canadian market it is
also strong in returns themselves.

From section 2, it has been observed that returns lead volume. Hence, we test if

the asymmetric effect is also noncontemporaneous. A regression of the form,
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Vi =Bso +Bs1 |R¢ [+Bs2DR¢ [ R | +Bs3DR¢ +Bs4 [Re_p | +
BssDRy_1 |Ry_1 | +Bs¢DR | +.oeeeeeeee +Ugt

(3.3.6)
where .... denotes lagged volume and calendar variables, would find B s5andPsepositive
and significantly different from zero. Model 3 in Table 3.5 displays the result. Notice
that B is positive and significant, implying that returns lead volume in a nonlinear

fashion. Thus the final connection between volume and return (without searching any

further) is given by (estimates are in model | of table 3.6).

VOlt =a10 +ayy I Rt l+a12DRt*l Rt l+al3 lRt-l l+ (3.3.7)
o 4DR e *[Rep [+ays [Reg [+erronnnnn. +Vpe

Notice that equation (3.3.7) confirms the correlations presented in section 3. The
relationship between volume and returns is more than just contemporaneous. Repeating

the analysis for the other trade variables yields for value (see model 2 in table 3.6),

Val; =agg +ag; | Ry |+a DR *| Ry |+a3 Ry |+

. (3.3.8)
DR ¥Ry g [+025 [Reop [+eerne # V2
for transactions (model 3 in table 3.6),
Trans; =a3g +a3; | Ry [+032DR*[Ry [+a33 R [+ (3.3.9)
a34DR 1 *[Ryop [ +035 [Rop [ e+ V3¢
and for size (shares) (model 4 in table 3.6),
Size(shares), = aqp + 41 |R¢ | +0g2DR*| Ry [+043 [Re—y [+ (3.3.10)
+G.44 |R[_2 I+ ....... +V4t
and for size (value) (model 5 in table 3.6),
Size(value); =asg +os5p | Ry | +053DR*[ Ry [+as3 [ Ry [+ (33.11)
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Some points to note are that lagged absolute returns are important for all the trade
variables and the impact of positive returns is similar across the different series.
Comparisons of sums of the coefficients of |R,,| and DR, |R,,| of the estimated versions
of equations (3.3.10) and (3.3.11) show that the influence of positive returns today is
positive on the size (value) of trading tomorrow but negative on the size (shares) of
trading. This implies that market increases on average result in a fall of average order
size (number of shares). The shift from larger to smaller orders may indicate the appeal
of price increases to noise traders or informed traders disguising their trades by reducing
trade size. The results also suggest that price increases tend to lead to increased trading
in higher priced stocks the next day. Market lore has a “flight to quality” happening in
bad times. At least in the very short run, the opposite seems to be true. The preceding
suggest that positive returns should increase transactions contemporaneously and is
consistent with our findings.

From this section, two important conclusions can be drawn. The dynamics
between trade variables and returns must incorporate lagged effects and nonlinear
influences. Of the five trade variables, size (shares) seems to be a noisy variable as it has
the lowest correlation with volatility and is also unable to capture the asymmetry in the
trading variable return relationship. To help sort out the paths of impact, we turn to linear

and nonlinear causality analysis.
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3.4. STYLIZED FACTS - THE CANADIAN SCENARIO - II
(LINEAR AND NONLINEAR CAUSALITY ANALYSIS)

There are several possible explanations for the presence of a causal relationship
between stock returns and trading volume. The sequential information arrival models of
Copeland (1976) and Jennings et al. (1981) imply a positive causal relation between stock
prices and trading. Lakonishok and Smidt (1989) show that tax related motives imply a
negative relationship from lagged returns to volume while non-tax related motives imply
a positive relationship."” Thirdly, since noise traders do not trade on the basis of
economic fundamentals, their trades impart a transitory mispricing in the short run [see
DeLong et al. (1990)]. In the long run, the mispricing component disappears. A positive
causal relation from volume to stock returns suggests that noise traders cause stock prices
to move. Fourth, the positive feedback strategies of noise traders, who trade based on
past prices, suggests a positive causal relation from stock returns to volume. According
to De Long et al. (1990), feedback trading could arise due to extrapolative expectations
about prices, or trend chasing. It could also be the result of stop-loss orders, liquidation
of positions by investors unable to meet margin and short sale calls, and due to buyers of
portfolio insurance.

In the case of U.S. markets, recent evidence in Hiemstra and Jones (1994)
demonstrates unidirectional linear Granger causality from stock returns to trading volume
and significant nonlinear bidirectional Granger causality between stock returns and

trading volume. The authors find evidence of nonlinear causality from volume to returns

' Tax-related reasons are associated with the optimal timing of capital gains and losses realized during the
calendar year. Non-tax related motives include window dressing, portfolio rebalancing etc.
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even after controlling for volatility persistence in returns. However, Gallant, Rossi, and
Tauchen (1993) find no evidence of feedback from volume to returns or volatility of
stock prices.

For Canadian markets, the preceding correlation analysis suggests significant
nonlinear dependence in returns and trading activity variables. This implies possible
nonlinear causality relationships due to simple volatility associated with information
flows. Since the correlation analysis indicates important lead-lag relationships, we use
linear and nonlinear Granger causality tests to investigate the dynamic relationships
among stock returns, volume and volatility. To control for possible interaction among the
variables, we also perform block exogeneity tests.

We use the traditional Granger causality tests to examine the linear predictive
power among stock returns, volatility and volume. The nonlinear test is a simple
modification of the linear Granger causality test using an additional asymmetric dummy

indicator for the variable whose predictive power we are testing.?

3.4.1. Strict Linear Granger Causality Testing Procedure and Results
We test Granger causality by estimating a linear reduced-form vector

autoregression(VAR):

a b
Xt =ag+ ZaiXt_i + bth—i + U,
i=1 i=1

: (.4.1)
C
Y = bo + ZciXt_i + Zdth—i + Ve, t= L,2......

i=1 i=1

% Qur nonlinear causality test is different from that of Hiemstra and Jones (1994) who use a nonparametric
approach.
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To test for strict Granger causality from Y to X, we use a joint F-test of exclusion
restrictions to determine whether lagged Y significantly predict X. If the coefficients b;
are jointly significantly different from zero, the null hypothesis that Y does not strictly
Granger cause X is rejected. If the coefficients b; and c; are jointly significantly different
from zero, the null hypothesis of no bidirectional causality is rejected.

We remove systematic day of the week effect by using dummy variables in
equations (3.4.1). We estimate the parameters using OLS with heteroskedasticity
consistent standard errors using White’s (1980) procedure. We determine the lag lengths
for the polynomials using the Schwartz’s information criterion (SIC).?' The residuals in
the system of equations in (3.4.1) are each serially uncorrelated.

We report the linear Granger causality tests in Table 3.7. As in Hiemstra and
Jones (1994), the tests show evidence of unidirectional strict Granger causality from
stock returns to volume but not from volume to returns. In addition, we find
unidirectional causality from returns to value, transactions and size (value). There is no
strict Granger causal relationship between returns and size (shares). This probably arises
due to a similar impact on volume and transactions washing out the effect on size. We
find a similar unidirectional relationship between the trade variables and return volatility.
We also find strict bidirectional Granger causality between returns and return volatility.”

Overall, the causality results suggest the presence of traders, who use positive feedback

3 The Akaike’s (1974) information criterion which is defined as AIC = -2*max L(y) + 2*k, tends to
overparametrize models. We therefore choose the SIC where SIC = -2*max L(y) + k*In (T) where L is the
log-likelihood function, k is the number of parameters in the estimated model, and T is the number of
observations and v is the parameter vector.

We also find significant bidirectional contemporaneous causality between returns and return volatility,
returns and the trade variables, return volatility and the trade variables and between the trade variables
themselves. These findings suggest that common factors impact returns and the trade variables.
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trading strategies based on past prices. It also implies that informed traders camouflage
their order sizes, since size (share) is not impacted by either returns or return volatility.
However, since size (value) is impacted by returns and return volatility, as before it

suggests a movement toward higher priced stocks.

3.4.2. Nonlinear Granger Causality Testing Procedure and Results

We test nonlinear causality by estimating a modification of the linear reduced-

form vector autoregression(VAR):*

a b
X[ = ao + Zaixt_i + ZblYt-i +eDt +ut
i=1

i=1 i=

. (3.4.2)

d '
Yt = bo + ZCiX[_i + zdth_i + th +Vt,t = 1,2 ......
i=l 1

1=

i=
where,

D,=1,if Y, >0, else D=0
and,

D, =1, if X,,> 0, else D; =0

To test for nonlinear causality from Y to X, we use a joint F-test of exclusion
restrictions to determine whether lagged Y and D, significantly predict X. If the
coefficients b; and e and are jointly significantly different from zero, the null hypothesis

that Y does not strictly nonlinearly Granger cause X is rejected.

3 Hiemstra and Jones (1994) perform nonlinear causality tests using a nonparametric approach.
They suggest that linear Granger causality tests have weak power when testing nonlinear relationships.
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As in the case of linear causality testing, we remove systematic day of the week
effect by using dummy variables in equations (3.4.2). We estimate the parameters using
OLS with heteroskedasticity consistent standard errors using White’s (1980) procedure.
We determine the lag lengths for the polynomials using SIC. The residuals in the system
of equations (3.4.2) are each serially uncorrelated.

We report the nonlinear Granger causality tests in Table 3.8. At a 5% significance
level, the tests show evidence of unidirectional nonlinear Granger causality from TSE
stock returns to volume/value/transactions/size (value) but not to size (share). Ina
departure from linear causality, we find that volume and the size variables do not
nonlinearly cause stock return volatility, while value and transactions do. We also note
that return volatility nonlinearly causes volume, value, transactions and size (value), but
not size (share). As before, we also find bidirectional nonlinear Granger causality
between returns and return volatility. Our results are consistent with Gallant, Rossi, and
Tauchen (1992) and Tauchen, Zhang, and Liu (1996) who find evidence of strong
nonlinear impacts from lagged stock returns to current and future trading volume but
differ from Hiemstra and Jones (1994) who find bidirectional causality between volume

and returns.
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3.4.3. Summary of Causality Results

A: STRICT LINEAR GRANGER CAUSALITY

Ret =>Vol, Vol=sRet, Val <Vol; Val ©Trans oco>Vol, o> Val,

Ret =>Trans, Trans s Ret, Val <>Size (Share/Val); c<>Trans,

Ret =Val, Val -sRet, Vol <Trans; o=>Size (Val),

Ret =>Size (Val), Size (Val) »Ret Yol <Size (Share/Val) Size (Val), ¢
Trans <> Size (Share/Val)

Ret Size (Share) Reteo o = Size (Share)

Size (share)-» Ret Size (Share)» o

B: NON-LINEAR GRANGER CAUSALITY*

oc=>VOL, VOL» o

Overall, the Granger causality results indicate linear and nonlinear causality from
returns to volume, value, size (value) and transactions and volatility to value, size (value)
and transactions, consistent with noisy traders’ feedback strategies.”® There is
surprisingly no causality from returns to size (shares) nor volatility to size (shares). This
finding implies that an increase in price leads to an increase in volume and transactions
leaving the size of the trades unchanged. It could also arise due to informed traders
camouflaging their trades.

However, these results are different from that of U.S. where bidirectional
nonlinear causality exists between returns and volume. Assuming that volatility is linked

to the rate of information flow, as suggested by Ross (1989), the nonlinear causality from

* In panel B, only changes in causal relationships from those in panel A are shown.
3 The causality tests from U.S. returns to the Canadian trade variables are similar but weaker than those
with Canadian returns. These results are not reported here.
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volatility to volume could be due to volatility effects associated with information flows.
The causality results are consistent with a number of explanations. Non-tax
related motives, noise trading and feedback trading could be driving the causal
relationships from stock returns to volume, value, size (value) and transactions. Further,
causality from value and transactions to volatility tends to support a sequential
information arrival. Interestingly, our results also provide evidence that value and
transactions are the most effective proxy for information. Size being a ratio of
volume/value to transactions is a weak proxy. Our results lend support to Gallant, Rossi
and Tauchen’s (1992) contention, that the studies of joint dynamics of stock returns and
volume provide more information than a univariate analysis.® These findings provide the
underlying structure for the empirical univariate and bivariate models of stock returns

and volume that we test in the subsequent section.

3.5. UNIVARIATE SPECIFICATIONS FOR STOCK RETURNS, VOLUME,
VALUE, TRANSACTIONS, AND SIZE
[t has now been widely documented that asset return series are conditionally
heteroskedastic. Though, there has been extensive research on heteroskedasticity in the
stock return series, none have investigated volume. Heteroskedasticity in volume
suggests that information arrives in clusters. Indeed, in their theoretical model, Foster

and Viswanathan (1993) show that if public information is substantially different from

2 The block exogeneity tests (results not reported here) suggest that in a multivariate framework returns,
return volatility and the trade variables have a contemporaneous causal relationship with respect to each
other. The tests indicate the importance of studying the dynamics of returns, volume and volatility in a joint
framework.
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what investors expect, then an increase in price volatility and trading volume occurs.
Their model separates the information and volume aspect and predicts conditional
heteroskedasticity in trading volume and positive autocorrelation in volume.

Since the descriptive statistics in section 3.3 indicate the presence of
heteroskedasticity in both the return series and the trade variable series, we propose
appropriate specifications for the univariate dynamics of stock returns and volume. We
consider the univariate GARCH model based on the methodology developed by Engle
(1982) and Bollerslev (1986) to describe the dynamic behavior of volatility.”’ These
models permit nonlinear relationships in the second moments wherein forecasts of future
volatility are made based on past information. The univariate model is our benchmark
model in that we permit the cross effects of returns and volume only in the mean equation
but not in the conditional variance equations. We provide specifications for returns and

each of the trade variables.

3.5.1. Univariate GARCH Model of Stock Returns

We present the specification for TSE returns in Table 3.9.% Our conditional mean
specification models the mean return as a VAR process. We follow the approach of
Gallant, Rossi, and Tauchen (1992) in using the dummy variable specification for

weekend and holiday effects in the conditional mean. Since the correlation analysis in

7 Bollerslev, Chou, and Kroner (1992) provide an extensive survey of the applications of this
methodology.

2 We also estimated a GARCH (M) specification, with a function of the conditional variance in the mean
equation. As in Baillie and DeGenarro (1990), we do not find the M-term significant and have therefore
dropped it from our final specification.
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section 3.3 confirms a significant lead from the U.S. returns to the TSE-300 return, we
use lags of the U.S. return in our mean specification. Drawing on the results from section
3.3.5, we incorporate the asymmetry variable in our conditional mean specification. We
have followed the approach of Baillie and Bollerslev (1987) in using the dummy variable
specification for weekend and holiday effects in the conditional variance equation. We
justify this mean specification based on the causality and correlation analysis and the
optimality of the model based on Schwartz’s information criterion.

Hence, the following univariate GARCH model is specified as the benchmark

model for the TSE returns (see model | in Table 3.9).

Ry =20 +DrmonMON, +D; potHOL, +D; 55,DR | + (3.5.1)
Dy asyss (DR *Ry_1)+¢ R + p%_l ®rus,pRus,-1 tun
where,
upe | Ie-r ~ N(O,hy) (3.5.2)
and,

2
hey=arg +OorUp g +Brihe 1 +RDponMON +RDp HOL (.5.3)

where, R, is the TSE 300-TRI return and the dependent variable. R, is the return on the
CRSP equally weighted index. MON, is the dummy variable equal to 1 for Monday and
0 otherwise. HOL, is similarly defined for days that follow a holiday in either market.

DR,, is a dummy variable equal to | if R, ;>0 and 0 otherwise.
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We consider various specifications for the conditional variance equation for the
GARCH/GARCH-M functional form. We estimate Bollerslev’s (1986) GARCH,
Nelson’s (1991) EGARCH, and the Glosten, Jagannathan, and Runkle (GJR), (1993)
model with and without the M specification. Estimation is done by numerical
maximization of the log-likelihood function using the algorithm suggested by Berndt,
Hall, Hall and Hausman, hereafter BHHH (1974). Our results indicate that the
GARCH (1,1) model is the optimal model based on the SIC criterion.

Model 1 in table 3.9 is the benchmark model. We find the expected negative
weekend effect in the conditional mean equation. The asymmetry effect is positive and
significant suggesting a possible momentum effect. The positive lag effect of U.S.
returns is significant. The conditional variance results indicate a strong persistence
similar to an Integrated GARCH (IGARCH) model. The diagnostics suggest that the
standardized residuals are still significantly non-normal, being skewed and leptokurtic.
The Ljung-Box statistic indicates that the model specification is an adequate fit for the
TSE300 returns process as the higher order dependence in the squared residuals has been

removed.

In models 2 to 7 in Table 3.9, we use a variant of Lamoureux and Lastrapes’
(1990) methodology to examine whether volatility persistence in returns can be explained
when U.S. stock returns or other trade variables are used as a proxy for information. This
finding would imply that these variables proxy for information arrival time in the market.

Lamoureux and Lastrapes’ (1990) assume that returns are generated by a mixture of
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distributions with volume as the mixing variable, consistent with sequential information

flow models. Their specification is as follows:

R; =p 1 +&, (3.5.4)
where,

g¢l(Vi,8¢-1,8¢—2,------) ~ N(O,hy) (3.5.5)
and,

h; =g +ajg_; +Bihe_; +6,V; (3.5.6)

Notice that in the case of GARCH models, the persistence of variance is measured
by the sum of (a; + ). This sum tending to unity implies greater volatility persistence
Assuming that the mixing variable is weakly exogenous, the persistence of variance
should become insignificant if the mixing variable proxies for information arrival. The
model predicts that if the trading variables or U.S. returns could be used as information
proxies, then 8, will be positive and significant and o and B will be statistically
insignificant.

Following the above approach, in models 2-7, we introduce the trade variables
and lagged U.S. returns as mixing variables in the conditional variance equation (3.5.3).
Model 2 in Table 3.9 indicates that U.S. returns have no impact on persistence suggesting
that U.S. returns serve as a poor proxy for information arrival. Models 3-7 show that
despite the introduction of the mixing variables, volume, value, transactions, size (share)
and size (value), o and 3;remain significant. In contrast to Lamoureux et al’s. (1990)
findings, the GARCH effects do not disappear. Hence these variables are not generating

conditional variance in returns with sufficient persistence in them. We introduce each
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mixing variable separately in order to isolate the effectiveness of each in generating

persistence in return volatility.

Second, using a slightly different methodology, we test Jones et al.’s (1994)
findings that transactions per se and not their size generate volatility. Here, we introduce
a combination of the trading variables in equation (3.5.3). From Table 3.10, Models 1
and 2 are consistent with Jones et al.’s (1994) findings that the volatility-size relation
disappears when volume is included. Models 3 and 4 indicate that the value-volatility
relationship dominates the size-volatility relation. Note however, that in contrast to Jones
et al (1990), in models 5 and 6 we find that when volatility is conditioned on the number
of transactions, the volatility-size relation is not rendered insignificant. Thus, our
evidence suggests that the markets use information regarding transactions and size when

pricing securities.

Overall, our results are complementary to Lamoureux et al. (1994) and Liesenfeld
(1998) who find that a correlated mixing variable cannot account for all the persistence in
variance of stock returns. From an economic viewpoint, given that the size of trades is
positively correlated with the precision of information of informed traders, our finding
that there is information content in both transactions and size of trades is consistent with

both competitive and strategic models of trading.”

¥ Both competitive and strategic models deal with asymmetric information. In competitive models, the
size of trade is positively related to the precision of information possessed by informed traders [Grundy
and McNichols (1989), and Kim and Verrecchia (1991)]. This is turn implies that informed traders prefer
to trade large amounts at any given price. In strategic models, a monopolist informed trader may resort to
several small-sized trades to camouflage his trading activity [Kyle (1985) and Admati and Pfleiderer
(1988)]. However, Holden and Subrahmanyam (1992) point out that that with multiple informed traders,
the size of trades or volume of the informed agent is positively related to the precision of information, thus
implying a positive relation between volume and volatility.
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3.5.2. Univariate GARCH Model of Trading Variables

Our motivation for using a GARCH specification for volume is the theoretical
model of Foster and Viswanathan (1993) where it is shown that if public information is
substantially different from what investors expect, then an increase in price volatility and
trading volume occurs. Their model predicts conditional heteroskedasticity in trading

volume and positive autocorrelation in volume.

Our conditional mean specification models the volume as a VAR process. We
follow the approach of Gallant, Rossi and Tauchen (1992) in using the dummy variable
specification for weekday, weekend, and holiday effects in the conditional mean. Since
the correlation analysis in section 3.3 confirms a significant lead from U.S. returns to
volume, we use lags of the U.S. return in our mean specification. We also include a lag
term of the squared return in the mean equation to account for the lead effect of return
volatility on the trading variable.

As in the case of returns, we use an indicator variable that takes a value of 1 if the
preceding day’s return was positive. We use this asymmetry variable in the volume
conditional mean equation because our results suggest that this inherent asymmetry in
returns also explains the asymmetry in volume. This asymmetry variable might reflect
momentum trading. Finally in the variance equation, we introduce the square of the U.S.
lagged return to proxy for news from the U.S. market. The optimal model is selected
based on Schwartz’s information criterion. Hence, the following univariate GARCH
model is specified as the benchmark model for the trade variables (see models in Table

3.11).
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Vi =ag +Dy 1onMON, +Dv'meTUEt + Dy nu THU, +Dy s FRI +
Dv,holHOLt +¢v,rlRt—l +Dv,asyDRt—l +Dv,asyss(DRt—l *Rt—l)"'

p ) (.5.7)
Zlev,qvt—q +¢v,usRus,t-l +¢v,rqut—l +Uy
q:
where,
th II[—l -~ N(O9hVI) (3.5.8)
and,
hyy=ayp +°Lv,1u3,t_1 +By by -1 + VDyonMON, + VD HOL,
+Vyusqe-1R o 11 (3.5.9)

The estimates of the univariate GARCH (1,1) models for the trade variables are
reported in Table 3.11. We use this specification to make it comparative with return
volatility.

The results indicate the expected day of the week effect in the conditional mean
equation as in Jain and Joh (1988). The asymmetry effect is positive and significant
suggesting momentum. As in returns, the holiday effect is positive and significant in the
conditional mean equation. The overall positive lag effect of US stock returns is
significant. It may be noted that size (shares) unlike the other trade variables including
size (value) does not display the asymmetry effect nor does it respond to lagged U.S.
returns nor return volatility.

Notice that the persistence in volatility in the trade variables is less than that of

returns. In fact, transactions seem to have the most persistence. Furthermore, the U.S.
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volatility seems to accentuate the effect on the conditional variance equation for volume,
value and transactions, supporting our earlier interpretation of the U.S. market as an
information flow measure. The diagnostics suggest that the standardized residuals are
still significantly non-normal, being leptokurtic. The Ljung-Box statistic indicate that the
model specification is an adequate fit for all variables except transactions as the higher
order dependence in the squared residuals has been removed.

Overall, the univariate analysis indicates that for both returns and the trade
variables, U.S. returns serve as an information proxy. In both models the return
asymmetry is positive and significant suggesting feedback trading. Furthermore,
consistent with Liesenfeld (1998), we find that shocks in the variance process for returns
are more persistent compared to the shocks in the volume process. In addition, we find
that among the trade variables, the transactions variable is most persistent and size (share)
the least informative. These results reinforce our earlier findings that various trading

variables capture different or larger components of information.

3.5.3 Highlights of Differences in Stylized Facts between Canadian and U.S.
Markets

Interday volatility patterns in volume demonstrate strong persistence and
predictability, a finding not reported for U.S. data. We also find that the
contemporaneous correlation between the U.S. and Canadian stock return series is
positive and strongly significant. In fact, like TSE returns, U.S. returns are positively
albeit, less strongly contemporaneously correlated with the three trading variables.

Interestingly contemporaneous U.S. returns and the proxy Canadian return volatilities are
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negatively contemporaneously correlated. Overall, the correlation analysis suggests a
difference with the U.S. market in that there is a unidirectional lead-lag effect from return
volatility to volume in Canada. The analysis also suggests that in addition to volume,
transactions, value, and size could also proxy for information. We also find that lagged
U.S. returns could serve as an information measure for the Canadian markets.

We also report a threshold type nonlinearity in both returns and the trading
variables in the Canadian markets. The Granger causality results indicate linear and
nonlinear unidirectional causality from both returns and return volatility to volume, value,
transactions, and size (value), consistent with noisy traders’ feedback strategies. There is
surprisingly no causality from returns to size (share) nor volatility to size (share).

In a departure from U.S. result findings, our results indicate that there is
information content in both transactions and size of trades. Furthermore, the trading
variables are unable to account for the persistence in variance of returns.

The differences between the U.S. and Canadian market aggregates could possibly
arise due to increased institutional trading in the U.S., institutional constraints in Canada,
thinner trading in Canada, and skewness of Canadian aggregates to resource stocks.

Overall, the preceding analysis implies that market participants draw inferences
about the future value of an asset from trading and price history. There seems to be
learning from the direction of trades and prices. It also lends support to the sequential
information flow hypothesis and raises an interesting possibility that stock returns and
volume react differently to information. Hence, the study of the joint dynamics of stock
returns and trading variables should provide more information than univariate analysis.

In the next section we present our results in a multivariate setting.
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3.6. THE MULTIVARIATE MGARCH SPECIFICATION OF THE DYNAMICS
OF STOCK RETURNS AND TRADING VARIABLES

The preceding analysis suggests that a model of the joint dynamics of stock
returns and a trading variable (hereafter, volume in this section) should capture (i) the
interdependence between returns, return volatility, and volume; (ii) the U.S. influence;
(iii) the asymmetries; (iv) the time variation and persistence in the volatility of both stock
returns and volume; (v) interdependencies of return and volume volatility as they adjust
to new information and finally, (vi) the differential impact of the different trade variables.

A model that can accommodate inter-dependencies in both first and second
moments would be the multivariate GARCH specification. First, it eliminates the two-
step procedure, thereby avoiding the problem associated with estimated regressors.
Second, it improves the efficiency and the power of the test of the estimates. Third, it is
methodologically consistent with the notion that spillovers between volume and return
are essentially manifestations of the impact of the same news. It also tests the possibility
of asymmetries in the volatility transmission mechanism. The multivariate specification
has been used effectively by among others by Baillie and Bollerslev (1987), Chan, Chan,

and Karolyi (1991), Theodossiou and Lee (1993), and Karolyi (1995).

3.6.1. The Bivariate GARCH MODEL (MGARCH): Theory and estimation
Based on the preceding analysis, we propose the following general bivariate
GARCH model for the joint processes governing stock returns and volume. The mean

equations are specified in a similar fashion as in the univariate cases.
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P q
X =p+ 22X p+ X ®us,qTus,t-q T DmonMON, +Dpot HOL ¢
i=1 q=1 (3.6.1)

g 11— ~N(O,Hy) (3.6.2)

where X, =[R,, Vt]l is the vector of returns and volume.

Conditional on this mean returns specification, the vector of innovations g, is
multivariate normally distributed with a time-varying conditional variance-covariance
matrix H, given past information I, ,. The economic literature details various formulations
of H. One of the more general multivariate GARCH specifications is the positive
definite GARCH model due to Engle and Kroner (1995) (MGARCH-EK) and its

formulation is:

' q . P .
Ht =CC+ ZFiet—lslt—lFi + 3 Gth-lGj (3.6.3)
i=1 j=1

C'C is a (2x 2) symmetric parameter matrix for the constants, where C is
restricted to be upper triangular. F and G are (2 x 2) unrestricted parameter matrices with

elements f;and g;, respectively. This model allows H, to be a linear function of its own p

past values, H, and Q past values of the squared innovations, et_qe't_q . This

specification permits lagged own-market and cross-market influences in both returns’ and
volume’s conditional variance and covariance through the squares and cross-products of

both past period’s conditional variances and innovations of both variables. Karolyi
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(1995) used this specification to examine the international transmission of stock returns
and volatility between the U.S. and Canadian markets. This model guarantees the
positive definiteness of the conditional covariance matrices. According to Engle and
Kroner (1995) the necessary and sufficient condition for this type of multivariate
GARCH process to be covariance stationary is that all the eigenvalues of (F®F) + (G®G)
are less than one in modulus, where ® denotes the Kroneker product.

A more parsimonious multivariate GARCH is Baillie et al.’s (1987) constant
conditional correlation model (MGARCH-CC) previously used by Karolyi (1995) and
Chan, Chan and Karolyi (1991). The conditional variances and covariances for a

bivariate MGARCH-CC (1,1) would be specified as:

h, =c+Ae’ | +Bh,_, (3.6.4)
and,
- /2 .. ..
hij,t = p(hﬁ,thjj’t)l ,—1< Pij <l fori,j=1,2andi#j (3.6.5)
where,
hype by .
Ht=|— » by = [hyy, by ]
| haye oo
and,

¢ =[c,, ¢,]is a vector of constants.
A and B are (2 x 2) parameter matrices with elements a; and by, respectively.
In this representation, the conditional variance of each variable is modeled as a linear
function of its past period’s conditional variances and its own squared innovations as well

as the past period’s conditional variances and squared innovations of the second variable.
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Unlike the general specification, this model assumes that the conditional correlation
between the two variables is constant over time. Hence, this model assumes that all the
variations in the conditional covariances over time are accounted for by changes in the
corresponding conditional variances. This representation guarantees that the matrix H, is
positive semidefinite.

A further simplification of the constant conditional correlation model is the one
used by Theodossiou and Lee (1993), (MGARCH-CCTL). The conditional variance of
each variable is modeled as a linear function its past period’s conditional variances and
squared innovations as well as the past period’s squared innovations of the other variable.
Hence, this model permits cross-market influences in the conditional covariances only
through the past period’s squared innovations which are taken to represent the past
volatility shocks in the other markets. Notice that the parameter matrix B is restricted to
be diagonal. A necessary and sufficient condition for the constant conditional correlation
type of this multivariate GARCH process to be covariance stationary is that all the
eigenvalues of (A + B) are less than one.

Under the assumption of conditional normality, the log likelihood function for the

MGARCH models is given by

L(®) = 3T log(2n) -% Elﬂogl H, |+¢&.H¢le,) (3.6.6)
t=

where T is the sample size and © represents the unknown parameters in €, and H,. Joint

estimation of the parameters of the mean and variance is done by numerical maximization

of the conditional log-likelihood function in equation (3.6.6) using the BHHH algorithm.
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3.6.2. Proposed Bivariate GARCH (MGARCH) MODEL of Stock Returns and

Trading Variables

We report the results of the bivariate analysis in Table 3.12. We have performed
the analysis for three bivariate combinations of returns with value, transactions and size
(value). We choose these combinations because the preceding results suggest that
volume and size (share) are more noisy proxies for information flow, compared to value,
transactions and size (value). We would like to emphasize here that the bivariate system
is a heavily parametrized system. In fact, even in the simplest specification of a
bivariate MGARCH-TL (1,1), 51 coefficients are estimated including the coefficients in
the mean equations. Thus, more complex specifications lead to more parameters and
often do not converge. As such, we consider only the MGARCH (1,1) specification.
The optimal model based on the SIC criterion for the return-value bivariate system is the
MGARCH-CCTL (1,1). For comparison purposes, we also present the same bivariate
specification for returns-transaction and returns-size (value) in Table 3.12.

Our general bivariate specification for returns and a trading variable is as follows:

Returns:

It =arpo +Dr,monMONt + Dr,holHOLt +¢r,lRt—l +

3 . (3.6.7)
21 ¢r,us,p Tys,t—1 T DrasyDRi- + D geasyDR | ¥Ry +up
p=

where,

I,_1 ~N(0O,h
up [T (0,hy) (.6.8)
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and for the trading variable,*

Vi =ayg +D‘,,monMONt +DV,mCTUEt +Dv,thuTHUt +
Dv,friFRIt +Dv,holHOLt +Dv,asyDRt—l '*’Dv,ssasyDRt—l *Rt—l +

5 2 (3.6.9)
qEIOth_q +mél¢"’“5,mr“5"‘m + VRGARCH /h e TUwt
where,
Uy | I ~N(O,h
vt| t-1 ( vt) (3.6.10)
and the volatilities respectively for returns and the trading variables are
h, = 2 h 2 h
rt =00 + 0 Urt-] +Br,l -] T OyUy ¢ +Brvhve +
VRD ;s MON, + VRDy,,HOL, +Vr,voth—1 +
2 . (3.6.11)
Vr,us,lrus,t—l + Vasy,rASYr,tur,t—l(ASYr,t =1, lfur,t—l <0)
Vasy,vASYry, (U3 1 (ASYy = Lifuy;_y <0)
and,
— 2 2
hvt = av’o +aV,1uv,t_l +Bv’lht_1 +avrur,t_l +
Bvrhrt—1 + VVDp@onMON¢ + VVD e TUEt + VVDy THU +
VVDg{FRI; + VVDpoHOL; +

+ VasY,VrASYvr,tulz_’t_l (ASYvr,t = 1, iful',t_l < O)

3¢ Notice that in equation (3.6.9), the last term with the coefficient VRGARCH allows the return volatility
to impact the mean equation for the trading variable. We have incorporated this term to reflect the lead
effect of return volatility on the trading variable.
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Brvt =0py/Bghy (3.6.13)

Notice that the return conditional variance equation has a lagged value term.
This has been done based on our findings in section 3.5.1 regarding the explanatory
power of the trading variable for return conditional volatility. In addition, we have
included asymmetry terms in the conditional variance specification to confirm if the
asymmetry evident in the mean equation is present in the variance too.

It may be observed from equations (3.6.12) and (3.6.13) that the bivariate model
enables an analysis of the volatility relation between returns and the trading variable in
two ways. First, the parameter given by B,, indicates the dependence of the conditional
volatility in the trading variable on the conditional volatility of return. Similarly, 3,
indicates the dependence of the conditional volatility in returns on the conditional
volatility of trading variables. Second, o, measures the impact of squared lags of
innovation in the trading variable on current return volatility. o, can be similarly

interpreted. We now turn to the discussion of the results reported in Table 3.12.

3.6.3. Empirical Results

Based on the SIC criterion, MGARCH-CCTL(1,1) was the optimal model. This
model incorporates return volatility spillovers to value volatility through past squared
innovations of returns. For comparison purposes, we also present the same bivariate
specification for returns-transaction and returns-size (value) in Table 3.12, where we

report the estimated coefficients and the standard errors.



104

Mean Equation Spillovers

The important findings from the bivariate analysis for the conditional mean
equations are the following. The seasonality effects in both the return and value mean
equations are consistent with earlier empirical evidence. As before, the asymmetry effect
is positive and significant in both returns and value mean equations. Relative to
transactions and size (value), the asymmetry is strongest for value. The lag effect from
returns to value is positive overall. The lag effect from U.S. retumns to returns and
volume is positive and significant. Finally the GARCH-M coefficient suggests that
return volatility attenuates the trading variable’s mean equation. Overall, we find
significant spillovers from returns to volume in the mean equations.

The spillovers in the mean equation indicate that the role of volume as an
information flow measure may be suspect. As returns and return volatility lead volume, a

more appropriate information flow measure would be return volatility itself.

Volatility Spillovers

The major findings for the conditional variance equations are the following.
For the return conditional variance equation, only own square innovations and
conditional variances are significant, i.e. return volatility is not affected by volume
volatility. On the other hand, volume volatility is affected by own and cross square
innovations. The asymmetry in the return and value conditional variance equations is
significant only for the return-value combination. The U.S. returns seem to attenuate the

return conditional volatility. Notice, that while lagged value and transactions have
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signatory explanatory power for return conditional variance, size (value) does not. In
addition, U.S. returns volatility seems to accentuate the conditional variance of volume.
Interestingly, the results for the return-size (value) and return-transactions
bivariate analysis are similar, though one would intuitively expect them to be different
since each represents complementary information regarding trading. Overall, the results
indicate that the conditional volatility for the returns and volume are affected differently.
The evidence suggests that a feedback system obtains from returns to the trading
variables. The results for the volatility relations suggest that the pattern of new
information flows may be more symmetric than that inferred from the causality returns.
If the GARCH parameterization adequately fits the data, the standardized
residuals, squared standardized residuals and the cross-products of the standardized
residuals of the estimated model should be uncorrelated. The results of the Ljung-Box
tests indicate that the Ljung-Box statistics up to the eighth order serial correlation in the
standardized residuals are all not statistically significant. The diagnostics from the cross-
residuals show that the constant-correlation model is the correct specification. However,
the LB (8) statistics for the squared standardized residuals are statistically significant.
Thus, an additional source of persistence in return and the trading variable variance
exists, that is not captured by this specification. Hence, our findings support those of
Liesenfeld (1998) and Lamoureux and Lastrapes (1998) that the joint dynamics of returns
and volume are not due to time series behavior of the information arrival process. A
possible interpretation of the result is that the bivariate system is misspecified due to
missing variables. In as much as our earlier results indicate that each trading variable has

information that is not subsumed by the others, this type of misspecification is possible.
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A second interpretation, following Liesenfeld (1998), is that the information-arrival
process could have a long-run component that affects stock return volatility more than
volume and a short run component that impacts volume more than the price changes.
Overall, the bivariate specification is thus not able to adequately capture the higher
dependencies in the squared residuals. Hence, we test the preceding two conjectures and

present the results of our trivariate analysis in the next section.

3.6.4. Proposed Trivariate GARCH (MGARCH) MODEL of Stock Returns,

Transaction and Value - Empirical Results

The bivariate specification was unable to capture the persistence in stock
return volatility. Based on the preceding analysis, we propose a trivariate GARCH
model for the joint processes governing stock returns, transactions and value. The mean
and variance specifications are similar to the bivariate model, in that they capture the
spillover effects of the cross square innovations. Furthermore, in this framework
returns, value and transactions are endogeneously determined with each having
information content that spills over into the mean and volatility specifications of the
other. We report the results of the trivariate analysis in Table 3.13.

In this heavily parameterized system, many specifications failed to converge.
We report the results for the MGARCH - CCTL (1,1) which was the optimal model

based on the SIC criterion, among those that converged.
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Mean Equation Spillovers

The important findings from the trivariate analysis for the conditional mean
equations are similar to the findings from the bivariate analysis. The seasonality effects
in both the mean equations are consistent with earlier empirical evidence. The
asymmetry effect is positive and significant in all three mean equations, however the
asymmetry is strongest for returns. The lag effect from returns to volume is positive
overall. The lag effect from U.S. returns to returns and volume is positive and
significant. As before, the GARCH-M coefficient suggests that return volatility
attenuates the trading variable’s mean equation. Overall, we find significant spillovers

between retumns to transactions and value in the mean equations.

Volatility Spillovers
The major differences from the bivariate analysis are the following.
For the return conditional variance equation, own square innovations, cross-square
innovations from transactions and own conditional variances are significant. For
transactions, cross-square innovations from returns are significant, while for value cross-
square innovations from transactions are significant. This indicates that transactions and
value are endogeneously determined but value has no information content beyond that
observed in the number of transactions. Notice, that this finding is consistent with Jones
et al. (1994). Itis also at variance with our earlier findings in the univariate analysis.
The results of the Ljung-Box tests indicate that the Ljung-Box statistics up to the
eighth order serial correlation in the standardized residuals are not statistically significant

for returns and value but are significant for transactions. From the diagnostics for the
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cross-residuals it is evident that the constant-correlation model is not an adequate
specification. Moreover, the LB (8) statistics for the squared standardized residuals are
statistically significant. Our results suggest that an additional source of persistence in
return and the trading variable variance exists, that is not captured by this trivariate
specification.

We also test Liesenfeld’s (1998) conjecture that the information-arrival process
could have a long-run component that affects stock return volatility more than volume
and a short run component that impacts volume more than the price changes. Specifically
we assume that transactions proxy for information arrival and use high and low pass
filters on the transaction series. Hence the high-pass filtered series represents the short
run component, that retained all the information pertaining to a periodicity of 5 days. The
second filtered series, the low-pass filtered series retained information pertaining to a
periodicity from 6-40 days and was void of any short-run dynamics and was termed the
long-run component. Thus, this specification by using filtered series (results not reported
here) captures short and long-run components. As before, this specification too is unable
to capture the persistence of variance of returns.

In Table 3.14, we present the results of the trivariate analysis using returns,
transactions and size (value). The findings, here are not substantially different from
the preceding trivariate model. This is not surprising, since the variables essentially
reflect the same information.

Our analysis thus suggests that a trivariate specification to model the dynamics of

the financial markets cannot account for the persistence in the variance of stock returns.
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Our findings imply that the information process affects trading variables and returns
differently. An approach similar to a variance decomposition approach to arrive at the
permanent and temporary components of the information arrival process may prove

helpful .*!

3.7. CONCLUSIONS

In this empirical study, we re-examine the short-run dynamic relationships among
stock-returns, return volatility, and trading activity in the Canadian market iz a
multivariate framework with the intention of understanding better the role of volume in
financial markets.

Our preliminary analysis indicates that transactions, value and size (value) are
better proxies for information flow compared to volume and size (share). In a departure
from U.S. findings, we also document a significant linear and nonlinear causality from
stock returns and return volatility to volume, consistent with sequential information flow,
positive feedback trading and noise trading. In addition, we find an inherent asymmetry
in returns that impacts both returns and volume. Specifically price increases lead to
increased trading in higher priced stocks the next day, which again supports positive
feedback trading. We find a positive conditional volume-volatility relationship as in
Tauchen et al. (1992). However, in contrast with Tauchen et al. (1992) our results do not

suggest a positive conditional risk-return relationship after conditioning on lagged

3! Alternatively a multivariate version of the artificial regression model proposed in chapter 2 of this thesis
could be adopted.
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volume. We also show that the U.S. stock returns serve as an effective public
information measure for the Canadian market.

Another surprising finding is the heteroskedasticity in volume. In contrast to
Lamoureux et al. (1990), the results suggest that the trading variables are not generating
conditional variance in returns with sufficient persistence in them. In contrast to U.S.
findings, our preliminary analysis indicated that there is information content in both
transactions and size of trades. However, in a multivariate analysis, when returns,
transactions and size are endogeneously determined, we find that size has no information
content beyond that observed in the number of transactions.

The multivariate analysis reveals that the economic significance of trading
volume as an information flow measure may be questionable. In fact, it seems that
information affects returns and volume differently. Furthermore, as returns and return
volatility lead volume, a more appropriate information flow measure would be volatility
itself. This inference is also consistent with Whitelaw’s (1994) findings that conditional
volatility leads returns. Overall, the evidence suggests that a feedback system obtains
from returns and return volatility to the trading variables consistent with traders whose
feedback strategies based on prices appear to be driving volume. The results strongly
support the sequential information flow and positive feedback trading hypotheses.

Finally, our multivariate specifications are unable to capture all the persistence in
return variances. Our findings complement those of Liesenfeld (1998) and Lamoureux
and Lastrapes (1994) that the joint dynamics of returns and volume are not due to time
series behavior of the information arrival process. In as much as the short term

component of the information arrival process affects volume more than it does returns,
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while the long term component affects returns more, an approach similar to a variance
decomposition approach to arrive at the permanent and temporary components of the
information arrival process may prove helpful.

Overall, the Canadian markets seem to have some significant differences from the
U.S. markets despite the increasing integration of the markets. It is possible that the
differences stem from the relatively thinner trading, fewer institutional trades,
institutional constraints, and the smaller size of the market itself. Notwithstanding the
differences, the surprising finding in this paper is the overwhelming evidence supporting

the sequential information flow and positive feedback trading hypotheses.
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Table 3.3: Sample cross-correlation coefficients January 1980 - December 1995 (3921 observations)
Volume is the difference from the forty-day moving average of the natural log of the aggregate trading volume (000s) of the
stocks in the TSE 300 composite index. Value is the difference from the forty-day moving average of the natural log of the
aggregate trading value (000s) of the stocks in the TSE 300 composite index. Transaction is the difference from the forty-day
moving average of the natural log of the aggregate number of transactions of all the stocks in the Toronto stock exchange. Size
(share) is the difference from the forty-day moving average of the natural log of the aggregate trading volume divided by the
aggregate number of transactions of all the stocks in the Toronto stock exchange. Size (value) is the difference from the forty-
day moving average of the natural log of the aggregate trading value divided by the aggregate number of transactions of all the
stocks in the Toronto stock exchange.

Panel A: Cross-correlation of TSE 300 TRI index return

k CRSP Value- Squared TSE Volume Value Transaction Size (share) Size
weighted return 300 Index retum (value)
with distribution  with distribution

-6* -0.0115 0.0776** 0.0759** 0.1047** 0.1204** -0.0134 0.0401**

-5 -0.0190 -0.0738+* 0.1043** 0.1370** 0.1400** 0.0105 0.0721**

4 -0.0363** 0.0625** 0.0832+* 0.1106** 0.1244+* -0.0061 0.0454+*

-3 -0.0316 -0.0430** 0.0784** 0.1123** 0.1323+* -0.0228 0.0394++

-2 -0.0043 -0.1030%* 0.1158+** 0.1479** 0.1595%* 0.0071 0.0685**

-1 0.0643+* -0.0438+* 0.1625%* 0.1924+* 0.1872%* 0.0517*= 0.1118**

0 0.7000*= -0.1670** 0.1381+* 0.1589** 0.1169+* 0.0920** 0.1346**

® 0.2172%+ 0.0990** 0.0504** 0.0551** 0.0371** 0.0398** 0.0504**

2 0.0595** -0.0353** 0.0042 0.001t -0.0005 .0007 0.0024

3 0.0476** -0.0022 -0.0072 -0.0051 -0.0070 0.0037 -0.0006

4 0.0066 0.0595+* 0.0035 0.0017 0.0009 0.0068 0.0039

5 0.0228 -0.0040 0.0151 0.0148 0.0051 0.0189 0.0190

6 0.0002 -0.0275 0.0003 0.0094 0.0142 -0.0158 -0.0002

Panel B: Cross-correlation of Squared TSE 300 TRI index return

k CRSP Value-weighted Volume Value Transaction Size (share) Size

return with distribution (value)
-6 -0.0153 -0.0388** -0.0474** -0.0591** 0.0040 -0.0130
-5 -0.0075 -0.0476** -0.0645** -0.0578** -0.0117 -0.0430**
-4 0.0700** -0.0087 -0.0319 -0.0393*= 0.0305 -0.0093
-3 0.0607** -0.0221 -0.0425+* -0.0281 -0.004 -0.0395**
-2 -0.0093 0.0076 -0.0107 0.0129 -0.0023 -0.0357**
-1 0.0998+** 0.0913** 0.0743+* 0.1066** 0.0274 0.0047

0 0.1443** 0.1279+* 0.1081** 0.1371%* 0.0524** 0.0270

1 -0.0020 0.0200 -0.0082 0.0093 0.0221 -0.024

2 -0.0815%* 0.0194 0.0017 0.0141 0.0157 -0.0129

3 -0.0394+* -0.0144 -0.0296 -0.0175 -.0035 ~ -0.0299

4 -0.0592+* 0.0147 -0.0324** -0.0186 -.0028 -0.0334%=

5 -0.0267 -0.0328 -0.0544+* -0.0354** -0.013 -0.0513%*

6 -0.0682** -0.0108 -0.0282 -0.0109 -0.0051 -0.0349**

Panel C: Cross-correlation of Volume

k CRSP Value-weighted Absolute TSE 300 Value Transaction Size (share) Size

return with distribution TRI index returmn (value)
-6 -0.0006 -0.0126 0.1099** 0.1674%= -0.0097 -0.0039
-5 0.0103 -0.0363** 0.2504++ 0.2669** 0.0991*= 0.1195%*
-4 0.0176 0.0026 0.2483** 0.3071*= 0.0446** 0.0709**
-3 -0.0074 -0.0075 0.2545%* 0.3283+* 0.0164 0.0574**
-2 0.0161 0.0152 0.3127*+ 0.3988** 0.0476** 0.0758**
-1 0.0123 0.0273 0.5022%* 0.5589%* 0.1887** 0.2130*=

0 0.0489*+ 0.1843** 0.9303** 0.7955%* 0.7239%+ 0.6634**

1 0.1242%* 0.1494** 0.5089** 0.5330** 0.2182%** 0.2532+*

2 0.0707** 0.0290 0.3207+* 0.3706** 0.0798** 0.1208+=*

3 0.0531** -0.0047 0.2595** 0.3024** 0.0459%* 0.0948**

4 0.0581** 0.0075 0.2557** 0.2684%* 0.0887+* 0.1267**

5 0.0726** -0.0296 0.2676** 0.2446** 0.1245%* 0.173+*

6 0.0551** 0.0114 0.1384** 0.1523** 0.0075 0.0605**

* indicates significance at the 0.10 level ** indicates significance at the 0.05 level.

a. Negative lags (k<0) or leads indicate cross-correlations p (TSE return, Volume, ) between future volume and current retumns.

b. Positive lags (k>0) indicate cross-correlations p (TSE return, Volume, ) between past volume and current returns.



Table 3.4: Asymmetric Effects - Canadian and U.S. Returns
January 1980 - December 1995 (3921 observations)

DR, is an indicator variable. DR=1, if Return,> 0, else 0. Standard errors are reported in parentheses.

TSE Return CRSP VWTD. Return
Constant 0.069°* 00194
(0.0232) (0.0276)
Monday 0.1443+* -0.0894**
(0.0294) (0.0339)
Holiday -0.0928* 0.0907
(0.053) (0.061)
Return, , 0.0693** 0.0373
(0.029) (0.0319)
DR, 0.1122¢* 0.0489
(0.0318) (0.0371)
DR,,* Retumn,, 0.2539%* 0.0983**
(0.0433) 0.045)
R-sq 0.0753 0.0143
Residuals: LB(8) 10.3671 9.4058
p-value (0.2402) (0.3092)
Squared residuals :LB(8) 724.0553 434.8913
p-value (0.0000) (0.0000)

* indicates significance at the 0.10 level.
** indicates significance at the 0.05 level.
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0. Standard errors are reported in parentheses.

Table 3.5: Asymmetric Effects Volume and Stock Returns*
January 1980 - December 1995 (3921 observations)
Volume is the difference from the forty-day moving average of the natural log of the aggregate trading volume
(000s) of the stocks in the TSE 300 composite index. DR, is an indicator variable. DR=1, if TSE-Ret,>0, clse

Model 1 Model 2 Model 3
Volume Volume Volume
Constant 0.0269** 0.0179* 0.0103
(0.0092) (0.0105) (0.0118)
Monday -0.259** -0.2588+* -0.261**
(0.0123) (0.0123) (0.0122)
Tuesday 0.0371+= 0.0371** 0.0387**
(0.0123) (0.0123) (0.0123)
Thursday -0.0324** -0.0324+* -0.0328+*
(0.0123) (0.0122) (0.0122)
Friday 0.1233*= -0.1234** 0.122%*
(0.0118) (0.0118) (0.0118)
Holiday -0.1361** -0.1359** -0.1482**
(0.0174) (0.0174) (0.0174)
Volume, 0.4451** 0.4448*~ 0.429+*
(0.0153) (0.0153) (0.0157)
Volume,, 0.1031** 0.1037** 0.105**
(0.0168) (0.0168) (0.0167)
Volume, ; 0.0751** 0.0751*=* 0.0785**
(0.0153) (0.0153) (0.0152)
ITSE Ret| 0.0642%* 0.072+* 0.0813*=*
(0.0064) (0.0093) (0.0094)
DR, 0.018* 0.0165
(0.0102) (0.0101)
DR,*|TSE Ret| 0.0867** 0.0695** 0.0515**
(0.0099) (0.0138) (0.014)
|TSE Retl, -0.0309**
(0.0095)
DR,, 0.0137
(0.0101)
DR,.,*ITSE Ret, | 0.0654**
(0.0139)
R-sq 0.4293 0.4296 04378
Residual: LB-8 lags 14.5734 14.6246 13.5385
p-value 0.0680 0.0069 0.0946
Squared-residual:LB- 140.6243 143.6700 156.5007
8lags
p-value 0.0000 0.0000 0.0000

**indicates significance at the 0.05 level

* indicates significance at the 0.10 level.
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* Additional results (not reported here) from regressions (2.3.1-2.3.2) support Karpoff's hypothesis.



Volume is the difference from the forty-day moving average of the natural log of the aggregate trading volume (000s)
of the stocks in the TSE 300 composite index. Value is the difference from the forty-day moving average of the natural
log of the aggregate trading value (000s) of the stocks in the TSE 300 composite index. Transaction is the difference

Table 3.6: Asymmetric Effects — Various Trade Variables and Returns

January 1980 - December 1995 (3921 observations)

from the forty-day moving average of the natural log of the aggregate number of transactions of all the stocks in the
Toronto stock exchange. Size (share) is the difference from the forty-day moving average of the natural log of the
aggregate trading volume divided by the aggregate number of transactions of all the stocks in the Toronto stock

exchange. Size (value) is the difference from the forty-day moving average of the natural log of the aggregate trading
volume divided by the aggregate number of transactions of all the stocks in the Toronto stock exchange.
DR, is an indicator variable. DR.=1, if TSE-Ret, >0, else 0. Standard-errors are reported in parentheses.

Model 1 Model 2 Model 3 Model 4 Model §
Volume Value Trans Size(share) Size (value)
Constant 0.0530** 0.0539%* -0.0019 0.0467** 0.0442+=
(0.0104) (0.0102) (0.0061) (0.0072) (0.0069)
Mon 0.2688** -0.2768** -0.0726** 0.1727** 0.1731**
(0.0126) (0.0129) (0.0072) (0.0086) (0.0089)
Tue 0.0306** 0.0407** 0.0476** -0.0109 0.0005
(0.0129) (0.0132) (0.0070) (0.0087) (0.0086)
Thu 0.0413** -0.0476** -0.0152%* -0.0110 -0.0190**
(0.0123) (0.0118) (0.0063) (0.0089) (0.0083)
Fri -0.1296** 0.1368** -0.0448** -0.0575** -0.0655**
(0.0118) (0.0117) (0.0066) (0.0090) (0.0087)
Dhol -0.1463** -0.1402** 0.0519*%* -0.0648** -0.0629**
(0.0208) (0.0213) (0.0138) (0.0134) (0.0142)
Trade Var,, 0.4298** 0.4571** 0.6786** 0.2523+* 0.2837+**
(0.0237) (0.0239) (0.0342) (0.0215) (0.0188)
Trade Var, 0.1336** 0.1434** 0.0418 0.0938** 0.1103**
(0.0197) (0.0208) (0.0306) (0.0183) (0.0189)
Tradevar, , 0.0659** 0.08234+ 0.0414*= 0.0414** 0.0653%*
(0.0160) (0.0157) (0.0181) (0.0160) (0.0161)
Tradevar,, 0.0306* 0.0385** 0.0208
(0.0162) (0.0153) (0.0160)
Tradevar, ¢ 0.0771%*
(0.0154)
|TSE Ret 0.0859** 0.0916** 0.0648** 0.0212+%* 0.0264**
(0.0084) (0.0078) (0.0061) (0.0053) (0.0057)
{TSE Ret, ;! -0.0279%=* -0.0375** -0.0291** -0.0009 -0.0159**
(0.0089) (0.0091) (0.0063) (0.0048) (0.0054)
|TSE Ret, 5 -0.0665** -0.0800** -0.0513** 0.0161** -0.0280**
(0.0077) (0.0075) (0.0049) (0.0048) (0.0050)
DR,*{TSE Ret| 0.0649** 0.0814** 0.0389** 0.0324** 0.0449**
(0.0112) (0.0109) (0.0074) (0.0067) (0.0070)
DR, *|TSE Ret, | 0.07871°** 0.1023** 0.0661** 0.0336**
(0.0126) (0.0129) (0.0085) (0.0072)
R-sq 0.4491 0.5123 0.6500 0.2088 0.2853
residual:LB-8 lags 11.4408 12.2369 12.4700 89133 2.5010
p-value (0.1205) (0.1409) (0.1314) (0.3497) (0.9617)
Squared-residuals: 150.2991 199.3736 396.5769 36.6837 70.3895
LB- 8lags
p-value (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

* indicates significance at the 0.05 level

** indicates significance at the 0.05 level.
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Table 3.9: Univariate GARCH(1,1) Model for TSE-TRI return -I
January 1980 - December 1995 (3921 observations)

R, is the TSE 300 -TRI return and is the dependent variable. R, is the return on the CRSP equally weighted index.
MON, is the dummy variable equal to | for Monday and 0 otherwise. HOL, is similarly defined for days that follow a holiday in
either market. DR, , is a dummy variable equal to | if r, ;>0 and O otherwise. Standard errors are reported in parentheses.

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Mean Eqn.
Constant -0.0276 -0.0327 -0.0216 -0.0201 -0.0229 -0.0266 -0.0237
(0.0205) (-0.0212) (0.0200) (0.0199) (0.0201) (0.0203) (0.0201)
MONDAY -0.1184** -0.1070** 0.1170** 0.1171**  -0.1168** -0.1174** -0.1185*+
(0.0241) (0.0244) (0.0243) (0.0243) (0.0243) (0.0240) (0.0241)
HOLIDAY -0.0239 -0.0225 0.0172 -0.0177 -0.0168 -0.0253 -0.0251
(-0.0390) (0.0384) (0.0401) (0.0398) (0.0400) (0.0392) (0.0387)
DR,.(=1,if R,,>0) 0.0699** 0.0688** 0.0642** 0.0632** 0.0656** 0.0679** 0.0670**
(0.0273) (0.0270) (0.0268) (0.0268) (0.0270) (0.0272) (0.0269)
R 0.0719+* 0.0807** 0.0801** 0.0812+%* 0.0783** 0.0743** 0.0763**
(0.0363) (0.0373) (0.0365) (0.0366) (0.0367) (0.0361) (0.0361)
DR.*R.; 0.1873** 0.1830** 0.1781** 0.1784+* 0.1822+* 0.1828** 0.1811**
(0.0483) (0.0468) (0.0492) (0.0493) (0.0492) (0.0486) (0.0486)
R 0.0739*=* 0.0658** 0.0754%* 0.0743** 0.0748** 0.0752** 0.0738++
(0.0168) (0.0168) (0.0168) (0.0168) (0.0169) (0.0168) (0.0167)
Rusia -0.0152 -0.0131 -0.0200 -0.0192 -0.0187 -0.0169 -0.0165
(0.0133) (0.0134) (0.0136) (0.0135) (0.0136) (0.0135) (0.0134)
Ros s 0.0370** 0.0367+* 0.0364** 0.0360** 0.0372%* 0.0362%* 0.0357*
(0.0128) (0.0129) (0.0128) (0.0128) (0.0129) (0.0128) (0.0128)
Cond. Var. Eqn
a, - Constant 0.0061 0.0025 0.0046 0.0043 0.0065 0.0053 0.0035
(0.0032) (0.0032) (0.0033) (0.0034) (0.0034) (0.0031) (0.0032)
a,,-lag sq. residuals 0.0923** 0.0814+** 0.0996** 0.1008** 0.1016** 0.0939*+ 0.0924**
(0.0060) (0.0056) (0.0072) (0.0071) (0.0071) (0.0064) (0.0061)
B;.,-lag Cond Var. 0.8703** 0.8855** 0.8519** 0.8524>= 0.8499+* 0.8654** 0.8701**
(0.0831) (0.0075) (0.0096) (0.0094) (0.0097) (0.0087) (0.0082)
Mon 0.0347** 0.0504** 0.0546** 0.0548+* 0.0506** 0.0404+* 0.0431**
(0.0141) (0.0147) (0.0147) (0.0151) (0.0148) (0.0142) (0.0144)
Holiday 0.0953** 0.0817** 0.1340** 0.1272¢* 0.1204** 0.1069** 0.1044++
(0.0173) (0.0169) (0.0178) (0.0174) (0.0180) (0.0170) (0.0167)
Ruct-t 0.0427**
(0.0097)
Rugz -0.0072
(0.0137)
Rais 0.0366**
(0.0087)
Volume, 0.0443%+
(0.0056)
Value, 0.0406%*
(0.0052)
Transaction, 0.0422%+
(0.0066)
Size(Share), 0.0460**
(0.0100)
Size(Value), 0.0565**
(0.0098)
Std. Residuals:
Skewness -0.3934»* -0.32806** -0.3700** -0.3714**  -0.3726**  -0.3925°** -0.3908**
Kurtosis 24188%+* 2.17535%* 2.1801** 2.1865%* 2.2288+* 2.3858** 2.3596**
LB(8) 8.5000 8.5677 8.3970 8.6054 8.6026 8.1613 8.3955
Sq. Std. Residuals:
LB(8) 12.7071 11.9780 7.7323 8.2441 8.7295 10.5129 11.6922
Log-likelihood -125.1375 -108.6130 -107.5830 -107.7382  -114.5719  -119.0757 -115.0530

* indicates significance at the 0.10 level ** indicates significance at the 0.05 level
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Table 3.10 Univariate GARCH(1,1) Model for TSE-TRI return ~ {I
January 1980 - December 1995 (3921 observations)
R, is the TSE 300-TRI return and is the dependent variable. R, is the return on the CRSP equally weighted index.
MON, is the dummy variable equal to 1 for Monday and 0 otherwise. HOL, is similarly defined for days that follow a holiday
in either market. DR,, is a dummy variable equal to I if r, ;>0 and 0 otherwise. Standard errors are reported in parentheses.

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Mean Eqn.
Constant -0.0217 -0.0209 -0.0205 -0.0201 -0.0217 -0.0201
(0.0200) (0.0199) (0.0199) (0.0199) (0.0120) (0.0199)
MONDAY 0.1173** 0.1174** 0.1174** -0.1174+* 0.1173** -0.1174**
(0.0243) (0.0243) (0.0243) (0.0243) (0.0243) (0.0243)
HOLIDAY -0.0183 -0.0191 -0.0191 -0.0189 -0.0183 -0.0189
(0.0401) (0.0398) (0.0397) (0.0395) (0.0401) (0.0395)
DR (=1,if R, >0) 0.0645** 0.0641** 0.0638** 0.0634*= 0.0635** 0.0634**
(0.0268) (0.0268) (0.0268) (0.0268) (0.0268) (0.0268)
Rut 0.0799** 0.0805** 0.0808** 0.0810** 0.0799** 0.0810**
(0.0364) (0.0364) (0.0364) (0.0365) (0.0364) (0.0365)
DR.*R,; 0.1776** 0.1771** 0.1773%= 0.1781** 0.1776** 0.1781**
(0.0491) (0.0491) (0.0492) (0.0493) (0.0491) (0.0493)
Rutt 0.0755** 0.0750** 0.0747** 0.0741** 0.0755%* 0.0741**
(0.0169) (0.0168) (0.0168) (0.0168) (0.0169) (0.0168)
Russs -0.0199 -0.0195 -0.0193 -0.0188 -0.0199 -0.0188
(0.0136) (0.0135) (0.0135) (0.0134) (0.0136) (0.0134)
Rug.13 0.0362+* 0.0358** 0.0357** 0.0357** 0.0362** 0.0357**
(0.0048) (0.0128) (0.0128) (0.0128) (0.0128) (0.0128)
Cond. Var Eqn
a,o- Constant 0.0040** 0.0035** 0.0034** 0.0035** 0.0040** 0.0035%*
(0.0033) (0.0033) (0.0033) (0.0034) (0.0033) (0.0034)
a,;-lag sq resid 0.0984** 0.0984** 0.0986** 0.0992** 0.0984** 0.0992%*
(0.0071) (0.0070) (0.0069) (0.0069) (0.0071) (0.0069)
B..-lag Cond Var. 0.8540** 0.8554** 0.8558*+ 0.8562** 0.8540** 0.8562%*
(0.0095) (0.0093) (0.0092) (0.0091) (0.0095) (0.0091)
Mon 0.0546** 0.0549** 0.0548** 0.0541*= 0.0546** 0.0541**
(0.0147) (0.0150) (0.0151) (0.0151) (0.0147) (0.0151)
Holiday 0.1342** 0.1319** 0.1299** 0.1252%= 0.1342+=> 0.1252**
(0.0180) (0.0175) (0.0176) (0.0173) (0.0180) (0.0173)
Volume, 0.0404** 0.0363**
(0.0064) (0.0068)
Trans, 0.0404+* 0.0342%*
(0.0064) (0.0068)
Value, 0.0350** 0.0342+=
(0.0056) (0.0068)
Size-Share, 0.0134 0.0236 0.0537**
(0.0128) (0.0119) (0.0113)
Size-Value, 0.0232 0.0165 0.0507**
(0.0125) (0.0134) (0.0104)
Std. Residuals:
Skewness -0.3714%*+ -0.3727** 0.3732%* -0.3740** -0.3713+* -0.3740**
Kurtosis 2.1901** 2.1937** 21957+ 2.2017* 2.18994%* 2.2018**
LB(8) 8.3372 8.4011 8.4570 8.5867 8.3365 8.5868
Sq. Std. Residuals:
LB(8) 7.8563 8.0708 8.2344 8.6424 7.8537 8.6434
Log-likelihood -107.2474 -106.4686 -106.4690 -107.2740 -107.2474 -107.2740

* indicates significance at the 0.10 level ** indicates significance at the 0.05 level
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Table 3.11: Univariate GARCH(1,1) Model for the trade variables
January 1980 - December 1995 (3921 observations)
R, is the TSE 300 -TRI retum. RSQ, is the squared TSE 300 -TRI retumn. Ry, is the CRSP equally weighted index. MON,
is the dummy variable equal to | for Monday and 0 otherwise. HOL, is similarly defined for days that follow a holiday in
cither market. DR, is a dummy variable equal to 1 if R,.,>0 and 0 otherwise. Standard errors are reported in parentheses.

Variables VOLUME VALUE TRANSACTION SIZE (Share) SIZE (Value)
Mean Eqn.
Constant 0.0800** 0.0475%* 0.0100* 0.0603** 0.0402+*
(.0099) (0.0103) (0.0051) (0.0078) (0.0083)
MONDAY 02722+ -0.2582** -0.0747+* -0.1762%* 0.1731**
(0.0119) (0.0119) (0.0059) (0.0088) (0.0096)
TUESDAY 0.0450** 0.0599** 0.0415%* 0.0098 0.0031
(0.0127) (0.0126) (0.0058) (0.0092) (0.0094)
THURSDAY -0.0372** -0.0371** -0.0198** 0.0130 -0.0164*
(0.0116) (0.0113) (0.0058) (0.0087) (0.0088)
FRIDAY -0.1378+* -0.1220** -0.0495+* -0.0639** -0.0663**
(0.0108) (0.0113) (0.0053) (0.0087) (0.0092)
HOLIDAY -0.1225*= -0.1194=* -0.0507+* -0.0625** -0.0584**
(0.0210) 0.0211) (0.0112) (0.0130) (0.0143)
DR (=Lif R, >0) -0.0029 0.0232** 0.0062 -0.0006 0.0131*
(0.0114) (0.0098) (0.0049) (0.0081) (0.0070)
Riy 0.0749** -0.0062 0.0161* 0.0073 -0.0127
(0.0132) (0.0158) (0.0082) (0.0095) (0.0112)
DR,.;*R;,; 0.0336** 0.0845** 0.0229 0.0031 0.0395**
(0.0080) (0.0261) (0.0142) (0.0048) (0.0180)
RSQ,. 0.0243** -0.0066 0.0026 0.0014 -0.0036
(0.0043) (0.0041) (0.0029) (0.0012) (0.0024)
Rest1 0.0187** 0.0198** 0.0163** 0.0064 0.0074*
(0.0063) (0.0064) (0.0033) (0.0046) (0.0044)
Trade Varable,, 0.4447+* 0.4749** 0.5998** 0.2719%* 0.2940%*
(0.0189) (0.0186) (0.0171) (0.0192) (0.0175)
Trade Variable, , 0.1023+= 0.0782** 0.0702** 0.0978** 0.0855%*
(0.0182) (0.0164) (0.0221) (0.0178) (0.0163)
Trade Variable,, 0.1172%* 0.0812+* 0.0507+* 0.0539** 0.0708**
(0.0147) (0.0158) (0.0190) (0.0163) (0.0170)
Trade Variable, 0.0344=* 0.0442++ 0.0239
(0.0150) (0.0152) (0.0163)
Trade Variable, ¢ 0.0172 0.0727+*
(0.0150) (0.0161)
Trade Variable, 4 0.0057 -0.0084
(0.0146) (0.0161)
Trade Variable, , -.0010 0.01884
(0.0157) (0.0155)
Trade Variable, 4 0.0014 0.0084
(0.0147) (0.0155)
Trade Variable,, 0.0064 -0.0253
(0.0144) (0.0158)
Trade Variable,.;o 0.0147 0.0105
(0.0116) (0.0156)

* indicates significance at the 0.10 level ** indicates significance at the 0.05 level
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Table 3.11: CONTINUED
Univariate GARCH(1,1) Model for the trade variables
January 1980 - December 1995 (3921 observations)

R, is the TSE 300 -TRI retum. RSQ, is the squared TSE 300 -TRI retumn. R, is the CRSP equally weighted index.
MON, is the dummy variable equal to 1 for Monday and 0 otherwise. HOL, is similarly defined for days that follow a
holiday in either market. DR, is 2 dummy variable equal to 1 if R,.,>0 and 0 otherwise. Standard ervors are reported in
parentheses.

Cond. Var Eqn VOLUME VALUE TRANSACTION SIZE (Share) SIZE (Value)
a,o-Constant 0.034]1 =+ 0.0331+* 0.0054+* 0.0214*= 0.0244**
(0.0025) (0.0025) (0.0003) (0.0021) (0.0020)
a,;-lag sq resid. 0.2049%+ 0.2000** 0.3446** 0.1018** 0.0654**
(0.0144) (0.0144) (0.0156) (0.0094) (0.0120)
B..:- lag Cond Var. 0.0546 0.0930 0.2086** 0.1447 0.0223
(0.0499) (0.0498) (0.0252) (1.7755) (0.0784)
Mon 0.0037 0.0029 0.0020** -0.0047** -0.0006
(0.0024) (0.0024) (0.0006) (0.0011) (0.0012)
Holiday 0.0305** 0.0296** 0.0153>* 0.0016 0.0074=*
(0.0090) (0.0088) (0.0019) (0.0027) (0.0034)
Rsqu1y 0.0038%+ 0.0038** 0.0016** -0.0004 -0.0004*
(0.0010) (0.0010) (0.0003) (0.0002) (0.0002)
Std. Residuals:
Skewness -0.0067 1.1611%* -0.1409** [.1611** 0.4213**
Kurtosis 1.7972%+ 6.2980** 3.1562*+ 6.2980** 1.2476**
LB(8) 12.9655 13.8046 14.1684 13.8046 0.2782
Sq. Std. Residuals:
LB(8) 10.5414 2.6484 48.6300** 2.6484 113412
Log-likelihood 3939.1922 3911.3294 6457.4261 5158.1671 5237.4941

* indicates significance at the 0.10 level ** indicates significance at the 0.05 level



124

*xopuy

ansodurods gog FS.L oY) ul $1001s 23 Jo djquuieA Suipen 3y jo Sof jwnjeu ay) Jo s3esaA Sujaow Kep-AN0J oY) WO FOUIILJIP 2Y) S} 3jqeuBA Sutpes) oYy
A PulASY 01 junbo ojquuea Awwnp e s1'SSASY S0 ( pue g<'h i | 0) jenbo ajquuies Awwnp g 51 PASY ‘193BW 194112 Ul ABPI|OY B MO](0)
1ey) sAep 30j poutjop Apejiuns 51 “JOH ‘pauyap Kpepiuss aue '1yd “NHL INL 9simIayio g pue Aepuoj Joj | o) [enbo ajquea Awwnp ) st 'NOIW
“xaput palyBiom Kjunbd GSYO 9y uo winjas 3y st Y WA [Y1- 00 ASL Y S

(0> """ g1 = 'ASVHA) " {0’ ASVIA

+0> gt = JASVA)TVINASVA + IIAIIA 4 1- vt PR 4 ol gAA
+ "1 aAA + 'NHL™GAA + 'BNL™ QAN+ 'NOW" QAN + 1770 + 7 n" 4+ 171y Mg 4 1720l + 0% = My
©> " ngt = 'ASVAN) VI ASYAY + (0> T ngr = JASV) i As vy + IATA +

1=1'sn g )'sn's [} 1oy 1 uow 1-1'A A 1-a A1 1=, 1 =120 0'4yy — M
+ 17VRYTTUA + OH ™ QYA + 'NOIW QU + T g+ T Mo 4 PTG 4 a0 4 000 = By

(My'oIN ~ 171 ¥
1=b
Wnt I=Uyp L WHOUVDYA + ImVSNySH*ag 4 bo1pb'hg T 4 Iggagysshsaag 4
d
+ ASVASTAG + 1=V yi" 4 19oHIOAG + 11yaWAq + InHL™I'AG + 1aNL™ A + INOWUOWAG + Oe = 1A
MYoIN~ "1 Ma

_uQ
LT T..:.w_a.:...e .rw + _-_w__ce+ _mm>m<.1ﬂcc + .>m<»l;ﬁ + _‘_OI_.E...O + _ZO_Z.SE:Q + 0" = .w_

(suopuasasqo [76€) S661 43quiasdq - 0861 Asenusp (1 HIYVOI ‘vope[a110) [vuopipuc) Juvisuo)
)M SI[QUEIEA BUIpEL] PUB SUINIE [Y1-00ETSL JO DPOIN HOUVD NBHEAIY ST1°E Aqu],



125

19A3] 0'0 9Y) 18 22U IUSIS SAIBIPUL 4, [9AS] 01°0 Y1 12 SouwdUTIS sovolpuUy ,

(dep
puo) 19y )ubs
$210°0 e 2PP00- 68000 «bl1L00 6L10°0 *+S9b1°0- W-HOYVD
¥$00'0 «1800°0 7€00'0 +49510°0 79000 #+CL10°0 Hy
8v10°0 0$10°0 12100 8€10°0 LA
65100 1800°0- 5100 0L00°0 *A
£910°0 «+8€L0°0 6100 1610°0 6£10°0 ++S8€0°0 A
0L10'0 91200 05100 «+L8P0°0 29100 26100 YA
$L10°0 ++[8L0°0 $810'0 ++S9b0°0 89100 +e$701°0 A
yL10°0 »+9160°0 0’0 ++8580°0 £810°0 ++2001°0 “A
$L10°0 *+6L82°0 9L10°0 +485LS°0 $610'0 b 10¥0 YA
Z1100 ++6VE0°0 66000 ++£0L0°0 9L10'0 «+8161°0 'ASVSS
89000 $L00'0 7500°0 v$00°0 86000 +49610°0 'ASY
$L00°0 8L00°0 0L00°0 #L00°0 91100 +ulSE00- r
€100 «+ 15500 61100 *299b0°0- $020°0 «EU10 10H
£600°0 +45490°0- $500°0 +46750°0 81100 «+1821°0- 144
06000 «£910°0- 85000 »s0220°0- 12100 «+THE0'0- NHL
88000 11000 9500°0 ++8LE0°0 81100 #+F6E0°0 and
$600°0 «e81L1°0 6S00°0 *69SLO°0- $T10'0 ++0LST0" NOW
uopenby
usop
djqeuep
0010°0 «+L0L0°0 ZLOO'0 ++SLY0'0 0r10°0 »06921'0 ueIsuo) Suiprs],
0€100 »+SSE0°0 TE10°0 «+SPE0'0 (€100 «+0£€0°0 Yy
6£10'0 £910°0- LEI0'0 11100 o100 9100 ety
L0 »+9690°0 0L10°0 ++01L00 £L10°0 «+0990°0 ey
6800 «+STLI'O #050°0 P TARY) v6¥0'0 webELL'O 'ASVSS
£L20°0 ++1690°0 TL20'0 +4$990°0 £L20'0 »+L£90°0 'ASV
08€0°0 «+5£80°0 00v0'0 ++6280°0 ¥6£0°0 ++0060°0 "y
96£0°0 8920°0- 98€0'0 90200~ $8€0°0 9810°0 10H
#4200 web€11°0 14200 ++6901°0 920'0 +2011°0" NOW "
ubg
60200 68200 T120'0 76¢0°0" £120°0 6520'0" 1ueIsuo) UBdy WY
BILITTIEA) oJuufIsd djeuiNSd
10U paepuwg Japweed 101D paupunig Jappwed 10LD puvpue)g Joowesed JjquuBA
uoyjenby
(onjeA Jozig @ swnlay SuotIvsSURL ] % SWNY anjeA 2 SWNPY ugop

(su01IuA125q0 176€) S661 49quIada - 0861 A1enuwp {(I* DHOUVOW ‘UoIIN[I110) [SUO{PUO) JuBISUOD

YIIM S|quLIvA Bujpea ], pus suamas 1Y L- 00EASL IO PPOI HDUVD dI8peAlg

AIANNLLNOD :Ti'glqel,



126

{9A9] 500 941 18 2auBdLIUT|S SANBIIPUI 4, [243] 01°0 Y 18 douBaLIUBIS SAWIIPUL

£SLY'8SIS 901 #'01¥9 88€S' 106€ pooy(ayi 3o
cLy8Ct SosL’S 9£97'6 s|enpisal -ssa1)
«60P1'ES «1688°11C «9ThY 19T e T8S°CIC ««0P8CELL «+9910°L1T (8)a1
sjenpisay pozipsepusig pasenbg
£SELl 6v8¢'3 ++6L16'19 sT91'8 vorTL 785¢'8 (8)a1
web VS| SOLL'Y «+0LEL9L «e8CSLY *elSE8'Y «s2081'Y sisouny
++L82H0 +40594°0- «+£696°1- *eELSH0 »e8915'0 «+ 1890 SSOUMONS
(onjep) o215 wnjat gogas.L suojonsuRI), WMl 00gISL anfuA wnjas 0EISL 'S[UNpisaY PIzZIpIBpURIS
80000 70000 80000 0£00°0- £200°0 L5000 ASY
0L20'0 452600 "ASY
$000'0 00000 100'0 +9000°0 1000 +6100°0 reeay
8200°0 +4$500°0 12000 ++9L10°0 £800°0 ++ 16200 AAA
9100°0 +L200°0 $000'0 $000'0 92000 12000 YaAA
81000 +0£00'0 $000°0 $000°0 $200'0 L1000 "aAA
L1000 «1€00°0- $000°0 L0000 92000 +42010°0- "aAA
91000 6000'0- L000'0 ++£200°0 0£00'0 L¥00°0 "MAAA
L0000 0000'0- L000'0 »$TH00°0 T°00'0 ++$500°0 “o
0z01°0 ++8ESH0 9v20'0 «b¥91°0 8550°0 +46LS1°0 g
$010'0 ++6850°0 09100 »ob6YED zs81°0 €180 o
duLUBA
_aco_:v:OU
L7000 ++6110°0 $000'0 +45500°0 9200'0 ++20€0°0 ) - JWN{OA
69b1°0 SE81°0- 8650'0 8$S0°0 TI0'0 0£00°0 YASY
¥£100 8L00'0 1$10°0 14200 LEL0'0 1520°0 ‘ASV
s#10°0 #6000 (onjeA Jozis
78000 «+6L10°0 Visum),
L900'0 695100 "eA
£500°0 »+ €200 8500°0 »eLSTO0- ov10'0 ++ 16200 el
18100 +ob660°0 L8100 +46880°0 $810°0 «+6180°0 “aya
05100 ++6£90°0 65100 ++9050°0 8¥10'0 «+£CH0°0 “aYA
£600°0 »4LSS8°0 §010°0 »e 11980 16000 ++£098°0 g
1100 455600 £2100 ++1960'0 91100 ++1£80°0 o
69100 «+8060°0 84100 ++6L60°0 $S10°0 46010 o
9£00°0 ++1110°0 pEOD'0 ++0010°0 2£00°0 «+£600'0 iy JEA "puo)- Wwnpy
Auwsd 2SI eSO ‘ubg ssuspBA
10049 paupumg Jpuweied 1041 prepuni§ Jowed 1005 piepuplg Jpwesed djquLeA Jeuonipuo)
(anjep Jozi§ % swnioy SULIOBSURL ] 2 SWInY anjuA 2 swnpy

(suopI¥A125q0 [76€) S661 19qWaaa( - 0861 Atenuup t (I DHIYVOW ‘UONE[2110]) [BUORIPUOD) JUBISUO)

YIM SIQUIIRA Bupes ], pus suanjas Ry 1 00EASL JO PPOW HOUVD 3eLivAlg

QINNLLNOD :T1'tdiqe),



27

*xaput asodwod gOE ASL 24y Ut $Y201S aY) Jo ojquuea Suipun ay) jo Sof jwinjeu oy jo o8waae Sulaows Kep-Apof
Y woyp d5u4p oY1 5t ajquuea Jutpra ayr * A V' ASY 01 [unbo d|quuea Awtnp ¢ §) 'SSASY *9stauatI0  pur 0<! ™ J1 | 01 jenbd 3(qELIEA
Awwnp B s1'ASY 1245w 1oy ul Kepi{oyf 8 mojjof 1ey) sKup 10) pautjop Asujiuns st “JOH “paulap Apeqiuns ae 'y d “NHL N osimaio
0 pue Kepuoy 10 | 01 {unbo ajquuea Kwinp ay) st 'NOIW *%aput paySiam K(jenba dSUD) oY1 uo winas oy st ™ “winja (Y 1- QO TSL Y st

MyilypoNio = Wy(g > I n gyt = ‘ASVYA) T n'AS VAL

+(0 > 0 gL = ASYA) T INIASY.L + ULIHIA 4 - MBI 4 qa it
+'RP @A+ NHL™ @A +'3NL QA + INOW @A + 1yt + 1t 4 1V 4 19 9nl g 4 O = W0y
(0> """ ng1' = ‘ASVYA)'"MASVUA

+(0 > g1 = 'ASYA) VIASYA + TIATIMA 4 1-1tn aPBRAA 4 bqgiig A
+'THAMAAA + ' NHL"GAA + 'SNLAAA + 'NOW ™ AAA + 71y + 1= nthp 4 104G 4 1-'4nl'p 4 O'hp = Iy
(0> """ n g1t = ASVAU) I ASVAY + (0 > T ingrt = "AsV)! T As v + AL +

+ T..S:.S..> + _'_Oz_o..oz> + .ZOE:aEQz> + _....>z>_a+ T..w:td... _.._.._—__;n... _....ms_....b+ 0y = :z

(MyoON~ " *n
1=b \
Mot R WHOUVOUA + TG4 DIABG T 4+ g a5y T+
+IASY AU @+ U+ ORI g + Tt a+ TnHL ™ a+ fany ™ g+ 'NOW O a + O = A
:uonenby ueapy suonousuel] pue anjep
(Mq'oN~ 1| M

—"n— ‘ &
LR _L.m:._,__m:;eww + T:_:e... .>m<mmm§ms...a+ _>m<>mu.._ﬂ+ _JO:_E.._Q+ ~ZO_Z=oE LD+ 0g= g

‘uonenby uvay winoy

(SuofIvALISqO [Z6E) S661 JaqWIQ - 0861 Asenuep (1 HDOY VO ‘Uope(a.LI0)) (suUc)Ipu0)) JUBisHO)
YNA INjEA puE SuoIESURL] ‘SUINIdL [YL- Q0CESL IO [PPOW HOUVD JIBHEALLY, (E1'E 9(qQuL,



128

19A9] §0°'0 2Y) 18 20UBDLIUBIS SABIIPUL 44 [9A] §1°0 Y 18 20UBIYIUTIS SIJRIIPUY 4

(18A
(1eA puo) 19y)ubs ‘puo) po38eg)ubg
0810'0 webLV10- W-HOY¥VD $800°0 «+ 15800 W-HOYVD
0tioo TL00'0 YA $010°0 »o 1120°0 tA
0£10'0 L£00'0- YA 1€10'0 £€00'0 TIA
0£100 #+0LS0'0 “A 62100 «+8VE0°0 YA
9€10°0 «+820°0 YA ZE100 «+L9V0'0 YA
19100 ++1560°0 “IA #5100 +4L6£0°0 YA
100 »oSEI1°0 A 1L10'0 ++2260'0 vz
100 «+0LSE0 A T$10°0 «+962S'0 YA
ey vy pE10'0 ++92€0°0 ey
vy vy 1100 9€10°0- vy
0900'0 »eLL100 ey €000 *+SE10°0 1y TL100 *+9L90°0 b1y
6910'0 +40Z51°0 'ASVSS $600°0 *e7580°0 'ASVSS $150'0 ++0151'0 'ASVSS
96000 1€10°0 'ASV £500°0 £500'0 'ASV $L20'0 «+2090°0 'ASV
€100 ++8€€0°0 "y 1900'0 «s0V10°0- "y £1v0'0 «+LS01'0 4
§L100 ++0501°0- TO0H ¥010°0 e s LLVO'O- 10H £9€0°0 ¥E£0°'0- TOH
1210'0 »e0b21'0- 144 $$00'0 *+£150°0 194 4
8110'0 +«[8£0°0- NHL LS00°0 «+0£20°0 NHL NHL
9110'0 «+9£20°0 anL $500°0 »£1£0°0 anL anL
£210°0 +0L9S2°0- NOW 85000 «+8LL0O°C0 NOW 8¥20°0 »+b€01°0- NOW by
ul
or10'0 «+EPE1°0 weisuo) 1L00°0 ++£550°0 ueisuo) L1z0'0 T120'0- luisuo) usa Wy
35:_.3 oL ajeuniss JOD S_E___mu
Joud prepuvlg Jweted ajquuep paepunig Japuresed ajquuep pepumg npwesed dqeuep
anuA suoljonsurL g, swnPy uotjenbsg ueapy

(su0(1eA135Q0 176€) S661 42qwadaq - 0861 Atenuer t (FNHIUVOW ‘UopEPR110D) [BuONIPUO) JUBISUO)
)M NjRA pUE SUOPIUSURLL ‘SUINIL 1Y L- 00ETS.L JO 19POIN HOHVD eIvAla],
QANNLINOD ‘f1'E 214l



129

19A9] §0°0 9Y) 18 OULIIUTIS SANBIPUT 4, [9A9] 01°0 OYI 12 DOuBDLIUBIS SNBOIPUY

9p55°22911 pooyjoyy 301
«eL08T'TIL ++Z6L5'91 795€°01 sjenpisat -ssas)
«+P6S8°9€1 «+06051'897 «+9008°S17 (8)a1
nm_czv_oéx pozipaspuelg vo..a:cm
$695°€C ++8L09°08 vell'L 8)da1
eoLLOL'Y ++£865°V1 *+¥680'p sisouny|
+66T0€°0- #+T6LE' I s SSOUMINS
MmjeA suondusul wnmas JOCasSL ”m_azv_moz pazipaepunlg
1110 *+666¥%'0 “ASV LS00'0 «+0E10°0 MASY 6SLT'0 £0v1°0- UASY
L1000 $200°0- HASY L0000 «9100°0- "ASV yTIo S191°0- MASY
08200 «+£L60°0- *ASV 12€0'0 #9000 'ASV 85100 +09€0°0 ‘ASVY
Vanjep us
9L10'0 8010°0- Msums],
- _ 85100 66000 "eA
L0000 80000 Ul £000°0 +40060°0 I ey
8500'0 V100 VI I LS00°0 *+6820°0° Y
$200°0 *ob100°0 ™aya L100°0 «+2010°0 ™aiA £610'0 *eLLLO'O qyA
$2000 72000 YdAA $000°0 «s¥100°0 “alLA YauA
$200°0 22000 "“aAA $000°0 $000°0 "'aLA "ayA
$200°0 »+9900'0- AAA 90000 £000'0- "ALA ™qQY¥A
92000 82000~ ““AAA 90000 »+S200°0 “qlA 9910°0 «+0SP0'0 *qdA
£990° +«80€1'0 Y0 L£00'0 SH00°'0- *n £881°0 *+2S61°0 Yo
L1000 81000 o 90000 ++2200°0 "0 L190°0 0S£0°0- Yo
$650°0 «sb1020 "y 60£0°0 ++92€1°0 "y 60100 ++91$8°0 g
9L100 ++80L00 0 vLT0'0 «+87870 "o 6010°0 «+T¥800 "o
65100 e £911°0 ™o
£800°0 ++2989°0 b £510°0 ++9860°0 ¥
._c>
92000 +49620°0 p £000°0 +4$900°0 ) L£00'0 ++2V10°0 Op “puoy- wnjay
‘ubg osunpep
o=_a A mco_—uamcﬁ._. mEEuw_ _acc_:?_cu

(suo{IvA125q0 76F) S661 J9quada(i - 0861 Asenuuf t (I'HHOYVOIW ‘UOIBR110D) [¥UOHIPUO)) JuBISUO)
YIM INJEA PUB SUONIUSUBL ], ‘SUINII [ 1~ 00ETSL IO PPOI HOUVD NEMBALLY,
QANNLINOD *£1°€ dIquL,




130

19491 §0°0 94 1@ 20URDIUTLS SANIPUI 4, [9A] O1°Q Y} 12 SouesltuSis sajvIpUI ,

(E17
(1A puo) 19y)ubg pto) paddery)ubg
82100 ++0LE0°C- W-HOUVD 88000 «ab190°0 W-HO¥VD
9%10°0 #4100 b 07100 6L10°0 A
95100 ¥800°0- YA 0510°0 LY00'0 YA
LS10'0 «+0ZL00 SIA £510°0 +€120°0 A
$910°0 06100 YA LS10'0 +48250°0 "'A
89100 +e 11800 A £610°0 ++01£0°0 A
89100 *+£980°0 T £220'0 ++66L0'0 UIp
0L10°0 ++6£82°0 “IA L8100 «+ 18650 YA
oy oy bEI0'0 «+6PE0'0 oy
vy iy or10°0 #1100 vy
£500°0 «LL00°0 iy T£00°0 «sbS100 iy zL100 +eLTL0'0 by
8010'0 «sLL20°0 'ASVSS 00100 ++Z¥90°0 'ASVSS 0250'0 »+8VS1°0 'ASVSS
99000 LS00'0 'ASV 25000 6¥00°0 ‘ASV zLeoo «+8190°0 'ASV
89000 1100°0- * 1L00°0 TS00'0- H Y1500 ++£660'0 K|
1€10'0 ++2550°0- 10H 11100 *e6E40°0 10H 18€0°0 SLT00- TOH
7600'0 ++9b90°0- 144 9500'0 ++6T50°0 44 4
88000 +8510°0 nHL $500'0 +62€20°0 NHL nHL
88000 91000 L L5000 «+¥8E0°0 nL anL
26000 webIL1'0 NOW 0900'0 s 29LO0- NOW SH20'0 «o1€01°0- NOW b
ubgy
9600°0 ++9890'0 ueIsuo) $£10'0 +465€0°0 usuo) £120'0 SHZ0'0- weisuo) UB WY
dlewisy JOLR JJBUWINSI Jatn o)eunlsd
Joud pepueig Jopuwed djquuBA piepumg Jopoweted JlquuBA plepuuig npweg djquuBA
(anjep) o215 suoljousuel | swnPy uonenbgy uesy

(su0)IvAL350 176£) S661 19quaddq - 0861 Asenurp & ()*1)HDOYVOI ‘UOPE[21I0) [¥uopIpUo) JUTISUO)
YIM (3R[BA) 92)5 pue SUO[IESULLE, ‘SUIMI [Y 1~ 00EFS.L IO PO HOYVD MMISVALLL tp1°E 91qu),



131

19A9] §0°0 3Y) 12 23uBDIHIUB)S SANLIIPUL 4, [9AI] (1°0 S} 18 2ouBDYIUTIS SHNIIPUY

v8SY'LILLL pooysi S0
9£8¢€'8 «08S8°¢1 LL6L'S s|enpisas -ssu)
s €TLE6Y »+1595°91€ ++2991'60T (8)a1
nm_zzv_moz
pozipuepumg patenbg
(AL x4 +oCTH6'1S £9£8'9 (8)a1
++621S°( w+LE1€°SI «+CCI0b sisouny
#8110 »LBTY 1 «SiPY0- SSAUMINS
(onjep) ozig suofjousutt] W 0OgISL Sjenpisay pazipepusis
29£0'0 +e2011°0 “ASY 9600'0 ++6250'0 MASY 65LT0 £0r1°0- “ASY
0000 20000 “ASY 60000 ++$200'0- "ASY veiio S191°0- MASY
€200 68100 *ASY SLEOD 75000 'ASY $910°0 ++6S€0°0 .>_m<
(anjup P15
£600'0 1$00°0 Msues,
0£20°0 8010°0- oA
$000'0 10000 iy £000°0 ++L000°0 rheay veetap
85000 «eZP10°0 A p 25000 #+6820°0" YA
$200'0 6100'0 ™ayA 0200'0 «40210'0 ™MaLa $610°0 «+2€80°0 aya
$100°0 »eTH00'0 YaAA $000°0 ++£000°0 “alA YayA
L1000 9200'0 "AAA 0000 $000'0- "qLA "'qyA
91000 TW0'0- "UAA 90000 » 21000 ALA *aYA
91000 £000°0 *™AAA L0000 ++£200°0 ““aLA $910°0 ++80K0°0 "“ayA
86100 72000 “o 8$00'0 L2000 o $S61°0 +e0b58°0 ]
80000 1000°0- Yo 8000'0 »aL€00°0 "o 6v01'0 LL100 ~o
9€01°0 s6Y1€°0 "y §920'0 ++58170 " 1100 +5EER0 "y
€z10'0 «+15$0'0 o LEEO'D «+SHTE0 o 92100 ++7580°0 o
6v10'0 ++6£60°0 0
LS10°0 ++TS61°0 O £510°0 ++5660°0 vip
JeA
9200°0 ++9710°0 i) $000°0 *+8500°0 "' Tv00°0 «+1L10°0 p ‘puo)- winjy
‘ubg oouvpup
(onjup) 2z suolousuRL | swin)oy leuontpuo))

(suopivaadsqo 176£) S661 I4wWIIQ - 0861 Asenuef (I'DHDY VYOI ‘uoiepaI0) [BUORIPUD)) JUBISUD))
YIM (9n[A) 9215 puk suopIEsusd L ‘suanias [y 1- 00EFS.L JO PPOW HOUVD d18lauAL g,
panupuo) :pig qe],




132

REFERENCES

Ajinkya, B., and P. Jain, 1989, The behavior of daily stock market trading volume,
Journal of Accounting & Economics 11, 331-359.

Admati, A., and P .Pfleiderer, 1988, A theory of intraday patterns: Volume and price
variability, Review of Financial Studies 1, 3-40.

Andersen, T. G., and T. Bollerslev, 1997, Heterogeneous information arrivals and return
volatility dynamics: Uncovering the long-run in high frequency returns, Journal
of Finance 52, 975-1005.

Andersen, T., 1996, Return volatility and trading volume in financial markets: An
information flow interpretation of stochastic volatility, Journal of Finance 51,
169-204.

Assogbavi, T., N. Khoury, and P. Yourougou, 1995, Short-interest and the asymmetry of
the price-volume relationship in the Canadian stock market, Journal of Banking
and Finance 19, 1341-1358.

Baillie, R. T., and R. P. DeGennaro, 1990, Stock returns and volatility, Journal of
Financial and Quantitative Analysis 25, 203-214.

Baillie, R. T., and T. Bollerslev, 1987, A multivariate generalized ARCH approach to
modeling risk premia in forward foreign exchange rate markets, Journal of
International Money and Finance 9, 309-324.

Berndt, E. B. Hall, R. Hall, and J. Hausman, 1974, Estimation and inference in nonlinear
structural models, Annals of Economic and Social Measurement 3, 653-665.

Black, F., 1976, Studies of stock market volatility changes, 1976, Proceedings of the
American Statistical Association, Business and Economic Statistics Section, 177-
181.

Blume, L., D. Easley, and M. O’Hara, 1994, Market statistics and technical analysis: The
role of volume, Journal of Finance 49, 153-181.

Bollerslev, T., 1986, Generalized autoregressive conditional heteroskedasticity, Journal
of Econometrics 31, 307-327.

Bollerslev, T., R. Chou, and K. Kroner, 1992, ARCH modeling in finance: A review of
the theory and empirical evidence, Journal of Econometrics 52:5-60.

Campbell, J. Y., S. G. Grossman, and W. Jiang, 1993, Trading volume and serial
correlation in stock returns, Quarterly Journal of Economics 108, 905-939.



133

Chamberlain, T. W., C. S. Cheung, and C. C. Y. Kwan, 1991, Volume-price change
relations and the costly short sales hypothesis: Some empirical tests, Canadian
Journal of Administrative Sciences 8, 175-178.

Chan, K., K. C. Chan, and G. A. Karolyi, 1991, Intraday volatility in the stock index
and stock index futures markets, Review of Financial Studies 4, 657-684.

Cheung, C. S.,and C. C. Y. Kwan, 1992, A note on the transmission of public
information across interational stock markets, Journal of Banking and Finance
16, 831-837.

Christie, A. A., 1982, The stochastic behavior of common stock variances: Value,
leverage and interest rate effects, Journal of Financial Economics 10, 407-432.

Copeland T., 1976, A model for asset trading under the assumption of sequential
information arrival, Journal of Finance 31, 1149-1168.

DeLong, J. B., A. Shleifer, L .H. Summers, and R. H. Waldman, 1990, Positive feedback
investment strategies and destabilizing rational speculation, Journal of Finance
45, 379-395.

Engle, R., 1982, Autoregressive conditional heteroskedasticity with estimates of the
variance of the United Kingdom inflation, Econometrica 50, 987-1007.

Engle, R., and K. Kroner, 1995, Multivariate simultaneous generalized ARCH,
Econometric Theory 11, 122-150.

Engle, R., and R. Susmel, 1993, Common volatility in international equity markets,
Journal of Business and Economic Statistics 11, 167-176.

Foerster, S., and G. Karolyi, 1993, The impact of Canadian stock listing in the United
States, Journal of International Business Studies 24, 763-784.

Foster, F. D., and S. Vishwanathan, 1990, A theory of the interday variations in volume,
variance and trading costs in securities markets, Review of Financial Studies 3,
593-624.

Foster, F. D., and S. Vishwanathan, 1993, The effects of public information and
competition on trading volume and price volatility, Review of Financial Studies 6,
23-56.

Gallant, R. A., P. E. Rossi, and G. Tauchen, 1992, Stock prices and volume,
Review of Financial Studies 5, 199-242.

Gerety, M. S., and J. H. Mulherin, 1992, Trading halts and market activity: An analysis
of volume at the open and the close, Journal of Finance 47, 1765-1784.



134

Glosten, L. R., R. Jagannathan, and D. E. Runkle, 1993, On the relation between the
expected value and the volatility of the nominal excess return on stocks, Journal
of Finance 48, 1779-1801.

Hamao, Y., R. Masulis, and V. Ng, 1990, Correlations in price changes and volatility
across international stock markets, Review of Financial Studies 2, 281-307.

Grundy, B. D., and M. McNichols, 1989, Trade and revelation of information through
prices and direct disclosure, Review of Financial Studies 2, 495-526.

Hiemstra, C., and J. D Jones, 1994, Testing for nonlinear Granger causality in
the stock price-volume relation, Journal of Finance 49, 1639-1664.

Holden, C. W., and A. Subrahmanyam, 1992, Long-lived private information and
imperfect competition, Journal of Finance 47, 247-270.

Holthausen, R. W, and R. E. Verrechchia, 1990, The effect of informedness and
consensus on price and volume behavior, Accounting Review 65, 191-208.

Jain, P., and G. Joh, 1988, The dependence between hourly prices and trading volume,
Journal of Financial & Quantitative Analysis 23, 269-283.

Jennings R., L. Starks, and J. Fellingham, 1981, An equilibrium model of asset pricing
with sequential information, Journal of Finance 36, 143-161.

Jones, C. M., G. Kaul, and M. L. Lipson, 1994, Transactions, volume and volatility,
Review of Financial Studies 7, 631-651.

Jorion, P., and E. Schwartz, 1986, Integration vs. segmentation in the Canadian stock
market, Journal of Finance 41, 603-616.

Karolyi, G. A., 1995, A multivariate GARCH model of international transmissions of
stock returns and volatility: The case of the United States and Canada, Journal of
Business and Economic Statistics 13, 11-25.

Karpoff, J. M., 1987, The relation between price changes and trading volume: A survey,
Journal of Financial & Quantitative Analysis 22, 109-126.

Kim O., and R. E. Verrecchia, 1991, Market reaction to anticipated announcements,
Journal of Financial Economics 30, 273-309.

Lakonishok, J., and S. Smidt, 1986, Capital gains taxation and volume of trading,
Journal of Finance 41, 951-974.

Lakonishok, J., and S. Smidt, 1989, Past price changes and current trading volume,
Journal of Portfolio Management, 18-24.



135

Lamoureux, C. G., and W. D. Lastrapes, 1994, Endogenous trading volume and
momentum in stock-return volatility, Journal of Business and Economic
Statistics, 12, 253-260.

Lamoureux, C. G., and W. D. Lastrapes, 1990, Heteroskedasticity in stock return data:
volume versus GARCH effects, Journal of Finance 45, 221-229.

LeBaron, B., 1992, Persistence of the Dow Jones Index on Rising Volume, Working
Paper, Department of Economics, University of Wisconsin - Madison.

Liesenfeld R., 1998, Dynamic bivariate mixture models: Modeling the behavior of
prices and trading volume, Journal of Business and Economic Statistics 16,
101-109.

Mitchell, M., and J. H. Mulherin, 1994, The impact of public information on the stock
market, Journal of Finance 49, 923-950.

Nelson, D., 1991, Conditional heteroskedasticity in asset returns: A new approach,
Econometrica 49, 347-370.

Pagan, A. R., and G. W. Schwert, 1990, Testing for covariance stationarity in stock
market data, Economics Letters 33, 165-170.

Ross, S., 1989, Information and volatility: The no-arbitrage martingale approach to
timing and resolution and irrelevancy, Journal of Finance 44, 1-18.

Smirlock M., and L. Starks, 1988, An empirical analysis of the stock price-volume
relationship, Journal of Banking and Finance 12, 31-41.

Tauchen G., and M. Pitts, 1983, The price variability-volume relationship on speculative
Markets, Econometrica 51, 485-505.

Tauchen, G., H. Zhang, and M. Liu, 1996, Volume, volatility and leverage: A dynamic
analysis, Journal of Econometrics 74, 177-208.

Theodossiou, P., and U. Lee, 1993, Mean and volatility spillovers across major national
stock markets: Further empirical evidence, Journal of Financial Research
16,337-350.

Whitelaw R. F., 1994, Time variations and covariations in the expectation and volatility
of stock market returns, Journal of Finance 49, 515-541.



136

CHAPTER 4

THESIS CONCLUSION

The unifying theme of the thesis is the nonlinearity of asset returns and its
implications for theoretical and empirical asset pricing. In chapter 2, we propose an
“artificial regression model” as an alternative nonlinear specification for asset returns.
The artificial regression model simplifies the econometric specification from a two-
moment (time-varying) specification to one where only the first moment needs to be
specified. The economic intuition underlying the model is that increasing the precision of
information should shrink volatility and lessen heteroskedasticity in the error structure
that is caused by misspecifying the nonlinear conditional mean. An important practical
importance of the model is that it generalizes to a multivariate approach in a natural way
and there is a major reduction in computational complexity in estimation. Given that
many issues in finance particularly asset pricing deal with multivariate systems, our
proposed framework has important practical implications. The results from the Monte
Carlo studies and the empirical analysis support the proposed model.

In chapter 3, we investigate the inter-day dynamics of the Canadian market. In a
departure from the U.S. markets the results strongly support the sequential information
flow and positive feedback trading hypotheses. The multivariate analysis reveals that the
economic significance of trading volume as an information flow measure may be
questionable. Our multivariate specifications are unable to capture all the persistence in
return variances and complement earlier studies that the joint dynamics of returns and

volume are not due to time series behavior of the information arrival process. The results
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thus suggest that a potential model is the artificial regression model proposed in the

preceding chapter.
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