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Abstract

Method specialization is an optimization used to eliminate virtual call sites and 

open up opportunities for other compiler optimizations. Existing method special­

ization techniques do not explicitly handle dynamic class-loading or are suitable for 

a dynamic compilation environment. This thesis examines previous method spe­

cialization techniques and illustrates the transformations with a running example. 

These techniques are also reviewed to determine the applicability of each method 

for use in a dynamic compilation environment that support dynamic class-loading 

(such as Java). Additionally a new method specialization framework is given that is 

designed for a dynamic compilation environment and handles dynamic class-loading. 

Aspects that need to be examined when making method specialization decisions for 

a dynamic compiler are listed and analyzed. Finally numbers regarding opportuni­

ties for method specialization the SPECjvm98 and SPECjbb2000 benchmarks suites 

are listed and investigated.
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Chapter 1 

Introduction

1.1 Introduction

Object-oriented programming languages are a popular choice for programmers as 

they allow easy extensibility of programs, abstraction of concepts, and reusability 

of code. Object-oriented languages have become more popular than in the past as 

compiler optimizations — inlining [51], class hierarchy analysis [50], receiver-class 

prediction [65], and others — have improved the execution speed resulting in code 

that is often comparable with their procedural language counterparts.

Method specialization is a compiler optimization used to improve object-oriented 

language execution speed. Multiple method specialization implementations have 

been researched in multiple programming languages.

This thesis reviews method specialization techniques used in object-oriented 

compilers and describes a new framework that can be used with object-oriented lan­

guages that support dynamic class-loading (such as Java). To the best of our knowl­

edge, no publication has summarized and compared existing method specialization 

techniques, nor created a method specialization compiler optimization framework 

that explicitly handles dynamic class-loading.

The new framework discussed in this thesis has not been implemented yet. It is 

presented with the assumption that it would be implemented in the Jikes Research 

Virtual Machine [44]. We also use Java pseudo code for our running examples. While 

some the optimizations that we review were not intended for the Java language, we 

have chosen to display the transformation in Java for consistency. Additionally we 

state that the examples arc pseudo code as they are not made to be compiled and 

run on their own, but to illustrate the optimizing transformations.

1
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1.2 Known Compiler Techniques

Method specialization optimizations have been implemented in several programming 

languages, including: SELF [27], Sather [89], Trellis [101], C + +  [116], and Java [64]. 

Several of these method .specialization techniques have been extensively researched 

and published and therefore arc well known within the compiler community. These 

techniques, which are discussed and compared here include: customization, selective 

specialization, and automatic program specialization.

These method specialization techniques do not explicitly handle dynamic class 

loading, and we are unaware of any other published material that handles this case.

1.3 Summary of M ajor Contributions

The major contributions of this thesis are:

• A summary of comparison and example of all known method specialization 

techniques including:

-  Customization [26]

-  Selective Specialization [48]

-  Automatic Program Specialization [109]

• A new framework for a method specialization compiler optimization framework 

that explicitly handles dynamic class-loading.

• Listing and discussion of aspects that need to be considered when making a 

method specialization decision.

• Experimental results of static opportunities for method specialization in the 

SPECjvm98 and SPECjbb2000 benchmark suites.

• Discussion of areas of future improvement for method specialization imple­

mentations.

The summary of previous method specialization techniques gives a summary of 

each know method specialization technique. Additionally, a discussion of each tech­

nique follows for the technique’s applicability for modern programming languages 

that implement dynamic compilation and support dynamic class loading. Support is

2
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also built to show tho need for a new method specialization framework that supports 

these new aspects.

After showing the new for a  new framework, a new method specialization com­

piler optimization framework is described and discussed in detail. This framework is 

tailored for the Java programming language, but is suited for dynamic compilation 

environments and explicitly handles dynamic class-loading.

Given the currently popular technique of dynamic compilation, optimization de­

cision making becomes more and more im portant to maintain that the execution 

speedup outweighs the cost of performing the optimization. Therefore we present 

a discussion of the aspects that need to be considered when making a method spe­

cialization optimization decision.

We have also collected static experimental data  regarding method specialization 

opportunities in the SPECjvm98 and SPECjbb2000 benchmark suites. We collected 

information on multiple areas that are essential for maximizing execution speedup 

when performing method specialization.

As a result of our research into all different method specialization techniques, we 

have a unique understanding of the areas of improvement that are needed. These 

areas are discussed for the researcher looking for areas to extend and improve existing 

method specialization techniques.

1.4 Outline

Chapter 2 gives descriptions and examples for all the definitions that arc used 

throughout the rest of the thesis. Chapter 3 gives an overview of the implementa­

tion of the Jikes Research Virtual Machine. Chapter 4 gives an overview of method 

specialization and how it is related to other optimizations. Chapters 5, 6, and 7 

give a complete overview of customization, selective specialization, and automatic 

program specialization respectively. Each chapter gives an example showing the 

transformation of the optimization, along with a description and discussion of the 

results of the optimization. Chapter 8 discusses our new method specialization com­

piler optimization framework designed for the Java programming language. Chapter 

9 lists and discusses the results we obtained through experimental testing. Chap­

ter 10 gives a description of work related to devirtualization of method call sites. 

Chapter 11 gives tho conclusion we can draw from previous research and the future 

direction of programming languages. Finally chapter 12 lists future work related to

3
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method specialization research.

Appendix A is a listing of the raw numbers we obtained from our experimental 

testing and appendix B gives trademark information.
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Chapter 2

Definitions

M essage Send Message sending is used by object-oriented programming languages 

to allow polymorphism when performing method dispatch. Method dispatch 

involves sending a message to the class of the rcceivcr-objcct type. That class, 

in turn, executes a target method. Because at runtime variables can hold 

different types of objects, the target method of a single method dispatch can 

be different at different times in the same execution.

R ece iver O b jec t T y p e  When performing message sending, the target class de­

pends on the class-type of the object receiving the message. The class of the 

receiving object is called the receiver object type. A function call is monomor- 

phic or sialic if it has only one receiver type, and polymorphic or virtual if it 

has more than one receiver type.

Control is transferred between functions through function calling. A caller 

method contains a call site that specifies the transfer of control to a callee. 

For instance, in Figure 2.1 method m,ain calls method foo. In this example 

main  is the caller, foo is the callee, and the call site for foo is the last statement 

in main. A method may contain several call sites with the same callee.

F o rm al P a ra m e te rs  an d  A c tu a l P a ra m e te rs  A formal parameter is a param­

eter that appears in the method declaration. A formal parameter must be a 

variable. In Figure 2.2, method declaration foo(Inteyer, Integer) contains two 

formal parameters: variable a and variable h. Method har(Integer) contains 

one formal parameter, variable x. An actual parameter is a parameter given 

in a method call site. Actual parameters can be variables, constant values, 

method call sites, or expressions. In Figure 2.2 the call site foo fvarl, new

5
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1. public class A {
2. public static void main(String[] args) {
3. foo();
4. bar();
5. return;
6. }

7. private void foo() { . . .  }

8. private void bar() { . . .  }
9. }

Figure 2.1: A Sample Pseudo Java Class Hierarchy

Integer(3)) has two actual parameters: first the variable varl, and second the 

method call site new Integer(S). Additionally, in method foo(Integer, In te­

ger) the call sites bar (a) and bar(b) include actual parameters variable a and 

variable b, respectively.

public class A {
public static void mainQ {

Integer varl =  new Intcger(5); 
:foo(varl, new Intcger(3));

}
void foo(Integer a, Integer b) { 

b =  new Intcger(lO); 
bar(a); 
bar(b);

}
void bar(Integer x) {

}
}

Figure 2.2: A Sample Pseudo Java Program Demonstrating Different Parameters

P a ss-T h ro u g h  C all S ite  A Pass-Through Call Site is a call site where the formal 

parameters are passed directly as actual parameters [29]. An example of a 

pass-through call site is found in Figure 2.2. Method foo (Integer, Integer) 

contains the call site bar(a) which is a pass-through call site because variable 

a, an actual parameter, is also a formal parameter to method foo() with no 

modification in-between. However the call site bar(b) is not a pass-through call 

site because variable b, though it is a formal parameter to method foo(Integer, 

Integer), is modified before being used as an actual parameter.

6
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W eig h t Weight refers to the run-time execution count of a call site, i.e. the num­

ber of times a particular call site is executed during a program run. Using 

Figure 2.1, if the call site to method foo() (found on line 3) in Figure 2.1 is 

executed just once, then it has a weight of 1.

S ta t ic - ty p e d  P ro g ra m m in g  L anguages Static-typed languages, such as Java, 

C, and C + + , require that the object type of variables be known at compile 

time and therefore these types must be declared before they are used. Static- 

typing increases type safety and allows for more optimization because the 

compiler knows the types at compilation time.1 However static-typing also 

makes these languages more tedious as the syntax is stricter than dynamic- 

typed languages.

D y n a m ic - ty p e d  P ro g ra m m in g  L anguages Dynamic-typed programming lan­

guages, such as Smalltalk, Python, and Ruby, do not require the object-types 

of variables to be declared at compilation time. These types are determined 

a t run time. As a consequence, the syntax of the language is more flexible. 

However, this flexibility impedes many optimizations at compilation time.

B asic  B lock  A basic block is an ordered sequence of consecutive instructions that 

has the following properties:

• The flow of control can only enter at the first instruction in the block of 

instructions.

• The flow of control can only leave at the last instruction in the block of 

instructions.

Therefore, if one instruction of a basic block is executed, then all instructions 

in the block must also be executed.

E x te n d e d  B asic  B lock  An extended basic block is similar to a basic block as it 

is an ordered sequence of consecutive instructions and the flow of control can 

only enter at the first instruction. However in an extended basic block, any 

instruction can be an exit point from the block. Thus an extended basic block 

has a single entry point, but multiple exit points [97].

'T h is assum ption is only partially true for Java because Java provides dynamic class loading.

7
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C o n tro l F low  G ra p h  A Control Flow Graph (CFG) is a directed multi-graph 

representing the flow of control through a program. Each node in a CFG 

refers to a basic block and each directed edge between nodes represents flow 

of control from one node to another. An edge exists from node B1 to node B2 

if:

1. The last instruction of B1 is a jum p instruction to the first instruction of 

B2; or

2. The last instruction of B1 is not a jum p instruction, and B2 immediately 

follows Bl in the program code.

►

start

end

Figure 2.3: A Control Flow Graph

Figure 2.3 shows an example of a control flow graph. Every CFG has a single 

s tart block and a single end block to indicate where execution control can 

enter and exit. Block bl has 2 exits from it indicating that program execution 

can jum p to either block b2 or b3 but not both. Block b4 has two entry points 

indicating that control can enter bJ, from either block b2 or block b3 but not 

both.

P ro g ra m  C all G ra p h  A program call graph G = (N, E) is a directed multi-graph 

with a set of AT nodes that represent, whole methods, and a set of E  edges that 

represent call sites [16]. An edge from node N \ to indicates that a call site

8
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in method N \ has method N? as the target method. Because there are several 

call sites within a method, there can be several outgoing edges from a node. 

Likewise because a method can be the target of several call sites, a node can 

have multiple incoming edges.

There are two types of program call graphs:

• A Static Call Graph is a call graph created offline that contains edges for 

all possible targets of each call site. Therefore if a  call site is polymorphic, 

an edge is given for each potential target class.

• A D ynam ic Call Craph is a call graph created dynamically at run time. 

The graph only records edges for target classes of call sites during the 

program execution. Additionally a weight can be assigned to each node 

and edge where node weights indicate the number of times a method 

is called, and where edge weights indicate the number of times a call 

site with the corresponding target class is executed. Figure 2.4 shows a 

sample dynamic call graph with edge weights.

998

120 250

300

Main

Figure 2.4: A Program Call Graph
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V irtual M ethod Table A virtual method table, also known as a virtual table or 

a vtablc, is a data structure used to facilitate run-time method lookup. The 

table contains pointers to the corresponding method implementations for the 

class. When a message is sent to an object, the program uses the virtual 

method table to determine which method to call. A virtual method table is 

the same for all objects in a class. Thus, most implementations share a single 

version for each class.

public class A { 
void func() { 

foo(); 
bar();

}
void foo() { . . .  } 
void bar{) { . . .  }

}

public class B  extends A {
void foo() { . . .  } / /  Overridden m ethod from Class A 
void bar() { . . .  } / /  Overridden m ethod from Class A

}

public class C extends B { . . .  }

Figure 2.5: A Sample Pseudo Java Class Hierarchy

Figure 2.5 gives an example of a class hierarchy in Java pseudo code, and 

Figure 2.6 shows the corresponding virtual method table.

Static Call S ites Static Call Sites (also known as Monomorphic call sites) refer 

to instructions that transfer control to a method where there is only one pos­

sible target method. Additionally, because the target method is known at 

compilation time, the compiler may perform intcr-proccdural optimizations.

V irtual Call S ites Abstraction is an object-oriented technique used to hide the 

details of an object’s implementation from the object’s clients [4]. Abstraction 

allows for the receiver object of a call site not to be known until run time. This 

occurs when the dispatch of the method depends on the dynamic type of the 

receiver object. A call site whose receiver is determined at run time is called 

a virtual call site.

Virtual call sites inhibit compiler optimizations because the exact target method 

is not known at compilation time. Optimizations, such as inlining and inter-

10
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Class A's vtable

funcQ
f o o ( )
bar()

A.funcQ

/ /  Virtual Method Calls 
foo(); 
bar();

Class B's vtable
A.barQ

funcQ
fooO
bar()

A.fooO

Class C's vtable

funcQ
fooO B.fooO
barO

Figure 2.6: A Virtual Method Table For The Class Hierarchy In Figure 2.5
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procedural analysis, cannot be performed if the target m ethod is not known. 

In addition, virtual call sites negatively impact branch prediction [25, 55, 110] 

because it is difficult to predict where the program will go.

A p p lie s-to  S et An applies-to set [29] is a set of classes where a m ethod implemen­

tation is the target of a method dispatch. For example, the applies-to sets for 

the foo() method in the hierarchy of Figure 2.7 are shown in Figure 2.8.

public class A { 
void funcQ { 

foo();
}
void foo() { . . .  }

}
public class B extends A { 

void foo() { . . .  }
}
public class C extends B { . . .  } 
public class D  extends C { 

void foo() { . . .  }
}
public class E extends C { . . .  } 
public class F extends A { . . .  }

Figure 2.7: A Sample Pseudo Java Class Hierarchy

The class hierarchy for the code in Figure 2.7 is shown in Figure 2.8. This 

hierarchy is divided into three sections according to the reachability of method 

joo(). If a method call to foo() happens anywhere within a hierarchy section, 

the method dispatch would be to the top class in the section.

P ro g ra m  C o n te x t C h an g e  Long running programs often execute a  small portion 

of the program’s code for an extended period of time. Sometimes the program 

execution changes to execute a different portion of the program ’s code for 

another extended period of time. This change from one portion to another is 

called a program context change or program phase change.

Context changes may also include data values that are used for an extended 

period of time and then changed to a different value in the same execution 

instance.

M e th o d  C all-S ite  D e v ir tu a liz a tio n  Method call-sito dcvirtualization is the pro­

cess of identifying virtual call sites that have a single target m ethod and then

12
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Class D Class E

Class F

Class C

Class B

Class A

Figure 2.8: The Applies-To Sets For Method foo()  For The Class Hierarchy In 
Figure 2.7
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changing virtual call sites into static call sites. Several compiler optimizations 

have been introduced to dcvirtualize call sites [4, 25, 50, 51, 65, 76, 118]. 

While devirtualizing a  call site eliminates a method dispatch, the main bene­

fits come from creating opportunities for inter-procedural optimizations such 

as inlining [76].

Profiling Inform ation Profiling is the process of collecting various pieces of infor­

mation from a running program to predict the future execution of the program. 

The process of inserting instructions into code to collect profiling information 

is known as instrumenting  the code. Collected profiling information can vary 

from the value of particular variables, control flow along the control flow graph 

edges, or the frequencies of runtime receiver types at call sites.

Collected profile information can then be used by the compiler to make better 

decisions for the optimizations that it performs, such as inlining [15], receiver 

class prediction [65], code reordering [104], instruction scheduling [95], and 

other optimizations [35]. Optimizations that utilize profiling information are 

called feedback directed optimizations.

Profiling information may be collected offline or online:

• Offline: Profiling information is collected by performing a training run of 

the program which stores the profile information into a file that can later 

be accessed and used by the compiler to recompile the program using 

feedback-directed optimizations. The advantage to this method is the 

ability to gather profiling information before the release of the program 

at no runtime cost.

Offline profiling, also called static profiling, requires one or several runs 

of the program with ’’typical” input data. The accuracy of the informa­

tion collected by offline profiling depends on the correlation between the 

program inputs selected for profiling and the actual inputs for a program 

run. If the profiling input does not reflect the actual runtime program 

behavior, then offline profiling may hurt the program performance. 

Additionally, offline profiling does not allow a virtual machine to adapt 

to program execution context changes because the optimizations rely on 

a single data set to predict the program behavior.

14
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• Online [19]: Profiling information is collected d u r in g  th e  execution of 

the program, allowing for better data collection a n d  also  allowing vir­

tual machines to detect and adapt to context chan g es. However as the 

executed code is instrum ented with in stru c tio n s  to  co llect profile data, 

performance degradation can be in the range o f  30%  to  1000% [19].

As a result of this performance hit, sam pling te ch n iq u es  have been in­

troduced to minimize the overhead caused by in s tru m e n te d  code [19]. 

Sampling involves copying the basic blocks th a t  a re  to  b e  instrum ented, 

and instrumenting one set of the basic blocks w h ile  leav ing  th e  other set 

untouched. There are 2 techniques used to sw itcli b e tw een  instrum ented 

and original basic blocks:

— Time-Based Sampling: At specific time in te rv a ls , th e  v ir tu a l machine 

interrupts the program and tells it to b eg in  e x e c u tin g  the  instru­

mented code. The instrumented code is th e n  ex ec u ted  for a  specific 

period of time before the virtual machine te lls  th e  ex ecu tion  to start 

executing the un-instrumentcd code again. T h is  is genera lly  done at 

the end of basic blocks to make switching b ack  a n d  fo r th  easier.

— Counter-Based Sampling: Checking code is  in s e r te d  a t  loop entries 

and loop back-cdges in the original code. T h is  check ing  code includes 

counter increment instructions and checks to  see if  th e  counter has 

reached a threshold. When the counter reach es  th e  threshold, it 

is reset and control is transferred to the in s tru m e n te d  code. The 

instrumented code then runs through until a  loop -backedge  or a new 

basic block is encountered, where control r e tu rn s  to  th e  orig inal code.

R ece iv e r C lass D is tr ib u tio n  Receiver class d istribu tion  is a  ty p e  o f  profiling in­

formation that gives the frequency of types for receiver o b je c ts  a t  call sites [29]. 

This information is especially useful for method sp e c ia liz a tio n  because it al­

lows the compiler to predict which class type receives th e  m a jo r ity  o f method 

calls.

A sample receiver-class distribution for the call site f o o ( )  in  m e th o d  A.funcQ  

for the example of Figure 2.7 is given in Figure 2.9.

Figure 2.9 shows that the receiver-class distribution is p e a k e d  tow ards class D. 

Also note that even though class C receives 100 m e th o d  d isp a tc h e s  for method
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Execution Count

Figure 2.9: A Receivcr-Class Distribution For the Call Site fooQ  in Method A.funcQ  
from Figure 2.7
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foo(), the actual target m ethod is B.fooQ  due to the m ethod reachability  of 

foo() (See Figure 2.8).

D y n am ic  C lass L o ad ing  Dynamic class loading is a  process th a t allows a  class 

to be loaded into the class hierarchy a t any point in the program  execution. 

The dynamic loading of a  class only requires the nam e and location of the 

class. Dynamic class loading allows development of easily extendable software. 

Developers can write code th a t insta ll components a t run-tim e and upgrade 

software components w ithout having to restart the program .

In Java, there are 2 ways to dynam ically  load a new class:

1. The Class.forNam,e(String) m ethod  [100]: This m ethod takes a class 

name as a string param eter, loads it into the program , and  re tu rns the 

Class object.

2. User-defined class loaders [88]: User defined class loaders allow the pro­

grammer complete control over how classes are loaded, including specify­

ing remote locations to find classes, checking security of classes th a t are 

loaded, reloading classes, and  even instrum enting classes.

M e th o d  In lin in g  Inlining [5, 13, 16, 51, 69, 122] is a program  transform ation 

that replaces a call site w ith the instructions of the callee. Inlining removes 

the overhead of performing m ethod lookup and linking. It also increases the 

scope for intra-procedural optim izations such as constant folding, common 

subexpression elimination, global register allocation, and others.

In Figure 2.10 the inlining of m ethod  getSom eln tQ  in m ethod fu n c ( )  would be 

desirable. Figure 2.11 shows fu n c Q  after inlining. The call site g e tS o m e ln t f )  

is replaced with the code of the m ethod  get,SomeInt(). This creates an oppor­

tunity for constant propagation in the  following instruction.

Inlining requires that the call site  be monomorphic, however there are tech­

niques to get around this requirem ent such as guarded inlining [13]. G uarded 

inlining is used with program m ing languages tha t allow dynam ic class loading, 

where the optimization finds call sites tha t are m onom orphic a t the current 

point in the program execution. U pon finding a call site th a t is currently  

monomorphic and that the com piler selected for inlining, the com piler guards 

the call with a conditional sta tem en t th a t checks to see if dynam ic class load-
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void func() {
int a =  getSomcIntQ; 
int b =  a;

}

int getSom eInt() { 
return 5;

}

Figure 2.10: Sample Java Pseudo Code Before Method M ining

void func() { 
int a  =  5;
int b =  a; / /  O pportunity for constant propagation

}

int gctSom elntQ  { 
return 5;

}

Figure 2.11: Sample Java Pseudo Code After Method M ining

ing has taken place. If dynamic class loading has not taken place, control flows 

to the inlined call site. Otherwise control flows to the original call site that 

could now be polymorphic.

An adverse effect of inlining is an increase in the size of the executable code. 

This code-size growth can cause side effects such as an increase in the number 

of instruction cache misses and an increase in compilation time. Thus most 

compilers implement an inlining heuristic to decide which call sites to inline.

S ta tic -C o m p ila tio n  S y stem s Static compilation systems are systems that per­

form compilation of instructions olT-linc, or before program execution. An 

example would be the GCC compiler suite [1]. Static compilation systems 

have no run-time cost.

W ay -A head -O f-T im e C o m p ila tio n  S ystem s Way-Ahcad-Of-Timc (WAT) com­

pilers [106] arc static compilation systems used to compile Java source code 

directly into machine code. While WAT offers substantial performance bene­

fits by allowing optimizations to be performed off-line with no run-time per­

formance hit, it forfeits the portability of the Java classfile along with dynamic
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class loading.

D y n am ic -C o m p ila tio n  S ystem s Dynamic compilation systems, also known as 

Just-In-Time  (JIT) compilers, are systems that perform compilation on-line 

or during program execution. Thus the time taken to compile instructions is 

part of the total time taken to execute the program. However these machine 

instructions can then be cached and reused without the cost of having to inter­

pret the bytecodes on each execution. The Jikes Research Virtual Machine [44] 

is an example of a dynamic-compilation system.

R eco m p ila tio n  S ystem s A recompilation system is a dynamic compilation sys­

tem that performs incremental compilation, or compiles methods at different 

optimization levels, generally using online profiling data to make decisions. 

Usually a compiler has predefined levels that contain certain optimizations, 

where the lower levels contain easier, less time-consuming optimizations and 

the higher levels contain more computationally intensive optimizations. The 

compiler uses online-profiling data to select which level to compile a portion 

of code (usually a whole method).

For example, a typical recompilation scheme in a Java virtual machine compiles 

a method at level 0, with little or no optimizations, the first time the method 

is executed. After the program has been executed for a certain period of time, 

the profiling information collected is examined to determine how often the 

method has been executed over the defined period. If the method qualifies 

for a higher level of compilation, the compiler recompiles the method at the 

new optimization level, and replaces the old method with the newly compiled 

method. This process can be repeated until the method is compiled at the 

highest compilation level offered by the compiler.

C lass  H ie ra rch y  In fo rm a tio n  Object-oriented languages allow techniques such 

as inheritance and dynamic binding of method call sites to make code easier 

to reuse, extend, and design. Class hierarchy information is a collection of 

all of a program’s class hierarchy inheritance information. When a class C 

is compiled, the compiler knows that C is a subclass of some other class and 

therefore inherits the methods defined by it’s superclass along with potentially 

overriding some of these methods.
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Class A 
method func() 
method foo() 
method bar()

■

Class B extends A Class C extends A
method foo() method foo2()
method bar() method bar2()

1

Class D extends B Class E extends C Class F extends C
method getX() method foo(A a) method foo()
method getYQ method foo3() method bar()

method bar3() method foo2()
method bar2()

Figure 2.12: A Class Hierarchy Graph

Figure 2.12 shows a sample class-hierarchy graph. The nodes in a class- 

hierarchy graph represent classes, and the edges represent “is a subclass of” 

information. In this example classes B  and C arc subclasses of class A . The 

figure shows which methods are defined in each class. By following the edges 

in the graph, the compiler can determine which methods override already de­

fined methods. For example, class B  overrides methods foo() and bar() from 

class A while class D defines 2 new methods getX()  and gctYQ  but still is able 

to access the inherited methods B.foo() and B.bar().

Class hierarchy analysis is used to expose opportunities for call site devirtual­

ization [50]. Once class hierarchy information has been collected, the compiler 

can correlate call sites with the class hierarchy to determine when there is 

a single applicable target method to a call site. Such call sites are called 

monomorphic and can be dcvirtualizcd.

Since Java allows for dynamic class loading, the class hierarchy information 

for a Java program is never complete. Dynamic class loading allows for a 

class to be loaded into the class hierarchy at any point in the execution of
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a Java program. Thus f,iic class hierarchy information available for a Java 

program must be associated with a point in the program execution. Java 

classes cannot be removed from the class hierarchy once they are loaded by 

the virtual machine.

O n -S tack  R ep lacem en t On-stack replacement, also called dynamic de-optimization, 

is a technique that was originally used for debugging globally optimized code [74]. 

Debugging requires functionality such as single-stepping through source code 

and the ability to change variable values at any execution point. Optimiza­

tions, such as constant propagation and folding, may remove unnecessary in­

structions in optimized code. Since these instructions arc needed by debuggers 

to allow the user to step through code and make modifications in the middle 

of execution, a debugger must be able to dc-optimize code.

While on-stack replacement was originally designed to allow debuggers to de- 

optimize code, it has also been used for speculative optimizations such as 

inlining in the presence of dynamic class loading. For example, a method 

call site can be speculatively inlined. If a newly loaded class invalidates the 

optimization, the method can be dc-optimizcd and replaced by the correct, 

unoptimized, code.

The cost of performing on-stack replacement is high and requires several data 

structures to record not only the optimizations that have been done, but also 

how to de-optimize them. On-stack replacement is a complex technique to 

implement and thus not many JVMs currently implement it.

M u lti-M e th o d s  When method dispatch is based on a single argument to the 

method — usually the type of the receiver object — then it is called single­

dispatch. Single-dispatch is implemented in C + + , Smalltalk, and Java. If 

method dispatch depends on the run-time type of 2 or more arguments, then 

it is called multi-dispatch. Multi-methods are methods that utilize multi­

dispatch. MultiJava [2, 40] is an extension to the Java programming language 

that adds multi-dispatch functionality to Java.

A sp e c t-O rie n te d  P ro g ra m m in g  Aspect Oriented Programming [47, 58, 60, 61,

82, 83, 84, 99, 127] is a programming style that enables separation of con­

cerns in object-oriented programming languages. This separation of concerns
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prevents the construction of tangled code (code that is spread across multiple 

classes).

A n  aspecA is defined as a modularized unit of crosscutting concern. A crosscut­

tin g  concern occurs when object-oriented modularization (classes) is unable to 

effectively define a programming concern in a single unit .

A spects allow the programmer to design concerns in a modular, organized 

fashion. Some examples of concerns that may be coded as aspects include:

•  High-level concerns such as security

•  Low-level concerns such as caching

•  Functional concerns such as business rules

•  Non-functional concerns such as synchronization

A spectJ [83] is an aspect-oriented extension to the Java programming lan­

guage. The following examples in Figures 2.13, 2.14 and 2.15 are based on the 

exam ple found in [83]. AspectJ adds the following aspect-oriented features to 

Java:

•  Pointcuts : A Join  Point  is a well-defined point in the execution flow of 

a  program. A pointcut is a set of join points.

Examples of join points include: method calls, setting the value of a 

field, getting the value of a field, exception handler executions, etc. An 

example of a pointcut, named move is displayed in Figure 2.13.

pointcut movo() :
call(void P oint.setX (in t)) || 
call(void P oint.setY (int));

Figure 2.13: An Example Pointcut, After [83]

This pointcut is executed whenever cither method Point.setX(int)  or 

m ethod Poin t.se tY (in t)  arc called.

•  Advice: An advice defines the instructions that are executed at the join 

points specified by a pointcut. An advice may be executed before (im­

mediately before the target point), after (immediately after the target 

point), or around (in place of the target point) pointcuts.
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after() : moveQ { 
Displaj'.updatcQ;

}

Figure 2.14: An Example of Advice, After [83]

Figure 2.14 shows an advice that executes the block of code whenever 

the execution reaches a point as defined by the pointcut move (See Fig­

ure 2.13). When execution reaches that point, the code in the block is exe­

cuted. In this case, the display is updated by calling the Display.updaie() 

method.

• Aspects: Aspects combine pointcuts and advice into a modular unit.

aspect Movement { 
pointcut moveQ :

call(void P oint.setX (int)) || 
call(void Point.setY (int)); 

afterQ : movc() { 
Display.updatc();

}

Figure 2.15: An Example of an Aspect, After [83]

Figure 2.15 shows a complete aspect that executes display update in­

structions whenever the location is changed.
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Chapter 3

Overview of The Jikes Research 
Virtual Machine

The Jikes™ Research Virtual Machine (RVM) [6, 8, 10, 24, 44] is an open-source 

virtual machine for Java w ritten in Java. The project started in December of 1997 

at the IBM T. J. Watson Research Center as a study to determine the practicability 

and desirability of implementing a JVM in Java. Initially this RVM was called 

Jalapeno Virtual Machine. Jikes currently runs on IA32/Linux and PowerPC/AIX 

Unix architectures.

This chapter gives a brief overview of the aspects of the Jikes RVM that are 

most relevant to this thesis.

3.1 Booting Jikes

Because Jikes is written in Java, in order to begin execution a boot-image of core- 

essential services such as a class loader, an object allocator, and a compiler are 

written into a file. This file is then loaded into memory and executed to load 

the necessary classes needed to support execution. Once this is done, the multi­

threading subsystem is initialized by creating virtual processors on top of operating 

system threads, thus allowing Java threads to be multiplexed. Jikes implements a 

preemption thread system that allows threads only to be preempted at predefined 

yiddpoints. These yieldpoints are inserted at method prologs (see Section 3.4) and 

loop back-edgcs. Finally a Java thread is created to run the program specified in 

the command line parameter.

24

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3.2 Object and M emory Layout

Jikes uses an object model that allows fast virtual method resolution along with fast 

array and field accesses. The design uses an object header that consists of 2 words: 

a Type Information Block (T IB )  and a status.

The status word contains 3 bits that are responsible for:

• Controlling blocking

• Holding the default hash value of the object

• Holding information for the memory management subsystem

The TIB refers to an array of information about the object’s class, including it’s 

superclass, the interfaces it implements, offsets of fields, etc. The TIB also includes a 

virtual method table to perform virtual method lookup. A graphical representation 

of TIBs is shown in Figure 3.1.

Jikes includes a single array called the Jikes Table Of Contents (JTO C )  contain­

ing references to all static methods as well as to all static fields. A reference to this 

array is kept in a dedicated register in the PowerPC architecture, however on IA32 

the JTOC register is cached in a data structure pointed to by another dedicated 

register as the IA32 has fewer registers compared with PowerPC.

3.3 M emory M anagement Subsystem

The Jikes Memory Management Subsystem implements an abstract memory man­

agement to allow switching memory allocation schemes. Currently Jikes includes 

support for the following garbage collection schemes:

• SemiSpacc (Copying)

• MarkSwcep (Non-copying)

• GenCopy (Classic Copying Generational)

• GenMS (Generational with mark-sweep mature space)

• CopyMS (Non-Generational with copy/mark-sweep hybrid)

• NoGC (Allocation only, no garbage collection)
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f u n c Q
f o o O

Figure 3.1: An example TIB
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3.4 Interm ediate Representation

The Jikes RVM compilers use a  multi-level, register-based, intermediate represen­

tation (IR). Each IR instruction is an N-tuple, consisting of an operator and an 

arbitrary number of operands. Operators indicate the instruction to perform, while 

the operands are parameters to the instruction and arc used to represent symbolic 

registers, physical registers, memory locations, constants, branch targets, method 

signatures, types, and others. The Jikes IR is closely related to Java bytecode. It 

uses Java specific operators and optimizations while preserving Java type informa­

tion.

The Jikes IR is split into 3 separate levels:

• High-Level IR (HIR): Is a  high-level representation that is similar to Java 

bytecode. However operators use symbolic registers instead of an implicit 

stack. HIR contains operators to implement: checks for run-time exceptions.

• Low-Level IR (LIR): This level is more specific than HIR and includes details of 

the Jikes runtime and object layout (for example, addresses into the JTO C and 

TIBs). LIR also expands complex instructions, such as a TABLE_SWITCH 

instruction, into several smaller instructions.

• Machine-Specific IR (MIR): MIR is the most specific of the three levels. MIR 

is similar to the assembly code of the target architecture. Machine specific 

instructions are performed in MIR.

The compiler front-end converts Java bytecode into HIR. This front-end is bro­

ken into two pars: The BC2IR algorithm that translates bytecodes to HIR and an 

HIR optimizer that performs both on-the-fly optimizations as well as additional op­

timizations on the IR after translation. The BC2IR algorithm interprets the Java 

Bytecodes based on the Java bytecode specification provided by the Java Virtual 

Machine Specification [90]. BC2IR translates bytecodes into the corresponding HIR 

instructions. It also identifies extended-basic-blocks and performs on-the-fiy opti­

mizations such as copy propagation, constant propagation, register renaming for 

local variables, dead-code elimination, and inlining of short final or static methods. 

Even though these optimizations are performed again in later phases by the com­

piler, they are also applied at this time to reduce the size of the HIR and to reduce 

future compile time.
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Figure 3.2: The Jikes RVM Intermediate Representation Transformation, af­
ter citeAlpcrn2000Jalapeno
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After the HIR is generated, it goes through an optimization phase where simple 

transformations with modest compile-time overheads are performed. Generally the 

optimizations performed fall into 3 categories:

Local o p tim iza tio n s : (include but not limited to) Common sub-expression elim­

ination; removal of redundant exception checks; and redundant load elimina­

tion.

F low -insensitive  o p tim iz a tio n s : Copy propagation; dead code elimination; and 

conservative escape analysis.

In -line  ex p an sio n  o f  m e th o d  calls: Guarded receiver type prediction.

The HIR is then converted into LIR instructions that arc specific to the Jikes 

RVM. These LIR instructions contain information about object layout and parameter- 

passing mechanisms. For instance, an HIR instruction such as invokevirtual that is 

used to execute a virtual method, is expanded into 3 LIR instructions to:

1. Obtain the TIB pointer from the object.

2. Obtain the address of the appropriate method body from the TIB.

3. Transfer control to the method body.

Additional information is also generated, including a dependence graph for each 

extended basic block. This dependence graph includes the representation of true, 

anti, and output dependences for both registers and memory as well as control, 

synchronization, and exception dependences. This extra information causes the 

LIR to be two to three times larger than a corresponding HIR representation of a 

program.

The LIR then goes through an optimization phase. Currently only local common 

subexpression elimination is performed on LIR. In principle, any optimization per­

formed on HIR can be performed on LIR but the size of LIR makes it less attractive 

than HIR for complex optimization algorithms.

The LIR is then converted to MIR where the dependence graphs for each ex­

tended basic block are partitioned into trees. These trees are then fed into the 

Bottom-Up Rewriting System (BURS) to produce the MIR. BURS uses an heuristic- 

based algorithm to choose instructions based on their cost. BURR allows for addi-
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tional architect,urcs to be easily added to the Jikes compiler by inserting the target 

instructions, selection rules, and costs into the system.

The MIR representation is then fed to the register allocation framework, that 

supports multiple allocation algorithms. The current scheme used is based on a 

greedy algorithm that does a  linear-scan of the variables’ live ranges. Method pro logs 

and method epilogs arc inserted at the start and finish of all methods. A prolog is 

used to:

• Save any nonvolatile registers needed by the method.

• Check if a yield has been requested.

• Lock objects if the method is synchronized.

• Act as a yield point.

An epilog is used to:

• Restore any saved registers.

• Deallocate the stack frame.

• Unlock objects if the method is synchronized.

The final phase is the assembly phase that emits the binary executable code of 

the method into an integer array. This phase also finalizes the exception table and 

converts intermediate-instruction offsets into macliine-code offsets. These arrays are 

then stored into a field of the object instance for the method. Jikes also supports 

the storage of multiple versions of a method in an object, thus allowing methods 

compiled at different optimization levels or specialized methods to be stored in the 

object.

3.5 Compiler Subsystem

Like most modern virtual machines, Jikes uses a compile-only strategy. In other 

words, methods are compiled to native code upon their first execution. Jikes cur­

rently contains three separate compiler subsystems: A baseline compiler, an opti­

mizing compiler, and an adaptive optimization system.
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3 .5 .1  T h e  B a se lin e  C o m p iler

The Jikes baseline compiler is a simple compiler that generates code by simulating 

Java’s operand stack. This baseline compiler does not perform register allocation. 

This compiler is provided as a reference and is expected to perform only marginally 

better than an interpreter.

3 .5 .2  T h e  O p tim iz in g  C o m p iler

The Jikes optimizing compiler uses a compile-only approach that compiles meth­

ods at a predetermined optimization level when the method is first executed. The 

optimizing compiler makes use of the intermediate representation to perform i t ’s 

optimizations. Currently the optimizing compiler contains three separate levels of 

optimization:

• Level 0 - Contains mostly optimizations that can be performed on-tlic-fly

• Level 1 - Augments Level 0 with local optimizations along with inlining that 

is based on static-size heuristics and global flow-insensitive optimizations.

• Level 2 - Augments Level 1 with SSA-based flow-sensitive optimizations.

3 .5 .3  T h e  A d a p tiv e  O p tim iz a tio n  S y s te m

The Adaptive Optimization System (AOS) [14, 15] implemented in Jikes is used to 

give more robust performance than a compile-only or an interpret-only approach.

Figure 3.3 was published in Arnold et al. [15]. It is reproduced in this the­

sis for the convenience of the reader. The Figure shows a graphical view of the 

adaptive optimization system and the interaction between the components. The 

following description of the Jikes adaptive optimization is based on [15] and related 

documentation.

The Adaptive Optimization System Architecture contains three subsystems: the 

Runtim e Measurements Subsystem , the Controller, and the Recompilation Subsys­

tem,.

The Runtime Measurements Subsystem is responsible for gathering dynamic 

profiling data, organizing that data, and then passing it to the Controller for re­

compilation decisions. The Controller creates and controls units called Organizers 

that are used to process and analyze raw data at regular intervals. When these
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Figure 3.3: The Jikes Adaptive Optimization System as shown in [15]

organizers are issued by the controller to process data, they package the data into a 

form that can be conveniently used by the controller. Having organizers abstracted 

into their own class easily allows for gathering information for different uses from 

the same raw data. For example, different organizers can be created to monitor hot 

methods (for recompilation), or to monitor hot call edges (for inlining).

The profiling information collected follows the framework as described by Arnold 

et al. [19]. This framework creates duplicated code that contains instrumentation 

to collect the profiling information. Then, at specified intervals, the instrumented 

code gets executed for an assigned number of iterations, before control switches 

back to the un-instrumcnted code. This mechanism allows the framework to gather 

information without excessive intrusion on the program execution.

The Controller unit is used to make decisions about compilation and recom­

pilation plans, and to query and to issue commands to perform these functions. 

The Controller coordinates operations of the Runtime Measurement Subsystem and 

of the Recompilation Subsystem. The Controller coordinates all activities to be 

performed by the Runtime Measurement System, including what kind of profiling 

information should be collected, for how long, and under what conditions subject to 

it. The Controller uses the information gathered to make decisions for the R.ccom-
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pilation Subsystem. For example, given new profiling information, the Controller 

may decide to cither stop collection of profiling information because it is no longer 

needed, or it may decide to recompile the method at a higher optimization level to 

increase execution speed.

The main function of the Controller is to use a cost/benefit analysis to determine 

whether a method should be recompiled at a higher optimization level in order to 

attem pt to speed up program execution. The Controller makes these decisions for 

each compilation level using the following estimation process:

• Tj, The expected time the program will spend executing the method if it is 

not recompiled.

•  Cj,  The cost of recompiling the method at the new optimization level j.

•  Tj,  The expected time the program will spend executing the method, if the 

method is recompiled at level j.

The Controller then finds the level j  that minimizes Cj  +  Tj.  If Cj + Tj < T{, 

the controller recompiles the method at level j .  Since there is no way to know how 

long a program will execute, Jikes currently estimates that the program will run for 

twice as long as it has already run. Jikes uses earlier profiling information to make 

an estimation as to how long the program will spend in a given method.

The recompilation subsystem contains compilation threads that are used to in­

voke the compiler. Since the compilation threads arc separate from the application 

threads, recompilation can occur in parallel with running the application. Initial 

compilation must occur in application threads because for their first execution meth­

ods are compiled lazily. Compilation relies upon a compilation plan that is sent to 

the compiler. Each compilation plan is broken into three components: an opti­

mization plan, profiling data, and an instrumentation plan. The optimization plan 

contains a list of the optimizations to be performed during compilation. The pro­

filing data is used for decisions by feedback-directed optimizations. Finally, the in­

strumentation plan specifies instrumentation that needs to be inserted into a newly 

compiled method. Once a method is compiled, the compilation thread installs the 

new method in the JVM to be used in future executions.

The AOS database is used by all three subsystems as a central repository of 

information regarding decisions, events, and results. This database can be queried
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by any system to obtain information for future decisions. An example of how this 

database is used involves the Controller recording it’s compilation plans for method 

recompilations to track the status and history of past recompilations.

3.6 Inlining

Jikcs uses inlining in both i t ’s optimizing compiler and it’s adaptive compiler sub­

systems. The next two subsections provide an overview of both:

3 .6 .1  O p tim iz in g  C o m p iler  In lin in g  O verv iew

The inlining implementation used by Jikes abstracts inlining procedure and inlining 

policy into separate classes to allow for easy addition/extension of policies and 

techniques. Inlining policies are located in an Inlining Oracle object that is queried 

by the compiler to determine if a call site should be inlincd.

The static Jikes optimizing compiler uses static size heuristics to make inlining 

decisions. The heuristics used consists of three rules:

1. The compiler first analyses the costs involved for the callce:

• The cost of making a method call (a higher cost results in better gains 

for inlining).

• The cost of a guard (this cost depends on the type of guard used).

• The estimated size of the method after it is inlined (this size must be 

below a constant value) .

2. The depth of inlining is checked against a constant (currently 5) to make sure 

that recursive inlining does not go too deep.

3. The total amount of inlining done so far in the program to prevent excessive 

code growth.

3 .6 .2  A d a p tiv e  C o m p iler  In lin in g  O verv iew

The adaptive compiler gathers profiling information for adaptive inlining by creating 

organizers to analyze the call stack and record the caller, the call site, and the 

callee in method prologues. This data is then inserted into organizers that are used 

to identify edges in the dynamic call graph where the number of samples taken 

surpasses a constant value threshold. These hot edges are then inlined only if the
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method is recompiled and the size constraints are not broken. The edge hotness 

threshold used by the adaptive system starts ont, larger at program startup and 

then is reduced until it reaches a constant value in order to prevent a large amount 

of inlining to be performed at program startup and to allow a sufficient amount of 

profiling data to be collected.

The organizer also has the responsibility of identifying methods that are candi­

dates for further recompilation to allow for inlining of hot call edges. The organizer 

uses estimation to determine the efficacy of the optimization given the new rules 

for re-optimization. The controller uses this information to make recompilation de­

cisions. This estimation is the result of several different areas including removal of 

method call instructions and additional optimizations that can be performed as a 

result of inlining.

The AOS database stores inlining decisions and events. This database allows 

for the adaptive system to identify call graph edges that shouldn’t be identified as 

candidates for inlining when the adaptive system has all ready refused to do so, and 

to keep track of previous inlining decisions so that recompilation doesn’t lose these 

inlining candidates.
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Chapter 4

An Overview Of M e th o d  
Specialization

Object-oriented programming is often used by p r o g r a m m e r s  fo r i t ’s in h e r i t a n c e ,  

encapsulation, polymorphism, and other advantages. N e v e r th e le s s ,  these  a d v a n ta g e s  

can cause the runtime execution speed of o b je c t-o r ie n te d  p ro g ra m s  to  b e  m u c h  

slower than their procedural programming language c o u n t e r p a r t s ,  w ith o u t e x e c u t io n  

enhancing optimizations from compilers.

One of the reasons for this execution slowdown in  o b je c t - o r ie n te d  p ro g r a m m in g  

languages is due to dynamic dispatch or runtim e m e th o d  r e s o lu t io n .  A t a  c a l l  s i t e ,  

the method implementation is dependent on the ru n tim e  t y p e  o f  th e  rece iver o b j e c t .  

Therefore, often the target method cannot be d e te rm in e d  a t  com pile  tim e . A s  a  

consequence, run-time method lookup com putations m u s t  t a k e  p lace w hen  th e  c a l l  

site instruction is executed. Besides the slowdown c a u s e d  b y  th e  m e th o d  d i s p a t c h ,  

virtual call sites also slowdown the program by p re v e n tin g  c o m p ile r  o p t im iz a t io n s .  

For example, Calder et a,I. noted that indirect; fu n c tio n  c a l l s  cau se  u n p r e d ic ta b le  

changes in program control flow. These calls may d is ru p t  b o t h  in s tru c tio n  p ip e l in e s  

and speculative execution and thus cause cache m isses [25].

For instance, the sample class hierarchy given in  F ig u r e  4.1 con ta in s  t h e  c a l l  

site Joo() in method A.func f)  . Method resolution for t h i s  c a l l  s ite  m u st b e  d o n e  

at run time because there are three possible target m e th o d s  a t  th is  p o in t in  t h e  

program execution. Methods A.foo(), D.foo() and  D . f o o ( )  a r e  p o te n tia l t a r g e t s .  

The actual target method cannot be known until th e  r e c e iv e r  o b je c t- ty p e  is k n o w , 

which can only be determined at run time. Once th is  ty p e  is  know n, c a lc u la t io n s  

can be made to determine the location of the correct m e th o d ,  a n d  then  c o n tro l c a n  

be transferred to that location. Even though the c a lc u la tio n  ta k e s  p lace  a t  r u n  t i m e ,
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public class A  {
A localVar; 
void func() { 

foo();
}
void func2(A param) { 

param.foo();
}
void func3() { 

localVar.foo();
}
void foo() { . . .  }

}
public class B extends A {

void foo() { . . .  } / /  Overridden from class A

}
public class C extends B { . . .  }
public class D  extends C {

void foo() { . . .  } / /  Overridden from class D

}
public class E extends C { . . .  }
public class F extends A { . . .  }

Figure 4.1: A Sample Pseudo Java Class Hierarchy Before Method Specialization

Class F

Class E

Class C

Class B 
void foo()

Class D 
void foo()

Class A 
void func()  
void func2()  
void func3()  
void foo()

Figure 4.2: A Graphical Representation of The Class Hierarchy From Figure 4.1
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modern compilers make method lookup cost insignificant [6].

Virtual call sites also slow down programs by preventing inlining. Inlining (see 

Section 2) is an extremely important optimization because it creates opportunities 

for other intcr-proccdural optimizations that may result in significant execution 

specdups. In the example of Figure 4.1, the receiver object type for the call site foo() 

is not known at compile time. Therefore Joo cannot be inlined and, consequently, 

the statements in Joo cannot be optimized along with the statements in its caller 

reducing potential speedup.

4.1 A Introduction To M ethod Specialization

One optimization created to expand the application of inlining in object-oriented 

programs is method specAalization [26, 48, 109, 111]. Method specialization cre­

ates multiple versions of a virtual method. Each version is customized by selected 

characteristics to an applicable subset of classes. This versioning allows for more 

accurate static type information in the specialized method, which in turn may create 

opportunities for additional optimizations that would not take place before method 

specialization.

Method specialization can be implemented in several different ways. Program­

mers in the past have performed method specialization by hand by manually adding 

methods that contain more specific type information for highly-executed instances. 

However this method is tedious and error-prone, and resulted in development of au­

tomatic method specialization tools. Offline method specialization tools have been 

created that allow the programmer to express what they want to specialize through 

language extensions. A static compiler can then take that information and auto­

matically generate a specialized program. Compiler optimization techniques have 

also be developed where no guidance is given from the developer, but rather the 

compiler itself makes the specialization decisions based on class hierarchy analysis 

and profiling information.

4.2 M ethod Specialization And Call Site Devirtualiza­
tion

As object-oriented programs contain several virtual call sites, method specialization 

can be used to reduce the number of virtual call sites through devirtualization.
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Method call site devirtualization is the process of identifying virtual call sites 

that only have one target method or changing virtual call sites into static call sites. 

Several compiler optimizations have been developed to devirtualize call sites [4, 

25, 50, 51, 65, 76, 118]. While dcvirtualizing call sites provides benefit from the 

elimination of performing method dispatch, the main benefits come from creating 

opportunities for other optimizations such as inlining [76].

Consider the pseudo-Java class hierarchy in Figure 4.1. This figure shows how 

method specialization can be used to perform method call-site devirtualization. Here 

method A.junc()  contains a  virtual call site, joo() . However, as shown in Figure 

4.3, a class hierarchy analysis reveals that after the creation of specialized meth­

ods B.func()  and D.func(), all foo() call sites in the func()  method have only one 

possible target method, which allows the devirtualization of the call sites. This 

devirtualization is only possible in the absence of dynamic class loading.

The following examples will represent, method devirtualization by appending the 

target classname on to the call site (example: A.funcQ  ). When these examples are 

actually coded in Java, the bytecode compiler outputs a call site to a static Joo() 

method, instead of the foo() instance method.

4.3 M ethod Specialization On Other Program Proper­
ties

Besides specialization based on the receiver type, method specialization can also be 

performed with respect to other properties of a program [109, 111]:

• Data Encapsulation: A method can be specialized with respect, to the values of 

variables that it uses. This specialization allows for the elimination of memory 

references and may trigger additional optimizations.

For example, consider a method foo() whose only parameter is an integer a. 

We may determine, either through static profiling or dynamic profiling that a is 

usually the value 5. Thus, a specialized version Joo5(), where the instructions 

expect the value of a to be 5, may be created. Then, depending on the value 

of a, either foo5() is called (when a is 5) or Joo() is called (when a is not 5).

• Imperative Computations: Methods can be specialized in relation to common 

compiler optimizations such as constant propagation, constant folding, con­

ditional reduction, loop reduction, and others. For example, a method may
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public class A  {
A localVar; 
void func() {

A .foo(); / /  Dovirtualizcd Call Site
}
void fm ic2(A param) { 

param.foo();
}
void func3() { 

localVar.foo();
}
void foo() { . . .  }

}
public class B extends A {

/ /  N ew  specialized m ethod  
void funcQ {

B.foo(); / /  Devirtualized call site
}
void foo() { ■ • • } / /  Overridden from class A

}
public class C extends B { . . .  } 
public class D  extends C {

/ /  N ew  specialized m ethod  
void func() {

D .foo(); / /  D cvirtualized call site
}
void foo() { . . .  } / /  Overridden from class B

}
public class E extends C { . . .  } 
public class F extends A { . . .  }

Figure 4.3: A Sample Pseudo Java Class Hierarchy After Method Specialization

public class A { 
int func(int a) { 

int b =  a +  1; 
return b;

}
}

Figure 4.4: A Sample Pseudo Java Method Before D ata Encapsulation Method 
Specialization
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public class A { 
int func(int a) { 

int b =  a +  1; 
return b;

}

int spccializedFunc(5) { 
return 6;

}

Figure 4.5: A Sample Pseudo Java Method After D ata Encapsulation Method Spe­
cialization

have an i f  statement that is based on a value set outside of the method. If 

the loop conditional value is usually true, a specialized method can be created 

which assumes that the conditional value is true, and thus eliminates the if 

statements (and possibly creates opportunities for more optimizations).

public class A { 
void func() { 

boolean test;

if(tcst)
bar();

else
foo();

}
void foo() { . . .  } 
void bar() { . . .  }

Figure 4.6: A Sample Pseudo Java Class Hierarchy Before Imperative Computation 
Method Specialization

4.4 Under-specialization and Over-specialization

When implementing method specialization, a strategy must be chosen in order to 

make decisions as to whether or not to specialize a particular method. This strategy 

should look to minimize 2 issues: under-specialization and over-specialization.

U n d er-sp e c ia liza tio n  Deciding not to specialize methods that would result in 

considerable benefit is known as under-specialization. Examples of under­

specialization include:
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public class A { 
void funcQ { 

boolean test;

if(tcst)
bar();

else
foo();

}
void spccializcdFunc() { 

boolean test;

bar();

}
void foo() { . . .  } 
void bar() { . . .  }

}

Figure 4.7: A Sample Pseudo Java Class Hierarchy After Imperative Computation 
M ethod Specialization

• Refusing to specialize a method due to space, time, or other concerns.

• Only specializing on a  subset of potential candidates. For example, only 

specializing on the receiver object, when specialization of a method for a 

particular argument class could also result in significant gains.

O v e r-sp e c ia liz a tio n  Over-specialization is a result of performing method special­

ization too aggressively. Over-specialization may increase memory require­

ments, while causing no significant impact on execution speed. Since method 

specialization involves duplicating methods, memory requirements grow with 

the number of methods specialized. Examples of over-specialization include:

• Creating lmiltiple specialized methods that are virtually identical when 

they could be coalesced into a single method.

• Creating specialized methods that will never be called or so rarely called 

that the cost of compiling the method is greater that any gain on execu­

tion speed due to tha t specialization.
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4.5 M ethod Specialization Selection Strategies

Compilers that implement method specialization must choose a strategy to decide 

when to specialize methods. The strategy chosen may depend on several factors:

• W hether the compiler is a static-compilation system or a dynamic-compilation 

system. Static-compilation systems have the benefit that compilation time is 

not a part of execution time. The compiler can therefore choose a more aggres­

sive method specialization strategy without affecting run-time performance. 

Dynamic-compilation systems require a more cautious strategy as run-time 

compiler cannot afford to spend as much time compiling methods unless the 

execution speedups are significant enough to justify the cost.

Generally static compilation systems tend to implement a strategy that over­

specializes the program because the extra compilation time is not noticed by 

the user. Dynamic compilation systems usually implement a strategy that 

leans towards under-specialization because performing method specialization 

may require a significant amount of compilation time, and thus should only 

be done when it greatly benefits execution speed.

• The amount of code growth considered acceptable by the compiler. Some 

method specialization strategies allow an unlimited amount of code growth, 

while other strategics only permit a set limit either as a specific number of 

specialized method allowed, or a specific code size limit measured in bytes.

• The estimated benefit of performing method specialization. Estimating the 

amount of speedup is not an exact science and estimation strategies are also 

dependent upon the compiler implementation. Estimation may take into con­

sideration the following aspects that are examined in Section 8.3.2.

• The estimated cost of performing method specialization. After specialization 

an additional method needs to be compiled and optimized. Current compilers 

usually have some sort of cost estimation built-inthat may be utilized for 

method specialization decisions.

Existing method specialization techniques will be examined in following chapters.
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4.6 Advantages and Disadvantages

Method specialization offers several advantages and disadvantages. The additional 

methods that must be compiled may contribute to an increase in compilation time. 

While longer compilation time is not an issue of concern in static compilation, 

dynamic-compilation systems perform optimization at run-time. Thus minimizing 

the cost of compilation is im portant for execution speed, making method specializa­

tion strategy selection important.

Additionally, a program that contains specialized methods can be significantly 

larger that the same program without specialized methods. This again depends 

upon the method specialization strategy implemented by the compiler.

The main advantage of method specialization is that it creates opportunities 

for other optimizations. In particular, call site dcvirtualization may create new 

opportunities for method inlining.

A call site devirtualization may eliminate the need for a method lookup. How­

ever, on modern compiler implementations, this does not result in significant speedup 

because most compilers implement efficient method lookup systems. Most of the 

speedup comes from the method inlining performed after a call site has be dc- 

virtualizcd. Method specialization — in concert with call site dcvirtualization, 

method inlining, and other optimizations — can yield execution specdups as high 

as 275% [26, 48].

Method specialization also allows programmers to write generic programs with­

out loss of efficiency due to abstraction layers. Method specialization can remove 

the needed abstraction while allowing the programmer to generate programs in a 

way that is conducive to good program design practices.

Long-running programs are most likely to benefit from method specialization 

because specialized methods are more likely to be executed resulting in greater 

speedup. However, because specialized methods are generally created based on 

cither online or offline profiling information, method specialization can suffer when 

the program context changes. If the profiling information becomes stale, specialized 

methods may no longer be in the execution path of the program and therefore may 

not utilized as often as predicted.

Method specialization may cause call sites that have only one target method, 

and are thus static, to become virtual call sites. In the example of Figure 4.3,
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a new method B.func() is added to the class hierarchy. While this new method 

devirtualizcd the call site to method foo(), any method that calls method func()  

now has 2 methods to choose from. Thus a static call site has now become a virtual 

call site that requires method lookup and dispatch.

In programming languages like Java, all method calls to methods that are not 

defined as static are defined to be virtual, even if there is only one possible target. 

Therefore, in the example above there is no rc-virtualization unless the compiler 

had first changed the virtual call site to a static call site.

4.7 The Focus of This Thesis

This thesis focus on method specialization with regards to virtual dispatching, be­

cause call site devirtualization may create opportunities for inlining which in turn 

may yield significant execution speedups.

The following chapters contain descriptions of previous method specialization 

techniques. These techniques will be discussed and compared along with a discussion 

of the suitability of using the framework within the Java environment.
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Chapter 5

Customization

Customization was initially introduced by Craig Chambers and was created in re­

sponse to the high cost of virtual method calls in object-oriented programming 

languages [26, 27, 28, 31, 33, 86]. Customization was created to help reduce the 

number of virtual method calls. The main motivations for customization were the 

large number of virtual call sites in object-oriented programs and the high cost, at 

the time, of dynamic dispatching. Customization reduces the overhead of perform­

ing method lookup at a virtual call site by replacing a polymorphic method call 

with a direct method call.

5.1 Description

Customization was originally created for the SELF programming language which 

was designed to be a pure object-oriented programming language. SELF does not 

allow for dynamic class loading.

Customization is a method specialization technique that creates a specialized 

version of each method for every class inheriting the method. As a result, the exact 

class of the receiver of a customized version of a method is known at compilation 

time. Thus, the compiler can dcvirtualizc method call sites where the receiver 

object is “self’. Because call sites with receiver objects to ’’self’ are quite common 

in object-oriented programming languages, the specdups created from customization 

in SELF are significant.

5.2 Strategy

Customization uses a brute-forcc method as its specialization strategy. No concern 

is given for code growth or for the creation of duplicate methods when only one
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would suffice. Customization sees that each subclass gets i t ’s own copy of each 

method implementation. This strategy is the easiest to implement and does not 

require computation for specialization decisions.

5.3 An Exam ple of Custom ization

Using the example from the previous chapter which is shown again in Figure 5.1, 

Figures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 show what the classes would look like after 

customization (but without any additional optimizations).

public class A {
A localVar; 
void func() { 

foo();
}
void func2(A  param) { 

param.foo();
}
void func3() { 

localVar.foo();
}
void foo() { . . .  }

}
public class B extends A {

void foo() { . . .  } / /  Overridden from class A

}
public class C extends B { . . .  }
public class D  extends C {

void foo() { • • • } / /  Overridden from class B
}
public class E extends C { . . .  }
public class F extends A { . . .  }

Figure 5.1: A Sample Pseudo Java Class Hierarchy Before Method Specialization

In this example the methods have been duplicated from the superclass imple­

mentation and added into the class hierarchy. As a result, method func() now has 

only one possible target method for the call site foo() regardless of the receiver 

object type. This has effectively devirtualized this call site.

5.4 R esults And Issues

Customization turned out to be an effective technique used in the SELF program­

ming language and resulted in specdups of 1.5 to 5 times over executions without 

customization [28]. However these benchmarks were done on a small set of pro-
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public class A {
A localVar;
void func() { 

foo();
}
void func2(A param) { 

param.foo();
}
void func3() { 

localVar.foo();
}
void foo() { . . .  }

}

Figure 5.2: Class A After Customization

public class B extends A {
/ /  D uplicated from A .fu n c ( )  
void func() { 

foo();
}
/ /  D uplicated from A .fu n c 2 (A  p aram )  
void func2(A param) { 

param.foo();
}
/ /  D uplicated from A .fu n c 3 ( )  
void func3() { 

localVar.foo();
}
void foo() { . . .  } / /  Overridden from class A

Figure 5.3: Class B  After Customization

public class C extends B {
/ /  D uplicated from A .fu n c ( )  
void func() { 

foo();
}
/ /  Duplicated from A .fu n c2 (A  p aram )  
void func2(A param) { 

param.foo();
}
/ /  D uplicated from A.func.3()  
void func3() { 

localVar.foo();
}
/ /  D uplicated from B ,foo()  
void fooQ { • •. }

Figure 5.4: Class C After Customization
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public class D  extends C {
/ /  D uplicated from A .fu n c ( )  
void func() { 

foo();
}
/ /  D uplicated from A .fu n c2 (A  param )  
void func2(A param) { 

param. foo();
}
/ /  D uplicated from A .fu n c 3 ( )  
void func3() { 

local Var.foo();
}
void foo() { • • • } / /  Overridden from class B

Figure 5.5: Class D  After Customization

public class E extends C {
/ /  Duplicated from A .fu n c f )  
void funcQ { 

foo();
}
/ /  D uplicated from A .fu n c 2 (A  param )  
void func2(A param) { 

param.foo();
}
/ /  Duplicated from A .func3 ()  
void func3() { 

localVar.foo();
}
/ /  Duplicated from B .foo()  
void foo() { . . .  }

Figure 5.6: Class E  After Customization
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public class F extends A {
/ /  Duplicated from A .fu n c ( )  
void func() { 

foo();
}
/ /  Duplicated from A .fu n c 2 (A  p a ra m )  
void func2(A param) { 

param.foo();
}
/ /  Duplicated from A .fu n c3 ( )  
void func3() { 

localVar.foo();
}
/ /  Duplicated from A .fo o ()  
void foo() { . . .  }

Figure 5.7: Class F  After Customization

grams [32], and the execution of the SELF code was 2 to 3 times slower than their 

optimized C counterparts. Additionally the benchmarks used in the first evaluation 

of customization were fairly small. Later, when customization was tested on larger 

programs, the execution time gains were not as impressive and compilation was 

slow.

Customization resulted in a substantial increase in code size — by as much as 

a factor of three for some applications. Moreover, the larger the application, the 

larger the amount of customization performed [53]. This is a consequence of the 

brute-force technique of creating a specialized method for every applicable class 

that inherits the method. The examples in Figures 5.1 and Figures 5.2 through 

5.6, illustrate that the space requirements for customization in a simple program is 

large. This requirement increases with the complexity of the class hierarchy.

Simple customization also suffers from both over-specialization and under­

specialization. Over-specialization is a problem because methods are specialized 

without any consideration to costs and benefits. In many cases, several specialized 

methods are virtually identical and thus could be combined and used as a single 

method without any significant impact on program execution. Combining similar 

methods would result, in a significant reduction in code increase.

In dynamic systems, customization can be done lazily by delaying the creation 

of specialized methods until it is actually needed (if at all). This strategy elimi­

nates generating and compiling dead code for classes that do not need a customized
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method, but does not eliminate the problem of over-specialization because a method 

that is invoked only once for a particular receiver class will generate a customized 

method. Additional problems with customization and dynamic compilation will be 

examined in the next, chapter.

In addition to over-specialization, customization suffers from under-specialization 

which is caused by only specializing a method on the type of the receiver object. It 

may also be beneficial to specialize on classes of arguments to the method, or other 

properties of a method as mentioned before (See Section 4.3), but customization 

does not perform these actions.

5.5 Suitability For Java

Simple customization is not very suited for a dynamic compilation system. Because 

simple customization increases the number of methods to be compiled, and corre­

spondingly the size of the program, the amount of time required to compile these 

methods increases proportionately. As compilation is done at runtime, spending 

execution time compiling methods that are either infrequently or never executed 

reduces execution speed for no particular reason. Therefore a dynamic compiler 

should use a cost/benefit analysis in order to reduce the number of new specialized 

methods.

Customization docs not take dynamic class loading into consideration. While at 

the time, dynamic class loading was not a major concern, the broad usage of Java 

have made it more im portant today. Theoretically a dynamic compiler could insert 

new specialized classes into a dynamically loaded class when the class is loaded. 

However this technique still suffers from the code size growth problems discussed 

previously.
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Chapter 6

Selective Specialization

Profile-Guided Selective M ethod Specialization [29, 48], also known as Selective Spe­

cialization, was created by Jeffrey Dean, Craig Chambers and David Grove as an ex­

tension to customization. Selective specialization was specifically created to address 

the problems of over-specialization and under-specialization that customization did 

not address.

6.1 Description

Selective specialization performs method specialization by selectively choosing op­

portunities where the benefits are estimated to be large. This selection helps reduce 

over-specialization by limiting the number of methods specialized to only opportu­

nities that arc likely to produce execution speedup. Class hierarchy analysis is also 

preformed to determine if multiple classes could share a single specialized method, 

as opposed to customization which requires a single distinct method for each class. 

Selective specialization also takes on the under-specialization problem by specializ­

ing not only on just the receiver object of call sites, but also on any formal argument 

to a method.

Selective specialization begins by collecting profiling information and creating a 

weighted dynamic call graph (see Section 2) to identify frequently executed meth­

ods and call sites. The algorithm employed by selective specialization focuses on 

specializable call sites, which are defined as a dynamically dispatched pass-through 

call site (see Section 2).

Once highly executed specializable call sites have been found, class hierarchy 

analysis is performed. This analysis finds the largest subset of classes that contain 

methods that the specialized method could be bound to. If a subset exists, then

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



the specialized method is created. This specialization algorithm allows a single 

specialized method to be used instead of multiple similar specialized methods.

When call sites are specialized only on the type of the receiver object, once a 

specialized method has been created, existing mechanisms, such as virtual method 

tables, can be used to select the appropriate version for each method site. However 

if method specialization is done on the argument to a method, support for multi­

methods is required by the runtime system.

6.2 Strategy

In order to determine which call sites arc considered to be frequently executed, the 

strategy implemented by the authors is a simple heuristic where if the weight is above 

a user-defined threshold, then the call site is marked for specialization. The specific 

threshold number used by Chambers, Dean and Grove was 1000 invocations [29]. 

However they list several deficiencies with this approach.

• The heuristic does not take into consideration the code growth caused by the 

creation of the specialized method.

• The heuristic consider neither the total size of the specialized method, nor the 

number of specialized methods needed to statically bind a call site.

• The heuristic does not take into consideration that certain call sites allow 

for greater execution speedup. Because of the difference in effects of certain 

optimizations (such as inlining) that can be performed after specialization, the 

resulting execution speedup can vary significantly. The authors suggest that it 

may be possible to estimate the benefits of optimizations after specialization 

and then use that in the heuristic to determine if the specialized method is 

beneficial.

In spite of these shortcomings, they ai’gue that a better heuristic is not necessary 

because of the excellent speedup they gained using this simple heuristic.

6.3 Example

Consider the class hierarchy information shown in Figure 6.1 that is based on the 

example from previous chapters. Although selective specialization is used with pro-
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gramming languages that do not provide dynamic class loading, the examples in 

this chapter are presented in pseudo Java for consistency.

public class A {
A localVar;
void funcQ {

foo();
}
void func2(A param) {

param. foo();
}
void func3() {

localVar.foo();
}
void foo() { . . .  }

}
public class B extends A {

void foo() { . . .  }
}
public class C extends B { . •}
public class D  extends C {

void foo() { . . .  }
}
public class E extends C { .. •}
public class F extends A { .. ■}

Figure 6.1: A Sample Pseudo Java Class Hierarchy

Profile-guided method specialization requires a weighted program call graph con­

structed from profile data that describes:

• Each call site in the program;

• The set of methods invoked at each call site;

• The corresponding number of executions of each call site.

A call site may have multiple callce’s because the receiver object may change 

due to dynamic dispatching. Figure 6.2 shows a partial weighted program call graph 

for a given execution of the call site Joo() in method A.funcQ  from Figure 6.1.

The selective specialization algorithm visits each node in the call graph looking 

for dynamically-dispatched call sites that are executed over 1000 times. Given the 

call graph from Figure 6.2, the call site foo() in A.funcQ  has a target of Ar.JooQ 

500 times, Br.fooQ 1500 times, and D::foo() 0 times. As B::foo() has an invocation 

count over 1000, a specialized method with a direct call to B.fooQ  is marked for 

creation.
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2000

500

1500
A.fooQ

B.fooQ
D.fooQ

M ethod that  calls  
A.funcQ

Figure G.2: A Sample Weighted Call Graph For the Class Hierarchy in Figure 6.1

The algorithm then computes the subset of classes that would allow static bind­

ing of the call site, and then creates a corresponding specialized method. This is 

performed by examining the class hierarchy and the target m ethod’s reachability. 

The method reachability for the foo() method is shown in Figure 6.3.

Figure 6.3 shows the program class hierarchy divided into regions that show the 

reachability of method foo(), i.e. which version of method foo() is executed based 

on the receiver object type. The example shows that method foo() is defined in 

classes A , B, and D. Thus a  Joo() method call to an object of runtime type B, C, 

or E  would result; in the execution of the definition given in class B. A  call from an 

object of runtime type D  would result in the definition in class D being executed and 

a call from an object of type A or F  would result in the execution of the definition 

given in class A.

The method reachability o ifo o ()  indicates that it is possible to make the call site 

foo(); in method A::func() static for classes B, C) and FI when creating a specialized 

method. This specialized method would be called whenever the m ethod’s receiver 

object is of type B, C or E.

Figure 6.4 shows the virtual function tables for the class hierarchy before method 

specialization. Figure 6.5 shows the changes to the virtual function tables after the 

specialized method is added into the class hierarchy. When the specialized method is 

inserted into the class hierarchy, the classes B, C and E  call the specialized method
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Class E

Class F

Class D

Class C

Class B

Class A

Figure 6.3: Method Reachability of method foo()
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vtab le  for  
c l a s s e s  A, F

func()
func2(A)
func3()

foo()

v tab le  for  
c l a s s e s  B,C,E

funcQ
_func2(A)

func3()
foo()_

v tab le  for  
c la s s  D

funcO — y
func2(A)
func3()

foo()

A.funcQ
/ /  Virtual Method Call

A.func2(A)
/ /  Virtual Method Call 

param.fooO;

A .f u n c 3 0
/ /  Virtual Method Call 

localvar.fooQ;

A.fooQ

B.fooQ

D.fooQ

Figure 6.4: Virtual Function Tables Before Method Specialization
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vtab le  for  
c l a s s e s  A, F

func()
func2(A)
func3()

foo()

v tab le  for  
c l a s s e s  B,C,E

func()
func2(A)
func3() --------

f°o ( )

vtab le  for  
c la s s  D

A.funcQ
/ /  Virtual Method Call

func()
func2(A)
func3() — -

foo()

A.func2(A)
/ /  Virtual Method Call 

param. foo();

A.func3()
/ /  Virtual Method Call 

localvar.fooO;

B.funcQ
/ /  Devirtualized Method Call 

B.fooQ;

A.fooQ

B.fooQ

D.fooQ

Figure 6.5: Virtual Function Tables After Method Specialization
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func() while the other classes call the original method funcQ .

6.4 Cascading Specializations

The concept of cascading specializations was introduced to deal with the side-effect 

of turning static call sites into virtual call sites as a result of method specialization. 

Figure G.6 shows the previous example after method specialization, but with an 

added method, callsFuncQ, that has a call site to method func().

public class A {
A localVar;
/ /  This is the original method  
void func() { 

foo();
}
/ /  This is the new specialized m ethod  
void func() {

B.foo(); / /  Devirtualized m ethod call site
}
void func2(A param) { 

param.foo();
}
void func3() { 

localVar.fooQ;
}
/ /  New m ethod that calls m ethod func() 
void callsFuncQ {

/ /  Before specialization this was a static call site.
/ /  Now it is a  virtual call site
func();

}
void foo() { • ■ • }

}
public class B extends A { 

void foo() { . . .  }
}
public class C extends B { . . .  } 
public class D  extends C { 

void foo() { . . .  }
}
public class E extends C { . . .  } 
public class F extends A { . . .  }

Figure 6.6: A Sample Pseudo Java Class Hierarchy Showing How Call Sites Can 
Become Virtual After Specialization

In this example the call site funcQ  in method A::callsFimc() was static before 

specialization because there was only one target method. However, after specializa­

tion there are two potential target methods thus making the call site virtual.
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Cascading specializations attem pts to eliminate this side-effcct by specializing 

the callers of the original method. The technique for specializing the caller is the 

same as before: the call site execution count is taken into consideration and must 

be above the defined threshold of 1000 and the call site must be a specializable call 

site. In the example, specializing method A.callsFuncQ  could cause static call sites 

to this method to become virtual. Thus the algorithm continues up the hierarchy 

until either no specializable call sites are found, or the specializable call site is not 

executed frequently enough, i.e. the site is executed less than 1000 times. Figure 6.7 

shows the class hierarchy after cascading method specialization has been done on 

method A.callsFuncQ.

public class A {
A locaJVar;
/ /  This is the original m ethod  
void func() { 

foo();
}
/ /  T his is the new specialized m ethod  
void func() {

B .foo(); / /  Devirtualizcd m ethod call site
}
void func2(A param) { 

parain.foo();
}
void func3() { 

local Var.fooQ;
}
/ /  Original m ethod with virtual call site  
void callsFuncQ { 

funcQ;
}
/ /  New cascaded specialized m ethod  
void callsFunc() {

A.funcQ; / /  Devirtualizcd call site
}
void foo() { . . .  }

}
public class B extends A { 

void fooQ { • • • }
}
public class C extends B { . . .  } 
public class D extends C { 

void fooQ { . . .  }
}
public class E extends C { . . .  } 
public class F extends A { . . .  }

Figure 6.7: A Sample Pseudo Java Class Hierarchy After Performing Cascading 
Method Specialization
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6.5 Results

Working with four Cecil benchmarks, Dean et al. recorded performance spcedups 

of between 65 to 275%, significantly better than class hierarchy analysis at 24 to 

70%, and customization at 26 to 125% [48]. Selective specialization was able to 

eliminate 54-66% of all virtual call sites, better than customization which was able 

to eliminate 35-61% of all virtual call sites. Selective specialization was able to 

eliminate more virtual call sites over customization as it focuses on specializable call 

sites as opposed to only focusing on call sites with receiver targets of the current 

object. Additionally, the code growth due to selective specialization was only 4-10% 

for those benchmarks while achieving the highest runtime speedup.

6.6 Suitability For Java

The authors argue that selective specialization is a practical optimization for runtime 

compilers where recompilation could be triggered when a method call site reaches the 

1000 invocation threshold. While this is true, the strategy employed by selective 

specialization docs not consider phase shifts that can take place in long running 

programs, and dynamic class-loading requires recompilation for broken specialized 

methods.
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Chapter 7

Automatic Program  
Specialization

The notion of Automatic Program Specialization [11, 109, 110, 111] was introduced 

to add method specialization support to the Java programming language. Auto­

matic program specialization differs from the previous two method specialization 

techniques because it requires a language extension to the programming language 

as opposed to being a compiler code transformation.

7.1 Description

The goal of automatic program specialization is to specialize Java programs to 

specific values as these values become available. Because automatic specialization 

may happen both at compile time and at run time, their framework requires a 

language extension to declare what values to specialize the program to. Automatic 

program specialization uses a  declarative approach presented by Volanschi et al. [126] 

called Specialization Classes. This approach gives a high-level language the ability 

to specify on what basis a program is to be specialized, including:

• Program Components: Can specify which part of the code to specialize (the 

whole program, a set of methods, a single method, or a block of code).

• Specialization Context-. Can specify values of variables to specialize the pro­

gram to.

• Incremental Specialization: When specializing to a set of values, the predicates 

may not become true all a t the same time. Thus, declarative specialization 

allows specialization with regard to a sequence of specialization contexts.
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These new specialization classes along with the original Java program classes 

are input for JSpec [109], an off-line automatic program specializer. JSpcc then can 

output one of three program types:

• Java Source Code: The specialized Java source code is represented as an As­

pect J aspect.

• C Source Code: The specialized portion can be output as C source code that 

is executed in the Ilarissa [98] environment. Ilarissa is a Java to C compiler 

which is used by Automatic Program Specialization to translate a program 

from Java into C.

• Binary Code: O utput can also be binary code for execution in the Harissa 

environment.

The process used by JSpec involves taking the Java program classes and spe­

cialization classes and translating them to C using Harissa. These C files are input 

for Tempo [42], a spccializer for C programs, which creates a C program that is 

specialized based on the specialization classes. The C code is then translated back 

into Java with the specialized code represented as an AspectJ aspect. AspectJ is 

then used to weave the specialized code and original code together.

Having the specialized code encapsulated in an AspectJ aspect allows complete 

separation of the original program and the specialized code. This also gives the 

ability to plug-in and un-plug the specialized code simply by selecting whether the 

aspect should be included or not.

Method selection between the specialized method and the original method is 

handled by a pointcut. The pointcut executes a check to determine if the object’s 

state is the same as specified in the specialization context. If the state is the same, 

then the specialized method is executed otherwise the original method is executed 

instead. This check is performed before each invocation of the method.

Dynamic class loading is implicitly handled because JSpcc only takes a subset; 

of the program and specializes it. However if a class can be dynamically loaded in 

the program slice, it must be included in the slice in order to be specialized.
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7.2 Strategy

The strategy used is completely dependent on the programmer. The programmer 

chooses where specialization should be performed and on what data. Thus the s tra t­

egy rests on how aggressively the programmer would like the compiler to specialize 

the program.

7.3 Example

As automatic program specialization requires specialization input from the program­

mer, the previous example needs to be extended to include specialization classes that 

indicate what needs to be specialized. Figure 7.1 includes the original program with 

the specialization class of Figure 7.2.

public class A {
A localVar; 
void funcQ { 

foo();
}
void func2(A param) { 

param.foo();
}
void func3() { 

localVar.foo();
}
void foo() { . . .  }

}
public class B extends A { 

void fooQ { . . .  }
}
public class C extends B { . . .  } 
public class D extends C { 

void fooQ { . . ,  }
}
public class E extends C { . . .  } 
public class F extends A { . . .  }

Figure 7.1: A Sample Pseudo Java Class Hierarchy

specclass specA specializes A { 
D localVar; 
void func3();

Figure 7.2: A Sample Specialization Class

In Figure 7.2 the specialization class specA contains one specialization instance.

64

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The specialization class states that method JuncSQ  should be specialized with re­

gards to the information that variable localVar is of type D. Using this information 

the call site localVar.foo() can be devirtualized because there is only one target 

method when the receiver object is of type D . The resulting call site would be a 

static call to D.foof) .

aspect SpecializeFunc3 {
/ /  Specialized Method
private void A.ncwSpocFunc3() {

D .foo(); / /  Devirtualizcd call site
}

pointcut func3Called() : 
call (void func3())
&c&z target (rcceiverObject);

void around(O bjcct rcceiverObject) :
func3Called(receiverObject) {

if(guard()) { / /  Chock specialization context 
/ /  Call specialized method  
return A.newSpecFunc3();

} else {
/ /  Call original m ethod  
return localVar.specPunc3();

}
}

private boolean guard() {
if(localVar instanccOf D) { 

return true;
} else {

return false;
}

}

Figure 7.3: The Corresponding Aspect Containing Specialized Code

In Figure 7.3, the method A.newSpecFunc3() specifies the new specialized method. 

The pointcut funcSCalledQ  specifies the instance during program execution when 

method func3() has been called. Next appears the advice around(receiverObjecl) 

which is called whenever the program reaches a Junc3Called() pointcut (whenever 

method Junc3() is called). Method selection then takes place by calling the private 

method guard() to check if the current program state matches the specialization 

context to decide whether the specialized method or the original method should be 

called.
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7.4 Results

The authors used various generic benchmark programs to generate their data. Au­

tomatic program specialization saw code increases of 2.8 times on average, with one 

benchmark resulting in a 40 times size increase. Speed increases averaged 2.4 times 

over unspecialized code on the IA32 architecture (3.0 times speedup for SPARC). 

On the benchmarks tested for the IA32 architecture, most benchmarks benefited a 

bit from specialization, while a select few benefited greatly (12 times speedup). The 

recorded speedups do not include any benefits from inlining. The authors found 

that the benefits from inlining varied greatly depending on the JIT  used.

7.5 Suitability For Java

Automatic program specialization requires that all affected classes be loaded before 

the specialization takes place. This restriction seriously affects the usefulness of 

automatic specialization for Java. Dynamic class loading is an im portant feature of 

Java that allows the user to load information, such as a device driver, at run time 

without requiring that the class be available at compile time.

Method specialization can benefit from run-time profiling information and make 

specialization decisions about receiver-types that arc often passed at call sites.

Automatic program specialization gives more control to the programmer by al­

lowing control over where and what to specialize. This control comes at the expense 

of a more complex program and a more complex programming language. Addi­

tionally the programmer may not know what values will stay consistent through the 

program execution and thus benefit, from method specialization. This is also evident 

with specialization on values obtained from user interfaces because the programmer 

would have to predict what values the majority of users would use.

W ithout recompilation, automatic program specialization offers no adaptability 

across different input sets. While a program could be specialized to a specific data 

set to take full advantage of the specialized code, an input data set inconsistent with 

the data set used when compiled would completely forfeit the speedups. A dynamic 

compiler, however, could respond at run-time and provide speedup regardless of the 

data set used.
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Chapter 8

A New M ethod Specialization 
Framework For Java

8.1 W hy A N ew  Framework?

While the previous frameworks reviewed offer significant speedups, none of them 

are ideally suited for a Java compiler optimization framework. Customization would 

require far too much compile time and space, selective specialization requires recom­

pilation for changes that happen to the class hierarchy as a  result of dynamic class 

loading, and automatic program specialization is an off-line optimization that does 

not explicitly handle dynamic class loading or consider on-line profiling information.

Thus a new framework that considers all this information is needed. In this 

chapter I propose a new method specialization framework tha t deals with the issues 

when performing method specialization with Java.

8.2 M ethod Specialization And Java Issues

We first highlight the issues that method specialization implementations face when 

targeting Java, minus the redundant issues already addressed by previous research.

8 .2 .1  T h e  Java  S u p er  K ey w o rd

The super keyword in the Java programming language offers some unique constraints 

for method specialization. Consider the program in Figure 8.1.

Examining the class hierarchy, it may make sense, based on profiling information, 

to create a new specialized method A .funcQ  that contains a  devirtualizcd call site 

to A.foo(); (we ignore the issue of dynamic class loading for simplicity). Figure 8.2 

shows what the program would look like after performing method specialization.
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public class A { 
void func() { 

foo();
}
void fooQ { . . .  }

public class B extends A {
void foo() { . . ■ } / /  Overridden m ethod from Class A 
void som ething() { 

super.func();
}

Figure 8.1: A Sample Pseudo-Java Program Using the super Keyword

public class A {
/ /  New specialized m ethod  
void specFuncQ {

A.foo(); / /  Devirtualizcd Call Site
}
/ /  Original m ethod  
void func() {

foo(); / /  Virtual call site
}
void foo() { . . .  }

public class B extends A {
void fooQ { • • • } / /  Overridden m ethod from Class A 
void som ethingQ { 

supcr.func();
}

Figure 8.2: A Sample Pseudo-Java Program Using the Super Keyword After Method 
Specialization
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When method B.som ething() executes call site super.func(), it may be tempting 

to execute the specialized method A.specFuncQ. However, Section 15.11.2 of the 

Java Language Specification [64] states that when the target of a call site is a 

superclass — as dictated by the super keyword — the instructions executed arc 

taken from the corresponding method in the superclass. But any virtual-method call 

sites in those instructions must be relative to the caller class, not to the superclass. 

Therefore when the call site super.funcQ; is executed, method A .func() is the target 

method but the call site foo(); is relative to class 13. the caller class, and thus 

the target method must be method B.joo() and not A.foo(). This behavior needs 

to be addressed when performing method specialization in Java to ensure correct 

execution.

To handle this constraint, in this framework whenever a  message is sent to the 

” super” object, we never dispatch to a specialized method. Instead we send a 

message to the original method which contains virtual call sites. This mechanism 

ensures correct execution.

8 .2 .2  D y n a m ic  C lass L oad in g

Dynamic class-loading is one of the main features of the Java programming lan­

guage. However the presence of dynamic class-loading can affect the opportunities 

for compiler optimizations such as method specialization. Figure 8.3 shows an ex­

ample.

public class A { 
void func() {

f°o();
}
void fooQ { . . .  }

}

public class B extends A {
void foo() { • ■ ■ } / /  Overridden m ethod from Class A

}

public class C extends B { . . .  }

Figure 8.3: A Sample Pseudo-Java Program

Figure 8.3 shows a pseudo-Java program that, without dynamic class-loading, 

would be a candidate for method specialization. Method func(), implemented in 

class A, contains a virtual call site to method joo(). In the class hierarchy shown in
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Figure 8.3, method foo() contains overriding declarations in class B , i.e., if method 

funcQ  is called by an object of runtime type B  or a subclass, method B.foo() must 

be called. Thus we can create a specialized method B.funcQ  that would contain a 

devirtualizcd call site to method B.foo() as shown in Figure 8.4.

public class A { 
void func() { 

foo();
}
void foo() { . . .  }

}

public class B extends A {
/ /  New specialized m ethod  
void func() {

B.foo(); / /  Devirtualizcd Call Site
}
void foo() { . . .  } / /  Overridden m ethod from Class A

}

public class C extends B { . . .  }

Figure 8.4: A Sample Pseudo-Java Program After Method Specialization

This newly inserted specialized method contains devirtualized call sites that 

eliminate the overhead of performing a method call. While execution would be 

correct for the current class hierarchy, dynamic class loading allows a new class to 

be loaded at any point in the program execution. Figure 8.5 shows the Java program 

after a new class has been dynamically loaded, and after method specialization.

The newly loaded class D breaks the method specialization. Now, if method 

func()  is called from an object of runtime type D , then method B.funcQ  will be 

executed which, in turn, will incorrectly execute methods B.foo() due to the dcvir- 

tualized call sites.

The new framework explicitly handles dynamic class loading by adding addi­

tional logic to the class loader of the Java Virtual Machine. In the new framework 

the virtual method table of dynamically loaded classes is built in such a way that 

specialized methods can be called where execution would be correct, or else a call 

to the original method through a virtual call takes place.

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



public class A { 
void func() { 

foo();
}
void foo() { . . .  }

>

public class B extends A {
/ /  N ew  specialized m ethod  
void func() {

B .foo(); / /  D evirtualizcd Call Site
}

void foo() { . . .  } / /  Overridden m ethod from Class A
}

public class C extends B { . . .  }

public class D extends C {
void foo() { . . .  }  / /  N ew  overridden m ethod from Class B

}

Figure 8.5: A Sample Pseudo-Java Program After Dynamic Class Loading

8.3 Framework Description

This section describes the new method specialization framework assuming its im­

plementation in the .Jikcs Research Virtual Machine. The description is illustrated 

with the same example used in previous chapters. For convenience, the example is 

presented again in Figure 8.6, with one small modification. In order to illustrate how 

the framework handles dynamic class loading, now classes D and E  arc dynamically 

loaded after method specialization has been performed.

8 .3 .1  P r o filin g  C o lle c t io n

Information first needs to be gathered with regards to which call sites are considered 

to be hot, i.e., frequently executed, and what the receiver-type class distributions are 

for those call sites. The best instrum entation method for collecting this information 

is the technique developed by Arnold and Ryder [19], which allows for light-weight 

profiling collection.

Upon finding a frequently executed virtual call site, the compiler uses a heuristic 

to determine whether method specialization should be performed to devirtualize the 

call site.

For instance, in the Jikes Research Virtual Machine optimization subsystem, if a
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public class A {
A localVar; 
void funcQ { 

foo();
}
void func2(A param) { 

param.fooQ;
}
void func3() { 

localVar.foo();
}
void foo() { . . .  }

}
public class B extends A { 

void foo() { . . .  }
}
public class C extends B { . . . }  
public class F extends A { . . .  }

Figure 8.6: A Sample Pseudo-Java Class Hierarchy

public class D extends C { 
void  foo() { . . .  }

}
public class E extends C { . . .  }

Figure 8.7: Dynamically-Loaded Classes Loaded Into the Class Hierarchy in Figure 
8.6 After Performing Method Specialization
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method is hot enough to trigger recompilation at level 2, then the method is checked 

for specialization opportunities.

Assume, for example, that method A .func() is flagged for recompilation at level 

2 which includes the method specialization optimization. The compiler then looks 

at the run-time profiling information for receiver object-typcs at all the call sites in 

the method. A sample of receiver-type profiling information for the foo() call site is 

given in Figure 8.8.

E x e c u l io n  C o u n t

Figure 8.8: Sample Receiver-Type Profiling Information for Call-Site foo()

The information from Figure 8.8, is applied to the applies-to sets for the target 

method (method foo() in this case). The applics-to sets for method foo() can be 

found in Figure 6.3.

The receiver-objcct-type profiling information for each applies-to set reveals that 

the set { A, F  } has received a total of 200 message sends to method foo(); set { 

B, C , E  } has received a total of 1200 message sends; and set { D } has received 

no message sends. The receiver class distribution is highly peeked towards the { B, 

C  , E  } class set. The exact percentage of messages that a class set must receive 

to trigger method specialization is left up to the compiler heuristic strategy. In the 

example, having a class set that receives a high amount of method sends, along with
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the ability to inline the joo() call site makes A .func() a good candidate for method 

specialization.

8 .3 .2  A sp e c ts  to  C o n sid er  in  M e th o d  S p ec ia liz a tio n  D ec is io n s

Modern compilers use profiling feedback information to estimate the cost/benefit 

ratio for a given code transformation. The strategy used in selective specialization 

is to require the programmer to specify a threshold above which the code trans­

formation takes place [48]. This strategy is unsuitable for dynamic compilation 

environment because it ignores several important characteristics of these environ­

ments:

• The frequency o f the method targeted fo r  specialization. A method being con­

sidered for specialization must be executed frequently enough to justify the 

cost of performing the optimization. The higher the frequency of a method, 

the higher the likelihood that the method should be specialized.

• Size of the method. The decision must take into consideration the size of the 

method because this information is necessary to estimate how long it will take 

to compile and optimize the method. The method size also allows the compiler 

to calculate how much code growth is going to happen as a result of replicating 

the method.

• Total cumulative size o f specialized methods. Keeping track of the total cumu­

lative size of specialized methods allows tracking of code growth. The total 

amount of code growth allowed depends on the compiler strategy. Excessive 

code growth may cause excessive memory usage, instruction cache conflicts, 

and register spills due to increased variables and intermediate values [129].

Code growth may also be kept in check through the removal of specialized 

methods based upon their usage within a specific time period. This option 

has not yet been researched and is identified as an area of future work described 

in Section 12.3.

• The number of duplicate devirtualizable call sites. The primary focus of method 

specialization is to dcvirtualizc call sites, and therefore, open up opportunities 

for other optimizations. The higher the number of duplicate call sites that can
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be devirtualizcd in a single specialized method, the more likely the method 

should be specialized.

• The execution count o f the devirtualizable call sites. The execution count of 

the call sites that can be devirtualizcd should also be taken into consideration. 

Because control flow can cause instructions to be executed multiple times, a 

compiler strategy should also take into consideration the execution count of 

the devirtualizable call sites.

• Potential fo r  optimization. The most im portant reason to perform method 

specialization is to create opportunities for other optimizations. Thus the 

compiler should attem pt to make some estimation as to what optimizations 

will benefit from specialization, and how much benefit it will provide.

The potential to inline the targeted call site should be weighted very heav­

ily by the heuristic. W ithout inlining, merely devirtualizing a call site will 

likely not result in a large amount of speedup. Therefore, in most instances, 

method specialization should not be performed if the targeted call site cannot 

be inlined.

• Receiver-Object-Type D istribution : The rccciver-objcct-type profiling informa­

tion for the targeted call site must be compared with the applies-to set for the 

target method to determine the class distribution for each applies-to set. Us­

ing this information, the compiler must make a decision determining when an 

applies-to set receives enough message sends to trigger method specialization.

The compiler may use either the absolute number of messages sent, or a per­

centage of the total message sends to decide if specialization must take place. 

Additionally the compiler could chose to apply a certain weight, to the heuristic 

based on the frequency.

8 .3 .3  O p tim iz a tio n  T ra n sfo rm a tio n

Once a decision has been made to perform method specialization, the compiler takes 

the method source code and splits it into two. A pass is made through the newly 

duplicated source code to find the call sites that are flagged for devirtualization, 

where the compiler replaces the virtual call site with a direct call site. After de­

virtualization, the method can be passed on to the optimization framework where 

inlining and other optimizations are performed.
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public c la ss  A {
A localVar; 
void  fu n c() { 

foo();
}
void  fu nc2(A  param ) { 

param .foo();
}
void  fu n c3 () { 

localV ar. fooQ;
}
void  fo o () { . . .  }

}
public c lass B ex ten d s A {

/ /  N ew  specialized  m ethod  
void  fu n c() {

B .fooQ ; / /  D evirtualized call site
}
void  fo o () { . . .  }

}
public c lass C ex ten d s B { . . .  } 
public c lass F  ex ten d s A { . . .  }

Figure 8.9: A Sample Pseudo-Java Class Hierarchy After Method Specialization

Figure 8.9 shows a representation of w hat the class hierarchy would look like after 

method specialization. Figure 8.10 shows the corresponding virtual method tables 

(targets for methods fu n c2 (A )  and  fu n c3 ()  are left out for visibility). The class 

hierarchy now shows two fu n cQ  m ethods. In order to select between the original 

method and the specialized m ethod, the virtual method table needs to be able to 

correctly select the appropriate m ethod, and the class loader requires additional 

logic to handle dynamic class loading.

8 .3 .4  M e th o d  S e le c t io n

To decide if the original m ethod or the specialized method is to be used, a calculation 

needs to be done on the applies-to set for the target method of each call site being 

devirtualizcd.

S pecia lized  C lass A specialized class is defined as a class that has a virtual 

method table that targets a t  least one specialized method.

From the example in Figure 8.9, classes B  and C would be specialized classes as 

they both target specialized m ethod fu n c () .
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vta b le  for  
c l a s s e s  A, F 

funcQ  
func2(A )  
fun c3()

fooQ

A.funcQ
/ /  Virtual Method Calls

B.funcO
//Devirtualized 
//Call Site 

B.fooQ;

A.fooQ
vtab le  for  
c l a s s e s  B,C

B.fooQ

func2(A)
fun c3()

fooQ

funcQ

Figure 8.10: The Virtual Method Table After Method Specialization
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Specialized  T arg e t M e th o d s  S et The set, of methods that are the target of call 

sites that have been devirtualizcd in a specialized method.

Prom the example in Figure 8.9, the Specialized Target Methods Set would be 

{ B.fooQ  } because that is the only target method of the call sites devirtualizcd in 

the specialized method B.funcQ .

Specialized  M e th o d  A p p lie s-to  Set The applies-to sets for each method in the 

Specialized Target Methods Set are intersected together creating the special­

ized method applies-to set. The resulting set is the set of applicable classes 

that can call the specialized method with correct execution.

Again, in the example in Figure 8.9, calculating the specialized method applies- 

to set involves taking the applies-to set for B.fooQ , as it is the target method for 

the devirtualized call site fooQ. Thus the specialized method applies-to set would 

be { B, C }. Eventually when class E  is loaded, it will be added to that set as it 

does not contain an overriding definition of method fooQ.

Once this set has been calculated, the virtual method table needs to be changed 

to allow the specialized method to be executed in the correct instances. For each 

class in the specialized method applies-to set, the target method is changed to point 

to the specialized method instead of the original method. All other classes are left 

alone and point to the original method they pointed to before method specialization.

8 .3 .5  C lass L oader C h an ges

In order to handle dynamic class loading, additional logic needs to be inserted into 

the class loader in order to maintain correct execution. When loading a new class, if 

i t ’s superclass calls a specialized method, the method definitions in the newly loaded 

class need to be examined to see if they override any methods in the superclass’s 

specialized target methods set. If a method has been overridden, then the new 

method must call the original method with the virtual call sites, not the specialized 

method, in order to maintain correct execution. Otherwise the specialized method 

can be called while maintaining correct execution.

In the example of Figure 8.11, when class E  is loaded, the class loader identifies 

method funcQ , which is inherited by class C, as a method that has been specialized. 

This triggers a search of method definitions for class E  to see if any method is 

overridden in the Specialized Target Methods Set for funcQ . In this instance, no
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public class A {
A localVar; 
void func() { 

foo();
}
void func2(A param) { 

parain.foo();
}
void func3() { 

localVar.foo();
}
void foo() { . . .  }

}
public class B extends A {

/ /  N ew  specialized m ethod  
void func() {

B.fooQ; / /  D evirtualizcd call site
}
void foo() { . . .  }

}
public class C extends B { . . .  } 
public class E extends C { . . .  } 
public class F extends A { . . .  }

Figure 8.11: The Class Hierarchy After Dynamically Loading Class E

methods are overridden allowing class E  to call the specialized version of method 

func(). Figure 8.12 shows the virtual method tables after the class E  is loaded.

When class D is loaded as illustrated in Figure 8.13, the same class loader check 

shows that class D contains an overriding declaration of method foo(), which is 

contained in the Specialized Target Methods Set. In order to maintain correct exe­

cution, class D ’s virtual method table must point to the original method containing 

virtual method calls. Figure 8.14 shows the corresponding virtual method table.

8.4 Costs of Performing M ethod Specialization

As with any compiler optimization, there is an associated cost to method special­

ization. This cost is particularly important for programs that are executed with a 

virtual machine because optimizations are performed at run-time. Thus it is very 

im portant to keep the cost of optimizations as low as possible to prevent noticeable 

lags in program execution.

This section discusses the costs associated with implementing this method spe­

cialization framework. This has only been discussed theoretically as there is no 

implementation to test actual costs.
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vtab le  for  
c la s s e s  A, F 

funcQ
func2(A )
fun c3()

fooQ

vta b le  for  
c l a s s e s  B,C,E

A.funcO
/ /  Virtual Method Calls

funcO — —
func2(A)
fun c3()

fooQ

B.funcQ
/ /D e v ir tu a l iz e d  
/ /C a l l  Site 

B.fooQ;

A.fooQ

B.fooQ

Figure 8.12: The Virtual Method Table After Dynamically Loading Class E
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public class A {
A  localVar; 
void func() { 

foo();
}
void func2(A par am) { 

param.foo();
}
void func3() { 

localVar.fooQ;
}
void foo() { • • • }

}
public class B extends A {

/ /  New  specialized m ethod  
void func() {

B.fooQ: / /  D evirtualized call site
}
void foo() { . . .  }

}
public class C extends B { . . .  } 
public class D extends C { 

void fooQ { . . .  }
}
public class E extends C { . . .  } 
public class F extends A { . . .  }

Figure 8.13: The Class Hierarchy After Loading Class D
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A.funcO
c l a s s e s  A, F ^ ----- -—:------ / /  Virtual Method Calls

func() foo();
func2(A)
funcBO B.funcO

fooQ //Devirtualized
N \  /  —► //Call Site

B.fooQ;

vtab le  for  
c l a s s e s  B,C,E

func() ------
func2(A)
fun c3()

fooQ

vtab le  for  
c la s s  D

A.fooQ

B.fooQ

func() D.fooQ
func2(A)
func3()

fooQ -------------------------— — ^

Figure 8.14: The Virtual Method Table After Dynamically Loading Class D
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8 .4 .1  P ro filin g  In fo rm a tio n

The cost; of performing instrumentation at run-time used to be quite heavy and 

would cause significant program slowdown. However the introduction of the in­

strumentation technique designed by Arnold and Ryder have reduced the cost of 

instrumentation to an overhead of 3 to 6% [19].

Instrumenting method frequency involves inserting a counter incrementing in­

struction at the start of a method. Receiver-type instrumentation is a bit more 

complex. Counter-increment instructions need to be inserted immediately before 

the targeted call sites. These counter instructions need to determine the type of 

the receiver object (the cost of this determination is compiler-dependent) and then 

increment the correct value in a  2-dimensional array indexed by the call site and 

the receiver-ob ject type.

public class A {
A localVar;
void func() { 

foo();
}
void fiinc2(A param) { 

param.foo();
}
void func3() { 

localVar.foo();
}
void foo() { . . .  }

Figure 8.15: Methods from Class A  in Figure 8.6 to Show Receiver Object-Type 
Profiling Information

Call Site /  Class A B C D E F Total
A.func()-foo()-Line 1 10 100 50 1000 40 0 1200

A.func2(A)-param.foo()-Line 1 50 75 25 3000 0 0 3150
A.func3()-localVar.foo()-Line 1 1000 1000 0 0 1 1 2002

Table 8.1: Example Receiver-type Profiling Information for Call Sites from Fig­
ure 8.15

Figure 8.15 shows a subset of the previous Java program. Table 8.1 shows sample 

receiver-type profiling information for each call site in Figure 8.15. For each call site, 

the run-time object-type of the receiver object is recorded in the appropriate column 

upon each execution.
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8 .4 .2  C a lcu la tio n  o f  D ec is io n

An heuristic-based mcthod-spccialization decision has an associated cost to compute 

the utility function used in the heuristic decision. While making an accurate decision 

is ideal, accuracy usually comes at a cost of increased calculation. Thus a strategy 

deciding between accuracy and speed needs to be taken by the compiler.

The aspects to consider when making a method specialization decision are high­

lighted in Section 8.3.2.

8 .4 .3  P er fo rm in g  th e  T ran sform ation

Performing method specialization involves copying a method, making modifications 

to the method, and then sending it to the optimization subsystem. Copying the 

method is not difficult as the unoptimized bytecode, or unoptimized machine code, 

just needs to be copied.

After the specialized method is created, the code needs to be linearly searched 

for the virtual call site instructions that target the newly specialized method (unless 

the virtual machine provides a constant time lookup). These call sites are then 

devirtualized by replacing the virtual call instruction with a direct call instruction 

to the specialized method.

The largest cost of performing method specialization is sending the method to 

the optimization subsystem. The caller must have all appropriate optimizations run 

on it, particularly inlining. Measuring this cost is difficult because it depends upon 

the method and the number of optimizations that can be done on it. Most modern 

compiler architectures estimate this cost by using the size of the method.

8 .4 .4  C lass L oader C hecks

When a new class is loaded after method specialization has been performed, the class 

loader needs to build the virtual method table of the new class taking into consid­

eration that it may inherit a specialized method. Performing this check requires 

the compiler to keep track of the specialized target methods set for each specialized 

method, and then compare that set with all overriding method definitions in the 

new class.

This cost should not be very restrictive because method specialization is done 

only after the program has run long enough to determine which methods are fre­

quently executed, which also means the majority of classes should have been loaded
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already. But even if a class is loaded after performing method specialization, the 

check would involve going through every specialized method inherited by the newly 

loaded class, and checking for overriding declarations of any method in the special­

ized m ethod’s specialized target methods set. This lookup can be done in constant 

time by using efficient data  structures for method lookup (most modern compil­

ers implement this). Using this information, the class loader can select cither the 

specialized method or the original method for the method’s virtual method table.

8.5 Benefits of Performing M ethod Specialization

This framework offers the following benefits over previous implementations:

• Dynamic class loading is explicitly handled

This framework adds functionality to the class loader to explicitly handle dy­

namic class loading. Explicit handling of dynamic class loading allows method 

specialization to be safely done on classes that are not known at compile time.

e No additions to the language

Automatic program specialization offers method specialization for Java, but 

requires an extension to the Java language and requires the programmer to de­

cide where and what to specialized. This framework requires no such extension 

to Java, and takes care of the specialization decisions itself.
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• More sophisticated optim ization selection

Implementing method specialization in a dynamic compiler also gives the com­

piler information about the executing program. This in turn allows the com­

piler to select the specialization targets based on the program execution.

• Adaptation to contextual changes

Long running programs can go through contextual changes. They may execute 

one portion of code for a period of time, and then move to a different portion 

of code. Performing method specialization in a dynamic compiler allows the 

compiler to identify these contextual changes and then adaptively react by 

specializing the new portions of code while deciding whether or not to discard 

the older specialized methods that are no longer frequently executed.

8.6 Summary

This new method specialization framework provides additional benefits and handles 

aspects that previous method specialization frameworks do not handle. The author 

believes that the explicit handling of dynamic class loading and the ability to im­

plement it in a dynamic compiler making use of online profiling information, make 

this framework an excellent choice for the implementation of method specialization 

in Java.
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Chapter 9

Empirical Study of 
Devirtualization Opportunities

The success of the proposed framework for method specialization depends on the 

existence of opportunities to specialize methods in Java programs. This chapters 

reports the results of a method specialization opportunity study using the industry- 

standard SPECjvm98 [46] and SPECjbb2000 [45] benchmark suites, hereby referred 

to as the “SPEC Java Benchmarks.” More specifically, this study seeks to to answer 

the following questions:

• How many static opportunities for method specialization exist in these bench­

mark suites?

• W hat is the distribution of these opportunities throughout the program? 

o How many call sites can be devirtualized in a  single specialized method?

• How many devirtualizable call sites are inlinable?

• W hat are the sizes of the methods that can be specialized?

• Would a more liberal inlining strategy create a significant number of new 

method specialization opportunities?

The following sections given an overview along with a discussion of the SPEC 

benchmarks tested, the results collected from those tests, and a summary of the 

information collected.
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9.1 Benchmark Description And Discussion

Both SPECjvm98 and SPECjbb2000 benchmark suites are written to test the ex­

ecution speed of Java programs. The SPECjvm98 benchmark suite consists of 

8 benchmarks that test client-side Java programs. SPECjbb2000 (Java Business 

Benchmark) evaluates the performance of server-side Java programs, emulating a 

3-tier system (client interface, server logic, and database).

Table 9.1 gives a short description of each of the benchmarks included in the 

SPECjvm98 and SPECjbb2000 suites.

Benchmark Description
201 .compress
202_jess
209_db

213_javac
222_mpegaudio

227_mtrt
228_jack

SPECjbb2000

A Lempel-Ziv (LZW) compression program.
Java Expert Shell created by NASA.
Performs multiple database functions on memory resident 
database written by IBM.
The Sun Microsystems Java compiler from the JDK 1.0.2. 
Decompresses audio files that conform to the ISO MPEG 
Laycr-3 audio specification.
A dual-threaded program that ray traces an image file.
A Java parser generator that is based on the Purdue Com­
piler Construction Tool Set (PCCTS).
A Java program emulating a 3-tier system with emphasis on 
the middle tier.

Table 9.1: Description of the SPECjvm98 and SPECjbb2000 Benchmarks

We have chosen the SPEC benchmarks because they are widely used by indus­

try and academic groups to perform benchmarking of Java programs. However, 

the SPEC Java benchmark suites arc not ideal candidates for measuring method 

specialization opportunities. More specifically, method specialization relies on deep 

class hierarchies that make nse of inheritance in order to find opportunities. Most 

of the benchmarks included in SPECjvm98 are fairly simple and do not take ad­

vantage of the object-oriented functionality provided by Java. Additionally, the 

simplicity of the benchmarks do not reflect the complexity of average programs. 

However 213_javac and SPEC,jbb2000 arc the most complex programs of the group 

and therefore should be examined most closely.

An analysis done by Slmf el al. [113] shows that the SPEC Java benchmarks 

contain a small percentage of hot fields and methods. While this is characteristic 

of executing programs, if the programmer has not implemented the hot path of the
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program in a way that will make use of method specialization, few opportunities 

would be present.

Dynamic class loading is also not well reflected in the SPEC Java benchmarks. 

All classes are loaded very early in program execution. The front-loading of most 

classes makes it difficult to test the performance of optimizations that support dy­

namic class loading because no class hierarchy changes occur later in program exe­

cution.

Regardless of these shortcomings, we have chosen to use the SPEC Java bench­

marks because they are the most widely used benchmarks for performance measure­

ment, and also because there is no other benchmark program that is both widely 

used and complex enough. Section 12.2 discusses the need for testing of more com­

plex benchmarks.

9.2 Experimental Setup

The following sections describe our modifications and configuration to the Jikes 

Research Virtual Machine to perform our experiments.

9 .2 .1  J ik es R esea rch  V ir tu a l M ach in e  M o d ifica tio n s

While the Jikes Research Virtual Machine is a large and mature project, not all 

the required functionality for collecting information was available. The following 

sections describe our additions and modifications that were necessary to add the 

required functionality to the Jikes RVM.

Static Identification o f M ethod  Specialization O pportunities

In order to determine the number of method specialization opportunities that exist in 

the SPEC Java benchmarks, a new optimization phase needed to be written to count 

these opportunities. Our implementation uses the Jikes RVM optimizing compiler 

framework by creating a new optimization which subclasses the OPT_CompilerPhase 

class.

The optimization is called through a method called perform , which is passed the 

intermediate representation of the method being compiled as a parameter. The IR 

is walked through line by line, where it searches each instruction to determine if it 

is a call site where the receiver object is the this object.
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When the optimization encounters this situation, it then obtains the target 

method of the call site and then checks to see if the method has been overridden. 

We perform this check because if the method has not been overridden, then the call 

site can be dcvirtualized without method specialization. If the method has been 

overridden, a potential candidate for method specialization has been identified and 

information is recorded about the call site and related data structures (Section 9.3).

This new optimization phase is then registered with the compiler framework so 

that it is aware of the new optimization. This optimization can now be configured to 

run at any specified optimization level and on any specified intermediate type (IilR, 

LIR or MIR). We propose that this optimization be performed at optimization level 

2 because it currently requires SSA to determine which call sites are dispatched on 

the this object.

This optimization is also registered with VM.Callbacks, an event handling frame­

work that calls registered methods upon specified events. This registration is re­

quired by the optimization to print out a report of the collected information upon 

completion of the program.

Upon completion of the program, the VM.Callbacks framework calls a method 

in the optimization which prints out all the collected information to a file.

9 .2 .2  J ik es C o n figu ra tion

The Jikes RVM has a built in framework for performance and profiling benchmarks. 

In our experiments, we used the following options with the Jikes RunSanityTest 

command-line program to collect our data:

• -test SPECjvm98: This option tells the command to test the SPECjvm98 

benchmark suite. To test the SPECjbl)2000 benchmark suite, use the option 

-test SPECjbbSOOO.

• -images images: This option states that we have an existing compiler build 

image in the images subdirectory. The framework can be set up to do a fresh 

build of the Jikes RVM. However, this significantly increases the time it takes 

to complete the run.

• -configuration PullAdaptiveSemiSpace: This option specifies the configuration 

that the Jikes RVM was built with. Full means compile the Jikes RVM with 

the optimizing compiler with the highest optimization level. Adaptive states

90

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



that when the Jikes RVM is run, it will use the Adaptive compilation subsys­

tem to create executable code, as opposed to the optimizing compiler. Our 

optimization requires the Adaptive subsystem as it contains an inlining oracle 

which makes the decisions as to whether to inline a call site. Finally SemiSpace 

states that the SemiSpace garbage collection system should be used.

• -nobuild: This option requires the R unSanilyTest command to use a pre-build 

Jikes RVM image from the directory specified by the images parameter.

• -results resultsDir. This specifies the directory where the results of the run are 

to be written. In this case the resultsDir subdirectory.

• -rc-args “-X:aos:enable^recom,pilation= false -X:aos:initiaLcompiler=opt

-X :irc:02 -X:irc:inline=false’’: These are options that are passed to the Adap­

tive Compilation Subsystem. Disabling recompilation ensures that methods 

are only compiled once. -X:aos:iniiiaLcompiler—opl states that the optimiz­

ing compiler is to be used for the initial compilation of a method. -X :irc:02  

states that the initial runtim e compiler (in this case the optimizing compiler) 

is to compile methods at optimization level 2. Finally, the -X:irc:inline=false 

option says that the initial runtime compiler is not to perform inlining.

These options allow method specialization to be run on each method when it 

is loaded by the virtual machine. Inlining was turned off to make sure we did not 

inflate the number of method specialization opportunities.

9.3 Static Devirtualization Opportunities

Static data was collected from benchmark suites to determine how many oppor­

tunities for devirtualization were present in benchmark programs. Section 9.3.1 

describes the statistics that were collected, section 9.3.2 gives the static numbers 

that were collected from the SPECjvm98 [46] and the SPECjbb2000 [45] benchmark 

suites.

9.3 .1  S ta tic  S p ec ia liza tio n  E m p ir ica l In fo r m a tio n  C o lle c ted

The following sections describe in detail each of the statistics that were collected 

from each benchmark suite, and for what reason they were collected.
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Num ber of Specialized Classes

The number of specialized classes (sec Section 8.3.4) was collected and compared to 

the total number of classes loaded at run-time. Collecting only the classes loaded at 

run-time allows us to only measure opportunities that would be executed. Collec­

tion of these statistics were performed to determine what percentage of the classes 

in a program contain specializable methods, giving insight as to whether specializ- 

able methods arc contained in a  small subset of classes, or if they are spread out 

throughout the entire class hierarchy.

N um ber o f Specializable M ethods

The number of specializable methods compared with the total number of methods 

loaded at run-time was collected to get a measurement of how many opportunities 

for dcvirtualization are available in each benchmark. The higher the number of 

methods that can be specialized, the fewer virtual calls have to be made.

However this measurement only states that the method can be specialized to at 

least one class. This static measurement does not indicate the number of executions 

(if any) the specialized method would run if the specialization was done.

N um ber o f D evirtualizab le Call S ites

The number of devirtualizable call sites refers to the number of virtual call sites in 

a benchmark that can be devirtualized as a result of method specialization. This 

gives a good insight to just how many call sites can be unconditionally devirtualized 

compared with the total number of loaded call sites in the program.

N um ber o f  D evirtualizab le Call S ites T hat Can B e Inlined

Out of the devirtualizable call sites from method specialization, this measurement 

gives the number of call sites that then can be inlined. This statistic is very im­

portant because devirtualizing call sites alone does not result in a high amount of 

speedup. Therefore if the call sites that can be devirtualized cannot be inlined, then 

the speedup will likely not be high enough to justify performing method specializa­

tion.

The inlining strategy was the same strategy as used by the static compiler in 

the Jikes Research Virtual Machine. This strategy is described in Section 3.6.
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Number of Specializable M ethods per Class

The number of specializable methods per class measures how many specializable 

methods are found in each class. This is another measurement to determine how 

contained specialized methods are; whether several of them appear in a single class 

or if only a few are present.

N um ber o f D evirtualizable Call S ites per Specializable M ethod

The number of devirtualizable call sites in a specializable method determines just 

how many virtual call sites can be devirtualized by a single specialized method. The 

higher the number of call sites, the better the expected execution speedup because a 

single specialization will allow multiple devirtualizations and multiple opportunities 

for additional optimizations.

N um ber o f C allees per Specializable M ethod

In order to determine if the devirtualizable call sites in a specialized method were 

targeting the same method, we collected the total mimber of callees for each special­

izable method. W ith this information, we can compare the number of devirtualizable 

call sites in a method (See Section 9.3.2) with the number of callees. If the number 

of callees for benchmark methods arc low while the number of call sites are high, 

then we know that most call sites are to the same target method, and arc therefore 

duplicates.

Size o f  Specializable M ethods

The size of specializable methods give the size in bytes of each method that po­

tentially could be specialized. This information is im portant because a method 

specialization optimization would make a copy of the entire method. Smaller meth­

ods would be more attractive because copying them would not result in as much 

code growth.

Size o f  Callees

For each callee of every devirtualizable call site in a specializable method, the size 

was examined to help determine what impact inlining the method would have on 

code bloat. Additionally, this information was collected to see if having a more
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liberal inlining strategy tha t allowed bigger methods would result in a significant 

increase in inlinablc methods.

9 .3 .2  S P E C jv m 9 8  and S P E C jb b 2 0 0 0  S ta t ic  D e v ir tu a liz a t io n  O p­
p o r tu n it ie s

Static data from the SPECjvm98 and SPECjbb2000 benchmark suites was collected 

to measure method specialization opportunities in industry benchmark suites. Data 

was collected from both SPECjvm98 and SPECjbb2000 benchmark suites to com­

pare and contrast both client-side and server-side Java programs to see if there were 

any major differences.

The results collected are given in the following sections. The raw data for the 

experiments can be found in Appendix A.

N um ber o f Specialization  C lasses

2 0 0 1------------------ 1------------------1------------------ 1------------------ 1------------------r

S p e c ia liz a b le  C la s s e s  
T otal C la s s e s

c o m p r e s s  j e s s  db  ja v a c  m p eg a u d io  mtrt jack  S P E C jb b 2 0 0 0
B en ch m ark

Figure 9.1: Number of Specializable Classes Compared to Total Loaded Classes in 
SPEC Java Benchmarks
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Figure 9.1 shows the number of specialized classes compared to the total classes 

loaded in each benchmark (Raw data can be found in Appendix A). This data shows 

that most of the classes loaded contain at least one specializable method, with an 

average of 85% for SPEC.jvm98 and 90% for SPECjbb2000.

This data indicates that specialization opportunities exist, throughout the whole 

program and arc not necessarily confined to a subset of classes. On its own, this 

is encouraging because many classes contain specialization opportunities. However, 

additional information is required to find out exactly how many opportunities exist 

in each class.

N um ber o f  Specializable M ethods

1 0 0 0 1------------------1------------------r

S p ec ia liz a b le  M eth od s  
Total M eth od s

c o m p r e ss  j e s s  d b  ja v a c  m p eg a u d io  mtrt jack  S P E C jb b 2 0 0 0
B en ch m ark

Figure 9.2: Number of Specializable Methods Compared to Total Loaded Methods 
in SPEC Java Benchmarks

Figure 9.2 shows the number of specializable methods compared to the total 

methods loaded in each benchmark (Raw data is found in Appendix A). The results 

show that 25% of SPECjvm98 methods and 23% of SPECjbb2000 methods are
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specializable. There is not much variation in percentages, with 202_jcss containing 

the most specializable methods a t 31% and 227_mtrt on the low end containing 21%.

Finding out that 25% of all methods are specializable in these benchmark suites 

is encouraging given that the benchmarks have limited complexity and limited class 

hierarchies. However, this data  must be compared with the number of call sites that 

can be devirtualized as a result.

N um ber o f  D evirtualizab le Call S ites

• o

J j 9 0 0 0

nj 8 0 0 0

-a  7 0 0 0

,o  6 0 0 0

.«  5 0 0 0

n

g - 4 0 0 0

(/, 3 0 0 0

5  2 0 0 0

>  1000

ja v a c  m p eg a u d io  
B en ch m ark

jackmtrtc o m p r e ss je s s

D evirtualizable Call S ite s  
T otal Call S ite s

Figure 9.3: Number of Devirtualizable Call Sites Compared to Total Call Sites in 
SPEC Java Benchmarks

Figure 9.3 shows the number of devirtualizable call sites compared with the total 

number of call sites in the program (Raw data is found in Appendix A). This graph 

shows that the number of call sites that can be specialized is quite small compared 

with the total number of call sites in the program, measuring an average only 2.9%.

The percentage of call sites could be increased with better use of inheritance, as
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this would increase the number of specializable methods and therefore the number of 

call sites available for devirtualization. However, we currently do not know the size of 

increase for devirtualizable call sites if inheritance were better used. Additionally, 

the numbers do not show the execution frequency of the call sites. Therefore a 

high percentage of specializable call sites is not needed for a execution speedup if 

those call sites arc frequently executed, but a higher percentage will increase the 

probability of finding hot, devirtualizable call sites.

N um ber o f  D evirtualizab le Inlinable Call S ites

u•
w

a) 3 0 0  i i i i ( i r

D evirtu a lizab le  Inlinable Call S ites  
T otal D evirtualizab le  Call S it e s

ja v a c  m p eg a u d io  mtrt 
B en ch m ark

c o m p r e s s

o
B

Figure 9.4: Number of Inlinable Specializable Call Sites Compared to Total Number 
of Call Sites in SPEC Java Benchmarks

Figure 9.4 shows a graph of the number of inlinable call sites compared with the 

total number of call sites that were devirtualizable from Section 9.3.2 (Raw Data 

can be found in Appendix A). Of the devirtualizable call sites, 70% were call sites
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that could be inlincd after dcvirtualization.

As inlining is an im portant optimization for improving execution speed, the 

strategy used by the method specialization implementation should choose from this 

set of call sites. While the percentage of inlinable call sites compared with dcvirtu- 

alizablc call sites is high, the number of inlinable call sites compared with total call 

sites is quite low (only 2%).

N um ber o f Specializable M ethods per Class

Benchmark Number of Specializable Methods per Class
1 2 3 4 5 6 7T Total

201-compress 37 5 1 1 0 0 0 54
202_jess 155 10 1 1 0 0 0 167
209-db 30 6 1 1 0 0 0 38

213-javac 96 18 6 4 2 5 1 132
222_mpcgaudio 63 8 3 1 0 0 0 75

227_mtrt 44 6 3 1 0 0 0 54
228-jack 64 11 1 1 0 0 1 78

SPECjbb2000 104 25 4 1 1 1 0 136
Total 593 89 20 11 3 6 2 724

Table 9.2: Number of Specializable Methods per Specializable Class in SPEC Java 
Benchmarks

The number of specializable methods per class is shown in Table 9.2. This shows 

that 80% of all the classes contain only one specializable method, while 6% contain 

3 or more specializable methods. This result indicates that most classes only have 1 

or 2 opportunities for method specialization, while a small percentage have multiple 

opportunities.

As the specializable methods are spread across several classes, it would be in­

teresting to know if there is a relationship across the 80% of classes that have only 

one specializable method.

N um ber o f D evirtualizable Call S ites per Specializable M ethod

Table 9.3 gives the number of call sites that are devirtualizable in each specializable 

method. Again while a higher number of devirtualizable call sites per specializable 

method would open up a higher number of optimizations opportunities, 93% of all 

specializable methods only have one devirtualizable call site and 98% have only 1 

or 2 opportunities.
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Benchmark Number of Devirtualizable Call Sites per Method
1 2 3 4 5 6 7 8 9 10 11+ Total

201 .compress 49 4 0 0 1 0 0 0 0 0 0 54
202_jess 193 4 0 0 1 0 0 0 0 0 0 198
209_db 44 4 0 0 1 0 0 0 0 0 0 49

213_ javac 189 16 1 1 5 2 0 0 0 1 0 215
222_mpegaudio 83 5 2 0 2 0 0 0 0 0 0 92

227-mtrt 64 4 0 0 1 0 0 0 0 0 0 69
228_jack 95 7 0 0 1 0 0 0 0 0 2 105

SPECjbb2000 172 6 0 0 1 1 0 0 0 0 0 180
Total 889 50 3 1 13 3 0 0 0 1 2 962

Table 9.3: Number of Devirtualizable Call Sites per Specializable Method in SPEC 
Java Benchmarks

It would be ideal to be able to dcvirtualize multiple call sites in a single special­

ized method. However, it is not surprising that the majority of methods have only 

one or two call sites that can be devirtualizcd due to the constraints of a call site 

having a target of the this object and the target of the call site being overridden.

N um ber o f Callees per Specializable M ethod

Benchmark
Number of Callees

1 2 3 4 5 Total
201 .compress 50 4 0 0 0 54

202_jcss 194 4 0 0 0 198
209-db 45 4 0 0 0 49

213_javac 195 17 2 0 1 215
222_mpegaudio 86 4 2 0 0 92

227-mtrt 65 4 0 0 0 69
228-jack 101 4 0 0 0 105

SPECjbb2000 175 5 0 0 0 180
Total 911 46 4 0 1 962

Table 9.4: Number of Callees per Specializable Method in SPEC Java Benchmarks

Table 9.4 shows the number of callees that arc target of devirtualized call sites 

in each specialized method. 95% of all methods have a single target, and just 

under 5% have 2 targets. A high percentage of specialized methods with a single 

callcc indicates that we are likely to have duplicate call sites. However, because 

the majority of specializable methods have only one call site, the percentage of 

specializable methods that have duplicate devirtualizable call sites is small.
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Size of Specializable M ethods

Benchmark Size of Specializable Methods (bytes)
0-99 100-149 150-199 200-249 250-299 300-349 350+

201 .compress 0 31 7 9 1 1 5
202_jcss 0 156 13 14 3 3 9
209_db 0 28 6 6 1 2 6

213-javac 0 135 25 19 5 3 28
222_mpegaudio 0 52 9 8 2 3 18

227_mtrt 0 43 8 7 3 2 6
228_jack 0 61 18 7 2 5 12

SPECjbb2000 1 110 21 13 4 5 26
Total 1 616 107 83 21 24 110

Table 9.5: Size (bytes) of Specializable Methods in SPEC Java Benchmarks

Table 9.5 shows the sizes of all specializable methods. This data shows that the 

majority of all specializable methods (64%) are within the 100 to 149 byte range. 

Another 20% are within the 150 to 250 byte range and the largest group of size 350 

or more bytes registered 11%.

This data is encouraging as the majority of specializable methods are relatively 

small in size. This means that several methods can be specialized without causing 

excessive code growth. However this data does not show which methods will cause 

the most amount of speedup as a result of method specialization. Therefore it is 

possible that methods with the highest speedup opportunities are of larger size.

Size o f Callees

Benchmark Size of Callees
0-99 100-149 150-199 200-249 250-299 300-349 350+

201 .compress 31 15 6 0 1 2 2
202_jcss 154 21 8 1 1 2 4
209-db 26 17 4 0 1 2 2

213_javac 63 84 15 20 4 5 17
222_mpcgaudio 48 24 6 1 1 2 9

227-mtrt, 41 18 5 0 1 2 4
228-jack 39 35 15 0 3 2 2

SPECjbb2000 87 60 5 8 4 3 13
Total 489 274 64 30 16 20 53

Table 9.6: Size (bytes) of Devirtalizablc Call Site Callees in SPEC Java Benchmarks

100

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Tabic 9.6 shows the sizes of the target methods for devirtualizable call sites. 80% 

of all callees were within the 0-150 byte range with only 6% in the 350 bytes and 

larger category. This is also encouraging as the majority of call sites that would be 

inlined arc small in size.

This information was collected to determine if a more liberal inlining strategy 

could significantly increase the number of call sites that could be inlined. The current 

Jikes RVM inlining strategy uses a constant for the maximum size for an inlined 

method of 135 bytes. The data does not show how many methods arc between 135 

bytes and 150 bytes, but increasing the constant to 150 bytes would see that the 

full 80% of devirtualizable call sites could be inlincd. But this does not guarantee 

that they would actually in fact be inlined.

9 .3 .3  D iscu ss io n  o f  S ta t ic  O p p o rtu n ity  N u m b e r s

Firstly, when comparing the number of specialized methods with the number of 

devirtualizable call sites, the data shows that a large percentage of methods are 

specializable (at 25%) while the number of call sites that can be devirtualized is 

very low (at about 3%). These results indicates that the small amount of call sites 

that are devirtualizable as a  result of method specialization, are spread out across 

several methods. As a consequence, method specialization is less attractive because 

it would need to be performed on several methods to dcvirtualizc these call sites. 

This is costly in terms of compilation time as well as code growth.

Comparing the number of devirtualizable call sites with the number of devirtual­

izable call sites, the percentage of good candidates drops to 2%. Again, this number 

may be raised with better use of inheritance. However it is not known how large the 

effect would be. However given that the most complex benchmarks, 213-javac and 

SPECjbb2000, have only 3.6% and 2.6% devirtualization opportunities respectively, 

it appears that the gain in the number of opportunities may not be large.

Comparing the number of devirtualizable call sites with the number of callees 

per specializable method shows that a small number of the call sites are duplicates. 

As 93% of all specializable methods have one devirtualizable call site but 95% of 

specializable methods have only a  single callcc for devirtualizable call sites, 2% of 

specialized methods have at least one duplicate call site.
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9.4 Summary

The static numbers of the SPECjvm98 and SPECjbb2000 benchmarks are not very 

promising for method specialization. The total number of call sites that can be 

devirtualized from method specialization is below 3% and the number of those call 

sites that can be inlincd drops the number to 2%.

These numbers are significantly lower than selective specialization which was 

able to devirtualize up to 66% of all virtual call sites, and customization which was 

able to devirtualize up to 61%. The exact reason for this large discrepancy is not 

known at this time. We believe tha t testing other larger, more complex, object- 

oriented benchmarks will close this gap slightly. However, the gap is still quite large 

and should be examined further.

These numbers also must be taken in context with the dynamic numbers to 

determine if the possible devirtualizable call sites are frequently executed. W ith 

this information, the potential speedup from method specialization can be more 

accurately measured.
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Chapter 10

Related Work

In this chapter we talk about related research in the areas of call site devirtualiza­

tion and method specialization. Because call site devirtualization is im portant for 

creating opportunities for other optimizations such as inlining, several techniques 

have been introduced to eliminate dynamic dispatches from pure object-oriented 

programming languages. Much research has been done in the area of statically- 

compiled systems with offline profile feedback information, and a significant amount 

of research has been performed for dynamically-compiled systems. While work has 

also been done in the area of devirtualization in dynamic class loading language, 

online method specialization in dynamic class loading languages does not appear to 

have been studied.

10.1 Extant Analysis

Sreedhar introduced the concept of Extant Analysis [115] which allows interproce­

dural optimization in the presence of dynamic class loading. Given a set of classes 

called the closed world set, offline static analysis is performed to partition object ref­

erences into 2 sets: unconditionally extant or object references that are guaranteed 

to be in the set of closed world classes, and conditionally extant or object references 

that may point to a class that is not in the closed set of classes. Based on this 

information, static optimizations that can be applied to the first unconditionally 

extant set are guaranteed to remain correct, even after dynamic class loading.

Consider the example in Figures 10.1 and 10.2, which are based on the example 

given in [115]. The classes shown created the closed world set of classes which is a 

set of classes. By using extant analysis, we determine if object references refer to 

only this closed set of classes, or if they could refer to classes that are outside of
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this set. This is done by performing data-flow analysis on the closed world classes. 

Using this data-flow analysis, we can determine that method call site b.har() in 

class A is extant because the runtime type of the receiver object b is guaranteed to 

be a type in the closed world of classes. However method call site c.barf) in class 

A cannot be assumed to be in this set, as variable c is a parameter to the public 

method func(C ) which can be called from outside of the closed world. Thus we must 

assume that there exists the possibility of a class D extending class C that contains 

an overriding method bar(), that is passed as a parameter to method Junc(C). Thus 

any optimization done on this object reference must be guarded with a runtime test 

to check the dynamic type.

public class A {
public static void func(C c) {

B b =  new B();
b.bar();
c.barQ;

}
}

public class B {
public void bar() { . . .  }

}

public class C extends B { . . .  }

Figure 10.1: A Sample Pseudo-Java Class Hierarchy Illustrating Extant Analysis, 
After [115]

Extant Analysis also works to identify methods that are candidates for method 

specialization. By finding object references that are conditionally extant, it is possi­

ble to produce a method that is specialized towards a particular class. For example 

in Figure 10.1, method A .func(C ) could be specialized for the closed world of classes. 

A new method A .June’(C) is specialized for the receiver type of variable c being in 

the closed world, while the original method is used for all other cases. Method 

selection is then done by inserting an Extant Safety Test (EST) which checks the 

runtime type of the object reference and calls the appropriate method.

Extant Analysis performs well as it is a static optimization that incurs no run­

time cost. Additionally, testing showed that for the SPECjvm98 benchmarks, 97.9% 

of method calls are within the closed world allowing a tremendous amount of opti­

mization [115]. However specialization, as a static optimization, is hindered because
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public class A {
public static void func(C c) {

B b =  new B();
b.bar();
c.bar();

}
public static void func’(C c) {

B b =  new B(); 
b.bar();
B.bar{); / /  Devirtualized m ethod call site

}
}

public class B {
public void bar() { . . .  }

}

public class C extend B { . . .  }

public class D  {
public static void som ething() {

if(E S T (cl)) / /  Returns true if c l  is an extant object 
A .func’(c l); / /  Specialized m ethod

else
A .func(cl); / /  Original m ethod

}
}

Figure 10.2: A Sample Pseudo-Java Class Hierarchy Illustrating Extant Analysis 
After Specialization, After [115]
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it; suffers from code bloat. Method specialization tends to work best as a dynamic 

optimization where the compiler is able to identify hot portions of code and create 

specialized methods based on this information to restrict code bloat.

10.2 Class Hierarchy Analysis

Class Hierarchy Analysis (CIIA) [50] is a technique tha t uses knowledge of a pro­

gram ’s inheritance graph to perform optimizations such as statically-binding dy­

namic method calls, and determining the set of classes tha t arc the target of a 

particular method.

C lass  B e x t e n d s  A

C lass  D e x t e n d s  C 
v o id  foo()  {...}

C lass  A 
vo id  foo()  {...} 
vo id  bar() {...}

C lass  C e x t e n d s  A 
vo id  foo()  {.. .}

C lass  E e x t e n d s  C 
v o id  bar() {foo();}

C lass  F e x t e n d s  E

Figure 10.3: A Sample Class Hierarchy

Figure 10.3 shows a sample class hierarchy. Class E  defines a m ethod bar() that 

includes a method call site to method foo(). No subclass of class E  contains an 

overriding declaration of method foo(). Thus there is only one target class for the
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call site ( C.foo()), and therefore a direct call can be used instead of a virtual call.

CIIA is quite effective and can speedup execution between 23% to 89% and 

reduce code size by 12% to 21% for dynamically-typed programs [50]. CIIA is also 

powerful when used in combination with profile-guided receiver class prediction, 

producing speedups between 45% to 410% [75]. This speedup was attributed to 

the chemistry between the optimizations as the compiler can use CHA to determine 

monomorphic call sites and then fall back on profile-guided receiver class prediction 

for polymorphic call sites.

CHA is generally used on non-dynamic class loading languages because a com­

plete knowledge of all classes is needed to create the class hierarchy. Because Java 

provides dynamic class loading, the entire class hierarchy can never be known as 

a new class can be loaded a t any point during the program execution. Thus Java 

compilers that use CHA utilize a class hierarchy that is current for a given program 

point, but all optimizations must allow for additional classes to be loaded at a later 

point.

10.3 Profile-Guided Receiver Class Prediction

Profile-guided receiver class prediction [65, 73, 75] utilizes run-time type feedback 

to determine what is the likely type of the receiver for a call site. In the system 

implemented by Ilolzle and Ungar [75], the compiler creates an instrumented version 

of the program that collects profiling information about the types of receivers at all 

call sites. This profiling is then fed back to the compiler to generate optimized code. 

The optimized code attem pts to predict the receiver of dynamically-dispatched call 

sites based on the profile information given.

Figure 10.4 gives a sample class hierarchy and Figure 10.5 gives a call site and 

what the corresponding optimized code looks like. This example was first presented 

by Ilolzle et al. in [75].

The optimized code optimizes for receiver objects of type CartesianPoint. This 

in turn allows the virtual call to be statically bound and inlined, while protecting 

the program in the instance that the Point object was in fact not a CartesianPoint.

While this in turn speeds up the execution by a factor of 1.5 [75], Profile-guided 

receiver class prediction can slow down execution if the profile taken doesn’t yield 

good results. As a result, Grove et al. [65] examined 4 benchmarks to determine if 

the profiles gathered from the benchmarks were:
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public abstract class Point { 
float abstract gctXQ; 
float abstract gctY ();

public abstract float gctD istance(Point paramPoint);
}

public class CartesianPoint extends Point { 
float x, y; 
public float getX  { 

return x;

}

/ / Other m ethods om itted

public class PolarPoint extend Point { 
float rho, theta; 
public float getX () {

return rho * cos(tlieta);
}

/ /  Other m ethods om itted

Figure 10.4: A Sample Pseudo Java Class Hierarchy from [75]

Point p =  gctSom ePoint(); 
float x  =  p,getX();

if(p.instanceOf(CartcsianPoint)) {
/ /  Inline CartesianPoint m ethod  
x  =  p.x;

} else {
/ /  Original virtual call 
x  =  p.gctXQ;

}

Figure 10.5: A Call Site and the Corresponding Optimized Code from [75]
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• Strongly Peaked: Do the call sites have a small number of dominant receiver 

types?

• Stable Across Input: Do the class distributions change a significant amount 

across different input for the same program?

• Stable Across Version: Does the profile remain valid as the program goes 

through its development?

• Stable Across Programs: Is there a significant difference in receiver types in a 

library that is shared across multiple programs?

Grove et al. recorded that the profile information collected indeed was strongly 

peaked and stable across input and version for their particular benchmarks. However 

they were unable to measure the stability across programs, leaving a significant 

question unanswered. While profile-guided receiver class prediction does indeed 

provide excellent speedup for statically-compiled languages, it’s use in programming 

languages that allow dynamic class loading is limited. When a subclass, that would 

benefit from the optimized code, is dynamically loaded at run-time it will not make 

use of the optimized code because the class test provided needs to change and 

include the newly loaded class. This is quite tedious and requires recompilation of 

each specialized method each time a subclass is dynamically loaded.

10.4 Code Patching

Code patching [39, 76, 117], is a devirtualization technique that attem pts to avoid 

recompilation of methods when inlining decisions are invalidated. If a call site only 

has a single target, the compiler creates two separate portions of code. The first 

portion of code contains dcvirtualizcd and inlined call sites without any guarding 

while the second portion contains the original virtual call sites. The code is then 

set up such that the inlined code is always executed and the original code is never 

executed. In the case of a dynamic class load that invalidates the devirtualization, 

a branch instruction to the original code is written over the first instruction of the 

devirtualized code. Thus execution goes to the slower, but correct, original portion 

of code.

Figures 10.6 and 10.7, which are copied from [76] for illistrativc purposes, show 

the corresponding PowerPC instructions of the before and after situations for code
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inlined-codc: 
add 5, DO 
add 4, D1

codc_aftcr_inlincd-Code:

originaLcall:
lwz r l, (obj) / /  load class pointer
lwz r2, o ffset(rl) / /  load m ethod pointer
lwz r3, offset(r2) / /  load code address
m tctr r3 / /  move address into condition register
blr ctr / /  dynam ic m ethod call
b code.after jn lin ed .cod e / /  Branch to the next instruction

Figure 10.6: Assembly Code Before Dynamic Class Loading From [76]

inlined.code:
b originaLcall / /  Jump to the virtual call code 
add 4, D1 / /  No longer executed

code-after_inlined-code:

original.call:
lwz r l,  (obj) / /  load class pointer
lwz r2, ofFsct(rl) / /  load m ethod pointer
lwz r3, offsct(r2) / /  load code address
m tctr r3 / /  move address into condition register
blr ctr / /  dynam ic m ethod call
b code_aft,er jn lin ed .cod e / /  Branch to the next instruction

Figure 10.7: Assembly Code after Dynamic Class Loading that Invalidates Inlining 
Decision From [76]
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patching. Figure 10.6 shows how virtual call sites are devirtualized and the target 

method inlined (code is indicated by the label “inlined_code”). Figure 10.7 shows 

the changes made after dynamic class loading that invalidates the devirtualization. 

As shown in the example, the first line of the inlined method is replaced by a branch 

instruction to the original virtual call instructions.

Code patching gives a speedup of approximately 13% with SPECjvm98 and 

SPECjbb2000. When code patching is combined with other devirtualization tech­

niques such as prcexistence, spccdups reach approximately 16%.

10.5 Pre-existence Analysis

Pre-existence analysis [51] is another technique used to devirtualize method call 

sites in dynamic programming languages (such as Java) and was designed to avoid 

costly On-Stack Replacement [74] when dynamic class loading invalidates previous 

inlining decisions. Pre-existence identifies if a object reference pre-exists, which is 

defined as being allocated before the execution of a particular method. If an object 

is allocated prior to the execution of the method, the object must be in the set of 

classes extant in the program at the s tart of the method.

void fo o (0  o) {
O o2;

o2 =  o;
02.bar(); / /  O bject o2 is pre-existing
0  o3 =  new 0 ( ) ;
03.bar(); / /  O bject o3 is not pre-existing

}

Figure 10.8: An Example Illustrating Pre-existence After [51]

Take the example found in Figure 10.8 that is based on the example given in

[51]. Looking at the call site o2.bar(), the receiver object o2 is assigned the value of 

the parameter o. As variable o is a  parameter, the object must have been allocated 

before the execution of method Joo(O). Thus we can inline the call site o2.bar() 

without a guard and if a new class that invalidates the inlining decision is loaded 

during method foo (0 ), the m ethod can safely execute until the end of execution. 

Once the method has finished executing, the method must be recompiled to correct 

the inlining optimization.
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The call site o3.bar() is a different situation. Variable o3 is allocated during the 

execution of method foo(O ) and therefore does not pre-exist. Therefore the call site 

could be dcvirtualizcd and inlincd but if a class were loaded during the execution of 

method foo(O), then on-stack replacement must be used to correct the now incorrect 

inlining decision.

Results showed that for the benchmarks tested, approximately half of the vir­

tual call sites had receiver objects that were proven to be pre-existing. While pre­

existence eliminates the need for costly on-stack replacement, recompilation of meth­

ods is still required when dynamic class loading invalidates inlining decisions which 

can be costly.

10.6 Thin Guards

The concept of Thin Guards [13] was developed as an alternative to class tests [32, 

65] and method tests [51]. Generally speaking, Thin Guards provide 2 benefits over 

traditional class and method guard tests:

1. Thin Guards are generally more efficient than class or method tests.

2. Thin Guards test a more general condition, allowing more optimization for a 

single guard.

Thin Guards provide an efficient runtime test to allow optimistic assumptions 

to be performed in the presence of dynamic class loading. Optimistic assumptions 

are facts about the executing program that:

1. Are currently true.

2. Arc unlikely to change in the near future.

3. Enable additional optimization to be performed.

Thin Guards take these optimistic assumptions and map them to a condition 

bit. An example is testing if dynamic class loading has happened after a specific 

point in program execution. If no dynamic class loading has been performed, the 

condition bit is set to false. If dynamic class loading has happened, regardless of 

the class loaded the condition bit is set to true. Figure 10.9 shows an example of 

an opportunity for inlining while Figure 10.10 shows how Thin Guards can be used
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to perform an optimization and protect against dynamic class loading that may 

invalidate the optimization. Both Figures 10.9 and 10.10 are based on the example 

found in [13],

class A {
public int func() {

A a =  gctSom cNewAorB(); 
B b  =  gctSom eB(); 
return a.getXQ +  b.gctYQ;

}
public int getX () { 

return 1;
}
public int getY () { 

return 2;
}

}
class B extends A { . . .  }

Figure 10.9: Sample Java Pseudo Code Demonstrating an Opportunity for Inlining, 
After [13]

class A {
public int func() {

A a =  gctSomcNewAorBQ;
B b =  getSom eB(); 
if(noClassloadingHasOccurcd) { 

return 3;
} else {

return a.getX () -f b.getYQ;
}

}
public int getX () { 

return 1;
}
public int gotY() { 

return 2;
}

}
class B extends A { . . .  }

Figure 10.10: Sample Java Pseudo Code Demonstrating Using Thin Guards For 
Inlining, After [13]

As Figure 10.9 shows, the call sites a.getX() and b.gelY() are currently monomor- 

phic, meaning that they currently only have one target class, hut dynamic class 

loading could invalidate this at a later point. Thus we perform speculative inlin-
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ing and protect the execution by placing a Thin Guard. Figure 10.10 shows what 

method func() looks like after the guard was inserted. We now have a test that 

checks a condition to sec if any classes were loaded after performing the optimiza­

tion. If not, then the devirtualized, inlined, and constant propagated folded code is 

executed while the original virtual calls are executed if a new class has been loaded.

Thin Guards showed impressive performance when comparing it with an ideal 

performance level where unsafe class hierarchy analysis was used (inlining with no 

guard). When no guard was used to protect optimizations from dynamic class 

loading, Thin Guards achieved between 70% and 92% of this ideal performance on 

the SPECjvm98 benchmark suite. This showed that Lhe overhead of eliminating 

penalties of dynamic class loaded with Thin Guards was reasonably small, while 

providing benefits from speculative optimization.

Unlike class and method tests, Thin Guards are only effective for currently 

monomorphic call sites, as they cannot distinguish between receiver types at call 

sites. Additionally if the condition bit were the same as the one used in the previ­

ous example, then all optimized code is not executed in the event of a single dynamic 

class loading, regardless of the validity of the optimized code. However this can be 

avoided by providing several condition bits for particular classes, but this increases 

the overhead of performing the test. The authors acknowledge that understanding 

the ideal number of conditions for an executing program requires more research.

114

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 11

Conclusions

Method specialization is an im portant optimization for eliminating virtual call sites 

and opening up opportunities for other compiler optimizations. This thesis ex­

amined previous method specialization research, and its applicability to dynamic 

compilation environments that handle dynamic class-loading.

Customization is a brute force method specialization technique that eliminates 

all virtual call sites to the “this” receiver object at the expense of enormous code 

growth and compilation time. Customization also does not handle the problem of 

creating multiple copies of a method when only one method would suffice, and only 

specializes on the receiver object for call sites.

Selective specialization handles the code growth problem of method specializa­

tion much better than customization docs. By selectively choosing only frequently 

executed methods to specialize, unnecessary specialization is avoided. Selective spe­

cialization also adds the functionality of specializing not only on the receiver object 

at a call site, but also on param eter object-typcs. While this technique certainly 

improves on the customization technique, it does not handle dynamic class-loading 

and the heuristic is not ideal for a  dynamic compilation environment.

Automatic program specialization was designed for the Java programming lan­

guage and allows the programmer to define where and what to specialize. While 

this technique gives complete control to the programmer, it requires an extension 

to the language; it sacrifices the ability to adapt to different run-time values and 

context changes; and it docs not explicitly handle dynamic class-loading.

Given that the previous method specialization techniques do not satisfy the 

requirements of being suitable for a dynamic compilation environment and explicitly 

handling dynamic class-loading, we presented a new method specialization compiler
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optimization framework that handles both of these requirements. Our framework 

uses on-line profiling information to first identify which call sites will benefit from 

devirtualization. Then it uses receiver-type profiling information to identify which 

object-type the method should be specialized to. Once identified, the framework 

shows how to perform method selection using virtual method tables, and gives the 

additional checks that need to be inserted into the class loader to ensure correct 

execution upon dynamic class-loading.

We also identified the aspects of the program that should be examined when 

making method specialization decisions. These aspects can be used to create a 

heuristic for method specialization decisions.

Finally, we collected static information regarding method specialization opportu­

nities in the widely-used SPECjvm98 and SPECjbb2000 benchmarks. The numbers 

collected show that only a small percentage of all call sites in these benchmarks 

can be devirtualized as a  result of method specialization. More research needs to 

be performed to identify if this is related to implementation of the benchmarks, or 

some other problem.
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Chapter 12

Future Work

12.1 Collection of Dynam ic Execution Information for 
M ethod Specialization Opportunities

As identified in Chapter 9, it is important to know if the sites where the is an 

opportunity for method specialization are frequently executed. As programs usually 

spend the majority of execution time in a small segment of the program, having 

multiple method specialization opportunities will not result in significant speedup 

if these opportunities are not in a hot path.

Therefore, tests need to be performed to measure the dynamic execution count 

of call sites that can be devirtualized due to method specialization. Additionally, in­

formation regarding dynamic receiver-object types of devirtualizable call sites would 

also be informative as it would indicate which objcct-Lypes are receiving the majority 

of calls.

12.2 Test Additional Complex Benchmarks

Chapter 9 presented the results for our investigation of method specialization op­

portunities for the SPECjvm98 and SPECjbb2000 benchmarks. We discussed how 

these benchmarks were not ideal candidates for measuring method specialization 

opportunities due to their small size and lack of inheritance and abstraction utiliza­

tion.

It would be beneficial to collect method specialization opportunity data on larger, 

more complex, benchmarks to determine if more opportunities exist in programs that 

make use of inheritance and abstraction.
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12.3 Removal of Specialized M ethods

As mentioned before, long running programs can go through context changes in 

execution. These context changes can render specialized methods useless as opti­

mizations are only effective if the method is executed. Also as method specialization 

can add to code bloat, a program may not be able to perform additional method 

specializations after a context change due to space constraints.

The ability to chose previous method specializations and eliminate them would 

allow the compiler to free up space and therefore create new specialized methods 

targeted at the new execution behavior. It would be beneficial for a compiler to 

be able to identify candidates for deletion based on context-sensitive profiling infor­

mation. This in turn would allow a method specialization framework to adapt to 

program changes without having to worry about space constraints.

12.4 A Heuristic for M aking M ethod Specialization D e­
cisions

The ability for a dynamic compiler to make smart optimization decisions is very 

important as the cost for optimization is paid at run-time. Optimization decisions 

must provide speedup that is greater than the cost it takes to perform the optimiza­

tion. The aspects that a compiler needs to take into consideration when making 

such a decision is highlighted in Section 8.3.2.

W ith this information the compiler must made method specialization decisions. 

As the compiler wants to make the best optimization decisions based on this infor­

mation that balances between speedup, cost, and code growth, research into what 

heuristic provides the best results is needed.

This research requires a working method specialization implementation along 

with several test cases with which to test the heuristic on.
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Appendix A

Raw Data for SPECjvm98 and 
SPECjbb2000 Benchmarks

This appendix contains all of the raw data collected from the experiments found 

Section 9.3.2.

Benchmark Specializable
Classes

Non-
Specializable

Classes

Total
Classes

(Loaded)

%
Specializable

Classes
201-compress 44 10 54 69%

202_jess 168 15 183 92%
209_db 38 10 48 79%

213-javac 132 41 173 76%
222_mpegaudio 75 9 84 89%

227-mtrt 54 13 67 81%
228_jack 78 10 88 89%

SPECjbb2000 135 15 150 90%
Total 724 123 847 85%

Table A .l: Static Number of Specializa,ble Classes
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Benchmark Specializable
Methods

Non-
Spccializablc

Methods

Total
Methods
(Loaded)

%
Specializable

201 .compress 54 157 211 26%
202_jess 198 441 639 31%
209-db 49 179 228 21%

213-javac 215 686 901 24%
222_mpcgaudio 92 279 371 25%

227-mtrt 69 265 334 21%
228-jack 105 339 444 24%

SPECjbb2000 180 718 898 20%
Total 962 3064 4026 24%

Table A.2: Static Number of Specializable Methods

Benchmark Devirtual- 
izable 

Call Sites

Non- 
Devirtualizable 

Call Sites

Total
Call
Sites

%
Devirtualizable 

Call Sites
201 .compress 62 2280 2342 2.6%

202_jess 206 5856 6062 3.4%
209-db 57 2475 2532 2.3%

213-javac 274 7867 8141 3.6%
222_mpcgaudio 109 2949 3058 3.6%

227-mtrt 77 3750 3827 2.0%
228_jack 164 5194 5358 3.1%

SPECjbb2000 213 8077 8290 2.6%
Total 1162 38448 39610 2.9%

Table A.3: Static Number of Specializable Call Sites

Benchmark Inlinable
Call
Sites

Non- 
Inlinable 
Call Sites

Total
Call
Sites

Percent 
Inlinable 
Call Sites

201 .compress 51 11 62 82%
202_jess 181 25 206 88%
209-db 46 11 57 81%

213_javac 137 137 274 50%
222_mpcgaudio 78 31 109 72%

227-mtrt 63 14 77 82%
228-jack 78 86 164 48%

SPECjbb2000 177 36 213 83%
Total 811 351 1162 70%

Table A.4: Static Number of Inlinable Specializable Methods
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Appendix B 

Trademarks

Jikes, AIX, and PowerPC are trademarks or registered trademarks of International 

Business Machines Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks or registered trademarks of 

Sun Microsystems, Inc. in the United States, other countries, or both.
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