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Abstract

Until not so long ago, near-field and far-field measurement techniques were the two promi-

nent approaches to evaluating antennas. A direct far-field measurement can be conducted in

outdoor or indoor environments. The measurement of small antennas can be performed in

anechoic chambers. For large antennas, however, a remote open-air-test-site which consists

of a large domain in a rural area is required to stay away from reflections [1]. In near-field

techniques, antenna emissions are measured in the radiating near-field region. The near-field

data are then projected to the far-field using well-established and trustworthy algorithms.

Recently, these methods have been used widely since they allow the accurate measurement

of antennas in a controlled environment [2]- [10]. The assessment of antenna design using

the aforementioned techniques is expensive and time-consuming for antenna designers and

wireless engineers, especially those who want to do fast-prototyping and investigate the effect

of different parameters in their design.

Time-to-market and project costs are two fundamental considerations which have an

indisputable effect on Printed circuit board (PCB) and antenna designers’ success in devel-

oping their products. The near-field data give RF (Radio Frequency) and antenna engineers

a unique insight into the main problems which cause design failure. A fast high resolu-

tion electromagnetic compatibility (EMC) and electromagnetic interference (EMI) testing

enable PCB designers to detect and root out unintended emissions and get the approval

for compliance tests in real-time. The purpose of this study is to increase the accuracy of
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the near-field-to-far-field-transformation (NFFF) and fault detection algorithms and current-

reconstruction methods while keeping the speed of the proposed technique suitable for real

time applications.

The near-field measurements are performed using RFX2 that is a bench-top very-near-

field measurement tool. RFX2 is a planar array of electronic probes which measure the

magnetic field in two orthogonal directions. Then the data are projected into the far-field

using plane wave spectrum (PWS) transformation. The developed algorithms result in better

accuracy and speed for RFX2 and can be applied to other near-field measurement systems

as well.
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Nomenclautures

A The area of each triangle patch

Ak′i (i = 1, 2) The area of each of two triangles sharing the

k′th interior edge

~an1 ,~a
n
2 The unitary vectors of LCN method

Ax x component of plane wave spectrum

Ay y component of plane wave spectrum

Az z component of plane wave spectrum

~A(kx, ky) plane wave spectrum

AOI Automated Optical Inspection

AUC Area Under Curve

AUT Antenna Under Test

[b] Unknown coefficients matrix in the RWG method

bpk′ The coefficient of the ramp functions in RWG method

BF Basis Function

cjn Unknown coefficient of electric current

cMn Unknown coefficient of magnetic current

CPW CoPlanar Waveguide

D The dimension of a rectangular measurement plane

DOF Degree Of Freedom

dS Infinitesimal element of surface

DUT Device Under Test

dV Infinitesimal element of volume

E+ Electric field just out of source surface

E− Electric field on an inward-offset of the source surface

~E(r) Electric field

Eint the number of edges on the interior edges
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Eext the number of edges on the exterior edges

EFIE Electric Field Integral Equation

EMC Electromagnetic Compatibility

EMI Electromagnetic Interference

Err Error of the RWG-via-LCN impedance matrix

F the number of flat patch faces

Fn n-th Basis function

g Free space Green function

H+ Magnetic field just out of source surface

H− Magnetic field on an inward-offset of the source surface

Href The reference magnetic field

HNumerical The magnetic field which is calculated numerically

HFSS HFSS stands for High Frequency Electromagnetic Field

Simulation. HFSS is a finite element method solver for

electromagnetic structures from Ansys.

[I6] (6× 6) identity matrix

~J Electric current

~k Wave vector

k0 Wave number in free space

kx x component of wave vector

ky y component of wave vector

kxm The maximum of kx

kym The maximum of ky

kz z component of wave vector

L The dimension of a rectangular source plane

[L] The synthesized kernel using locally corrected Nyström

method
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lk′ the length of k′th interior edge that is shared between

two adjacent triangles

LCN Locally Corrected Nyström

~M Magnetic current

MFIE Magnetic Field Integral Equation

MLFMM Multilevel Fast Multipole Method

MoM Method of Moment

n̂ The unitary vector normal to the surface

NEint
the number of interior edges in a discretization scheme

Nx The number of sampling points in x direction (on the

measurement plane)

Ny The number of sampling points in y direction (on the

measurement plane)

Np The number of patches

Nq The number of quadrature points inside a triangle

NFC Near- Field Communication

NFFF Near- Field to Far- Field

p p-th patch

PCB Printed Circuit Board

PWS Plane Wave Spectrum

q q-th quadrature point

~Rp
k′ Ramp function in RWG method

rM The position of the measuring probe

RF Radio Frequency

ROC Receiver Operating Characteristic

RWG Rao- Wilton- Glisson

SIW Substrate Integrated Waveguide
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SRM Source Reconstruction Method

TL Transmission Line

U(rM) The measuring probe output

Vprobe The volume that encloses the probe

~Wprobe Spatial weighting function of the probe

x(j) x component of the quadrature point

y(j) y component of the quadrature point

zt The position of the measurement plane in PWS method

ZRWG
(i,j) ij-th component of RWG impedance matrix

ZRWG−via−LCN
(i,j) ij-th component of RWG-via-LCN impedance matrix

[ZLCN ] Impedance matrix of LCN method

[ZRWG] Impedance matrix of RWG method

∆x Sample spacing in x direction

∆y Sample spacing in y direction

λ Wave length

∇ Gradient of a scalar value

∇. Divergence of a vector

∇× Curl of a vector∑
R Reconstruction (source) surface∑
M Measurement surface

η0 Intrinsic impedance of free space

ωqp Weight function of a q-point quadrature rule on path p

η, ζ Barycentric 2-D space components

δij Kronecker-Delta

∆‖ Surface divergence

||.|| Euclidean norm

λ0 Free space wavelength
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Chapter 1

Review of Literature

1.1 Introduction

Antenna pattern measurement on a conventional far-field range is most of the time im-

possible due to the very long radiating far-field distance. Thus, it is desirable to determine

the far-field pattern of the antenna from the measured near-field data. Moreover, it is im-

portant to include electromagnetic compatibility (EMC) very early in the design phase of

PCBs and microwave circuits, and near-field data provide detailed information about the

radiation sources of the circuts. Yet for the near-field techniques, accurate near-field to far-

field transformation and post-processing algorithms are essential to have valid results. Also,

a technique such as adaptive sampling is required to decrease the number of samples.

In this chapter, first, the antenna radiation measurement techniques are explained in-

cluding far-field, compact range, and near-field methods. Second, the three main near-field

measurement configurations, namely planar, cylindrical, and spherical are discussed. Then

the plane wave spectrum and the methods that help to increase the accuracy and speed of

the near-field to far-field transformation are described. Thereafter, a literature review about

fault detection of the circuits and PCBs is conducted. Finally, the algorithms to decrease

the number of required samples and time of measurement are reviewed.
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1.2 Antenna Radiation Pattern Measurement

The field of antennas is usually divided into three regions: reactive near-field, radiating

near-field, and far-field region as depicted in Fig. 1.1. In the closest area around the antenna,

the radiation field is mainly reactive. The expanse of this region is approximately 0 <

r < λ0/2π, where r is the distance between the antenna and the observation point, and

λ0 is the wavelength. The field decreases faster than 1/r. The second region, radiating

near-field, is in the range of λ0/2π < r < 2d2/λ0 , and d is the diameter of the smallest

sphere which encompasses the antenna. Since we can ignore the mutual coupling between

the antenna under test (AUT) and the measuring probe in this area, this is the region for

near-field measurements. When we approach the boundary of this area, the field decays as

1/r although the radiation pattern is still dependent on r. The third region (i.e.,r > 2d2/λ0)

is the far-field of the antenna in which radiation pattern is independent of r. For direct

far-field measurement, between the center and the edge of the AUT, a phase difference of

π/8 is required. For more accurate results, a larger distance between the AUT and the probe

is demanded [24].

1.3 Far-Field Measurements

Far-field techniques have been widely used to evaluate the electromagnetic properties of

the AUT. The measurement probes which are placed at distances larger than 2d2/λ0 measure

the far-field directly. Since at this distance quasi plane waves illuminate the probe as shown

in Fig. 1.2, there is no need for probe correction.

A remote outdoor test-site is needed for the far-field measurement of large antennas. The

three main outdoor ranges include elevated, slant and reflection ranges [27]. In the areas with

flat ground and a clear line-of-sight, the elevated range is appropriate. In this arrangement,

both the source and test antennas are set up at the same height. The directivity and side

lobes of the source antenna should be chosen such that the first null in the antenna pattern
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Fig. 1.1: Antenna field regions [24]

points to the base of the test antenna. The reflections of the antenna field from the ground

may cause some errors. In slant ranges, which are more compact, there is not any reflection

from the ground since the test antenna is mounted on a non-conducting tower, and the main

beam of the source antenna is directed toward the test antenna. The source antenna is close

to the ground. This configuration is depicted in Fig. 1.3. In the third approach, the reflection

range, the height of the source and test antennas, and their separation distance are arranged

to have constructive interference between the direct and reflected signal to provide smooth

range surface. This method is used in low frequencies since it is not easy to have a smooth

outdoor surface.

To have accurate results, testing the antenna in a controlled environment is desired to

eliminate the effect of multipath propagation, weather conditions, electromagnetic interfer-

ence, etc. The far-field measurement of the small antennas is performed easily in a controlled

environment.
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Fig. 1.2: Direct far-field antenna measurements [24]

1.4 Compact Range Measurements

To determine the AUT radiation pattern, one can use compact ranges. In this approach,

the spherical wave fronts are converted to plane waves in the near-field of the antenna as

shown in Fig. 1.4. The collimating lenses are used for this purpose. Higher accuracy will be

achieved by testing the antenna in a controlled environment. The size and surface accuracy of

the reflector specify the lower and upper operating frequency. This method is very expensive

particularly if we use dual reflectors to collimate waves in two directions and compensate the

cross-polar component.
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Fig. 1.3: Far-field measurement setup for slant ranges [24]

Fig. 1.4: Antenna measurement using compact ranges [24]

1.5 Near-Field Measurements

A promising alternative to far-field and compact range measurements is near-field tech-

niques. Such approaches apply a well-developed algorithm to the measured radiating near-
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field of the antenna for transforming near-field to far-field. Since all of the measurements

can be done in a controlled environment, they are more accurate. The underlying theory is

Huygen’s theorem, stating that the knowledge of the tangential field components on a closed

surface is enough to compute the fields out of that enclosed volume. In other words, the

radiating object can be replaced with the equivalent sources as shown in Fig. 1.5. A variety

of sources yield the same fields as the measured ones in the near-field of the AUT. The choice

of a specific source determines the geometry of the near-field scanning surface that can be

assumed in various forms, the most common of which are planar, cylindrical, and spherical.

The measurement probe collects all of the fields close to the measurement point, rM , and the

probe output is [24] (Fig. 1.6)

U(rM) =

∫∫∫
Vprobe

~Wprobe(r). ~E(r) dV (1.1)

~Wprobe is the spatial weighting function of the probe. We need to consider the effect of the

probe in the transformation algorithm, which is termed as probe correction. The accuracy of

the near-field methods relies on the precision of the measured fields and the algorithms that

are used for NF-FF transformation.

1.6 Planar Near-Field Measurements

Planar near-field measurement is the most simplified method for NF-FF transformation.

This method is more applicable to medium- to high-gain antennas. The measurements are

usually performed on a finite plane at an appropriate distance from the AUT. Conventionally,

the probe moves on the measurement plane and AUT is fixed. The probe goes one step

either vertically or horizontally in one direction and then sweeps in the orthogonal direction.

Ideally, the measurement plane should be infinite, but its size is confined due to such practical

considerations as the size of the scanner and the anechoic chamber; consequently, the reliable

region in the far-field pattern of the antenna is confined as well. The size of the scanner
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Fig. 1.5: Representation of an antenna using equivalent sources [24]

is normally selected such that at the edges we have less than -35dB pattern level [24]. It

is proven analytically and experimentally that the valid far-field angular region is up to

(Fig. 1.7)

φvalid = tan−1(
Lφ − dφ

2a
) (1.2)

θvalid = tan−1(
Lθ − dθ

2a
) (1.3)

where Lφ and Lθ are the length and the width of the measurement plane, respectively, a is

the distance between the AUT and measurement plane, and dθ and dφ are the dimensions

of the AUT. In the planar measurement, based on the position of the probe relative to the
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Fig. 1.6: Measurement of near-field and output signal of the probe at discrete points [24]

AUT, the main beam of AUT might be received with the main beam or side lobe of the

probe as depicted in Fig. 1.8. Thus, the signal which is collected by the probe should be

weighted with its pattern. In the planar NF-FF transformation, the measured near-fields on

the scanning plane are used to find the unknown coefficients in the planar expansion of the

radiated field.

1.7 Cylindrical Near-Field Measurement

For fan beam antennas that have a broad band beam in one plane and a narrow beam

in the orthogonal plane, cylindrical near-field measurements are more appropriate [24]. The

cylindrical modal expansion is used to represent the radiated fields. The probe moves on

a cylindrical surface by stepping in one direction (φ or z) and sweeping in the orthogonal

direction as shown in Fig. 1.9. Since the height of the cylinder on which scanning takes place

is finite, the resultant far-field of NF-FF transformation is valid up to a certain amount of θ

and φ
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Fig. 1.7: Planar near-field measurement setup with limited scan plane dimensions [24]

Fig. 1.8: The influence of probe position relative to the AUT in near-field measurement [24]

θvalid = tan−1(
Lθ − dθ

2a
) (1.4)
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φvalid = φt − arcsin(
ρ0

a
) (1.5)

where Lθ is the length and a is the radius of cylindrical measurement surface, dθ is the length

and ρ is the radius of the smallest cylinder enclosing the AUT, and φt is the angle of near-

field measurement [24]. Like the planar case, the truncation level of -35dB at the edges is

adequate. When the probe gets closer to the AUT, the SNR and valid angular region increase

as shown in Fig. 1.10 while more multiple reflections between the AUT and the probe occur.

Fig. 1.9: Cylindrical near-field measurement. Probe is moving in the vertical direction (step in φ) [24]

1.8 Spherical Near-Field Measurement

Spherical scanning is the most general near-field measurement system, so it is suitable for

all kinds of antennas and uses spherical modal expansion to represent the radiated field of

the AUT [24]. Again the probe moves on a cylindrical surface by stepping in one direction

(φ or θ) and sweeping in the orthogonal direction as shown in Fig. 1.11. When a complete

scanning is not required, the valid angle is

φvalid = φt − arcsin(
a

ds
) (1.6)
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Fig. 1.10: Valid angle in cylindrical near-field measurements [24]

θvalid = θt − arcsin(
a

ds
) (1.7)

where θt and φt are the angles of near-field measurements, a is the radius of the smallest

sphere that encompasses AUT, and ds is the radius of the smallest sphere that encompasses

the measurement surface [24].

Fig. 1.11: Spherical near field measurement [24]
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1.9 Planar Wave Spectrum (PWS) and its drawbacks

In a source-free free-space region such as the near-field of the antenna, the time harmonic

Maxwell’s equations can be transformed into the following vector wave equations [2]:

∇2 ~E + k2 ~E = 0 (1.8)

∇2 ~H + k2 ~H = 0 (1.9)

∇. ~E = ∇. ~H = 0 (1.10)

k is the amplitude of wave vector. If we assume that the antenna is placed in the region z ≤ 0

(Fig. 1.12) and the measurement plane is on z = zt, then it can be shown that a solution to

the Maxwell’s equation is [2]

~E(x, y, z) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

~A(kx, ky)e
−j~k.~rdkxdky (1.11)

~H(x, y, z) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

~k × ~A(kx, ky)e
−j~k.~rdkxdky (1.12)

kxAx(kx, ky) + kyAy(kx, ky) + kzAz(kx, ky) = 0 (1.13)

where kx and ky are real values and ~A is the plane wave spectrum since ~A(kx, ky)e
−j~k.~r

represents a uniform plane wave, which propagates in the direction ~k. The radiation condition

for z ≥ 0 is

kz =

{
(k2 − k2

x − k2
y)

1
2 , if k2

x + k2
y ≤ k2

−j(k2
x + k2

y − k2)
1
2 , otherwise

(1.14)
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Fig. 1.12: Planar near-field measurement [2]

An imaginary kz describes an evanescent PWS, which is rapidly attenuated away from

the z = 0 [2]. Therefore, at z = zt the measured fields are

Ex(x, y, zt) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

Ax(kx, ky)e
−jkzzte−j(kxx+kyy)dkxdky (1.15)

Ey(x, y, zt) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

Ay(kx, ky)e
−jkzzte−j(kxx+kyy)dkxdky (1.16)

when z = 0,

Ex(x, y, 0) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

Ax(kx, ky)e
−j(kxx+kyy)dkxdky (1.17)

Ey(x, y, 0) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

Ay(kx, ky)e
−j(kxx+kyy)dkxdky (1.18)

From (1.17) and (1.18), the following transform is obtained
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Ax(kx, ky) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

Ex(kx, ky, 0)e−j(kxx+kyy)dkxdky (1.19)

Ay(kx, ky) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

Ey(kx, ky, 0)e−j(kxx+kyy)dkxdky (1.20)

Therefore, there is a simple relationship between the far-field pattern and the PWS of an

antenna

~E(x, y, z) =
je−jkr

r
kz ~A(kx, ky) (1.21)

To include all the spectral and spatial energies, the samples in (x, y) and (kx, ky) should

be enough. The aperture size and the plane wave spectrum of directive antennas are finite. If

the measurement plane is placed in a region of space where evanescent waves are negligible,

then the maximum kx and ky wavenumbers are kxm = kym = k = 2π/λ . Therefore, the

sample spacing is ∆x = ∆y = λ/2 [2]. Nx and Ny must be large enough to contain all the

significant fields in the aperture. A sampling rate of five times of Nyquist rate is necessary

when the plane wave spectrum of the AUT is completely unknown [6]. Nowadays, however,

there is an extensive knowledge of the far-field pattern of various directive antennas. For a

uniformly circular aperture antenna, the y component of the electric field (on the aperture

Ey = 1) along the z axis, obtained from a computer simulation, is shown in Fig. 1.13 [2].

The diameter of the antenna, which is polarized in y direction, is 10λ. The sampling is done

such that ∆x = ∆y = λ/2 and Nx = Ny = 64. A filter is used to remove the evanescent

waves. There is a slight difference between the simulation and the exact solution.

Since at close distances from the AUT (i.e., z < λ) there are still evanescent modes which

are not attenuated adequately, there is a small discrepancy between the exact solution and

the one that is obtained from the simulation. For z > λ, the shift is because the sharp

step function at the edge of the antenna is not precisely represented by the sampling space

∆x = ∆y = λ/2. When one takes into account the evanescent waves and increases the
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Fig. 1.13: Computer Simulation and exact solution of y component of electric field along z axis for a uniformly
circular aperture antenna. The diameter of the antenna is 10λ, and ∆x = ∆y = λ/2 and Nx = Ny = 64 [2].

number of samples, the result of the simulation is in a perfect agreement with the exact

solution as depicted in Fig. 1.14.

To investigate the effect of the sharp edges of the aperture distribution on the simulation

results, it is assumed that the aperture tapers gradually from unity to zero based on a

parabolic function by getting closer to the edges. In Fig. 1.15, Ey at y = 0 and z = 100λ is

plotted along the x axis. As shown in Fig. 1.15, the resulting fields are independent of the

sample spacings when they are less than λ/2.

A window or filter is frequently used in signal processing of the PWS data for near-field

measurement. There is no advantage in using the filter or window if space samplings are less

than 0.5λ. Moreover, the window usually causes the in-band distortion which may affect its

benefit. In [6], an equalizer algorithm is employed to compensate for the resultant in-band

distortion of the Blackman filter. A slight decrease of the sample spacings is more efficient

than the use of window to smooth the out-of-band spectra. Because small sampling is not
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Fig. 1.14: Computer Simulation and exact solution when the sample spacing in Fig. 1.13 is reduced to
∆x = ∆y = 0.491λ [2].

Fig. 1.15: Simulated Ey along x axis with different sample spacings [2].
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always possible due to the practical limitations, one needs to use window [29]; otherwise,

direct integral equation methods must be employed.

In the PWS context, an evanescent wave is denoted by an imaginary kz which is attenuated

by the term exp(−jkzzt) as the field point moves along the z axis in the positive direction.

The scanning plane is placed at z = zt that is assumed to be large enough to exclude the

evanescent waves. Although the scanning plane in near-field measurements is positioned at

least a few wavelengths (typically ten wavelengths) away from the AUT, the evanescent PWS

for practical antennas can be simply ignored at the distances larger than one wavelength from

the measurement plane; this is especially the case for large antennas due to their insignificant

evanescent content. That the impact of the evanescent waves has been overemphasized can be

inferred from Fig. 1.13. As mentioned previously, all of the evanescent content is filtered out

in this simulation; however, there is only 0.1dB error at a few lengths away from the antenna

and 0.9dB error at zt = 0.1λ. In Fig. 1.16, the same problem is simulated with sample

spacings of 0.2445λ on a 128× 128 array and with all of the evanescent waves removed. This

figure demonstrates that the effect of the evanescent PWS is limited to zt < 1λ as stated

clearly in [30].

For tapered apertures, there is less reactive energy and evanescent content. The AUT

in Fig. 1.17 is similar to the one in Fig. 1.13, except for its parabolically tapered aperture

distribution. The resultant fields along the axis are similar when the filter is on (i.e., the

evanescent mode is excluded) and off (i.e., the evanescent mode is included).

The increase of the aperture size causes the decrease of the evanescent modes. The reason,

based on the Huygen’s theorem, is that the contributing sources are mainly far away from

the field point and more radiation energy is expected.
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Fig. 1.16: Computer Simulation and exact solution with the sample spacing of ∆x = ∆y = 0.2445λ on
128× 128 array [2].

Fig. 1.17: The effect of inclusion and exclusion of the evanescent content on a parabolically tapered aperture
distribution [2]

1.10 RWG-via-LCN method

In the PWS method, the radiated fields of the AUT are expanded in terms of planar wave

functions. Then, the measured near-fields are used to calculate the expansion coefficients [2]-
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[5]. To reconstruct the currents on the source plane, one can take the two dimensional Fourier

transform of the measured fields to obtain the far-field that is converted into the equivalent

sources by inverse Fourier transform. A drawback of this technique is that the fields are

assumed to be zero outside of the measurement plane. This hypothesis causes a systematic

error and spurious side lobes in the calculated far-field [3]. Some spatial low-pass filters have

been used to force fields to become zero gradually as we get closer to the measurement plane

edges and consequently relieve such side lobes [6] and [7]. However, these filters may cause

some distortion. As it is mentioned in [3], if we assume the measurement plane and the

source plane (the plane which contains the sources) are of dimensions L × L and D × D ,

respectively, and the separation distance between them is d, then PWS theory remains valid

up to θ = tan−1(L−D
2d

). Therefore, the accuracy of PWS method depends on the size of

measurement and source plane, their distance, and the extent to which we can ignore the

evanescent waves.

An alternative method is utilizing near-field data to determine equivalent current sources

over a fictitious planar surface which encompasses the radiating surface of the AUT [3]

and [8]- [11]. The electric field integral equation (EFIE) and magnetic field integral equation

(MFIE) are used to relate the measured near-field to the equivalent currents. If someone

knows the currents on the source plane, one can obtain fields at every plane, which is placed

at an offset from that. When the measurement plane is infinite, the PWS method and the

integral equation technique result in the same equations. The PWS and equivalent current

approaches solve the integral equation in the spectral domain and space domain, respectively.

In the equivalent current technique, measurement plane data are transferred to the source

plane through the Green function before applying Fourier transform to the data to calculate

the far-fields. The fields are not assumed to be zero outside of the measurement plane when

the Green function is utilized. Therefore, the truncation error is small compared to PWS,

and the results hold up to a larger azimuth angle [3].

Usually the method of moments (MoM) is employed to convert the integral equations to

matrix forms. In the MoM approach, the surface currents are expanded in terms of the basis
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functions (BFs) whose unknown coefficients are ascertained by the process. Not only the

current BFs represent the current distribution, but also they approximate the charge distri-

bution through continuity equation (charge distribution being calculated by divergences of

current BFs). Therefore, it must be confirmed that the BFs are continuous in the normal

direction of the current flow; otherwise, there is an undesired and artificial charge accumu-

lation along the edges of the basis elements. This legitimate and important feature can be

fulfilled with the use of the Rao-Wilton-Glisson (RWG) BFs [12].

A drawback of classical element or basis-based MoM discretization scheme is that it is not

suitable for efficient acceleration with fast algorithms such as the multilevel fast multipole

method (MLFMM); this is a limitation for real-time applications [13]- [16]. The locally

corrected Nyström method (LCN), which does not use the expansion of basis functions, is a

point-based alternative to the MoM to solve integral equations [17]. It utilizes the samples

of solution at the nodes of a Gaussian quadrature rule. The LCN technique has been used

to discretize EFIE for scattering problems, including PEC and penetrable scatterers, by

applying surface and volume integral equation approaches. One of the unique potentials of

LCN method is that any integration rule can be used to discretize the unknowns of integral

equations. Nonetheless, the indiscriminate application of this idea to EFIE and MFIE leads to

imprecise near-field and far-field results. This imprecision is due to the current discontinuity

and inconsistent charge representation. Although the significance of the current continuity

recedes for the higher-order discretization schemes, it has a substantial impact on lower orders

such as the classical zero- and first-order MoM and LCN.

As demonstrated in [18], MoM and LCN are equivalent under certain conditions, and

LCN can be considered as a specific point-based representation of MoM. In [19] and [20], this

equality is extended to the case of RWG MoM and first-order LCN discretization scheme for

triangular patches on the surface of a PEC scatterer. Then an exact relationship between

impedance matrices, produced by these two systems, is established. This method, which

is entitled as RWG-via-LCN, integrates the benefits of the two approaches. It maintains

current continuity between adjacent mesh patches and is more appropriate for speeding up
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by MLFMM. Also, a comparable relationship is developed in [20] between the RWG MoM

and LCN to solve EFIE in the mixed-potential (MP) form termed as MP RWG-via-LCN.

While the contributions of the line charge to the MP formulation are cancelled analytically,

those to the vector-potential formulation of EFIE are cancelled numerically; the accuracy of

the solution is remarkably higher with analytical cancellation.

In this study, the LCN discretization scheme for the first time used for the equivalent

current technique in the application of near-field measurement of the antennas and PCBs to

reconstruct equivalent magnetic and electric currents. The motivation is that for the real-time

near-field measurement devices such as RFX2, an accurate and high-speed method is needed,

and LCN is more suitable for fast algorithms. To achieve an accurate current, the same as that

in [20], a relationship between LCN and RWG MoM is established. For such applications, the

formulation is different since both source and observation points are on triangular patches in

scattering problems. Thus, as stated in [20], one can do Galerkin’s testing and choose ramp

functions as the basis and test functions. This choice plays a prominent role in the analytical

cancellation of the line charge contributions. In the planar near-field measurements, the

observation points correspond to the array of measurement probes, so we test the field only

at one point and in a scalar fashion. In scattering problems, one needs to determine the

induced electric current on the surface of the scatterer, so RWG-via-LCN in [19] and MP

RWG-via- LCN in [20] are developed for EFIE. In this study, LCN and RWG MoM have

been linked to calculate EFIE to reconstruct electric and magnetic currents. Because the

currents are reconstructed on a planar surface, the simultaneous reconstruction of magnetic

and electric currents helps to extrapolate far-field toward θ = 90◦ more accurately. The

proposed algorithm combines the benefits of the current continuity of RWG MoM and more

efficient acceleration by fast algorithms of LCN. Like [20], lower degrees of freedom (DOF)

compared to LCN, increased accuracy, and better conditioning of the impedance matrix have

been found in this method. The currents will be reconstructed on 3D surfaces to impose

boundary conditions that increase the accuracy.
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1.11 High Resolution Near-Field Measurement and Fault

Detection in SIW Circuits

Near-field measurements have been widely used in circuit performance and failure analy-

sis. The radiating sources, charge, and current distribution can be quantitatively identified

by analyzing the near-field data of the circuit surface. For instance, in [31], the near-field

interference between two multilayer printed circuit boards (PCBs) was estimated. In [32],

a method of evaluating the current distribution on a microstrip transmission line of a mul-

tilayer PCB was introduced. An improved nonintrusive near-field probing technique for the

identification of distributed effects in a high power GaN HEMT has been proposed in [33].

Also, a measurement system for on-wafer characterization of antennas operating in the high

millimeter wave (MMW) to sub-MMW bands was presented in [34].

Some methods are proposed to test and inspect the PCB boards. All these techniques

can be categorized into two groups: automated optical inspection (AOI) and X-ray-based

approaches, [35] and [36]. AOI is a visual method in which the board is lit by several

sources from different angles and scanned by one or more cameras. The recorded images

are compared to what the board should look like. This method is not a proper choice when

the board is highly loaded or some connections or components, such as the inner walls of

the SIW (substrate integrated waveguide) vias, are hidden. Unlike AOI light sources, X-rays

penetrate through the board and can give a complete image of the board. Very complex

and densely loaded boards can be inspected using X-rays, but X-ray based methods are very

expensive and require safety considerations. Moreover, none of these methods utilizes the

electromagnetic emissions of the board to detect inner faults such as defective walls of the

SIW vias.

In this study the source reconstruction method (SRM) is utilized to detect the radiated

emissions of the defective vias. This work is introduced briefly in [37]. Similar idea, named

matrix method, is previously used in [38] for diagnosis of phased array. Yet in [38] matrix
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method is used to determine the number of elements in a dipole array. This method needs

to be developed significantly to be applicable in detection of small features such as the

defective vias. In this study, the source reconstruction method is utilized for detection of

the defective vias in SIW circuits. The measured data are used to calculate the equivalent

sources over the volume that encompasses the circuit. The surface of the box is discretized

to flat triangular patches, and electric and magnetic currents are represented precisely by

Rao-Wilton-Glisson (RWG) basis functions. To have the reconstructed equivalent currents

consistent with Maxwell’s equations and enforce Love’s equivalence theorem, a boundary

condition of zero tangential electric and magnetic field is applied just inside the volume.

Point-matched and RWG tested fields for measured and boundary conditioned values are

used, respectively to improve the accuracy. Unlike other fault detection approaches that rely

on the reconstructed currents, the near-field in this method is calculated at close distance from

the circuit using the equivalent sources. Because of the ill-posedness of the inverse problems,

our solution results in better accuracy that is important in detecting small features such as

defective vias. The main advantage of the proposed method is that the circuit is examined

while it works in its operating frequency range.

To measure the unfavorable emissions of any device, two problems typically arise: de-

tecting the radiating sources that is necessary for EMC troubleshooting and conducting the

measurement that can be time-consuming. With respect to the detection of the radiating

sources, the accurate reconstructed field close to the circuit surface provides enough informa-

tion about the location of the defective vias. In this study, the radiation sources of the device

are located by using the equivalence principle from the measured near-fields which enables

the substitution of the original device by an equivalent current over a box that encompasses

the device. Thereafter, the fields in the vicinity of the vias are computed from the equivalent

current. Moreover, a machine learning based approach is proposed that uses field variation (

x and y component of the magnetic fields) and material variation for all reconstructed points

to differentiate the radiation sources. Both the amplitude and phase information of the tan-

gential components of the magnetic fields across the measurement area are measured. Due to
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the complexity and inaccuracy, near-field scanning with phase measurement is challenging.

Thus, several magnitude-only measurement approaches have been proposed [39]- [45]. In [44]

the measured magnitude of the fields over two planes along with an iterative approach has

been used to retrieve the phase. In [45], two sets of data, the measured amplitude of the

fields over the scanning surface and the interpolated data from the measured fields (mostly

averaging) over the same plane, were utilized to retrieve the phase. Yet as it is stated in [46],

capturing both the amplitude and phase of the fields results in more accurate reconstructed

currents.

On the other side, in regards to the interpolation techniques, the simple methods such

as averaging are not sufficiently accurate to characterize small features of vias. Hence, the

selection of the appropriate interpolation algorithm demands thorough understanding of the

potential radiating emissions of the DUT (device under test) and the mathematical behavior

of the interpolation methods. For instance, the spline interpolation method has been used in

many applications. However, this technique is oscillatory as it is based on polynomials [47].

Therefore, applying such interpolation technique may lead to some nonexisting radiating

sources. Considering the aforementioned reasons, in this study both the magnitude and

phase of the magnetic near-field are measured and for the near-field scanning, two procedures

are presented; in the first one, a mechanically scanning single probe connected to a network

analyzer is used whilst in the second one, a RFX2 [48]- [52] switched probe array enabling

fast electronic scans is utilized.

1.12 Adaptive Sampling of the Near-Field Data

The main drawback of the near-field measurement is the required time to scan the AUT

with a sufficient resolution to acquire all significant features, especially when the information

at different frequencies is needed. The traditional way to measure is to uniformly sample

the data on a plane-rectangular grid where the sampling space is small compared to the

wavelength, i.e. λ, to capture all details. To make sure the number of the samples is enough
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the near-fields are regularly measured in many more points than what is required.

A few methods are presented to avoid large sampling issues. In [69], the sampling res-

olution is not constant and, especially, the scanning distance increases and exceeds λ/2 by

moving away from the measurement area. In [69] and [70], plane-polar and bi-polar scanning

techniques are applied to reduce the burden of the near-field acquisition. In [71], the sampling

starts from the center of the measurement plane and steps outward. The difference between

the measured and extrapolated data over a loop, which encloses the scanned area, determines

whether more sample points inside the loop are required or not. In [72], this algorithm is

extended to spherical and cylindrical near-field antenna measurements. In [73] two measure-

ment schemes, rectangular spiral and adaptive rectangular loop, are proposed. In the first

algorithm, measurement starts at the center of the AUT aperture and proceeds outward, and

since the required time to calculate the far-field is negligible compared to that of the data

acquisition, the far-field accuracy is used as a criterion to terminate the near-field measure-

ment. In the second algorithm, the area of the measurement is elongated in the direction

of the maximum power by appending two rows or columns of data. All these methods still

need a significant number of measurement samples. Utilizing the fast electronically switched

probe array can remarkably decrease the time of the measurement. For instance, RFX2 [48]

is a real-time antenna measurement device that measures the tangential components of AUT

near-fields in two orthogonal directions using equally distanced 40 × 40 magnetic probes.

But still there are some issues about this measurement tool. In this work, two problems are

addressed.

First, each probe measures only one polarization of the field and because of physical

confinement, at every point one probe can be fabricated. Thus, at the location of each

probe, one component of the magnetic field is actually measured and the other one must

be estimated by having the fields measured at four surrounding probes. Usually, a simple

averaging technique is used to estimate the value of the field that clearly is not the best

approach. In this study, more advanced interpolation methods such as linear, nearest, and

natural neighbor are used to model the field for different SNR values, and the results are
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compared to that of the simple averaging scheme.

Secondly, as mentioned earlier, the algorithm that is used for near-field to far-field trans-

formation, plane wave spectrum (PWS), is not very accurate. The advantage of PWS method

is that in the case of sinusoidal modes, the classical Fast Fourier transform can be simply

utilized to calculate the expansion coefficients. Thus, this method is a proper choice for

real-time application. An alternative technique to have a better accuracy is source recon-

struction method (SRM) that uses the measured near-field data to reconstruct equivalent

currents over a fictitious surface that encloses the AUT. The SRM methods are less sen-

sitive to measurement distortions and noise compared to PWS-based techniques. On the

other hand, the process time of the SRM method is more than that of the PWS technique.

Thus, decreasing the number of samples, by removing the ones that are redundant from the

measured data, improves the speed of the algorithm significantly. In this study, an adaptive

sampling technique is developed that sequentially add more data in the regions with highly

dynamic near-field behavior and skips the rest of the regions.

The spherical near-field measurement of antennas allows the full calculation of the far-

field radiations. The post processing is considerably more complex than the planar and

cylindrical near-field measurement, but the errors due to the truncation of the scan surface

can be avoided [83]- [?]. Some methods are proposed to accelerate the NF data acquisition

such as spiral scanning. In this method, the reduced number of needed NF data results in

significant time saving as well as continuous movement. Inthis study the idea of adaptive

sampling is applied to the spherical near-field measurement of antennas. This approach can

be used for multi-probe measurement setup such as the system in [?]. Since it is important to

use local values for the interpolation at a new point, the uniformly measured data is clustered

by k-means clustering technique that helps to decide the new sample belongs to which cluster.

The optimal number of clusters is determined using the well-known elbow method. In case

of spherical sampling also, adaptive sampling reduced the number of samples significantly.
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Chapter 2

RWG MoM-via-Locally Corrected Nyström Method in

Near-Field to Far-Field Transformation Using

Very-Near-Field Measurement

2.1 Introduction

In this chapter, RWG-via-LCN method is studied. The proposed algorithm combines the

benefits of current continuity of the RWG MoM and the efficient acceleration of LCN. As in

[20], lower degrees of freedom (DOF)compared to LCN that means less unknown coeffiecients

for equivalent currents representation (e.g. in LCN we need more than four times of the

number of DOFs compared to the RWG-via-LCN method.), increased accuracy, and better

conditioning of the matrix are the advantages of this method. Thus, the proposed algorithm

brings both speed and accuracy to near-field measurements. Moreover, since the RWG-via-

LCN method is extended to the application of planar near-field measurement, this chapter

shows how we can apply this approach to different applications where we have different kernels

to be locally corrected. The main steps of the proposed approach in this chapter (Fig.2.1) are:

1. The tangential components of magnetic field are measured by RFX2 probe array. 2. The

currents over a large enough plane that represents the antenna under test (AUT) are modeled

using RWG MoM, LCN method and unknown coefficients. 3. Electric field integral equations
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Fig. 2.1: An illustration of the main steps in LCN to RWG conversion.

(EFIE) are used to link the measured data and the equivalent currents on the source plane.

The numerical calculation of these equations using the RWG MoM and LCN method results

in a linear matrix relation between the measured magnetic field and the unknown coefficients

of the currents. This relation is denoted as [ZRWG] for RWG MoM and [ZLCN ] for LCN

method. 4. A relation between [ZRWG] and [ZLCN ] is developed to apply current continuity

to LCN method. 5. An inverse problem is solved to find the unknown coefficients of the

equivalent currents on the source plane. This chapter is organized as follows. Sections 2.1

describes the LCN and RWG MoM methods to solve EFIE in the application of planar very-

near-field measurement of the antenna. The conversion from the LCN system to the RWG

MoM is applied to our problem. Section 2.2 provides the simulations and measurement

results that show the accuracy of the conversion. Moreover, the truncated singular value

decomposition (TSVD) method is explained for solving the inverse problem.

2.2 Theory

An illustration of the current reconstruction problem is depicted in Fig.2.2. RFX2, a

simple schematic of its measurement system, along with its probe array, is shown in Fig.2.2.

The input data are the values of the tangential magnetic field (amplitude and phase) on the

measurement plane
∑

M . This data might be the result of a linear operator which indicates

the measurement system and sample fields interaction. The measured magnetic fields and

the unknown source plane currents are linked together via EFIE [21]. The reconstruction
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Fig. 2.2: Simulation and measurement set ups (a) Simulation setup which includes planar measurement
probes, and source plane, (b) RFX2, (c) A simple schematic of RFX2 measurement system, (d) A sample of
measuring an antenna with RFX2.

of both magnetic and electric currents provides a better estimation of measured fields and

far-field pattern, especially towards θ = 90◦ :

~E(~r) = K( ~M ;~r)− η0L( ~J ;~r) (2.1)

where

K( ~M ;~r) =
∫∑

R

~M(~r′)×∇g(~r, ~r′)dS ′

L( ~J ;~r) = jk0

∫∑
R

[ ~J(~r′) + 1
k20
∇∇′S. ~J(~r′)]g(~r, ~r′)dS ′

g(~r, ~r′) =
e−jk0|~r−

~r′|

4π|~r − ~r′|
(2.2)
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where η0 =
√
µ0/ε0, k0 = ω

√
µ0ε0, ∇′S is the surface divergence operator and

∑
R is the

reconstruction surface. The source plane is discretised to flat triangular patches. The same

BFs and, thus, the same number of unknowns are used to represent electric and magnetic

currents

~J =
N∑
n=1

cJn ~Fn, ~M = η0

N∑
n=1

cMn ~Fn (2.3)

In (2.3), the coefficients are normalized to η0 to have consistent physical dimensions and

prevent bad matrix conditioning. This normalisation is done in the literature [21] for all

MoM problems, which require electric and magnetic currents interaction. As a result, we

have the linear system below:

η0

[
KMR − LMR

] cJ
cM

 =
[
H
]

(2.4)

where KMR and LMR are defined between the points on the measurement plane,
∑

M , and

the points on the source surface,
∑

R. To form these integral equations, MoM and LCN can

be used, each of which is elaborated thoroughly in the next sections, and then the proposed

method in this chapter that combines the benefits of the two aforementioned techniques is

explained.

2.2.1 Locally Corrected Nyström method

The LCN formulation of our problem is developed in this section. It includes LCN

formulation of EFIE for both magnetic and electric currents. The essence of Nyström method

is that the intended surface (source plane in an antenna problem and surface of the scatterer

in the scattering problems) is discretised to N patches, and an appropriate quadrature rule is

applied to each cell to calculate the integral equation. So far, the Nyström method is always
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used for scattering problems in which the integral equation

φ(r) =

∫
S

C(r, r′)J(r′)dS ′ (2.5)

can be employed to find current distribution on surface S where C(r, r′) and φ are known

functions. To calculate (2.3) using a quadrature rule, we divide S to Np patches and use Nq

quadrature points

φ(rqm) =

Np∑
p=1

Nq∑
q=1

ωqpC(rqm, rqp)J(rqp) (2.6)

where rqm and rqp are at the abscissas of the qth quadrature point on the observation patch m

and source patch p, respectively. The weights ωqp are the ones directly obtained from regular

quadrature rules, such as Gauss–Legendre. Such weights can be calculated analytically once

and stored in a lookup table and used later. For this application instead of (2.5) and (2.6),

we have

∫
cell n

J(t′)C(tm, t
′)dt′ =

q∑
i=1

ωniJ(tni)C(tm, tni)) (2.7)

When the source and the observation points are in close proximity, the original idea is

to synthesise a new quadrature rule. An equivalent approach is to synthesise a new smooth

kernel to be sampled by the original quadrature rule for the near-field interactions. The

‘locally corrected’ quadrature rule is employed to better deal with either weak or strong

singularities in the kernel of the integral equations and accurately discretise the integral

operators. In the context of LCN, the near-field denotes situations where the local correction

is required. In other words, a set of basis polynomials are used as a weight function for the

singular kernel to calculate the integral to a desired precision. This is when the source and

measurement points are close together and regular weights are inadequate to estimate the

non-smooth kernel. When the measurement and the source points are far apart, weights

are easily obtained using (2.7). Generally, the idea is to use the Nyström method when
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the separation between the qm, a measuremnt point, and qp, a point on the reconstruction

surface, is so large that the kernel is smooth (far), and to use LCN to deal with the singular

behavior of the kernel for the near source and observation points (near)

φ(rqm) =
∑
p ∈ far

Nq∑
q=1

ωqpC(rqm, rqp)J(rqp) +
∑

p ∈ near

Nq∑
q=1

ω̃qpC(rqm, rqp)J(rqp) (2.8)

where {near}∪{far} = {1, . . . , Np} and ωqp and ω̃qp are the regular and locally corrected

weights. It is practicable to build the LCN matrix using only the near-field weights. Although

this increases the fill time of the matrix, one does not need to discriminate between near-

field and far-field regions. In LCN, the original discretisation of the integral operator (2.7)

is replaced with another approximation (2.7), in which L is the new ‘corrected’ kernel and

must be calculated at the required samples (since only locally corrected weights are used in

this study, we use ωqp for simplicity):

∫
cell n

J(t′)C(tm, t
′)dt′ =

q∑
i=1

ωniJ(tni)L(tm, tni)) (2.9)

For this purpose, we presume a set of BFs {Fk(t)} to model the current distribution. Then,

L is obtained in a way that the near fields of this current distribution are correct at the

necessary sample points:

q∑
i=1

ωniFk(tni)L(tm, tni) =

q∑
i=1

Fk(tni){ωniL(tm, tni)} ∼=
∫
cell n

Fk(t
′)C(tm, t

′)dt′ (2.10)

If there are q sample points for the quadrature rule and q BFs, this results in the square

system of (2.10). Here, we use a three-point Gauss–Legendre quadrature rule to establish an

equivalent relationship between RWG MoM and LCN method. By solving this equation, the

numerical values of L(tm, tn1) through L(tm, tni) are obtained for each measurement point in
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Fig. 2.3: Point-based discretization of the source plane, (a) Uniform discretization of the source plane using
triangular flat patches, (b) Ramp functions (half RWG basis functions), (c) Barycentric triangle, (d) Covariant
unitary vectors on a flat triangular patch [20]

the near-field of cell n. For any current density, which can be represented adequately by the

BFs, applying synthesised L values should lead to the accurate near-fields:


F1(tn1) F1(tn2) ... F1(tnq)

F2(tn1) F2(tn2) ... F2(tnq)
...

...
...

Fq(tn1) Fq(tn2) ... Fq(tnq)




ωn1L(tm, tn1)

ωn2L(tm, tn2)
...

ωnqL(tm, tnq)

 =



∫
cell n

F1(t′)C(tm, t
′)dt′∫

cell n
F2(t′)C(tm, t

′)dt′

...∫
cell n

Fq(t
′)C(tm, t

′)dt′

 (2.11)

J and M over each triangular patch are defined in a 2D space η, ζ and over a1 and a2, which

are unitary vectors tangential to the source plane as defined in [19]

a1 =
∂r

∂ζ
, a2 =

∂r

∂η
(2.12)

as shown in Fig. 2.3 for each quadrature point, (x(j), y(j)), in a patch, η and ζ are
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ζ = (
1

2A
((y3 − y1)(x(j)− x1)− (x3 − x1)(y(j)− y1)))

η =
1

2A

−(y2 − y1)(x(j)− x1)

+(x2 − x1)(y(j)− y1)

 (2.13)

Thus, J and M are

J = J1(r′)ap1 + J2(r′)ap2

M = M1(r′)ap1 +M2(r′)ap2

(2.14)

where ap1 and ap2 are defined on the pth patch. In the LCN method, these currents are divided

by the Jacobian, but in this study, since in the barycentric coordinate system the Jacobian

is constant and is two times that of the triangle area, it is eliminated from the notation [26].

Since in the near-field measurement the source and measurement plane are very close, a fixed

quadrature rule is not an accurate approximation for the integral equations. To avoid this

imprecision and effectively estimate the singular integrals, the LCN method with a set of

BFs is used to locally correct the q point quadrature rule. The same BFs are used for both

magnetic and electric currents:

J jk(r) = Fk(r)aj, M j
k(r) = Fk(r)aj (2.15)

Various BFs can be defined, but in order to establish a relationship with RWG ones,

we use F1(r) = 1, F2(r) = ζ(r) and F3(r) = η(r), [19], and [20]. Therefore, for the LCN

approach, we have

3∑
qp

ω̃ijmqpFk′(rqp) =

∫
Sp

Ḡ(rm, r
′).J jk′(r

′)ds′

3∑
qp

ω̃ijmqpFk′(rqp) =

∫
Sp

Ḡ(rm, r
′).M j

k′(r
′)ds′

(2.16)

[L].[ω̃ij] = [c̃j]T (2.17)
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where G is ∇g(r, r′) in (2.15), and g(r, r′) in (2.16), ‘T’ indicates transposition, and [L] is a

(3× 3) Vandermonde matrix

[L] =


1 1 1

ζ(r1) ζ(r2) ζ(r3)

η(r1) η(r2) η(r3)

 (2.18)

and matrix [c̃j]

[c̃j]m,k′ =

∫
Sp

Ḡ(rm, r
′).J jk′(r

′)ds′ (2.19)

[c̃j]m,k′ =

∫
Sp

Ḡ(rm, r
′).M j

k′(r
′)ds′ (2.20)

The discretised EFIE is a linear system of Nm equations (the number of measurement

points) and 12Np unknowns, since magnetic and electric currents on each patch are repre-

sented in terms of 6 unknowns, which in matrix form is

[ZLCN ].[b] = [H] (2.21)

where [H] and [ZLCN ] are known and [b] is the vector of the unknown coefficients, and still

no current continuity is applied to [ZLCN ]. Although the significance of the current continuity

recedes for high-order discretisation schemes, it has a radical impact for lower orders such as

the classical zeroth- and first-order MoM and LCN.

2.2.2 RWG MoM

When the surface is closed, as in [19], the current on the patch p can be expressed based

on the ramp functions or ‘half’ RWG BFs as

J(r′) =
3∑

k′=1

bpk′R
p
k′(r

′), r′ in patch p (2.22)
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where R1, R2, and R3 are ramp functions as shown in Fig.2.3. Afterward, unifier matrices

along with coefficients l/2A (where l is the length of the common edge between two adjacent

triangles, and A is the area of each triangle) are used to preserve the continuity of the currents

[19]. However, RWG BFs are defined based on the interior edges. Thus, when the surface is

open like the source plane in our problem, (2.22) is no longer a suitable representation for

current because there are some exterior edges as well. Instead, we have

J(r′) =

NEint∑
k′=1

bk′


∫
k′1

(
lk′

2Ak′1
)Rn

k′1
C(r, r′)ds′−∫

k′2
(
lk′

2Ak′2
)Rn

k′2
C(r, r′)ds′

 (2.23)

where NEint
is the number of interior edges which is equal to 1.5Np for a closed network,

as is explained in Section 3.1.4. lk′ is the length of k′th interior edge which is shared between

triangles 1 and 2 with areas Ak′1 and Ak′2 . Rk′1
and Rk′2

are the ramp functions in triangles 1

and 2 that have a normal component to lk′ . Every integral on the right side of (2.23) can be

approximated with a q-point quadrature rule (q = 3 in this work). Therefore, RWG MoM

converts (2.5) to

NEint∑
k′=1

bk′


∫
k′1

(
lk′

2Ak′1
)Rn

k′1
C(r, r′)ds′−∫

k′2
(
lk′

2Ak′2
)Rn

k′2
C(r, r′)ds′

 = φ(r) (2.24)

C(r, r′) is ∇g(r, r′) in(2.15), and g(r, r′) in (2.16). In matrix form, we have

[Z].[b] = [V ] (2.25)

where [V ] and [Z] are known matrices and [b] denotes unknown coefficients. Current conti-

nuity is clearly enforced in this impedance matrix.
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2.2.3 RWG via the first-order LCN

To enforce current continuity to the LCN method, initially we need to develop a relation-

ship between the RWG basis function and the LCN ones. In [19], a similar relationship is

developed for scattering problems. There are some differences between these two applications

regarding the relationship between the RWG and LCN BFs. In this study, we are not able

to use a ramp test function, and the current reconstruction surface is open. As explained

in [19], ramp functions or half RWG BFs can be expressed in terms of Fk(r) and ai, as

R1(r) =
l1
2A

[−F1(r)a1 + F2(r)a1 + F3(r)a2]

R2(r) =
l2
2A

[−F1(r)a2 + F2(r)a1 + F3(r)a2]

R3(r) =
l3
2A

[F2(r)a1 + F3(r)a2]

(2.26)

and in matrix form of

[Rn] = [an].[F ]T .[Ψn] (2.27)

where

[F ] =

[L] [0]

[0] [L]

 (2.28)

[Ψn] =



−1 0 0

1 1 1

0 0 0

0 −1 0

0 0 0

1 1 1




l1
2A

0 0

0 l2
2A

0

0 0 l3
2A

 (2.29)
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so far the LCN basis functions are converted to the ramp functions, and there is no current

continuity between adjacent cells.

[an] = [[an1 ][an2 ]], [ani ] =


ai 0 0

0 ai 0

0 0 ai

 (2.30)

The reciprocal unitary vectors are defined as follows:

a1 = a2 × n̂, a2 = n̂× a1, ain.a
n
j = δij (2.31)

where δij is the Kronecker–Delta [19]. Now, we have [αn] matrix which is defined on patch

n:

[I6] = [αn]T [an] (2.32)

[I6] is the (6 × 6) identity matrix that shows the relation between the unitary vectors and

reciprocal unitary vectors.

[αn] = [[diag(a1
n)][diag(a2

n)]] (2.33)

Therefore, [ZLCN ].[αp].[Rp]
T = [ZLCN ].[<]T converts the LCN impedance matrix to a new one

which is based on three ramp functions inside of each triangle. Here, [<]T is a (6Np × 3Np)
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[<]T =



[<1
1] [0] ... [0]

[0] [<1
2] ... [0]

...
...

. . .
...

[0] [0] ... [<1
Np

]

[<2
1] [0] ... [0]

[0] [<2
2] ... [0]

...
...

. . .
...

[0] [0] ... [<2
Np

]



(2.34)

In (2.34), every [0] is a matrix of (3× 3) zeros, and every <in is a (3× 3) matrix over patch

n, for the ith unitary vector. Each entry is [<in]qn,k = ain.R
n
k(rqn). Now, to enforce current

continuity between adjacent patches, a unifier matrix, [u], is used, which is different from

the one mentioned in [19]. The dimension of this matrix is 3Np × NEint
. In each column of

this matrix, all entries except two of them are zero. These two nonzero elements are 1 and

−1 to preserve current continuity along the normal component of the ramp functions in two

triangular patches which share an edge. Thus, we have the conversion from LCN impedance

to an RWG one in matrix form

[ZRWG] = [ZLCN ].[<]T .[u] (2.35)

where [<]T converts LCN basis functions to ramp functions along with the lk
2Ak

, and [u],

the unifier matrice, applies the last step to have current continuity over the common edges.

The relationship in (2.35) is for just the integrals and kernels in (2.15) and (2.16). Since

the triangular patches are flat, the singularity order of the first term of the L kernel on the

right-hand side of (2.2) is in the order of O(1/R) and can be evaluated up to an acceptable

accuracy analytically, but for the second term we use vector identity to convert it to ( [19])
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Fig. 2.4: Conversion from LCN to RWG impedance matrix. From right to left, in the top row, [α] converts
LCN basis functions at each quadrature point to ramp functions, and [R]T translates ramp functions at all
points to three main R1, R2, and R3. In the second row, [l]T converts the ∇.R from LCN system to ∇.R1,
∇.R2, and ∇.R3 in RWG MoM. [u] finally enforce current continuity between adjacent triangles.

∇
∫
Sp

∇G(rm, r
′).M j

k′dS
′ =

∫
Sp

∇G(rm, r
′)[∇′||.M

j
k′ ]dS

′ −
∮
Cp

[ê′p.M
j
k′(r

′)][∇G(rm, r
′)]dl

(2.36)

Sp is the surface of one patch, Cp is the counter around Sp, and êp is an outward unitary

vector which is normal to Cp and tangential to Sp. The second term in (2.36) is numerically

equal to zero for RWG MoM and RWG-via-LCN method because the current distribution is

normal to êp on two edges and for the third edge, the contribution of two adjacent triangles

is equal with opposite signs. Finally, the linear integral vanishes, which in LCN needs to be

calculated numerically, causing some error.

For the second term in kernel L, we have divergence of the current, so to approximate

this sentence; we use a zeroth-order LCN. The divergence of Ramp functions is l/A, so the

kernel we assume for this term is

C(r, r′) =
jη0

k0Ap
∇g(r, r′)) (2.37)

Therefore, eventually to convert the L kernel from LCN to RWG (Fig.2.4), we have
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[ZRWG] = [ZRWG−via−LCN ] = [Z1st−LCN ].[<]T .[u] + [Z0th−LCN ].[l]T .[u] (2.38)

where [l] and [Z0th−LCN ] are 3Np ×Np and Nm ×Np matrices

[l]T =


[l1] [0] ... [0]

[0] [l2] ... [0]
...

...
. . .

...

[0] [0] ... [lNp ]

 (2.39)

and every [0] is a matrix of (1×3) zeros. It worth noting that unlike the equations of scattering

problems, here the system of equations is not square since the number of measurement points

is much less than the unknown coefficients. Moreover, as shown in [21], in scattering problems

if RWG test functions are used, the second term in (2.38) will be analytically zero because of

the current continuity of RWG basis functions. Yet in near-field measurement applications

it is not possible to use RWG basis functions as test functions for the measured data, and

the numerical calculations of the integral equations will be more difficult.

2.2.4 Degrees of freedom (DOFs) and condition number of the

impedance matrices

Assuming that Eext and Eint represent the number of edges on the exterior and interior

boundary of a surface and F denotes the number of patch faces, each triangle has three edges,

and every internal edge contributes to the current distribution on two adjacent triangles

while an external edge is associated with only one triangle [12]. Therefore, below we have

the relation between Eext, Eint and F

3F = 2Eint + Eext (2.40)

In RWG MoM, the number of the required DOFs is equal to Eint, whereas in LCN it is 6F
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Fig. 2.5: Comparison of 200 × 200 samples of impedance matrices which obtained from RWG-via-LCN
with RWG ones (a) For magnetic, (b) Electric currents. The error corresponds to Zi,j = |ZRWG

i,j −
ZRWG−via−LCN
i,j |/|ZRWG

i,j |
.

(for each current, magnetic and electric current). Therefore, for closed surfaces (Eext = 0)

Eint is equal to 1.5F , and for open ones it will be even less, which means a four times

reduction in the number of DOFs, and consequently a faster solution due to problem size

reduction. This also enhances the matrix condition number.

MLFMM has been widely used to accelerate numerical calculations, especially in scatter-

ing problems. In [13], it is mentioned that when this method is applied to a Galerkin-based

MoM, its efficiency is limited by the size of a basis function. Generally, in MLFMM, near

interactions are calculated exactly while for far interactions, multipole expansion of current

distribution is used. Even if higher order BFs are utilised, the performance of MLFMM is

limited by the more near interactions that need to be calculated and stored in the memory

for each group.

In MLFMM, a big cube first encompasses the scatterer. This cube is then divided into

eight smaller ones, and this procedure continues until the size of the smallest cube and,

therefore, the size of the lowest level is several times larger than the longest mesh edge. For
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Fig. 2.6: TSVD regularization method to solve the inverse problem, (a) L-curve (a log–log plot of ‖x‖2versus
‖Ax− b‖2) or regularization (dipole antenna), (b) Residual norm versus the number of the singular values,
(c) The singular values and Fourier coefficients versus the number of singular values

example, for an RWG basis function, the edge length is about 0.1λ; therefore, the smallest

cube size is about a quarter of a wavelength. Also, fast multipole method (FMM) is used

in near-field measurements to speed up the process [25]. As mentioned in [25], in MoM, for

the finest level of FMM groups, the support of BFs is not small enough, so the BFs are

subdivided into quadrature points, and the effect of quadrature points is collected. Thus,

the point-based method such as LCN is more appropriate for acceleration by MLFMM than
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Fig. 2.7: Far-field pattern of two antennas obtained via different methods: HFSS, RWG-via-LCN, PWS, LCN
and RWG, (a) Far-field pattern of an E-plane horn antenna, (b) Fasr-field pattern of an ideal dipole antenna.

Fig. 2.8: Measurement setup and far-field pattern of Slot antenna, (a) Slot antenna on the RFX2, (b) far-field
pattern of the slot antenna obtained via different methods: HFSS, RWG-via-LCN, PWS, LCN and RWG.

MoM method. The proposed method in this study combines this advantage of the LCN

method with the benefit of current continuity of the RWG MoM.
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Table 2.1: Comparison of DOFs for RWG-via-LCN and LCN methods for three antenna

Antenna E-plane horn Dipole Slot

frequency 1GHz 2.4GHz 2GHz
Np 1201 1532 1532
Eint 1762 2253 2253

RWG-via-LCN DOFs 1762 2253 2253
LCN DOFs 7206 9192 9192

unknown per square wavelength (RWG-via-LCN) 110 250 250
unknown per square wavelength (LCN) 450 1020 450

2.3 Measurement and numerical results

In Table 3.1, for three antennas, we compared LCN and RWG-viaLCN methods in terms

of the required number of DOFs and unknowns per square wavelength to precisely model

currents. Based on the presented values, in LCN we need more than four times of the number

of DOFs compared to the RWG-via-LCN method and RWG MoM. Fewer DOFs result in the

better conditioning of the impedance matrices. For instance, in the near-field measurement

of the dipole antenna, our simulations showed that under the same parameters, the condition

number of the impedance matrix is 5.1604×1011 and 6.8183×1018 in RWG-viaLCN and LCN,

respectively. Therefore, in the proposed method, the condition number is reduced noticeably.

To evaluate the accuracy of the proposed method, the impedance matrices obtained via this

method are compared to those calculated by RWG MoM. The error is computed based on

Err(Zi,j) = |ZRWG
i,j − ZRWG−via−LCN

i,j |/|ZRWG
i,j | (2.41)

The dimension of the matrices is 1600 × 1702. Since it is not possible to show all the

components in the graph, only the part which includes the maximum amount of error is

shown in Fig. 2.5. These impedance matrices are related to an E-plane horn antenna with

1GHz operating frequency. We have 40 × 40 samples on the measurement plane at the

distance of 0.57λ above the surface of the antenna. The source plane which is 0.24λ above

the antenna is a circle with 3λ radius. The source plane is assumed to be large enough
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to contain all the significant components of the currents. Edge length is 0.1λ as it is the

normal choice for RWG MoM. After the calculation of the impedance matrices using the

MoM or Nyström method, we solve the inverse problem to find the current distribution.

To do so, we need to solve an ill-posed problem. The SVD (singular value decomposition)

of the impedance matrix is calculated, and TSVD method [26] in which the small singular

values giving rise to difficulties are replaced with zero is used to regularize the problem.

To determine the cutting threshold, the wellknown L-curve is used as shown in Fig. 2.6(a),

for example, for the impedance matrix of the well known dipole antenna. Once we finds the

residual norm at the corner of the L-curve, we can determine the corresponding singular value

form Fig. 2.6(b). After the threshold as depicted in Fig. 2.6(c), the Fourier coefficients will

be dominated by the inverse of small singular values and the accuracy of the results degrades.

For iterative solvers such as MLFMM, it is not possible to use direct methods like TSVD.

Usually, the preconditioners such as diagonal, block diagonal, and inverse LU preconditioners

are employed. For most iterative linear solvers when the condition number decreases because

of preconditioning, the rate of convergence increases [59]. The reconstructed currents are

used to calculate fields at the measurement points. The error is computed using

Err =
Href −HNumerical

Href
(2.42)

Href is obtained from HFSS for the horn antenna, analytical formulas for the ideal dipole,

and measurement for the slot antenna. The error for the horn antenna, ideal dipole, and the

slot antenna is 0.5, 0.1 and 1%, respectively. Reconstructed currents are also used to calculate

the far-field pattern of the antennas. For the dipole antenna with an operating frequency of

2.4GHz, the measurement plane is similarly 0.57λ above the antenna and consists of 40× 40

measurement probes. A 2λ-radius source plane is 0.24λ above the antenna, so the distance

between the source plane and the measurement plane is about 0.33λ (singularity starts in

distances closer than 0.2λ). At this distance, we have reliable results for all our simulations.

In Fig. 2.7, the measurement setup is shown. For the PWS method, antenna is placed exactly
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on the RFX2, but for the RWG-via-LCN method, it is about 0.57λ above the probe array.

In RFX2, there is 25mm between the surface of the scanner and probe array. The focus

of the study is to establish a relation between RWG BFs and LCN ones to have a point-

based method and at the same time current continuity between adjacent patches. Once

this relation is developed, any singularity extraction or cancellation that can be applied to

RWG basis function, can be applied to LCN one as well. Far-field patterns are shown in

Figs. 2.7 and 2.8. While PWS and LCN are not capable of reconstructing far-field precisely,

the results which are obtained using RWG MoM and LCN-via-RWG are close to HFSS and

analytical solutions. This shows how much current continuity can affect accuracy when we

have low-order methods such as RWG MoM, zeroth- , and first-order LCN method.
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2.4 Conclusion

In this chapter source reconstruction method is used to calculate the equivalent currents

on a closed surface the encloses the antenna under test by having the palanar near-field

measured data. The measured data are linked to the equivalent sources through electric field

integral equations. Integral equations can be discretized using point-based or basis-based

methods. To accelerate calculation of these equations one can apply MLFMM algorithm

for which point-based methods are more appropriate. Thus LCN method which is a point-

based technique is a better candidate for the applications where providing real-time results

is critical. The main deficiency of LCN is that it does not retain current continuity across

element boundaries.

In this chapter, for the first time, LCN along with Gauss-Legendre quadrature weight

functions are utilized to discretize integral equations, and find equivalent currents by having

measured near-fields. So far, this method is used only in scattering applications to calculate

the induced current on surfaces of scatterers. Furthermore, in this chapterr, a relationship

between RWG MoM and LCN is developed to enforce current continuity. The relationships

between RWG, zeroth and, first-order LCN is extended to the application of very-near-field

measurement and current reconstruction to preserve current continuity. The results of the

proposed method are more accurate compared to LCN. Moreover, the required DOFs are

even less than the quarter of the amount we need in LCN, which results in faster solutions

and better conditioning of the impedance matrices. This method, which is a point-based

method, is more suitable for acceleration with fast algorithms such as MLFMM and, thus,

realtime applications. For verification purposes, the algorithm is applied to the near-field

data of a slot antenna which are acquired using RFX2 tool. Then, the results are compared

to ones which are computed using ANSYS HFSS software or PWS approach. There is a good

agreement between RWG MoM and RWG-via-LCN method results.
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Chapter 3

Detection of the Defective Vias in SIW Circuits from

Single/Array Probe(s) Data Using Source

Reconstruction Method and Machine Learning

3.1 Introduction

In this chapter, source reconstruction and machine learning algorithm are used to detect

and classify different radiation sources in SIW circuits. one of the objectives of this chapter

is to develope a source reconstruction method to detect the defective vias in SIW structures.

To the best of the author’s knowledge, the defective vias have not so far been detected

based on source reconstruction method or any technique that relies on the electromagnetic

emissions of the board. Further, the proposed method in this chapter uses the measured near-

field to calculate the equivalent currents on the surface of the volume that encloses the SIW

structure. Unlike other diagnostic tests that rely on the reconstructed currents, the near-field

in this method is calculated at close distance from the board using the equivalent sources.

Since the problem is ill-posed, our solution results in higher accuracy that is important

in detecting small features such as defective vias. A new model is also proposed for the

defective vias based on the apertures. In this model, if the center to center distance of two

adjacent vias is small compared to the wavelength, the current distribution over two vias
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can be assumed uniform and the same. Thus, the distance at which two adjacent defective

vias can be resolved is obtained analytically. This approach can be integrated into the

near-field measurement software and let the user know at what distance from the board the

fields should be reconstructed to be able to detect the defective vias. Another aim of this

chapter is to propose a machine learning algorithm that uses field and material variation to

distinguish different radiation sources. Lastly, the validity and accuracy of the methods are

confirmed using full-wave simulations, single probe, and electronically switched probe array

measurements. It is shown that although for antenna and some circuits the radiation from a

ground plane under the probe array is a limitation that needs to be considered, it is not an

issue in SIW passive circuit tests since the resonant field decreases very rapidly around the

vias.

This chapter is organized as follows. In section 3.1, the approach used to estimate the

current distribution on a SIW structure is described. Then the optimum parameters for the

near-field measurement, including the measurement height, the scanning area, and resolution

(sampling space) are discussed by introducing the correlation coefficient and the condition

number of the impedance matrix and performing some parametric study for a simple SIW

transmission line (TL). Also, the field and material variation calculations are explained.

Then a model is proposed for the electromagnetic behavior of the defective vias in a SIW

structure in free space and close to a finite ground plane based on the apertures and patch

antennas. In section 3.2, the experimental setup and the measurement and simulation results

are presented to validate the proposed method. Investigations on a dual-mode filter and

coupler show that such a near-field approach can be used effectively to detect the defective

vias in SIW structures.

3.2 The Proposed Method

All of the steps in the proposed method are depicted in Fig.3.1. The proposed method

includes two main processes, namely, simulation and measurement. In the simulation process,
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the DUT is modeled in a full wave simulator with and without the finite ground plane

(There is a ground plane beneath the probe array in RFX2 that is explained in section

3.2.4). In the measurement process, the very near-field (VNF) data of the SIW structure are

measured using a single probe and a RFX2 probe array. Thereafter, the results of the single

probe measurement and those of the simulation without the ground plane can be compared.

Similarly, the results of the probe array measurement and those of the simulation with the

ground plane are compared as well.

In what follows, the source reconstruction method that is used to calculate the equivalent

currents on the surface of the DUT is explained in part 3.2.1. In part 3.2.2, the formulation

of the field and material variation is presented. Also, the electromagnetic behavior of the

defective vias radiation is modeled based on apertures and patch antennas in parts 3.2.3

and 3.2.4, respectively. Finally, the experimental setup and the measurement and simulation

Fig. 3.1: Flow-chart for the comparison of results obtained by different measurement and simulation scenarios.
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results are presented in section 3.3.

3.2.1 Source reconstruction method

The source reconstruction method is applied to reconstruct the currents on the surface

of the box which encloses the SIW structure. Fig. 3.2. shows a schematic representation

of the measurement system used in this study. The tangential component of the magnetic

fields (amplitude and phase) parallel to the board surface are measured on the measurement

plane (
∑

M). These measured data are linked to the equivalent electric, ~J , and magnetic,

~M , sources on the box surface via electric field integral equations (EFIE) [8] and [58]

~E(~r) = K( ~M ;~r)− η0L( ~J ;~r) (3.1)

where

K( ~M ;~r) =
∫∑

R

~M(~r′)×∇g(~r, ~r′)dS ′

L( ~J ;~r) = jk0

∫∑
R

[ ~J(~r′) + 1
k20
∇∇′S. ~J(~r′)]g(~r, ~r′)dS ′

g(~r, ~r′) =
e−jk0|~r−

~r′|

4π|~r − ~r′|
(3.2)

where η0 =
√
µ0/ε0, k0 = ω

√
µ0ε0 and ∇′S is the surface divergence operator. In [8], it

is mentioned that to have the reconstructed equivalent currents consistent with Maxwell’s

equations and enforce Love’s equivalence theorem, a boundary condition of zero tangential

electric and magnetic field is required. The equivalent boundary condition can be written as

n̂× [−η0L( ~J ;~r) +K( ~M ;~r)] = −1

2
~M(~r) (3.3)

The classical jump condition can be used to avoid the inaccuracy of the second kind integral
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Fig. 3.2: An illustration of the source reconstruction method over a box which encloses the SIW structure
(
∑

R). The tangential components of ~H field are measured on plane (
∑

M ).

equation. Thus, the integral equation in (3.3) can be written as,

lim
r→

∑−
R

n̂× [−η0L( ~J ;~r) +K( ~M ;~r)] = 0 (3.4)

that is a first kind integral equation and means the tangential electric field should become

zero by moving toward the interior of the volume enclosed by the fictitious surface. The

surface of the box is discretized to flat triangular patches. Rao-Wilton-Glisson (RWG) basis

functions (Fn) are utilized to represent electric and magnetic currents [48]

~J =
N∑
n=1

cJn ~Fn, ~M = η0

N∑
n=1

cMn ~Fn (3.5)

where cns are the unknown coefficients. Equation (3.1) forces all the equivalent currents to

radiate the same field as the measured ones on the measurement plane, and the test functions

are not required. Yet for equation (3.4), test functions are to be used to improve accuracy.

Here point-matched and RWG tested fields for measured and boundary conditioned values are
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used, respectively. Hence, for each operator two discretization schemes are needed. By means

of the continuity of the normal components on the shared edge for RWG basis functions, the

operators L and K can be written as [58],

L1
m,n = jk0

∫
Sm

dr ~fm(r).

∫
Sn

dr′g(~r, ~r′)~fn(r)

− j

k0

∫
Sm

dr∇. ~fm(r).

∫
Sn

dr′g(~r, ~r′)∇′ ~fn(r)

(3.6a)

L2
m,n =[jk0

∫
Sn

[ ~J(~r′)+
1

k2
0

∇∇′S. ~J(~r′)]g(~r, ~r′)dS](r→rm).âm (3.6b)

K1
m,n = jk0

∫
Sm

dr ~fm(r).

∫
Sn

dr′[~fn(r)×∇′g(~r, ~r′)] (3.6c)

K2
m,n = jk0[

∫
Sn

dr′ ~fn(r)×∇′g(~r, ~r′)](r→rm).âm (3.6d)

where m and n denote the mth row and the nth column, respectively, in the impedance

matrix, and âm is the unit tangential vector in the measurement plane that is âx or ây in

case of the planar measurement. Sm and Sn are the source and test triangles, respectively,

and rm is the measurement point.

In (3.6b) and (3.6c), the cross product is taken out of the inner integral to facilitate the

integration process. In case of any overlap between the source and observation triangles, both

the inner and outer integrals are singular [60]- [63]. The singular part of the inner integral

is extracted and calculated using analytical formulas, and the non-singular part is computed

by an adaptive quadrature method [58].

If an edge is shared between the inner and outer integrals, the inner integral is singular

over that edge. For the L operator, the singularity is resolved by taking the gradient operator

out of the inner integral [60], and for the K operator, since the singularity is a logarithmic

one, it is solved simply by an adaptive quadrature method, [60] and [63]. Finally, the system

of equation can be summarized as:
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η0

 KMR − LMR

KRR− − LRR−

 cJ
cM

 =

H
0

 (3.7)

H indicates the tangential magnetic field components on
∑

M . As it is demonstrated in

Fig. 3.3, close to the position of the defective vias, there are some magnetic field radiations

on the measurement plane. Thus, in MoM, on the surface of the box, refined meshes are

used to have more accurate representation of the currents close to the high-level radiation

areas. Gmsh mesh generator is utilized for mesh refinement [64]. The equation (3.7) can be

rewritten in a compact form as

AX = H (3.8)

where A is the impedance matrix and X is the vector of the unknown magnetic and elec-

tric current coefficients [48]. For most source reconstruction problems, the matrix A is ill-

conditioned. Here, (3.8) is solved by the Tikhonov regularization method. The cost function

is defined as below

F = ||H − AX||2 + α2||X||2 (3.9)

where ||.|| indicates the Euclidean norm and α is the regularization parameter that is deter-

mined by the L-curve method.

In simulations and measurements, some parameters impact the results. These factors are

mesh size, scanning area, height, and resolution. These parameters and their impact are

investigated below.

As a first test case, a SIW TL with two defective vias is considered. The operating

frequency is 3GHz. The magnetic field is collected across a plane at the distance of 3mm

from the sample. The size of the scan plane is 1.2 times that of the board, and the scanning

resolution is 1.5mm (It is worth noting that 1.5mm is the scanning or sampling resolution

not the resolution of the equivalent current reconstruction).
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In the absence of noise, a high resolution scanned data guarantees that there is enough

information in the measured near-field. As shown in [46] and [6], the scanning resolution

must satisfy (3.10)

∆x,∆y ≤ λ

2
√

1 + (λ
h
)2

(3.10)

where h is the separation distance between the DUT and the probe, and λ is the wavelength.

Thus, for the frequency 3GHz (λ = 10cm) and h = 3mm, ∆x = ∆y = 1.5mm is reasonable.

The correlation coefficient γ between the reconstructed near-field results given by equivalent

source simulation and full wave simulation is defined as follows:

γ =
N∑
i=1

(Hi − H̄)(H ′i − H̄ ′)√∑N
i=1(Hi − H̄)2

∑N
i=1(H ′i − H̄ ′)2

(3.11)

H is the result from the equivalent source model and H ′ is the result from the full wave

simulation (tangential components of H and H ′). N is the number of the measured samples,

and H̄ and H̄ ′ are the averages of H and H ′ for the N samples. From Fig. 3.4 (a) it can

Fig. 3.3: A depiction of the magnetic fields on the measurement plane and the discretization scheme (a) the
measured magnetic field on the measurement plane, (b) refined mesh, (c) uniform mesh.
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be deduced that by increasing the scanning resolution the condition number of matrix A is

decreased, which means more stability to the measurement errors. By increasing the scanning

resolution as long as (3.10) is satisfied, the condition number and the correlation coefficients

(Fig. 3.4 (a) and Fig. 3.5 (a), respectively) are close to constant values, and the accuracy is

not improved any more.

With respect to the mesh size, refining the mesh size may significantly increase the con-

dition number that leads to worse results. On the other hand, a fine mesh is required to

completely model the DUT. Hence, there should be a balance between information integrity

and numerical stability.

With regard to the scanning area, a scanning plane equal to or larger than the DUT

perimeter is enough to reconstruct the currents precisely. By further increasing the size of

the scanning area, the accuracy of the reconstructed currents is not enhanced, and again the

condition number and the correlation coefficient converge to a constant as it is shown in Fig.

3.4 (b) and Fig. 3.5 (b).

Considering the scanning height, the higher it is, the lower is accuracy as can be seen in

Fig. 3.4 (c) and Fig. 3.5 (c). Yet according to (3.10), a very close distance between the probe

and the sample board leads to a significant increase in the scanning resolution, causing a very

time-consuming measurement and post-processing for the source reconstruction method.

3.2.2 Field and material variation

To evaluate the field variation, the reconstruction surface is divided into square cells,

and each data point is at the center of a square. The size of the square cells is chosen to

be smaller than the smallest feature in the circuit. For each point, pk, a set of neighboring

points, N(pk), are chosen. These neighbors are located at the center of the squares that have

at least a common edge or vertex with the cell of pk. These cells are used to calculate the
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gradient ∇|H(1,2)(x, y)|

∇|H(1,2)(x, y)| = (
∂|H(1,2)(x, y)|

∂x
,
∂|H(1,2)(x, y)|

∂y
) (3.12)

where 1 and 2 indicate x and y, respectively. This gradient characterizes the local linear

approximation H̃(1,2)(x, y) at pk, as,

|H̃(1,2)(x, y)| = |H(x, y)|+ (∇|H(1,2)(x, y)|)pk(p− pk) (3.13)

Consider that (∇|H(1,2)(x, y)|pk) = A−1b is calculated by fitting a hyperplane through point

pk, based on its V neighbors {pkv}Vv=1 [53], where

A =


xk1 − xk yk1 − yk
xk2 − xk yk2 − yk

... ...

xkv − xk ykv − yk

 (3.14)

b = [|H(1,2)(pk1)| |H(1,2)(pk2)| ... |H(1,2)(pkv)|] (3.15)

Once the local linear approximation of the dynamic behavior of the near-field pattern is

calculated using (3.12), the estimated value of the field at pk is compared with the true value

W̄ (pk) =
V∑
v=1

||H̃(1,2)(pk)| −H(1,2)(pk)| (3.16)

A large value of W̄ (pk) indicates that the field is varying rapidly at this area. A normalized

matrix is used to describe the dynamic variation of field near pk relative to the field variation

near the other points [54].

W (pk) =
W̄ (pk)

(W̄ (p1) + W̄ (p2) + ...+ W̄ (pk))
(3.17)
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To calculate the material variation, a number between 0 to 1 is assigned to each cell so

that if the corresponding area on the surface of the board is fully covered by metal, the

number is 0; but if it is not covered by metal, the number is 1. If the area is partially covered

by metal, the number is between zero and one corresponding to the percentage of the area

of the cell that is covered by metal.

3.2.3 The aperture model for the defective vias in the SIW struc-

ture

When there is no ground plane in the vicinity of the SIW structure, the aperture model

is proposed in this study for the defective vias. According to the electromagnetic theory, if

the field on the surface of an aperture is known, the fields in front of it can be calculated

using the following relations [65].

~A = µ
e−jβr

4πr
n̂×

∫∫
Sa

~Hae
jβr̂.~r′ . ~dS ′ (3.18)

~F = ε
e−jβr

4πr
n̂×

∫∫
Sa

~Eae
jβr̂.~r′ . ~dS ′ (3.19)

~H = ~HA + ~HF =
1

µ
∇× ~A− jω ~F − 1

jωµε
∇(∇. ~F ) (3.20)

where Ea and Ha are the fields existing over only some finite portion Sa of the plane S, as

shown in Fig. 3.6 (a). To examine the proposed model, two defective vias in a SIW TL are

modeled using apertures, as shown in Fig. 3.6 (b). The tangential fields over the surface of

the defective vias are extracted from HFSS and utilized to calculate the fields near the SIW

transmission line. The triangular discretization of the surface of the vias is used to extract

the fields from HFSS as shown in Fig. 3.6 (c). Results are depicted in Fig. 3.6 (d). The

dotted line represents the magnitude of H field obtained directly from full wave simulation

in HFSS over a line 1mm above the vias (line 1 in Fig. 3.6 (b)). A good agreement between
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the simulation result and the analytical solution confirms this idea that the defective vias

can be modeled using apertures when the SIW structure is in free space.

3.2.4 The patch antenna model of the interaction between the SIW

structure with the ground plane of the probe array

Since in RFX2 a finite ground plane is used to isolate the probe array from the other

RF and digital circuits for EMC/EMI reasons, a study is carried on to assess the disturbing

effect of the ground plane that describes how the ground plane affects the field distribution

and the reconstructed currents. In addition, the measurement configuration is simulated

using electromagnetic simulation software. The ground plane disturbance is evaluated by

comparing the free-space simulation with the probe array simulation. The disturbance is

characterized as a function of the size of the SIW structure and its distance from the scanner.

Then, experimental data are presented for the measurement of near-field, and the results are

compared with those from full-wave simulation. In this study, the patch antenna is utilized

to model the interaction between the SIW structures and the ground plane underneath the

RFX2 probe array. The SIW TL with two defective vias and its equivalent patch antenna

that is fed with two coaxial cables at the position of the defective vias are depicted in Fig.

3.7 (a) and (b).

When the wavelength of the near-field wave is as the same order as the size of the electronic

circuits, it may introduce resonance phenomena on the inner connections of the circuit. As it

is shown in Fig. 3.7 (c), because of the effect of the ground plane on the H field, the amplitude

of the magnetic field looks like two x-oriented slabs, distant by one half wavelength, resulting

from the resonance of the equivalent SIW and conducting plate resonator. This seems similar

to the very near-field of a patch antenna excited by dipole feeds located at the defective vias

positions, as shown in Fig. 3.7 (d).

As shown in the simulation and measurement results section, the comparison of the

reconstructed fields is much better than that of the measured fields since the resonance
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that is visible at the measurement plane disappears close to the vias. The disappearance of

the resonance patterns could be explained by the fact that the field decreases very rapidly

around the vias while the field spreads out more slowly by increasing the distance from the

SIW plane. Thus, when we use RFX2 probe array to measure the near-field of the SIW

structures and detect the defective vias, the impact of the ground plane on the reconstructed

near-field is negligible. In Fig. 3.8, it is depicted that the graphs of the magnitude of the

magnetic field at the location of the defective vias are similar if that the SIW TL is in free

space and close to a finite ground plane.
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Fig. 3.4: The effect of the (a) scanning resolution, (b) scanning area, and (c) scanning height on the condition
number of the matrix A.
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Fig. 3.5: The effect of the (a) scanning resolution, (b) scanning area, and (c) scanning height on the correlation
coefficient.
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Fig. 3.6: The aperture model of the defective vias of the SIW structure in free space, (a) the aperture model
of a defective via, (b) a SIW TL with two defective vias, (c) the discretized surface of the defective vias
to extract the tangential components of the fields over the area of the apertures from HFSS, and (d) the
comparison of the magnitude of magnetic field at 1mm away from the SIW TL calculated using the analytical
model and obtained from full wave simulation.
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Fig. 3.7: The comparison of E- and H- field patterns of the SIW TL close to the ground plane with a patch
antenna (a) a patch antenna that is fed with two coax connector at the location of the defective vias, (b) A
SIW TL with two defective vias, (c)the magnitude of the H-field and E-field at the distance of 2mm from
the SIW TL, (d) the magnitude of the H-field and E-field at the distance of 2mm from the patch, between
the patch and the ground plane.
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Fig. 3.8: The comparison of the magnitude of the magnetic field at the location of the defective vias when
the SIW TL is in free space and close to a finite ground plane.
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3.3 Measurement and Simulation

Single probe setup

Since for the single probe measurement the phase and amplitude of the tangential field

components are measured and a large number of data points must be collected, substantial

automation of the measurement process is required.

The measurement set up is depicted in Fig. 3.10 (a). One single probe that is similar to

the probes of RFX2 is used to measure the near-field. Port 1 of the VNA is connected to

the DUT and port 2 is connected to the measuring probe. At each step of the movement,

the magnitude and phase of S21 are recorded. Although there are various types of probes for

near-field measurement [55]– [57], in this study, the single probe is chosen as being the same

as any of the probes that are used in RFX2 (Fig. 3.9) to compare the results obtained by

different measurement and simulation scenarios. In the ideal case, the input power and the

probe factor are to be known to calculate the absolute value of the measured field. For the

H-field probe, the probe factor (PF ) is defined as [69]

PF (f)
∆
=

H(f)

Vout(f)
in unit of

A
m

V
(3.21)

On the other hand, the goal in the diagnostic tests is to find the location of the hotspots and

the absolute near-field emission level is not required. Moreover, measuring the power at the

position of the measuring probe is not straightforward.

By utilizing the positioner (Fig. 3.10 (b)), that is controlled by the computer as it is shown

in Fig. 3.11 (a), we can move the probe in x, y, and z directions. For the measurement of

the tangential components of the magnetic field parallel to the DUT surface (Fig. 3.11 (b)),

the probe is tilted by 90 degrees relative to the sample surface. By rotating it around the

vertical axis, various tangential field components are measured. The trajectory of the probe

is shown in Fig. 3.11 (c). The black line is the path along which the probe measures the

fields and the red dashed line shows the track of the probe through which only the probe
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passes to reach the defined point to record the data.

Fig. 3.9: The probe used in the single probe measurement.

Fig. 3.10: Single probe measurement, (a) the schematic of the setup for the single probe measurement, (b)
The xyz positioner.

Probe array setup

RFX2 probe array is used to measure the magnetic near-fields of the SIW structures.

The measurement setup is shown in Fig.3.12. A power divider has been used to provide an

external stable phase reference to the scanner to make sure all the scans are phase coherent.

The distance between the device under test (DUT) and the surface of the scanner is 4mm.

This value is chosen based on the parametric study, which is explained in section 3.2.1. Since

the probes are 1mm below the surface of the scanner, the distance between the DUT and

the measuring probes is 5mm. For example, at the frequency of 2GHz with this height,

the maximum resolution can be 2.5mm according to equation(3.10). Because the distance
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Fig. 3.11: Single probe measurement, (a) the experimental setup for the single probe measurement, (b) The
single probe measurement of the SIW structure, (c) the trajectory of the single probe.

Fig. 3.12: The probe array measurement setup,(a) a schematic of the probe array measurement setup, (b)
The SIW filter above the probe array.

between two adjacent probes is 10mm, to achieve the resolution of 2.5mm, the sample board

is moved up a total of 8 times and sideways a total of 4 times for 32 total measurements (Fig.

3.13 ). For instance, the first position is (0,0). The second position is up 2.5mm. For the

first 8 measurements, the board is moved up each time. Then the sample is shifted 2.5mm
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Fig. 3.13: Schematic view of SIW board movement above the probe array.

to the right and all 8 upward measurements are repeated. Eight upward measurements have

to be done because the probes measure only one polarization. In the data set of the RFX2

software, the data are interpolated to fill in the missing values. Hence, the interpolated data

must be discarded and then the final 4 measurements of an upward sweep are used to fill

in the other polarization. To reconstruct the equivalent currents in the simulation, only the

measured fields in an area that is approximately above the DUT is utilized because by using

the whole probe array fields, the simulation will be very slow. Besides, using the measured

fields that are far from the DUT does not increase the accuracy.

Simulation and meaurement results

As the first case, the near-field of a SIW dual mode filter is collected using a single probe

and probe array. The near-field measurement is performed at a single frequency of 1.84 GHz.

This frequency is chosen because based on |S21| and |S11|, the defective device still works

as a filter at this frequency (Fig. 3.14). The measured fields using the single probe and

probe array setup and the scanned data in the full wave simulator are depicted in Fig. 3.14.

The fields at the back side of the structures are measured since there is less radiation from
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the CPW (coplanar waveguide) to SIW transition at the back side, but still some radiation

at the position of the connectors can be seen. The diameter of the side vias is 2mm and

the diameter of two main vias in the middle of the structure is 3mm. The pitch is 3mm as

well. The reconstructed fields shown in Fig. 3.14 demonstrate that the defective vias are

detectable from both the measurement and simulation data using the proposed method.

To determine at what distance the fields should be reconstructed to have proper resolution,

the following procedure is recommended. The amplitude of the magnetic field over a plane

that contains the cross section of two adjacent defective vias in the SIW filter is plotted

as shown in Fig. 3.15 (a). It can be seen that at the distance of 1mm from the board,

two defective vias can be resolved. Since the distance between these two vias is very small

compared to the wavelength, one can use the aperture model formulas given in section 3.2.3

and assume that the current distribution over two apertures is the same and uniform. Then,

the distance at which the two neighboring defective vias can be distinguished is calculated.

The result of this approach for the defective vias of the filter is shown in Fig. 3.15 (b).

Although the two apertures can be resolved at 1mm, at closer distances, such as 0.5mm

that is used here, the resolution is higher. This process can be integrated in the near-field

measurement software to automatically find the maximum distance at which the defective

vias are precisely detectable.
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Fig. 3.14: Detection of the defective vias in a SIW dual mode filter.
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Fig. 3.15: The distance from the board at which two adjacent defective vias can be resolved (at 1.84GHz),
(a) a view of the magnetic field amplitude computed using HFSS full wave simulator, (b) the magnetic field
amplitude calculated analytically.

To remove the radiations due to the radiative parts of the circuit, such as the SIW to

CPW transitions, the near-field of the circuit when the vias are covered with metal (for

instance, copper tape) can be subtracted from the near-field data of the circuit when the vias

are uncovered. The effect of the defective vias is more evident as shown in Fig. 3.16. This

process can be applied to both simulation and measurement. Moreover, in the measurement,

the feed lines and transitions can be covered by absorbers to decrease their radaitions in the

near-field measurement data. Obviously, if the radiated fields from vias get dominated by

other radiation effect in the circuit, it is very difficult to detect the defective vias.

In regard to the measurement time, the trajectroy in Fig. 3.11 (c) can be modified to

have faster single probe measurement. Also, in the case of probe array measurement, the

Fig. 3.16: Subtraction of the radiation from the transitions and feed lines from the total near-field data. (a)
The total near-field data with defective vias, (b) The total near-field data without defective vias, (c) the
radiation from only the defective vias.
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sample board can be moved above the probe array mechanically rather than manually. Here

a procedure is described to calculate the time difference between single probe and probe

array measurements. For both set ups the required time to recored the measured data is

assuemed to be the same. We presume that the required measurement resolution is x mm.

The distance between two adjacent probes in the probe array is 10 mm. The probe array

consists of 40× 40 probes. As mentioned at each point only one polarization of the magnetic

field (x or y), is measured. Thus, to actually measure both polarizations for each sample

point, the sample board needs to be moved above the probe array (10
x
× 2×10

x
) times, and

at each point 40 × 40 electronic switches should be switched. As a result, the probe array

measurement time can be calculated as follows:

tp =
10

x
× 2× 10

x
× (40× 40) te +

2× 10× 10

x2
tm (3.22)

where tp is the required time for probe array measurment, and te and tm denote the switching

time of an electronic switch and the required time to mechanically move the sample borad.

The single probe measurement time can be calculated as:

ts =
(40× 10)(40× 10)× 2

x2
tm (3.23)

where ts is the required time for single probe measurment. The coefficient 2 is added because

the single probe measures only one polarization of the field. Once one polariztion is measured

for all the points, the probe is rotated 90o in the horizontal plane, and the second polarization

will be measured. If one assumes te = 0.003 sec [42], tm = 0.05 sec (for instance utilizing

8MT295Z-340 positioner in [43]), and x = 2 mm, the single probe setup requires about one

more hour to collect the data.

In this study, the defective vias could be detected using only one frequency. Since to detect

a defective via the field configuration inside the SIW device must be such that the defective

via is excited and carries some current, and at some frequencies, some vias in the structure
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may be excited very little, defective vias may not radiate and be detectable. One way to

overcome this problem might be to vary the frequency, which will change the excitation of

the vias in different parts of the filter. Using different frequencies for diagnostic tests is the

topic of our future research.

The second sample is a coupler as shown in Fig. 3.17. The frequency of measurement is

2GHz. This frequency is chosen since at higher frequencies many samples are required given

the big size of the coupler. At lower frequencies, the S parameters of the coupler are not

acceptable. The defective vias with different distances from each other are investigated to

evaluate the resolution of the method. Although the diameter of the vias is 2mm and the

pitch is 3mm, it is not easy to locate the defective vais by using the measured fields. However,

by looking at the reconstructed fields at 0.5mm away from the coupler, the defective vias

can be detected precisely. As shown in Fig. 3.17, there is a clear resonance between the

coupler and the finite ground plane, but still the defective vias can be localized from the

reconstructed fields. The magnetic near-field is measured at 2GHz from which the location

of the defective vias is not detectable.
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Fig. 3.17: Detection of the defective vias in a SIW coupler.
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The machine learning algorithm to classify different radiation sources

Here, a machine learning algorithm is used to distinguish different radiation sources by

utilizing magnetic field and material variations for the data points. The tangential compo-

nents of magnetic field, Hx and Hy, are related to the surface currents. In feed lines and

antenna, the surface currents have particular forms that depend on the metal parts of the

circuits (for instance, in the antennas, the size of the circuit in the radiating direction is

about one-quarter wavelength). Thus, the Hx and Hy and the material of the testing point

and its surrounding area (whether it is metal or not) can be utilized to classify the source

of different types of radiation in the circuit. For instance, the radiations come from the

radiative parts, such as feed lines and transitions, or from the defective vias. Here, a ma-

chine learning algorithm is proposed that uses the field and material variation to classify the

reconstructed near-field data. The material assignment process is shown in Fig. 3.18 (a). A

number between zero and one is associated with each cell such that fully covered by metal

means 0, fully covered by dielectric indicates 1, and partially covered by metal designates a

number between 0 and 1 to the corresponding cell. Hx and Hy variations are also shown in

Fig. 3.18 (b) and (c).

To classify the reconstructed near-field, the data are labeled based on the areas shown

in Fig. 3.19 (a). The classes 1-6 are shown in Fig. 3.19 (a), and class 7 represents the

Fig. 3.18: Material assignment and field variation (at 1.84GHz) for the SIW filter, (a) material assignment,
(b) |Hx| and (c) |Hy| variation.
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remaining points. Classes 1 and 2 both represent radiations of the defective main via with

diameter of 3mm. Class 2 is away from the radiations of the feedlines. Classes 3 and 4

represent the radiations of feedlines and CPW to SIW transitions, and they are distributed

over two diffetrent directions (x and y). The spatial distributions of classes 6 and 5 are in

two perpendicular directions of x and y, and represent the radiations from the defective side

vias. The classification learner application of MATLAB 2018 is used in which the data are

classified using different classification algorithms such as Support Vectro Machine (SVM) and

K-nearest neighbors (KNN). About 70% of the data are used to train the algorithm, and the

rest are used to test the model. In KNN, for each test data point, the K nearest training

data points are considered and the test data point is assigned to the most frequent class in

the area. This algorithm works based on the distances of the clusters. Thus, considering

the spatial distribution of the data points, it seems KNN is the best classification method

for the type of the data presented in this work. In the classification learner application of

MATLAB, KNN is compared to other classification algorithms such as SVM and the best

accuracy obtained from KNN (weighted KNN) algorithm that is 96.8%.

The scatterplot of the data, along with the values predicted from the model, are shown

in Fig. 3.19 (b). It can be seen that the near-field radiations of the two transitions are

clustered along |Hx| and |Hy| axes. In Fig. 3.19 (c), parallel coordinate plots are depicted.

These plots are used for multivariate numerical data in which each variable has its own axis

and the axes are parallel. Generally, each axis is normalized to have the same scales. Values

are represented as a series of lines that are linked over the axes. Thus, the value of three

parameters, |Hx|, |Hy|, and material variation for each sample can be derived from this plot.

To evaluate a predictive model, ROC (Receiver Operating Characteristic) plot (Fig. 3.19

(d)) is utilized. A good model must be able to predict a negative as a negative and a positive

as a positive if we assume that there are only two classes, one positive and one negative. In

the ROC curve, sensitivity is the probability of predicting a real positive as a positive which

is plotted versus 1-specificity that is the probability of predicting a real negative as a positive.
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TPR/Sensitivity =
TP

TP + FN
(3.24)

Specificity =
TN

TN + FP
(3.25)

FPR = 1− Specificity =
FP

TN + FP
(3.26)

where TP, FN, FP, FPR, and TPR stand for true positive, false negative, false positive, false

positive ratio, and true positive ratio, respectively.

The best decision algorithm has a high value of sensitivity and low value of 1- specificity;

thus, it predicts most of the true positives as positive and few of the true negatives as

positive. It means the further the curve is from the diagonal line, the better the model is at

distinguishing between positives and negatives. The area under curve (AUC) for an excellent

model that has good measure of separability is close to 1. If AUC for a model is 0, it means

it is predicting 0s as 1s and 1s as 0s. The AUC of 0.5 for a model means that it has no

separation capacity [68].

In the concept of machine learning and especially classification, a confusion matrix is a

table that visualizes the performance of a classification algorithm [68]. Each row represents

the true classes to which the instances belong, and each column shows the predicted classes.

In the confusion matrix (Fig. 3.19 (e)) of 20 actual class 3, the classification algorithm

predicted that 3 are class 4 and 17 are class 3. It can be seen that the algorithm has not

distinguished class 6 from class 7 and 2 but it can differentiate the other classes quite well. In

this table all correct predictions are located on the diagonal of the matrix, and the wrongly

predicted values are outside the diagonal.
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Fig. 3.19: Classification of the reconstructed near-field samples, (a) the labels for the classification algorithm
, (b) scatterplot, (c) parallel coordinates plot, (d) ROC graph, and (e) confusion matrix.
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3.4 Conclusion

In this chapter, a high-resolution very near-field measurement method is proposed to

pinpoint the defective vias in SIW structures. Firstly, the very near-field radiation of SIW

structures, such as a dual mode filter and coupler, measured using a single probe and a fast

electronically switched probe array. Then the SRM method is utilized to reconstruct the

currents on a closed surface, which encompasses the structure. These equivalent currents are

used to calculate the magnetic fields at a close distance of the sample board.

The maximum distance from the board at which the defective vias can be resolved calcu-

lated analytically by modeling the defective vias with apertures. Moreover, to have a more

accurate representation of the equivalent sources at the position of higher radiation, adaptive

meshing and finer mesh are used . In the measurements using the probe array, since a finite

ground plane in the RFX2 separates the probe array from the other RF and digital circuits

for EMC/EMI reasons, the disturbing effect of this ground plane on the measured and re-

constructed field is investigated. The results show that the field decreases very fast around

the vias whilst the field spreads out at a slow speed by increasing the distance from the

SIW structure. Finally, a machine learning algorithm is proposed to classify the radiations

in the circuit based on the field and material variation. This algorithm helps to determine

whether the radiations are because of the radiating parts of the circuit, such as feed lines and

transitions, or due to the defective vias. The measurement and simulation results validate

the accuracy of the proposed method.

In this chapter, a foundation is laid to automatically detect the defects using near-field

measurement, source reconstruction method, and machine learning algorithm. Yet more

complex circuits should be examined and the algorithm needs to be modified for various test

cases such as more complicated circuits and over the air tests that are the topic of future

research.
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Chapter 4

Accuracy and Time Enhancement of Near-Field

Antenna Measurement Considering Noise, Using an

Adaptive Data Acquisition and Interpolation Technique

4.1 Introduction

The adaptive sampling algorithm is described in this chapter. For the proposed method

in this chapter, the measurement is performed at 1600 points (800 points of Hx and 800

points of Hy) using an RFX2 device. Since the purpose is to feed the MoM with those

measured data points that have significant information about the near field of the AUT,

an adaptive algorithm is proposed to sequentially focus mainly on the strongly changing

near-field regions and more samples in such areas, and to skip data points for smoothly

varying locations. Thus, this algorithm in every step introduces a batch of N locations to

add their near-field values. Since the newly added points are not necessarily laid on the probe

locations of the RFX2, an appropriate interpolation technique is employed to estimate the

value of the fields at these points. Compared to [53] and [54], in strongly varying locations

every single square cell is divided into four equal cells instead of Voronoi Tesselations for two

reasons: (i) The configuration of the probes in RFX2 is a uniform Cartesian grid, and (ii) with

rectangular gridding, interpolating and processing the data are very simple and efficient from
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analytical and computational viewpoints. If one wants to utilize the proposed algorithm for

the single probe measurement approach, the scanning time might not decrease considerably

because the new locations at which the fields must be measured are randomly distributed

and the scanning probe must move along large distances. In such cases, a greedy algorithmic

approach that simply considers the remaining locations can be employed. Based on that, the

probe is moved to the closest location to the current one [10]. The main objectives of this

chapter are as follows: (1) the circuit noise source of an electronically switched probe array is

modeled as a stochastic signal, and the electric field integral equations (EFIE) are solved with

this stochastic signal as the input, (2) the performance of various interpolation techniques

is investigated to estimate the value of the near-field at an unsampled location for different

values of SNR, (3) an adaptive data acquisition algorithm is proposed to sample the planar

near-field of antennas by measuring the data using RFX2 and decreasing the number of the

required data points, and (4) a SRM method is used to calculate the far-field of the antenna

using the adaptively sampled near-fields. The chapter is organized as follows. The SRM,

uniform sampling, and interpolation techniques are explained in section 4.2. The circuit

noise analysis is presented in section 4.3. The adaptive data acquisition method in planar

near-field antenna measurement is described in section 4.4. The daptive sampling algorithm

in spherical measurement along with the clustering the data are presented in section 4.5.

Finally, the chapter is concluded in section 4.6.

4.2 Uniform sampling, interpolation techniques and source

reconstruction method

The near-field measurements of this chapter are performed using an RFX2 device which

is an electronically switched probe array. It is an array of 40× 40 magnetic probes that are

distributed uniformly with the sampling resolution of 1cm. A simple schematic representation

of the probes orientation for this planar near-field measurement tool is depicted in Fig. 4.1.
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Because of physical limitations, at each point only one component of the magnetic field is

measured in X or Y directions, as shown in Fig. 4.1 . The simple averaging technique is

used to calculate the complementary components. To investigate the accuracy of the simple

averaging scheme compared to other interpolation techniques, linear, nearest, and natural

neighbor interpolation methods are used as well to calculate the value of missing components.

Having a set of data sets, we can utilize interpolation techniques to estimate the function

values at an unsampled location between precisely known data points. For interpolation

techniques, the assumption is that data points are exact and the interpolant curve or surface

has to pass through all data points, which are valid only between the samples, [75] and

[76]. Moreover, for an ideal interpolation technique, the interpolant and its derivative are

continuous.

The nearest neighbor is not really an interpolation method, and the value of a function

Fig. 4.1: The orientation of the magnetic probes in RFX2. At each measurement point, the probe is X− or
Y−oriented
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at any location is assumed to be equal to the function of the nearest known sample. The

method is local and easy to implement, but discontinuous at the boundaries [75] and [76].

The linear interpolation is based on a triangulation of the data points. The weights are the

distances of the point from the vertices of the triangle. The method is local and exact, but

it is not continuous at the boundaries [75] and [76].

The natural interpolation method is based on the Voronoi diagram for both selecting the

data points and assigning the weights. The weights are determined by finding how much of

each of the surrounding areas is shared with the other cells when a new point is inserted to

the tessellation. The interpolant is local, exact, and continuous everywhere. The derivative

is also continuous except at the data points [76] and [77].

Once the samples of the near-field are obtained, a source reconstruction method is applied

to reconstruct the currents on the surface of the volume that encloses the AUT, that is an

ellipsoide here. The tangential components of the magnetic field (amplitude and phase) that

are parallel to the planar AUT are measured on the scanning plane (
∑

M). This measured

data is linked to the equivalent electric, ~J , and magnetic, ~M , sources on the reconstruction

surface (
∑

R) via EFIE, [48] and [58], as:

~E(~r) = K( ~M ;~r)− η0L( ~J ;~r) (4.1)

K( ~M ;~r) =
∫∑

R

~M(~r′)×∇g(~r, ~r′)dS ′

L( ~J ;~r) = jk0

∫∑
R

[ ~J(~r′) + 1
k20
∇∇′S. ~J(~r′)]g(~r, ~r′)dS ′

g(~r, ~r′) =
e−jk0|~r−

~r′|

4π|~r − ~r′|
(4.2)

where η0 =
√
µ0/ε0, k0 = ω

√
µ0ε0 and ∇′S is the surface divergence operator. The recon-

struction surface is discretized to flat triangular patches. Rao-Wilton-Glisson (RWG) basis

functions (Fn) are used to represent electric and magnetic currents
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~J =
N∑
n=1

cJn ~Fn, ~M = η0

N∑
n=1

cMn ~Fn (4.3)

where cns are the unknown coefficients. Using method of moment (MoM) to solve these

integral equations numerically, we have the following linear system

η0

[
KMR − LMR

] cJ
cM

 =
[
H
]

(4.4)

where ~H indicates the tangential magnetic field components on
∑

M . The equation (4.3) can

be rewritten in a compact form as

AX = H (4.5)

where A is the impedance matric and X is the vector of the unknown magnetic and electric

current coefficients [48]. For most source reconstruction problems, matrix A is ill-conditioned.

Here, (4.5) is solved by Tikhonov regularization method. The cost function is defined as below

F = ||H − AX||2 + α2||X||2 (4.6)

where ‖.‖ indicates the Euclidian norm and L is the regularization parameter that is deter-

mined by L-curve method [48].

4.3 Noise modeling

Each magnetic probe is a magnetic loop which is connected to a microwave power detector.

A microwave power detector is a diode utilized in its quadratic region. In this region, the

output voltage is proportional to the input power [78] . In other words, the diode turns the

input power, P , to a DC voltage, vd
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vd = kdP (4.7)

v(t) = V0[1 + α(t)]cos[ω0t+ φ(t)] (4.8)

where α(t) and φ(t) are the partial amplitude and phase oscillations, respectively; in low

noise condition, (α(t)� 1), the power is

P ≈ V0

2R
(1 + 2α(t)) = P0 + δP (4.9)

A straightforward analysis establishes the following relation between the amplitude and power

fluctuations

α(t) =
δP

2P0

(4.10)

Using eq. (4.7), the ac component of the detected voltage is vd = kdδP , which is related

to amplitude fluctuations by

vd = 2kdP0α(t) (4.11)

Turning voltages into spectra, we have

Sv(f) = 4kd
2P0

2Sα(f) (4.12)

On the other hand, the output of the power detector is a voltage that is related to the

magnetic field by a transfer function γ(ω). If we assume that there is an error in γ(ω), i.e.

ε(ω), and a noise of voltage, Nv(ω), we obtain an apparent magnetic field, Ha(ω), given by

Ha(ω) = [γ(ω) + ε(ω)][V (ω) +Nv(ω)] (4.13)
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If we write the voltages in terms of true equivalent fields, V (ω) = H(ω)/γ(ω) and N(ω) =

HN(ω)/γ(ω), where HN(ω) is equivalent magnetic noise in the power detector, for probes A

and B, we have

Ha
A(ω) = [1 + εA(ω)][H(ω) +HN

A (ω)] (4.14)

Ha
B(ω) = [1 + εB(ω)][H(ω) +HN

B (ω)] (4.15)

We have assumed that the signal at each probe is the same and the noise at each probe is

independent. Since the calibration errors are unknown, the coherence function γ2(ω) is used

to estimate the noise [79]. In signal procesing, the coherence is a statistic that can be used to

examine the relation between two signals or data sets. It is commonly used to estimate the

power transfer between input and output of a linear system. For probes A and B mentioned

above, γ2(ω) is

γ2(ω) =
|
〈
Ha
AH

a∗
B

〉
|2〈

Ha
AH

a∗
A

〉〈
Ha
BH

a∗
B

〉 (4.16)

A and B represent two time dependent signals separated at different times. With the same

assumption, that in each probe the signal is the same and the noise is independent, we have

γ2(ω) =

〈
HH∗

〉2

(
〈
HH∗

〉
+
〈
HN
AH

N∗
A

〉
)(
〈
HH∗

〉
+
〈
HN
BH

N∗
B

〉
)

(4.17)

If we define x(ω) as the noise to output power ratio for each probe, we have

x(ω) =

〈
HN
AH

N∗
A

〉
(
〈
HH∗

〉
+
〈
HN
AH

N∗
A

〉
)

=

〈
HN
BH

N∗
B

〉
(
〈
HH∗

〉
+
〈
HN
BH

N∗
B

〉
)

(4.18)

Using (4.18), we can write

〈
HH∗

〉2
= [1− x(ω)]2(

〈
HH∗

〉
+
〈
HN
AH

N∗

A

〉
)(
〈
HH∗

〉
+
〈
HN
BH

N∗

B

〉
) (4.19)

88



Comparing (4.17) and (4.19) results in the following relation between γ(ω) and x(ω)

γ(ω) = [1− x(ω)] (4.20)

Vω = HN(ω)/γ(ω) (4.21)

Since for the microwave power detectors the relation between the input power and the output

voltage is relatively independent of the frequency (for example Fig. 4 in [72]), we have

γ2(ω)SVN (ω) = SHN (ω) (4.22)

Moreover, according to (4.6), there is a linear relation between the reconstructed currents

and the measured magnetic field. Thus, using (4.22) and knowing the noise spectrum of

output voltage of the microwave power detector, we can obtain the noise spectrum of the

calculated currents.

4.4 Adaptive sampling algorithm in planar near-field

antenna measurement

The proposed adaptive algorithm starts with a small number of initial scan points that are

distributed uniformly across the measurement plane. These initial points and the sequentially

added points are used to characterize the overall near-field pattern of the AUT. A balanced

tradeoff between the two criteria, exploration and exploitation, is required. Exploration

means searching the scanning area to locate the main regions that have not been spotted

yet. The purpose of exploration is to ensure that the points spread over the measurement

area evenly, while exploitation is the act of focusing on the areas that are highly dynamic

and require finer sampling resolution.
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The proposed method is a balanced combination of both criteria. It starts by computing

a small number of initial scan points, and most of the data points are added adaptively. For

the exploration criterion, the density of the samples is determined by computing a Cartesian

rectangular grid of data points and calculating the area of each cell. For the exploitation, the

field variation is quantified by computing the linear approximation of the fields at the data

points and comparing the approximated and true values. These two criteria are combined

as a metric function to rank the data points according to their dynamic variation of near-

field pattern at their locations. The highly ranked points represent the areas that require

additional data points. This process continues sequentially until the termination criterion is

satisfied.

4.4.1 Exploration

To evaluate the density of data points, the measurement area is divided into square cells,

and each data point is at the center of a square. Cells with a large area compared to other

cells represent the regions that are sampled sparsely. Thus, for each sample point, pk, the

area of the corresponding cell, V (Ck), is compared to the area of the other cells using the

following relation [53]

V (pk) =
V ol(Ck)

(V ol(C1) + V ol(C2) + ...+ V ol(Ck))
(4.23)

V (pk) denotes the portion of the scan area that contains point pk.

4.4.2 Exploitation

To localize the areas with a strongly varying near-field pattern, first for each pk, a set

of neighboring points, N(pk) is chosen. These neighbors are located at the center of the

rectangles that have any overlap with the cell of pk. These neighbors are used to calculate

the gradient ∇|H(x, y)|
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∇|H(x, y)| = (
∂|H(x, y)|

∂x
,
∂|H(x, y)|

∂y
) (4.24)

This gradient characterizes the local linear approximation H̃(x, y) at pk, as,

H̃(x, y)| = |H(x, y)|+ (∇|H(x, y)|)pk(p− pk) (4.25)

Consider that (∇|H(x, y)|pk) = A−1b is calculated by fitting a hyperplane through point pk,

based on its V neighbors {pkv}Vv=1,where

A =


xk1 − xk yk1 − yk
xk2 − xk yk2 − yk

... ...

xkv − xk ykv − yk



b = [|H(pk1)| |H(pk2)| ... |H(pkv)|]T

Once the local linear approximation of the dynamic behavior of the near-field pattern is

calculated using (4.24) the estimated value of the field at pk is compared with the true value

W̄ (pk) =
V∑
v=1

||H̃(pk)| −H(pk)| (4.26)

A large value of W̄ (pk) indicates that the field is varying rapidly at this area. A normalized

metric is used to describe the dynamic variation of the field near the coordinate pk to that

of the other points [53]

W (pk) =
W̄ (pk)

(W̄ (p1) + W̄ (p2) + ...+ W̄ (pk))
(4.27)
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4.4.3 Adaptive data sampling selection

A combination of exploration and exploitation criteria is used as a global metric, G(pk),

to rank the sampled data points [54].

G(pk) = (1 + V (pk))(1 +W (pk)) (4.28)

High value of G(pk) indicates that the region associated to pk is undersampled, and more

data points must be added in this area.

4.4.4 Measurement and simulation results

To evaluate the proposed approach, a multi-band antenna is designed and fabricated

to analyze methods in various frequencies. The fabricated AUT and its |S11| are shown

in Fig. 4.2 . The design process of this antenna is explained in [81]. Since the frequency

range of RFX2 is approximately 1∼6GHz, the near-field of the AUT is measured at 1.5GHz,

3.5GHz, and 4.75GHz to evaluate the performance of the interpolation and adaptive sampling

techniques. First, as mentioned in section 5.2, since in RFX2 at every sampling point only

X or Y component of the magnetic field is measured alternately and the other component is

estimated numerically, the performance of the averaging, linear, nearest, and natural neighbor

interpolations is evaluated for different levels of noise. It is mentioned in section 5.3 that the

power stability of the detector is confined by the flicker floor; thus the input noise is assumed

to be random data with the same spectral density as flicker noise (Fig. 4.3).
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Fig. 4.2: Photograph of the planar antenna and its return loss and. (a) Front view of the antenna. (b) Back
view of the antenna. (c) |S11| of the antenna simulated using HFSS and CST, and measured result.

Fig. 4.3: The spectral density of flicker noise.
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Fig. 4.4: Relative error of various interpolation algorithm methods versus different values of SNR(dB).

The sampled data are extracted from HFSS such that at every point only X or Y com-

ponent of the magnetic field is available. The modeled noise is added to the data and the

interpolation techniques are utilized to estimate the values of the component of magnetic field

for which there is no sample. Thereafter, the estimated values are compared to the exact

values that are obtained from full-wave simulation. The results are depicted in Fig. 4.4. The

nearest neighbor interpolation has the worst accuracy while the natural neighbor method is a

proper candidate for this purpose. As indicated in section 4.2, it can be explained according

to the continuity of the interpolant and its derivative in the natural interpolation method.

Second, the accuracy and validity of the adaptive sampling approach are investigated. As it

is shown in Fig. 4.5, the algorithm starts from a small number of uniformly distributed sam-

ples (e.g., 25 samples). This algorithm sequentially focuses on the area with strongly varying

near-field pattern and skip the regions that have smooth behavior. Clearly, by increasing

the number of samples, more accurate results will be obtained. A comparison between the

uniform sampling and adaptive sampling is presented in Table 4.1, in terms of the number

of samples, relative error, NF-FF simulation time, and estimated single-probe measurement

time.
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Fig. 4.5: The uniformly and adaptively sampled near-field of the AUT, and the initial samples for the adaptive
algorithm, in three frequencies, 1.51GHz, 3.5GHz, and 4.75GHz.
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To calculate the error, the reconstructed currents are used to calculate the magnetic fields

over a plane that is 0.1λ away from the measurement plane. The reconstructed values are

compared with the values extracted from the full-wave simulation. The relative error is

calculated as

relative error =
||HFull−wavesim

x,y −Hreconstructed
x,y ||

||HFull−wavesim
x,y ||

(4.29)

As it can be seen in Table 4.1 at 3.5GHz, the uniform sampling with 1600 sample points

results in 10% error and the NF-FF transformation algorithm takes about 15 minutes to be

completed while for the adaptive algorithm with 348 sample points, the error is 10% and only

the NF-FF transformation takes only 1 minute. It is worth mentioning that this comparison

is a single frequency measurement over one plane. If the measurements for several frequencies

and planes are required, the required time increases drastically in case of uniform sampling.

The estimated single probe measurement time in Table 4.1 is calculated based on the timing

that is shown in Fig. 2.7. As it is depicted in Fig. 2.7, for multiple channels and frequencies

the measurement time increases significantly. If we assume 15 seconds for the step axis motion

plus scan setup time as mentioned in [82], for a single frequency and channel, changing the

number of samples from 1600 to 348 is equal to a huge reduction of the required time from

6.6 hours to 1.4 hours for single probe measurement.

Table 4.1: The comparison between the uniform and adaptive sampling techniques for the near-field of the
AUT at 3.5GHz

Sampling Number of Estimated Single Probe Relative Error NF-FF Simulation
Technique samples Measurement Time (%) Time

Uniform Sampling 1600 6.6 hours 10% 15min

Adaptive Sampling 348 1.5 hours 10% 1min
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Fig. 4.6: Single scan and total test time calculation in case of a single probe measurement [82].

Fig. 4.7: The antenna measurement setups. (a) Near-field measurement using an RFX2. (b) Measurement
setup in an anechoic chamber including the AUT and the waveguide probe.
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Fig. 4.8: The far-field pattern of the antenna at three frequencies, obtained from full-wave simulation and
various measurement and sampling techniques.
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In the next step, the sampled and measured near-fields along with the SRM are used

to calculate the far-field pattern of the antenna. The measurement setups using both the

RFX2 and anechoic chamber are shown in Fig. 4.7. The natural neighbor interpolation

is used to interpolate the data at the newly added sample points as well as the second

component of the tangential magnetic field at the location of each probe. The calculated

far-field patterns are shown in Fig. 4.8. The results for 4.75GHz show that even with 1600

samples (the number of RFX2 probes) the far-field pattern is not accurate, and 10201 samples

with 2mm sampling resolution are required to have an acceptable far-field pattern while for

the adaptive algorithm only 354 samples are required. Finally, the performance of linear,

nearest and natural neighbor interpolation techniques to calculate the value of sequentially

added samples is assessed for different SNR levels, as can be seen in Fig. 4.9. Again, the

natural neighbor interpolation outperforms the other methods because of the continuity of

the interpolant and its derivative.

Fig. 4.9: Relative error of various interpolation algorithms versus different values of SNR(dB).
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4.5 Adaptive data acquisition and clustering technique

in spherical near-field antenna measurement

The proposed adaptive algorithm starts with a small number of initial scan points that are

distributed uniformly over the measurement sphere. These initial points and the sequentially

added points are used to characterize the overall near-field pattern of the AUT. A balanced

tradeoff between the two criteria, exploration and exploitation, is required. Exploration

means searching the scanning area to locate the main regions that have not spotted yet. The

purpose of exploration is to ensure that the points spread over the measurement area evenly,

while exploitation is the act of focusing on the areas that are highly dynamic and require

finer sampling resolution. The proposed method is a balanced combination of both criteria.

It starts by computing a small number of initial scan points and most of the data points are

added adaptively. For the exploration criterion, the density of the samples is determined by

computing a Voronoi Tessellation of data points and calculating the area of each cell. For

the exploitation, the field variation is quantified by computing the variation of the field in

spherical coordinate system. These two criteria are combined as a metric function to rank the

data points according to their dynamic variation of near-field pattern at their locations. The

highly ranked points represent the areas that require additional data points. This process

continues sequentially until the termination criterion is satisfied.

4.5.1 Exploration

To evaluate the density of data points, the measurement area is divided into Voronoi

Tessellatioin. and each data point is at the center of a cell. Cells with a large area compared

to other cells represent the regions that are sampled sparsely. Thus, for each sample point,

pk, the area of the corresponding cell, V (Ck), is compared to the area of the other cells using

the following relation
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Fig. 4.10: Schematic representation of the source reconstruction method.

V (pk) =
V ol(Ck)

(V ol(C1) + V ol(C2) + ...+ V ol(Ck))
(4.30)

V (pk) denotes the portion of the scan area that contains point pk.

4.5.2 Exploitation

To localize the areas with a strongly varying near-field pattern, first for each pk, a set of

neighboring points, N(pk) are chosen. These neighbors are in the cells that have at least one

common edge with the cell of pk. These neighbors are used to calculate the gradient ∇|x(1,2)|

W̄ (pk) = |∇x(1,2)| =

√
(
∂x(1,2)

∂θ
)2 +

1

sin2θ
(
∂x(1,2)

∂φ
)2 (4.31)

where x is the θ and φ component of the measured field over the sphere. A large value of

W̄ (pk) indicates that the field is varying rapidly at this area. A normalized metric is used to

describe the dynamic variation of field near the pk:

W (pk) =
W̄ (pk)

(W̄ (p1) + ...+ W̄ (pk))
(4.32)
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4.5.3 Adaptive data sampling selection

A combination of exploration and exploitation criteria is used as a global metric, G(pk),

to rank the sampled data points.

G(pk) = (1 + V (pk))(1 +W (pk)) (4.33)

High value of G(pk) indicates that the region associated to pk is undersampled, and more

data points should be added in this area.

Once the near-field data is collected the euivalent currents are reconstructed over a sphere

that encloses the antenna (Fig. 4.10).

4.5.4 Measurement and simulation results

To verify the proposed algorithm, an antenna with operating frequency of 8GHz is tested.

The size of the antenna is 19.5 cm × 19.5 cm. The measuring probe is placed at the distance

of 108 cm from the antenna. The near-field data is measured with the resolution of ∆θ =

∆φ = 0o , that means 3200 samples. The near-field radiation pattern of the antenna as well

as the data points for the uniform and adaptive sampling are depicted in Fig. 4.11. Using the

adaptive algorithm, the number of the required samples for the same accuracy is 426 that

means the significant reduction of the needed data points. In this paper, the points derived

from the adaptive algorithm are interpolated from the uniformly measured data using the

cubic spline interpolation method. To determine the proper data points for interpolation at

every newly added data, the uniformly measured data are clustered by k-means clustering

technique which is a simple unsupervised machine learning algorithm that categorizes a

dataset into a number (k) of clusters. This number is determined by the user. The algorithm

clusters the data into k clusters, even if k is not the optimal number of clusters. Therefore,

when using k-means clustering, users need to decide whether they are using the right number

of clusters. One method to validate the number of clusters is the elbow method [92] as shown
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in Fig. 4.12 (a). The idea of the elbow method is to perform k-means clustering on the

dataset for a range of values of k (e.g., k from 1 to 9 here), and for each value of k calculate

the sum of squared distances of samples to the nearest cluster center. If the plot looks like

an arm, then the elbow on the arm is optimal k. As shown in Fig. 4.12 (a) the optimal

number of clusters is 5 here. The clustered data are shown in Fig. 4.12 (b) and Fig. 4.12 (c)

in XY Z coordinate system and θ and φ plane. Thus, the values of each clusters are used to

estimate the value of newly added sample. The symmetry of the pattern helps us to reduce

the number of data points are used for interpolation. The uniformly measured data and the

adaptively selected samples are used to reconstruct the far-field pattern of the antenna. As

demonstrated in Fig. 4.13 the results are very close that confirms the validity of the proposed

algorithm.
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Fig. 4.11: Near -field radiation of the antenna under test and different sampling algorithms. (a) Near-field
radiation. (b) Uniform sampling. (c) Adaptive sampling.
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Fig. 4.12: Clustering the measured near-field. (a) Elbow method to determine the optimal number of clusters.
(b) Clustered data over XY Z plane. (c) Clustered data over θ and phi plane.
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Fig. 4.13: Spherical near-field measurement setup and far-field pattern of antenna. (a) Measurement setup.
(b) Far-field pattern of the antenna.
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4.6 Conclusion

In this chapter, a new approach is presented to improve the accuracy and speed of the

planar near-field measurement of antennas. The near-field measurements are performed using

RFX2 probe array and a microwave power detector which converts the input power to an out-

put voltage. For modeling the noise of magnetic fields in the reconstruction calculations, the

relation between the noise of the input power and the output voltage has been extracted ana-

lytically. Since in the RFX2 at each probe only one component of magnetic field is measured,

the accuracy of various interpolation techniques to estimate the other component has been

evaluated and the natural neighbor method was found as the best candidate compared to the

linear, averaging and nearest neighbor approaches. Thereafter, an adaptive sampling tech-

nique is proposed that sequentially adds more data points for the regions with high dynamic

behavior. This approach results in the significant reduction of the required samples (e.g.,

from 1600 to 333 samples). Finally, the adaptive algorithm along with the natural neighbor

interpolation and SRM are used to calculate the far-field pattern of AUT. An adaptive sam-

pling algorithm is also extended to spherical near-field measurement of antennas. Instead of

square cells, Voronoi tessellation cells are used to discretize the measurment surface. The

algorithm starts with an iniitial set of randomly distributed sample points, calculates the

field variation at the data points, and sequentially focuses on the areas with highly dynamic

near-field radiation. Since this approach can be applied to the uniformly measured data,

the value of adaptively found samples should be interpolated. To have accurate interpolated

results, the uniformly measured data is clustered using k-means algorithm. The optimum

number of clusters is determined using elbow method. In the spherical near-field measure-

ment the number of samples reduced from 3200 to 426 by utilizing the adaptive algorithm.

The accuracy and validity of the proposed methods are confirmed using the numerical and

measurement results. The results show that for much less numbers of samples, the same

accuracy can be achieved.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis is focused on the methods that enhance the speed and accuracy of source

reconstruction, sampling, and fault detection algoritms. The research work includes both

measurment and modelling techniques.

In chapter 2, a relation is developed between the RWG and LCN method in the application

of the near-field measurement of the antenna. The proposed model preserves the current

continuity and, as a result, is more accurate compared to LCN and requires less DOFs

leading to a faster and more robust solution. Moreover, this point-based approach is a

proper candidate to be accelerated using MLFMM and utilized in real-time applications.

In chapter 3, a high-resolution near-field measurement along with the source reconstruc-

tion method is used to reconstruct the magnetic field close to the SIW structures and detect

the defective vias. The distance at which the sufficient resolution to resolve two adjacent

defective vias is derived analitically by modeling the defective vias with the apertures. The

proposed methods are validated using single probe and probe array measurements. Finally,

a machine learning algorithm is proposed that classifies the reconstructed fields based on the

field and material variation, so different radiation sources can be distinguished.

In chapter 4, an adaptive sampling algorithm is proposed for the planar near-field mea-
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surement that sequentially focuses on the areas with highly dynamic near-field behavior. The

proposed technique significantly reduces the number of the measurement points and the time

of the measurement. Also, since the interpolation algorithms should be used to calculate

the field at those points, there is no measured value for them, and the accuracy of various

interpolation techniques in the presence of different levels of noise is investigated.

5.2 Suggestions for Future Work

In this study, firstly, the RWG-via-LCN algorithm is developed to accelerate the back

projection method using MLFMM that is widely used to accelerate MoM, especially in scat-

tering problems. In [13] it is mentioned that when this method is applied to Galerkin-based

MoM, the efficiency is limited by the size of the basis functions. Generally, in MLFMM, near

interactions are calculated exactly, while for far interactions multipole expansion of current

distribution is used. In this method, a big cube encompasses the scatterer. This cube is then

divided into eight smaller ones, and this procedure continues until the size of the smallest

cube and, therefore, the size of the lowest level is several times of the longest mesh edge. For

example, for a RWG basis function, the edge length is about 0.1λ; therefore, the smallest cube

size is about a quarter of a wavelength. Also, FMM is used in near-field measurements to

speed up the process [25]. As mentioned in [25], in MoM, for the finest level of FMM groups,

the support of basis functions is not small enough, so the basis functions are subdivided into

quadrature points; then the effect of quadrature points is collected. Thus, it is clear that

point-based methods such as LCN are more appropriate for acceleration by MLFMM than

MoM method. The proposed method in chapter 2 combines this advantage of LCN method

with the benefit of current continuity of RWG MoM. Thus, as future work, MLFMM can be

applied to RWG-via-LCN.

The fault detection along with the machine learning algorithm can be developed for

different types of circuit such as phased arrays, sensors [93]- [96], and corrugated structures

[97]- [99] wherein other physical and electromagnetic parameters can be used for classification.
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The adaptive sampling technique can be applied to cylindrical and spherical measurement

with one or multiple probes in which the implementation of a greedy optimization algorithm

might be required to minimize the distances the probe traces.

The NF-FF and fault detection algorithms can be implemented for mmWave device char-

acterization. For example, a vector network analyzer (VNA) is typically used in near-field

measurements because both phase and amplitude information is required for the NF-FF

transformations. However, mmWave 5G devices are single-ended and do not support the use

of a VNA. The high level of integration between the radio and antenna array means that

characterization of only the device antenna may not be possible due to the lack of connectors.

For instance, one or more antennas can be fixed to provide a reference for phase recovery

while the other(s) perform a near-field scan. The relative phases measured by the two sets

of antennas are then utilized in the far-field transformation.
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