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Abstract— This paper presents a design approach for tuning 
autonomous driving controllers of road vehicles. In this regard, 
a bicycle vehicle model and a model predictive control (MPC) 
algorithm have been applied to the tracking-control lateral of 
autonomous vehicles. Additionally, in order to maximize ride 
comfort and minimize path-following error, a multi-objective 
optimization problem has been formulated. In the multi-
objective optimization problem, a meta-heuristic search 
algorithm, i.e., non-dominated sorting differential evolution 
(NSDE), is applied, the design objective is to improve ride 
quality and reduce tracking-control errors, and the design 
variables are weighting factors of the MPC controller. 
Numerical simulation is performed to demonstrate the 
effectiveness of the proposed design approach.    

Keywords: autonomous vehicles; tracking-control; path-
following; model predictive control; multi-objective optimization; 
non-dominated sorting differential evolution (NSDE) algorithm  

I.  INTRODUCTION 

Worldwide around 1.35 million people are killed per year in 
road vehicle accidents [1,2]. Human errors are the main culprits 
of vast majority of traffic collisions (about 94%) [3]. Hence, in 
the past two decades, autonomous vehicles (AVs) have been a 
subject of great attention by researchers. Needless to say, 
designing an autonomous vehicle platform is a complicated task 
and contain different tasks, such as sensing, perception, motion-
planning, and tracking-control [4]. Tracking-control subsystem 
is to guide the vehicle autonomously thorough a predefined path.  

In the vehicle dynamics community, many studies are 
focused on the problem of path-following control [5,6]. A 
proportional-controller was designed to track the predefined 
path for a road vehicle, and the control gain of the controller was 
one of the design variables, which were optimized using a 
genetic algorithm (GA) [7]. In [8], authors designed a robust 
fractional-order proportional-integral-derivative (FOPID) 
controller for tracking-control. A particle swarm optimization 
algorithm was used to optimize the controller parameters. The 
resulting controller could successfully decrease the tracking 
error in comparison with conventional PID controllers. 

Various control techniques have been applied to the design 
of trajectory tracking controllers. A robust state feedback lateral 
controller was introduced for path-following control considering 

parameter uncertainties and external disturbances [9]. 
Simulation results showed that this controller outperformed 
similar controllers in presence of unknown parameters and 
disturbances. A fuzzy dynamic sliding-mode control was 
proposed for addressing the path-following problem of AVs 
[10]. Varied payloads not at the mass center of the AV were 
tackled, and the comparisons with a fuzzy decentralized path 
tracking controller confirmed the superiority of the sliding-mode 
controller.      

Among numerous tracking-control techniques, model 
predictive control (MPC) has gained huge popularity due to its 
capabilities of systematically handling model uncertainties, as 
well as state and control constraints, thus, allowing tracking-
control to operate at the limits of achievable performance [11]. 
The essence of MPC is ‘prediction’, i.e., predicting the future 
evolution of the system and the future action effects with respect 
to the model plant [12]. MPC is an optimal control problem, 
which involves a prediction model [13]. MPC has been 
extensively used to address the tracking error for multi-input 
multi-output problems while guaranteeing stability [14].An 
MPC controller was designed to control longitudinal speed of an 
AV [15]. The performance of the MPC controller was compared 
with an PID controller, and the comparison showed that the 
former decreased the tracking error successfully. An MPC 
controller was introduced to decrease the lateral deviation and 
maintain stability at both high and low speeds [16]. Recently, an 
MPC controller was recommended for maximizing the control 
performance in tracking speed profile, lateral position, and yaw 
angle, as well as in improving ride comfort [17]. To this end, a 
GA was used to tune the weighting factors of the MPC controller 
offline.  

This study proposes an MPC controller for lateral position 
and yaw angle control for an AV. To maximize the ride comfort 
and minimize the path-following error, a multi-objective 
optimization problem is formulated to tune the weighting factors 
of the MPC controller using a meta-heuristic search algorithm, 
i.e., non-dominated sorting differential evolution (NSDE).  

The rest of the paper is organized as follows. Section II 
introduces the vehicle kinematic and dynamic model. Section III 
presents the MPC controller, its objective function and 
constraints. Section IV defines the multi-objective optimization 
problem for tuning the weighting matrices of the MPC controller 
design. Section V introduces the NSDE algorithm for searching 



   

the desired solutions to the multi-objective optimization 
problem. Finally, Section VI presents simulation and results to 
evaluate the proposed method for improving the MPC controller 
performance. 

II. VEHICLE MODELS 

In the motion-planning and tracking-control design for AVs, 
the predicted paths to be tracked are generally defined in the 
global coordinate system, while the vehicle dynamic model to 
be used for tracking-controller design is generated using the 
vehicle body fixed coordinate system. In this section, the vehicle 
kinematic and dynamic models are introduced. Note that in the 
kinematic model, the kinematic data of the AV defined in the 
body fixed coordinate system are expressed in the global 
coordinate system.    

A. Vehicle Kinematic Model 

Figure 1 shows the bicycle vehicle model and the global 
coordinate system, 𝑋 − 𝑂 − 𝑌, and the vehicle body fixed 
coordinate system, 𝑥 − 𝑜 − 𝑦. In the bicycle vehicle model, both 
the front and rear axle of the vehicle are represented by a single 
wheel located at the respective axle central point, i.e., A and B. 
As shown in the figure, δ denotes the steering angle of the front 
wheel, L the wheelbase, 𝑙௥  the distance from the center of gravity 
(CG) of the vehicle to the rear axle, 𝛽 the vehicle slip angle, 𝜃 
the vehicle yaw angle measured from X axis, 𝑂ଵ the 
instantaneous center of velocity of the vehicle, 𝑅 the rotating 
radius of the CG around 𝑂ଵ, and 𝑣௙ , 𝑣, and 𝑣௥  are the velocity at 
point A, CG, and B, respectively. Assuming that vehicle forward 
speed is not very high or 𝑅 is very large, the following kinematic 
equation hold, 

�̇� = 𝑣 𝑐𝑜𝑠(𝜃 + 𝛽) 

�̇� = 𝑣 𝑠𝑖𝑛(𝜃 + 𝛽) 

𝛽 = 𝑡𝑎𝑛ିଵ ൬
𝑙௥ 𝑡𝑎𝑛𝛿

𝐿
൰ 

where �̇� and �̇� represent the velocity component at the CG in 𝑋 
and 𝑌 axes of the global coordinate system, respectively.   

B. Vehicle Dynamic Model 

To represent the lateral dynamics of the vehicle and to design 
the MPC controller for tracking-control of the AV, the governing 
equations of motion of the bicycle model are derived. To 
generate the 2 degrees of freedom (DOF) yaw-plane vehicle 
model, the following assumptions are made: 1) only yaw (𝜃) and 
lateral (𝑦) motions are considered; 2) vehicle forward speed 
remains constant under the specified operating maneuvers; 3) 
vehicle aerodynamic effect is ignored; and 4) cornering forces 
of front and rear wheels are related to the corresponding tire slip 
angle in a linear relationship. Thus, based on Newton’s second 
law, the equations of motion governing the two motions are cast 
as follows,     

𝑚𝑎௬ = −𝑚𝑣௫  �̇� + 𝐹௬௙ + 𝐹௬௥ 

𝐼௭௭�̈� = 𝑙௙𝐹௬௙ − 𝑙௥𝐹௬௥ 
where 𝑎௬ denotes the lateral acceleration of the vehicle at the CG 
on 𝑦 axis, 𝑣௫ the velocity element on 𝑥 axis, 𝑙௙  the distance from 
the CG to front axle, 𝐼௭௭ the yaw mass moment of inertia, 𝐹௬௙ 

and 𝐹௬௥ are lateral forces applied to the front and rear tires, 
respectively. The cornering forces are proportional to the tires 
slip angle according to the following equations, 

 
Figure 1.  The schematic representation of the bicycle vheicle model [18]. 

 

𝐹௬௙ = 2𝐶ఈ௙𝛼௙ = 2𝐶ఈ௙൫𝛿 − 𝜃௏௙൯ 

𝐹௬௥ = 2𝐶ఈ௥𝛼௥ = 2𝐶ఈ௥(−𝜃௏௥) 
where 𝐶ఈ௙ and 𝐶ఈ௥ are the cornering stiffnesses of the front and 
rear tires, respectively, 𝛼௙ and 𝛼௥ the slip angle of the front and 
rear tires, accordingly. To compute 𝜃௏௙ and 𝜃௏௥ in the linear 
region, the following equations can be used, 

𝜃௏௙ =
𝑣௬ + 𝑙௙�̇�

𝑣௫

 

𝜃௏௥ =
𝑣௬ − 𝑙௥�̇�

𝑣௫

 

The vehicle model can be expressed in the state-space form 
as follows [19], 
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(10) 

�̇� = �̇� + 𝜃𝑣௫ (11) 

where the state and control variable vectors, as well as the 
output vector are defined as, 

𝒙 = [𝑦 �̇� 𝜃 �̇�]்                                (12) 
𝑢 = 𝛿                                                (13) 

𝒚 = [𝑦 𝜃]்                                          (14) 

x 
y 

𝑣௥  

𝑣௙ 



   

III. MPC CONTROLLER 

In MPC controller design, a future prediction strategy is 
introduced to calculate control inputs. In order to ensure the 
output of the plant (vehicle) follows the reference trajectory 
(desired path and velocity profile), an MPC controller design is 
usually formulated as an optimization problem. The optimizer 
intends to minimize a cost function over the next P time steps (P 
is prediction horizon) and find the best output solution, which is 
the nearest one to the reference [20]. However, in each step time, 
only the first control action is applied.  

A. Objective Function 

As briefly explained above, an MPC design is essentially an 
optimization problem over the time window with an objective 
(cost) function and a set of constraints. The ultimate target of this 
optimization problem is to minimize the error between the 
reference output and predicted output over the prediction 
horizon [21]. In the MPC controller design, the objective 
function and constraints are defined as follows, 

𝐽௠௣௖ = ෍ ‖𝒚ௗ(𝑘) − 𝒚(𝑘)‖ଶ
𝑸

௉ಹିଵ

௞ୀ଴

+ ෍ ‖Δ𝑢(𝑘)‖ଶ
ோ

஼ಹିଵ

௞ୀ଴

+ ෍ ‖𝑢(𝑘)‖ଶ
ௌ

஼ಹିଵ

௞ୀ଴

 

(15) 

𝑢௠௜௡ ≤ 𝑢(𝑘) ≤ 𝑢௠௔௫ 

Δ𝑢௠௜௡ ≤ Δ𝑢(𝑘) ≤ Δ𝑢௠௔௫ 
(16) 

where 𝑃ு  and 𝐶ு are the prediction horizon and control horizon, 
respectively, 𝒚ௗ(𝑘) is the reference output vector at the current 
time step k, which is the desired lateral position, 𝑦ௗ(𝑘), and the 
desired yaw angle, 𝜃ௗ, 𝒚(𝑘) denotes the predicted output vector, 
including the lateral position, 𝑦(𝑘), and the yaw angle, 𝜃(𝑘), 
and 𝑢(𝑘) is the current input of the plant, which is the steering 
angle of the vehicle, 𝛿, and 𝑸, R, and S are the respective 
weighting matrix and factors. The selection of the weighting 
matrix and factors, 𝑸, R, and S, reflects our control objective to 
keep the tracking error, ‖𝒚ௗ(𝑘) − 𝒚(𝑘)‖, 'small' using the 
control actions, ‖Δ𝑢(𝑘)‖ and ‖𝑢(𝑘)‖, that are ‘not too large’.  

B. Reference Trajectory 

In this study, the reference trajectory is considered as the 
predefined path for a single lane-change maneuver at a constant 
forward speed. As shown in Figure 2, the predefined path is 
defined in the global coordinate system, X-O-Y.  

IV. MULTI-OBJECTIVE OPTIMIZATION 

To tune the weighting matrix, 𝑸, and weighting factors R, 
and S for the MPC controller, a multi-objective optimization 
problem is formulated as shown in Figure 3. Essentially, this is 
a bi-layer optimization problem [22,23]. At the upper layer, the 
weighting the weighting matrix, 𝑸, and weighting factors R, and 
S for the MPC controller are treated as design variables, and a 

meta-heuristic algorithm, i.e., NSDE, is selected as the search 
algorithm for the multi-objective optimization problem. The 
objective function of the multi-objective optimization and 
constraints are defined as, 

min
𝑸,ோ,ௌ

𝐽(𝑸, 𝑅, 𝑆) = 𝑤ଵ𝐽ଵ + 𝑤ଶ𝐽ଶ                       (17) 

subject to:           

𝑞௟௜ ≤ 𝑄௜ ≤ 𝑞௨௜ , 𝑖 = 1, 2                         (18) 

    𝑟௟ ≤ 𝑅 ≤ 𝑟௨                                       (19) 

𝑠௟ ≤ 𝑆 ≤ 𝑠௨                                      (20) 

where 𝐽ଵ and 𝐽ଶ are the vehicle dynamic responses associated 
with the ride comfort and path-following error over the single 
lane-change maneuver, 𝑤ଵ and 𝑤ଶ the respective weighting 
factors, 𝑄௜  denotes the diagonal element of  𝑸, 𝑞௟௜  and 𝑞௨௜ are 
the lower and upper bounds, 𝑟௟ and 𝑟௨ the lower and upper 
bounds of the weighting factor 𝑅, and 𝑠௟ and 𝑠௨ the lower and 
upper bounds of the weighting factor S. 

With a given set of design variables in terms of  𝑸, 𝑅 and S 
provided from the upper layer, an effective search algorithm, 
e.g., sequential quadratic programming (SQP), may be used to 
solve the MPC optimization problem to find optimal control 
inputs for the AV. Then, the corresponding fitness value of the 
MPC optimization problem, 𝐽௠௣௖, will be returned to the upper 
level. At this point, if the specified criteria are satisfied, the 
optimization will be terminated, and the optimal solutions in 
terms of 𝑸, 𝑅 and S are identified. Otherwise, the NSDE 
algorithm will conduct another round of search of the design 
variables in the design space, and the previous process will 
repeat until the optimal solutions are found.       

 
Figure 2.  The predefinded reference path for the single lane-change 

maneuver. 

 
Figure 3.  The bi-layer optimization scheme for tuning the weighting factors 

for the MPC controller. 



   

In the following subsections, we define the vehicle dynamic 
responses associated with the ride comfort (𝐽ଵ) and path-
following error (𝐽ଶ) over the single lane-change maneuver.  

A. Ride Comfort 

As introduced in Section II, this study only considers the 
lateral dynamics of the AV.  To evaluate the ride comfort of the 
AV over the specified single lane-change maneuver, the root of 
mean square (RMS) value of the lateral acceleration (𝑎௒) can be 
used as an effective performance indicator [17]. Assuming that 
the time duration of the single lane-change maneuver is 𝑇் , the 
ride comfort performance measure is determined by 

𝐽ଵ = 𝑎௘௤ = (𝑎௒)ோெௌ = ඨ
1

𝑇்

න 𝑎௒(𝑡)ଶ𝑑𝑡
௧ୀ்೅

௧ୀ଴

 

B. Path-Following Error 

To evaluate the path-following performance of the MPC 
controller, we select the integral of the square error (ISE) 
between the vehicle output and their references as the indicator 
[24]. The ISE index is defined by 

𝐽ଶ = 𝐼𝑆𝐸 = න 𝑒(𝑡)ଶ𝑑𝑡
௧ୀ்೅

௧ୀ଴

 

where e(t) is the signal error between the vehicle output and their 
references. 

V. NSDE ALGORITHM 

In this section, the NSDE algorithm used to the upper layer 
optimization shown in Figure 3 is introduced.  

NSDE algorithm is a simple extension of differential 
evolution (DE) technique for finding pareto optimal solution to 
multi-objective optimization problems. It consists of two main 
parts: 1) a DE optimization algorithm for the mutation and 
crossover; and 2) an elitist non-dominated sorting algorithm for 
selection. 

A. Differential Evolution 

DE is a population-based metaheuristic optimization 
algorithm, which was introduced in 1997 [25]. DE optimizes a 
problem by maintaining a population of candidate solutions and 
creating new candidate solutions by combining existing ones 
according to its simple formulae, and then keeping whichever 
candidate solution has the best score or fitness on the 
optimization. 

B. Elitist Non-Dominated Sorting 

In the part of selection of NSDE, an elitist non-nominated 
sorting algorithm has been employed to find the pareto optimal 
front. The algorithm includes two main parts [26].  

1) Fast nondominated sorting 
 The algorithm identifies and divides all solutions in different 

nondominated front level in the objective function space. 

2) Diversity preservation 
Along with the convergence to optimal pareto front set, it is 

very important that the algorithm maintains a good spread of 
solutions in the obtained set of solutions. In this part, acceptance 

or rejection of a solution is based on the density estimation 
which is measured by crowding distance criterion. 

VI. SIMULATION RESULTS 

To examine the proposed design method and the MPC 
controller, a virtual single lane-change maneuver is 
implemented using numerical simulation. Figure 4 shows the 
specified path for this single lane-change maneuver. Table I lists 
the parameters for the 2-DOF vehicle model and those for 
designing the MPC controller.  

 
Figure 4.  The predefined path for the single lane-change maneuver. 

TABLE I.  PARAMETERS FOR THE 2-DOF VEHICLE MODEL AND MPC 
CONTROLER DESIGN 

Vehicle Parameters 

m 
(𝑲𝒈) 

𝒗𝒙 
(𝒎 𝒔𝒆𝒄⁄ ) 

𝑰𝒛 
(𝑲𝒈. 𝒎𝟐) 

𝒍𝒇 
(𝒎) 

𝒍𝒓 
(𝒎) 

𝑪𝒇 
(𝑵 𝒓𝒂𝒅⁄ ) 

𝑪𝒇 
(𝑵 𝒓𝒂𝒅⁄ ) 

1730 15 3000 2 2 80000 80000 
MPC Controller Parameters 

𝒖𝒎𝒊𝒏 𝒖𝒎𝒂𝒙 𝜟𝒖𝒎𝒊𝒏 𝜟𝒖𝒎𝒂𝒙 𝑷𝑯 𝑪𝑯 ∆𝒕(𝒔𝒆𝒄) 

− 𝜋 6⁄  𝜋 6⁄  − 𝜋 12⁄  𝜋 12⁄  10 2 0.1 

Figure 5 shows the optimal pareto front for the two design 
criteria, i.e., 𝐽ଵ indicating the ride comfort (𝑎௘௤), and 𝐽ଶ 
indicating cumulative path-following error between reference 
signals and outputs over the single lane-change maneuver. 

 
Figure 5.  The optimal pareto front of the two design criteria over the single 

lane-chagne maneuver.  

Table II shows the evaluation levels of human ride comfort 
based on the equivalent RMS acceleration specified by ISO 
2631-1 [17]. 

Figure 5 indicates that the RMS acceleration value of the AV 
does not exceed from 0.23 𝑚 𝑠ଶ⁄  under the maneuver, which is 
less than 0.315 𝑚 𝑠ଶ⁄  specified in Table II. Hence, over the 



   

single lane-change maneuver, the driver and passengers are 
always in the comfort zone for all points on the pareto front. 
Therefore, the design criterion of 𝐽ଶ is to be emphasized for the 
multi-objective optimization problem, and the design variables, 
i.e., the weighting matrix and factors, 𝑸, R, and S, are optimized 
with the consideration of minimizing the performance index 𝐽ଶ. 
Figure 6 shows the fitness value of 𝐽ଶ versus the generation 
number of the NSDE algorithm. 

TABLE II.  EVALUATION LEVELS OF HUMAN RIDE COMFORT BY ISO-
2631-1 [17] 

𝑎௘௤ ≤ 0.315 𝑚 𝑠ଶ⁄  Not uncomfortable 
0.315 𝑚 𝑠ଶ⁄ ≤ 𝑎௘௤ ≤ 0.63 𝑚 𝑠ଶ⁄  A little uncomfortable 

0.5 𝑚 𝑠ଶ⁄ ≤ 𝑎௘௤ ≤ 1.0 𝑚 𝑠ଶ⁄  Fairly uncomfortable 
0.8 𝑚 𝑠ଶ⁄ ≤ 𝑎௘௤ ≤ 1.6 𝑚 𝑠ଶ⁄  Uncomfortable 

1.25 𝑚 𝑠ଶ⁄ ≤ 𝑎௘௤ ≤ 2.5 𝑚 𝑠ଶ⁄  Very uncomfortable 
𝑎௘௤ ≥ 2.0 𝑚 𝑠ଶ⁄  Extremely uncomfortable 

 
Figure 6.  The fitness value of 𝐽ଶ versus the generation number of the NSDE 

algorithm. 

The optimal weighting matrix and factors for minimizing the 
performance index, 𝐽ଶ,  are shown as follows, 

𝑸 =  ቂ
34.5 0

0 53.68
ቃ , 𝑅 = [24.20], 𝑆 = [66.15] 

     To examine the performance of the finely tuned MPC 
controller, simulations have been conducted considering two 
cases: 1) the baseline design of the MPC controller without 
tuning the weighting matrix and factors; and 2) the optimal 
design of the MPC controller with the weighting matrix and 
factors taking the values shown in (21). For the baseline design, 
the path-following result and the lateral position error between 
the reference signal and vehicle lateral displacement are shown 
in Figure 7 and 8, respectively. 

Figures 7 and 8 show that the baseline design can follow the 
reference path and completes the lane-change successfully, but 
the maximum vehicle lateral position error is not satisfactory. As 
shown in Figure 8, at t = 2.3 s, the vehicle lateral position error 
is approximately 1 m, which is large for an AV tracking-control 
under the single lane-change maneuver. 

For the optimal design, Figures 9 and 10 illustrate the path-
following result and the vehicle lateral position error between 
the reference signal and vehicle lateral displacement, 
respectively.  

 

 
Figure 7.  Time history of the reference and actual vehicle lateral position for 

the baseline design. 

 
Figure 8.  Time history of the vehicle lateral position error for the baseline 

design. 

 
Figure 9.  Time history of the reference and actual vehicle lateral position for 

the optimal design. 

 
Figure 10.  Time history of the vehicle lateral position error for the optimal 

design. 



   

As shown in Figures 9 and 10, the optimal design can track 
the reference path and successfully execute the lane-change 
maneuver with improved performance in comparison with the 
baseline design. The lateral error is decreased considerably. As 
shown in Figure 10, at t = 2.3 sec, the optimal design decreases 
the vehicle lateral position error by 42% (from 1 m to 58 cm) 
compared against the baseline design. It must be mentioned that 
for the optimal MPC controller with weighing matrix and factors 
tuned, the performance indices 𝐽ଵ and 𝐽ଶ take the fitness values 
of 0.23 and 1.66 × 10଺, respectively.  

VII. CONCLUSIONS 

This paper presented a novel tuning method for designing an 
MPC controller for autonomous vehicle tracking-control. Based 
on the multi-objective metaheuristic optimization approach, the 
weighing matrices in the MPC controller design has been tuned 
to minimize the path-following error and the RMS value of 
vehicle lateral acceleration. To evaluate the effectiveness of the 
proposed approach, a single lane-change maneuver has been 
simulated. Simulation results demonstrate that the proposed 
algorithm can successfully tune weighting matrices for the MPC 
controller for improving path-following performance and 
enhancing ride comfort.  
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