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Abstract. Existing random models for the constraint satisfaction prob-
lem (CSP) all require an extremely low constraint tightness in order to
have non-trivial threshold behaviors and guaranteed hard instances at
the threshold. We study the possibility of designing random CSP mod-
els that have interesting threshold and typical-case complexity behaviors
while at the same time, allow a much higher constraint tightness. We
show that random CSP models that enforce the constraint consistency
have guaranteed exponential resolution complexity without putting much
restriction on the constraint tightness. A new random CSP model is pro-
posed to generate random CSPs with a high tightness whose instances
are always consistent. Initial experimental results are also reported to
illustrate the sensitivity of instance hardness to the constraint tightness
in classical CSP models and to evaluate the proposed new random CSP
model.

1 Introduction

One of the most significant problems with the existing random CSP models is
that as a model parameter, the constraint tightness has to be extremely low in
order to have non-trivial threshold behaviors and guaranteed hard instances at
phase transitions. In [1, 2], it was shown that except for a small range of the
constraint tightness, all of the four classical random CSP models are trivially
unsatisfiable with high probability due to the existence of the flawed variables.
For the case of binary CSPs, the constraint tightness has to be less than the
domain size in order to avoid the flawed variables. Recent theoretical results
in [3, 4] further indicate that even for a moderate constraint tightness, it is
still possible for these classical models to have an asymptotically polynomial
complexity due to the appearance of embedded easy subproblems.

Several new models have been proposed to overcome the trivial unsatisfi-
ability. In [2], Gent et al. proposed a CSP model, called the flawless random
binary CSP, that is based on the notion of a flawless conflict matrix. Instances
of the flawless random CSP model are guaranteed to be arc-consistent, and
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thus do not suffer asymptotically from the problem of flawed variables. In [1],
a nogoods-based CSP model was proposed and was shown to have non-trivial
asymptotic behaviors. Random CSP models with a (slowly) increasing domain
size have also been shown to be free from the problem of flawed variables and
have interesting threshold behaviors [5, 6]. However, none of these models have
addressed the fundamental requirement of an extremely low constraint tight-
ness in order to have a guaranteed exponential complexity. The flawless random
CSP does have a true solubility phase transition at a high constraint tightness,
but as we will show later, it still suffers from the embedded easy unsatisfiable
subproblems at a moderate constraint tightness. In CSP models with increasing
domain size, the (relative) constraint tightness should still remain low. In the
nogood-based CSP model, it is impossible to have a high constraint tightness
without making the constraint (hyper)graph very dense.

In this paper, we study the possibility of designing non-trivial random CSP
models that allow a much higher constraint tightness. For this purpose, we show
that consistency, a notion that has been developed to improve the efficiency of
CSP algorithms, is in fact the key to the design of random CSP models that
have guaranteed exponential resolution complexity without the requirement of
an extremely low constraint tightness. We propose a scheme to generate con-
sistent random instances of CSPs that can potentially have a high constraint
tightness. Initial experiments show that our model are indeed much harder at
phase transition than the classical CSP models and the flawless CSP models.

2 Random Models for CSPs

Throughout this paper, we consider binary CSPs defined on a domain D with
|D| = d. A binary CSP C consists of a set of variables x = {x1, · · · , xn} and
a set of binary constraints (C1, · · · , Cm). Each constraint Ci is specified by its
constraint scope, a pair of the variables in x, and a constraint relation RCi that
defines a set of incompatible value-tuples in D ×D for the scope variables. An
incompatible value tuple is also called a restriction, or a nogood. Associated
with a binary CSP is a constraint graph whose vertices correspond to the set of
variables and edges correspond to the set of constraint scopes. In the rest of the
paper, we will be using the following notation:

1. n, the number of variables;
2. m, the number of constraints;
3. d, the domain size; and
4. t, the constraint tightness, i.e., the size of the restriction set.

Given two variables, their constraint relation can be specified by a 0-1 matrix,
called the conflict matrix, where an entry 0 at (i, j) indicates that the tuple
(i, j) ∈ D ×D is incompatible. Another way to describe the constraint relation
is to use the compatible graph, a bipartite graph with the domain of each variable
as an independent partite, where an edge signifies the corresponding value-tuple
is compatible.
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An instance of a CSP is said to be k-consistent if and only if for any (k-1)
variables, each consistent (k-1)-tuple assignment to the (k-1) variables can be
extended to an assignment to any other kth variable such that the k-tuple is
also consistent. A CSP instance is called strongly k-consistent if and only if it is
j-consistent for each j ≤ k. Of special interest are the strong k-consistency for
k = 1, 2, 3, also known as node-consistency, arc-consistency, and path-consistency
[7].

Definition 1 (Random Binary CSP Bd,t
n,m). Let 0 < t < d2 be an integer.

The Bd,t
n,m is a random CSP model such that

1. its constraint graph is the standard random graph G(n, m) where m edges of
the graph are selected uniformly at random from all the possible

(
n
2

)
edges;

and
2. for each of the edges of G(n,m), a constraint relation on the corresponding

scope variables is specified by choosing t value-tuples from D ×D uniformly
at random as its restriction set.

Bd,t
n,m is known in the literature as the Model B. It has been shown in [1,

2] that for t ≥ d, Bd,t
n,m is asymptotically trivial and unsatisfiable, but has a

phase transition in satisfiability probability for t < d. This motivates the intro-
duction of the flawless conflict matrix to make sure that the random model is
arc-consistent [2].

Definition 2 (Bd,t
n,m[1], Flawless Random Binary CSP). In the flawless

random binary CSP Bd,t
n,m[1], the constraint graph is defined in the same way as

that in Bd,t
n,m. For each constraint edge, the constraint relation is specified in two

steps:

1. Choosing a random permutation π of D = {1, · · · d}; and
2. Selecting a set of t value-tuples uniformly at random from D×D\{(i, π(i)), 1 ≤

i ≤ n)} as the restriction set.

The reason that we use a suffix “[1]” in the symbol Bd,t
n,m[1] will become clear

after we introduce the generalized flawless random CSPs later in this paper. By
specifying a set of tuples {(i, π(i)), 1 ≤ i ≤ n)} that will not be considered when
choosing incompatible value-tuples, the resulting model is guaranteed to be arc-
consistent and consequently will not have flawed variables. However, even though
the flawless random binary CSP Bd,t

n,m[1] does not suffer the problem of trivial
unsatisfiability, it can be shown that Bd,t

n,m[1] asymptotically has embedded easy
subproblems for t ≥ d − 1 in the same way as the random binary CSP model
Bd,t

n,m.

Theorem 1. For t ≥ d−1, there is a constant c∗ > 0 such that for any m
n > c∗,

with high probability Bd,t
n,m[1] is asymptotically unsatisfiable and can be solved in

polynomial time.
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A detailed proof of Theorem 1 can be found in the Appendix, Section 6.1.
The idea is to show that for m

n > c∗, the flawless random CSP Bd,t
n,m[1] will

with high probability contain an unsatisfiable subproblem called an r-flower.
The definition of an r-flower can be found in the Appendix. Furthermore, if a
binary CSP instance contains an r-flower, then any path-consistency algorithm
(see, e.g., [7]) will produce a new CSP instance in which the center variable
of the r-flower has an empty domain. It follows that we can prove that it is
unsatisfiable polynomially.

It should be noted that Bd,t
n,m[1] does have a non-trivial phase transition since

it is satisfiable with high probability if m
n < 1

2 . Theorem 1 does not exclude
the possibility that Bd,t

n,m[1] will also be able to generate hard instances when m
n

is below the upper bound c∗, in particular in the case of a large domain size.
Further investigation is required to fully understand the complexity of Bd,t

n,m[1]
in this regard.

3 Consistency, Resolution Complexity, and Better
Random CSP Models

Propositional resolution complexity deals with the minimum length of resolution
proofs for an (unsatisfiable) CNF formula. As many backtracking-style complete
algorithms can be simulated by a resolution proof, the resolution complexity
provides an immediate lower bound on the running time of these algorithms.
Since the work of Chvatal and Szemeredi [8], there has been many studies on
the resolution complexity of randomly generated CNF formulas [9, 10].

Mitchell [11] developed a framework in which the notion of resolution com-
plexity is generalized to CSPs and the resolution complexity of randomly gener-
ated random CSPs can be studied. In this framework, the resolution complexity
of a CSP instance is defined to be the resolution complexity of a natural CNF
encoding which we give below. Given an instance of a CSP on a set of variables
{x1, · · · , xn} with a domain D = {1, 2, · · · , d}, its CNF encoding is constructed
as follows:

1. For each variable xi, there are d Boolean variables xi : 1, xi : 2, . . . , and xi :
d, each of which indicates whether or not xi takes on the corresponding
domain value; and there is a clause xi : 1 ∨ xi : 2 ∨ · · · ∨ xi : d on these
d Boolean variables making sure that xi takes at least one of the domain
values;

2. For each restriction (δ1, · · · , δk) ∈ Dk of each constraint C(xi1 , · · · , xik
),

there is a clause xi1 : δ1 ∨ · · · ∨ xik
: δk to respect the restriction.

In [11, 4], upper bounds on the constraint tightness t were established for the
random CSPs to have an exponential resolution complexity. For random binary
CSP Bd,t

n,m, the bound is (1) t < d−1; or (2) t < d and m
n is sufficient small. For a

moderate constraint tightness, recent theoretical results in [3, 4] indicate that it
is still possible for these classical models to have an asymptotically polynomial
complexity due to the existence of embedded easy subproblems. The primary
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reason for the existence of embedded easy subproblems is that for a moderate
constraint tightness, constraints frequently imply forcers which force a pair of
involved variables to take on a single value-tuple.

In the following, we will show that it is not necessary to put restrictions on
the constraint tightness in order to have a guaranteed exponential resolution
complexity. Based on quite similar arguments as those in [11, 4, 12], it can be
shown that if in Bd,t

n,m, the constraint relation of each constraint is chosen in
such a way that the resulting instances are always strongly k-consistent (k ≥ 3),
then Bd,t

n,m has an exponential resolution complexity no matter how large the
constraint tightness is.

Theorem 2. Let Bd,t
n,m[SC] be a random CSP such that (1) its constraint graph

is the standard random graph G(n, m); and (2) for each edge, the constraint
relation is such that any instances of Bd,t

n,m[SC] is strongly k-consistent. Then,
the resolution complexity of Bd,t

n,m[SC] is almost surely exponential.

Proof. See Appendix.

Using the tool developed in [4], the requirement of the strong k-consistency
for CSP instances to have an exponential resolution complexity can be further
relaxed. We call a CSP instance weakly path-consistent if it is arc-consistency
and satisfies the conditions of path-consistency for paths of length 3 or more.

Theorem 3. Let Bd,t
n,m[WC] be a random CSP such that (1) its constraint graph

is the random graph G(n, m); and (2) for each edge, the constraint relation is
such that any instances of Bd,t

n,m[WC] is weakly path-consistent and contains
no forcer (See Definition 5). Then, The resolution complexity of Bd,t

n,m[WC] is
almost surely exponential.

Proof. See Appendix.

The question remaining to be answered is whether or not there are any
natural random CSP models that are guaranteed to be strongly k-consistent or
weakly path-consistent. In fact, the CSP-encoding of random graph k-coloring
problem is strongly k-consistent. Another example is the flawless random binary
CSP Bd,t

n,m[1] that is guaranteed to be arc-consistent, i.e., strongly 2-consistent.
In the rest of this section, we discuss how to generate random CSPs with a high
tightness that are strongly 3-consistent or weakly path-consistent.

Definition 3 (Bd,t
n,m[K], Generalized Flawless Random Binary CSP). In

the generalized flawless random binary CSP Bd,t
n,m[K], K is a random bipartite

graph with each partite being the domain D of a variable. The constraint graph is
defined in the same way as that in Bd,t

n,m. For each constraint edge, the constraint
relation is specified as follows:

1. Generate the bipartite graph K satisfying certain properties; and
2. Select a set of t value-tuples uniformly at random from (D ×D) \ E(K) as

the restriction set.
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The idea in the generalized flawless random binary CSP is that by enforcing
a subset of value-tuples (specified by the edges of the bipartite graph K) to be
always compatible, it is possible that the generated CSP instance will always
satisfy a certain level of consistency. If we define K to be a 1-regular bipartite
graph, then Bd,t

n,m[K] reduces to the flawless random binary CSP model Bd,t
n,m[1].

The following result shows that a connected and l-regular bipartite graph K
with sufficiently large l can be used to generate strongly 3-consistent random
CSPs or weakly path-consistent random CSPs.

Theorem 4. Let K be an l-regular connected random bipartite graph. Then,
Bd,t

n,m[K] is always

1. strongly 3-consistent if and only if l > d
2 ; and

2. weakly path-consistent if and only if l > d−1
2 .

Proof. We only prove the case for the weak path-consistency and the case for
the strong 3-consistency is similar.

Consider a path x1 − x2 − x3 − x4 and any assignment x1 = i and x4 = j.
There are l values of x2 that are compatible to x1 = i and there are l values of x3

that are compatible to x4 = j. Since the conflict graph is connected, there are at
least l + 1 values of x3 that are compatible to x1 = i. Therefore if l > (d− 1)/2,
there must be a value of x3 that is compatible to both x1 = i and x4 = j.

To see the “only if” part, we will show that there is a connected bipartite
graph K(V, U) on two sets of vertices V = {v1, v2, · · · , vd} and U = {v1, u2, · · · , ud}
such that the neighbors of the first l vertices in V are the first l+1 vertices in U .
First, we construct a complete bipartite graph on the vertex sets {v1, v2, · · · , vl}
and {u1, u2, · · · , ul}; Second, we construct an l-regular connected bipartite graph
on the vertex sets {vl+1, · · · , vd} and {ul+1, · · · , ud} such that (vl+1, ul+1) is an
edge. We then replace the two edges (vl, ul) and (vl+1, ul+1) with two new edges
(vl, ul+1) and (vl+1, ul). This gives the bipartite graph K(V, U). The existence of
such a bipartite graph K(V, U) shows that when l ≤ d−1

2 , it is possible to have a
constraint relation such that a constraint path of length 3 is not consistent. ut

The generalized random CSP model Bd,t
n,m[K] with a connected regular bi-

partite K allows a constraint tightness up to (d+1)d
2 . The above theorem also

indicates that this is the best possible constraint tightness when using an arbi-
trary connected bipartite graph K. To achieve higher constraint tightness, we
propose a recursive scheme to generate a bipartite graph K that is more efficient
in its use of edges.

Definition 4 (Consistency Core). Let D1 = D2 be the domains of two vari-
ables with |D1| = |D2| = d. The consistency core for the domains D1 and D2

is a bipartite graph Gcore(D1, D2) on D1 and D2, and is defined recursively as
follows.

1. Let {Dij , 1 ≤ j ≤ s} be a partition of Di such that |Dij | ≥ 3.
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2. If s < 3, then Gcore(D1, D2) is equal to an l0-regular connected bipartite graph
on D1(π1) = {π1(1), · · · , π1(d)} and D2(π2) = {π2(1), · · · , π2(d)} where
π1, π2 are two permutations of {1, 2, · · · , d} and l0 > d

2 .
3. For s ≥ 3, let π1, π2 be two permutations of S = {1, 2, · · · , s} and

G(S(π1), S(π2), l)

be an l-regular connected bipartite graph on S(π1) = {π1(1), · · · , π1(s)} and
S(π2) = {π2(1), · · · , π2(s)}. The edge set of Gcore(D1, D2) is defined to be
the union of the edge sets of all consistency cores Gcore(D1i, D1j) where i
and j are integers such that (i, j) ∈ G(S(π1), S(π2), l).

Theorem 5. If a consistency core is used for K, then Bd,t
n,m[K] is

1. strongly 3-consistent if and only if l > s
2 ; and

2. weakly path-consistent if and only if l > s−1
2 .

Proof. By induction on the domain size and using the previous theorem.

Using the consistency core, we can define random CSP models with con-
straint tightness well above (d+1)d

2 . For example, if the domain size d is 12, the
random generalized random CSP model Bd,t

n,m[K] with a consistency core K allow
a constraint tightness up to 144− 6 ∗ 8 = 96.

Example 1. Consider the consistency core K where the domain size is |D| = 9
and assume that all the permutations used in Definition 4 are identity permu-
tations and l = s = 3. Figure 1 shows the consistency core where the edges
connected to two vertices in the lower partite was depicted. Using such a con-
sistency core, a constraint on two variables xi, xj in Bd,t

n,m[K] with t = 45, has a
set of restrictions

{(i, j); i = 3a1 + a2 and j = 3b1 + b2 are integers such that
a1 6= b1 and a2 6= b2}.

An instance of this CSP model can be viewed as a generalized 3-colorability
problem.

Fig. 1. A special type of consistency core with the domain size 9
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4 Experiments

In this section, we report results of two sets of preliminary experiments designed
to (1) study the effect of an increase in the constraint tightness on the typical-case
complexity; and (2) compare typical-case instance hardness between the classical
random CSPs, flawless random CSPs, and the generalized flawless random CSPs.

4.1 Effect of an increase in the constraint tightness

In [3, 4], upper bounds on the constraint tightness have been established for
random CSPs to have an exponential resolution complexity for all the constant
constraint-to-variable ratio m

n . Molloy [4] further showed that for the constraint
tightness above the upper bound, the existence of forcers can be compensated
by sufficiently low constraint-to-variable ratio so that one can still have typical
instances with exponential resolution complexity.

We have conducted the following experiments to gain further understanding
on the effect of an increase in the constraint tightness (and hence an increase
in the likelihood of the existence of a forcer in a constraint) on the typical-case
hardness of random CSPs. The experiments also help understand the behavior
of CSP models, such as the flawless CSP model, that only enforce the arc-
consistency (strong 2-consistency).

In the experiments, we start with a random 3-CNF formula whose clauses
are treated as constraints. We then incrementally increase the tightness of each
constraint by adding more clauses defined over the same set of variables. There
are two reasons why we have based our experiments on random SAT models.
First, the typical-case complexity of the random SAT model is well-understood
and therefore, experiments based on the random SAT model will enable us to
have an objective comparison on the impact of an increase in the constraint
tightness. Secondly, the complexity of Boolean-valued random CSPs obtained by
increasing the tightness of the random 3-CNF formula has been characterized
in great detail. We have a clear picture regarding the appearance of embedded
easy subproblems in these Boolean-valued random CSPs [3].

Let F(n, m) be a random 3-CNF formula with n variables and m clauses.
We construct a new random 3-CNF formula F(n,m, a) as follows:

1. F(n,m, a) contains all the clauses in F(n,m);
2. For each clause C in F(n,m), we generate a random clause on the same set

of variables of C, and add this new clause to F(n,m, a) with probability a.

In fact, F(n,m, a) is the random boolean CSP model with a real-valued
constraint tightness 1 + a and has been discussed in [3]. For a > 0, it is easy
to see that F(n,m, a) is always strongly 2-consistent, but is not 3-consistent
asymptotically with probability 1.

Figure 2 shows the median of the number of branches used by the SAT solver
zChaff on 100 instances of F(n, m, a), a = 0.0, 0.1, 0.2.

As expected, an increase in the tightness results in a shift of the location
of the hardness peak toward smaller m/n. More significant is the magnitude of
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Fig. 2. Effects of an increase in the constraint tightness on the instance hardness for
F(n, m, 0.0),F(n, m, 0.1), and F(n, m, 0.2). n = 250.

the decrease of the hardness as a result of a small increase in the constraint
tightness.

From [3], the upper bounds on m/n for F(n, m, a) to have an exponential
resolution complexity are respectively 23.3 if a = 0.1 and 11.7 if a = 0.2. Since
the constraint-to-variable rations m/n considered in the experiment are well
below these bounds above which embedded 2SAT subproblems appear with high
probability, it seems that the impact of forcers on the instance hardness goes
beyond simply producing embedded easy subproblems. As forcers can appear
at a relatively low constraint tightness even in CSP models such as the flawless
model, approaches that are solely based on restricting constraint tightness to
generate interesting and typically hard instances cannot be as effective as has
been previously believed.

4.2 Comparisons between three random CSP Models

This set of experiments is designed to investigate the effectiveness of the general-
ized flawless random CSP model. We generate random instances of the classical
random models Bd,t

n,m, flawless random model Bd,t
n,m[1], and the generalized ran-

dom model Bd,t
n,m[K] with the domain size d = 4. For Bd,t

n,m[K], we have used a
2-regular connected bipartite graph as K. These instances are then encoded as
CNF formulas and solved by the SAT solver zChaff [13]. It looks unnatural that
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we have tested random CSP instances by converting them to SAT instances and
using a SAT solver. This is justified by the following considerations. First, all of
the existing research on the resolution complexity of random CSPs have been
carried out by studying the resolution complexity of a SAT encoding of CSPs
as described in Section 3. We have used the same encoding in the experiments.
Secondly, it has been shown that as far as the complexity of solving unsatisfiable
CSP instances is concerned, many of the existing CSP algorithms can be effi-
ciently simulated by the resolution system of the corresponding SAT encodings
of the CSPs [14].

The experiments show that the threshold of the solution probability of the
generalized random CSP model Bd,t

n,m[K] is much sharper than those of Bd,t
n,m

and Bd,t
n,m[1]. More importantly, instances of Bd,t

n,m[K] at the phase transition are
much harder than those of Bd,t

n,m and Bd,t
n,m[1], as shown in Tables 1-3 where the

median of the number of branches of zChaff for 100 instances of each of the
three random CSP models is listed at different stages of the solubility phase
transition: Table 1 is for the constraint density m

n where the maximum median
of the number of branches is observed; Table 2 is for the constraint density m

n
where the solubility probability is less than 0.1; and Table 3 is for the constraint
density m

n where the solubility probability is greater than 0.9.

It can be seen that while the classical random CSP model and flawless ma-
trix CSP model have little difference, the proposed strong flawless random CSP
model Bd,t

n,m[K] with K being a connected 2-regular bipartite graph is signifi-
cantly harder in all of the cases except row 1 in Table 3. It is also interesting to
notice that the most significant difference in the hardness among the three mod-
els is at the phase where instances of the random CSP models are almost always
unsatisfiable. A plausible explanation for this phenomenon is that consistency
is a property that may also help improve the efficiency of search algorithms in
solving satisfiable instances.

Table 1. Maximum Median Number of Branches of zChaff on random instances of
three random CSP models , over all m

n
. Domain size d = 4 and K is 2-regular.

Number of Branches

(n, t) Bd,t
n,m Bd,t

n,m[1] Bd,t
n,m[K]

(100, 6) 230 224 399

(300, 6) 1830 1622 4768

(500, 6) 7152 6480 45315

(300, 8) 843 1010 2785
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Table 2. Median Number of Branches of zChaff on random instances of three random
CSP models at the smallest m

n
where the solution probability is less than 0.1. Domain

size d = 4 and K is 2-regular.

Number of Branches

(n, t) Bd,t
n,m Bd,t

n,m[1] Bd,t
n,m[K]

(100, 6) 116 154 241

(300, 6) 819 700 4768

(500, 6) 1398 1649 45315

(300, 8) 204 269 1118

Table 3. Median Number of Branches of zChaff on random instances of three random
CSP models at the largest m

n
where the solution probability is greater than 0.9. Domain

size d = 4 and K is 2-regular.

Number of Branches

(n, t) Bd,t
n,m Bd,t

n,m[1] Bd,t
n,m[K]

(100, 6) 211 212 199

(300, 6) 1327 1595 2809

(500, 6) 7152 6450 8787

(300, 8) 843(0.67) 709 2785

5 Conclusions

In this paper, we have shown that consistency, a notion that has been introduced
in an effort to improve the efficiency of CSP algorithms, also plays an impor-
tant role in the design of random CSP models that have interesting threshold
behavior and guaranteed exponential complexity at phase transitions, while at
the same time allow a much higher constraint tightness. We have also proposed
a scheme to generate random consistent random CSPs by generalizing the idea
of flawless random CSPs. Initial experiments show that the proposed model is
indeed significantly harder than existing random CSP models.

6 Appendix

In this section, we present more concepts related to the resolution complexity
results stated in this paper and prove Theorems 1, 2, and 3.

6.1 Theorem 1

This subsection is devoted to Theorem 1. First, let us formalize some definitions
such as a forcer, a forbidding cycle, and an r-flower. Following [11], we call an
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expression of the form x : α a literal for a CSP. A literal x : α evaluates to
TRUE at an assignment if the variable x is assigned the value α. A nogood for a
CSP, denoted by η(x1 : α1, · · · , xl : αl), is a disjunction of the negations of the
literals xi : αi, 1 ≤ i ≤ l. A nogood is equivalent to a restriction {α1, · · · , αl} on
the set of variables {x1, · · · , xl}, and the restrictions of a constraint correspond
to a set of nogoods defined over the same set of variables.

Definition 5 (Forcers [4]). A constraint Cf with var(C) = {x1, x2} is called
an (α, β)-forcer if its restriction set corresponds to the set of nogoods

NG(Cf ) = {η(x1 : α, x2 : γ); γ 6= β}.

We say that a constraint C contains an (α, β)-forcer Cf defined on the same set
of variables as C if NG(Cf ) ⊆ NG(C).

Definition 6 (Forbidding cycles and r-flowers [4]). An α-forbidding cycle
for a variable x0 is a set of constraints C1(x0, x1), C2(x1, x2), . . . , Cr−1(xr−2, xr−1),
and Cr(xr−1, x0) such that C1(x0, x1) is an (α, α1)-forcer, Cr(xr−1, x0) is an
(αr−1, αr)-forcer (αr 6= α), and Ci(xi−1, xi) is an (αi−1, αi)-forcer (2 ≤ i ≤
r − 1). We call x0 the center variable of the α-forbidding cycle.

An r-flower R = {C1, · · · , Cd} consists of d (the domain size) forbidding
cycles each of them has the length r such that

1. Ci, 1 ≤ i ≤ d, have the same center variable x;
2. each Ci is an αi forbidding cycle of the common center variable x; and
3. these forbidding cycles do not share any other variables.

The following facts are straightforward to establish:

1. An r-flower consists of s = d(r − 1) + 1 = dr − d + 1 variables and dr
constraints;

2. The total number of r-flowers is
(

n

s

)
s!(d− 1)ddd(r−1).

3. A constraint in the flawless CSP model contains an (α, β)-forcer only if the
pair (α, β) is one of the pre-selected tuples in the flawless constraint matrix.

In the following, we assume that r = o(
√

n). The probability for a constraint to
contain a forcer and the probability for the flawless random CSP to contain an
r-flower are given in the following lemma.

Lemma 1. Consider the flawless random CSP Bd,t
n,m[1] and define fe = (d2−d−d+1

t−d+1 )
(d2−d

t )
.

1. The probability that a given constraint C(x1, x2) contains an (α, β)-forcer is

1
d
fe. (1)
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2. Let R be an r-flower and let c = m/n,

P{R appears in Bd,t
n,m[1]} = Θ(1)(2cfe)dr 1

ndr

1
ddr

. (2)

Proof. Equation (1) follows from the following two observations: (a) 1
d is the

probability for (α, β) to be one of the pre-selected tuples in the flawless conflict
matrix; and (b) fe is the probability for the d− 1 tuples, (α, γ), γ 6= β, to be in
the set of t restrictions selected uniformly at random from d2 − d tuples.

To calculate the probability that a given r-flower R appears in Bd,t
n,m[1], notice

that the probability of selecting all the constraint edges in R is

(
N−dr
cn−dr

)
(

N
cn

) =
cn(cn− 1) · · · (cn− dr + 1)
N(N − 1) · · · (N − dr + 1)

= Θ(1)
(

2c

n

)dr

where N =
(
n
2

)
. Since for each fixed choice of dr constraint edges in the r-flower,

the probability for these constraints to contain the r-flower ( 1
dfe)dr, Equation

(2) follows. ut

Proof (Proof of Theorem 1). Let c∗ = d
2fe

. We will show that if c = m
n > c∗,

then

lim
n

P{Bd,t
n,m[1]} contains an r-flower } = 1. (3)

Let IR be the indicator function of the event that the r-flower R appears in
Bd,t

n,m[1] and let X =
∑
R

IR where the sum is over all the possible r-flowers.

Then, Bd,t
n,m[1] contains an r-flower if and only if X > 0.

By Lemma 1 and the fact that s = dr − d + 1, we have

E[X] =
∑

R

E[IR]

= Θ(1)
(

n

s

)
s!(d− 1)ddd(r−1)(2cfe)dr 1

ndr

1
ddr

= Θ(1)n(n− 1) · · · (n− s + 1)ddr(2cfe)dr 1
ndr

1
ddr

= Θ(1)n1−d(2cfe)dr.

Therefore, if c > c∗ and r = λ log n with λ sufficiently large, we have lim
n

E[X] =
∞.

If we can show that E[X2] ≤ E2[X](1 + o(1)), then an application of the
Chebyshev inequality will establish that lim

n
P{X = 0} = 0. To get an upper

bound on E[X2], we need a counting argument to upper bound the number of
r-flowers sharing a given number of edges. This is done by considering how the
shared edges form connected components [4, 3, 15]. Here, we follow the way that
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is used by Molloy [4], from which we have

E[X2] =
∑

A

E[I2
A] +

∑

A

∑

B:B∩A=®
E[IAIB ] +

∑

A

IA




s∑

i=1

i∑

j=1

Nij(Pij)dr−i




=
∑

A

E[I2
A] +

∑

A

∑

B:B∩A=®
E[IA]E[IB ] +

∑

A

IA




s∑

i=1

i∑

j=1

Nij(Pij)dr−i




≤ E2[X] +
∑

A

IA




s∑

i=1

i∑

j=1

Nij(Pij)dr−i


 (4)

where (1) Nij is the number of the r-flowers that share exactly i constraint edges
with A and these i constraints forms j connected components in the constraint
graph of A; and (2) (Pij)dr−i is the probability that conditional on IA, the
random CSP contains the dr− i constraints of a specific r-flower as described in
Lemma (1). In [4], Nij is upper bounded by

(
(2 + r2)d(dr2)j−1

)2
j!ns−i−jds−i−j+d−1,

where ((2+r2)d(dr2)j−1)2j! upper bounds the number of ways to choose and ar-
range the j shared connected components for two r-flowers; ns−i−j upper bounds
the number of ways of choosing the remaining non-shared variables——the num-
ber of variables in each of the j shared connected component is at least one plus
the number of edges in that shared component; and ds−i−j+d−1 upper bounds
the number of ways of choosing the forcing values in these non-sharing variables.
The shared variables have to take the same forcing values as those in A due to
the assumption that t < d made in [4].

Since in our case we d− 1 ≤ t ≤ d2 − d, it is possible for shared variables to
take different forcing values in different r-flowers. Thus, an upper bound for Nij

is

(
(2 + r2)d(dr2)j−1

)2
j!ns−i−jds.

But in our case, the probability corresponding to (Pij)dr−i is

(
N−dr−(dr−i)
cn−i−(dr−i)

)
(
N−dr
cn−i

) (
1
d
fe)dr−i = Θ(1)(

cn− i

N − dr
)dr−i(

1
d
fe)dr−i

= Θ(1)(2cfe)dr−i 1
ndr−i

1
ddr−i

.
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Therefore, with c∗ = d
2fe

, we have

s∑

i=1

i∑

j=1

Nij(2cfe)dr−i 1
ndr−i

1
ddr−i

≤
s∑

i=1


(2 + r2)2dr−4ns−ids(2cfe)dr−i 1

ndr−i

1
ddr−i

i∑

j=1

(
d2r4j

n
)j




≤
s∑

i=1

O(r4d−4)n1−d(2cfe)dr (2cfe)−i

d−i
O(

r4

n
)

≤ E[X]O(r4d−4)O(
r4

n
)

s∑

i=1

(
d

2cfe
)i

≤ E[X]O(
r4d

n
),

where the last inequality is because c > d
2fe

. From this and formula (4), the
proof is completed. ut

Remark 1. The relatively loose upper bound c∗ = d
2fe

in the above proof may
be improved by a factor of d by making a further distinction among the r-
flowers that share forcing values at different number of shared variables. But
for the purpose of showing that the flawless random CSP also has potential
embedded easy sub-problems, our upper bound for the constraint-variable ratio
c is sufficient since the domain size d is a constant.

6.2 Proof of Theorems 2 and 3

Given a CNF formula F , we use Res(F) to denote the resolution complexity
of F , i.e., the length of the shortest resolution refutation of F . The width of
deriving a clause A from F , denoted by w(F ` A), is defined to be the minimum
over all the resolution refutations of the maximum clause size in a resolution
refutation. The width w(F) of a formula F is the largest size of the clauses in it.
Ben-Sasson and Wigderson [16] established a relationship between Res(F) and
w(F ` ∅):

Res(F) = eΩ(
(w(F`∅)−w(F))2

n ).

This relationship indicates that to give an exponential lower bound on the res-
olution complexity, it is sufficient to show that every resolution refutation of F
contains a clause whose size is linear in n, the number of variables.

Let T be an instance of the CSP and let CNF(T ) be the CNF encoding
of T . Mitchell [11] provided a framework within which one can investigate the
resolution complexity of T , i.e., the resolution complexity of the CNF formula
CNF(T ) that encodes T , by working directly on the structural properties of
T . A sub-instance J of T is a CSP instance such that var(J ) ⊂ var(T ) and
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J contains all the constraints of T whose scope variables are in var(J ). The
following crucial concepts make it possible to work directly on the structural
properties of the CSP instance when investigating the resolution complexity of
the encoding CNF formula.

Definition 7 (Implies. Defined in [11]). For any assignment α to the vari-
ables in the CSP instance T , we write α̂ for the truth assignment to the variables
in CNF(T ) that assigns a variable x : a the value TRUE if and only if α(x) = a.

Let C be a clause over the variables of CNF(T ). We say that a sub-instance
J of T implies C, denoted as J |= C, if and only if for each assignment α
satisfying J , α̂ satisfies C.

Definition 8 (Clause Complexity [11]). Let T be a CSP instance. For each
clause C defined over the Boolean variables in var(CNF(T )), define

µ(C, T ) = min{|var(J )|;J is a sub-instance and implies C}.
The following two concepts slightly generalize those used in [11, 4] and enable

us to have a uniform treatment when establishing resolution complexity lower
bounds.

Definition 9 (Boundary). The boundary B(J ) of a sub-instance J is defined
to be the set of CSP variables such that for each x ∈ B(J ) if and only if the
following is true: If J minimally implies a clause C defined on some boolean
variables in var(CNF(T )), then C contains at least one of the boolean variables,
x : a, a ∈ D, that encode the CSP variable x.

Definition 10 (Sub-critical Expansion [11]). Let T be a CSP instance. The
sub-critical expansion of T is defined as

e(T ) = max
0≤s≤µ(∅,T )

min
s/2≤|var(J )|≤s

|B(J )| (5)

where the minimum is taken over all the sub-instances of T such that s/2 ≤
|var(J )| ≤ s.

The following theorem relates the resolution complexity of the CNF encoding
of a CSP instance to the sub-critical expansion of the CSP instance.

Theorem 6. [11] For any CSP instance T , we have

w(CNF(T ) ` ∅) ≥ e(T ) (6)

Proof. For any resolution refutation π of CNF(T ) and s ≤ µ(∅, T ), Lemma 1 of
[11] shows that π must contain a clause C with

s/2 ≤ µ(C, T ) ≤ s.

Let J be a sub-instance such that |var(J )| = µ(C, T ) and J minimally implies
C. Since J minimally implies C, according to the definition of the boundary,
w(C) ≥ |B(J )|. (6) follows. ut
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To establish an asymptotically exponential lower bound on Res(C) of a ran-
dom CSP C, it is enough to show that there is a constant β∗ > 0 that does not
depend on n such that

lim
n

P{e(C) ≥ β∗n} = 1. (7)

For any α > 0, let Am(α) be the event {µ(∅, C) > αn} and As(α, β∗) be the
event {

min
αn
2 ≤|var(J )|≤αn

B(J ) ≥ β∗n
}

.

Notice that

P{e(C) ≥ β∗n} ≥ P{Am(α) ∩ As(α, β∗)}
≥ 1− P{Am(α)} − P{As(α, β∗)}. (8)

We only need to find appropriate α∗ and β∗ such that

lim
n

P{Am(α∗)} = 0 (9)

and
lim
n

P{As(α∗, β∗)} = 0. (10)

Event Am(α∗) is about the size of minimally unsatisfiable sub-instances. For the
event As(α∗, β∗), a common practice is to identify a special subset of boundaries
and show that this subset is large. For different random CSP models and un-
der different assumptions on the model parameters, there are different ways to
achieve this. Following [12], we say a graph G is (r, q)-dense if there is a subset
of r vertices that induces at least r edges of G.

Proof (Proof of Theorem 2). Recall that the constraint graph of Bd,t
n,m[SC] is

the standard random graph G(n,m). Since each instance of Bd,t
n,m[SC] is strongly

k-consistent, variables in a minimal unsatisfiable sub-instance J with |var(J )| =
r must have a vertex degree greater than or equal to k, and consequently, the
constraint sub-graph H(J ) must contains at least rk

2 edges. Thus,

P{Am(α∗)} = P{µ(∅,Bd,t
n,m[SC]) ≤ α∗n}

≤ P

{
α∗n⋃

r=k+1

{G(n,m) is (r, rk/2)-dense }
}

.

Let Bk(J ) be the set of variables in var(J ) whose vertex degrees are less
than k. Again, since instances of Bd,t

n,m[SC] are always strongly k-consistent,
we have Bk(J ) ⊂ B(J ) and thus, |B(J )| ≥ |Bk(J )|. Therefore, the probability
P{As(α∗, β∗)} can be bounded as

P{As(α∗, β∗)} ≤ P{Ak
s(α∗, β∗)}
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where Ak
s(α∗, β∗) is the event

{
min

α∗n/2≤|var(J )|≤α∗n
Bk(J ) ≥ β∗n

}
.

Random graph arguments (see, e.g. [12] ) show that there exist constants α∗ and
β∗ such that P{Am(α∗} and P{Ak

s(α∗, β∗)} both tend to 0. Indeed, let β∗ be
such that (1−β∗)k

2 > 1, c = m
n , and N = n(n−1)

2 . We have

P{Am(α∗)} ≤ P

{
α∗n⋃

r=k+1

{G(n,m) is (r, rk/2)-dense }
}

≤
α∗n∑

r=k+1

P{G(n,m) is (r,
rk

2
)-dense}

≤
α∗n∑

r=k+1

(
n

r

)( r(r−1)
2
rk
2

)(
N − rk

2

m− rk
2

)(
N

m

)−1

≤
α∗n∑

r=k+1

(
en

r
)r(

e(r − 1)
k

)
rk
2 (

2c

n
)

rk
2

=
α∗n∑

r=k+1

[
en

r
(
2ec(r − 1)

kn
)

k
2

]r

=
α∗n∑

r=k+1

[
(
k

2
)

k
2 e

k+2
2 c

k
2 (

r

n
)

k−2
2

]r

≤
blog nc∑

r=k+1

[
(
k

2
)

k
2 e

k+2
2 c

k
2 (

log n

n
)

k−2
2

]

+
α∗n∑

r=blog nc

[
(
k

2
)

k
2 e

k+2
2 c

k
2 (α∗)

k−2
2

]log n

(11)

Similarly, we have for β = 2β∗

α∗ ,

P{Ak
s(α∗, β∗)} = P





α∗n⋃

r= α∗n
2

{∃ a size-r sub-instance J s.t. |Bk(J )| ≤ β∗n}




≤ P





α∗n⋃

r= α∗n
2

{G(n,m) is (r,
r(1− β)k

2
)-dense}





≤
α∗n∑

r= α∗n
2




(
2c

(1− β)k

) (1−β)k
2

e
(1−β)k+2

2 (α∗)
(1−β)k−2

2




r

(12)
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where the second inequality is because of the fact that for a sub-instance J
with size r and |Bk(J )| ≤ β∗n, its constraint graph contains at least r − β∗n =
r − α∗

2 βn ≥ r − βr vertices whose degree is at least k.
There exist α∗ and β∗ be such that (1) 2β∗

α∗ < 1; (2) (1−β∗)k
2 > 1; and (3)

the right hand side of formula (11) and the right hand side of formula (12) both
tend to zero. This completes the proof of Theorem 2. ut

We now prove Theorem 3. First from the definition of Bd,t
n,m[WC], we have

the following

Lemma 2. For the random CSP Bd,t
n,m[WC], we have

1. Every sub-instance whose constraint graph is a cycle is satisfiable;
2. For any path of length ≥ 3, any compatible assignments to the two variables

at the ends of the path can be extended to assignments that satisfy the whole
path.

In an effort to establish exponential lower bounds on the resolution com-
plexity for a classical random CSP models with a tightness higher than those
in [11], Molloy and Salavatipour [4] introduced a collection of sub-instances, de-
noted here as BM (J ), and used its size to give a lower bound on the size of the
boundary. For binary CSPs whose constraints are arc-consistent and contain no
forcer, BM (J ) consists of two parts: B1

M (J ) and B2
M (J ), defined respectively as

follows:

1. B1
M (J ) contains the set of single-edge sub-instances X , i.e., var(X ) = 2,

such that at least one of the variables has a vertex degree 1 in the original
constraint graph;

2. B2
M (J ) contains the set of sub-instances X whose induced constraint graph

is a pendant path of length 4, i.e., a path of length 4 such that no vertex
other than the endpoints has a vertex degree greater than 2 in the original
constraint graph.

It can be shown that

Lemma 3 ([4]). For any weakly path-consistent CSP sub-instance J , we have

|B(J )| ≥ |B1
M (J )|+ |B2

M (J )|
4

.

Proof. The variable with degree one in any sub-instance in B1
M (J ) has to be

in B(J ); At least one internal variable in any pendant path B2
M (J ) has to be

in B(J ). It is possible that several pendant paths of length 4 share a common
internal variable that is in B(J ), e.g., in a very long pendant path. But a variable
can only appear in at most three pendant paths of length 4.

With the above preparations, the proof provided for Theorem 1 of [4] readily
applies to our case. To make this report self-contained, we give the proof below.
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Proof (Proof of Theorem 3). By Lemma 2, any minimally unsatisfiable sub-
instance J is such that (1) its constraint graph cannot be a single cycle; and
(2) BM (J ) is empty since |B1

M (J )| = 0 and |B2
M (J )| = 0 for a minimally

unsatisfiable sub-instance. According to Lemma 11 of [4], the constraint graph
of J has at least (1 + 1

12 )var(J ) edges. Therefore, due to the locally sparse
property of random graphs (e.g., Lemma 10 in [4]), there is a constant α∗ > 0
such that formula (9) holds, i.e.,

lim
n

P{Am(α∗)} = 0.

To establish formula (10), due to Lemma 3 we have

P{As(α∗, β∗)} ≥ P{As,M (α∗, β∗)}
where As,M (α∗, β∗) is the event

{
min

α∗n/2≤|var(J )|≤α∗n
|BM (J )| ≥ β∗n

}
.

Now suppose on the contrary that there is a sub-instance J with α∗n/2 ≤
|var(J )| ≤ α∗ such that |B1

M (J )| + |B2
M (J )| ≤ ζn. Then, from Lemmas 10

and 11 of [4], the constraint graph of J contains only cycle components——
Lemma 11 of [4] asserts that the edges-to-vertices ratio of the constraint graph
of J has to be bigger than one. If we remove all the cycle components from the
constraint graph of J , the edges-to-vertices ratio of the remaining graph becomes
even bigger. But this is impossible from Lemma 10 of [4] because the constraint
graph of J , and hence the remaining graph, has less than α∗n vertices.

It is well-known that w.h.p. a random graph has fewer than log n cycle com-
ponents of length at most 4——for the random graph G(m,n) with m/n = c
being constant, the number of cycle components with a fixed length has asymp-
totically Poisson distribution [17]. Thus, the number of variables that are in
cycle components of length 4 is at most 4 log n. Since any cycle component of
length l > 4 contain l pendant paths of length 4, the total number of variables in
cycle components of length greater than 4 is at most |B2

M (J )| < ζn. Therefore,
we have var(J ) < ζn + 4 log n < α∗n/2 ≤ var(J ) for sufficiently small ζ, a
contradictory.

We, therefore, conclude that there is a β∗ such that w.h.p, for any sub-
instance J with α∗n/2 ≤ |var(J )| ≤ α∗, |BM (J )| ≥ β∗n, i.e., formula (10)
holds. ut
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