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Abstract

The paper studies ways in which the sets of a partition of a lattice in R™ become
regular model sets. The main theorem gives equivalent conditions which assure that
a substitution system on a lattice in R" gives rise to regular model sets (based on
p-adic-like internal spaces), and hence to pure point diffractive sets. The methods
developed here are used to show that the n—dimensional chair tiling and the sphinx

tiling are pure point diffractive.



Acknowledgements

I would like to take this opportunity to express my gratitude to my supervisor,
Dr. Robert V. Moody, giving me lots of encouragement and helping me to go on
further. His guidance has been so deep and sincere.

In addition, I would also like to thank Martin Schlottmann for his help with this
work and Michael Baake for his interest.

Finally, thanks to my family for their long distance love.

This thesis was typeset using BTEX.



Table of Contents

Chapter 1 - Introduction 1
Chapter 2 - Preliminaries 4
2.1 Definitions and notation . .........oiuiiiiiiiiiiii ittt 4
2.2 Substitution systems on lattices ............ ..o i, 5]
2.3 Perron-Frobenius theory ....... ... i 7
2.4 Primitive substitution system and boundary measure ................. 8
Chapter 3 - Model Sets 11
3.1 Basic definitions ........ ... il e 11
3.2 Themain result ... ... i i et 12
Chapter 4 - Sphinx Tiling 21
Chapter 5 - The Total Index and Model Sets 25
5.1 Coset part and total index ........... ... .. 25
5.2 Total index and model sets ...........coiiiiiieiiii i, 27
Chapter 6 - Chair Tiling 30
References ..... ... i e et 37

A PP eNAIX ..ot e e 39



Chapter 1

Introduction

The world in which we are living is filled with objects, which themselves are ac-
tually composed of atoms. Physicists have studied the structure of large assemblages
of atoms, which are often very highly ordered objects. A good deal about this struc-
ture can be learned through the diffraction patterns, formed when monochromatic
radiation (X-rays, electrons, and neutrons) scatters after interacting with the atoms.
This is a basic tool of crystallography.

Once aperiodic structures of atoms with pure point diffraction were discovered
(for the first time in 1984), many mathematicians and physicists became interested in
knowing the structure of arrays of atoms having pure point spectra. Mathematically
we consider these atoms as points in R™. The pure point diffraction of a point set
gives us a glimpse of how nicely the point set is distributed over R™. But what is the
scientific interpretation of this “nicely”? Many researchers have wondered about this
and worked on it. Yet at the present it is still a mystery.

There is a general theorem by M. Schlottmann which says that any model set,
a term which will be defined later, is pure point diffractive (see Theorem 2). This
naturally raises the question of what the model sets are concretely. In this thesis,
we find the equivalent and practical conditions for certain discrete point sets of R?,
created through lattice substitution systems, to be model sets. In this way we get
large collections of discrete point sets which have pure point diffraction.

There has been a lot of work on the connection of discrete point sets and pure
point diffraction. But so far much of it has stayed in the domain of 1-dimension (or
sequences) or in point sets coming from 2-dimensional tilings. In this thesis no such
assumptions are necessary, and so it could be considered as a good place to let our
viewpoint turn to the space R" for general n.

In the subject of long range aperiodic order, there have been two main approaches
to building discrete mathematical structures. One is the substitution method and the
other is the cut and project or model set method. In the first case the structure is
generated by successive substitution of a finite configuration. In the second it is
formed by the projection of a lattice from some higher dimensional embedding space.
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We get to connect these two methods in this thesis.

We start with a finite number of point sets which are generated by some substi-
tution system (®) and are invariant under ®. The main theorem gives the criteria
for these point sets to be model sets.

The connection between substitution systems and cut and project sets is nothing
new. The Fibonacci chain is often described in terms of a cut by a strip through Z2.
Nonetheless the relationship between them remains very inadequately understood.

The terminology of model set in the cut and project theory originated in Meyer’s
work which actually predates the subject of aperiodic order. In his work he replaced
the internal space R? in the cut and project scheme by any locally compact abelian
group. Since our internal space is p-adic type space, not R?, we use Meyer’s termi-
nology here in deference to its priority and to emphasize the greater generality of the
internal space.

Of relevance to this work is Dekking’s criterion which says that the equal length
aperiodic tiling in 1-dimension is pure point diffractive if and only if it admits a
coincidence. Dekking’s approach was through the dynamic systems. Here we are
working on n-dimensional objects using purely algebraic and topological tools. Our
result implies that if a substitution system ® admits a coincidence, then it is pure
point diffractive. We do not know yet to what extent the condition is equivalent to
pure point diffractivity.

The setting of the thesis is entirely at the level of point sets, so necessarily the
strong conditions implicit in the tiling situation are replaced here by a corresponding
algebraic condition on the lattice substitution system: the Perron-Frobenius eigen-
value of the lattice substitution system should equal the determinant of its inflation.
This is in fact a compatibility condition which is necessary for the model set connec-
tion to exist.

We now present a brief overview of the thesis.

Chapter 2 contains quite a few definitions and most of the basic notation. It makes
theorems have a nice shape. One can come back to here to recall the terminology
which we use in the next chapters. The major part here consists of some results about
Perron-Frobenius(PF) theory and a nice theorem about boundary measure using PF
results.

In Chapter 3, we introduce the cut and project scheme, based on projection into
R™ from a lattice in some higher space R™ x G, where GG is some locally compact
abelian group, the projection being controlled by a relatively compact set W C G.
If a set in R™ is controlled by a nonempty compact set W C G, it is called a model



set. We will learn concrete definitions of model sets and the regular model sets in
this chapter. We make use of the boundary measure 0 result, which we will obtain
in Chapter 2, in the main theorem. The theorem gives the equivalent conditions for
a discrete point set to be a regular model set in the context of lattice substitution
systems. One of these conditions is checkable by computation and so provides a
practical method of checking for pure point diffractivity.

In Chapter 4, there is an interesting example to which the main theorem can
be applied. It is called a sphinx tiling. The sphinx tiling is claimed in [18] as
being provable to have pure point diffractivity by a geometric form of “coincidence”
established there. We show how to construct the sphinx tiling in R? and how to make
the computational matrix to which we can apply our criteria. The result is that the
sphinx tiling is pure point diffractive.

In Chapter 5, we introduce the new concepts of coset part and total index. This
brings us to regular model sets again and is nicely connected with what we established
in Chapter 3. We can learn that the existence of just one coset in our set-up with a
substitution system means that the lattice is almost covered by cosets.

In Chapter 6, we show how the theorem in Chapter 5 can be applied to a chair
tiling. The chair tiling is a famous example in the subject of aperiodic structures.
It has been established for n = 2 previously in [18],[4] that the chair tiling in R? is
a regular model set. But for the first time we establish this result for the general
chair tiling in R™ This is helpful to understand the structure of the chair tiling as
an aperiodic object. It turns out that the chair tiling is also pure point diffractive.

Although diffraction underlies the motivation of this work, our approach through
model sets and Schlottmann’s theorem makes it unnecessary to know anything about
it. Still, for the convenience of the reader we have included an Appendix which
provides the main definitions and concepts behind diffraction.



Chapter 2

Preliminaries

2.1 Definitions and Notation

We introduce a matrix function system (MFS) on a set X. It looks like a matrix,
but its entries are a set of functions and the product of two MFS is formed by the
composition of functions at corresponding entries in the matrix. The corresponding
substitution matrix S(®) of MFS (®) is an ordinary number matrix which is made

from &.

Let X be a nonempty set. For m € Z,, an m x m matriz function system (MFS)
on X is an m x m matrix & = (®;;), where each ®;; is a set (possibly empty) of
mappings X to X.

The corresponding matrix S(®) := (card(®;;)):; is called the substitution matriz
of ®. The MFS is primitive if S(®) is primitive, i.e. there is an { > 0 for which S(®)’
has no zero entries.

In this paper we deal only with MFSs which are finite in the sense that card(®;;) <
oo for all 7, 7. Of particular importance are the Perron-Frobenius (PF) eigenvalue and
the corresponding PF eigenvector (unique up to a scalar factor) of S(®). We will also
have use for the incidence matriz I(®) of ®, which is defined by

(I(8)):;; = { (1, Zsefa'rd(%) #0

Let P(X) be the set of subsets of X. Any MFS induces a mapping on P(X)™ by
: : (1)
Un Uj Ufgb,,,j f(U;)



which we call the substitution determined by ®. We sometimes write ®;;(U;) to mean
Uress, F(U3)-

In the sequel, X will be a lattice L in R"™ and the mappings of & will always be
affine linear mapping of the form z — Qz +a, where @ € Endz(L) is the same for all
the maps. Such maps extend to R". For any affine mapping f : z — Qz +bon L we
denote the translational part, b, of f by ¢(f). We say that f,g € ® are congruent mod
QL if t(f) = t(g) mod QL. This equivalence relation partitions ¢ into congruence
classes. For a € L, ®la] :={f € J;; ®;; |t(f) =amod QL }.

We say that ® admits a coincidence if there is an 7z, 1 < ¢ < m, for which

;'n=1 ®;; # 0, i.e. the same map appears in every set of the i-th row for some i.
Furthermore, if ®[a] is contained entirely in one row of the MFS(®™) for some
M > 0,a € L, then we say that (U, ®) admits a modular coincidence.

Let &, ¥ be m x m MFSs on X. Then we can compose them :

Tod = ((¥od);), (2)

m \Di‘v € Oy;
where (¥ 0 @);; = Uiy ik © Bij and Wi 0 By; := { %go flfI\IS/,Le— 0‘0{ @yki]é)
ik — 73— ¥

Evidently, S(¥ o ®) < S(¥) S(®) (see (10) for the definition of the partial order).
For an m x m MFS &, we say that U := [Ui,---,Un]T € P(X)™ is a fized point
of @ifdU =U.

2.2 Substitution Systems on Lattices

Several properties of a profinite group are presented. The reader can just think
of the familiar group Z7 (p-adic integer) for the profinite group. We will consider a
map from a lattice L in R™ to its profinite completion L. Then a function f with
inflation Q in L will be a contraction in L. This gives us a fixed compact set, called

an attractor, in L.

Let L be a lattice in R®. A mapping Q@ € Endz(L) is an inflation for L if
det @ # 0 and

o

() QL = {0}. (3)

k=0



Let Q be an inflation. Then ¢q := |det@| = [L : QL] > 1. We define the @Q-adic

completion

L=Tq=lim L/Q"L (4)

of L. L will be supplied with the usual topology of a profinite group. We have a
natural extension of @ on L such that QL = limcy QL/QFL. In particular, the
cosets a + Q¥L, a € L, k = 0,1,2,---, form a basis of open sets of L and each of
these cosets is both open and closed. When we use the word coset in this paper, we
mean either a coset of the form a + Q*L in L or a + Q*L in L, according to the
context. An important observation is that any two cosets in L are either disjoint or
one is contained in the other. The same applies to cosets of L.

We let y denote Haar measure on L, normalized so that x(L) = 1. Thus for
cosets,

— 1 1
AT
pla+@Q°L) = | det Q% g’ (5)
We also have need of the metric d on L defined via the standard norm:
1 — —
el = i =€ QT\Q™'T, o] =0. (6)

From N2, @*L = {0}, we conclude that the mapping z — {z mod Q*L} embeds
L in L. We identify L with its image in L. Note that L is the closure of L, whence
the notation.

An affine lattice substitution system on L with inflation Q is a pair (U, ®) con-
sisting of disjoint subsets {U;}72, of L and an m x m MFS ® on L for which
U=[Uy, - ,Un]T is a fixed point of ®, i.e.

Ui=U Uf(UJ)7 i=l,---,m, (7)

Jj=1 fe(pi]

where the maps of ¢ are affine mappings of the form z — Qz +a, a€ L , and in
which the unions in (7) are disjoint. In this paper all our matrix function systems are
composed of affine mappings on a lattice and we often drop the words ‘affine lattice’,
speaking simply of substitution systems.

We say that the substitution system (I, ®) is préimitive if ® is primitive. A second
substitution system (U, ¥) is called equivalent to (U7, ®) if U' = U, ¥ and ® have the
same inflation, and S(¥), S(®) have the same PF-eigenvalue and right PF-eigenvector
(up to scalar factor).



Let (U, ®) be a substitution system on L. Identifying L as a dense subgroup of L,
we have a unique extension of ® to a MFS on L in the obvious way. Thus if f € ®;;
and f : z — Qz + a, then this formula defines a mapping on L, to which we give the
same name. Note that f is a contraction on L, since [|Qz|| = %Hz” for all z € L.

Thus ® determines a multi-component iterated function system on L. Furthermore
defining the compact subsets

I’Vi:;‘ﬁi-, i=1,---,m, (8)
and using (7) and the continuity of the mapping, we have
m=U Uf(VVt‘I)a i;—‘l’"',m’ (9)
J=1 f€Pij

which shows that W = [W7, - -+, Wi,]T is the unique attractor of ® (see [3],[8])-

We call (W, ®) the associated Q-adic system. We cannot expect in general that
the decomposition in (9) will be disjoint, so we do not call (W, ®) a substitution
system.

2.3 Perron-Frobenius Theory

Perron-Frobenius theory has been used in mathematics and physics extensively,
since non-negative matrices are so prevalent and the properties of eigenvector and
eigenvalue are so powerful when we deal with a matrix. We state a couple of the
results from this theory.

For X,Y € R", we write

X<Y if
X<Y if

Similarly, for A, B € M,(R)

ASB if A,‘jSB{j fora,lllgi,jgn
A<B if A,’j(B,‘j forall 1<7,7<n.

Y; foral 1<i<n
Y; forall 1 <1< n.

X;: <
X: <
(10)
We begin by recalling a couple of results from the Perron-Frobenius theory.
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Lemma 1 Let A be a non-negative primitive matriz with PF-eigenvalue A. If 0 <
AX < AX, then AX =AX.

PROOF : We can assume X # 0. Since0 < AX and A >0, X > 0. Let X'’ >0 bea
PF right-eigenvector of A. Let o = max{ % Xi]1<i<m}. Then X < aX’and X is
not strictly less than aX’. Claim X = aX'. If X # aX', then 0 < AN(aX' -~ X) =
aAV X' — ANX for some N, since A is primitive. So AN X < AVX < aAV X', ie.
X < aX'. This is a contradiction. Therefore AX = AX. a

Lemma 2 Let )\ be the PF-eigenvalue of the non-negative primitive matriz A and p
be an eigenvalue of a matric B where 0 < B< A. If A # B, then |u| < A.

PROOF : Let Y be a right eigenvector for eigenvalue p of B, w1th Y =[Y, -, Ya]T.
Let Y = [|Yi],---,|Ym|]T # 0. Then [p|Y < BY < AY. Let X’ be a posmve left
eigenvector for A with PF-eigenvalue A. So |,u|X Y < X'BY < XTAY = \X'Y.
This shows that |z| < A. If [u] = A, then \Y < AY. By Lemma 1, \Y = AY.
Since A is a primitive matrix, A™Y = A™Y > 0 for some m. So Y > 0. From
AY < BY < AY = \Y, we have AY = BY. Therefore A = B. O

2.4 Primitive Substitution System and Boundary measure

We will see how the PF-theory is applied to real mathematical problems. One
particular condition on the PF-eigenvalue gives us good information about the PF-
eigenvector, of which coordinates are boundary measures in our problem. The bound-
ary measure 0 result is crucial information in our work below.

Lemma 3 Let (U, ®) be a primitive substitution system.
Then for alll =1,2,---, (U, ®") is a primitive substitution system.

PROOF : Let 1,5,k € {1,2,---,m}. Allthe maps g € ®;x have domain Uy and disjoint
images in U;. Moreover all the mappings g are injective. Likewise all the maps f of
®;; have domain U; and disjoint images in Ux. Thus all the maps go f € ®;0P;; have
domain U; and disjoint images in U;. Furthermore ®2U = ®(®U) = ®(U)=U. So
(U, ®?) is a substitution system. The argument extends in the same way to (U, ®).
The statement on primitivity is clear. a



Theorem 1 Let (U, ®) be a primitive substitution system with inflation Q on L.
Let (W,CI)) be the corresponding assoctated @Q)-adic system. Suppose that the PF-
eigenvalue of substitution matriz S(®) is |det Q| and L = |Jo, W;:. Then

(£) S()=(5(®)), r>1;
() u(Wi) = = 7 (S(@))u(W;), forall i=1,---,m, r 21
(2ii) wp(0W;) =0, forall i=1,---,m.

PROOF : For every measurable set E C L and all f € ®;;, u(f(F)) = u(Q(E)+a)
Id:—tqu(E), where f : z — Qz +a. In particular, p(f(W;)) = ; wj, where w; :=
w(W;) and q = |det Q|. We obtain

w; < Zqi, card((®")i;) w;

Jj=1
from (9).
Let w = [wy,-++,wn]T. Since UL, W; = L, the Baire category theorem assures
that for at least one 1,
Wi#0 (11)

and then the primitivity gives this for all 7. So w > 0 and
1
w < ql—rS'(@')w < E;S(q))'w, for any » > 1. (12)

Since the PF-eigenvalue of S(®)" is ¢" = |det @] and S(®)" is primitive, we have
from Lemma 1 that

w = L5(<I>')w = qLS(fl))"w, forany r > 1. (13)
qr r

The positivity of w together with S(®") < S(®)" shows that S(®") = S(®)". This
proves (i) and (ii).

Fix any 7 € {1,---,m}, let W; contain a basis open set a4+ Q"L with somer € Z>o
by (11). Simnce (U, ®") is a substitution system, a+ Q"L C W; C W; = Ui (7).
In particular, (a + Q"L) N g(Wy) # @ for some k € {1,---,m} and some g € (®");.
However ¢(L) = Q"L + b for some b € L,so (a+Q L)N (b+ QL) # @. This means
a+Q"L=>b+QL. Thus

gWiyCcg(l)=a+ QL W . (14)

9



For all f € (®7);;, 7 € {1,2,---,m}, f is clearly an open map, so U;."zl(@"),-j(vf/}) C
W: . Thus

oW = Wi\ W; = (0(@’»4%)) \ W

c U (@0 \ @)a08)
< U@sew;). (15)

Note that due to (14) at least one g in (®7);; does not contribute to the relation (15).
Let v; := u(0W;),i = 1,---,m and v = [v1, -+, vm]T. So v < q%S((D')v.
Actually, by what we just said,

1 1 1
0<v<=Sv<=8(®)v=—5(P) v, (16)

q q q
where §' < S(®)7, 5" # S(®)". Now applying the Lemma 1 again we obtain equality
throughout (16). But by Lemma 2 the eigenvalues of ;'175’ are strictly less in absolute

value than the PF-eigenvalue of ;1175 (®)", which is 1. This forces v = 0, and hence
p(OW;)=0,i=1,---,m. a

10



Chapter 3

Model Sets

3.1 Basic Definitions

Let us recall the notion of a model set (or cut and project set). A cut and project
scheme (CPS) consists of a collection of spaces and mappings as follows;

R* & R*"'xG B G
U (17)

L

where R™ is a real Euclidean space, G is some locally compact Abelian group, and
L € R*x G is a lattice, i.e. a discrete subgroup for which the quotient group
(R™ x G)/L is compact. Furthermore, we assume that 71|z is injective and wo(L) is
dense in G.

A model set in R™ is a subset of R™ which, up to translation, is of the form
A(V)={m(z) |z € L,m(z) € V} for some cut and project scheme as above, where
V' C G has non-empty interior and compact closure (relatively compact). When we
need to be more precise we explicitly mention the cut and project scheme from which
a model set arises. This is quite important in some of the theorems below. Model sets
are always Delone subsets of R", that is, they are uniformly discrete and relatively
dense. This means that there are radii r, R > 0 so that each ball of radius r (resp.
R) contains at most (resp. at least) one point of A.

We call the model set A(V) regular if the boundary dV = V'\ {; of V is of (Haar)
measure 0. We will also find it convenient to consider certain degenerate types of
model sets. A weak model set is a set in R™ of the form A(V) where we assume only
that V is relatively compact, but not that it has a non-empty interior. When V has
no interior, A(V') is not necessarily relatively dense in R™ but regularity still means
that the boundary of V is of measure 0.

11



3.2 The Main Result

We start this section by recalling M. Schlottmann’s theorem. This makes a natural
link with our theorem.

Theorem 2 (Schlottmann [17]) If A = A(V) is a regular model set, then A is a pure
point diffractive set, i.e. the Fourier transform of its volume averaged autocorrelation
measure ts a pure point measure.

a
It is this theorem that is a prime motivation for finding criteria for sets to be

model sets.
Now let (U, ®) be a substitution system with inflation Q on a lattice L of R™ and
let L be the Q-adic completion of L. This gives rise to the cut and project scheme.

R* & R*xI % T

~ 18
L L — L (18)
t — (t,t) — t

where [ := { (t,t) |t € L} C R™ x L.

We claim that (R" x L)/ L is compact. Since (R® x L)/L is Hausdorff and satisfies
the first axiom of countability, it is enough to show that it is sequentially compact [9].
If {(zi,2:) + L} is a countable sequence in (R™ x L)/L, then there is a subsequence
{(z:,2:) + L}s with {z; + L}s convergent sequence, since R*/L is compact. We can
rewrite {(z;, z;) + f,}s as {(z;, z;) + .I:J}s, where {1::-},-55 converges to z in R™. Since L
is compact, there is a convergent subsequence {z;}¢ to some z in L. Thus {(z;, z;)} &
converges to (z,z) in R® x . Therefore (R x L)/L is sequentially compact.

Note also that L is discrete in R™ x L, m;|; is injective and 72(L) is dense in L.

We have a discrete point set U; and want to see if it is a model set. Then we
project this down to the internal space. Although it satisfies the condition in the
internal space to be a model set, it is important to get our original point set back
(up to a set of measure 0) when we bring this set over to R® which our original point
set lies in. Let’s call this new point set A;.

12



In the sequel, the central concern is to relate the sets U; and the sets A; := W;NL.
Clearly A; D U;. The next lemma groups a circle of ideas that relate this question to
the boundaries and interiors of the W;.

Lemma 4 Let U;,i = 1,---,m, be point sets of the lattice L in R™. Identify L and
its image in L. Define W; :=U; and A; :=W;N L.

(i) If Uy,...,Un are disjoint and u(A;\U;) = 0 foralli = 1,---,m, then Vg/’,
NW;=0 foralli #j.

(it) If L = J, U; and I/f/, N Vf/jz @ for all i # j, wherei,5 € {1,---,m}, then
ANU; c UL, 0W; foralli=1,---,m

(iti) If u(OW;) =0 foralli=1,---,m and \;\U; C U’»"_ OW;, then u(A:\U;) = 0.

7=1

PROOF (i) Suppose there are 7, 7 € {1,- ,m} with W N W;é (. We can choose
a€ (W N W)ﬂL smce L is dense in L and W N W is open. Choose k € Z, so
that a + q"L CI/V,- N VVJ Note that a + ¢*L C A; N A;. Then

U@AL) 2 ((e+¢" )\ U) U ((a + 4" L) \ U5)

D (e+¢*L)\ (UinUj)
= a+ qu, since the U;, t = 1,---,m, are disjoint.

So

> w(ANT) = w((JAND))
t=1 =1
> pla+4q°L)
> 0,
contrary to assumption.

(ii) Assume Vi)/', N I/f/j-—- @ for all 7 # j. Forany ¢ € {1,---,m},

(A,’\U;) C (U UJ) NW;, sincel = O U;

J# =1
c Uwinwi)c|Jow;, since Win W;=0 forall i # .
J¥#t =1
(iii) Obvious. O
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Lemma 5 Let U;,i =1,---,m, be disjoint point sets of the lattice L in R". Identify
L and its image in f. Let W; :=U; in L and \; :== W; N L. Suppose that u(0W;) =0
foralli=1,-

(i) If A; \U C U , OW; then, relative to the CPS(18), U; is a regular weak model
set when VV,- is empty, and U; ts a regular model set when VV,- is non-empty. s

non-empty.
(i) If L = U=, U; and each U; is a regular model set, then A\U: C U7, OW;
foralli=1,...,m

PROOF: (i) Assume that A;\U; C J7w, W, for all 7 = 1,---,m. Since u(dW;) =0

7=1

forallz=1,---,m,

u(We) = p(Wi) = p(W: \ | 0W;) (19)

=1

Consider any 7 with fo,# @. Since A; = W;N L, U; = V;N L where V; := W;\(A:\Us).
Now Vi DW; \UL, 0W;. The latter is open and non-empty. Thus Vi# 9 and
V; is compact. It follows that U; = A(V;) is a model set. Futhermore from Vf/,
\Uj=, 0W; C VC Vi ¢ Vi = W; and (19), u(Vi\ V;) = 0. So U; is a regular model set
for the CPS (18).

(ii) Suppose that ‘0/75 0, p(V:\ Vi) = 0, where U; = V NL,and L = U}"IU-
Then from A\U; = A(W)\A(V;) C Wi\V; C Wi\ V V\ Vi, we have u(A\U;) =0
for all ¢ = 1,---,m. By Lemma 4 (i) and (ii) , I/V,- N I/VJ-_. 0 for all ¢ # j and
AAU}CLJ;J8WG. d

Theorem 3 Let (U, ®) be a primitive substitution system with inflation Q on the
lattice L in R™. Suppose that the PF-eigenvalue of substitution matriz S(®) is|det Q|
and L =JI-, U;. Then the following are equivalent.

(i) there is a primitive substitution matriz U admitting a coincidence, where (U, )
is equivalent to (U,®M) for some M > 1.

(ii) The sets U;, i = 1,---,m, of U are model sets for the CPS (18).

(iii) For at least one i, U; contains a coset a+ QM L.

(iv) (U, ®) admits a modular coincidence.

PROOF :
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(i) — (ii): Suppose that (I, ¥) admits a coincidence and is equivalent to (U, M),
Fix i € {1,---,m} with N2, ¥;; # 0 and let g be in this intersection. Recalling
equation (9), and in view of the choice of g, we have

p(Wr) < (Z > #(f(Wj))) — u(g(Wi) N g(W1)) ,

J=1 feW¥;;

for any k,[ € {1,---,m} with k # . On the other hand, from Theorem 1 (ii)

w(W) = q—L—z(S(w))ﬁu(Wi) =3 S w(FW). (20)

i=1 J=1 fev,

Thus, in fact, u(g(Wi) N g(W;)) = 0 whenever k& # [. It follows at once that fok
N VOV1= @ for all k # [, since the measure of any open set is larger than 0.

Recall that Vf/',# 0 and p(@W;) =0 foralli = 1,---,m . Then by Lemma 4(ii)
and Lemma 5, U;, 7 = 1, - - - ,m, are model sets in CPS(18).

(ii) — (iii): Assume that U;,7 = 1,---,m, are model sets in CPS(18), i.e. U; =
A(V;) = V;N L for some V; with ‘o/l# @. Thus there is a coset a + QML CXO/; and,
since we can always choose the coset representative from the dense lattice L, we can
arrange that a + QML C U;.

(iii) — (iv): Assume that for at least one ¢, U; contains a coset a + QML. Fix
;. Iterate ® M-times. Then each function f in the substitution system & has the
form f:z — QMz +b. For each 7, let G; :={ f € (8™);; | t(f) = a mod Q¥ L}.
(Recall that ¢(f) is the translational part of f). From U; = UL, Useeony,, f(Ui), we
obtain a + QYL C UL, Useg, f(U)- In fact

a+Q"L=J | £y, (21)

J=1 feG;

since the right hand side is clearly inside a + Q¥ L. From the fact a + QML C U;, we
get ®M[a] = U, G; C U;’;I(QM )i;j. Therefore ®¥ has a row containing an entire
congruence class ®[al.

(iv) — (i): Assume ®M has a row, say i-th row, containing an entire congruence
class ®M[a]. Let G; := ?M[a] N (<I)~M);j. Then UL, Useg, f(Uj) Ca+ QML. Recall
that |J_, U; = L and U = ®M(U). It follows that the elements of a + QML can
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be obtained from the substitwtion system " only from the mappings of ®¥[a], and
indeed they must all appear as images of the mappings of ®[a]. Thus

e+Q¥L=J | F(U;) CU:. (22)
Jj=1 fEG;
On the other hand,
a +QYL={]QM(Uj) +a, (23)
=1

which is disjoint union.

We now alter our substitution system ®* as follows: Define g : L — L by
g(z) = @Mz + a. We may, by restriction of domain, consider g as a function on
Uj, =1,---,m. We define & by

{ Ty = (M) \ Gi) U{g}
Uy = (®M); fk#1,

for all j. From (22) and (23)), the ¥;;,7 = 1,---,m consist of maps from U; to U;
and have the same total effect on U; as the (®¥);;,7 = 1,---,m. Thus ((7,\11) is a
substitution system admitting a coincidence.

Since S(®™) is primitive,, the incidence matrix [(®) is primitive. Then /()
is also primitive, since [(®M ) < I(¥). So ¥ is primitive. In addition, ¥ has the
inflation QM for L which is am inflation in ®M.

We claim that S(¥), S(®M") have the same PF-eigenvalue and right PF-eigenvector.
Then (U, ¥) is equivalent to I/, ®M).

We verify first that W‘}k N I/{/'J: @ for all £ # j. We can assume that m > 1, since
there is nothing to prove whe=n m = 1. Let g € G; = (®M)a[a] # 0 for some [. Take
any k € {1,---,m}. There is My € Z, for which (®Me); # 0. Choose f € (®M0).
Let g: ¢ — QMz + a,, where: a; = a mod QM™L, and f : z — QMoz + b with b € L.
Then go f : z — QM+Moz 4 QQMb 4 q,. So go f € (@M+Mo),[a; +QMb). Furthermore
(a1 + QMb) + QM+Mo(L) Can + QML C U.

Let N := M + My, c:= am + QMb, andp := g o f. Note that

c+Q¥L =) | aUy, (24)
j=1 heH;

where H; = (®V);;[c].
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There are at least two functions in (J7_, Hj, since U; # L for all j. We can write
c+ QVL in the form

c+QVL=J{Q"U;j + QVon+c|je{l,---.mlh€ Han€ L},  (25)

where we have used the explicit form of each of the mappings A € H;. This union
is disjoint, and as a consequence the elements ay € L for h in any single H; are all
distinct. In particular we have o, coming from H. From (25) we have

L=U U (Uj + aw) (26)
=1 heH,
and separating off Uy,
L—_-UL.UU U(Uj-i-ah—ap), (27)
Jj=1 heH;

where H := H; if j # k and Hj := H;\{p}. Again these decompositions are disjoint.
But we also know that Uy and U’,’;;c U; are disjoint, and it follows that

m

Uvuic U U (U + an — o).
=1 J=LheH]
J;ék
Taking closures,
UwiclU U Wi +an—e). (28)
i=1 J=l heH]
i#k y

On the other hand, if we apply Theorem 1(ii) to ®" and look at (24) we see that

ple+Q D) =3 D" u(h(W5) =D > w@Q(W; + an) +¢),

j=1 heH, j=1 heH,
and hence
Z ST uWi+an) =YY u(W;+on— o).
j=1 heH; j=1 heH;
Thus

p(L) = p(Wi) + (E > p(Wi+an — ap))

j=1 hGH’
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which, after taking closures in (27), gives

p(W@ﬂ(CJLHW}Hm—aﬂ>)=O. (29)

7=l h€H;

Finally from (28) and (29) we obtain

m

u(VkaW(LJ W;)) =0,

] 1
1#k

from which Wofk N Vf/}z @ for all & # j. This establishes the claim.
Now

#(UQ(VVJ‘)> = !—d—e—tlQ_M—l#(UH/})
i=1 j=1

1 = i
g 2o M),

from ﬂ(aW,) = O’ I’ffi M I/iolj: @ for all 2 # j
D " ulg(wy)). (30)
=1

Again using Theorem 1(ii), this time for ™ we obtain

1

= faage "

w

where w = [u(W,),...,u(Wx)]T. The part of this relation in W; which pertains to
the coset a + QML is

wa+ Q") =3 Y w(F(W;). (31)
Jj=1 feG;j
But from (23)
pla+QYL)=p (U g(Wj)) : (32)
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Together, (30), (31), and (32) show

1

w

Since w > 0 and S(¥) is primitive, S(¥) has PF-eigenvalue |det QM| and PF-
eigenvector w as required. O

Remark: Let A = {a;,...,am} be an alphabet of m symbols and let o be a
primitive equal-length alphabetic substitution system on A, that is,
(i) o: A — A? for some q € Z;

(ii) the m x m matrix S = (Sij), whose 7, j entry is the number of appearances of

a; in o(a;), is primitive.

According to Gottschalk [7], for some iteration o* of o, there is a word w € A%
which is fixed by o in the sense that

Il

oF(wow; - . .)
o wowoy) = LLw_ow_, .

WoW1y - . -

(33)

Replacing o* by ¢ and ¢* by ¢ if necessary we can suppose that £ = 1, and assume
then that o(w) = w.

We can view w as a tiling of R by tiles of types ay,...am, all of the same length
1. If we coordinatize each tile by its lefthand end point so that w; gets coordinate
[, then we obtain a partition Uy U ...UU,, of Z and an m X m matrix substitution
system @ of g-affine mappings derived directly from o: namely, ca; = a;, .. .a;, gives
rise to the mappings (z —> gz +{—-1) € ®;;,({=1,...,q.

We take as our cut and project scheme

R «— RxZ, — Z,

U
Z «— Z — Z (34)
z ¢— (z,2) — =z

(see 18), where Z, is the g-adic completion of Z.

A ccording to Theorem 3, the U; are model sets for (34) if and only if for some
iteration oM of o, there is a k € Z for which all the mappings f; : z — ¢z + [ with
[ = k& (mod ¢M) lie in one row of M.
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Since oMa; has g™ letters in it, there are ¢ mappings in the jth column of
®M_ Furthermore, since the letters of c™a; are represented by contiguous tiles, their
coordinates fall in a range of consecutive integers, and so the mappings of the jth
column of ®M are the maps f;, where 0 <! < g™, in some order. In particular, all of
the mappings in &M are of this restricted form. It follows that modular coincidence
is equivalent to the existence of a row of ®, say the ith row, and a k, 0 < k < ¢,
so that fi belongs to each of ®X,..., &M .

This condition precisely says that there is a k so that the kth position of o™ (a;)
contains the same letter a; for all 7. This is the well-known coincidence condition of
Dekking [6], and he has proved that for non-periodic primitive equal-length substitu-
tions, this condition is equivalent to pure point diffractivity. It is straightforward to
show that S(®) has its PF-eigenvalue equal to |det @|. Thus we have

Corollary 1 Let o be a primitive equal-length (= q) alphabetic substitution with a
fized bi-infinite word w, and assume that w is not periodic. Let ® be the corresponding
matriz substitution system and let Z = Uy U ... U U, be the corresponding partition
of Z.. Then the following are equivalent:

(i) there is an M so that o™ has a coincidence in the sense of Dekking;
(it) ® has a modular coincidence;
(iit) the U;’s are model sets for (34);
(iv) the U;’s are pure point diffractive.

We note that this interesting equivalence of model sets and pure point diffractivity
is more than we can yet prove in the higher dimensional substitution systems.
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Chapter 4

Sphinx tiling

In this section we take up the sphinx tiling. This is a substitution tiling whose
subdivision rule is shown in Figure 1 and Figure 2.

Figure 2: Sphinx Inflation [Type 2]

It has 12 sphinx-like tiles (up to translation). If we choose a single point in the
same way in each sphinx then we arrive at 12 sets of points. We wish to show that
each of these sets is a regular model set. Actually we make a slight alteration to this,
choosing several points from each tile, but this is equivalent to our original problem.

Each sphinx can be viewed as consisting of 6 equilateral triangles of two ori-
entations. In this way, any sphinx tiling determines a tessellation of the plane by
equilateral triangles. We consider the centre points of the triangles of one orienta-
tion. These clearly form a lattice L, once we have chosen one of them as the origin.
Note that some sphinxes have two points and others have four points in L. We give
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names at each tile and the points in it as shown in Figure 3. Then the 12 types of
sphinx partition L into 36 subsets forming a matrix substitution system. We show
that these are model sets for a 2-adic-like cut and project scheme of the form of (18).

12

Figure 3: 12 Sphinx Tiles

With the origin as shown, the coordinates are chosen so that in the standard
rectangular system (1,0) is the lattice point directly to the right of (0,0). It is more
convenient to replace this by an oblique coordinate system: L = { ae+bw | a,b € Z},
where e = (1,0),w = (3, @) in the standard rectangular system and relative to this
basis we can identify L and Z? and denote ae + bw by (a,b). The basic inflation
shown in Figure 1 gives rise to the map

T:z+— 2Rz 4+ (1,0),

where R is a reflection in R? through z-axis, i.e. in the new coordinates, R(1,0) =
(1,0), R(0,1) =(1,-1).

The various types of points are designated by letter pairs ic, where i € {1,---,12}
and a € {a,---,d} (of which only 36 actually occur). Let U;, be the set of points of
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type ic. On the basis of this we can make mappings of each point set to other point
set.

Define
hi:z—Tz+(0,0), h:z+— Tz+(1,0)

hs:z— Tz +(0,1), hy:z— Tz+(-1,1)
hs :z— Tz +(-1,0), he:z— Tz+(0,—1)
hr:z— Tz + (1,-1), hg:z— Tz +(2,—1)
hg :z— Tz + (—1,2), hip:z+— Tz+ (-1,-1).

Let fiojs be the function which maps j3-point set into za-point set.
[Type 1]

foara=hs:z—= Tz + (—1,1), fiaws=ho:z—~Tz+(1,0)
fovra =ho iz T+ (=1,2), fus=hi:z—Tz+(0,0)
Jocta=hz:z =Tz +(0,1), fiare=hs:z—=Tz+(-1,0)
fodia = hs: z |—)T.’I}+(1,0), fap1s = h:z '_)Tl'-f'(—l,—l)
fiarta=h1:2> Tz +(0,0), ficie =he:z— Tz +(0,-1)
fiwia=he 1z =T+ (0,-1), fuaro=~hr:z—Tz+(1l,-1)
ficta=h7:z— Tz +(1,-1),

fidia =hs 2= Tz +(2,-1).

[Type 2]

f12a4a=h1:l‘l—+T$+(0,0), f1a4b=h22$l—>Tl‘+(l,0)
fizbaa =hg:z— Tz +(—1,1), fisas=h,:z— Tz +(0,0)

faasce =h1: 22— T$+(0,0), fiaad = b1 I-T*'—)T:B-i-(o,O)
f4b4°:h’6:$HT$+(0a_1)’ flb4d=h5:$*‘+T$+(—l,O)
f4c4c = h?’ rx— Tx + (]., —1),

fadae =hg:z— Tz 4+ (2,-1).

All points in a sphinx having 2-points in it are mapped as in [Type 1] changing
the translation part according to the orientation of the sphinx relative to sphinx 1.
Likewise, all points in a sphinx having 4-points in it are mapped as in [Type 2] relative
to sphinx 4.

Now we can list the 36 x 36 matrix(®) of affine mappings that make up our
substitution system (Figure 4).

We can check that S(®) has PF-eigenvalue 4 and is a primitive matrix and the
union of point sets is L. We used Mathematica to check that property (iv) in Theo-
rem 3 is satisfied in ®2 (it may actually be satisfied at some lower power). Certainly
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Chapter 5

The Total Index and Model Sets

5.1 Coset Part and Total Index

In this section we derive another criterion for determining when a partition of a
lattice is a partition into Q-adic model sets, the difference this time being that there
is no substitution system involved.

We assume that we are given a lattice L in R™ and an inflation @ on L as in
(3). The notation remains the same as before. The main ingredient is a non-negative
sub-additive function called the total index which is defined on the subsets of L and
its Q-adic completion L.

For any subset V of L the coset part of V is defined as

C(V):= U{C’ | Cis acoset inV }. (35)

The key point to remember in what follows is that two cosets in L(L) are either
disjoint or one of them is contained in the other.

Lemma 6 The coset part of V can be written as a disjoint union of cosets in V.

PROOF: If V contains no cosets, then the result is clear. Suppose V contains cosets.
Let C; = a; + Q'L be a coset in V with k; minimal. Consider V\C;. No coset
can be partly in C; and partly in V\C;. Thus, if V\C, contains no cosets, then
C(V) = C;. Otherwise let C; be a coset a; + Q¥ L with k; minimal in V\C.

Then C(V) D C, |J C.. We continue this process. Since there are only finitely
many cosets for Q¥L in L, either we obtain C(V) = C; |J --- |J C- for some r or

cv)yoc,yJyc: U ---, where k; < k2 < --- is infinite and unbounded. In the
latter case, C(V) = |J2, C: is our required decompostion. If not, there is a coset
C = a+ QFL in V such that C ¢ [J2, C:i. Then there is C; with ki_; < k < k;. This
contradicts the choice of C;. a
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For V C L, we call a decomposition C(V) = (J; C; of C(V) into mutually disjoint
cosets using the algorithm of Lemma 6, an efficient decomposition of V into cosets.
Let [L : C;] be the index of subgroup Q*L in L, where C; = a+ Q*L, a € L. In this
case we call ¢(V) := 5_.[L : C;]™! the total index of V. Since any coset is an efficient
decomposition of itself, we have c¢(V) = >_.c(C;). We will see shortly that the total
index is finite.

It is useful to note that an efficient decomposition of C(V') = |J; C; of C(V) into
cosets has the following special property: if D is any coset of V' then necessarily
D C C; for some 1.

Lemma 7 Any two efficient decompositions of C(V') are the same up to rearrange-
ment of the order of the cosets. In particular the total indez is well-defined.

PROOF: Let C(V) = |J C’ be a second decomposition of C(V') determined by the same
algorithm as in Lemma 6. Then with k; as in the Lemma, let Dy,---, D, be all the
cosets of V of the form a + Q¥ L. These are all disjoint and by the algorithm all
of them must be chosen in the decomposition of C(V), and they all occur before all
the others. Thus Cy,---,Cr and Cj,---,C] are Dy, -, D, in some order. Removing
these and continuing in the same way the result is clear. a

We have similar concepts in L. For W C L we have the coset part C*(W) of W and
C*(W) can be written as a disjoint union of cosets in W. Let C*(W) = J; D; where
D;, i =1,2,---, are mutually disjoint cosets in W. We call ¢*(W) := 3 ,[L : D;]~!
the total index of W. This time we do not need to be careful about the way in which
the decomposition is obtained since the total index is nothing else than the measure
w(C (W) of C*(W).

Given an efficient decomposition C(V') = |J;_, C: into disjont cosets in L, we define
C(V) := ., C: c L. This is actually an open set in L. Since [L : C] = [L : C] we
see that ¢(V) = ¢*(C(V)). In particular it follows that the total index of any subset
V of L is finite and bounded by u(C(V)).

Lemma 8 For X,Y C L and X C Y, and any decomposition C(X) = |J; C; into
disjoint cosets, Y. c(C:) < c(Y). In particular, c(X) < (Y).

PROOF: Assume first that Y is a single coset C'. Then

> C) =3 (@) = 3 (€ < u(€) = '(C) = <(C), (36)

{
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since the cosets remain distinct after closing them in L.

In the general case, let C(Y') = [J;_,C;} be an efficient decomposition of Y. Since
X CY,each C; C Y. In view of the remark above about efficient decompositions,
there is for each ¢ a unique j for which C; C C}. Thus we can arrange the C;’s so
that -

cx)=J U ¢ (37)
Jj=1l1i€A;

where A; := {{|C; C C}}. Now UieAJ C: C C}, so by the first part of the proof,
> ica, €(Ci) £ ¢(Cj). Finally

e(X) =) cCi) <D c(Cl) =e(Y). (38)

J f€A;

a

5.2 Total Index and Model Sets

Lemma 9 Let U;,7 = 1,---,m, be disjoint point sets of the lattice L in R". Let
A; = U;N L and C(U;) be the coset part in U;. Then Jo (A:\U:) € L\U~, C(Uy),
with equality if L = |J-, U;.

PROOF For z € |J-, C(U;) there is a coset C C C(U;) for which z € C C U;. Let
C =a+ QFL,a € L. Suppose z is a limit point of U; in L i.e. £ € A; for some
j # 1. Then, since a + Q*L is an open neighborhood of z, (a + Q*L)NU; # 0 i.e.
(a + Q¥L)YNU; # 0. But then U; NU; # @, contrary to the assumption. This means
z & U, (A:i\U;), proving the first part.

Suppose that L = (I, U; and =z € L but = &€ U, C(U;). Then z € U; for some
U; but there is no coset in U; which contains z. For any k € Z,., Bi(z) =z + Q*L
is an open neighborhood of z in L and L N Bx(z) & U;, by assumption. Since L =
UR, Ui, (LNB(z))NU; # 0 for some j # i. So we can choose z}, € (LN By(z))NU;.
Then we get a sequence {xi} convergent to z as k — oo. Choosing a subsequence
lying entirely in one A; shows that z € A; for some j # :. Since z € U;, and U;, U;
are disjoint, z € A;\Uj. O
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Theorem 4 Let U;,i =1,---,m, be disjoint nonempty point sets of the lattice L in
R™. Let C(U;) be the coset part in U;, c(U;) the total index of U;, and W; the closure
of U; in L. Then w,c(U;) =1 if and only if the sets U;, = = 1,---,m, are regular
weak model sets in the CPS(18) and L = | JI-, W;.
PROOF
(=>) Assume that ) ¢(U;) = 1. Let Unq1 := L\ J-; Um. Using Lemma 8 and the
fact that ¢(L) = 1, we see that ¢(Un+1) = 0 and S"7+! ¢(U;) = 1. For this reason we
can assume, in proving that the U; are weak model sets, that (J-, U; = L in the first
place.

For 7 # k the cosets of C(U;) (of which there may be none!) and those of C(Uy)

are disjoint from one another, and the same applies to C(U;) and C(Ui). Thus

m

? (U 5(&-)) =3 u@) =Y e =1,

=1 i=1 =1

r (f\(_U E(U,-») =0. (39)

Now note that dW; N UL, C(U;) = 0 for any j. If not let a € 8W; N C(Uy) for

some k. Since C(U;) C Wofk, we see that j # k. But a € Wj, so a is a limit point of
U; ,and C(U) is an open neighborhood of a, so U; N C(Ux) # @. This violates the
disjointness of the U;'s. We conclude that OW; c L\(Ur, C(U;)) and hence that

u(@W;) =0, (40)
for all 7 =1,...,m. Note also
ANU; C U(Aj\Uj)
=1

Cc L\ U C(U;) by Lemma 8

j=1
= L\{JCWwynL)y=L\|JCW;).

j=1 j=1

This shows that

p(ANU) < p (L\(U a(Uz))) S (—_\

1=1

s

5((/,-)) = 0. (41)

=1
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By Lemma 4(i) and (ii), V?f, N I/Oij 0 for all 7 # j and (A:\U:) € Ui, 0W; for all
i=1,---,m

Using Lemma 5(i) we obtain that the sets U;,7 = 1, -- -, m, are regular weak model
sets in the CPS(18).

Remark : Whenever Vf/;é @, U is actually a regular model set. Since |, C(U;) C
™ Wi, (U, Wi) = 1. Thus L\ U™, W; is open of measure 0 and L = | J.; Wi
This last argument does not require tha.t U:’;l U;=L.

(<«=) Assume that U; = A(V;) = V;N L where V;\ V has measure 0 and L = J.,

Thus U; c Vi and W; := U; C V.. Since L is dense in L and for z GV ea.ch ball
around z of rachus e>0 conta,ms points of V NnL cU;, 1t follows that U; DV This
proves that VC W; C V.. So ,u(V) p(W;) and p(Wi\ V,) = 0. Now

m

Uwi = % u(U(W\V)

=1 i=1

So p(Um, Wi) = (U, ,-). Also the disjointness of the U; gives ‘c}, N YZ-= 0 for
i # j (since L is dense in L). Finally

u(UW)_ﬂ(Uf/, Zﬂ(V) Z “(V3) <Zc(VﬂL)<Zc(U)<1

=1 =1 i=1

a

Corollary 2 Let (U, ®) be a primitive substitution system with inflation @ on the
lattice L in R™. Suppose that PF-eigenvalue of S(®) is |detQ| and L = |J-, U:.
Then Y oo, c(U;) = 1, where c(U;) is the total index of U; if and only if the sets
U;i=1,---,m, are model sets in CPS(18). a

PROOF Use Theorem 1 to determine that for all z,Vf/ﬁé @. Now use Theorem and
Remark in the proof. a.
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Chapter 6

Chair Tiling

The two dimensional chair tiling is generated by the inflation rule shown in Fig-
ure 5. There are 4 orientations of the chairs in any chair tiling. In [4] it was shown
that the chair tiling has an interpretation in terms of model sets based on the lattice
Z? and its 2-adic completion as internal space.

In this section we generalize this result to the n-dimensional chair tiling using the
results of the last section (see Figure 7 for an example of the 3-dimensional chair).
To make things clearer we begin with the case n = 2.

Figure 5: 2-dimensional chair tiling inflation

I. Chair tiling in R?

The starting point is to replace each tile by 3 oriented squares. Figure 6 shows the
inflation rule, for one chair, in terms of oriented squares. The resulting tiling is a
square tiling of the plane in which each of the squares has one of 4 orientations.
The centre points of each square form a square lattice which we identify with Z? by
assigning coordinates as shown.

Let U; be the set of centre points corresponding to squares of orientation (z) as
given in Figure 6.

We start out from a basic generating set A; := {(z,z2)|z: € {0,—1}} and
determine the precise maps for the substitution rules of Figure 6.
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Figure 6: 2-dimensional chair tiling substitution

Letting e; := (0,0),e2 := (1,0),e3 := (1,1),e4

as:

fii:

Ui = U; by (z,7) = (2z + €;,7)

= (0,1),

these maps are defined

ifj#£7+2

f(2) Ui = U; by (z,2) = 2z +ej,2) ifj=1+2

where 7,5 € {1,2,3,4},z € Z2, i1 +2 := {

1+ 2
1—2

if: <2
ifz > 2.

These are the maps of an affine substitution system ®. In fact, if we define

hy:z—2z+e, hy:

then
fl,l = hls

f2l = h27
(2)
33 &

f4,1 — h'47
and

f1,2 = hla
fa.2=ha,
f32 - h37
FE = ha,

{h1,hs} {h1}

{h2}
{}
{ha}

o =—

Inflating A, by the substitutions above we generate the 4 point sets U;,1

z+>r2x+ ey, ha:z— 2z +e3, hy:

{h2,he} {h2}

{hs}
{}

(2) = ha,
f2.3 - h’23
f3,3 = h37
f4,3 = h"h

{}

{h‘37 hl}

{h4}

1,2,3,4. The precise description of U; is as follows :

oo 2F-1

Uy
k=0 t=0

oo 2k—1

U U (0,0) +2%(2,0) +¢(1,1) + 2* - 42?)

z 2z + ey,

f14—h1

(2) _
22 =

faa= ha
f4,4 = h’4 )

{h:}

{}

{hs}
{h‘h h2}

u |J U 0,0) +2%(0,2) +¢(1,1) + 2% - 422) U U {¢(1,1)}

k=0 t=0
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U»

Us

co 2k-1
U U ((=1,0) +24(2,0) + ¢(—1,1) + 2¢ - 42?)

k=0 t=0

U lj Lj( —1,0) 4+ 2%(0,2) + ¢(—1,1) + 2¥ - 4Z%) U U{(o —1) +#(1,-1)}

k=0 t=0
oo 2k-1
U U ((=1,-1) +25(2,0) + t(—1, —1) + 2* - 4Z?)

k=0 t=0
D U ((0,—1) +25(2,0) +¢(1,—1) + 2~ - 42%)
k=0 t=0
e 2(0,2) + #(1, —1) + 2% - 4Z%) U G{(—1,0)+t( 1,1)}

U U U ((0’_1)+~
k=0 t=0
Each of these decompositions is basically into cosets, with the exception of three
trailing sets in types 1,2,and4 which we will designate by V;, V,, andV} respectively.

We can prove the correctness of this as follows
Let U{, U;, Us, U; be the sets on the right hand sides respectively. Note that
0,-1) €

(i) The generating set A, is contained in U adequately, i.e (0,0) € Uj, (0,

Uéa (_11 _l) € U{7 (-170) € U“,L

(ii) Claim that U} > U}, ®;U},i=1,2,3,4
Check that for any ¢,

oo 2F—1
h(U7) C U U U ((—e) + 2571 (2(ei — &)+
1=1 k=0 t=0
JFLIE2
2t(eixs — €;) + 2511 -4Z%) U V;
c U
co 2F—1
hiea(U7) € U U U (=e) + 2571 (2(ei — )+
k=0 t=0

=1

FEIRE A
(2t + 1)(6&2 — e,-) + ok+1 4Z2) ]



h,(UI,) C (—-261 + e + 4Z2) U(—2ei12 + e; + 4Z2)
C U!, wherel #1i,1£2, [ €{1,2,3,4}

(i) Ul,z= 1,2,3,4, are all disjoint.
Indeed wvithin each U}, all the cosets and the non-coset part are clearly disjoint.
And tweo cosets or non-coset sets chosen from U] and U}, where j # 7,7 £ 2,
cannot mntersect, since they are different by mod 2. Futhermore two of cosets
or non-coset sets chosen from U} and U}., cannot intersect either, since for
a+25-4Z2C Ul b+2'-4Z2 C U!,, with £ <[, a —b # 0 mod 2* - 4Z2.

Now since Uj.,U;, U}, Uy are generated from A, by &, U; C U] for all : = 1,2,3,4.
Also from |J&W; = Z2, we get | JU! = Z? . Since all U,7 = 1,2,3,4, are disjoint,
U;=U!forall:=1,2,3,4.

Finally, for any : = 1,2, 3,4,

o(U) > 2- _l .y L
k=0 t=0 (2k ) 4)2 k=0 16 ) (2 )2 4

Thus Z:;l c(&J;) = 1. Theorem 4 shows that U;,z = 1,2, 3, 4, are regular model sets.

IT. Chair ttiling in R"

In this sectiom we are going to generalize the foregoing to the n-dimensional chair
tilings for all n > 2. The n-chair is an n-cube with a corner taken out of it. The
inflation rule, which we spell out algebraically below, is geometrically the obvious
generalization: of the 2-dimensional case.

Figure 7: 3-dimensional chair tile

We transfoorm the geometry by replacing each chair by a 2" — 1 oriented cubes, as
before, and coeordinatize the lattice formed by the centres of the cubes, starting from
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the basic generating set A, := {(z1, - -, Zn)|z: € {0,—1}}. There are 2" orientations
of cubes and hence 2™ types of points (but only 2” — 1 of these types appear in the

starting set A,).
For each & > 0 let 3(k) be the binary expansion €, + €12 + €22 + --- of k,

e € {0,1}. We define the basic orientation vectors ey, ..., ezn by

o (€0y---,€n-1) the binary digits of B(z — 1) ifi <27,
L, .. 1) — eg_gnt if 7 > 2n-1,

We determine the sets U;, 7 = 1,...,2", of all i—type points in Z" from the points
of the basic generating set A,, using the inflation rules below.
The types of the points of A,, are as follows: for z = (z;,...,2,) € An,

when z, = —1 ;
z € U;, for which g(z—1) = (1,...,1) + z,
when z,, =0 ;

if z=(0,...,0), z€U,
otherwise, z € Urgn-1, for which B(i—1) = (1,...,1)—((L,...,1)+=z) .
The idea of considering our vectors in the form (1,...,1) + z is to make it easy

to compare them with the basic orientation vectors.
This conforms with what happens when n = 2: there are 2® — 1 types in the basic

starting set that are in 2"~! — 1 complementary pairs and 1 pair of vectors (0, . ..,0)
and (—1,...,—1) of the same type, namely of type 1.
Define

fii: Ui = U; by (z,7) = (2z +e5,7) if j#i£2"!
AU, 5 U; by (z,i) — (22 + e;,8) if j =14 2L,

a2

. -1 e on—1
o ) 1. Ji+2n ifz <2
where i,j € {L,---,2"}, z € 2", i £2" '—{ i—onl ifg > 9l

Let ® be the matrix function system. Define h; : z + 2z +e;,7 € {1,---,2"}.

1+2n—1

{hibipgon} (R} - O - )
b = :

an _on-—1

{han} {han} -+ {} -+ {han_gnsyhan)
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Inflating A, by the maps, we get the precise description of U; :

oo 2F—1

= U UU (o2

J=1 k=0 t=0

jFiiE2n—1
where - -
Ue—co {t(e1427-1 — €1)} ifi=1
Vi= ¢ U2 {t(e:i — eizan—t) + (—eipon—t)} if i 5 1,1 £271
0 ifi=1+2"1,

The equalities can be proved in the same way as in the 2-dimensional case.
Let U] be the set of the right hand side in (42). Note that

(i) The generating set A, is contained in U! adequately, i.e.

61EU{ ifz=1

—€izon—1 € U]

—e1tan-1 € U]

(ii) Claim that Uf D> J3, @

ifi#1,14201
ifi=142"1.

[ AN n
Uli=1,---,2"

Indeed for i € {1,---,2"}

hi(U;)

hiton—1(UY)

hi(U7)

-

co 2k—1
U U U (e + 25 (2(e: — )+
k=0 t=0
1¥#4, z:§:2"—
W (eipon—1 — €;) + 251 AZM) U V;
U’
oo 2F—-1
U U U (e + 25 (2(es — e+
=1 k=0 t=0
J#i, 1:!:2"""1
(2t + 1)(eizan—1 — &) + 25T -4Z™) U Vi
U!
(—261 +e; + 4Zn) U (—263:27:—1 + e + 4Zn)
U!, where [ #4,i 2" 1€ {1,---,2"}.
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(iii) Uf,i=1,---,2", are disjoint.
Indeed all cosets and a non-coset set in each U are all disjoint. And two cosets
or non-coset sets chosen from U] and U], where j # 1, 1+2""! cannot intersect,
since they are different by mod 2. Futhermore two of cosets or non-coset sets
chosen from U] and U], ,._, cannot intersect either, since for a + 2k . 47" C
Ul, b+2-4Z" C Ul yn with k<[, a—b # 0 mod 2~ - 4Z™.

ALE

Now since U!,i = 1,---,2", are generated from A, by ®, U; C U forall:=1,---,2
Also from U?;l U; = Z~, J2,U! = Z™ Since all Ul,i = 1,---,2", are disjoint,
U;=U]foralli=1,---,2".

Forany:=1,---,2",

co 2k-1
n s 1
c(Us) > (2™ — Z Z 2k = —-2)- Z 92n . (‘)k = on-
k=0 t=0 k=0

Thus Z -, ¢(U;) = 1. Theorem 4 shows that U;,7 = 1,---,2", are regular model sets.

To get a model set interpretation of the chair tiling itself we proceed as follows.
We observe that every arrow points to the inner corner of exactly one chair. Let
us label each chair by its inner corner point which is at the tip of exactly 2" —1

arrows. These corner points give us 2" sets Xj,..., Xn according to the type, and
all lie in the shift L' = (%,...,1) + Z" of our lattice Z*. Let fi,i = 1,...,2", be
(%, ..., 3) — & respectively. Then U; + f; is the set of tips of all arrows of type 7 and

Us + fi = L' 0 (Vi + f;), for some V; C Z™ = (Z2)" such that V; compact, V#— 0 and
#(0V;) = 0. Now
Xe=L'n( [} (G+£)

jFiEen—1

which is the required regular model set description of X;, since

o N i+mnc U a;+4£)
j#ixan—1 jitan—t
and p(A(V; + f;)) =0 for all j = 1,...,2"
From this result we can show that if we mark each chair with a single point in

a consistent way, then the set of points obtained from all the chairs of any one type
also forms a regular model set, and hence a pure point diffractive set.
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Appendix

A typical sample of material to be studied by diffraction may be thought of (at
least in crude terms) as a finite set A of points (atoms), z, each of which acts as a
scatterer (for the incoming radiation such as X-rays, electrons, neutrons) of certain
strength n(z). This gives rise to a measure s = D 4 n(z)é; called the diffractive
density of A, where 6, is the delta function such that é,(f) = f(z) with z € A
and f € C.(R3), which is the space of continuous C-valued functions with compact
support. Define the measure /i by i(f) = p(f), where f € C.(R3) and f(z) := f(—z).
The diffraction intensity of the sample A is, by definition, the volume averaged value
of |za|? ; namely

T A = Gy (=A@,
where the ~ indicates the operation of taking Fourier transforms.

This is supposed to describe the intensity per unit volume of the sample at each
point ¢ € R3. By Vol(A) we mean the volume of the region (a sphere, a cube, or
whatever) of space that the set A of atoms occupies.

Such quantities are only physically meaningful if they reach some stable limit
as the sample size Vol(A) tends to “infinity”. Thus we are led to determining the

autocorrelation measure

:=  lim  ————pua * s
Vol(a)—eo VOI(A)
and its Fourier transform

~ ; 1 —=
7= Vol VR 444
Convergence is in terms of the vague topology. Recall that a measure pu is the vague
limit of a sequence {u,} of measures if for any f € C.(R3 R), {u.(f)} — u(f)-

There is a technical issue here that we will not discuss further : does the shape
of the sample matter?

The autocorrelation measure v is a distribution of positive definite type. This
implies that its Fourier transform ¥ is a positive measure. So 75 converges to a
well-defined positive measure ¥, which is called the diffraction measure. ¥ actually

39



decomposes uniquely into three measures, which are absolutely continuous, singular
continuous and pure point measures respectively, i.e. ¥ = Yge + Vsing + Ypp- L
¥ = 9pp, then we say that F(and A) is pure point diffractive. Our primary interest
is understanding under what conditions A is pure point diffractive. We note that
at this point a “physical problem” has turned into a purely mathematical one, and
indeed we need no longer restrict ourselves to R3 but can work in R™.

Let us look at one example of a point set to study the positive diffraction mea-
sure. This example is the basis of the diffraction theory for periodic structures (i.e.
crystals). Consider a lattice Z™ in R™ and define p = >, 7n 6z, where &; is the delta
function such that 8:(f) = f(z) for all f € C(R™ R). Let p, = > _c.(r)nzn 0=+ Where
c(r) is the cube {(z1,...,zn) € R"| |z:| < r}. The autocorrelation of p, is p, x g,
where

(res)@) = [ [ ola+ o2 w), v € CRMR).

Then the volume averaged autocorrelation of p is

= lim _1_ * D,
TE S Vol(c(r))pr Pr-
Now
(prx8)(@) = (D &)x( D &)%)
z€c(r)NZ" y€Ec(r)ynzn
= Y (Gxd)(p)
z,y€c(r)Nzn
= > [ ] et oydsiude)
z,y€c(r)nzn Y R JR?
= Y [ ela+ )
z,y€c(r)nzn R
= > ¢l-y)
z,y€c(r)NZ"
= > b.y(p), where p € C(R™R). (43)
z,y€c(r)NZn
Thus

1 - 1
VB‘I’(C(_T))(pr*pr)(‘P) = (@) Z dz—y()

z,y€c(r)nNZn"
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= (27];)," Z 5:((19) -

z,z—zEc(r)NzZ™
z€Z™

Since any ¢ € C.(R™, R) has a compact support, this sum becomes independent of
once we reach a certain size ro (depending on ¢). So

> 8(0)

z,z—z€c(r)NZ"
z€Z™

is replaced by

Z Z 1] w(z).

z€c(ro) \z,x—zE€c(r)nZ™

Let

1
vp(2) = R Z 1
T,z—-zE€c(r)NZn
- . 1 —~ . - -
T'o get the vague limit of Vo (c(r))(pr * p,), we need only worl.\ out lim,_y vn(2).
Since z is fixed and r — o0, r can be assumed to be very large with respect to z. Let

r1 = |z|. From
(e(r—m)NZ™) C(e(r)NZ™) C (e(r +m)NZ™),
@ —r))* _ Lee—cenzn _ (2(r +r1))"
@r)r ~ (2r)» - @)
As r — 00, 1 < limre v-(2) < 1. Thus lim, ;o v-(z) = 1. Therefore,

v=nm—1—))(pr*p~,)(so) = 3 )

r—0 Vol(c(r cectrnzn

= > 9@

zZEZ"®
= 350,

z€EZ™
since ¢ has a compact support contained in ¢(rg). The diffraction measure which
we aimed for is the Fourier transform of this volume averaged autocorrelation. The
Poisson summation formula tells us that

T=(Q_ 8= 6.
zEZ™ z€Z"

So this is a pure point diffraction measure of the lattice on R™. O

41



