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Abstract

Several interwell connectivity models such as multiple linear regression (MLR)

and the capacitance model (CM) have been proposed to model waterflooding per-

formance in high-permeability reservoirs based on observed production data. How-

ever, the existing methods are not effective at characterizing the behavior of tran-

sient flows which are prevalent in low-permeability reservoirs.

This thesis presents a novel dynamic waterflooding model based on linear dy-

namical systems (LDS) to characterize the injection-production relationships in an

oilfield during both stationary and nonstationary production phases. We leverage a

state space model, in which the changing rates of control volumes between injector-

producer pairs in the reservoir of interest serve as time-varying hidden states de-

pending on the reservoir condition, and can thus predict production rates more ac-

curately for low-permeability reservoirs and many dynamic scenarios. We propose

a self-learning procedure for the model to train its parameters as well as the evolu-

tion of the hidden states only based on past observations of injection and production

rates.

We tested LDS in comparison with the state-of-the-art CM method in a wide

range of synthetic reservoir models including both high-permeability and low per-
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meability reservoirs, as well as various dynamic scenarios involving varying bottom-

hole injection pressure (BHIP), injector shut-ins and reservoirs of a larger scale.

We also tested LDS on the real production data collected from Changqing oilfield

containing low-permeability formations. Testing results demonstrate that LDS sig-

nificantly outperforms CM in terms of modeling and predicting waterflooding per-

formance in low-permeability reservoirs and various dynamic scenarios.
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Chapter 1

Introduction

1.1 Thesis Outline

This thesis is organized as follows. Chapter 1 introduces the problem of reservoir

waterflooding prediction. Chapter 2 introduces our proposed model and the cor-

responding algorithms for learning the parameters of the model. We validate our

model in chapter 3 and summarize the conclusion in chapter 4.

1.2 Previous Literature

The production of oil and gas resources plays an important role in fulfilling the ever-

increasing demand for energy supply worldwide. As a secondary recovery method,

waterflooding injects water into an oilfield through injection wells to maintain the

pressure in the reservoir, driving oil towards production wells. The data of injection

and production rates can be readily collected during the production process, based

on which important insights into the characteristics of the reservoir can be derived.

Field operators of waterflooding need to control various operational parameters

on a regular basis, e.g., the injection rates and the bottom-hole pressure (BHP).

To make optimal decisions regarding water injection, it is important to predict the

responses of oil production under different water injection schedules. In addition

to conventional numerical simulation, several lightweight correlative methods have
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been developed, among which some methods specifically focus on characterizing

the interwell connectivity. Heffner et al. [1] used Spearman rank correlations to

relate injection/production well pairs and associated these relationships with geo-

mechanical properties of the reservoir. Panda and Chopra [2] evaluated the re-

lationships between injection and production rates with classical artificial neural

networks. Albertoni and Lake [3] proposed an interwell connectivity model based

on multiple linear regression (MLR). Their work was extended to the well-known

capacitance model (CM) by Yousef et al. [4]. CM takes into account both the

compressibility and transmissibility effects so as to better capture the true attenua-

tion and time lag between injection rates and production rates. CM has been later

modified to accommodate different application scenarios. For instance, Kaviani et

al. [5] made CM capable of modeling the cases with unmeasured fluctuating BHP.

Soroush et al. [6] improved CM by taking into account variations in skin factors

and frequent production interruptions.

However, weaknesses still exist in these improved capacitance models. First,

by assuming a constant productivity index, CM is not suitable for modeling tran-

sient flows [7], which are prevalent and can last for an extended period of time in

low-permeability reservoirs. Second, parts of the high-frequency injection signals

will be lost due to large dissipations in injection rates [4]. Considering these limi-

tations, some time-dependent models have been proposed to capture the injection-

production dynamics during waterflooding. Liu et al. [8] proposed a nonstationary

waterflooding model based on Extended Kalman filter (EKF), followed by an En-

semble Kalman Filter (EnKF) model proposed by Zhang et al. [9]. Liu et al. [8] as-

sumed that the impulse response between injectors and producers could be modeled

by the continuous-time unimodal function. But such an assumption is empirical in

nature. Zhang et al. [9] extended CM to model waterflooding in multi-layered reser-

voirs. Although the parameters are dynamically inferred in the models proposed by

Liu et al. [8] and Zhang et al. [9], they incorporate the states of the reservoir as

a part of the model parameters and suffer from one drawback: since their model

parameters are not learned based on data, the auto-regressive coefficients can only
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be set to fixed values in advance, which may undermine the prediction accuracy

especially in low-permeability reservoirs.

1.3 Linear Dynamical System

In this study, we develop a novel dynamic waterflooding model based on linear

dynamical systems (LDS) [10] to characterize the injection-production relation-

ships in an oilfield during both stationary and nonstationary production phases. Es-

pecially, our new model can yield more accurate production predictions for low-

permeability reservoirs than CM. The proposed LDS-based method models the dy-

namic changes in the reservoir condition over time through a hidden state variable

called control volume between each injector-producer pair, which may change over

time and affect the injection-production responses in the reservoir. Furthermore,

unlike the EKF by Liu et al. [8] and EnKF by Zhang et al. [9], we do not artifi-

cially assign the coefficients in LDS. Instead, we take advantage of an expectation-

maximization (EM) algorithm [11] to train the model parameters and coefficients,

allowing the LDS to choose the most suitable coefficients according to observation

data.

We evaluated the performance of the proposed LDS method in a wide range

of settings based on both synthetic data and real production data collected from

an oilfield. We observe that in high-permeability reservoirs, LDS shows perfor-

mance similar to CM. However, in low-permeability reservoirs, LDS significantly

outperforms CM in terms of the prediction accuracy in production rates, under a

wide range of scenarios, including the scenarios of varying bottom-hole injection

pressure (BHIP), injector shut-ins, larger-scale reservoirs and the real field.
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Chapter 2

Methodology

We propose a new procedure to model the relationship between injection and pro-

duction rates in waterflooding reservoirs based on linear dynamical system (LDS).

Due to its capability of characterizing transient and non-steady-state flow behavior,

the proposed model can better predict waterflooding performance in low-permeability

reservoirs, which was not well studied in prior work.

2.1 Background

In a waterflooding project, the oil reservoir can be treated as a system where the

water injection rates serve as continuous-time impulse and production rates are the

response [8]. Let i(t) and q(t) denote the aggregate injection rate and production

rate at time t, respectively. The governing material balance equation for the whole

reservoir is given by

ctVp
dp̄

dt
= i(t)− q(t) (2.1)

where ct is the total compressibility, Vp is the pore volume of the reservoir, and dp̄
dt

is the average changing rate in reservoir pressure.

Traditionally, CM assumes [4]

p̄(t) =
q(t)

J
+ pwf (t), (2.2)
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where the productivity index J is a constant, and pwf (t) represents the bottom-hole

pressure (BHP). The basic idea of CM is to combine the material balance Eq. 2.1

and the assumption p̄ in Eq. 2.2, and use optimization methods to approximately

solve the resulted differential equations to model the relationships between injection

rates and production rates.

However, this assumption is mainly applicable to high-permeability reservoirs

where the periods of transient flows can be short [4][12][6]. In contrast, in a low-

permeability reservoir, transient flows can be dominant for a long period of time.

In this case, the assumption made by CM that the productivity index J is constant

cannot hold any more [7].

In our model, we do not assume that the productivity index J is a constant or that

the reservoir pressure p̄(t) is linearly related to q(t). Instead, the reservoir pressure

is a general function of time and position, without assuming its specific form. And

the changing rate of p̄(t) [13] is given by

dp̄

dt
= f(~x, t) (2.3)

where ~x is a vector representing a specific geological position in the reservoir. In

the following, we will combine the material balance equation in Eq. 2.1 with Eq. 2.3

to derive an LDS to model the injection-production dynamics in an oilfield.

2.2 Mathematical Formulation of LDS

For brevity, let V = ctVpp̄ denote the reservoir volume and we use V ′(t) to denote

its derivative dV
dt

. Then, the material balance Eq. 2.1 is converted to

V ′(t) = i(t)− q(t) (2.4)

where V ′(t) is the changing rate of the reservoir volume. Due to Eq. 2.3, V ′(t) is

also a function of both time and position.

We now formulate the material balance equations for a reservoir with I injectors
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I03I04

I02

I01

I05

P01

Fig. 2.1. The illustration of control volume from five injectors to a producer P01.

and J producers. In this case, let ~i(t) := [i1(t), · · · ii(t), · · · iI(t)]>, where ii(t)

denotes the injection rate of the ith injector. Let ~q(t) := [q1(t), · · · qj(t), · · · qJ(t)]>

where qj(t) denotes the production rate of the jth producer.

Our model will rely on the notion of the control volume, which refers to the vol-

ume of a reservoir space between a specific injector and a specific producer [14].

Through this reservoir space, water and/or oil flows from the injector to the pro-

ducer. Let Vij denote the control volume from injector i to producer j, as illustrated

in Fig. 2.1 for a 5-spot reservoir example.

We denote the control volume changing rate (CVCR) from injector i to producer

j by V ′ij(t). Thus, similar to Eq. 2.4, we can write the material balance equation for

each particular injector-producer pair (i, j) as

V ′ij(t) = ii(t)− qj(t) (2.5)

For any given injector-producer pair, its CVCR V ′ij varies as a function of both

time and position. Since V ′ij with different i and j indices correspond to wells at
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different positions, V ′ij can reflect the variation of the reservoir volume dynamics

across different geological locations.

For a particular producer j, we assume its production rate qj is influenced by all

the injectors. And let

~V ′j := [V ′1j, V
′

2j, · · · , V ′ij, · · · , V ′Ij]>

represent the vector of CVCRs from all I injectors to producer j. For each given

producer j, considering the weighted contributions from different injectors, Eq. 2.5

is converted to

α> ~V ′j (t) = β>~i(t)− qj(t), (2.6)

where α and β are coefficient column vectors.

Incorporating the injection rates as inputs, the production rates as outputs, and

the CVCRs as hidden state variables, we can model the reservoir of interest as an

LDS, which is essentially a state space model (SSM). Specifically, the state update

of CVCRs should depend on both the previous CVCRs and the system inputs, i.e.,

the injection rates. Let ~V ′j (t+∆t) denote the CVCRs of producer j at time t+∆t. In

other words, the auto-regressive exogenous update for CVCRs ~V ′j associated with

producer j is

~V ′j (t+ ∆t) = f(~V ′j (t), ~i(t)) + ε(t) (2.7)

where ε(t) is a Gaussian noise for updating ~V ′j (t). The discretized form of Eq. 2.7

is

~V ′j (n+ 1) = f(~V ′j (n), ~i(n)) + ε(n) (2.8)

where n is the discretized time step.

For computational efficiency, we model the CVCRs associated with each pro-

ducer j as a linear recursive function of their previous values and the injection rates,

leading to

~V ′j (n+ 1) = A ~V ′j (n) + B~i(n) + ε(n) (2.9)
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!i(n) !i(2) !i(1)

qj(1)qj(2)qj(n)qj(n+ 1)

!V ′
j (1)!V ′

j (2)!V ′
j (n)

!V ′
j (n+ 1)

!i(n+ 1)

Fig. 2.2. An LDS to model waterflooding in a reservoir. CVCRs are denoted by squares. The
injection rates are denoted by diamonds. The production rates are denoted by circles.

where A is the coefficient matrix of ~V ′j (n) and B is the coefficient matrix of~i(n).

Similarly, discretizing the material balance equations in Eq. 2.6, we can obtain

the observation equation for each producer j as

qj(n) = −α>~V ′j (n) + β>~i(n) + γ(n) (2.10)

where γ(n) is a Gaussian noise for the observed production rate.

Combining Eq. 2.9 and Eq. 2.10, we can obtain an LDS for each producer j as

follows:

~V ′j (n+ 1) = A ~V ′j (n) + B~i(n) + ε(n) (2.11a)

qj(n) = −α>~V ′j (n) + β>~i(n) + γ(n) (2.11b)

2.3 Physical Meanings of the LDS Model

Fig. 2.2 illustrates the dynamics between injection and production rates conditioned

on the hidden reservoir states, i.e., the CVCRs. At each time step, the injection

rates ~i(n) serve as the model input, and the production rate qj(n) serves as the

observed output at producer j. The update of hidden CVCRs depends on both their

previous values and the injection rates, based on Eq. 2.11a. On the other hand, the
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output qj(n) is jointly determined by the CVCRs associated with producer j and

the injection rates at time step n, according to Eq. 2.11b.

Let us now explain the physical meanings of model parameters. In Eq. 2.11b,

the vector β represents the direct influence of all the injectors on the production rate

at each producer. Thus, the meaning of each element in β is similar to that of inter-

well connectivity in CM [4]. However, what is different from CM is that in LDS,

there is an additional vector α that quantifies the impact of the introduced hidden

reservoir states, represented by the CVCRs ~V ′j , on each producer j. Therefore, the

proposed LDS model can better characterize the transient behavior in waterflood-

ing, leading to more accurate prediction especially in low-permeability reservoirs

and various dynamic scenarios involving varying BHIP or injector shut-ins.

Note that the basic idea of CM is to express productivity index J as a constant

and then substitute dp̄
dt

in the material balance equation, i.e., Eq. 2.1, using Eq. 2.2.

The same idea is also adopted in other multiple linear regression (MLR) models. In

contrast, our model treats CVCRs ~V ′j as dynamic variables and trains such hidden

variables together with all the model parameters α, β,A,B based on the past ob-

servations of injection and production data. Therefore, in this case, the productivity

index is no longer assumed constant.

2.4 Training and Prediction

We now describe how to train the LDS model in Eq. 2.11 given historical obser-

vations of injection and production rates up to a certain time period N . Since in

Eq. 2.11, each producer can be handled individually, without loss of generality, we

can focus on a specific producer j. To simplify notations, we use a vector xn to

represent the hidden state variable at time step n, i.e., the CVCRs ~V ′j (n), with x0

denoting the initial value of xn, i.e., ~V ′j (0). We use a vector un to denote the system

inputs at time step n, i.e., the injection rates~i(n), and use a scalar yn to denote the

system output, i.e., the production rate qj(n) of producer j, at time step n. Then,

we can rewrite the LDS in Eq. 2.11 in the nomenclature of system identification as
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follows:

xn+1 = Axn +B un + εn (2.12a)

yn = C xn +Dun + γn (2.12b)

x0 = µ0 + v (2.12c)

where v is the noise of the initial state variable, εn is the system noise, and γn

is the observation noise. All three noise terms follow Gaussian distributions, i.e.,

v ∼ N (0, V0), εn ∼ N (0,Σ), γn ∼ N (0,Γ), where V0, Σ and Γ are the covariance

matrices of v, εn and γn.

The system parameters θ = {A,B,C,D,Σ,Γ, µ0, V0}, can be learned based on

historical inputs u1, . . . , uN and outputs y1, . . . , yN using a maximum-likelihood

estimator (MLE) [15]. The expectation-maximization (EM) algorithm is a well-

known iterative method to find the maximum likelihood of the parameters [16]. The

general methodology of the EM algorithm is described in Section 2.5. Therefore,

we apply the EM algorithm to derive the posterior estimation of the hidden state

variables, {x̃1, . . . , x̃N}, based on which the system parameters θ can be estimated.

Such training process is applied iteratively until the convergence condition is met,

and future production rates can be predicted given a certain sequence of planned

injection rates.

To estimate the parameters θ = {A,B,C,D,Σ,Γ, µ0, V0} of LDS in Eq. 2.12,

we apply EM algorithm to the hidden sequence [10].

E-Step. Kalman Filter uses the past and current observations to predict the cur-

rent state [17], which works well in estimating the current state. However, it is

not sufficient to provide estimation on sequential data, which necessitates Kalman

Smoothing [18][19]. The first phase of Kalman Smoothing is to use Kalman Filter

to find the posterior marginal for a state xn given observations y1, . . . , yn. Assuming

xn ∼ N (µn, Vn), we have the forward updating phase as follows:

x̂−n = A x̂n−1 +B un−1 (2.13a)

10



V̂ −n = A V̂n−1A
> + Σ (2.13b)

Kn = V̂ −n C
>(CV̂ −n C

> + Γ)−1 (2.13c)

x̂n = x̂−n +Kn(yn − C x̂−n −Dun) (2.13d)

V̂n = (I −KnC) V̂ −n (2.13e)

whereKn is Kalman Gain Matrix at time step n, and I is the identity matrix. We let

x̂−n represent the prior estimate at time step n given knowledge of the process prior

to time step n, and let x̂n represent the posterior state estimate at time n given the

observation yn. Similarly, V̂ −n and V̂n represent the prior and posterior estimates of

Vn.

With the initial guess of parameters θold, Kalman Filter (the forward phase) can

generate {x̂1, . . . , x̂N} and {V̂1, . . . , V̂N}. The subscript N represents the finish

time of the sequential data. Then, the forward phase can initialize the backward

phase, which is given by

Jn = V̂nA
> (V̂ −n+1)−1 (2.14a)

x̃n = x̂n + Jn(x̃n+1 − x̂−n+1) (2.14b)

Ṽn = V̂n + Jn(Ṽn+1 − V̂ −n+1)J>n (2.14c)

where we can find Jn from A V̂n = V̂ −n+1 J
−1
n . Moreover, V̂ −n+1 and x̂−n+1 can be

calculated using

x̂−n+1 = A x̂n +B un

V̂ −n+1 = A V̂nA
> + Σ

(2.15)

Since the posterior estimate has been calculated in the forward phase, the final

estimation of the state variable x̃n and its covariance Ṽn can be obtained. Then, the

covariance between state xn and xn+1 is

Ṽn,n+1 = Ṽn+1 J
>
n (2.16)
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M-Step. In the E-Step, we have inferred the LDS system states, assuming the

model parameters θ = {A,B,C,D,Σ,Γ, µ0, V0} are known. Here, we wil deter-

mine θ with MLE.

Since LDS is based on sequential data, which is recursively determined by the

previous state, as shown in Fig. 2.2, we have a key conditional independence prop-

erty that xn−1 and xn+1 are independent given xn. Therefore, the joint distribution

of the state variable and observation is given by

p(Y,X) = p(x1)

[ N∏
n=2

p(xn|xn−1)

] N∏
n=1

p(yn|xn) (2.17)

Taking the logarithm of Eq. 2.17, the complete-data log-likelihood function is

log p(Y,X|θ) = log p(x1|µ0, V0) +
N∑
n=2

log p(xn|xn−1, A,B,Σ)

+
N∑
n=1

log p(yn|xn, C,D,Γ)

(2.18)

where θ = {A,B,C,D,Σ,Γ, µ0, V0} is treated as the argument.

We now take the expectation of Eq. 2.27 with respect to the posterior distribution

p(X|Y, θold), and obtain

Θ(θ, θold) =
∑
X

Q(X) log p(Y,X|θ)

= Ex∈Q[log p(Y,X|θ)]
(2.19)

which also defines a lower bound of Eq. 2.27. Then, this function is maximized

with respect to θ.

According to the multivariate Gaussian distribution [10], the following expec-

tations will be required to calculate the log-likelihood:

E [xn] = x̃n (2.20a)

E [xnx
>
n−1] = Jn−1Ṽn + x̃nx̃

>
n−1 (2.20b)
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E [xnx
>
n ] = Ṽn + x̃nx̃

>
n (2.20c)

As an example, let us consider the parameters µ0 and V0 first. If we take expec-

tation with respect to X ∝ Q(X), we can obtain

Θ(µ0, V0) =− 1

2
log |V0| − E

[1

2
(x1 − µ0)>V −1

0 (x1 − µ0)
]

+ const
(2.21)

where all the terms that are not dependent on µ0 and V0 are incorporated into the

const term. Then, it is straightforward to find the optimal µ0 and V0 based on the

maximum-likelihood solution for Gaussian distribution:

µnew
0 = E [x1] (2.22a)

V new
0 = E [x1x

>
1 ]− E [x1]E [x>1 ] (2.22b)

We can find the optimal values of the other parameters A,B,C,D in a similar

fashion and obtain

[A B] =
(∑

E [xnx
>
n−1]

∑
E [xn−1]u>n−1

)
·∑E [xn−1x

>
n−1]

∑
E [xn−1]u>n−1∑

un−1E [x>n−1]
∑
un−1u

>
n−1

−1 (2.23)

[C D] =
(∑

ynE [x>n ]
∑
ynu

>
n

)
·∑E [xnx

>
n ]

∑
E [xn]u>n∑

unE [x>n ]
∑
unu

>
n

−1 (2.24)

based on which, Σ,Γ can be found with the newly calculated parametersA,B,C,D.

That is,

Σ =
1

N − 1

N∑
n=2

E[(xn − Axn−1 −Bun−1)(xn − Axn−1 −Bun−1)>] (2.25)
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Γ =
1

N

N∑
n=1

E [(yn − Cxn −Dun)(yn − Cxn −Dun)>] (2.26)

We can optimize the system parameters by iteratively applying the E-step and the

M-step mentioned above.

Once we have obtained the posterior estimation of the hidden state variables,

{x̃1, . . . , x̃N}, and their covariance matrices, {Ṽ1, . . . , ṼN}, as well as the system

parameters from the EM algorithm, the prior estimate [20][10] of Kalman Filter

could be applied to predict the system outputs yN+1, yN+2, . . . and their variances

WN+1,WN+2, . . . for the future, as described in Algorithm 2.1.

Algorithm 2.1 Reconstructed and Predicted Production Rates

1: Input parameters {A,B,C,D} and {x̃1, · · · x̃N}
2: for n = 1 to N do
3: ỹn = C x̃n +Dun
4: Set x−N = x̃N
5: for n = N + 1, N + 2, . . . do
6: x−n = Ax−n−1 +B un−1

7: yn = C x−n +Dun
8: Vn = AVn−1 A

> + Σ
9: Wn = C VnC

> + Γ
10: Output the historical output reconstruction {ỹ1, . . . ỹN}

and the prediction {yN+1, yN+2, . . .}

2.5 The EM Algorithm

In order to present the specific EM algorithm applied to our sequential data and

the LDS in Eq. 2.12, we first describe the general EM algorithm [11][21], which

is widely used to calculate the maximum likelihood of observed data p(y|θ) in the

presence of a hidden variable x. It alternates between an E-Step and an M-Step.

In the E-Step, we first generate the expectation of the log-likelihood evaluated

at the current estimated parameters, while in the M-Step, we update the parameters

by maximizing the expected log-likelihood obtained in the E-Step. Then, the pa-

rameters obtained in the M-Step are used to create the new expectation in the next

E-Step.

14



In the following, we briefly describe how to determine the expectation of the

log-likelihood function. For simplicity, we denote Y = {y1, . . . yn, . . .}, X =

{x1, . . . xn, . . .}. The log-likelihood function is given by

log p(Y |θ) = log

∫
X

p(Y,X|θ)dX (2.27)

In a discrete form, assigning any probability distribution Q(X) over hidden

variables X and applying Jensen’s inequality due to the concavity of log function,

we can obtain a lower bound of the log-likelihood function:

log p(Y |θ) = log

{∑
X

p(Y,X|θ)
}

= log

{∑
X

Q(X)
p(Y,X|θ)
Q(X)

}
= log

{
EX∈Q

p(Y,X|θ)
Q(X)

}
> EX∈Q

{
log

p(Y,X|θ)
Q(X)

}
=
∑
X

Q(X) log
p(Y,X|θ)
Q(X)

(2.28)

To maximize the lower bound, p(Y,X|θ)/Q(X) should be a constant value

independent of θ. Therefore, we have

Q(X) ∝ p(Y,X|θ) (2.29)

Considering
∑

X Q(X) = 1, we have

Q(X) =
p(Y,X|θ)∑
X p(Y,X|θ)

=
p(Y,X|θ)
p(Y |θ)

= p(X|Y, θ)
(2.30)

To summarize, in the E-Step, we calculate the conditional distribution of X

given Y under the current estimate of the parameters θ (the lower bound of the log-

likelihood). Then, in the M-Step, we aim to find the parameters θ that maximize the
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lower bound

∑
X

Q(X) log
p(Y,X|θ)
Q(X)

=
∑
X

Q(X) log p(Y,X|θ)−
∑
X

Q(X) logQ(X)

(2.31)

where we only need to maximize the first term in the RHS of Eq. 2.31, since the

second term does not depend on θ. The general EM algorithm is shown in Algo-

rithm 2.2 [10].

Algorithm 2.2 EM Algorithm

1: Initialize parameters θold

2: for k = 1 to maxIter do
3: E-Step Evaluate Q(X) := p(X|Y, θold)
4: M-Step Evaluate θnew, given by

θnew := arg maxθ
∑

X Q(X) log p(Y,X|θold)
5: Check convergence of either log-likelihood or θ
6: Output parameters θ
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Chapter 3

Performance Evaluation

We validate the newly developed model by proving that the production rates pre-

dicted by the new model are close to the real production rates. We compare this

new model against CM which is widely used in industry [4] in terms of prediction

accuracy for different types of reservoirs under a wide range of parameter settings.

3.1 Experimental Setup

We will conduct performance evaluation on three synthetic reservoir models built

with a commercial reservoir simulator, CMG, as shown in Fig. 3.1, 3.2 and 3.3, re-

spectively. The first synthetic model represents a heterogeneous high-permeability

reservoir, while the second and the third models represent homogeneous low-permeability

reservoirs of smaller and larger scales, respectively. The regular five-spot well pat-

tern is adopted in all the three synthetic models. Both the first and second reservoirs

are 5×4, employing 5 injectors and 4 producers, while the third reservoir is 10×10,

employing 10 injectors and 10 producers. We also evaluate our proposed scheme

based on the production data collected from a real oilfield, as shown in Fig. 3.4.

The detailed setup of the these test cases are described as follows:

• High-Permeability Reservoir Model (HPRM): the model (5× 4) has a size

of 50 m×50 m×1 m and contains two high-permeability channels, as shown

17



Fig. 3.1. The synthetic reservoir model, HPRM, comprised of 5 injectors and 4 producers (5 ×
4), representing a heterogeneous high-permeability reservoir with two channels. The heat map
quantifies the permeability distribution (mD).

Fig. 3.2. The synthetic reservoir model, LPRM, comprised of 5 injectors and 4 producers (5× 4),
representing a homogeneous low-permeability reservoir. The permeability of this reservoir is 1mD.
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Fig. 3.3. The synthetic reservoir model, LLPRM, comprised of 10 injectors and 10 producers (10×
10), representing a homogeneous low-permeability reservoir. The permeability of this reservoir is
1mD. Each red line represents a set of injectors at a certain distance from PROD01.

��������
	
������

PROD01

I03

I02

I01

I04

Fig. 3.4. The well patterns and relative locations of one producer and its most adjacent injectors in
a waterflooding project in Changqing oilfield.
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in Fig. 3.1. We set the BHP of all the producers to 689.4757 kPa. The perme-

ability of the areas excluding the channel is set to 300 mD, while the perme-

ability of the two channels is set to 800-2000 mD.

• Low-Permeability Reservoir Model (LPRM): this homogeneous model (5×

4) has a size of 50 m× 50 m× 1 m, as shown in Fig. 3.2. The permeability is

set to 1 mD, and the BHP of all the producers is set to 689.4757 kPa. For this

model, we consider three scenarios: 1) the scenario without varying BHP and

well shut-in; 2) the scenario with varying BHIP; 3) the scenario with injector

shut-ins.

• Larger-scale Low-Permeability Reservoir Model (LLPRM): this homo-

geneous model (10 × 10) has a size of 100 m × 100 m × 1 m, as shown in

Fig. 3.3. The permeability is set to 1 mD, and the BHP of producers is set to

689.4757 kPa.

• Real Field Data Test: we also evaluate the performance of LDS on the real

data collected from the Changqing oilfield, which is located in northwest

China and contains typical low-permeability production formations. Water-

flooding is applied to a small well pattern comprised of 4 injectors and 1 pro-

ducer, as shown in Fig. 3.4. The target reservoir depth is between 2018–2793

m and the permeability is distributed in the range of 0.7–58.7 mD.

3.2 Results

3.2.1 HPRM and LPRM

We first evaluate the performance of LDS in comparison to CM when applied to

HPRM and LPRM, in terms of prediction accuracy. All the numerical simulations

are executed over a period of 96 months, with a time interval ∆t = 1 month. We

use the first 3/4 data (first 72 months) as the training data, while the remaining data

serve as the test data to validate the prediction accuracy of each method. We treat
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Fig. 3.5. The injection rates used for HPRM, as shown in Fig. 3.1 (left sub-figure), and for LPRM,
as shown in Fig. 3.2 (right sub-figure). The first 72 months’ injection rates data are used as input of
training data, and the rest 24 months’ injection rates data are used as input to validate the prediction
results.

TABLE 3.1
RELATIVE ERRORS OF THE PREDICTED PRODUCTION RATES FOR HPRM AS SHOWN IN

FIG. 3.1.

Method Type
Relative Error (%)

PROD01 PROD02 PROD03 PROD04
LDS Mean 1.7453 0.9899 1.2744 1.1870
CM Mean 0.3830 0.4948 0.5154 0.8805
LDS Max 3.1542 2.1641 2.1928 1.9677
CM Max 1.1928 1.2933 0.8721 1.6175

Note: the relative error is the absolute difference between the predicted and
real production rates divided by the real production rates.

each production well as being independent of other production wells, while being

influenced by all the injection wells. We terminate LDS algorithm if the difference

in the log-likelihood between two iterations is smaller than 10−4. In order to avoid

overfitting, we set the maximum number of iterations to 200.

Fig. 3.5 shows all the injection rates for HPRM and LPRM. The production

rates predicted by LDS and CM are plotted in Fig. 3.6 and Fig. 3.7, respectively,

for HPRM and LPRM, in comparison to the true production rates given by CMG.

Comparing to CM, we observe that LDS can significantly improve the prediction

accuracy for the low-permeability reservoir, whereas it exhibits a prediction accu-

racy similar to CM for the high-permeability reservoir.

The mean and maximum relative prediction errors are shown in Table 3.1 and
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Fig. 3.6. Performance comparison of LDS and CM when they are applied to HPRM as shown in
Fig. 3.1. Each sub-plot compares the actual production rates for each producer and calculated ones
by using LDS and CM, for PROD01, PROD02, PROD03 and PROD04, respectively. The period
from 1st to 72th months corresponds to the reconstruction stage, while the period from 73th to 96th
months corresponds to the prediction stage.
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Fig. 3.7. Performance comparison of LDS and CM when they are applied to LPRM as shown in
Fig. 3.2. Each sub-plot compares the actual production rates for each producer and calculated ones
by using LDS and CM, for PROD01, PROD02, PROD03 and PROD04, respectively. The period
from 1st to 72th months corresponds to the reconstruction stage, while the period from 73th to 96th
months corresponds to the prediction stage.
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TABLE 3.2
RELATIVE ERRORS OF THE PREDICTED PRODUCTION RATES FOR LPRM AS SHOWN IN

FIG. 3.2.

Method Type
Relative Error (%)

PROD01 PROD02 PROD03 PROD04
LDS Mean 7.3159 8.1447 9.2772 8.3129
CM Mean 29.2854 28.6264 21.3266 20.6699
LDS Max 13.7871 17.3040 18.9399 23.0701
CM Max 64.6709 73.5282 48.0139 47.7024

Note: the relative error is the absolute difference between the predicted and
real production rates divided by the real production rates.

TABLE 3.3
β MATRIX TRAINED BY LDS FOR HPRM AS SHOWN IN FIG.3.1.

Injector
Producer

PROD01 PROD02 PROD03 PROD04
I1 0.3559 0.3467 0.1523 0.1298
I2 0.3581 0.1520 0.3778 0.1114
I3 0.2633 0.2467 0.2458 0.2182
I4 0.2122 0.3148 0.1688 0.2770
I5 0.1533 0.1441 0.2573 0.4687

Table 3.2, for HPRM and LPRM, respectively. It can be observed that as compared

to CM, LDS substantially reduces both the mean and maximum relative prediction

errors for LPRM.

Furthermore, we explore why LDS could provide better prediction than CM

in LPRM. Recall that β matrix implies the direct connection between injection

rates and production rates, which resembles the interwell connectivity in CM. We

show the learned β matrices in LDS for HPRM and LPRM in Table 3.3 and Ta-

ble 3.4, respectively. For HPRM, the geographically closer injector-producer pairs

will have larger values of β, conforming to what we have expected. On the other

hand, for LPRM, the elements in β matrix have relatively small values, as com-

pared to HPRM. The underlying reason is that the fluid flow from each injector to

a producer in tight formations is much more difficult than that in high-permeability

formations.
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TABLE 3.4
β MATRIX TRAINED BY LDS FOR LPRM AS SHOWN IN FIG.3.2.

Injector
Producer

PROD01 PROD02 PROD03 PROD04
I1 0.0292 0.0126 0.0506 0.0210
I2 0.0197 0.0292 0.0370 0.0292
I3 0.0281 0.0404 0.0474 0.0568
I4 0.0469 0.0821 0.0759 0.0969
I5 0.0842 0.1118 0.1224 0.1355
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Fig. 3.8. Evolution of the log-likelihood for the 4 producers over the iterations: (a) HPRM; (b)
LPRM.

In EM training process, the log-likelihood function is maximized to find out the

best-fit parameters θ. Fig. 3.8 shows the evolution of the log-likelihood function,

i.e., the objective function in the EM algorithm, as the iteration proceeds. From

Fig. 3.8, we can observe that the convergence is faster for HPRM than for LPRM.

Prediction intervals can be used to quantify the uncertainty surrounding the pre-

diction of each individual production rate at a future point. Since we have the vari-

ances of state variables, we can predict the variance of production rates based on

Algorithm 2.1. Let σn denote the standard deviation of the predicted production rate

at time n. With Gaussian noise, the 95% prediction interval is [yn− zσn, yn + zσn],

where z = 1.96 [22]. Even with non-Gaussian error terms and production rate dis-

tribution, the 95% prediction interval can be well approximated by the same value

above if we have observed a large number of training samples from the history. We

plot the 95% prediction intervals for HPRM and LPRM in Fig. 3.9 and Fig. 3.10,

respectively.
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Fig. 3.9. Performance of LDS and its 95% prediction interval when they are applied to HPRM
as shown in Fig. 3.1. Each sub-plot compares the actual production rates for each producer and
predicted ones by using LDS, for PROD01, PROD02, PROD03 and PROD04, respectively.
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Fig. 3.10. Performance of LDS and its 95% prediction interval when they are applied to LPRM
as shown in Fig. 3.2. Each sub-plot compares the actual production rates for each producer and
predicted ones by using LDS, for PROD01, PROD02, PROD03 and PROD04, respectively.
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Fig. 3.11. The variation pattern of BHIP in LPRM as shown in Fig. 3.2.

3.2.2 LPRM with Varying BHIP

BHIP is the downhole pressure at which we inject treatment fluid into the injectors.

In the following scenarios, we apply LDS to LPRM in comparison to CM, when

BHIP varies. We design the variation pattern of BHIP for different injectors, as

shown in Fig. 3.11. For this scenario, we use the same injection rates as the previous

LPRM, as shown in Fig. 3.5 (right).

Fig. 3.12 shows the reconstructed production rates as well as the predicted ones

for LPRM under varying BHIP. First, we compare LDS with CM in the reconstruc-

tion stage, i.e., 1st to 72th month, as shown in Fig. 3.7 and Fig. 3.12. We can

observe that the reconstructed production rates in LDS can almost exactly match

the real production rates, with no fluctuations. In contrast, the reconstructed pro-

duction rates of CM cannot well approximate the real production rates, yielding

larger fluctuations. This is attributed to the fact that CM cannot well capture the

larger variation of BHIP [4].

For the prediction stage, due to varying BHIP, we can see from Fig. 3.12 that

CM leads to even larger deviation from the real production rates in its prediction.
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Fig. 3.12. Performance comparison of LDS and CM when they are applied LPRM as shown in
Fig. 3.2. In this example, BHIP vary according to Fig. 3.11. Each sub-plot compares the actual pro-
duction rates for each producer and calculated ones by using LDS and CM, for PROD01, PROD02,
PROD03 and PROD04, respectively. The period from 1st to 72th months corresponds to the recon-
struction stage, while the period from 73th to 96th months corresponds to the prediction stage.
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TABLE 3.5
RELATIVE ERRORS OF THE PREDICTED PRODUCTION RATES FOR LPRM WITH VARYING

BHIP, AS SHOWN IN FIG. 3.11.

Method Type
Relative Error (%)

PROD01 PROD02 PROD03 PROD04
LDS Mean 5.0186 5.4894 9.4581 9.2786
CM Mean 35.2317 35.1791 30.8553 27.5190
LDS Max 10.3932 20.9146 19.1693 21.5035
CM Max 87.3713 89.0316 86.4592 66.3168

Note: the relative error is the absolute difference between the predicted and
real production rates divided by the real production rates.

However, LDS can still provide prediction performance similar to that in LPRM

without the varying BHIP, which has been shown in Fig. 3.7 and Fig. 3.12. More-

over, Table 3.5 summarizes the relative prediction errors of LDS and CM for the

varying BHIP scenario. The maximum prediction error across all the months con-

sidered is 89.03% for CM, while it is only 21.50% for LDS, indicating the obvious

superiority of LDS in terms of modeling waterflooding in low-permeability reser-

voirs with varying BHIP.

3.2.3 LPRM with Injector Shut-ins

Considering the low production rates of low-permeability reservoirs, it is possible

for operators to suspend water injection at certain wells from time to time, which

is often referred to as “well shut-in” in practice. In our model, since the injection

rates serve as the system inputs, well shut-in can be readily handled with LDS by

setting the injection rates at the corresponding shut-in injector to zero.

We consider two scenarios: 1) injectors I02 and I04 are shut in at the 44th

month, which is in the middle of all 96 months considered; 2) all injectors except for

I03 are shut in at the 44th month. Fig. 3.13 shows the corresponding injection rates

in these two scenarios. The first 72 months will serve as the training stage, based

on which predictions on production rates are made for the following 24 months.

Fig. 3.14 and Fig. 3.15 show the reconstructed and predicted production rates

for the two scenarios with injector shut-ins, where the benefit of LDS over CM is
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Fig. 3.13. The injection rates used for LPRM as shown in Fig. 3.2. Some injectors are shut in from
the 44th month to test the prediction of production rates under the injectors shut-in scenario. Left
sub-figure is the scenario where injectors I02, I04 are shut in, and the right sub-figure is the scenario
where all injectors but I03 are shut in.

TABLE 3.6
RELATIVE ERRORS OF THE PREDICTED PRODUCTION RATES FOR LPRM, WHERE INJECTOR

I02 AND I04 ARE SHUT IN, AS SHOWN IN FIG. 3.13 (LEFT).

Method Type
Relative Error (%)

PROD01 PROD02 PROD03 PROD04
LDS Mean 3.2975 5.5955 10.8349 6.3597
CM Mean 69.8319 62.0303 40.8823 57.7797
LDS Max 7.9852 16.7926 25.6571 14.2984
CM Max 127.9042 127.3063 65.6108 101.0536

Note: the relative error is the absolute difference between the predicted and
real production rates divided by the real production rates.

obviously observed. In both reconstruction and prediction stages, CM cannot well

approximate the real production rates, while LDS can match the production rates

much more closely.

Table 3.6 and Table 3.7 show the prediction errors of LDS and CM. We can

see that with well shut-ins, the relative prediction errors of CM are much larger

than those of LDS. Furthermore, comparing the two tables, we can find that when

more injectors are shut in, the relative prediction errors of CM increase signifi-

cantly, while the prediction errors of LDS only increase slightly. Thus, LDS can

still maintain an acceptable prediction accuracy in the cases of well shut-ins.

The reason underlying the superiority of LDS to CM is that LDS can capture the

changing dynamics of control volumes in the reservoir after the well shut-ins, while
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Fig. 3.14. Performance comparison of LDS and CM when they are applied to LPRM as shown in
Fig. 3.2. In this example, the injectors I02 and I04 are both shut in at the 44th month. Each sub-plot
compares the actual production rates for each producer and calculated ones by using LDS and CM,
for PROD01, PROD02, PROD03 and PROD04, respectively. The period from 1st to 72th months
corresponds to the reconstruction stage, while the period from 73th to 96th months corresponds to
the prediction stage.
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Fig. 3.15. Performance comparison of LDS and CM when they are applied to LPRM as shown
in Fig. 3.2. In this example, the injectors I01, I02, I04 and I05 are all shut in at the 44th month.
Each sub-plot compares the actual production rates for each producer and calculated ones by using
LDS and CM, for PROD01, PROD02, PROD03 and PROD04, respectively. The period from 1st
to 72th months corresponds to the reconstruction stage, while the period from 73th to 96th months
corresponds to the prediction stage.
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TABLE 3.7
RELATIVE ERRORS OF THE PREDICTED PRODUCTION RATES FOR LPRM, WHERE ALL

INJECTORS EXCEPTION FOR I03 ARE SHUT IN, AS SHOWN IN FIG. 3.13 (RIGHT).

Method Type
Relative Error (%)

PROD01 PROD02 PROD03 PROD04
LDS Mean 11.9900 4.7310 12.2951 13.2868
CM Mean 76.8022 81.7842 55.1571 72.5148
LDS Max 28.6283 11.4820 29.9701 23.7883
CM Max 183.6089 201.5525 134.7882 170.2932

Note: the relative error is the absolute difference between the predicted and
real production rates divided by the real production rates.

CM cannot reflect such dynamics by assuming constant interwell connectivities.

3.2.4 LLPRM

We further test our method on a larger 10 × 10 LLPRM field as shown in Fig. 3.3.

As the field is larger, the validation is done under a two-step procedure: 1) selecting

the most relevant injectors for each producer, and 2) predicting the production rates

of each producer only based on the most relevant injectors.

The rationale for selecting the most relevant injectors is the following. When

there are more wells involved in a low-permeability reservoir, the injectors of dif-

ferent distances from a given producer will have significantly different impact to

the producer: the farther the injector is away, the less influence it will have on the

producer. In this case, if we train LDS with random initialization of β, which essen-

tially assumes similar contributions from different injectors towards each producer,

extra noise will be introduced into the model training, since injectors far away ac-

tually have little influence on the producer being considered.

To verify this idea, we compare the prediction accuracy for a particular producer

PROD01. Fig. 3.3 depicts the injectors with different distances from PROD01: each

distance range is represented by a different red line. The validation is under three

strategies: 1) predict the production rates for PROD01 based on its immediately ad-

jacent injectors: I01, I02 and I03; 2) predict the production rates for PROD01 based

on I04, I05, I06 and I07 in addition to I01, I02 and I03; 3) predict the production
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Fig. 3.16. Comparison between the actual production rates for producer PROD01 and calculated
ones by using LLPRM under three different scenarios. These three scenarios are developed based
on the injection data collected for the three groups of injectors, respectively: injectors located at the
1st red line, injectors located at the 1st and 2nd red lines, and injectors located at the 1st, 2nd and
3rd red lines (See Fig. 3.3). The period from 1st to 72th months corresponds to the reconstruction
stage, while the period from 73th to 96th months corresponds to the prediction stage.

rates for PROD01 based on all 10 injectors.

The results are shown in Fig. 3.16, which conforms to our observation men-

tioned above: the prediction accuracy decreases as farther injectors are included,

since the farther injectors do not have noticeable contributions to the producer, and

may only introduce noise to the training process. Similar tests have been performed

on other producers, from which we have observed a similar phenomenon. There-

fore, in the following, we predict the production rates of each producer in the reser-

voir only based on its immediately adjacent injectors.

The total time intervals are also 96 months, and the first 72 months are utilized

for training and the rest are used to test the prediction performance. Fig. 3.17 plots

the reconstructed and predicted production rates for all 10 producers using both

LDS and CM. We observe that the prediction error of LDS can be controlled within

a small range by our injector selection strategy based on immediately adjacent in-

jectors.
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Fig. 3.17. Performance comparison of LDS and CM when they are applied to LLPRM as shown in
Fig. 3.3. In this example, only the immediately adjacent injectors are considered for each producer.
Each sub-plot compares the actual production rates for each producer and calculated ones by using
LDS and CM, representing from PROD01 to PROD10 in order, respectively. The period from 1st
to 72th months corresponds to the reconstruction stage, while the period from 73th to 96th months
corresponds to the prediction stage.
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Fig. 3.18. The injection rates collected from the real data in Changqing oilfield.
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Fig. 3.19. Performance comparison of LDS and CM when applied to real data collected from
Changqing oilfield. The period from the 1st to 60th month corresponds to the reconstruction stage,
while the period from the 61st to 70th month corresponds to the prediction stage.

37



3.2.5 The Real Field

For real-field validation, we use the injection and production data collected from

Changqing oilfield, containing low-permeability production formations, over a 70

month period, from June 2004 to March 2010. In this waterflooding project, 4 water

injection wells are used to drive oil towards one producer, as shown in Fig. 3.4. We

use the data of the first 60 months to train the model, based on which the production

rates over the next 10 months are predicted.

Fig. 3.18 shows the injection rates and Fig. 3.19 shows the reconstructed and

predicted production rates. First, in the reconstruction stage, although LDS cannot

exactly match real production rates due to the volatile nature of real production

data, it can still closely match them in trend attributed to the use of CVCRs as

dynamic hidden states. In contrast, CM does not even generate a correct trend in

the reconstruction stage, implying that CM is not a suitable model for real low-

permeability reservoirs.

Furthermore, in the prediction stage, the prediction made by LDS is close to the

mean value of production rates despite the drastic time-varying nature of the real

production rates, while CM cannot provide meaningful results. Therefore, these

results indicate that as compared to CM, LDS is more capable of handling the noisy

injection and production rates observed in real low-permeability fields.
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Chapter 4

Conclusions and Future Work

In this thesis, we propose a new method based on linear dynamical systems (LDS)

to model waterflooding performance in oilfields. By leveraging control volumes as

hidden state variables of the reservoir of interest, LDS is especially effective at char-

acterizing the behavior of transient and non-stationary flows in low-permeability

reservoirs. Compared to the well-known capacitance model (CM), LDS does not

only explain the interwell connectivity among injectors and producers, but also

quantifies the influence of the underlying dynamics of control volumes on the pro-

duction rates.

We present an EM algorithm for the model to learn its parameters as well as the

hidden reservoir states only based on the past observations of injection and produc-

tion rates in the oilfield. To evaluate the effectiveness of the proposed model, we

make predictions about future production rates given the planned injection sched-

ules and the learned model in a wide range of scenarios, including a synthetic high-

permeability reservoir and several synthetic low-permeability reservoirs of different

scales with varying Bottom-Hole Injection Pressure (BHIP) and injector shut-ins.

We have also tested the model performance on the real production data collected

from Changqing oilfield, which contains low-permeability formations.

The following conclusions can be made. First, when applying LDS in high-

permeability reservoirs, the mean prediction errors range from 0.9% to 1.7%, which

are close to those given by CM, ranging from 0.3% to 0.9%. However, LDS signifi-
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cantly outperforms CM in low-permeability reservoirs, with mean prediction errors

ranging from 7% to 10%. In comparison, CM yields mean prediction errors from

20% to 30% in this case. Second, when applied to low-permeability reservoirs with

varying BHIP and injector shut-in scenarios, LDS can successfully maintain a mean

prediction error of approximately 10% and a maximum prediction error of about

20%. In contrast, for the same scenarios, the mean prediction error of CM ranges

from 30% to 60%, with a maximum error ranging from 60% to 130%. Finally, when

applied to larger-scale low-permeability reservoirs and the highly time-varying pro-

duction data collected from a real oilfield containing low-permeability formations,

LDS can still achieve correct trend prediction for mean production rates, while the

CM fails to do so.

Some work can be done in the future. The prediction of the future production

relies on previous trained parameters of the reservoir, which requires time-invariant

condition [15]. When confronted with more difficult cases, such as extremely het-

erogeneous low-permeability reservoirs, sophisticated interaction cannot be quan-

tified by the linear assumption in LDS, and more accurate model is required [23].

Considering that LDS can only provide the prediction of the total liquid rate, how

to enable the model to capture the liquid rate and water cut is still open to explore.
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