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Abstract

Climate change has become an urgent global concern in the 21st century. Such

environmental variation has led to an increasing occurrence of natural disasters.

For example, the continuing rises in global temperatures can bring about severe

storms and wildfires. Consequently, electrical infrastructures can be damaged, in-

ducing large-scale blackouts and considerable economic losses. Therefore, power

grid resilience against natural disasters has become a hot topic in both industry

and academia. Benefiting from smart power distribution systems (PDSs), advanced

techniques such as distributed generation and distributed automation can enhance

power grid resilience effectively. However, one of the greatest challenges is how to

efficiently utilize the emerging smart devices in a resilience-oriented manner con-

sidering the randomness of natural disasters. Therefore, in this thesis, the stochastic

resilience-oriented smart PDS planning and operation against natural disasters is in-

vestigated. Four main research topics are studied.

Firstly, the stochastic planning for PDS resilience enhancement against earthquakes

is investigated. Specifically, the portfolio of resilient measures including hardening

distribution lines (DLs), and investing in Mobile Emergency Generators (MEGs)

and Mobile Energy Storage Systems (MESSs) are studied in a stochastic environ-

ment. A spatial seismic damage model is developed to geographically characterize

the random damages of earthquakes. The stochastic PDS planning problem is for-

mulated as a risk-averse two-stage stochastic bi-level programming problem. The

upper-level minimizes the total investment cost and the expected interruption cost.

The lower-level minimizes the expected loss of load through MEG and MESS co-

ordination, including co-allocation and energy exchange. To solve this problem, a
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decomposition method is proposed to break up the problem into two separate sub-

problems to speed up the computation. Case studies based on IEEE 37-Node and

123-Node Test Feeders demonstrate that the co-optimization of DL hardening and

MEG and MESS investment considering MEG and MESS coordination including

co-allocation and energy exchange is necessary. It can enhance the PDS resilience

against earthquakes in a cost-effective manner.

Some types of natural disasters can impose destructive impact over a period of time,

resulting in post-restoration failures. In the second work, the resilient restoration

against uncertain multi-shocks of earthquakes and post-restoration failures is in-

vestigated. A data-driven PDS resilience enhancement strategy is proposed against

multi-shocks of earthquakes considering the underlying uncertainties. A resistibil-

ity index (RI) is developed based on hierarchical hidden Markov models (HHMMs)

for stochastic resilience evaluation. The historical earthquake data are incorporated

into the HHMM as observed information of multi-shocks of earthquakes. Based on

theRI metric, the problems of pre-positioning and reallocation of MEGs are formu-

lated as mixed-integer programming problems. The problem of repair scheduling

is formulated as an adaptive two-stage multi-period stochastic programming prob-

lem, for which a revision period is introduced to allow the decisions to adapt to the

underlying uncertainties after the revision. Also, to reduce the computational com-

plexity, an iterative algorithm is presented based on linear relaxation. Case studies

based on the modified IEEE 123-Node Test Feeder and historical earthquake data of

the 1994 Northridge earthquake demonstrate the efficiency of the proposed strategy.

The existing MG formation approaches based on the Distflow model always de-

mand MG roots and their corresponding topologies. This can result in an increased

number of variables and constraints in the optimization problem. In the third work,

the dynamic microgrid (MG) formation considering large-scale deployment of mo-

bile energy resources (MERs) is studied. Specifically, an adaptive linearized Dist-

flow model is proposed based on the single commodity flow model in graph theory.

The active and reactive powers are represented as commodities, which are sent from

one node to each of its adjacent nodes in a graph. Accordingly, the power flow and
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nodal voltage calculation based on the commodity flow only requires adjacent node

information of the original topology rather than various MG topologies caused by

the dynamic deployment of MERs. Moreover, the dynamic MG formation problem

is formulated as a mixed-integer nonlinear programming problem by incorporating

the adaptive LinDistflow model as constraints. A linearization technique is pro-

posed based on propositional logic constraints. The effectiveness of the proposed

dynamic MG formation approach is evaluated based on the IEEE 37-Node, IEEE

123-Node and IEEE 8500-Node Test Feeders. The evaluation results also indicate

that the large-scale MER deployment can lead to a lower average total load shed.

Modern power systems are undergoing a paradigm shift from traditional grids to-

wards smart grids. New challenges arise in terms of grid resilience, because natural

disasters can cause damages to both cyber and physical systems. In the forth work,

we propose a stochastic sequential restoration scheme for cyber-physical power dis-

tribution systems (CPDSs) considering resilience. The sequential restoration prob-

lem is formulated as an uncertain Markov decision process (UMDP) with hurricanes

incorporated as natural disasters. Different wind velocities and directions are con-

sidered as hurricane scenarios, which are used to obtain the fragility of DLs. The

fragility functions are further used for the derivation of uncertain state transition

functions of the UMDP. The minimax regret optimization considering the sample

weights of UMDP is presented. The robust sequential actions are determined, such

that the loads can be restored in a timely manner. To improve computational effi-

ciency, a minimax regret policy iteration algorithm is presented based on the regret

Bellman equation. Case studies are conducted based on the IEEE 123-Node Test

Feeder and historical data of Hurricane Bonnie to demonstrate the effectiveness of

the proposed scheme.
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Chapter 1

Introduction

In this thesis, the stochastic resilience-oriented smart power distribution system

(PDS) planning and operation against natural disasters are investigated. The main

focus is on the development of resilient planning and operation strategies to enhance

PDS resilience against the stochastic impact of natural disasters.

1.1 Background

Natural disasters which are characterized as high-impact low-probability extreme

events can pose negative impacts on electrical infrastructures [1]. For example,

in 2010, an 8.8 Richter scale earthquake hit the central part of Chile, damaging

the Chilean Central Interconnected System, which provides electricity to over 93%

of the Chilean population [2]. In 2017, hurricane Harvey made a landfall on the

Texas Gulf Coast. Consequently, a total of six generators and dozens of substa-

tions are flooded in Southeast Texas and Louisiana, USA, with a total of 2,285

MW in capacity impacted [3]. In 2021, winter storm Uri struck Texas, USA. It is

recorded that more than 4.5 million households are left without electricity, some

for several days [4]. The statistics in Fig. 1.1 show the number of major blackouts

caused by extreme events in the USA between 1986 and 2006, with greater than

50,000 customers affected [5]. It can be seen that the area of bars under the dotted

line, representing the number of blackouts associated with natural disasters, such

as earthquakes, extreme winds, wildfires and cold weather, occupies a large portion

of the total area. This highlights the importance of investigating features of natural
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Figure 1.1: Outages induced by extreme events between 1984 and 2006 in U.S.A.

disasters and resilient strategies to reduce the risks of outages.

Smart PDSs, integrated with intelligent decision support, provides an opportunity

to address the above challenges. Compared with traditional PDSs, smart PDSs are

equipped with advanced techniques such as distributed generation, sensing, com-

munication, and computing, which can effectively enhance PDS resilience [6, 7].

An illustration of the smart PDS architecture with resilience-oriented coutnermea-

sures is shown in Fig. 1.2. It contains three layers, which are electric power sys-

tems, communication systems, and decision support systems [8]. Between two ad-

jacent layers, there are two-way data flow to transfer the grid information upwards

and the resilient operation decisions downwards. Moreover, each layer of smart

PDS has its own countermeasures in terms of resilience enhancement. The electric

power system improves the smart PDS resilience from the perspective of advanced

electrical techniques and components, such as hardened distribution lines (DLs),

distributed energy resources (DERs) and intelligent electronic devices (IEDs) [1].

For the communication system, the resilience can be achieved through architectural

communication frameworks such as Resilience and Survivability for Future Net-

working (ResumeNet) [9], Resilient Communication Services Protecting End-user

Applications from Disaster-based Failures (RECODIS) [10], and Resilient and Sur-

vivable Networks (ResiliNets) [11]. Moreover, the decision support system enhance

the resilience through resilience-oriented decision-making [12]. Specifically, the
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1 Background 

1.2 Smart Power Distribution Systems (PDSs) Against Natural Disasters

q Grid resilience can effectively be enhanced by smart PDSs
• Distributed generation: distributed/mobile energy resources (DERs/MERs);
• Distributed automation: intelligent electronic devices (IEDs).

q Smart PDSs contain three layers with respective resilient countermeasures
• Electric layer: Advanced electrical techniques and components;
• Communication layer: Architectural communication frameworks;
• Decision support layer: Resilient planning and operation strategies.

Fig. 2. Smart power distribution systems and resilient countermeasures. 3
Figure 1.2: Smart PDS architecture with resilience-oriented countermeasures.

data collected from the electric power system layer are forwarded into the simula-

tor, where the stochastic impact of natural disasters can be evaluated by assessment

tools. Then, the resilient decisions can be optimized by using resilience enhance-

ment strategies.

The resilience-oriented strategies for smart PDSs against natural disasters can be

categorized into two stages: pre-disaster preventive planning and post-disaster emer-

gency operation. The pre-disaster planning stage investigates resilient investment

portfolio of electrical components including hardening design and placement of

IEDs and DERs with benefit-cost analysis. Specifically, the hardening design of

electrical components such as DLs and substations refers to a structural boost of

their robustness to the external strike [13]. In comparison, IEDs and DERs play fun-

damental roles in restoration through distribution automation and distributed gen-

eration, respectively [14]. For example, IEDs such as remotely controlled switches

(RCSs) can facilitate the topology reconfiguration of PDSs and make it more flex-

ible [15]. In particular, when coordinating DERs with IEDs, dynamic microgrids

(MGs) can be established for emergency restoration. Also, the utilization of DERs

can be more efficiency, when being mounted on trucks and becoming mobile energy

resources (MERs). By contrast, the post-disaster operation stage determines the

restoration scheme using the existing electrical components and the repair schedul-

ing of the damages. The restoration and repair decisions can be obtained by opti-

mization problems with resilience-oriented objectives, such as the shortest outage

duration, the largest amount of restored load and the most resilient restoration net-
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works. Then, the optimal restoration scheme can be worked out, which can be used

as guidelines for system operators to restore interrupted customers step-by-step.

Based on the above discussion, it is obvious that the advanced techniques and com-

ponents in the electric power system layer of smart PDSs are significant critical in

resilience enhancement. Hence, commercial products are launching in this domain,

such as CAT Mobile Generator [16], GENERAC Mobile Generator [17], TECLO-

MAN Mobile Energy [18], ConEdison Transportable Energy [19], Volvo Elec-

tric Bus [20], ALUMERO Mobile Solar Container [21], and UPRISE ENERGY

Portable Wind Turbine [22]. Some of them have been adopted by utility companies.

For instance, Portland General Electric in the U.S. has started a transmission and

distribution network hardening project since 2017. It aims to maintain a higher seis-

mic preparedness to the nearby Cascadia Subduction Seismic Zone [23]. Also, Nip-

pon Telegraph and Telephone in Japan built MGs by mobile emergency generators

(MEGs) and energy storage systems (ESSs) after the 2011 Tohoku earthquake to

supply emergency power [24, 25]. However, the well-utilization of these advanced

techniques and components requires systematic research especially when consider-

ing the stochastic nature of natural disasters. Moreover, some types of natural disas-

ters can impose destructive impact over a period of time. For example, the restored

power services after the main shock of Great East Japan Earthquake in 2011 were

interrupted once again by aftershocks, resulting in post-restoration failures [26]. It

indicates that even with extensive pre-disaster planning and post-disaster operation,

future uncertain damages may still interrupt the restoration. Hence, it is necessary

to investigate resilience enhancement strategies for PDSs against post-restoration

failures considering underlying uncertainties. Furthermore, the interdependence be-

tween the physical layer and the cyber layer of smart PDS brings about additional

issues, because the malfunctions of one layer may affect the other. Accordingly,

two cyber-physical interdependent impacts arise: 1) Uncertain damages: For natu-

ral disaster induced outages, the damage information can be uncertain to the system

operator. The reason is that the bulk system is very likely to collapse during outages,

such that grid power cannot be delivered to the cyber-physical distribution systems

(CPDSs). Without power delivery indicates no available voltage and current data
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can be recorded by IEDs, even though some IEDs are equipped with backup batter-

ies [27]. Then, fault location algorithms cannot be applied, since these algorithms

require, at a minimum, real-time measured voltage and current of DLs; 2) Com-

munication interruption: Some of the communication can be interrupted by natural

disasters, such that RCSs cannot be controlled remotely. In practice, the communi-

cation links within a smart grid can be classified into wired and wireless links [28].

The control center connects to the base stations through optical fibers, which are

typically integrated with the overhead power lines to form the optical fiber compos-

ite overhead ground wire (OPGW). Then, the base stations communicate with the

RCSs through wireless links. However, when natural disasters strike, the OPGW

can also be damaged. The control center may lose connection with the base sta-

tion, and the RCSs that are within the range of this base station cannot be reached.

Therefore, when investigating resilient power restoration strategies for CPDSs, it is

essential to consider the cyber-physical interdependent impacts including uncertain

damages and communication interruption.

In summary, the research regarding stochastic resilience-oriented planning and op-

eration for smart PDSs against natural disasters still needs further investigation. In

particular, the following four research topics are studied in this thesis:

1. Stochastic planning for PDS resilience enhancement;

2. Resilient operation against uncertain post-restoration failures;

3. Microgrid formation for large-scale deployment of MERs;

4. Sequential restoration considering cyber-physical interdependent impacts.

1.2 General Terms and Definitions

In this section, the important terms used in this thesis are defined to clearly identify

the scope of work done in this research.
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1.2.1 Power System Resilience

Power system resilience is defined as the ability to robustly withstand destructive

strikes and rapidly recover from post-contingency states [29]. It can be chronolog-

ically categorized into two stages: pre-disaster resilient planning and post-disaster

emergency operation stages [30]. The first stage aims to boost power system robust-

ness against natural disasters. For example, hardening overhead power lines, ele-

vating substations, installing switches, and purchasing distributed generators are all

effective resilient planning approaches. The second stage focuses on corrective and

responsive actions, such as demand side management, emergency power dispatch,

and defensive islanding. Its aim is to take operational measures based on vulnera-

bility analysis to alleviate the negative impacts of natural disasters. Compared with

power system reliability, which is evaluated under high-probability and low-impact

events, power system resilience is considered based on low-probability and high-

impact events. The high-probability and low-impact events are often caused by one

single fault without stochastic features, e.g., accidental equipment failures. While,

the low-probability and high-impact events can impose multiple damages with ran-

domness, which are more difficult to deal with in terms of power restoration.

1.2.2 Load Restoration

Load restoration in the context of PDS resilience refers to the process of restoring

power services to consumers during an outage. This process is particularly cru-

cial for maintaining the functionality of critical loads, such as hospitals, emergency

services, communication networks, and other essential infrastructures. When con-

ducting load restoration, a resilience-oriented strategy is necessary to restore loads

as fast as possible considering voltage and frequency regulation. In other words, a

rapid and efficient restoration of electrical power is desired while maintaining sta-

ble frequency and voltage levels. To this end, the restoration strategy determines

a control sequence of DER starting up and RCS switching, which can be used as

guidelines for system operators to restore interrupted customers step-by-step [31].

Similar to the bottom-up approaches in power systems where the generation units
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are capable of self-starting (i.e., black-start), in a restoration-based microgrid at

least one DER should be able to start up by itself, with functionality of maintaining

voltage and frequency stability [32].

1.2.3 Cyber-physical Power Systems

The existing power systems are undergoing a paradigm shift from traditional power

grids toward smart grids [33]. By employing electrical and information technolo-

gies, such as distributed generation, advanced metering infrastructures (AMIs), and

IEDs with remote monitoring and control functions, power systems are evolving

into a complex cyber-physical system [34]. For example, as defined by the U.S.

Department of Energy (DOE), smart grid is an intelligent electricity grid integrat-

ing digital communication technology [35]. This evolution can effectively enhance

power system resilience, as well as reliability, efficiency and functionality. The rea-

son is that in traditional power systems, physical components such as generators,

transformers, and power lines are operating independently. However, in a cyber-

physical power system, these components in the physical layer are interconnected

through a cyber layer network of sensors, actuators, and communication systems,

allowing for real-time monitoring, control, and optimization. In summary, cyber-

physical power systems represent the next generation of power syst ems, offering

advanced monitoring, control, and optimization capabilities to meet the evolving

demands of modern society.

1.2.4 Mixed Integer Programming

Mixed Integer Programming (MIP) is a mathematical optimization technique used

to solve optimization problems, where some of the decision variables are integers

while others are continuous. In MIP, the objective function and constraints can be

either linear or nonlinear, and the decision variables are subject to the constraints.

The objective function is a mathematical expression that defines the objective of the

optimization problem. The constraints are employed to impose limitations on the

decision variables, defining the feasible region of the optimization problem. MIP

problems are commonly used to model and solve a wide range of decision-making
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problems across various fields, including operations research, logistics, scheduling,

finance, and engineering. The solutions to MIP problems are specialized optimiza-

tion algorithms, such as branch-and-bound, branch-and-cut, or branch-and-price

methods. These algorithms systematically explore the solution space to identify the

best feasible solution within a reasonable amount of computational time. There are

several commercial solvers available for solving MIP problems efficiently, such as

CPLEX, Gurobi, MOSEK, and SCIP. These commercial solvers offer robust and

efficient algorithms for solving MIP problems of various sizes and complexities.

They are widely used in academia, industry, and research institutions for address-

ing real-world optimization challenges across different domains.

1.2.5 Two-stage Stochastic Programming

Two-stage stochastic programming is a mathematical optimization technique used

to address decision-making problems under uncertainty that unfold over multiple

time periods or stages. This approach is commonly used in various fields, includ-

ing operations research, finance, energy, and supply chain management, to make

robust decisions in the face of uncertain future events. Specifically, the decision-

making process is divided into two stages: the first stage represents decisions made

before uncertainty is revealed, and the second stage represents decisions made after

the realization of uncertain events. Accordingly, the decision variables are also de-

fined for both stages. The first-stage decision variables are typically deterministic,

representing decisions made before uncertainty is realized. The second-stage deci-

sion variables are stochastic, depending on the realization of uncertain events. The

uncertainties are characterized through a scenario set which includes possible out-

comes that can occur in the future. Each scenario is associated with a probability,

which represents the likelihood of occurrence. The objective of two-stage stochastic

programming problem is to minimize or maximize the expected value of a certain

criterion, such as cost, profit, or risk. Since a large number of decision variables and

scenarios are often involved, solving two-stage stochastic programming problems

can be challenging. In this respect, the solution approaches such as decomposition

methods, scenario reduction techniques, or stochastic approximation methods can
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be adopted to reduce the computational complexity effectively.

1.2.6 Hidden Markow Model

A Hidden Markov Model (HMM) is a statistical model used to model sequences

of observations or data that are assumed to arise from a hidden or unobservable

process. An HMM consists of a finite set of hidden states, which represent the un-

derlying or unobservable processes that generate the observed data. Each state is

associated with a probability distribution over possible observations. At each time

step, the HMM emits an observation based on the current hidden state. The relation-

ship between states and observations is probabilistic, meaning that each state emits

observations with certain probabilities. HMMs model the transitions between hid-

den states using transition probabilities. These probabilities represent the likelihood

of transitioning from one state to another at each time step. HMMs are character-

ized by the Markov property, which states that the probability distribution of future

states depends only on the current state and not on the previous states. This prop-

erty simplifies the modeling and inference process, making HMMs a powerful tool

for analyzing sequential data with hidden structure.

1.2.7 Markov Decision Process

Markov Decision Processes (MDPs) provide a mathematical framework for mod-

eling decision-making problems under uncertainty. It is a specific category within

stochastic dynamic programmings, where the underlying stochastic process is an

extension of Markov chains. While, the difference is that the outcomes of an MDP

is dependent on both the inherent Markov property and the decisions made by a

decision maker. MDPs serve as valuable models for random processes in stochastic

dynamic programming and reinforcement learning, with wide-ranging applications

in disciplines like automatic control, economics, and manufacturing. At each time

step, the MDP is in a specific state, and the decision maker may choose any feasible

action in this state. Then, the MDP will transit into a new state following a ran-

dom process with defined transition probabilities, and receive a reward according

to the defined immediate reward function at the next time step. The decision maker
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aims to optimize a long-term objective, such as maximizing cumulative rewards or

minimizing costs, by selecting the optimal actions in each state of the system.

1.3 Research Definition and Literature Review

In this section, the research problems will be defined for the aforementioned four

research topics. Also, the existing research works in literature will be discussed.

1.3.1 Stochastic Planning for Resilient PDSs

In this research, we study the stochastic planning of resilient PDSs. The portfolio

of resilient countermeasures including hardening DLs and investing new MEGs and

mobile energy storage systems (MESSs) are investigated with stochastic analysis.

The objective is to obtain the optimal portfolio to minimize the investment and the

expected interruption cost.

In literature, there are several planning strategies are developed for resilient PDS

against earthquakes. For examples, authors in [36] proposed a planning model for

system planners to obtain the optimal solution for DL hardening and distributed

generator (DG) placement. It demonstrates microgrids together with infrastructure

hardening can reduce the total loss of load compared with the situation in which

only hardening measures are adopted. Also, authors in [37] presented a resilience-

driven framework to determine the optimal location of ESSs in PDSs against earth-

quakes. A resilience metric is defined based on seismic vulnerability assessment

to determine the optimal size of ESSs. Also, the effectiveness of deploying ESSs

in PDSs for seismic preparedness is proven. Moreover, in [38], MESSs with op-

timized capacity are utilized to improve PDS seismic resilience. It shows MESSs

can outperform ESSs despite with lower capacity due to their mobility. Neverthe-

less, the methods in [36–38] are deterministic in nature without considering the

stochastic impact of earthquakes. By contrast, authors in [39–44] employ stochas-

tic analysis in the resilient PDS planning strategy to mitigate the random impact

of other disasters such as hurricanes. For examples, in [39, 40], the DL hardening

and DG placement problems are formulated as tri-level robust optimization prob-

lems. The first level determines the resilient planning solution, the second level
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models the worst-case damage through an uncertainty set, and the third level exe-

cutes emergency restoration. Also, authors in [41–43] employ two-stage stochastic

programming to solve the same problem. The randomness of natural disasters are

included by a scenario set. The objective is to determine the planning solution that

can minimize the investment cost and the expected load shed cost over all scenar-

ios. In [44], an information gap decision theory based DG allocation and hardening

scheme is proposed to address the uncertain damages of natural disasters. How-

ever, these works mainly focus on the planning of DGs, while the utilization of

ESSs still needs to be investigated. In addition, how to consider and integrate the

unique impact of earthquakes on PDS resilience in the stochastic optimization tools

still requires extensive research.

Some recent research have shown that ESSs are of significant importance in load

restoration after natural disasters [45,46]. They can provide localized ancillary ser-

vices, such as load leveling, peak shaving, and voltage regulation. Especially, when

mounted on a truck and becoming MESSs, fast deployment during extreme events

can be achieved because of their mobility [47]. Also, coordinating MESSs with

DGs and MEGs can further improve restoration capability. In this respect, the re-

silient response strategies are well studied. For example, in [48, 49], MESSs are

dynamically scheduled in coordination with the dispatch of DGs in post-disaster

restoration. It shows that the transportable and chargeable features of MESSs can

enable energy exchange between different MGs, leading to a lower curtailment.

Also, in [50–52], the operation of MEGs and MESSs are co-optimized over a multi-

time scale, where the advantages of the co-optimization in resilience enhancement

is proven. However, strategies in [48–52] are developed for post-disaster emergency

response instead of pre-disaster long-term investment planning. How to optimize

the planning solution for resilient PDSs against earthquakes considering the coor-

dination of MEGs and MESSs is still an open issue.

1.3.2 Resilient Opertation Against Post-Restoration Failures

In this research, we investigate the PDS resilience enhancement strategy consid-

ering post-restoration failures. The objective is to establish emergency restoration
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using the most resilient networks and schedule repair process against future uncer-

tain damages.

In literature, the planning and placement of energy resources such as energy storage

systems and distributed generators against earthquakes are studied in [36, 37]. The

fragility curves are developed to characterize seismic impact and to determine the

failure probabilities of electrical components. These two studies demonstrate that

it is important to pre-position energy resources in PDSs against earthquakes, espe-

cially in active seismic zones. Also, to further achieve flexibility in post-earthquake

restoration, MEGs are utilized in [38, 50]. It is shown in these research works that

MEG reallocation, which is adaptive to the realized seismic damages, can result

in an obvious reduction in load shedding. Yet, literature [36–38, 50] focus on im-

proving restoration capability after one shock of earthquakes without considering

post-restoration failures that may arise from future shocks. Thus, PDS resilience

enhancement strategies considering post-restoration failures in the context of multi-

shocks of earthquakes need further investigation. In [53–55], the real-time alloca-

tion of MEGs is investigated based on a temporal-spatial status model. The logic of

MEG transitions between parking and travelling is optimized to improve PDS re-

silience. In [56], the planning and reallocation problem of MEGs is coordinated in

a two-stage framework against hurricanes and extreme weather events. The transi-

tion routes of MEGs are optimized for the fastest restoration. In [43], a three-stage

model is proposed against hurricanes, which contains a long-term MEG investment

stage, a pre-disaster pre-positioning stage, and a post-disaster reallocation stage.

In [57], the investment problem of MEGs is studied to achieve a trade-off between

normal conditions and emergency conditions under hurricanes. However, the post-

restoration failures are still not considered in [43, 53–57]. Hence, specifically for

multi-shocks of earthquakes, the restoration schemes by [43, 53–57] may not be

resilient against future uncertain damages that may cause post-restoration failures.

To address the challenge arising from post-restoration failures, restoration paths

are adopted to deal with future natural disasters in [58–60]. In [58], the restoration

paths are defined as “the electric circuit that can deliver power from the source node
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to one critical load (CL)”. Accordingly, each restoration path consists of a group

of connected DLs. It aims to restore CLs using distributed generators following the

restoration path with the highest resilience, which can at maximum reduce the risk

of post-restoration failure. Yet, since the resilience is evaluated based on the number

of lines forming the restoration path, the difference in length of lines can deteriorate

its performance. To address this issue, the line length is included in the resilience

evaluation in [59, 60]. Specifically, the restoration paths are considered as micro-

grids. Then, the objective can be transformed into deploying MEGs to minimize the

weighted number of lines in microgrids. Even though post-restoration failures are

considered in [58–60], their approaches are deterministic in nature without stochas-

tic analysis of multi-shocks of earthquakes. Therefore, the PDS resilience enhance-

ment strategy incorporating the uncertainties of multi-shocks of earthquakes to deal

with post-restoration failures is still an open issue.

Moreover, the repair process is not included in [58–60], which further degrades

their performance, especially for multi-shocks of earthquakes. The reason is that

the available restoration paths can be monotonically reduced with the occurrence of

multi-shocks of earthquakes, if no repair process is conducted. Some other works

investigate the repair process under natural disasters. For example, in [50, 61], it

is demonstrated that the restoration performance can be improved by incorporating

the repair process. However, how to optimize the repair schedule is not studied. In

[52, 62], the repair scheduling is investigated to obtain the optimal repair decisions

that can maximize the restored load. The advantage of the optimal repair scheduling

on resilience enhancement is demonstrated. In [53, 63], the repair crew teams are

dispatched considering the shortest traveling time. Nevertheless, the research works

[50,52,53,61–63] have one common issue that the repair process is scheduled based

on known damages without considering future uncertain damages that may cause

post-restoration failures. Therefore, in terms of multi-shocks of earthquakes, their

performance can be deteriorated.
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1.3.3 Microgrid Formation for Large-Scale MER Allocation

In this research, we investigate the dynamic MG formation approach for resilient

load restoration considering large-scale MER deployment. The objective is to de-

termine the optimal MG formation solution including MER deployment decisions

and RCS on/off decisions to minimize the total weighted load shed after outages.

In literature, there are several research works contributing to this research area.

For example, heuristic approaches are presented in [64, 65]. These approaches de-

compose the problem into two stages, which are MG formation and performance

evaluation. The two stages will be conducted iteratively until some pre-specified

requirements are satisfied. Specifically, in [64], the MGs are established by cluster-

ing nodes around DERs according to k-means algorithm. In [65], the MG networks

are obtained based on graph theory and particle swarm optimization. Moreover,

in [66, 67], deep reinforcement learning is employed for resilient microgrid for-

mation. The problem is formulated as a Markov decision process (MDP), and a

reinforcement learning framework is designed for topology reconfiguration. The

advantages of heuristic and reinforcement learning approaches exist in the reduction

in the computational time. Nevertheless, the optimal solution cannot be guaranteed.

Also, the research works in [64–67] only consider DERs, while the utilization of

MERs still needs investigation.

In [43, 68–80], the optimal solutions of the MG formation problems are optimized

by formulating the problems into mixed-integer linear programming (MILP) prob-

lems. In [68, 70, 71], MG formation approaches are proposed for load restoration

after natural disasters based on the parent-child relationship of network topology.

Specifically, multiple MGs are formed on the top of the original distribution net-

work. The RCSs are operated to form MG boundaries, and the DERs are dispatched

to restore loads. In [43,69,72,73], the approaches in [68,70,71] are extended to load

restoration which involves MERs as power sources. The flexibility of MERs com-

pared to DERs in load restoration are demonstrated. Moreover, to improve com-

putational efficiency, the commodity flow in graph theory is applied in [74–78]. In

particular, the distribution network is represented by a graph, which is partitioned
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into several sub-graphs for MG formation. Since the graph has the same topology

as the distribution network, the commodity flow conditions can ensure the MGs op-

erated radially. Furthermore, a combined parent-child relationship and commodity

flow MG formation approach is proposed in [79, 80]. It aims to shrink the feasible

solution region by utilizing both the advantages of parent-child based and graph

theory based approaches. In [81], the approaches based on the commodity flow in

graph theory is also modified to deal with the mutual support of AC and DC feeders.

Flexible stations with AC/DC/AC converters are utilized to interconnect AC and

DC feeders with multiple voltage levels. A voltage support coordination strategy

based on flexible stations is proposed for a flexible restoration considering spatial-

temporal regulation. However, the MG power flow calculation of the approaches

in [43,68–80] are all based on the linearized Distflow (LinDistflow) model, and the

approach in [81] is based on the Distflow model. They always demand the MG

root and its corresponding topology [82]. If the MG root changes, the power flow

must be calculated by equations based on the new topology [68]. This can lead to

an increased number of variables and constraints in the optimization problem, and

deteriorate their computational performance. Especially when MERs are involved

and served as the MG root, the dynamic deployment of MERs can significantly

complicate the solution space. Thus, the MG formation approaches in [43, 68–81]

are efficient when small number of MER connection nodes are considered, but their

applications in large-scale deployment of MERs in PDSs are limited.

1.3.4 Sequential Restoration in Cyber-Physical PDSs

In this research, we investigate the stochastic sequential CPDS restoration scheme

considering cyber-physical interdependent impacts. The objective is to determine

the optimal strategy to operate RCSs step by step, such that the loads can be restored

by DGs as fast as possible.

In literature, resilient power restoration strategies are well-studied. In particular,

smart grids featuring DGs, RCSs, and bidirectional communication links are com-

monly utilized in power system resilience enhancement. For example, in [58, 68,

83], power distribution networks are partitioned into multiple self-healing micro-
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grids using MILP. All the MGs are powered by DGs and can be operated in parallel

with dynamic boundaries formed by RCSs. However, these approaches can only

produce a single-step solution to the final network configuration, which requires the

system operator to have the complete damage information of the network. If some

of the damages occur beyond the knowledge of the system operator, the solution

becomes invalid. In [31, 62, 84, 85], multi-step sequential restoration strategies are

developed based on MILP, which can provide the system operator with a sequence

of RCS control actions without violating the voltage, frequency, and line capacity

conditions at each step. However, the uncertain damages are still not considered,

so that the occurrence of any unexpected damages can invalidate the deterministic

sequential restoration decisions. For example, a closing operation of an RCS cannot

be conducted as scheduled, as there exist damages beyond the damage information

that the system operator can access. Otherwise, short circuits will happen if the

RCS is closed. Accordingly, all the subsequent sequential actions are forced to sus-

pend. The amount of restored loads is directly affected by how many steps that the

system operator can take following the sequence of actions before a suspension.

To include damage uncertainties into the decision making, the utilization of stochas-

tic programming and robust optimization are well studied. In [86], a microgrid-

based restoration approach considering subsequent random contingencies is pro-

posed. The problem is formulated as a hybrid stochastic-robust optimization model.

The uncertain damages after restoration is addressed using a damage scenario set

considering DL failure probabilities. Similarly, in [70], the subsequent contin-

gencies are modeled through distributionally robust optimization. The expected

restoration is maximized with respect to the worst-case distribution of uncertain

damages. However, approaches in [70, 86] are focused on potential uncertain dam-

ages, thus the already occurred damages which can be uncertain to the system op-

erator requires further investigation. In other words, approaches in [70, 86] are not

state-based, hence they cannot be employed to guide the system operator to dynam-

ically take actions along with the uncertainties being observed. To address the state-

based sequential decision making problem, MDP is a powerful tool. By employing

MDPs, the optimal actions at each step can be obtained, which can maximize the
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amount of restored loads in the long run in a stochastic environment. In [87], MDPs

are utilized to model distribution network topology reconfiguration to enhance PDS

resilience against hurricanes. It can produce a strategy that guides the system op-

erator to take RCS operations considering network topology uncertainties resulting

from hurricane damages. In [88], the sequential PDS restoration problem against

earthquakes is formulated as an MDP. The system operator is expected to control

RCSs one by one to restore power services provided by DGs. However, since the

stochastic parameters of an MDP are often estimated from limited data or prediction

models, in some applications, they cannot be specified accurately. For example, dif-

ferent wind velocities and directions of hurricanes can result in different fragilities,

and thus uncertain transition functions of an MDP. Hence, approaches in [87, 88],

which include damage uncertainties while disregarding MDP model uncertainties,

may have deteriorated performances.

In addition, communication interruption is not considered in [31, 58, 62, 68, 70, 83–

88]. In these research works, communication links are assumed to be constantly

available, and RCSs can always be controlled remotely. Therefore, the malfunc-

tion of RCSs after natural disasters needs further investigation. In this sense, the

dispatch of crew members to manually operate malfunctioning RCSs is studied

in [89, 90]. In [91], drones installed with base stations are dispatched to estab-

lish emergency communication for RCSs. However, the approaches in [89–91] are

deterministic, while the uncertain damages can degrade their applications.

1.4 Thesis Motivation and Contributions

Based on the above discussion, many new challenges are introduced to the strate-

gies for resilient PDSs in the decision support system layer of smart PDSs. First of

all, the random impact of natural disasters calls for PDS planning with stochastic

analysis, making the problem interdisciplinary. In other words, the stochastic math-

ematical models of natural disasters should be included in the planning problem

formulation, such that practical decisions can be obtained. Secondly, the extended

events in the aftermath of a natural disaster, such as hurricane induced flooding

and ensuing aftershocks of an earthquake, can strike again, interrupting the estab-
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lished restoration and causing post-restoration failures. It means that PDS resilience

should be evaluated and maximized against uncertain extended events, when mak-

ing restoration schemes to the outages. Thirdly, the mobility of MERs can improve

restoration efficiency, however resulting in an increased computational complexity

simultaneously. Especially, when it comes to large-scale deployment of MERs, it

can consume considerable amounts of time to obtain the optimal MG formation

scheme. Last but not least, the two-way data flow between the electric power sys-

tem layer and the communication system layer makes smart PDSs cyber-physical

interdependent. It means that the damages in the physical layer can interrupt the

communication in the cyber layer, and the interruption of the communication in the

cyber layer can result in out of connection with IEDs in the physical layer. For the

first two challenges, we select earthquakes as natural disasters, since earthquakes

are a very typical natural disaster, having both spatial and temporal features. For

the third challenge, we consider damages caused by general natural disasters, and

focus on developing MG formation approach for large-scale MER deployment. For

the forth challenge, hurricanes are incorporated, as the area that hurricanes affect

is enormous which can result in large-scale blackouts and cyber-physical interde-

pendent impact. Note that the applications of the proposed research works are not

limited to earthquakes and hurricanes. Instead, natural disasters with similar fea-

tures can also be dealt with by modifying the mathematical model accordingly. The

detailed contributions of this thesis are described as follows:

1.4.1 Stochastic Planning for PDS Resilience Enhancement Against
Earthquakes

In this research, the stochastic planning of resilient PDSs against earthquakes is

studied. Specifically, the portfolio of resilient countermeasures including hardening

DLs and investing new MEGs and MESSs are investigated with stochastic analysis.

The objective is to determine the optimal portfolio to minimize the investment and

the expected interruption cost. During the decision-making, the MEG and MESS

coordination including co-allocation and energy exchange is also considered. Then,

the main contributions of this research are threefold:
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1. A stochastic spatial seismic damage model is developed based on the stochas-

tic seismic impact analysis of PDSs. It considers the seismic attenuation, and

addresses the randomness of seismic damages geographically;

2. A stochastic resilient PDS planning problem (SRDSPP) with a bi-level struc-

ture is formulated. The upper-level determines the optimal portfolio to min-

imize the investment cost and the expected interruption cost, whereas the

lower-level performs contingency post-disaster operation considering coordi-

nation between MEGs and MESSs;

3. A solution procedure is proposed, which includes the scenario aggregation to

reduce the size of scenario set, and the endogenous uncertainty relaxation to

address the DL hardening decision-dependent uncertainty. Then, the original

problem with min max form is reformulated into a min min form, based on

which a decomposition method is proposed to speed up the computation.

1.4.2 Data-Driven Resilience Enhancement for PDSs Against
Multi-shocks of Earthquakes Under Uncertainties

In this research, a resistibility index (RI) is developed to stochastically evaluate

the resilience of restoration paths based on hierarchical hidden Markov models

(HHMMs). The historical earthquake data is incorporated as information of multi-

shocks of earthquakes. Then, by using the RI metric, a data-driven PDS resilience

enhancement strategy is proposed against multi-shocks of earthquakes. It includes

the pre-disaster MEG investment and pre-positioning against multi-shocks, and the

post-disaster MEG reallocation and repair scheduling against aftershocks. The main

contributions of this research are fourfold:

1. A RI metric is developed based on HHMM and historical earthquake data to

stochastically evaluate restoration path resilience;

2. A data-driven PDS resilience enhancement strategy is proposed. The resilient

MEG investment, pre-positioning and reallocation, and repair scheduling of

restoration paths are determined based on RI metric;
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3. The repair scheduling problem is formulated as an adaptive multi-period two-

stage stochastic programming problem. A revision period is introduced to

obtain static repair decisions before the revision, which allowing the decisions

to adapt to the uncertainties after the revision;

4. An iterative algorithm based on linear programming relaxation is proposed to

reduce the computational complexity of the repair scheduling problem.

1.4.3 Efficient MG Formation for Resilient PDSs Considering
Large-Scale Deployment of MERs

In this research, a dynamic MG formation approach for resilient load restoration is

proposed considering large-scale MER deployment. Its objective is to determine

the optimal MG formation solution including the MER deployment decisions and

the RCS on/off decisions to minimize the total weighted load shed after outages.

The main contributions of this research are fourfold:

1. An adaptive LinDistflow model is proposed based on the LinDistflow model

and the single commodity flow in graph theory. The calculations of power

flow and nodal voltages only require adjacent node information of the original

topology rather than various MG topologies;

2. A dynamic MG formation problem is proposed considering large-scale de-

ployment of MERs. The formulated problem demands no MG topologies,

thus can result in a reduced number of variables and constraints;

3. A linearization technique based on the propositional logic constraints is pro-

posed to address the problem nonlinearity resulted by the incorporation of

adaptive LinDistflow model;

4. Computational complexity is analyzed, which shows that the proposed dy-

namic MG formation approach can improve the computational efficiency

without loss of optimality.
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1.4.4 Stochastic Sequential Restoration for Resilient Cyber-Physical
PDSs Against Hurricanes

In this research, we investigate the stochastic sequential CPDS restoration scheme

considering cyber-physical interdependent impacts. A sequential load restoration

problem against hurricanes is formulated as an uncertain Markov decision process

(UMDP). The cyber-physical interdependent impacts are considered through uncer-

tain transition functions. The main contributions of this research are threefold:

1. The problem is formulated as a UMDP with uncertain state transition func-

tions. The cyber-physical interdependent impacts are modeled by integrating

the hurricane fragility of DLs and the stochastic RCS manual operation into

transition probabilities.

2. To address model uncertainties of a UMDP resulted by variuous wind veloci-

ties and directions with respective occurrence, a minimax regret optimization

considering sample weights is presented. The optimal minimax regret policy

is obtained for robust RCS operations.

3. An approximate solution based on the regret Bellman equation and the min-

imax regret policy iteration algorithm is proposed to improve computational

efficiency.

1.5 Thesis Outline

In this thesis, the stochastic resilience-oriented planning and operation for smart

PDSs against natural disasters is studied. First of all, the stochastic planning of

resilient PDSs considering uncertain impacts of earthquakes is investigated. The

portfolio of resilient countermeasures including hardening DLs and investing new

MERs including MEGs and MESSs are addressed through a two-stage stochastic

programming problem. The MEG and MESS coordination including co-allocation

and energy exchange is incorporated, so that the solution can be more resilient and

cost-saving. Secondly, we extend our scope from one main shock to multi-shocks

of earthquakes. Specifically, a data-driven PDS resilience enhancement strategy is
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proposed to deal with post-restoration failures. By employing HHMMs and histor-

ical earthquake data, the pre-disaster MEG investment and pre-positioning against

multi-shocks, and the post-disaster MEG reallocation and repair scheduling against

aftershocks are addressed. Thirdly, since MG formation is utilized in both the first

two works, we further investigate efficient MG formation approach for large-scale

MER deployment. By using the proposed adaptive LinDistflow model, the com-

putational efficiency of MG formation is significantly improved. Last but not least,

we further broaden our scope from physical systems to cyber-physical systems. The

problem of sequential load restoration against hurricanes is investigated. By formu-

lating the problem as a UMDP, the cyber-physical interdependent impacts caused

by hurricanes is addressed. More specifically, this thesis consists of six chapters

and is organized as follows:

• Chapter 1: Introduction - This chapter begins by providing an overview of

the research background, emphasizing the significance of the study. Then,

the general terms used throughout the thesis are described to highlight the re-

search scope. Following this, the research problems are defined, and a com-

prehensive literature review is conducted to clarify the challenges associated

with each research problem. Finally, the motivation and contributions of this

thesis are presented.

• Chapter 2: Stochastic Planning for PDS Resilience Enhancement Against

Earthquakes - This chapter investigates the stochastic planning of resilient

PDSs against earthquakes. The problem is formulated as a risk-averse two-

stage stochastic bi-level programming problem. The upper-level minimizes

the total investment cost and the expected interruption cost. The lower-level

minimizes the expected loss of load through MEG and MESS coordination,

including co-allocation and energy exchange. To solve the problem, a sce-

nario aggregation method and community detection is proposed to reduce the

size of scenario set, and an endogenous uncertainty relaxation method is de-

veloped to address the DL hardening decision-dependent uncertainty. Then,

the problem with min max form is reformulated into a standard bi-level pro-
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gramming problem with min min form. A decomposition method is also

proposed to break up the problem into two separate sub-problems to speed

up the computation. The effectiveness of the proposed PDS planning strat-

egy against earthquakes is evaluated through case studies based on the IEEE

37-Node Test Feeder and the IEEE 123-Node Test Feeder.

• Chapter 3: Data-Driven Resilience Enhancement for PDSs Against Multi-

shocks of Earthquakes Under Uncertainties - This chapter studies a data-

driven PDS resilience enhancement strategy against multi-shocks of earth-

quakes. A resistibility index (RI) is developed based on HHMM for stochas-

tic resilience evaluation. The historical earthquake data are incorporated into

the HHMM as observed information of multi-shocks of earthquakes. Based

on the RI , the problems of pre-positioning and reallocation of MEGs are

formulated as mixed-integer programming problems. The problem of repair

scheduling is formulated as an adaptive multi-period two-stage stochastic

programming problem, for which a revision period is introduced to allow

the decisions to adapt to the uncertainties after the revision. To reduce the

computational complexity, an iterative algorithm is presented based on linear

programming relaxation. The strategy is verified via case studies on the IEEE

123-Node Test Feeder and historical earthquake data.

• Chapter 4: Efficient MG Formation for Resilient PDSs Considering Large-

Scale Deployment of MERs - In this chapter, an adaptive LinDistflow model

is proposed based on the single commodity flow model in graph theory. We

first show that active and reactive powers can be represented as commodities,

which are sent from one node to each of its adjacent nodes in the graph. Then,

the power flow and nodal voltage calculation based on the commodity flow

only requires adjacent node information of the original topology rather than

various MG topologies caused by the dynamic deployment of MERs. Fur-

thermore, by incorporating the adaptive LinDistflow model as constraints, a

dynamic MG formation approach is proposed for resilient load restoration

considering large-scale MER deployment. The effectiveness of the proposed
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approach is demonstrated based on the IEEE 37-Node, 123-Node and 8500-

Node Test Feeders.

• Chapter 5: Stochastic Sequential Restoration for Resilient Cyber-Physical

PDSs Against Hurricanes - This chapter proposes a stochastic sequential

restoration scheme for CPDSs. The sequential restoration problem is formu-

lated as a UMDP with hurricanes incorporated as natural disasters. Different

wind velocities and directions are considered as hurricane scenarios, which

are used to obtain the fragility of distribution lines. The fragility functions

are further used for the derivation of uncertain state transition functions of

the UMDP. The minimax regret optimization considering the sample weights

of UMDP is presented. The robust sequential actions are determined, such

that the loads can be restored in a timely manner. To improve computational

efficiency, a minimax regret policy iteration algorithm is presented based on

the regret Bellman equation. Case studies are conducted based on the IEEE

123-Node Test Feeder and historical data of Hurricane Bonnie to demonstrate

the effectiveness of the proposed scheme.

• Chapter 6: Conclusions and Future Works - The contribution of this re-

search and the future works are summarized in this chapter.
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Chapter 2

Stochastic Planning for PDS
Resilience Enhancement Against
Earthquakes

In this chapter, the stochastic planning of resilient PDSs against earthquakes is

studied. Specifically, the portfolio of resilient measures including hardening DLs,

and investing MEGs and MESSs are investigated in a stochastic environment. A

stochastic spatial seismic damage model is developed to geographically character-

ize the randomness of earthquakes. Based on the model, the PDS planning problem

is formulated as a risk-averse two-stage stochastic bi-level programming problem.

The upper-level minimizes the total investment cost and the expected interruption

cost. The lower-level minimizes the expected loss of load through MEG and MESS

coordination, including co-allocation and energy exchange. To solve this problem,

a scenario aggregation method based on graph theory and community detection is

proposed to reduce the size of scenario set, and an endogenous uncertainty relax-

ation method is developed to address the DL hardening decision-dependent uncer-

tainty. Then, the PDS planning problem with min max form is reformulated into

a standard bi-level programming problem with min min form. A decomposition

method is also proposed to break up the problem into two separate sub-problems to

speed up the computation. The effectiveness of the proposed PDS planning strategy

against earthquakes is evaluated through case studies based on the IEEE 37-Node

and IEEE 123-Node Test Feeders.
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Figure 2.1: An illustration of the power distribution system model at time t ∈ T =
{t1, t2} under one seismic damage scenario ω ∈ Ω.

2.1 System Model

In this section, the PDS model, the linearized Distflow model for MG formation,

the stochastic spatial seismic damage model, and the stochastic repair model of

damaged DLs are presented and discussed.

2.1.1 Power Distribution System Model

In this research, the PDS can be represented by an unweighted graph G = (N,L),

where N is the set of electrical nodes, and L is the set of DLs. Two sets of

nodes K ⊂ N and E ⊂ N are selected as MEG and MESS candidate connec-

tion nodes, respectively. Without loss of generality, we consider the IEEE 13-Node

Test Feeder [92] as an example. As shown in Fig. 2.1, we have N = {1, 2, 3, ...13},
L = {(1, 4), (2, 3), ..., (9, 13)}, K = {3, 6, 7, 10}, and E = {5, 9, 11, 12}. In addi-

tion, we use B and D to represent the set of different types of MEGs and MESSs

which are available for investment, respectively. For resilient planning, the invest-

ment portfolio including the DL hardening decision hmn, and the MEG and MESS

investment decisions gb and ed are evaluated. Specifically, hmn is a binary variable,

equaling 1 if DL (m,n) ∈ L is hardened. And, gb and ed are non-negative integer

variables, respectively, denoting the number of type b MEG (b ∈ B), and the num-

ber of type d MESS (d ∈ D) that are invested. For example, in Fig. 2.1, we have

B = {B1, B2}, D = {D1, D2}, h34 = h45 = h89 = 1, gB1 = 2, gB2 = 2, and

eD1 = 2, eD2 = 1.
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Moreover, given one specific seismic damage scenario (ω), the load restoration is

considered over a multi-time scale (t ∈ T). Specifically, during the restoration,

the microgrids will be established to provide emergency power. The nodes where

MEGs are deployed will be served as the root nodes and provide the reference

voltage V0. To this end, the location of MEGs will remain the same throughout the

multi-time scale. Also, the MESSs will be transported to some nodes, discharging

or charging in coordination with MEGs. For this coordination, the allocations of

MESSs can be dynamic. For example, as shown in Fig. 2.1, MESS #3 is charging at

MESS connection node 11 at time t1, and then transported to node 9 for discharging

at time t2. In addition, MESS transportation can be affected by road distances and

road conditions between two MESS connection nodes. We use te′e to denote the

lag time of MESS transportation from MESS connection node e′ to node e under

normal road condition. We use ζtωe′e to denote the status of road condition between

MESS connection node e′ and e. When ζtωe′e = 0 , it means that the road between

node e′ and e during time t is collapsed, and no MESS can be transported on this

road. For examples, in Fig. 2.1, we have ζt2ω9,5 = 0, since the road from MESS

connection node 9 to 5 is collapsed at time t2. Furthermore, the MEG deployment

variable θωkb, the MESS allocation variable γtωse , the line switch status variable χωtmn,

and the MESS discharging and charging decision variable βte should be determined.

In particular, θωkb is a non-negative integer variable, denoting the number of type

b MEG that are deployed at MEG connection node k. And, γtωse , χωtmn, and βte are

binary variables, equaling 1 if the sth MESS transits to MESS connection node e at

time t, the line switch on DL (m,n) is opened at time t, and the MESSs at MESS

connection node e are discharging at time t, respectively. For example, as shown

in Fig. 2.1, three microgrids are established with nodes 3, 7, and 10 being the root

nodes, respectively. Accordingly, we have θω{3,B1} = 2, θω{7,B2} = θω{10,B2} = 1, and

γ
ω{t1,t2}
{#1,5} = γ

ω{t1,t2}
{#2,12} = γωt1{#3,11} = γωt2{#3,9} = 1, and χω4,9 = χω9,10 = 0. Also, since

MESS #1 (D2) and MESS #2 (D1) are discharging at time t1, we have βt15 = βt112 =

1, and since MESS #3 (D1) is charging, we have βt111 = 0.
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2.1.2 Linearized Distflow Model for Microgrid Formation

The Distflow model is widely used in power flow analysis in radial distribution net-

works. Compared to the bus injection model, the Distflow model is much more

numerically stable [82]. Also, the Distflow model is equivalent to the branch flow

model when the phases of voltage and current are ignored [93]. Moreover, when

the power losses along DLs are much smaller than the power flow, the nonlinear

power losses term can be dropped [94]. Then, the Distflow model can be simplified

to the linearized Distflow model, which has simple analytical solutions. Because

resilient PDSs require a fast response to the outages by natural disasters [95], the

computational advantage and the acceptable approximation of the linearized Dis-

tflow model make it more efficient and applicable in radial distribution networks.

Hence, the linearized Distflow model is often employed in microgrid formation for

resilient PDSs [68, 74]. In this research, following the work in [68], the linearized

DistFlow model for MG formation can be stated as∑
h|(n,h)∈L P

tω
nhk = P tω

mnk −Dpt
n +Gptω

n + Eptω
n

+ ∆Sptn (ω) + δptωnk , ∀m ∈ N, n ∈ Nch(m), k ∈ K, (2.1)∑
h|(n,h)∈LQ

tω
nhk = Qtω

mnk −Dqt
n +Gqtω

n + Eqtω
n

+ ∆Sqtn (ω) + δqtωnk , ∀m ∈ N, n ∈ Nch(m), k ∈ K, (2.2)

V tω
mk − V tω

nk = (rmnP
tω
mnk + xmnQ

tω
mnk)/V0 + δV tωnk , (2.3)

where P tω
mnk, Qtω

mnk, V tω
nk are the active and reactive power flows on DL (m,n),

and the voltage at node n with respect to MEG connection node k at time t under

seismic scenario ω, respectively. Note that when MEGs are deployed at one MEG

connection node k, a microgrid rooted at node k is established.

2.1.3 Stochastic Spatial Seismic Damage Model

1) Seismic Impact on PDSs: In seismology, ground-motion can be modeled as a

seismic hazard curve. It is a function of magnitude M which can be represented by

Richter magnitude scale, and distance R from the epicenter to the site of interest
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with uncertainty ε [96], given by

lnY = f(M,R) + ε, (2.4)

where Y representing peak ground acceleration (PGA) is used to describe ground-

motion. Also, the uncertainty ε can be modeled as a normally distributed ran-

dom variable. Accordingly, Y follows a log-normal distribution with median value

Y =0.0159 exp(0.868M)[R+0.0606 exp(0.7M)]−1.09, and standard deviation σ =

1.45Y [97]. Then, given a certain PGA (Y ), the seismic fragility curves of a PDS

can be developed to estimate the probability of a PDS reaching or exceeding a dam-

age state z∈Z = {Z1, ...Zn}, given by [98]

P (Z ≥ z|Y ) = Φ
[
(1/σz) ln (Y/Y z)

]
, (2.5)

where Φ[·] denotes the standard normal cumulative distribution function. Then, the

probability mass function of damage state given a certain PGA can be obtained by

P (z|Y ) = P (Z ≥ z|Y )− P (Z ≥ z + 1|Y ). (2.6)

Also, the damage states are defined with respect to the percentage of damaged DLs

out of all DLs, denoted by Wz [98]. Hence, the expected number of damaged DLs

can be stated as nd = nt
∑

z∈Z P [z|Y ]Wz. Moreover, the probability of sampling a

damaged DL (m,n) with a certain length lmn is given in [60], which can be stated

as lmn/
∑

(m′,n′)∈L lm′n′ .

2) Spatial Seismic Damage Scenario Generation: Earthquakes are one of the dev-

astating natural disasters which start at the epicenter, and spread out in the form of

seismic waves [99]. Related research show that the destruction of an earthquake

decreases as the distance increases [100]. In this research, we present a stochas-

tic spatial seismic damage model for PDSs to address the randomness of seismic

damages geographically. Firstly, we partition the PDS into several spatial zones,

where each zone has a unique distance R from the epicenter. For example, as

shown in Fig. 2.1, we have two spatial seismic zones with R1 and R2 from the

epicenter, respectively. Secondly, a PGA lognormal distribution is assigned to each

zone, which is the probability density function of PGA given the magnitude M and

respective distance R [96]. Lastly, a spatial seismic damage scenario set Ω is intro-
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duced to model the uncertainty of PGA and damage states. In particular, for each

scenario ω ∈ Ω, the expected numbers of damaged DLs of different spatial zones

are independently generated based on the PGA and the damage state experienced

in different zones. After that, the damaged DLs in different zone can be randomly

produced according to the probability of sampling a damaged DL. Also, each sce-

nario ω is related to a realization ξω, which is a vector of ξωmn indicating the DL

status under such a scenario. When ξωmn = 1, it means that DL (m,n) is damaged

under scenario ω, otherwise we have ξωmn = 0. For example, in Fig. 2.1, we have

ξω23 = 1. Then, each scenario is associated with a probability of occurrence, and all

the probabilities should add up to 1, i.e.,
∑

ω∈Ω πω = 1. Note that when generating

scenarios, the PDS is considered as a standard design system. However, the seismic

design with hardened DL decision h can influence the probabilities of occurrence

of each scenario. This brings the so-called endogenous uncertainty, which means

the uncertainty is decision-dependent.

Moreover, since the seismic scenarios are generated based on the fragility curves,

the prediction error of the fragility curves can be introduced into the optimization

problem and can affect the final solution. For example, fragility curves which are

more fragile than the actual ones can induce seismic scenarios with more damaged

DLs, and correspondingly an increased investment cost. Also, this dependency can

be quantified by solving the optimization problem with parameter-adjusted fragility

curves. For example, the seismic fragility curves employed in this research are

developed based on the HAZUS earthquake loss estimation method [98]. We can

shift the developed fragility curves to the left or right a little, or adjust the shape of

the fragility curves a little to evaluate their impact on the final solution. Also, for

the management of this dependency, fragility curves from different models can be

employed for scenario generation, then stochastic programmings can be applied to

find a solution to optimize the expected objective value over all the scenarios from

different fragility curves. Through this way, the impact of fragility curve uncertainty

can be alleviated. However, the above-mentioned is still an open issue, which needs

further investigation. We want to emphasize that no matter how the dependency

on the fragility curve is quantified and managed, the accuracy of fragility curves
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themselves is more relevant. In earthquake engineering, both analytical data and

empirical data can be employed to validate the accuracy of the seismic fragility

curves. For examples, in [101], damage data collected in real earthquakes are used

for prediction accuracy evaluation. In [102], laboratory experiments are conducted

to verify the structural capacity of poles under static loading.

In addition, the presented model is different from the models in [36–38, 50], which

regard the whole PDS as one single point from the epicenter, without considera-

tion of the seismic attenuation. Since a PDS with several feeders typically covers

a service territory with a scale of dozens of square kilometers [103], one single

point cannot include the changing destruction of earthquakes by distances. Accord-

ingly, the vulnerable parts of a PDS may not be identified effectively. For example,

DLs which are further away from the epicenter than others should occur less of-

ten among all the scenarios, while in the existing models, this distance impact is

not considered. In comparison, the proposed model partitions the PDS into several

zones, such that the vulnerable parts of each zone are identified separately. Hence,

the proposed model can be more realistic, especially when the changing destruction

of earthquakes by distances cannot be ignored.

2.1.4 Stochastic Repair Model of Damaged DLs

During the outages caused by earthquakes, the crew members will be dispatched

by utilities to repair the damaged DLs. The repair duration can be modeled as a

random variable (τ ), which follows Weibull distribution, given by [104]

f(τ) =

{
α1

α2
( τ
α2

)α1−1e−(τ/α2)α1 , τ ≥ 0

0 , τ < 0
(2.7)

where α1 is the shape parameter and α2 is the scale parameter. Then, for one spe-

cific seismic damage scenario ω, the repair sequence of damaged DLs is gener-

ated as follows. First, one damaged DL (m,n) is randomly generated to repair.

Second, we sample the repair Weibull distribution to generate the repair duration

τ1 for this damaged DL. Herein, we use rtωnm to denote the DL repair status. If

rtωmn = 1, it means that the damaged DL (m,n) under scenario ω is in the repaired

status. Accordingly, we have r{t=1,2,...,τ1−1},ω
mn = 0 and r{t=τ1,τ1+1,...,T},ω

mn = 1. Next,
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these two steps are repeated by selecting another damaged DL (m′, n′) to repair

and generating a repair duration τ2 randomly. Assumed that there is only one crew

team, then the repair should be conducted sequentially, hence the time that DL

(m′, n′) gets repaired should be t = τ1 + τ2. Then, we have r{t=1,2,...,τ1+τ2−1},ω
m′n′ = 0

and r
{t=τ1+τ2,τ1+τ2+1,...,T},ω
m′n′ = 1. Also, this process will be repeated until t =

τ1 + τ2+, ...,+τn exceeds the multi-time scale considered in the model.

2.2 Stochastic Resilient PDS Planning Problem For-
mulation

In this research, the resilient PDS planning is achieved through hardening DLs, and

investing MEGs and MESSs considering stochastic seismic impact. To this end,

we formulate the SRDSPP as a risk-averse two-stage stochastic bi-level program-

ming problem [105]. Firstly, the upper-level generates the representative action

including PDS planning decision {h, g, e}, and decision-dependent seismic sce-

nario ω. Secondly, the lower-level reacts to the upper-level’s action by minimizing

the multi-time total loss of load in the context of time varying load profiles. Also,

the lower-level’s reactions including MEG and MESS coordination (co-allocation

and energy exchange), and topology reconfiguration can be performed. Finally, the

upper-level minimizes the total cost including the investment cost, and the expected

multi-time interruption cost after obtaining the lower-level’s reactions. Then, the

optimal resilient PDS planning solution {h∗, g∗, e∗} can be obtained. Different

from the research in [39–44], our proposed planning strategy incorporates MESSs,

coordinates the operation of MEGs and MESSs, and co-optimizes their respective

investment, which leads to a full utilization of different types of MERs. More-

over, the inclusion of risk-aversion provides a trade-off between the cost and the

risk, which can be used as investment references for system planners such as utility

companies. In this section, the problem formulation will be discussed.

2.2.1 Upper-Level Resilient PDS Planning Problem

The upper-level planning problem is formulated as a two-stage stochastic program-

ming problem. The first-stage determines “here and now variables”, including the
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DL hardening decision hmn, and the MEG and MESS investment decisions gb and

ed. The second-stage includes “wait and see variables”, which is the loss of load

variable ∆Sptn (ω). Then, the upper-level objective is to obtain the optimal invest-

ment portfolio {h∗, g∗, e∗}, which can minimize the total cost, given by

minh,g,e
{
chl
>h+ c>g g + c>e e+ Fφ(∆Sp)

}
, (2.8)

φ(∆Sp) = Eω

{
min∆Sp(ω) cs

∑
t∈T
∑

n∈N ∆Sptn (ω)
}
, (2.9)

where h ∈ H ⊆ {0, 1}|L|, g ∈ G ⊆ Z|B|, e ∈ E ⊆ Z|D|. Also, |L| denotes

the number of DLs, and |B| and |D| represent the number of types of MEG and

MESS, respectively. Note that h, g, e, and ∆Sp are the vectors of hmn, gb, ed, and

∆Sptn (ω). And, F is the occurrence of earthquakes in the payback period. Also, the

former three terms in (2.8) are the investment cost, and the last term is the expected

multi-time interruption cost over all scenarios. Then, the following constraints are

applied: ∑
ω∈Ω πω

∑
t∈T
∑

n∈N pn∆Sptn (ω) ≤ ∆Str, (2.10)

0 ≤∑b∈B gb ≤ N g
m|K|, (2.11)

0 ≤∑d∈D ed ≤ N e
m|E|, (2.12)

∆Sp(ω) ∈ argminθ,γ,χ,β
∑

t∈T
∑

n∈N pn∆Sptn (ω). (2.13)

Constraint (2.10) ensures the expected multi-time total loss of load is under a thresh-

old ∆Str. Constraints (2.11)-(2.12) limit the number of MEG and MESS within the

maximum number that the PDS can accommodate. Note that |K| and |E| represent

the numbers of MEG and MESS connection nodes, respectively. Constraint (2.13)

implies the upper-level’s objective function is restrained by the lower-level’s opti-

mal reaction ∆Sp∗.

2.2.2 Lower-Level PDS Contingency Operation Problem

Given the upper-level representative PDS planning decision {h, g, e} and seismic

scenario ω, the lower-level problem is formulated as a mixed integer non-linear

programming problem. It is used to obtain the contingency operation decisions,
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including θωkb, γ
tω
se , χωtmn, and βte. Then, the objective is to minimize the multi-time

total loss of load, given by

minθ,γ,χ,β

{∑
t∈T
∑

n∈N pn∆Sptn (ω)
}∣∣∣
h,g,e,ω

. (2.14)

Also, the following MEG and MESS coordination, power flow, and topology re-

configuration constraints are applied:

(2.1)− (2.3), and P tω
mnk, Q

tω
mnk ≤ vtωnkM, ∀k ∈ K, (2.15)

0 ≤ V tω
nk ≤ vtωnkM, ∀n ∈ N, k ∈ K, (2.16)

−(1− vtωnk)M ≤ δptωnk , δ
qtω
nk ≤ (1− vtωnk)M, ∀n ∈ N, (2.17)

0 ≤ δV tωnk ≤ (1− vtωnk)(1 + τ)V0, ∀n ∈ N, k ∈ K, (2.18)∑
k∈K V

tω
nk ≤

∑
k∈K v

tω
nk(1 + τ)V0, ∀n ∈ N, (2.19)∑

k∈K V
tω
nk ≥

∑
k∈K v

tω
nk(1− τ)V0, ∀n ∈ N, (2.20)

Sptn (ω) = (1− utωn
∑

k∈K v
tω
nk)D

pt
n , ∀n ∈ N, t ∈ T, (2.21)

Sqtn (ω) = (1− utωn
∑

k∈K v
tω
nk)D

qt
n , ∀n ∈ N, t ∈ T, (2.22)∑

n|(k,n)∈L P
tω
knk + vtωkkD

pt
k ≤

∑
b∈B θ

tω
kbG

p

b + Eptω
k , (2.23)∑

n|(k,n)∈LQ
tω
knk + vtωkkD

qt
k ≤

∑
b∈B θ

tω
kbG

q

b + Eqtω
k , (2.24)

V tω
nk = vtωnkV0, ∀n = k ∈ K, t ∈ T, ω ∈ Ω, (2.25)

ε
∑

b∈B θ
ω
kb ≤ vtωnk ≤

∑
b∈B θ

ω
kb, ∀n = k ∈ K, t ∈ T, (2.26)∑

k∈K v
tω
nk ≤ 1, ∀n ∈ N, t ∈ T, (2.27)

vtωnk ≤ vtωmk, ∀m ∈ N, n ∈ Nch(m), ω ∈ Ω, (2.28)

0 ≤∑k∈K θ
ω
kb ≤ gb, ∀b ∈ B, ω ∈ Ω, (2.29)

0 ≤∑s∈S ψ
ω
sd ≤ ed, ∀d ∈ D, ω ∈ Ω, (2.30)

0 ≤∑b∈B θ
ω
kb ≤ N g

m, ∀k ∈ K, ω ∈ Ω, (2.31)
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0 ≤∑s∈S γ
tω
se ≤ N e

m, ∀e ∈ E, t ∈ T, ω ∈ Ω, (2.32)∑
e∈E γ

t=1,ω
se ≤∑d∈D ψ

ω
sd, ∀s ∈ S, ω ∈ Ω, (2.33)∑

e∈E γ
t=1,ω
se =

∑
e∈E γ

t>1,ω
se , ∀s ∈ S, ω ∈ Ω, (2.34)

Eptω
e =

∑
s∈S Ê

ptω
se −

∑
s∈S Ě

ptω
se , ∀e ∈ E, t ∈ T, (2.35)∑

s∈S Ê
ptω
se ≤ βteM, ∀e ∈ E, t ∈ T, (2.36)∑

s∈S Ě
ptω
se ≤ (1− βte)M, ∀e ∈ E, t ∈ T, (2.37)

γtωse′ ≤ ζtωee′γ
t−1,ω
se , ∀s ∈ S, e, e′ ∈ E, t ∈ T, (2.38)

Êptω
se /η

dis ≤∑d∈D ψ
ω
sdE

dis

d − te′e
∑

d∈D ψ
ω
sdE

dis

d

+(2− γt−1,ω
se′ − γtωse )M, ∀s ∈ S, e′, e ∈ E, t ∈ T, (2.39)

Êptω
se η

ch ≤∑d∈D ψ
ω
sdE

ch

d − te′e
∑

d∈D ψ
ω
sdE

ch

d

+(2− γt−1,ω
se′ − γtωse )M, ∀s ∈ S, e′, e ∈ E, t ∈ T, (2.40)

0 ≤ Êptω
se /η

dis, Ěptω
se η

ch ≤ γtωseM, ∀s ∈ S, e ∈ E, t ∈ T, (2.41)

Êptω
se /η

dis ≤∑d∈D ψ
ω
sdE

dis

d , ∀s ∈ S, e ∈ E, t ∈ T, (2.42)

Êptω
se η

ch ≤∑d∈D ψ
ω
sdE

ch

d , ∀s ∈ S, e ∈ E, t ∈ T, (2.43)

ηmin
∑

d∈D ψ
ω
sdEd ≤ Ẽtω

s ≤ ηmax
∑

d∈D ψ
ω
sdEd (2.44)

Ẽt=1,ω
s = ηini

∑
d∈D ψ

ω
sdEd, ∀s ∈ S, ω ∈ Ω, (2.45)

Ẽt+1,ω
s = Ẽt,ω

s +
∑

e∈E Ě
ptω
se η

ch −∑e∈E Ê
ptω
se /η

dis, (2.46)

−Ěptω
sn K ≤ Ěqtω

sn ≤ Ěptω
sn K, ∀s ∈ S, n ∈ N, (2.47)

−Êptω
sn K ≤ Êqtω

sn ≤ Êptω
sn K, ∀s ∈ S, n ∈ N, (2.48)

vtωnk ≤ χωmn(1− ξωmn + rtωmn), ∀m ∈ N, n ∈ Nch(m). (2.49)

Constraints (2.15)-(2.16) force P tω
mnk, Qtω

mnk, and V tω
nk to 0, if node n is not restored

by MEG connection node k. Constraints (2.17)-(2.18) enable the slack variables
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δptωnk , δqtωnk , δV tωnk such that Constraints (2.1)-(2.3) can be feasible. Constraints (2.19)-

(2.20) limit the nodal voltages within an acceptable range by tolerance τ . Con-

straints (2.21)-(2.22) ensure that a load can be restored only when this load belongs

to a microgrid and the corresponding load switch is on. For linearization, we re-

place the quadratic term utωn
∑

k∈K v
tω
nk with utωn , and add an additional constraint

utωn ≤
∑

k∈K v
tω
nk. Constraints (2.23)-(2.24) ensure that the power injected into each

microgrid is within the generation capacity of the MEGs deployed at the root node.

Constraint (2.25) means the voltages of the root nodes are set to the reference volt-

age V0. Constraint (2.26) ensures the root node can be energized only when there

are MEGs deployed at this node. Constraint (2.27) means that a node can be ener-

gized by only one microgrid at a time. Constraint (2.28) means that a child node

can be energized only when its parent is energized. Constraints (2.29)-(2.30) mean

that the MEGs and MESSs can be used only when they are invested. Constraints

(2.31)-(2.32) limit the total number of MEGs and MESSs that each MEG and MESS

connection node can accommodate. Constraints (2.33)-(2.34) mean that a MESS

must be deployed at one certain node at one time t. Constraints (2.35)-(2.37) are to

calculate the total MESS injected or consumed power (Eptω
e ) at MESS connection

node e. Constraint (2.38) means that if the road between MESS connection node

e and e′ is damaged during time t, then no MESS can be transported to node e′

through this road. Constraints (2.39)-(2.40) restrict the maximum charging and dis-

charging power of MESSs at each time t. When γt−1,ω
se′ = 1 and γtωse = 1, it means

that the sth MESS is transported to MESS connection node e′ from e during time t.

Then, the charging and discharging power during the lag time of transportation te′e

should be deducted. Constraint (2.41) ensures there is no charging or discharging,

if no MESS is deployed at MESS connection node e. Constraints (2.42)-(2.43) are

to restrict the maximum charging and discharging power of MESSs by the rated

power E
dis

d and E
ch

d . Constraint (2.44) limits the State of Charge (SOC) such that

no over-charging or over-discharging will occur. Constraint (2.45) specifies the ini-

tial SOC by ηini. Constraint (2.46) calculates the SOC of MESS at each time t.

Constraints (2.47)-(2.48) limit the reactive power of MESS by factor K. Constraint

(2.49) is non-linear. It means that a child node n can not be energized by the MG
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in which its parent node m is, when the line switch (m,n) is opened, or DL (m,n)

is damaged but not repaired. For linearization, we introduce an auxiliary variable

äωmn, then constraint (2.49) can be replaced by äωmn ≤ 1− ξωmn + rtωmn, äωmn ≤ χωmn,

äωmn ≥ χωmn + (1− ξωmn + rtωmn)− 1, and vωnk ≤ äωmn.

2.2.3 Complete Stochastic Resilient PDS Planning Problem

Based on the upper- and the lower-level problems, the risk-neutral version of SRD-

SPP can be represented as follows:

minϑu F(ϑu) = minϑu
{
Eω

{
min∆Sp(ω) cs

∑
t,n ∆Sptn (ω)∣∣∆Sp(ω) ∈ Ψ(ϑu, ω)

}
+ C>p ϑu

}∣∣Gu(ϑu, ω) ≤ 0
}
, (2.50)

where Cp, and ϑu ∈ H × G × E are the joint investment cost, and the upper-

level planning decision vector, respectively. The lower-level’s optimal reaction set

mapping Ψ can be defined:

Ψ , argminϑl Eω{
∑

t,n pn∆Sptn (ω)|Gl(ϑl, ω) ≤ 0}, (2.51)

where ϑl denotes the lower-level contingency operation decision vector. Then, by

considering the mean upper semideviation risk measure [106], the SRDSPP can be

derived as

minϑu{F(ϑu) + ρEω? max{0,Fd(ϑu, ω?)− F(ϑu)}}, (2.52)

Fd(ϑu, ω
?) =

{
C>p ϑu + min∆Sp(ω?)

{
cs
∑

t,n ∆Sptn (ω?)∣∣∆Sp(ω?) ∈ Ψ(ϑu, ω
?)
}∣∣Gu(ϑu, ω

?) ≤ 0
}
, (2.53)

where Fd(ϑu, ω
?) is F(ϑu) under a sampled scenario ω? ∈ Ω. Note that the first

term of equation (2.52) is the total mean cost, and the second term represents the

risk. It can be deemed as a multi-objective programming with risk weighted by

ρ ∈ [0, 1], which penalizes an excess of Fd(ϑu, ω?) over its mean. In this research,

the risk refers to the risk of experiencing seismic scenarios with high cost. Then,

parameter ρ represents the significance of the risk measure. It depends on the will

of a system planner to take the risk. A conservative system planner would like to

minimize the risk, hence a larger ρ should be selected to increase the weight of the

risk in equation (2.52). However, for a system planner who want to minimize the
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Figure 2.2: An illustration of the solution procedures of the SRDSPP.

cost with little consideration of the risk, a smaller ρ is preferred.

2.3 Stochastic Resilient PDS Planning Problem Solu-
tion

As shown in Fig. 2.2, the solution procedure to the SRDSPP consists of four steps.

First of all, as the increasing number of seismic scenarios can result in heavy com-

putational burden, scenario reduction is necessary. To this end, a seismic scenario

aggregation method is proposed based on graph theory and community detection,

such that the seismic scenario set Ω can be replaced by a reduced subset Ω̂ ⊂ Ω.

Second, to address the DL hardening decision-dependent uncertainty, an endoge-

nous uncertainty relaxation method is proposed. It can achieve an adaptive sce-

nario probability scaling with the variation of DL hardening decision, i.e., πω(h).

Third, the SRDSPP with min max form is reformulated into a standard bi-level

programming problem with min min form. Then, it can be solved by the Branch-

and-Bound (B&B) algorithm [107]. Finally, to reduce the computation complexity,

a decomposition method is proposed. It can break up the original problem into
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two sub-problems, so that the DL hardening decision (h), and the MEG and MESS

investment decisions (g and e) can be optimized separately. In this section, the

solutions will be presented.

2.3.1 Seismic Scenario Aggregation

Based on graph theory and community detection, the seismic scenario set Ω can

be replaced with a reduced subset Ω̂ to reduce the computation burden. Next, we

present the procedure of the seismic scenario aggregation method.

1) Graph Generation: To capture the pairwise relationship of seismic scenarios, we

firstly generate a weighted undirected graph without self-loops. Specifically, each

vertex represents a seismic scenario ω, and the weight of each edge indicates the

correlation of the pairwise scenarios. Then, an adjacency matrixA of the graph can

be developed as follows:

Aij = Ns(ξ
ω, ξω

′
)/max{N(ξω), N(ξω

′
)}, (2.54)

where Ns(ξ
ω, ξω

′
) is the number of identical damaged DLs in ξω and ξω

′
, and

N(ξω) represents the number of damaged DLs in ξω. It means that the higher

the similarity of damaged DLs between ω and ω′ is, the more correlation of this

pairwise scenario should be, and the larger the element Aij will be.

2) Community detection: Community detection is a process of partitioning the

graph into communities [108]. The quality of this can be measured by the met-

ric modularity, given by

Q =
1

2m

∑
i,j

[Aij −
kikj
2m

]δ(Ci, Cj), (2.55)

where ki =
∑

j Aij denotes the sum of edge weight attached to vertex i, and

m = 1
2

∑
i,j Aij is the total edge weight in the graph. The Kronecker δ-function

δ(Ci, Cj) = 1 when Ci = Cj . Then, the Louvain algorithm is applied, which in the

first-phase greedily maximizes gain in modularity by

∆Qi→Cj = wi→Cj/2m−
∑Cj

tot×wi/2m2, (2.56)

where wi→Cj represents the sum of edge weights from vertex i to vertices in com-

munity Cj , wi is the sum of edge weights incident to vertex i, and
∑Cj

tot denotes the
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sum of weights from edges incident to any vertex in community Cj . Then, all the

vertices will be evaluated until no further gain in modularity can be obtained. Next,

the second-phase builds up a new graph based on communities discovered in the

first-phase. The two phases iteratively continue until the number of communities is

lower than a predefined number of scenarios limit NC .

3) Centroid Identification: Once the communities are detected, the seismic sce-

narios can then be clustered. The centroid of each community can be identified

based on the graph density and connectivity [109]. In this work, we will choose

the vertex with the largest sum of edge weights attached to it, expressed by i∗ =

argmaxi
∑

j Aij, Ci = Cj . Then, the reduced scenario set becomes Ω̂ ⊂ Ω, and the

centroids form the representative seismic scenarios ω̂ ∈ Ω̂.

2.3.2 Endogenous Uncertainty Relaxation

As aforementioned in Subsection 2.1.3, the seismic scenario uncertainty is decision-

dependent, if seismic design PDSs with hardened DLs are considered. Specifically,

the probabilities of occurrence πω̂ vary with the DL hardening decision h, i.e.,

πω̂(h). In this regard, we propose an endogenous uncertainty relaxation method to

achieve an adaptive scenario probability scaling. Firstly, we perform ‘bitwise AND

operation’ on vector h and ξω̂, i.e., Dω̂ = h ∧ ξω̂, to locate the hardened DLs but

damaged. Then, the probability of scenario which contains damaged hardened DLs

πω̂, ω̂ ∈ Ω̂h can be given by

πω̂(h) = (1− I(l>Dω̂/l>ξω̂))πω̂, ω̂ ∈ Ω̂h, (2.57)

which means the more damaged hardened DLs that a scenario contains, the more

corresponding probability will be scaling down. Note that I ≤ 1 denotes a seismic

design improvement factor. Moreover, the probability of scenario where all DLs

are standard designed πω̂, ω̂ ∈ Ω̂s can be derived as

πω̂(h) = (1−∑ω̂′∈Ω̂h
πω̂′(h))/(

∑
ω̂′∈Ω̂s

πω̂′)πω̂, ω̂ ∈ Ω̂s, (2.58)

where
∑

ω̂∈Ω̂ πω̂(h) = 1 and Ω̂s ∩ Ω̂h = ∅. Then, by replacing πω̂ with πω̂(h)

(denoted as πhω̂ ), the endogenous uncertainty relaxation of F can be equivalently
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obtained as

F =
{
C>p ϑu +

{∑
ω̂∈Ω̂ π

h
ω̂ min∆Sp(ω̂) cs

∑
t,n ∆Sptn (ω̂)∣∣∆Sp(ω̂) ∈ Ψ(ϑu, ω̂)

}∣∣Gu(ϑu, ω̂) ≤ 0
}
, (2.59)

where the sampling average approximation is applied by replacing the second-stage

Eω̂{min∆Sp(ω̂) cs
∑

t,n ∆Sptn (ω̂)} with
∑

ω̂∈Ω̂ π
h
ω̂ min∆Sp(ω̂) cs

∑
t,n ∆Sptn (ω̂) [110].

2.3.3 Reformulation of the SRDSPP

To solve the SRDSPP with min max form, given in equation (2.52), by the B&B

algorithm, we reformulate it into a standard bi-level programming problem with

min min form as follows,

Theorem 2.1. The proposed SRDSPP in equation (2.52) can be equivalently rewrit-

ten as the following min min form:

min
ϑu

{
C>p ϑu + min

∆Sp,λω̂

{
(1− ρ)

∑̂
ω∈Ω̂

πhω̂cs
∑
t,n

∆Sptn (ω̂)

+ ρ
∑

ω̂∈Ω̂ π
h
ω̂λω̂

∣∣(∆Sp(ω̂),λω̂) ∈ ΨD

}∣∣Gu ≤ 0
}
, (2.60)

ΨD , argmin∆Sp,λω̂

{∑
ω̂∈Ω̂

∑
t,n pn∆Sptn (ω̂)

∣∣ (2.61)

λω̂ ≥ cs
∑
t,n

∆Sptn (ω̂), λω̂ ≥
∑
ω̂′∈Ω̂

πhω̂′cs
∑
t,n

∆Sptn (ω̂),Gl ≤ 0}.

Proof: By introducing auxiliary variable λω̂ into the risk-averse SRDSPP, Theorem

1 can be derived as follows,

F(ϑu)+ρEω̂ max{0,Fd(ϑu, ω̂)−F(ϑu)}= (2.62)

F(ϑu)+ρ
∑

ω̂∈Ω̂ π
h
ω̂ max{0,Fd(ϑu, ω̂)−F(ϑu)}= (2.63)

(1−ρ)F(ϑu)+ρ
∑

ω̂∈Ω π
h
ω̂ max{F(ϑu),Fd(ϑu, ω̂)}= (2.64)

(1−ρ)F+ρC>p ϑu+ρ
∑̂
ω∈Ω

πhω̂ min
λ

{
λω̂ − C>p ϑu
s.t.λω̂≥F,λω̂≥Fd

}
= (2.65)

C>p ϑu+(1−ρ)
∑̂
ω∈Ω̂

πhω̂
{

min
∆Sp(ω̂)

cs
∑
t,n

∆Sptn (ω̂)
∣∣∆Sp(ω̂)∈Ψ

}
+

min
λ

{
ρ
∑̂
ω∈Ω̂

πhω̂λω̂

∣∣∣∣ λω̂≥min∆Sp(ω̂){cs
∑
t,n ∆Sptn (ω̂)},

λω̂≥
∑
ω̂∈Ω̂

πhω{ min
∆Sp(ω̂)

cs
∑
t,n

∆Sptn (ω̂)}

}
= (2.66)
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C>p ϑu + min
∆Sp,λω̂

{
(1−ρ)

∑
ω̂∈Ω̂ π

h
ω̂cs
∑

t,n ∆Sptn (ω̂) (2.67)

+ρ
∑

ω̂∈Ω̂ π
h
ω̂λω̂

∣∣∣∣ ∆Sp∈Ψ,λω̂≥cs
∑
t,n ∆Sptn (ω̂),

λω̂≥
∑
ω̂′∈Ω π

h
ω̂′cs

∑
t,n ∆Sptn (ω̂)

}
. �

Also, (2.60) and (2.61) can be further simplified as

minϑu
{
C>p ϑu + minϑ′l

{
K>ϑ′l

∣∣ϑ′l ∈ ΨD

}∣∣ϑu ∈ Vu}, (2.68)

ΨD = argminϑ′l

{
T>ϑ′l

∣∣Wϑ′l ≤ Bϑu + b
}
. (2.69)

Theorem 2.2. If Ψ(ϑu) is non-empty for any ϑu ∈ Vu, the following conditions

hold: a) Equation (2.64) can be equivalently rewritten as

minϑu,ϑ′l
{
C>p ϑu +K>ϑ′l

∣∣ϑu ∈ Vu,ϑ′l ∈ ΨD

}
, (2.70)

and the optimal values of (2.68) and (2.70) coincide; b) ϑ∗u is a global optimum of

(2.68) iff ∃ϑ′∗l ∈ V ′l such that (ϑ∗u,ϑ
′∗
l ) is a global optimum of (2.70); c) ϑ∗u is a lo-

cal optimum of (2.68) iff ∃ϑ′∗l ∈ V ′l such that (ϑ∗u,ϑ
′∗
l ) is a local optimum of (2.70).

Proof: By assumption, the mapping S: ϑu 7→ R, S , minϑ′l
{
K>ϑ′l

∣∣ϑ′l ∈ ΨD(ϑu)
}

is well defined, which means that ∀ϑu ∈ Vu, ∃ϑ′l ∈ V ′l such that K>ϑ′l = S(ϑu).

Furthermore, ∀ϑ′l ∈ Ψ(ϑu), S(ϑu) ≤ K>ϑ′l always holds. �

2.3.4 Decomposition of the SRDSPP

The SRDSPP can be solved by first specifying the planning decision ϑu and fixing

πhω̂ using exhaustive search algorithm, then optimizing the lower-level problem,

and finally evaluating the upper-level objective. The computational complexity is

O(2|L|(N g
m|K|)|B|(N e

m|E|)|D|), where |L| denotes the number of DLs, and |B| and

|D| represent the number of types of MEG and MESS, respectively. It is time-

consuming especially when the solution space is large, e.g., a large PDS with high

penetration of MEGs and MESSs. To reduce the computational burden, inspired

by [111], we propose a decomposition method, in which the SRDSPP is broken

up into two subproblems (1) and (2). Subproblem (1) is to obtain the lower bound

of the multi-time total loss of load
∑

t,n pn∆Sptn (ω̂), and derive the optimal DL

hardening decision h∗. Then, subproblem (2) determines the optimal MEG and

MESS portfolio g∗ and e∗, given h∗. Specifically, subproblem (1) is to determine
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the DL hardening decision h, which minimizes the hardening investment cost and

the expected interruption cost, given by

min
h,∆Sp,λ

{
ch`
>h+

{
(1− ρ)

∑
ω̂∈Ω̂ π

h
ω̂cs
∑

t,n ∆Sptn (ω̂)

+ ρ
∑

ω̂∈Ω̂ π
h
ω̂λω̂

∣∣(10), (∆Sp(ω̂),λ) ∈ Ψh

}
, (2.71)

Ψh , argminv,∆Sp
{∑

ω̂∈Ω̂

∑
t,n pn∆Sptn (ω̂)

∣∣
(26), (27), λω̂ ≥

∑
ω̂′∈Ω̂ π

h
ω̂′cs

∑
t,n ∆Sptn (ω̂),

λω̂ ≥ cs
∑

t,n ∆Sptn (ω̂), vω̂nk = 1, n = k, ∀k ∈ K
}
. (2.72)

Then, subproblem (2) is to obtain the minimum investment cost of MEGs and

MESSs, which can lead to the same amount of restored loads as subproblem (1),

given h∗, stated by

ming,e
{
c>g g + c>e e

}
|h∗,∆Sp∗ , (2.73)

subject to: constraints (2.1)-(2.3), (2.10)-(2.12), and (2.15)-(2.49).

Theorem 2.3. Assuming ∃h ∈ H, g ∈ G and e ∈ E , such that ΨD 6= ∅, then the

optimal planning decisions h∗, g∗, e∗ in (2.71) and (2.73) agree with that of (2.70).

Proof: a) Since isolated islands without MEG connection nodes can not get ac-

cess to the emergency power, then for any g ∈ G, e ∈ E , the lower bound of∑
ω̂∈Ω̂ π

h
ω̂

∑
t,n pn∆Sptn (ω̂), denoted as lol, only depends on h. Thereby, to ensure

lol ≤ ∆Str, h can be separately optimized by (2.71); b) Given h∗, the upper bound

of
∑

ω̂∈Ω̂ π
h∗

ω̂

∑
t,n pn∆Sptn (ω̂), denoted as lol, only depends on g, e, which means

limg,e→g∗,e∗ lol = lol. Thus, g, e can be separately optimized by (2.73) if h is

fixed; c) The risk only depends on h, since given h∗, the g∗, e∗ produces lol, which

are only determined by h. �

The decomposed SRDSPP can be solved by exhaustively searching the solution

space of h to determine h∗ that results in lol, then obtaining g∗, e∗ using the B&B

algorithm. The complexity can be reduced to O(2|L|), which is linear with respect

to MEG and MESS allocation, while still exponential with respect to the number

of DLs |L|. To further speed up the computation, we employ Particle Swarm Opti-

mization (PSO) algorithm [112]. It solves the problem by iteratively improving the
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position of particles towards the optimal solution, utilizing the best local and global

known positions. Then, the computational complexity can be further reduced to

O(ITP ), which is of linear complexity. Note that I is the number of particles, and

TP is the number of PSO algorithm iterations.

2.4 Case Study

In this section, the test system setup is illustrated. The effectiveness of the proposed

planning strategy are demonstrated based on the IEEE 37-Node Test Feeder and

the IEEE 123-Node Test Feeder. Also, comparisons are conducted between the

proposed planning strategy and other strategies.

2.4.1 Test System Setup

For case study, a PC with Intel CORE i7-10700 CPU and 8 GB DDR4 RAM, and

Gurobi 9.0.3 with B&B algorithm [113] is selected as a test platform. Also, since

the 1994 ML 6.7 Northridge earthquake is the most severe one recorded in urban

areas in North America [114], we select the Pico Thrust Fault of this earthquake as

the seismic source to demonstrate the proposed planning strategy. Specifically, the

coordinate of epicenter is [34◦12′47′′N, 118◦32′13′′W ], and the PDS is located at

[34◦12′47′′N, 118◦32′13′′W ]. Moreover, the loads are categorized as critical loads

with load priority pn = 5 and non-critical loads with load priority pn = 1. Fig.

2.3 shows the detailed time-varying load profiles for non-critical loads which are

residence, and critical loads which are fuel station, fire station, emergency center,

and water station [115]. Furthermore, the DL hardening cost is $312.5K/km [116].

The load shed cost is $14/kWh [117]. The occurrence of earthquakes F is set to 10.

Tables 2.1 and 2.2 show the investment costs of MEGs and MESSs, respectively

[118] [119]. Three types of MEGs (i.e., B1, B2, and B3) and three types of MESSs

(i.e., D1, D2, and D3) with different parameters are available to be selected. The

MESS charging and discharging efficiencies is assumed to be ηch = 0.9 and ηdis =

0.95, respectively. Also, the initial and minimum SOC of MESS is assumed to be

ηini = 0.8, and ηmin = 0.1, respectively.
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Figure 2.3: Load profiles of different customers over 24-hours time scale.

Table 2.1: Available MEG Product List
MEG G

p
G
q Cost

Type (kW) (kVar) ($)
B1 360 270 390k
B2 237 180 260k
B3 185 137 210k

Table 2.2: Available MESS Product List
MESS E

p
E
q

E Cost
Type (kW) (kVar) (kWh) ($)
D1 300 300 1000 180k
D2 250 250 800 150k
D3 200 200 600 120k

2.4.2 Case Study I: IEEE 37-Node Test Feeder

In this subsection, the seismic damage analysis and scenario aggregation are dis-

cussed. The results of simulation based on the IEEE 37-node Test Feeder [92] are

presented, including the investment portfolio, and MEG and MESS coordination.

1) Seismic Damage Analysis and Scenario Aggregation: In Case I, the PDS is di-

vided into three spatial seismic zones with 4.5km, 5km, and 5.5km away from the

epicenter. The probability density function of PGA for each zone can be obtained,

as shown in Fig. 2.4(a). It can be seen that the curves become narrow as the dis-

tance increases, which implies that the closer an earthquake is, the more likely the

location of interest will experience a higher level of PGA. Also, following HAZUS

methodology [98], the seismic damage is divided into 5 states, i.e., normal, slight,

moderate, extensive and complete state with 0%, 4%, 12%, 50% and 80% of all DLs

being damaged, respectively. Then, the fragility curves can be developed, as shown

in Fig. 2.4(b). We can observe that by considering hardening measures, the fragility

curves shift to the right hand side significantly. It means that the probability for a

PDS to fall into a relatively higher damage state under one specific PGA will be
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Figure 2.4: Seismic damage analysis in terms of PGA and fragility.

Scenario

3 133.2

52 119.6

119 117.5

145 140.8

153 130.2

296 130.5

323 130.1

405 115.3

455 139.8

DL Index
5 10 15 20 25 30 351

Realization of Scenario: “1” denotes damaged DL

DL Index

Figure 2.5: An illustration of seismic scenario aggregation.

decreased if hardening measures are taken. Moreover, we randomly generate 500

seismic scenarios, and implement the scenario aggregation with a predefined num-

ber of scenarios limit NC = 50. Then, the Louvain algorithm is executed for two

iterations. A total of 21 clusters are detected, which means the size of the scenario

set is reduced to 21 from 500. Fig. 2.5 shows one of the clusters which aggregates

9 scenarios. We can see that there are many similarities among these scenarios. For

example, for almost each scenario, DLs 1, 2, 3, 4, 19, 29, and 35 are damaged.

This also illustrates the reason of their aggregation. Also, since scenario 145 has

the largest sum of edge weight
∑

j Aij = 140.8, it is selected as the centroid, and

becomes the representative scenario of this cluster.

2) Simulation Results and Analysis: In this subsection, we first implement the pro-

posed SRDSPP on the test platform under zero risk, i.e., when ρ = 0. The loss
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Figure 2.6: Simulation results of IEEE 37-Node Test Feeder under one sampled
scenario and several representative time.

of load threshold ∆Str is assumed to be 5% of all demands over 24 hours. Also,

the road condition and the lag time of MESS transportation are ignored. Then, the

whole problem is solved in 65.7 hours of wall clock time, of which subproblem (1)

consumes 11.3 hours, and subproblem (2) consumes 54.4 hours. The optimal cost

of hardening DLs chl>h is $715.63K. In total, twelve DLs are hardened with a total

length of 2.29km. Also, the optimal cost of MEGs c>g g is $1, 850K, which includes

three B1, one B2, and two B3. The optimal cost of MESSs c>e e is $480K, with

two D1, and one D3 are invested. Under this investment portfolio, the expected

multi-time interruption cost is
∑

ω̂∈Ω̂ π
h
ω̂cs
∑

t,n ∆Sptn (ω̂) = $336.7K, and the ex-

pected multi-time total loss of load
∑

ω̂∈Ω̂

∑
t,n pn∆Sptn (ω̂) occupies 4.65% of all

the weighted demand, which means that 95.35% of all the weighted demand will be

restored over various scenarios. Moreover, when ρ = 0, the risk can be derived as
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Figure 2.7: SOC of MESS in terms of multi-time scale under one scenario.

45.5K. It means that the probability of experiencing a seismic scenario with a large

upper semideviation from the mean cost is very high. Hence, the risk management

is necessary. For example, when ρ = 0.5, the cost of hardening DLs is increased

to 778.21K, whereas the risk is decreased to 33.1K. Also, when ρ = 1, the cost

of hardening DLs is increased to 909.38K, whereas the risk is further decreased to

12.7K. It implies that the system planner can be willing to pay more investment to

obtain a lower risk of experiencing a severe seismic damage scenario.

Also, to demonstrate the performance of the seismic scenario aggregation, we com-

pare the expected multi-time total loss of load over the original scenario set Ω

with the reduced scenario set Ω̂. Note that |Ω| = 500 and |Ω̂| = 21. Specif-

ically, we set the DL hardening decision and the MEG and MESS investment

decisions to the optimal solutions {h∗, g∗, e∗}. Then, the loss of load ∆Sptn (ω)

under each scenario can be derived by the low-level problem, given by equation

(2.14). Accordingly, the expected multi-time interruption cost for both the sce-

nario sets Ω and Ω̂ can be obtained. The results of them are similar, which are∑
ω∈Ω π

h
ωcs
∑

t,n ∆Sptn (ω) = $358.1K and
∑

ω̂∈Ω̂ π
h
ω̂cs
∑

t,n ∆Sptn (ω̂) = $336.7K,

respectively. It implies that the presented seismic scenario aggregation method per-

forms effectively in scenario reduction, and the reduced scenario set Ω̂ can be used

to replace the original set Ω.

Moreover, based on the optimal investment portfolio, we further illustrate the MEGs

and MESSs Coordination. Fig. 2.6 shows the hardening DLs, coordination of

MEGs and MESSs, including co-allocation and energy exchange, in terms of t =1h,
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Figure 2.8: Energy exchange between MEGs and MESSs under one scenario.

5h, 16h, 19h under one sampled seismic scenario. Under this situation, a total of

three microgrids are formed to provide emergency power, whose roots are at node

702 with one B1 and one B3, at node 706 with one B2 and one B3, and at node

733 with two B1, respectively. Moreover, when t =1h, MESS #1 (D1) and MESS

#2 (D1) are charging at node 707, respectively. Crew members are repairing DL

(734, 710). In comparison, when t =5h, No.1 MESS (D1) and MESS #3 (D3) are

transported to nodes 705, and 704 for charging, respectively. Also, nodes 710, 735,

and 741 are further restored due to the repair of DL (734, 710). When t =16h,

all three MESSs are discharging because of the peak load demand. Also, the mi-

crogrids are re-scaled by opening line switches (704, 713) and (708, 733) to meet

the load increment. When t =19h, the total load demand is obviously falling back

but still high, thus all three MESSs are discharging. Also, line switch (730, 709) is

opened because of the increasing demand caused by the restoration of node 741. In

addition, Fig. 2.7 shows the SOC of all the three MESSs, while Fig. 2.8 shows the

coordination between MEGs and MESSs in terms of handling time-varying load

demand with peak and valley. It can be seen that when the load demand is low,

especially lower than the total generation capacity 1.69 p.u., e.g., t ≤9h, energy

tends to be transferred from MEGs into MESSs in preparation for the peak de-

mand. Also, when the load demand is higher than the generation capacity of 1.69

p.u., e.g., 10h≤ t ≤20h, which means power generated by MEGs are not sufficient,

the energy stored in MESSs is more likely to be fed back into the microgrids to

supplement the power deficiency. Moreover, the total discharged energy is 2.631

p.u., and the total charged energy is 2.743 p.u. It means that almost all the energy
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Figure 2.9: Simulation results of IEEE 123-Node Test Feeder under one sampled
scenario at time t = 18h.

transferred from the MEGs is returned to the microgrids, and the MESSs exert no

extra burden on the MEGs.

2.4.3 Case Study II: IEEE 123-Node Test Feeder

In this subsection, the effectiveness of the proposed planning strategy is verified

based on the IEEE 123-Node Test Feeder. Specifically, the loss of load threshold

∆Str is assumed to be 20% of all demands over a 24-hours time scale. The PDS is

divided into five spatial seismic zones with 4.0km, 5.0km, 6.0km, 7.0km and 8.0km

away from the epicenter. The lag time of MESS transportation is considered, which

is 2 mins for each part of road. Note that a part of road refers to the road between

two adjacent nodes. The problem is solved within 118.2 hours of wall clock time,

including 19.5 hours consumed by subproblem (1), and 98.7 hours consumed by

subproblem (2). The DL hardening cost is $1, 618K with a total length of 5.18km

hardened. The MEG cost is $3, 570K, including five B1, three B2, and four B3.

Also, the MESS cost is $2, 130K, with six D1, three D2, and five D3 invested.

Under such an investment portfolio, the expected multi-time interruption cost is
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$3,246K, and the expected multi-time total loss of load occupies 19.81% of all the

weighted demand, which means that 80.19% of all the weighted demand will be

restored.

Fig. 2.9 shows the hardening DLs, and the coordination of MEGs and MESSs at

time t =18h under one sampled seismic scenario, where a total of nine microgrids

are established for emergency power supply. In particular, we can see that the

microgrids rooted at nodes 57 and 77 contain more loads than others, hence having

higher demands of 1, 444kw and 1, 248kw, respectively. Accordingly, MESS #11,

#12, and #13 which are charging at previous time are transported to nodes 98, 67,

and 93, respectively, discharging for energy exchange. In other words, MESSs can

be charged in advance by MEGs when there is sufficient power, and then inject the

power back into the microgrids to deal with the peak load. Also, benefiting from

the mobility of MESSs, energy can be exchanged across microgrids. However,

the MESS transportation is impacted by the road conditions. For example, since

the road between nodes 38 and 67 is collapsed, MESS #12 is charged at node 21,

and then transported to node 67, even though it is much further away from node

67 than node 38. Moreover, the lag time of MESS transportation can affect the

performance of restoration. For example, if the lag time of MESS transportation is

1 min for each part of road instead of 2 mins in the previous setting, the expected

multi-time interruption cost will be decreased to $3,157k. Also, if no lag time is

considered, the expected multi-time interruption cost will be further decreased to

$2,881k.

Furthermore, as shown in Fig. 2.9, we can see that the number of hardening DLs

decreases along with the distance increases. Also, from zone 1 to 5, the total length

of hardening DLs is 2.01km, 1.68km, 0.59km, 0.65km, and 0.24km, respectively,

which shows an obvious decline trend by the distance from the epicenter. This is

because the closer an earthquake is, the more likely that the zone will experience

a higher PGA with more severe damages, and more DLs should be hardened to

maintain the loss of load threshold ∆Str. However, if the PDS is regarded as one

single point from the epicenter as done in the existing model [36–38], [50], e.g.,
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R =6.0km, the total length of hardening DLs of zone 1 to 5 will be 1.37km, 1.48km,

0.76km, 0.85km, and 0.51km, respectively. Such a hardening plan is not realistic

in terms of seismic attenuation. For example, zone 1 which is the closest to the

epicenter is under hardened, while zone 5 which is the furthest from the epicenter

is over hardened.

2.4.4 Case Study III: Comparison with Other Strategies

1) PDS Resilience Comparison: To demonstrate the importance of the pre-disaster

long-term investment planning in PDS resilience enhancement, we make compar-

isons between three strategies based on case study II. The comparison is conducted

in terms of the expected multi-time total loss of load
∑

ω∈Ω

∑
t,n pn∆Sptn (ω) over

various scenarios. The first strategy is the proposed one, which is “with the opti-

mal investment portfolio of hardened DL, MEG, and MESS”. The second strategy

is “with the optimal investment of MEG and MESS, but with random DL hard-

ening”, which is the modified version of strategies in [48–52]. The modification

is done by providing them with the MEG and MESS optimal planning derived

from our strategy. The third strategy is “random investment portfolio of hardened

DL, MEG, and MESS”, which is the strategies in [48–52]. The results are listed

in Table 2.3. We can see that our proposed strategy outperforms all other ones

with only 21, 457kWh loss of load. This is because the investment of DL harden-

ing, and MEGs and MESSs are co-optimized. By contrast, the modified strategies

of [48–52] shed significantly more loads, which is 51, 945kWh, since the vulnerable

DLs are not recognized and hardened. Also, the case without any optimal planning

behaves the worst with 70, 193kWh loss of load. The results indicate that the pre-

disaster long-term investment planning including hardening DLs, and adding new

MEGs and MESSs can effectively improve PDS resilience.

2) Investment Cost Comparison: To verify the effectiveness of MEG and MESS

coordination in cost-saving, we conduct comparisons between five strategies based

on case study II, which are “with MEG and MESS coordination” (proposed), “with

only MEGs” [43], “ with only MESSs” [47], “ with only DGs” [40], and “with

only ESSs” [37]. Also, the same hardening plan is adopted for each strategy as
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Table 2.3: Resilience Comparison in Terms of Loss of Load
Strategy Description Loss of load (kWh)
Proposed With Optimal Hardened DL/ 21,457

MEG/MESS Planning
Modified [48–52] With Only Optimal 51,945

MEG/MESS Planning
[48–52] Without Optimal Planning 70,193

Table 2.4: Investment Cost Comparison Between Different Strategies
Strategy B1 B2 B3 D1 D2 D3 Total Cost($)
Proposed 5 3 4 6 3 5 5,700k
MEG [43] 12 5 3 × × × 6,610k
MESS [47] × × × 81 0 0 14,580k

— B1’ B2’ B3’ D1’ D2’ D3’ —
DG [40] 16 3 6 × × × 7,452k
ESS [37] × × × 94 2 0 15,440k

derived in the optimal portfolio. Table 2.4 lists the total cost and portfolio which

results in the same loss of load threshold as in Subsection 2.5.3. Also, B1’, B2’,

B3’ and D1’, D2’, D3’ are the non-mobile versions of B1, B2, B3 and D1, D2, D3

in Tables 3.2 and 2.2, respectively, with the same capacity but 10% off in cost. It

can be seen that the time-varying load demand with peak and valley can be satisfied

flexibly by MEG and MESS coordination, including co-allocation and energy ex-

change. It means that extra electricity produced by MEGs can be stored in MESSs

when the load demand is lower, and fed back into the microgrid when the load

demand increases. Thus, the proposed planning strategy costs the least, which is

only $5, 700K with a total generation capacity of 3.251MW and energy capacity

of 11.4MWh, without compromising the restoration capability. In comparison, the

strategy with only MEGs costs higher, which is $6, 610K with a total generation ca-

pacity of 6.06MW. Because much more power is needed to deal with the peak load

demand, which on the other hand may lead to MEG idle or under-utilization when

demand is lower. Also, the strategy with only MESSs costs significant more, which

is $14, 580K with a total energy capacity of 81.0MWh. This is because to achieve a

power restoration over a 24-hours time scale without any generation, larger amounts
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of energy need to be stored in advance. Moreover, the strategies with DGs and ESSs

perform even worse compared with their mobile versions. Since the fixed locations

of DGs and ESSs are not adaptive to the random damages of earthquakes, more

installation are required. Also, the comparison shows that by considering MEG and

MESS coordination, the capability of MEGs and MESSs in restoration can be fully

utilized, hence a lower investment cost can be achieved.

2.5 Summary

In this work, the stochastic planning problem of resilient PDSs against earthquakes

is studied. Specifically, the portfolio of resilient measures including hardening DLs

and investing MEGs and MESSs are investigated in a stochastic environment con-

sidering MEG and MESS coordination. A stochastic spatial seismic damage model

is developed to characterize the random damages of earthquakes geographically. A

solution procedure including scenario aggregation, endogenous uncertainty relax-

ation, problem reformulation and decomposition is proposed to reduce the compu-

tational burden. Furthermore, case studies based on the IEEE 37-node test feeder,

123-node test feeder and comparisons with other strategies demonstrate that the co-

optimization of DL hardening and MEG and MESS investment considering MEG

and MESS coordination including co-allocation and energy exchange is necessary.

It can enhance the PDS resilience against earthquakes in a cost-effective manner.
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Chapter 3

Data-Driven Resilience Enhancement
for PDSs Against Multi-shocks of
Earthquakes Under Uncertainties

In this work, a data-driven PDS resilience enhancement strategy is proposed against

multi-shocks of earthquakes. In particular, the investment and pre-positioning of

mobile emergency generators (MEGs) is determined against main shocks. The real-

location of MEG and the repair scheduling are obtained considering aftershocks and

post-restoration failures. A resistibility index (RI) is developed based on HHMM

for stochastic resilience evaluation. The historical earthquake data is incorporated

into the HHMM as observed information of multi-shocks of earthquakes. Based

on the RI , the problems of pre-positioning and reallocation of MEGs are formu-

lated as mixed-integer programming problems. The problem of repair scheduling

is formulated as an adaptive two-stage non-linear stochastic programming prob-

lem, for which a revision period is introduced to allow the decisions to adapt to

the underlying uncertainties after the revision. The non-linearity arising from the

revision period is addressed by introducing auxiliary variables. To reduce the com-

putational complexity, an iterative algorithm is presented based on linear relaxation.

The effectiveness of the proposed strategy is verified via case studies on the IEEE

123-node test feeder and historical earthquake data of Los Angeles, USA.
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Figure 3.1: An illustration of the power distribution system model.

3.1 System Model

In this section, the system model with respect to PDSs, and stochastic seismic im-

pact on distribution networks and restoration paths are introduced.

3.1.1 Power Distribution System Model

As show in Fig. 3.1, a modified IEEE 13-Node Test Feeder is chosen as the PDS.

The modification is considering the PDS as a single phase system folowing the

works in [43, 58, 60, 68]. Also, a tie-line is added between nodes 6 and 11. Specifi-

cally, the PDS is represented by a graph G = (B,L), where B is the set of electrical

nodes and L is the set of DLs. A set of nodes G ⊂ B are selected as candidate loca-

tions for MEG deployment according to facility requirements [120]. For example,

as shown in Fig. 3.1, we have B={1, 2, · · · , 13}, L={(1, 4), (2, 3), · · · , (10, 11)},
and G = {4, 7, 13}. Once an earthquake strikes, the worst-case is considered that

the bulk system is collapsed, and the power restoration is completly dependent on

MEGs. Moreover, we denote the restoration path connecting a MEG candidate lo-

cation g ∈ G to a CL c ∈ C ⊂ B as g ⇒ c. For example, in Fig. 3.1, we have

C = {2, 6, 8}. Accordingly, the restoration paths from MEG candidate location 4

to the three CLs are denoted by 4 ⇒ 2, 4 ⇒ 6 and 4 ⇒ 8, respectively. Also,

each restoration path g ⇒ c is associated with a group Bcg of DLs. For example,

we have B42 = {(4, 3), (3, 2)} for restoration path 4 ⇒ 2, in Fig. 3.1. Note that

following the work in [43, 58, 60, 68], it is assumed that the PDS is equipped with
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sufficient remotely controlled switches, so that the restoration paths can be utilized

with certain boundaries and be energized by MEGs. For example, in Fig. 3.1, line

switches on DLs (4, 5), (7, 8), (8, 12), and (9, 13) are opened, so that restoration

paths 4 ⇒ 2 and 4 ⇒ 8 can be energized. Also, the tie-switch on tie-line (6, 11)

is closed to transfer isolated CL at node 6 to other feeders. In other words, before

the post-disaster restoration, the PDS is de-energized because of the blackout. The

system operator can either restore CLs by energizing the restoration paths without

faults, or dispatch utility crew teams to repair the de-energized restoration paths

if they are damaged. Also, a restoration path can be in either operational state or

damaged state after earthquakes. It is considered damaged when one or more DLs

of this restoration path are damaged. Because MEGs at one MEG candidate loca-

tion can deliver power to several CLs via different restoration paths, a microgrid is

accordingly established. Herein, the MG formation in [68] based on the linearized

DistFlow model is applied. Then, the real and reactive power flows and nodal volt-

ages can be obtained by

F p
ig = uigPi +

∑
j F

p
jg, ∀i ∈ B, j ∈ BCH(i), (3.1)

F q
ig = uigQi +

∑
j F

q
jg, ∀i ∈ B, j ∈ BCH(i), (3.2)

Vig − Vjg = (rijF
p
ig + xijF

q
ig)/V0, ∀i ∈ B, j ∈ BCH(i), (3.3)

where BCH(i) is the set of child nodes of node i. Also, uig denotes the activation

status of node i with respect to MEG candidate location g. If uig = 1, it means node

i is picked up by MEG at location g, and vice versa.

Notice that the application of the proposed model can also be extended to three-

phase unbalanced systems with missing phases. Specifically, a three-phase unbal-

anced system can contain single phase, two phase and three phase DLs, denoted

by 1φ, 2φ and 3φ, respectively. Then, to ensure that the power can be delivered

from MEGs to CLs successfully, effective restoration paths will be identified in ad-

vance. An effective restoration path should satisfy one of the following principles:

i) MEGs and CLs are connected to DLs with the same number of phases; ii) MEGs

should be connected to a DL with at least one more phase than the DL which the CL
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is connected to. In other words, an effective restoration path can deliver power from

3φ to 2φ, from 3φ to 1φ, and from 2φ to 1φ. However, restoration paths with the

opposite power delivery are ineffective, and will not be utilized. Also, to address

the power flow analysis in three-phase unbalanced systems, the generalized branch

flow method in [121] can be applied.

3.1.2 Stochastic Seismic Impact Model for PDSs

To characterize the spatial seismic attenuation profile and quantify the impact of

seismic hazard, we first identify the stochastic attenuation relationship between at-

tenuation profile and the magnitude of earthquake represented by the Richter scale

(M) [96], given by

lnY = f(M,R) + E, (3.4)

where R represents the source-to-site distance, and Y denotes the peak ground ac-

celeration (PGA). The uncertainty E can be modeled as a normally distributed ran-

dom variable in seismological studies [97]. Accordingly, Y follows a log-normal

distribution with median value Y = 0.0159 exp(0.868M)[R+0.0606 exp(0.7M)]−1.09

and standard deviation σ = 1.45Y . Based on the HAZUS earthquake loss estima-

tion method [98], fragility curves can be developed to model the probability for

DLs to fall in or exceed a certain damage state z ∈ Z = {Z1, ...Zn}. For a given

PGA Y , the probability is given by

P (Z ≥ z|Y ) = Φ[(1/σz) ln (Y/Y z)], (3.5)

where Φ[·] denotes the standard normal cumulative distribution function, and the

values of Y z and σz can be obtained from the HAZUS method. Then, the probabil-

ity of each damage state under a specific PGA can be derived as

P (z|Y ) = P (Z ≥ z|Y )− P (Z ≥ z + 1|Y ). (3.6)

In order to model the stochastic seismic impact on DLs, we use Wz to denote the

percentage of damaged DLs out of all DLs for damage state z. Then, the expected

number of damaged DLs can be calculated as nd = nt
∑

z P (z|Y )Wz, where nt is

the total number of DLs. Moreover, the relationship between the length of DLs and

the probability for it to be damaged is given in [60]. Then, based on the log-normal
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distribution of PGA and fragility curves, the number of damaged DLs can be ran-

domly generated. Combined with the probability for each DL to be damaged, the

seismic damage scenarios can be obtained. Each scenario is related to a realization

containing a group of damaged DLs, and is associated with a probability of occur-

rence. We further denote ξ(b) as the failure probability for DL b , which is defined

as the occurrence of this damaged DL among all scenarios.

3.1.3 Stochastic Seismic Impact Model for Restoration Paths

The restoration path state ψ can be characterized as operational state ψo or damaged

state ψd, where Ψ = {ψo, ψd}. To represent the state transitions of restoration paths

considering main shocks and aftershocks of earthquakes, a Markov chain can be

integrated in the stochastic seismic impact model. For each aftershock, the changes

in the values of magnitude and distance can result in a different value of PGA Y .

Accordingly, the transition probability of damage state from Zi to Zj can be de-

rived as TD(Zi, Zj) = P (Zj|Zi) based on the PGA probability density function

and fragility curves. Moreover, consider a restoration path g ⇒ c with a group

Bcg of DLs. Once a shock of earthquake occurs, based on the probability of a

DL to be damaged, i.e., ξ(b), where b ∈ Bcg, the state transition probability of

restoration path can be obtained as TR(ψo, ψd) = P (ψd|ψo) = 1 − Πb(1− ξ(b)),

TR(ψo, ψo) = P (ψo|ψo) = Πb(1− ξ(b)), TR(ψd, ψo) = P (ψo|ψd) = 0, and

TR(ψd, ψd) = P (ψd|ψd) = 1.

3.2 Formulation of Data-Driven PDS Resilience En-
hancement Problem

Considering the randomness of multi-shocks of earthquakes, in this section, we first

present theRI metric to evaluate the resilience of restoration paths. Specifically, for

each restoration path, one HHMM is established. A PGA observation sequence con-

taining the PGA information of multi-shocks of earthquake will be given based on

historical earthquake data. Then, the most probable state sequences of the HHMM

can be deduced [122]. Based on the state sequences, the RI metric can then be

derived. Since HHMMs are developed to model the evolution of stochastic process
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Figure 3.2: An illustration of HHMMs of restoration paths.

over multi-shocks of earthquakes, the RI can stochastically represent the resilience

of restoration paths. In other words, by utilizing the historical data with multi-

shocks of earthquakes information, the RI metric can be evaluated. Then, by using

the derived RI metric, the pre-disaster planning and the post-disaster response are

investigated in the context of future multi-shocks of earthquakes. Specifically, in

the pre-disaster stage before main shocks, the investment and pre-positioning of

MEGs is determined. It means that when investing and pre-positioning MEGs, the

restoration path with higher value of RI will be preferred, such that the selected

restoration path can be more resilient against multi-shocks of earthquakes. In the

post-disaster stage, the reallocation of MEGs and the repair scheduling of restora-

tion paths are determined considering post-restoration failures. In this section, the

problem formulation is introduced.

3.2.1 Resistibility Indices Based on HHMMs

To address the random earthquake damages on a restoration path, we establish a

dynamic Bayesian network representation of HHMM with three levels [122]. As

shown in Fig. 3.2, the first level is the root state. The restoration path state sequence

is in the second level, represented by a hidden vector ψ = (ψ1, . . . , ψB) ∈ ΨB.

The damage state sequence is in the third level, represented by a hidden vector

z = (z1, . . . , zB) ∈ ZB. A PGA observation sequence, represented by a known

vector y = (y1, . . . , yB) ∈ YB, is emitted from the damage state sequence. It

contains the PGA information of multi-shocks of earthquakes, which is composed
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of one main shock and B − 1 subsequent aftershocks derived from the historical

earthquake data. Next, we present the probabilities for HHMM as follows:

i) Vertical and horizontal transition probability

Γ = P (qdb = J ′|qdb−1 = J, fd:d+1
b−1 , qd−1

b−1 = I) =
µ(J, J ′), if fdb−1 = 0, fd+1

b−1 = 0;

T dI (J, J ′), if fdb−1 = 0, fd+1
b−1 = 1;

πdI (J
′), if fdb−1 = 1, fd+1

b−1 = 1.

(3.7)

ii) Level ending probability

Σ = P (fdb = 1|qdb = J, qd−1
b = I, fd+1

b ) =

0, if fd+1
b = 0; T dend, if fd+1

b = 1.
(3.8)

iii) Emission probability

Ξ = P (y|qDb = z) = ez(y), (3.9)

where b ∈ {1, ..., B} denotes the time step of HHMM, and d ∈ {1, ..., D} is the

level of HHMM. Also, qdb is the state variable at time step b in level d. Specif-

ically, when d = 2, qdb = ψ ∈ Ψ is the restoration path state variable; when

d = 3, qdb = z ∈ Z is the damage state variable. And, fdb is an end indica-

tor, which equals 1 if level d ended at qdb . In other words, fdb = 1 implies a

possible state change in level d − 1. The emission probability is related to the

probability of observing a PGA y from damage state z, which can be derived as

ez(y) = P (y|z) = P (z|y)P (y)/P (z), where P (z) = Ey[P (z|y)]. The values of

parameters in equations (3.7)-(3.9) are given as follows:

B The value of T dend is the ending probability of level d;

B The value of T dI (J, J ′) is the horizontal transition probability from state J to J ′ in

level d, when the upper-level d−1 is in state I . Based on the transition probabilities

of damage states and restoration path states presented in Subsection 3.1.3, if d = 2,

T dI (J, J ′) = TR(J, J ′)/(1−T dend), else if d = 3, T dI (J, J ′) = TD(J, J ′)/(1−T dend);

B The value of µ(J, J ′) equals to 1 if J=J ′, meaning that no horizontal transition

occurs in level d, otherwise 0;

B The value of πdI (J
′) is the vertical transition probability from state I in level d−1

to state J ′ in level d.
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In addition, the probabilities described in equations (3.7)-(3.9) determine the stochas-

tic evolution of the HHMM. It can affect the restoration path state and damage state

transitions over multi-shocks of earthquakes given by the observation sequence y.

Hence, there can be many feasible state sequences {ψ, z}, which can be considered

as different scenarios. For simplicity, we denote P = {Γ,Σ,Ξ}. Accordingly, we

have the following optimization problem for each restoration path g ⇒ c:

(P1) maxψ,z,f Pcg(ψ, z,f |y;P), (3.10)

which implies to find the optimal state sequences {ψ∗, z∗} to maximize the joint

probability Pcg to best match the given PGA observation sequence y. Physically,

it means that the PGA information is observable, and the decision maker aims to

deduce how the restoration path and damage state will transit given the PGA infor-

mation. In other words, the optimal state sequences {ψ∗, z∗} can be regarded as

the most representative scenario to model the evolution of stochastic process over

y. Then, based on the deduced state sequence ψ∗, to evaluate the resilience of

restoration paths, the RI can be defined.

Definition. The RI of one restoration path g ⇒ c (denoted by Rcg) is defined as

the expected occurrence of the operational state ψo in state sequence ψ∗ over y,

stated as

Rcg = Ey[Nψo(y)/B], (3.11)

whereNψo(y) denotes the number of the operational state ψo inψ∗ given the obser-

vation sequence y. Physically, it means the higher the occurrence of the operational

state ψo is, the higher the RI is, and the more resilient the restoration path can be.

Since an earthquake process is a seismic sequence consisting of an intensive main

shock and multiple aftershocks, the magnitude and location of each shock can be

recorded by seismometers. This recorded historical earthquake data can be obtained

from the United States Geological Survey [123]. It is composed of the information

of magnitudes and distances {M,R} of a series of shocks. Accordingly, the PGA

density function for each shock can be derived based on Subsection 3.1.2. Then, by

sampling the PGA density function, the PGA at each time step of the HHMM can

be obtained. And, the observation sequences y can be randomly generated based
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on the historical data. Finally, the RI is obtained as the expected value over dif-

ferent y. Compared with the indices in [58–60] which are developed based on the

deterministic analysis, the proposed RI can stochastically evaluate the resilience

of restoration paths, since it is derived from HHMMs which integrated with the

randomness of multi-shocks of earthquakes.

3.2.2 Pre-Disaster MEG Investment and Pre-Positioning

In the pre-disaster stage, an investment and pre-positioning problem is formulated.

The objective is to identify the portfolio of MEGs with the lowest investment cost,

which ensures the system average RI is greater than a threshold, given by

(P2) min
s,p

{∑
e cese+wR

(
1−∑c,g pcgRcg/Nc

)}
(3.12)

where the first term denotes the total investment cost, and the second term in the

parentheses is the system average RI . Also, pcg is a binary variable denoting the

status of the restoration path. It equals to 1 if an MEG is deployed at MEG candidate

location g, and restoration path g ⇒ c is selected to restore CL c. Thus, the second

term in equation (3.12) implies that under a specific MEG investment portfolio, the

restoration path to each CL will be selected to achieve the highest system average

RI . Also, the following constraints are applied:

s.t. (3.1)− (3.3), and
∑

c,g pcg = Nc, (3.13)∑
c,g pcgRcg/Nc ≥ Rtr, (3.14)

vge ≤ se, ∀e ∈ E , g ∈ G, (3.15)

vge ≥ uig, ∀i ∈ B, g ∈ G, (3.16)∑
g∈G uig ≤ 1, ∀i ∈ B, (3.17)

uig − ujg ≥ 0, ∀i ∈ B, j ∈ BCH(i), (3.18)

pcg ≤ uig, ∀i = c ∈ C, (3.19)∑
g∈G pcg ≤ 1, ∀c ∈ C, (3.20)

63



(1− ρ)uig ≤ Vig ≤ (1 + ρ)uig, ∀i ∈ B\G, (3.21)

uigV0 ≤ Vig ≤ uigV0, ∀i = g ∈ G, (3.22)∑
e∈E vge ≤ 1, ∀g ∈ G, (3.23)

0 ≤∑i∈BCH(g) F
p
ig ≤

∑
e∈E vgeP

e
M , ∀g ∈ G, (3.24)

0 ≤∑i∈BCH(g) F
q
ig ≤

∑
e∈E vgeQ

e
M , ∀g ∈ G. (3.25)

Constraint (3.13) ensures that all the CLs can be restored at the pre-disaster stage.

Constraint (3.14) ensures the system averageRI to be no less than the pre-specified

thresholdRtr. Constraint (3.15) indicates that an MEG can be deployed only when

it is invested. Constraint (3.16) means that electrical nodes can only be activated

by a source node where an MEG is deployed. Constraint (3.17) ensures each node

can be activated by at most one MEG. Constraint (18) represents that a child node

cannot be activated unless its parent node is activated. Constraint (3.19) means that

a restoration path can only be constructed when the connected CL is activated by

the source of this restoration path. Constraint (3.20) ensures each CL is restored

by at most one path. Constraint (3.21) limits the nodal voltages within an accept-

able range. Constraint (3.22) ensures the voltages at the nodes where MEGs are

deployed to be set to the reference voltage V0. Constraint (3.23) means that one

electrical node can accommodate only one MEG. Constraints (3.24)-(3.25) limit

the total demand within the generation capacity.

3.2.3 Post-Disaster MEG Reallocation and Repair Scheduling

1) MEG Reallocation: The post-disaster MEG reallocation problem is to transport

MEGs to re-establish emergency power services when the pre-planned restoration

paths collapsed. The objective is to restore as many CLs as possible with the highest

priority (Ic), considering the overall system RI in case of future aftershocks, given

by

(P3) maxp
{
wc
∑

c∈C pcgIc +
∑

c,g pcgRcg

}
(3.26)

s.t. (1)− (3), (16)− (21), and
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Figure 3.3: An illustration of adaptive two-stage stochastic programmings.

vge′ ≥ uig, ∀i ∈ B, g ∈ G, (3.27)∑
e′∈E ′ vge′ ≤ 1, ∀g ∈ G, (3.28)

0 ≤ Pg ≤
∑

e′∈E ′ vge′P
M
e′ , ∀g ∈ G, (3.29)

0 ≤ Qg ≤
∑

e′∈E ′ vge′Q
M
e′ , ∀g ∈ G. (3.30)

where the first term represents the total restored CL priorities, and the second term

denotes the overall system RI . In other words, the CLs with higher priorities are

prioritized in restoration while using the restoration path with the highest resilience

against multi-shocks of earthquakes. Furthermore, constraints (3.27)-(3.30) are

similar to constraint (3.16) and constraints (3.23)-(3.25) except that the reallocated

MEGs are the ones invested in the pre-disaster stage, i.e., E ′ ⊂ E .

2) Repair Scheduling: The post-disaster repair scheduling problem is formulated as

an adaptive multi-period two-stage stochastic programming problem [124]. It aims

to determine the sequential repair decisions of damaged restoration paths. In the

traditional setup of two-stage stochastic programming [125], such decisions are the

first-stage here-and-now decisions that are fixed in any period t ∈ T = {1, 2, ...T}.
By contrast, in the adaptive setup, a revision period t∗ is introduced. The sequen-

tial repair decisions are only fixed before t∗. And, one revision of the sequential

repair decisions is allowed during t∗, such that the decisions can be partially adap-

tive to the underlying uncertainties. Then, after t∗, with respect to each revealed

uncertainty, the sequential repair decisions are fixed again. Physically, the system
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operator intends to determine a sequential repair schedule with length (t∗ − 1),

then observing the uncertainties at t∗ for one time and revising the sequential repair

decisions accordingly. An illustration can be shown in Fig. 3.3, where five restora-

tion paths are damaged, i.e., T = 5, calling for repair scheduling with t∗ = 3.

The middle shows the multi-shocks of earthquake damage scenario tree. The left

shows the sequential decisions of the traditional setup, where the repair decisions

are fixed throughout the repair horizon. The right shows the sequential decisions of

the adaptive setup, where one revision is conducted by the system operator after ob-

serving the uncertainties. Note that the repair time ∆t, i.e., duration of each period,

for restoration paths are considered equal. The reason is the repair time cannot be

specified exactly, until the repair is completed by the crews. Yet, a repair schedule

is required for guidance before crew dispatching. Thus, we assume equal repair

time to determine the repair sequence for crew dispatch.

For simplicity, we denote IRcg=τ1−{Ic+τ2Rcg}, for which the lower the value is,

the higher the priority of the CL and the higher the resilience of the restoration path

will be. By appropriately setting the values of τ1 and τ2, the value of IRcg can carry

both the information of load priorities (Ic) and restoration path RI (Rcg). Also, we

use χnc to denote the available number of restoration paths of CL c at scenario node

n. If χnc is multiplied by a large weight factor τ0, the value of (τ0χ
n
c + IRcg) can

include the information of the available number of restoration path of CL c, the load

priority of CL c, and the RI of restoration path g ⇒ c. Then, the objective of the

repair scheduling problem is to obtain the sequential repair decisions to minimize

the sum of multi-period expected number of available restoration paths and IR,

given by

(P4) min
m,t∗

∑
t∈TEn∈Ωt

{∑
c,g,km

nk
cg (τ0χ

n
c + IRcg)

}
(3.31)

where mnk
cg is the repair decision. It is a binary variable, which equals 1, if restora-

tion path g ⇒ c is repaired at scenario node n by crew team k. Physically, the

optimal solution of problem (P4) ensures the following repair principles [58], [68]:

i) The damaged restoration path whose CL has the least available paths will be re-

paired first; ii) If two damaged restoration paths both satisfy principle i), the path
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whose CL is with higher load priority will be repaired first; iii) If two damaged

restoration paths connect to the same CL, the path with higher RI will be repaired

first. Accordingly, a damaged restoration path with the lower value of (τ0χ
n
c+IRcg)

must be repaired first than the one with the higher value, as one of the repair prin-

ciples must be satisfied. Also, the following constraints are applied:

χnc ≤ mnk
cgM, ∀c ∈ C, g ∈ G, n ∈ T , k ∈ K, (3.32)

χnc ≤ N c
P −

∑
g d

n
cg +

∑
g,n′∈s(n),km

n′k
cg , (3.33)

χnc ≥ N c
P−
∑

g d
n
cg+

∑
g,n′∈s(n),km

n′k
cg −(1−mnk

cg )M, (3.34)

mn′k
cg ≤ dncg, n ∈ Ω1, ∀n′ ∈ T , (3.35)∑

k∈K,n∈sm
nk
cg ≤ 1, ∀s ∈ S, c ∈ C, g ∈ G, (3.36)∑

c,gm
nk
cg ≤ 1, ∀n ∈ T , k ∈ K, (3.37)∑

c,g,n∈sm
nk
cg = Nd

P , ∀s ∈ S, (3.38)

mnk
cg = mn′k

cg , ∀n, n′ ∈ Ωt, t<t
∗, (3.39)

mn′k
cg =mn′′k

cg , ∀n′, n′′ ∈ T (n) ∩ Ωt, n ∈ Ωt∗ , t ≥ t∗. (3.40)

Constraints (3.32)-(3.34) are to calculate the available number of restoration paths

of CL c at scenario node n (χnc ), when one of the damaged paths of this CL is being

repaired. Specifically, if mnk
cg = 1, then χnc = N c

P −
∑

g d
n
cg +

∑
g,n′∈s(n),km

n′k
cg ,

otherwise χnc = 0. Constraint (3.35) implies only the actual collapsed restoration

paths can be repaired. Constraint (3.36) means that one path can be repaired only

once. Constraint (3.37) means that one crew team can only repair one damaged

path in each scenario node. Constraint (3.38) forces the total number of repaired

paths throughout the horizon be equal to the total number of actual damaged paths

Nd
P . Constraint (3.39) ensures that the repair decisions at each t before the revision

period are compressed to the same. Constraint (3.40) indicates the repair decisions

of scenario node n′ ∈ T (n) ∩ Ωt, t ≥ t∗ are compressed to the same for the

remaining horizon, where n is the scenario node in the revision period t∗.
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3.3 Solutions of Data-Driven PDS Resilience Enhance-
ment Problem

The solutions of the data-driven PDS resilience enhancement problem consist of

three parts: i) The solution to the HHMM to derive the restoration path resilience

RI; ii) The solution to the mixed-integer linear programming problem to address

the pre-positioning and reallocation of MEGs based on RI; and iii) The solution

to the adaptive multi-period two-stage stochastic programming problem to obtain

the optimal sequential repair decisions with consideration of RI . For the HHMM,

we reformulate problem (P1) recursively and apply the general Viterbi Algorithm.

Then, the most probable state sequences {ψ∗, z∗} can be deduced to best match the

given PGA observation sequence y. To solve the mixed-integer linear programming

problems (P2) and (P3), the Branch-and-Bound algorithm is applied. Furthermore,

to solve the adaptive multi-period two-stage programming problem (P4), auxiliary

variables are introduced to address the non-linearity arising from the revision period

t∗. Also, an iterative algorithm based on linear programming relaxation is proposed

to reduce the computational complexity resulted by the revision period. In this

section, the solution procedure is discussed.

3.3.1 HHMM Reformulation and Solution

For each HHMM of restoration paths, the most probable state sequences {ψ∗, z∗}
are the ones which can best match the given obsevation sequence y, given by

{ψ∗, z∗,f ∗} = arg maxψ,z,f Pcg(ψ, z,f |y;P). (3.41)

To obtain the most probable state sequences, the general Viterbi Algorithm can

be utilized [122]. For notation simplicity, we use: i) υ̂b to represent the set of

elements in the state sequences from step 1 to b, i.e., υ̂b , {ψb, zb,f
1:(D+1)
1:b }, and

ii) υb to represent the set of elements at step b, i.e., υb , {ψb, zb, f 1:(D+1)
b }. Then,

the maximization of Pcg(υ̂|y;P) is equivalent to maximize Pcg(υ̂,y;P)Pcg(y;P),

where υ̂ = υ̂B = {ψ, z,f}. Now we can define the log probability of the most

probable state sequences which starts at step 1, emits yb = (y1, y2, ..., yb), passes
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through υ̂b−1, and ends at step b with υb as follows:

δb(υ) = maxυ̂b−1
log[Pcg(υ̂b−1, υb = υ,yb;P)], (3.42)

where the term Pcg(y;P) is omitted since it is independent of υ̂b−1, and accord-

ingly has no effect on the maximization with respect to υ̂b−1. Then, by introducing

δb−1(υ′), we can rewrite (3.42) recursively as follows:

δb(υ) = maxυ′{δb−1(υ′)+ (3.43)

logPcg(υb=υ|υb−1 =υ′;P)}+logPcg(yb|υb;P).

By tracking υ′ at time step b− 1 which maximizes δb(υ) at b, the most probable υ̂∗

for the given y can be deduced. To record this tracking, a function ζ is defined as

ζb(υ) = arg max
υ′
{δb−1(υ′)

+ logPcg(υb = υ|υb−1 = υ′;P)},
(3.44)

where function ζ(υ) stores υ′ at time step b− 1, which can maximize δb(υ) for any

υ at time step b.

3.3.2 Linearization of the Repair Scheduling Problem

The formulated adaptive multi-period two-stage stochastic programming problem is

nonlinear due to the revision period t∗ related constraints (3.39)-(3.40). To linearize

the problem, we introduce an auxiliary variable γt for each period to eliminate the

impact of t∗. If γt = 1, it means the revision period t∗ = t. Then, the problem (P4)

can be reformulated as follows:

min
m,χ,γ

∑
t∈TEn∈Ωt

{∑
c,g,km

nk
cg

{
τ0χ

n
c + IRcg

}}
(3.45)

s.t. (3.31)− (3.37), and
∑

t∈T γt = 1, (3.46)

mnk
cg ≥ mn′k

cg −
∑
γt′ , ∀n, n′ ∈ Ωt, t ∈ T\{T}, (3.47)

mnk
cg ≤ mn′k

cg +
∑
γt′ , ∀n, n′ ∈ Ωt, t ∈ T\{T}, (3.48)

mnk
cg ≥ mn′k

cg − γt, ∀n, n′∈T (n′′) ∩ Ωt′ , t
′ ≥ t, n′′∈ Ωt, (3.49)

mnk
cg ≤ mn′k

cg + γt, ∀n, n′∈T (n′′) ∩ Ωt′ , t
′ ≥ t, n′′∈ Ωt, (3.50)
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where
∑
γt′ is used to denote (1 −∑T

t′=t+1 γt′) for simplicity, and γt = (1 − γt).

Constraint (3.46) ensures that there exists only one revision period t∗ throughout

the multi-period repair horizon. Constraints (3.47)-(3.48) and (3.49)-(3.50) are the

linearized version of constraints (3.39) and (3.40), respectively.

3.3.3 Iterative Algorithm for the Repair Scheduling Problem

To increase the computational efficiency of the post-disaster repair scheduling prob-

lem, we develop an iterative algorithm based on the linear programming relaxation

and the traditional two-stage version of problem (P4) [124] [126] [127]. Note that

the adaptive two-stage stochastic programming problem can be equivalent to a tradi-

tional two-stage stochastic programming problem when t∗ = 1. Accordingly, con-

straints (39)-(40) can be simplified asmnk
cg = mn′k

cg , ∀n, n′ ∈ Ωt, t ∈ T. Herein, we

use vATS and vT to denote the optimal value of the linear programming relaxations

of problem (P4) and its traditional version, respectively. Similarly, V̂ ATS(t∗,m)

and V̂ T (m) denote the values under arbitrary feasible decision m given revision

period t∗, and V ATS(t∗) and V T denote the optimal values of problem (P4) and its

traditional version given t∗, respectively. Then, the following lemmas hold.

Lemma 3.1. The values of vATS and vT are the lower bounds of the optimal values

of V ATS(t∗) and V T , respectively.

Proof: Since problem (P4) is a minimization problem, and the convex polyhedron

that contains all feasible solutions is smaller than that of the relaxed version of prob-

lem (P4). Thus, vATS(t∗) ≤ V ATS(t∗), and vT ≤ V T [126]. �

Lemma 3.2. The values of V̂ ATS(t∗,m), V̂ T(m) are the upper bounds of the optimal

values of V ATS(t∗), V T , respectively.

Proof: Since problem (P4) is a minimization problem, then we have V ATS(t∗) ≤
V̂ ATS(t∗,m), and V T ≤ V̂ T (m). �

Then, the upper and lower bounds of the difference between the optimal values of

V ATS(t∗) and V T can be stated as

V T − V ATS(t∗) ≤ V̂ T (m)− vATS(t∗), (3.51)

V T − V ATS(t∗) ≥ vT − V̂ ATS(t∗,m). (3.52)
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Algorithm 1: Iterative algorithm for obtaining the optimal t∗.

01: Initialize pool = [1, 2, ..., T ].
02: Calculating linear programming relaxation vT .
03: while pool 6= ∅ do
04: for ind in range(length(pool)-1) do
05: Randomly select one element in pool as tx.
06: if length(pool)==1, break while.
07: ty = tx + ind.
08: Calculating linear relaxation vATS(tx), vATS(ty).
09: Randomly generate feasible solutionm, calculating

V̂ ATS(tx,m), V̂ ATS(ty,m) and V̂ T (m).
10: Calculating A(tx), A(ty), B(tx), B(ty).
11: if B(tx)−A(ty) > 0 and A(tx)−B(ty) > 0,
12: then Store ty and update the new.pool.
13: else if B(tx)−A(ty) < 0 and A(tx)−B(ty) < 0
14: then break if.
15: else go back to step 09.
16: pool = new.pool. # pool denotes comparison pool vector
17: return t∗ = tx.

For notation simplicity, we use A(tx) to denote vT − V̂ ATS(t∗ = tx,m), and B(tx)

to denote V̂ T (m) − vATS(t∗ = tx), respectively. Then, the following theorem

holds.

Theorem 3.1. If B(tx) − A(ty) > 0 and A(tx) − B(ty) > 0, V ATS(t∗ = ty) <

V ATS(t∗ = tx). Else, if B(tx)−A(ty)<0 and A(tx)−B(ty)<0, then V ATS(t∗ =

tx)<V
ATS(t∗= ty).

Proof: When B(tx)−A(ty) > 0 and A(tx)−B(ty) > 0, it means that the value of

[V ATS(t∗ = tx) − V ATS(t∗ = ty)] is bounded by two positive numbers, which are

the upper and the lower bounds, respectively. Thus, V ATS(t∗ = ty) < V ATS(t∗ =

tx) can be obtained. Also, if B(tx) − A(ty) < 0 and A(tx) − B(ty) < 0, it means

that the value of [V ATS(t∗ = tx)−V ATS(t∗ = ty)] is always negative. Thus, we can

derive that V ATS(t∗ = ty) > V ATS(t∗ = tx). �

However, when B(tx) − A(ty) and A(tx) − B(ty) have the inconsistent signs, the

feasible solutionm should be randomly updated for another round of bound evalu-

ation. Then, the iterative algorithm for obtaining the optimal revision period t̂∗ can

be described by Algorithm 1.
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Theorem 3.2. The proposed iterative algorithm can guarantee that the obtained

optimal revision period t̂∗ is the same as that derived directly by the Branch-and-

Bound algorithm.

Proof: Algorithm 1 exhaustively evaluates all pairs of V ATS(t∗= tx)− V ATS(t∗=

ty) based on any feasible solutionm. That means for each round of evaluation, the

tx which is the current candidate optimal t∗ will be updated until the comparison

pool is empty. At last the final value of tx is the optimal revision period t̂∗, i.e.,

tx = t̂∗ = arg minV ATS . �

In comparison, the original computational complexity of solving problem (P4) is

O(Mb
Dm,χ,t∗ ), where b is branching factors, andM is the time to explore a subprob-

lem [107]. By applying the algorithm to fix the optimal revision period t̂∗ first, the

complexity can be reduced toO(Mb
Dm,χ

n), where n≤∑n
k=1(Nk−1)≤∑T−1

k=1
(k),

and b
Dm,χ

n << b
Dm,χ,t∗ . Note that Nk represents the number of V ATS(t∗ = tx)

in the pool at kth comparison iteration, N1 = T , and N1 >N2... > Nn. Based on

Theorems 3.1 and 3.2, the optimal revision period t∗ can be determined separately

by the iterative algorithm, which significantly reduces the computational complex-

ity. Note that the computational complexity depends on m and χ, without directly

relating to the number of nodes of a PDS. It means the most relevant variable im-

pacting the computational complexity is the number of damaged restoration paths,

but not the number of nodes. Also, in practice, the number of restoration paths is

restrained by the limited numbers of CLs and MEG candidate locations. Therefore,

the increasing number of nodes of a PDS will not directly impact the computational

complexity.

3.4 Case Study

For case studies, a PC with Intel CORE i7-4770 CPU and 8 GB DDR3 RAM, and

Gurobi solver are used as a test platform. The proposed strategy is performed on the

modified IEEE 123-Node Test Feeder and the historical data of the 1994 Northridge

earthquake which occurred in Los Angeles, USA. In this section, the test system is

set up. The simulation results on the MEG investment and pre-positioning and the

MEG reallocation and repair scheduling are presented.
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Table 3.1: Parameters of Critical Loads
Node Pd Qd Ic Node Pd Qd Ic
Index (kW) (kVar) ×103 Index (kW) (kVar) ×103

34 50.79 26.74 9.5 59 34.33 18.12 9.8
32 37.28 45.74 9.2 66 53.24 36.71 9.4
33 17.35 7.92 8.8 81 29.23 27.35 8.4
14 36.98 19.49 9.1 86 39.08 15.67 9.6
45 81.28 41.09 8.5 98 39.29 30.74 9.3
56 65.17 21.78 8.3 105 23.45 22.73 8.8

Table 3.2: Available MEG Product List
MEG Pd Qd Cost MEG Pd Qd Cost
Type (kW) (kVar) ($) Type (kW) (kVar) ($)
T1 182 137 210k T4 80 60 90k
T2 120 90 140k T5 62 45 75k
T3 100 75 125k T6 44 33 60k

3.4.1 Test System Setup and Historical Data Analysis

In this research, the IEEE 123-Node Test Feeder is chosen as the power distribution

network after modification. It is originally an unbalanced three-phase system, while

following the work in [68], is considered as a single-phase system in this study.

The same setting is also employed in [43, 58, 60], that are selected as three state-

of-art methods for comparisons. Specifically, the line parameters can be derived

from [128]. A total of twelve CLs are randomly appointed, as listed in Table 3.1, of

which the parameters are randomly generated based on [58]. A total of seventeen

candidate locations are randomly generated for MEG deployment. The costs and

parameters of MEGs are obtained based on products in [119], as listed in Table 3.2.

Moreover, the historical data of the 1994 Northridge earthquake is used to model the

seismic impact. A coordinate of [34◦14′20.4′′N , 118◦30′54.0′′W ] within Northridge

is selected as the location of the center of the distribution network. The reason is

that this earthquake is very typical, which set a record for the highest peak ground

acceleration in an urban area in North America, leading to severe damages on local

PDSs in Los Angeles, USA. Specifically, the historical data containing the informa-

tion of multi-shocks of earthquakes are accessed from the United States Geological
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Figure 3.4: Historical earthquake data of the 1994 Northridge earthquake.
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Figure 3.5: Earthquake data analysis in terms of PGA and fragility.

Survey [123]. A total of thirty-eight aftershocks of magnitude ML ≥ 4.0 in the

former three days after the main shock are selected. Accordingly, the length of

HHMMs is B = 39, which contains one main shock with magnitude and distance

{M = 6.7, R = 3.4}, and thirty-eight aftershocks with their respective magnitudes

and distances {M,R}, as shown in Fig. 3.4. Then, the PGA density function can

be obtained for each shock. Lastly, by sampling the PGA density function, multiple

PGA observation sequences y can be generated for RI evaluation.

To illustrate the PGA density function, some examples with different magnitudes

and distances are shown in Fig. 3.5(a). We can see with the decreasing of magni-

tudes and the increasing of distances, the PGA density curves become narrow. It

means that the more intensive and closer an earthquake is, the more likely the lo-

cation of interest will experience a higher level of PGA. Moreover, we classify the
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Table 3.3: RI of Restoration Path Based on HHMM

CL Index
Restoration Path/RI

1 2 3
CL-14 3⇒ 14/0.4037 12⇒ 14/0.9617 18⇒ 14/0.1885
CL-32 22⇒ 32/0.6921 30⇒ 32/0.8408 18⇒ 32/0.6362
CL-33 22⇒ 33/0.4631 30⇒ 33/0.5723 18⇒ 33/0.4526
CL-34 3⇒ 34/0.5903 12⇒ 34/1.0000 18⇒ 34/0.7881
CL-45 18⇒ 45/0.3524 38⇒ 45/0.7685 22⇒ 45/0.2603
CL-56 53⇒ 56/1.0000 55⇒ 56/1.0000 93⇒ 56/0.5004
CL-59 53⇒ 59/0.7951 55⇒ 59/0.6123 160⇒ 59/0.3689
CL-66 160⇒ 33/0.6831 53⇒ 66/0.2563 54⇒ 66/0.1925
CL-81 77⇒ 81/0.7198 85⇒ 81/0.6015 160⇒ 81/0.2719
CL-86 77⇒ 86/0.6238 90⇒ 86/0.8629 93⇒ 86/0.5801
CL-98 160⇒ 98/0.9626 450⇒ 98/1.0000 104⇒ 98/0.4542
CL-105 103⇒ 105/0.339 113⇒ 105/0.2344 160⇒ 105/0.4546

Note: The top 3 restoration paths ranked by RI for each CL are listed.

seismic impact on distribution networks into five states, which are normal, slight,

moderate, extensive and complete states, corresponding to 0%, 4%, 12%, 50% and

80% of all DLs are damaged, respectively. Accordingly, the fragility curves can be

developed, as shown in Fig. 3.5(b). Then, based on the fragility curves, we estab-

lish HHMM for each restoration path, and calculate the corresponding RI metric,

the results are listed in Table 3.3.

3.4.2 MEG Investment and Pre-positioning

In this subsection, the MEG investment and pre-positioning is validated. Specif-

ically, the derived RI metrics are integrated into the MEG investment and pre-

positioning problem, which is solved within 0.82s. Fig. 3.6 shows the result of the

MEG portfolio and pre-positioning given RI threshold Rtr ≥ 0.75, where seven

MEGs are invested. They are T3 for nodes 12, 38, 53, T4 for nodes 30, 77, 160, and

T6 for node 450. The total investment cost is $705K which can achieve the system

average RI of 0.7850. Note that the higher the RI threshold Rtr we choose, the

higher the investment cost will be, because more MEGs are needed to support the

desired resilience. For example, when Rtr ≥ 0.75, CL-86 can be allocated with an

alternative restoration path 77 ⇒ 86 with a lower RI = 0.6238 instead of restora-

tion path 90 ⇒ 86 with higher RI = 0.8629. Also, the RI threshold is selected
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Figure 3.6: Results of investment and pre-positioning givenRtr ≥ 0.75.

according to the system average RI . For illustration, in Fig. 3.7, we compare the

total investment costs with respect to various values of Rtr. We can see that the

system average RI improves along with the increasing of investment cost within

a range of Rtr ∈ [0.65, 0.8]. Outside this range, both investment cost and system

average RI remain constant. This is because when the RI threshold is very low

(Rtr < 0.65), to ensure all the CLs can be assigned with an available MEG in the

pre-disaster stage, the minimum investment is always used, which results in a fixed

system average RI . When Rtr > 0.8, no further improvement in the system av-

erage RI can be gained, since the most resilient restoration paths of all CLs have

already been utilized.

3.4.3 MEG Reallocation and Repair Scheduling

To demonstrate the effectiveness of MEG reallocation in dealing with post-restoration

failures, a main shock of ML = 7.0 is considered. Accordingly, the expected num-

bers of damaged DLs is 22, as shown in Fig. 3.8. The problem is solved in 0.73s.

The total restored load priority (
∑

c∈C pcgIc) is 91.6. As highlighted by the red

arrows in Fig. 3.8, only five transportation of MEGs are needed to deal with the

damages caused by the main shock. Also, due to MEG capacity deficiency, CL-56

is shed. And, because of available path shortages, CL-33 is shed. By contrast, if

there is no MEG reallocation, the total restored load priority will be reduced from
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MEG Type Deployed Loc. Restored CL
1 T2 Node-151 CL-45,CL-105
2 T3 Node-12 CL-14, CL-34
3 T3 Node-160 CL-66, CL-98
4 T3 Node-54 CL-56, CL-59
5 T4 Node-30 CL-32, CL-33
6 T4 Node-77 CL-81, CL-86

MEG Type Deployed Loc. Restored CL
1 T3 Node-12 CL-14, CL-34
2 T3 Node-38 CL-45
3 T3 Node-53 CL-56, CL-59
4 T4 Node-30 CL-32, CL-33
5 T4 Node-160 CL-66, CL-105
6 T6 Node-77 CL-81
7 T6 Node-90 CL-86
8 T6 Node-450 CL-98

MEG Type Deployed Loc. Restored CL
1 T1 Node-18 CL-14, CL-34, CL-45
2 T3 Node-53 CL-56, CL-59
3 T4 Node-30 CL-32, CL-33
4 T4 Node-77 CL-81, CL-86
5 T4 Node-160 CL-66, CL-105
6 T6 Node-450 CL-98

MEG Type Deployed Loc. Restored CL
1 T3 Node-12 CL-14, CL-34
2 T3 Node-38 CL-45
3 T3 Node-53 CL-56, CL-59
4 T4 Node-30 CL-32, CL-33
5 T4 Node-77 CL-81, CL-86
6 T4 Node-160 CL-66, CL-105
7 T6 Node-450 CL-98

Note: The tables show the 
MEG investment portfolio, 
the deployment location, 
and the restoration plan 
under different RI threshold.
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Figure 3.7: Comparison of different investment portfolio under variousRtr.

91.6 to 64.0, corresponding to CL-13, CL-33, CL-34, CL-45, and CL-105 being

shed. This demonstrates the importance of considering restoration path RI , when

deploying the MEGs against multi-shocks of earthquakes. In other words, by con-

sidering RI , not only the load can be restored, but also the resilience of restoration

can be optimized against future shocks. Moreover, we can see that the line switches

are opened to form electrical boundaries of restoration paths. Also, the tie-switches

are operated to provide additional paths for restoration. For example, in Fig. 3.8, the

normally opened tie-switch on tie-line (18, 135) is closed after the earthquake, such

that CL-45 can be restored by restoration path 18⇒ 45. If there is no tie-switches,

CL-45 will be shed since no available restoration path can be utilized.

Moreover, we use Case II with the worst damages to verify the effectiveness of the

proposed repair scheduling problem. In this case, totally ten restoration paths need

to be repaired. The values of τ1 and τ2 are set as 10 and 0.1, respectively. The

repair time of a restoration path is ∆t = 6 hours. Considering that only one crew

team is available for dispatch, the results are shown in Table 3.4. The optimal ob-

jective value 8116.65 is obtained when the revision period t∗ = 6. It means that

the system operator will determine a repair schedule with length 5, and observe the

uncertainties during time t = 6, then schedule the repair decisions after time t = 6

accordingly. The corresponding sequential repair decisions are shown in Table 3.5.
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Figure 3.8: Results of MEG reallocation dealing with post-restoration failures.

Table 3.4: Objective Value of Different t∗ Given One Crew Team
t∗ 1 2 3 4 5

OBJ 8335.42 8253.04 8175.05 8124.25 8126.37
t∗ 6 7 8 9 10

OBJ 8116.65 8155.80 8173.32 8270.98 8335.42

Another important feature of the proposed algorithm is that it can reduce the com-

putational time to 32.3 minutes on the test platform, in comparison with the 126.7

minutes of the original Branch-and-Bound algorithm, with the same optimal solu-

tion being achieved. This feature is of particular importance for prompt response

and decision making in between multi-shocks of earthquakes. Also, if two crew

teams can be dispatched simultaneously, the repair horizon can be halved, as shown

in Table 3.6. The optimal period for the system operator to observe the uncertain-

ties is t∗ = 4. Then, the sequential repair decisions for two teams can be derived.

Specifically, crew team #1 will be responsible for repairing paths 18⇒34, 30⇒33,

85 ⇒ 81, and crew team #2 will be assigned with paths 151 ⇒ 105, 151 ⇒ 45,

160⇒98, respectively. We can also see that a more effective repair process can be

achieved by adding one more crew team. As shown in Table 3.6, six repairs can be

executed within three repair periods, compared with five repairs within five periods.
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Table 3.5: Optimal Repair Decisions When Given One Crew Team (t∗ = 6)
Period 1 2 3 4 5

Restoration Path 30⇒ 33 151⇒ 45 160⇒ 98 85⇒ 81 18⇒ 34

Period 6 7 8 9 10
Restoration Path - - - - -

Table 3.6: Optimal Repair Decisions When Given Two Crew Teams (t∗ = 4)
Crew team Period 1 2 3

No. 1 Restoration Path 18⇒ 34 30⇒ 33 85⇒ 81

Crew team Period 1 2 3
No. 2 Restoration Path 151⇒ 105 151⇒ 45 160⇒ 98

3.4.4 Comparison with Other Existing Strategies

To further validate the effectiveness of the proposed strategy, we compare it with

the other ones presented in [43], [58], and [60]. Specifically, we have the following

strategies:

• Strategy 1: The proposed strategy considering stochastic post-restoration fail-

ures against future shocks;

• Strategy 2: The strategy in [60] considering deterministic post-restoration

failures without MEG investment;

• Strategy 3: The strategy in [43] without considering post-restoration failures

and MEG investment;

• Strategy 4: The strategy in [58] using distributed generators considering de-

terministic post-restoration failures.

The PDS is struck by a main shock at 0 hours. And, three subsequent aftershocks

occur at 2, 5 and 7 hours, respectively. The MEG transportation time is 1 hour.

Also, we conduct 15 rounds of simulations with randomly generated damage sce-

narios to obtain an expected performance. The simulation results are shown in

Fig. 3.9. We can see that our proposed strategy outperforms all the others in terms

of restored CLs. This is benefited from the overall consideration of pre-disaster
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Figure 3.9: Comparative results of different strategies.

MEG investment and pre-positioning, and post-disaster MEG reallocation and re-

pair scheduling against stochastic post-restoration failures caused by multi-shocks

of earthquakes. Specifically, compared with Strategy 4, the value of the restored

load bounces back a little after each shock. For example, at 0 hours when the main

shock strikes, our strategy has a restored load of 481.7kW, while after MEG re-

allocation, the restored load can bounce back to 494.0kW. This demonstrates the

flexibility of MEG reallocation in post-disaster restoration. Also, compared with

Strategy 3, it can be concluded that the optimized MEG investment is very impor-

tant. In other words, selecting MEG with random parameters can deteriorate the

restoration performance. Compared with Strategy 2, it shows that our strategy can

achieve a higher resilience. For example, at 0 hours when the main shock strikes,

our strategy can have a restored load of 481.7kW even before MEG reallocation,

whereas Strategy 2 can only restore 468.5kW. Also, at 6 hours after the main shock,

the restored load of our strategy is even higher than the one at 3 hours after the sec-

ond aftershock A2. The reason is that some damaged restoration paths are repaired

such that the isolated load can be restored.

3.5 Summary

This chapter proposes a data-driven PDS resilience enhancement strategy against

multi-shocks of earthquakes. The RI metric is developed based on HHMMs for

stochastic resilience evaluation. The historical earthquake data are included into
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the HHMM as observed information of multi-shocks of earthquakes. Then, by em-

ploying the RI metric, the pre-disaster planning and the post-disaster response are

investigated. Case studies based on the modified IEEE 123-Node Test Feeder and

historical earthquake data of the 1994 Northridge earthquake demonstrate the pro-

posed strategy. The results shows that 1) by consideringRI , not only the load can be

restored, but also the resilience of restoration can be optimized against future shocks

of earthquakes; 2) the overall consideration of MEG investment, pre-positioning, re-

allocation, and repair scheduling against post-restoration failures caused by multi-

shocks of earthquakes can achieve an improved restoration performance.

81



Chapter 4

Efficient MG Formation for Resilient
PDSs Considering Large-Scale
Deployment of MERs

MGs are promising solutions to improve PDS resilience against natural disasters.

However, the existing MG formation approaches based on the LinDistflow model

always demand MG roots and their corresponding topologies. This can result in

an increased number of variables and constraints in the optimization problem, and

deteriorate their computational performance. In this research, an adaptive LinDist-

flow model is proposed based on the single commodity flow model in graph theory.

Specifically, we show that active and reactive powers can be represented as com-

modities, which are sent from one node to each of its adjacent nodes in the graph.

Then, the power flow and nodal voltage calculation based on the commodity flow

only requires adjacent node information of the original topology rather than vari-

ous MG topologies caused by the dynamic deployment of MERs. Furthermore, by

incorporating the adaptive LinDistflow model as constraints, a dynamic MG for-

mation approach is proposed for resilient load restoration considering large-scale

MER deployment. The problem is formulated as a mixed-integer nonlinear pro-

gramming problem (MINLP). A linearization technique is proposed based on the

propositional logic constraints. It employs the propositional logic that partitions

the solution space into two separated regions. Accordingly, the region that the so-

lution lies in can be selected linearly. The effectiveness of the proposed approach is
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Figure 4.1: An illustration of the power distribution system model.

demonstrated based on the IEEE 37-Node, 123-Node and 8500-Node Test Feeders.

4.1 System Model

In this section, the PDS model and the LinDistflow model for MG formation are

presented.

4.1.1 Power Distribution System Model

An illustration of the PDS model is shown in Fig. 4.1. Without loss of general-

ity, it is based on the IEEE 13-Node Test Feeder [92]. Specifically, the PDS can

be represented as a graph G = (B, E), where B is the set of nodes, and E is the

set of lines. After natural disasters, the power supply from the bulk system can be

interrupted, then MERs will be allocated to MER connection nodes for load restora-

tion. Such nodes C ⊆ B are equipped with electrical interfaces to connect MERs

to PDSs [69]. In terms of control mode, MERs can be categorized into two types :

master MERs (e.g., diesel generators, gas turbine generators, and storage systems),

and slave MERs (e.g., wind turbines and photovoltaics) [53, 76, 129]. In particular,

master MERs are capable of regulating voltage and frequency. By contrast, slave

MERs, working in PQ control mode, can supply supplemental power to master

MERs. Herein, we use θkn and αzn to represent the deployment of master MERs and

slave MERs, respectively. If θkn = 1, it means master MER k is deployed at node

n. If αzn = 1, it means that slave MER z is deployed at node n. Considering that
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road networks can be collapsed after natural disasters, the traffic information are

included to model the transportation of MERs from the depot to MER connection

nodes. Then, we use ζdnr to denote road status. If ζdnr = 0, it means that the rth

road between the depot and node n is collapsed, and no MERs can be transported

along this road.

Moreover, the nodes where master MERs located are served as the MG roots with

reference voltage V0. With respect to each root, a specific MG topology can be

obtained. The MG topology refers to “the parent-child relationship of nodes with

respect to the MG root” [68]. For example, in Fig. 4.1, node 3 is the parent node of

node 8 with respect to MER connection node 2, whereas node 3 is the child node of

node 8 with respect to MER connection node 11. Note that in a topological graph,

a parent node is also called being on the upstream of its child nodes, and a child

node is called being on the downstream of its parent node [130]. It implies that

the MG topology will change along with the variation of the MG root. Moreover,

RCSs will be operated for emergency operation. They can be divided into two

groups: line switches and load switches [131]. The line switches can be opened

to form boundaries between MGs, or to isolate the faults occurred on the primary

feeders resulted by natural disasters. The load switches are used to shed loads

when emergency power is deficient, or to clear the faults happened on the secondary

network. Herein, we use snm to denote the status of line switch on DL (n,m), and

it equals 0 if the line switch is opened. We use γn to denote the status of load switch

at node n, and it equals 0 if the load switch is opened.

4.1.2 Linearized Distflow Model for Microgrid Formation

The LinDistflow model is widely utilized in power flow analysis in distribution

networks. Compared with the bus injection model, power flow in the LinDistflow

model can be calculated recursively, which can result in a more efficient computa-

tion [82]. Also, when the power losses along DLs are much smaller than the power

flow, the LinDistflow model that neglects the nonlinear power losses term can be

effective to calculate the power flow [94]. Therefore, all the MG formation ap-

proaches in [43, 68, 69, 72, 74–76] employ the LinDistflow model for power flow
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analysis. Specifically, the active and reactive power flow, and nodal voltages with

respect to MER connection node c ∈ C can be given by [68, 94]∑
n∈Hc(m) P

c
mn = P c

hm − (Dp
m −Gp

m −∆Spm), (4.1)∑
n∈Hc(m) Q

c
mn = Qc

hm − (Dq
m −Gq

m −∆Sqm), (4.2)

V c
h − V c

m = (rhmP
c
hm + xhmQ

c
hm)/V0, (4.3)

where Hc(m) is the set of child nodes of node m in the MG whose root is at MER

connection node c. Also, P c
hm andQc

hm represent the active and reactive power flow

on DL (h,m) with respect to MER connection node c. Equations (4.1)-(4.3) imply

the calculations of power flow and nodal voltages with respect to node c requires

the topology of the MG whose root is at node c [132]. Hence, when the size of the

set of MER connection nodes (|C|) increases, the number of power flow and nodal

voltage calculation equations will also increase. This is where the MG formation

approaches in [43,68,69,72,74–76] based on LinDistflow model are dependent on

MG topologies, and their performance in computation will be deteriorated.

4.2 Adaptive Linearized DistFlow Model

In this section, an adaptive LinDistflow model for MG formation is proposed ac-

cording to the LinDistflow model [94] and the single commodity flow in graph

theory [133]. Firstly, we represent active and reactive powers as commodities and

calculate the amount of commodities sent from each node to each of its adjacent

nodes. Then, we show that active and reactive power flows can be derived from

commodity flows when the MG roots are revealed by deploying master MERs. The

meaning of the adaptive LinDistflow model is that it only requires the set of ad-

jacent nodes of each node in the graph, without the need of various MG topology

information. Hence, even though the MG topologies will change along with the de-

ployment of master MERs, the calculations of power flow always remain the same.

In other words, as long as the MER is deployed and the MG root node is revealed,

the power flow can be calculated “adaptively”, without needs of rewriting power

flow equations. In the rest of this section, the adaptive LinDistflow model will be
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discussed in details.

4.2.1 Representing Power as Commodities

The single commodity flow in graph theory has been widely applied in minimum

spanning tree problems [133]. In the single commodity flow model, one node is

selected as the root node, which sends only one unit of commodity “1” to each other

node. Taking the graph representation of a PDS in Subsection 2.1 as an example,

the single commodity flow can be stated as∑
h∈Nm fhm −

∑
h∈Nm fmh = 1, (4.4)

where Nm denotes the set of adjacent nodes of node m in the graph, thus node

h is one of the adjacent nodes of node m. And, fhm represents the commodity

flow on line (h,m) in the direction from h to m. Note that even though the graph

representation of a PDS is undirected, the commodity flow is directed, which means

fhm 6= fmh [134]. Also, equation (4.4) is used for commodity flow balances at each

node. It means for any node m ∈ B in the graph, the commodities flow into node m

is always one unit more than the commodities flow out of node m. In other words,

the consumption of node m is always one unit of commodity. After rearrangement,

equation (4.4) can be rewritten as

fnm − fmn = −∑h∈Nm\n fhm +
∑

h∈Nm\n fmh + 1, (4.5)

where Nm\n denotes the set of adjacent nodes of node m excluding node n. For

notation simplicity, we use Fnm to denote (fnm − fmn). Note that Fnm is also

directed, which means Fnm 6= Fnm. Then, by substituting, equation (4.5) can be

rewritten as ∑
h∈Nm\n Fmh = Fnm − 1. (4.6)

Physically, Fnm represents how many units of commodities should be sent from

node n to m in the graph, if node n is selected as the root node, such that the one

unit consumption of node m can be satisfied.

Example 4.1. Fig. 4.2 (a) shows a graph with four nodes. According to the single

commodity flow model, we have F34 = 1. It means that if node 3 is selected as
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Figure 4.2: An example of the proposed adaptive Linearized Distflow model.

the root node, it needs to send one unit of commodity to node 4. Also, we have

F23 = 2, derived from F34 = F23 − 1. It means that if node 2 is selected as the

root node, it needs to send two units of commodities to node 3. Similarly, it can be

calculated by equation 4.6 that F12 = 3, F21 = 1, F32 = 2 and F43 = 3.

Inspired by the single commodity flow model, we can represent active and reactive

power as commodities, and calculate how much active and reactive power com-

modities should be delivered from node n to m, if one node n is selected as the root

node. Specifically, when commodity flow balances are considered in a radial PDS,

which is already a spanning tree, the one unit commodity consumption “1” can be

relaxed. In this sense, the one unit commodity consumption “1” at any node m ∈ B
can be replaced by any real number consumption Rm. Then, equation (4.6) can be

rewritten as ∑
h∈Nm\n Fmh = Fnm −Rm. (4.7)

If Rm is positive, it denotes the amount of commodity injected into node m. If

Rm is negative, it denotes the amount of commodity withdrawn from node m.

Moreover, considering that the active and reactive power are two types of com-

modities, we have Rm = (Dp
m − Gp

m − ∆Spm) if the commodity is active power,
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or Rm = (Dq
m − Gq

m −∆Sqm) if the commodity is reactive power. Then, equation

(4.7) can be rewritten as∑
h∈Nm\n F

p
mh = F p

nm − (Dp
m −Gp

m −∆Spm), (4.8)∑
h∈Nm\n F

q
mh = F q

nm − (Dq
m −Gq

m −∆Sqm), (4.9)

where F p
nm and F q

nm are the notations for Fnm, if active and reactive power are

commodities, respectively. Also, ∆Spn and ∆Sqn are the active and reactive load

shed of node n, respectively, Dp
n and Dq

n are the active and reactive load demand of

node n, respectively, and Gp
n and Gq

n are the active and reactive power generation

at node n, respectively. Physically, F p
nm and F q

nm represent how much active and

reactive power commodities should be delivered from node n to m, if node n is

selected as the root node, such that the consumption of node m can be satisfied,

respectively.

Example 4.2. Fig. 4.2 (b) shows a PDS with four electrical nodes. In step 1,

we give an example of representing active power as commodity. We let (Dp
m −

Gp
m − ∆Spm) = 10kW for each node, which means each node has an equal active

power consumption of 10kW. Then, by using equation (4.8), we have F p
34 = 10kW,

F p
23 = F p

34 + 10 = 20kW, and F p
12 = F p

23 + 10 = 30kW. It means that if node 1

is selected as the root node, 30kW of active power commodity should be delivered

from node 1 to 2 to satify the power consumption of each node. Similarly, we have

F p
21 = 10kW, F p

32 = F p
21 + 10 = 20kW, and F p

43 = F p
32 + 10 = 30kW.

4.2.2 Power Flow Calculation Based on Commodity Flow

In this subsection, we show that active and reactive power flow can be calculated

based on active and reactive commodity flows as long as the MG roots are revealed

by deploying master MERs. Also, the calculation of nodal voltages is presented.

Note that we employ the calligraphic font (P ,Q, V) to denote the active and reactive

power and nodal voltages to distinguish from those of the LinDistflow model (P ,

Q, V ).

Theorem 4.1. If node n is selected as the root node of graph G′, then the amount
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of active and reactive power commodities delivered from node n to m (F p
nm, F q

nm)

are equivalent to the active and reactive power flow on line (n,m) with respect to

master MER k (Pknm, Qknm), which is deployed at node n.

Proof. By deploying master MER k at node n, the MG root is revealed. Then, we

have Pknm = P c=n
nm and Qknm = Qc=n

nm . Because equations (4.8)-(4.9) are equivalent

to equations (4.1)-(4.2) if node n is selected as the root node of graphG′ and the MG

root at the same time, then we have F p
nm = P c=n

nm and F q
nm = Qc=n

nm . Thus, we have

Pknm = F p
nm and Qknm = F q

nm. �

Furthermore, we can see that equations (4.8)-(4.9) are similar to equations (4.1)-

(4.2). Nevertheless, the only difference is that the calculations of F p
nm and F q

nm are

not with respect to any MER connection node c, hence requiring no MG topologies.

In other words, to calculate F p
nm and F q

nm, the only information needed is the set of

adjacent nodes of each node in graph G′, i.e., Nm, which always remains the same.

By contrast, in equations (4.1)-(4.2), the calculations of P c
hm and Qc

hm need the MG

topology information with respect to MER connection node c, i.e.,Hc(m).

Theorem 4.2. For any line (m,h) ∈ E , if node n becomes the root node of graph

G′ by deploying master MER k, and node h cannot be reached by node n without

going through node m. Then, the active and reactive power flow on line (m,h)

with respect to master MER k (Pkmh, Qkmh) are equivalent to the amount of active

and reactive power commodities delivered from node m to h when node m is the

root node (F p
mh, F q

mh), respectively.

Proof. If node n is selected as the root node of graph G′ by deploying master MER

k, then we have Pkmh = P c=n
mh . Thus, equation (4.1) can be used to calculate Pkmh,

given by ∑
h′∈Hc(h) P

c=n
hh′ = Pkmh − (Dp

h −Gp
h −∆Sph), (4.10)

Also, according to Theorem 4.1, if node m is selected as the root node of graph G′,

then we have F p
mh = P c=m

mh . Therefore, equation (4.1) can also be rewritten as∑
h′∈Hc(h) P

c=m
hh′ = F p

mh − (Dp
h −Gp

h −∆Sph), (4.11)
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Moreover, since node h′ is on the downstream of both nodes n and m, equation

(4.1) for the calculations of P c=n
hh′ and P c=m

hh′ are the same. Thus, from equations

(4.10)-(4.11),we have F p
mh = Pkmh. Similarly, we have F q

mh = Qkmh. �

According to Theorems 4.1 and 4.2, for any line (n,m) ∈ E , if master MER k is

allocated to MER connection node c, from which node n can be reached without

going through node m, it means that node c is the MG root, and node m is the

child of n. Then, the active and reactive power flow on line (n,m) with respect to

master MER k (Pknm,Qknm) is equivalent to the amount of active and reactive power

commodities delivered from node n to m when node n is selected as the root node

(F p
nm, F

q
nm), i.e., Pknm = F p

nm andQknm = F q
nm. If nodem can be reached from node

c without going through node n, the parent-child relationship of nodes n andm will

be reversed. Hence, we have Pknm = F p
mn and Qknm = F q

mn. In other words, the

active and reactive power flows can be derived from the active and reactive power

commodities, given by{
Pknm = F p

nm,Qknm = F q
nm, if m ∈ Hc(n),

Pknm = F p
mn,Qknm = F q

mn, if n ∈ Hc(m),
(4.12)

wherem ∈ Hc(n) means nodem is the child node of nwith respect to master MER

k which is deployed at node c. To integrate the two options in equation (4.12) into

one equation, a parent-child relationship indicator (denoted by Πk
nm) is developed.

Physically, if Πk
nm = 1, it implies that node n is on the upstream of node m with

respect to master MER k. Otherwise, if Πk
nm = 0, it means that node n is on

the downstream of node m with respect to master MER k. In other words, Πk
nm

can be used to represent the parent-child relationship between nodes n and m with

respect to master MER k. Also, for one line (n,m), we have either Πk
nm = 1 and

Πk
mn = 0, or Πk

nm = 0 and Πk
mn = 1, since node n is either on the upstream or on

the downstream of node m with respect to master MER k. Then, equation (4.12)

can be rewritten into two equations as

Pknm = Πk
nmF

p
nm + Πk

mnF
p
mn, (4.13)

Qknm = Πk
nmF

q
nm + Πk

mnF
q
mn. (4.14)

Example 4.3. Step 2 in Fig. 4.2 (b) illustrates the parent-child relationship indicator
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(Πk
nm). If we deploy master MER k at node 3, it is clear that node 2 is on the

upstream of node 1 with respect to master MER k, thus we have Πk
32 = 1. Similarly,

we have Πk
12 = 0, Πk

23 = 0, Πk
34 = 1, Πk

21 = 1, and Πk
43 = 0.

Example 4.4. Step 3 in Fig. 4.2 (b) illustrates the calculation of active power flow

from commidity flow based on equation (4.13). We have Pk12 = Πk
12F

p
12 +Πk

21F
p
21 =

0∗30+1∗10 = 10kW. Also, we have Pk23 = F p
32 = 10kW, and Pk34 = F p

34 = 10kW.

The above discussion verifies the adaptivity of the proposed model. Specifically,

it demonstrates that the power flow (Pknm, Qknm) can be obtained from the com-

modity flow (F p
nm, F q

nm), as long as the parent-child relationship indicator (Πk
nm) is

revealed by deploying master MERs. Accordingly, if master MER k is allocated to

MER connection node c, we have Pknm = P c
nm, and Qknm = Qc

nm. Also, if master

MER k is transported to another MER connection node c′, we have Pknm = P c′
nm,

and Qknm = Qc′
nm. It implies that even though the deployment of master MER k

is changed, the calculations of Pknm and Qknm always remain the same, which are

always with respect to master MER k, as described in equations (4.8)-(4.9) and

(4.13)-(4.14). In other words, the calculations of Pknm and Qknm are not depen-

dent on MG topologies, then the adaptivity of the proposed model can be verified.

By contrast, the calculations of P c
nm and P c′

nm using equations (4.1)-(4.2) are com-

pletely different, since the MG root is changed from node c to c′ and the topology

is correspondingly changed.

Moerover, in the LinDistflow model, the voltage drop between nodes n and m with

respect to MER connection node c can be stated as ∆V = (rnmP
c
nm+xnmQ

c
nm)/V0,

given by equation (4.3). It means that the parent-child relationship between nodes

n and m with respect to MER connection node c is fixed, therefore we have either

∆V = V c
n − V c

m, if node n is on the upstream of m, or ∆V = V c
m − V c

n , if node

n is on the downstream of m, depending on the MG topology. Similarly, in the

adaptive linearized Distflow model, the voltage drop between nodes n and m can

be obtained by ∆V = (rnmPknm+xnmQknm)/V0. However, since it is calculated

with respect to master MER k rather than MER connection node c, the dynamic

deployment of master MER k can change the parent-child relationship of nodes n
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and m. In this sense, we use the adaptive parent-child relationship indicator (Πk
nm)

to include various parent-child relationship of nodes n and m, when calculating the

nodal voltages. The voltage drop can be stated as

∆V = Πk
nm(Vkn − Vkm) + Πk

mn(Vkm − Vkn). (4.15)

Physically, it means if node n is on the upstream of node m with respect to master

MER k, i.e., Πk
nm = 1 and Πk

mn = 0, we have ∆V = Vkn − Vkm. Otherwise,

if node n is on the downstream of node m with respect to master MER k, i.e.,

Πk
nm = 0 and Πk

mn = 1, we have ∆V = Vkm − Vkn . The values of Πk
nm and

Πk
mn will be dynamically determined along with the deployment of master MER

k. Note that because in the adaptive linearized Distflow model, the calculations

of Pknm and Qknm are independent of MG topologies, the nodal voltage Vkn based

on Pknm, Qknm, and Πk
nm is also obtained without the need of MG topologies. The

only information required is if node n is an adjacent node of node m, and their

parent-child relationship with respect to master MER k.

Example 4.5. In Fig. 4.2 (b), since master MER k is deployed at node 3, we

have Πk
32 = 1 and Πk

23 = 0. In other words, node 3 is on the upstream of node

2 with respect to master MER k. Therefore, according to equation 4.15, we have

Vk3 − Vk2 = ∆V .

4.2.3 Extension to the Application Considering Losses

The proposed adaptive LinDistflow model can be extended so that power losses can

be considered. In particular, according to the second-order cone programming of

the Distflow model [135], equations (4.8)-(4.9) and (4.15) can be rewritten as∑
h∈Nm\n F

p
mh = F p

nm − F̃ p
nm − (Dp

m −Gp
m −∆Spm), (4.16)∑

h∈Nm\n F
q
mh = F q

nm − F̃ q
nm − (Dq

m −Gq
m −∆Sqm), (4.17)

∆V2 = Πk
nm[(Vkn)2 − (Vkm)2] + Πk

mn[(Vkm)2 − (Vkn)2]. (4.18)

where F̃ p
nm and F̃ q

nm are continuous variables representing the active and reactive

power losses, respectively. And, ∆V2 = 2(rnmPknm + xnmQknm). Moreover, the
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following constraints are added for utilizing the second-order cone programming:

rnm[(F p
nm)2 + (F q

nm)2] ≤∑k∈K(Vkn)2F̃ p
nm, (4.19)

xnm[(F p
nm)2 + (F q

nm)2] ≤∑k∈K(Vkn)2F̃ q
nm. (4.20)

Note that (Vkn)2 is not a quadratic term, but is regarded as a variable to denote

the squared voltage magnitude. Compared with the proposed adaptive LinDistflow

model, the extension considering power losses based on second-order cone pro-

gramming can be computationally expensive. Since a fast response during outages

after natural disasters is more important than power flow accuracy, the LinDist-

flow model that neglects the nonlinear power losses term can be more efficient with

simple analytical solutions in terms of resilience-oriented strategies [94].

4.3 Dynamic Microgrid Formation Problem Formu-
lation

In this section, a dynamic MG formation problem is proposed for large-scale de-

ployment of MERs by incorporating the adaptive LinDistflow model as constraints.

It is formulated as an MINLP problem to minimize the total weighted load shed

and the total MER operational cost during outages after natural disasters. In the

following, the problem formulation is presented and discussed in details.

4.3.1 Objective Function

Based on the adaptive Distflow model, the dynamic MG formation problem is for-

mulated as an MINLP problem. The objective is to minimize the total weighted

load shed cost and the total MER operational cost, given by

minθ,α,s,γ{(τcls
∑

n∈B wn∆Spn+

cms
∑

n∈C G
p,ms
n + csl

∑
n∈C G

p,sl
n )∆h}, (4.21)

where θ, α, s, and γ are the vectors for θkn, αzn, snm, and γn, respectively. And ∆h

is the restoration duration. The first term in the bracket represents the total weighted

load shed cost, and the second and third terms are the total master and slave MER

operational costs. Note that loads are different in terms of load priorities [136].
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For example, critical loads such as hospitals and water stations are considered more

important than residential customers. Thus, a factor wn is employed to denote the

restoration priority of load at each node n. Also, τ is a weight factor used to pri-

oritize the load shed term. It means that the optimizer will minimize the load shed

first, and then minimize the total MER operational cost.

4.3.2 Constraints

1) Power Flow Constraints: When implementing the proposed adaptive Distflow

model in the dynamic MG formation problem, the following constraints should be

satisfied: ∑
h∈Nm\n F

p
mh = F p

nm − (Dp
m −Gp

m −∆Spm) + χpnm, (4.22)∑
h∈Nm\n F

q
mh = F q

nm − (Dq
m −Gq

m −∆Sqm) + χqnm, (4.23)

−(1− snm)M ≤ χpnm, χ
q
nm ≤ (1− snm)M, (4.24)

−snmM ≤ F p
nm, F

q
nm ≤ snmM, ∀n ∈ B,m ∈ Nn, (4.25)

Πk
nm ≤ θkn + (1− θkn)M, ∀n ∈ C,m ∈ Nn, k ∈ K, (4.26)

Πk
nm ≥ θkn − (1− θkn)M, ∀n ∈ C,m ∈ Nn, k ∈ K, (4.27)

Πk
nm − Πk

mh ≤ −θkm, ∀n ∈ B,m ∈ Nn, h ∈ Nm, k ∈ K, (4.28)

Πk
nm + Πk

mn = 1, ∀n ∈ B,m ∈ Nn, k ∈ K, (4.29)

0 ≤ Πk
nm ≤ 1, ∀n ∈ B,m ∈ Nn, k ∈ K, (4.30)

Pknm = Πk
nmF

p
nm + Πk

mnF
p
mn, ∀n ∈ B,m ∈ Nn, (4.31)

Qknm = Πk
nmF

q
nm + Πk

mnF
q
mn, ∀n ∈ B,m ∈ Nn, (4.32)

Πk
nm(Vkn − Vkm) + Πk

mn(Vkm − Vkn)

= (rnmPknm+xnmQknm)/V0, ∀n ∈ B,m ∈ Nn, (4.33)

V0−(1−θkn)M ≤ V k
n ≤ V0+(1−θkn)M, ∀n ∈ C (4.34)
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uknV −(1− ukn)M ≤ V k
n ≤ uknV +(1− ukn)M, ∀n ∈ B, (4.35)

Gp,ms
n ≥∑m∈Nn Pknm − (1− θkn)M, ∀n ∈ C, (4.36)

Gp,ms
n ≤∑m∈Nn Pknm + (1− θkn)M, ∀n ∈ C, (4.37)

Gq,ms
n ≥∑m∈Nn Qknm − (1− θkn)M, ∀n ∈ C, (4.38)

Gq,ms
n ≤∑m∈Nn Qknm + (1− θkn)M, ∀n ∈ C, (4.39)

−θknM ≤ Gp,ms
n ≤ θknM, ∀n ∈ C, (4.40)

−θknM ≤ Gq,ms
n ≤ θknM, ∀n ∈ C, (4.41)

Gp,ms
n ≤∑k∈K P

ms

k θkn + (1− θkn)M, ∀n ∈ C, (4.42)

Gq,ms
n ≤∑k∈KQ

ms

k θkn + (1− θkn)M, ∀n ∈ C, (4.43)

Pr(Gp,sl
n ≤∑z∈Z P

sl

z α
z
n) ≥ η, ∀n ∈ C, (4.44)

0 ≤ Gq,sl
n ≤∑z∈ZQ

sl

z α
z
n, ∀n ∈ C, (4.45)

Constraints (4.22)-(4.23) are used to calculate the commodity flow when the com-

modities are the active and reactive powers, respectively. Constraint (4.24) enables

the effectiveness of slack variables χpnm and χqnm, such that constraints (4.22)-(4.23)

can be feasible when line (n,m) is disconnected. Constraint (4.25) forces the com-

modity flow on line (n,m) to 0, if the line is disconnected. Constraints (4.26)-(4.27)

ensure that if θkn = 1, we have Πk
nm = 1. It means that if master MER k is deployed

at node n, then node n is on the upstream of all its adjacent nodes within the MG es-

tablished by master MER k. Constraint (4.28) implies that if θkm = 0 and Πk
nm = 1,

we have Πk
mh = 1. In other words, if master MER k is not deployed at node m, and

node m is on the downstream of node n with respect to master MER k, then node

h must be on the downstream of node m. Constraint (4.29) ensures that node n is

either on the upstream or on the downstream of nodemwith respect to master MER

k. It means that we have either Πk
nm = 1 and Πk

mn = 0, or Πk
nm = 0 and Πk

mn = 1.

Constraint (4.30) is to determine the domain of Πk
nm. Constraints (4.31)-(4.32) are

used to derive the power flow from the commodity flow. Constraint (4.33) is to
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calculate the nodal voltages. Constraint (4.34) forces the voltage of node n to the

reference voltage V0, if node n is the location where master MERs are deployed.

Constraint (4.35) ensures the nodal voltages are within an acceptable range [V , V ].

Constraints (4.36)-(4.45) ensure that the demands are within MER generation ca-

pacity. Note that constraint (4.44) is used to model the power output uncertainties,

when slave MERs are renewable energy sources. It is a chance constraint with a

confidence level η [137]. For linearization, constraint (4.44) can be replaced by

0 ≤ Gp,sl
n ≤ ∑

z∈Z P
sl

z α
z
n(1 + σnΦ−1(1 − η)), where Φ−1 is the inverse of the

standard normal cumulative distribution function.

2) Post-disaster Operation Constraints: The post-disaster operation includes master

MER and slave MER deployments, and line switch and load switch opening or

closing operations, which should be limited by the following constraints:∑
n∈C θ

k
n ≤ 1, ∀k ∈ K, (4.46)∑

n∈C α
z
n ≤ 1, ∀z ∈ Z, (4.47)

θkn, α
k
n ≤

∑
r∈Rdn ζdnr, ∀n ∈ B, (4.48)

θkn − ε ≤ ukn ≤ θkn + 1, ∀n ∈ C, k ∈ K, (4.49)∑
k∈K u

k
n ≤ 1, ∀n ∈ B, (4.50)

ukm ≤ (1−Πk
nm)+Πk

mn + ukn, ∀n ∈ B,m ∈ Nn, k ∈ K, (4.51)

ukm ≤ (1−Πk
nm)+Πk

mn+snm, ∀n ∈ B,m ∈ Nn, k ∈ K, (4.52)

0 ≤ ∆Spn ≤ Dp
n, ∀n ∈ B, (4.53)

0 ≤ ∆Sqn ≤ Dq
n, ∀n ∈ B, (4.54)

−(1− γn)M+Dp
n ≤ ∆Spn ≤ (1− γn)M+Dp

n, ∀n ∈ B, (4.55)

−(1− γn)M+Dq
n ≤ ∆Sqn ≤ (1− γn)M+Dq

n, ∀n ∈ B, (4.56)

γn =
∑

k∈K u
k
n, n ∈ Bl, (4.57)

γn ≤ 1− ξsn, ∀n ∈ B, (4.58)
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ukn + ukm ≤ ξpnmM, ∀(n,m) ∈ E/Esw, (4.59)

ukn + ukm ≤ (ξpnm + (1− snm))M, ∀(n,m) ∈ Esw, (4.60)

ξpmh ≤ ξpnm, ∀(n,m) ∈ E/Esw, (4.61)

ξpmh ≤ (1− smh) + ξpnm, ∀(m,h) ∈ Esw, (4.62)

Constraints (4.46)-(4.47) ensure one MER can only be deployed at one MER con-

nection node at a time. Constraint (4.48) means that MERs can not be transported

to a node if all the possible roads between the depot and the node are collapsed.

Constraint (4.49) implies that node n is energized by the MG established by master

MER k, if this MER is deployed at node n. Constraint (4.50) means that one node

can be energized by only one MG at a time. Constraints (4.51)-(4.52) mean that,

for line (n,m), node m can be energized by the MG established by master MER k

when satisfying the following conditions: i) node n is within this MG, ii) node n is

on the upstream of node m with respect to this master MER k, and iii) line switch

on DL (n,m) is closed. Constraints (4.53)-(4.54) gives the operator authority to

flexibly determine the amount of load shed according actual demands. Constraints

(4.55)-(4.56) imply that the system operator can disconnect one load from the grid

by opening the load switch. Constraint (4.57) ensures power supply to key locations

after natural disasters. It means that as long as the key location is covered by a MG,

it will be restored by MERs. Constraint (4.58) means the load switch will open to

isolate the faults happened on the secondary network under node n. Constraints

(4.59)-(4.60) mean that if DL (n,m) is de-energized, nodes n and m on the two

ends of this line can not belong to any MG. Constraint (4.61) indicates that if DL

(n,m) is de-energized, its adjacent DL (m,h) can not be energized as well. A dam-

aged DL on the primary network is in the de-energization status, and this status will

propagate until it is isolated by line switches, which is model by constraint (4.62).

Note that the damaged lines are identified by field crews dispatched by utility com-

panies after natural disasters. Fault location algorithms, customer reports and expert

judgments can also help in expediting the damage assessment process [138].
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4.4 Dynamic Microgrid Formation Problem Solution

The proposed dynamic MG formation problem is an MINLP problem with nonlin-

ear constraints, which are resulted from the adaptive LinDistflow model. Specifi-

cally, the nonlinearity is introduced from the quadratic terms Πk
nmF

p
nm, Πk

nmF
q
nm,

and Πk
nm(Vkn − Vkm) as given in constraints (4.31)-(4.32). To this end, a lineariza-

tion technique is proposed based on the propositional logic constraints [139]. It

employs propositional logic to divide the solution space into two separated re-

gions. Then, the variable Πk
nm is utilized to select the region that the solution lies

in. After linearization, the proposed problem can be transformed from an MINLP

problem into an MILP problem, and then be solved efficiently by the most com-

monly used Branch-and-Bound algorithm [140]. To demonstrate the advantages of

the proposed dynamic MG formation approach in computation, comparisons in the

number of variables and computational complexity are conducted between differ-

ent approaches. In this section, the linearization technique and the computational

comparison will be discussed in details.

4.4.1 Linearization Technique for Nonlinear Constraints

In the proposed dynamic MG formation problem, constraints (4.31)-(4.32) are non-

linear because of the quadratic terms Πk
nmF

p
nm and Πk

nmF
q
nm. For linearization,

the propositional logic constraint is employed [139]. For constraint (4.31), if

Πk
nm = 1, we have Pknm = F p

nm; if Πk
mn = 1, we have Pknm = F p

mn. Since we

have Πk
nm + Πk

mn = 1, as discussed in Subsection 3.2, the solution space of Pknm
can be divided into two regions by Πk

nm. Then, propositional logic constraints can

be developed for constraint (4.31), given by

Fpknm ≤ F p
nm + (1− Πk

nm)M, ∀n ∈ B,m ∈ Nn, (4.63)

Fpknm ≥ F p
nm − (1− Πk

nm)M, ∀n ∈ B,m ∈ Nn, (4.64)

−Πk
nmM ≤ Fpknm ≤ Πk

nmM, ∀n ∈ B,m ∈ Nn, (4.65)

where Fpknm is an auxiliary variable for Pknm. Constraints (4.63)-(4.65) imply that if

Πk
nm = 1, constraints (4.63)-(4.64) for Πk

nm will be enforced, and constraint (4.65)
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for Πk
nm will be relaxed. Then, we have Fpknm=F p

nm. Since Πk
mn=0 when Πk

nm=1,

constraints (4.63)-(4.65) for Πk
mn will be relaxed, and constraint (4.65) for Πk

mn will

be enforced. Accordingly, we have Fpkmn = 0. In this sense, the auxiliary variables

Fpknm and Fpkmn can be used to calculate Pknm, given by

Pknm = Fpknm + Fpkmn, ∀n ∈ B,m ∈ Nn, (4.66)

which are linear constraints compared to constraint (4.31). Physically, the auxiliary

variables Fpknm and Fpkmn can be regarded as two solutions of Pknm. One is for node

n is on the upstream of node m, i.e., Πk
nm = 1, the other is for node n is on the

downstream of node m, i.e., Πk
mn = 1, with respect to master MER k. Hence, Πk

nm

can be used in propositional logic to select the region of the solution space of Pknm.

Also, the discussions about Pknm are applied toQknm. Then, constraint (4.32) can be

linearized by

F qknm ≤ F q
nm + (1− Πk

nm)M, ∀n ∈ B,m ∈ Nn, (4.67)

F qknm ≥ F q
nm − (1− Πk

nm)M, ∀n ∈ B,m ∈ Nn, (4.68)

−Πk
nmM ≤ F qknm ≤ Πk

nmM, ∀n ∈ B,m ∈ Nn, (4.69)

Qknm = F qknm + F qkmn, ∀n ∈ B,m ∈ Nn. (4.70)

Moreover, since Πk
nm(Vkn−Vkm) are quadratic terms, constraint (4.33) are nonlinear.

Similarly, by using the propositional logic constraints, it can be linearized as

Vkn−Vkm ≤ (rnmPknm+xnmQknm)/V0+(1−Πk
nm)M, (4.71)

Vkn−Vkm ≥ (rnmPknm+xnmQknm)/V0−(1−Πk
nm)M, (4.72)

which imply that if Πk
nm = 1, the voltage drop between node n and m, which is

(rnmPknm + xnmQknm)/V0, will be calculated by Vkn − Vkm. Otherwise, if Πk
nm = 0,

constraints (53)-(54) for Πk
nm will be relaxed, while for Πk

mn will become enforced

to calculate the voltage drop. Then, we have Vkm−Vkn = (rnmPknm + xnmQknm)/V0.

In addition, after linearization, the dynamic MG formation problem, which is an

MINLP problem, can be transformed into an MILP problem, and then be solved

efficiently by the most commonly used Branch-and-Bound algorithm [140].
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Table 4.1: Comparison of Different MG Formation Approaches
—– Approach in [68] Approach in [74] Approach in [75]

Binary ucn, snm snm ucn, snm
# of Binary |B||C|+ |E| |E| |B||C|+ |E|
Continuous P cnm, Qcnm, V c

n P cnm, Qcnm, V c
n ,

fnm

P cnm, Qcnm, V c
n , fhnm

# of Continuous 3|E||C| 4|E||C|+ 2|E| 4|E||C|+ 2|E||N |
Complexity 2(|B||C|+|E|) 2|E| 2(|B||C|+|E|)

—– Proposed Approach
Binary ukn, snm

# of Binary Pknm, Qknm, V k
n , F pnm, F qnm, Πk

nm

# of Continuous 5|E||K|+ 2|E|
Complexity 2(|B||K|+|E|)

4.4.2 Comparisons in terms of Computation

To illustrate the computational advantages of the dynamic MG formation approach

based on the adaptive LinDistflow model, comparisons are conducted between the

proposed approach and other approaches in [68, 74, 75]. Specifically, the compar-

isons in terms of the number of binaries, the number of continuous variables, and

the computational complexity are conducted. The results are shown in Table 4.1.

It can be seen that other than the approach in [74], the proposed approach can

achieve the least number of binary variables than the approaches in [68, 75], when

|C| ≥ |K|. Accordingly, it can also achieve the least computational complexity,

which is O(2(|B||K|+|E|)). Note that the requirement that |C| ≥ |K| can be easily

satisfied, because the number of MER connection nodes (|C|) in PDSs is typically

more than the number of master MERs (|K|), such that the flexibility of MERs can

be utilized [51]. For the approach in [74], even though it has the least number of

binary variables than all other approaches, it may result in suboptimality [74]. The

reason is because by dropping binary variable ucn, the energization status of each

node is not optimized. In other words, the loads in isolated islands without MERs

allocated, which should have been shed, but are not included in the objective value.

Also, the proposed approach can achieve the lowest number of continuous variables

among all approaches, when |C| ≥ 5/3|K|. Again, this requirement can be easily

satisfied, especially for large-scale MER deployment.
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The reason that the proposed dynamic MG formation approach can achieve a re-

duced number of binary and continuous variables is that we apply the proposed

adaptive LinDistflow model, which is independent of MG topologies. In the pro-

posed approach, the power flows and nodal voltages (Pknm, Qknm, Vkn) and the node

energization indicators (ukn) are calculated with respect to master MER k. By con-

trast, in the approaches in [68, 74, 75] based on the LinDistflow model, these con-

tinuous variables (P c
nm, Qc

nm, V c
n ) and binary variables (ucn) are calculated with

respect to MER connection node c. It means that MG topologies with node c being

the root are always required, therefore more power flow and nodal voltage vari-

ables are needed, especially when |C| becomes larger. In summary, the proposed

approach has advantages at the number of continuous and binary variables and the

computational complexity, which can achieve a better performance in computation.

This is benefited from applying the proposed adaptive LinDistflow model for MG

formation.

4.5 Case Study

To demonstrate the effectiveness of the proposed MG formation approach, a PC

with Intel CORE i7-4770 and 8 GB DDR3 RAM is selected as test platform. The

Gurobi is utilized to solve the MILP problem [141]. The case studies are per-

formed based on the IEEE 37-Node, 123-Node and 8500-Node Test Feeders [92].

Two types of loads are considered, which are critical loads with weight wn = 104,

and non-critical loads with weight wn = 1. The acceptable voltage range is set

to [0.95, 1.05] p.u. The load shed cost is cls = 14$/kWh. The operational costs

of master and slave MERs are cms = 0.5$/kWh and csl = 0.1$/kWh, by assum-

ing that master MERs are truck-mounted battery energy storage systems and slave

MERs are truck-mounted photovoltaic systems, respectively. The restoration dura-

tion is ∆h = 10h. In the rest of this section, the simulation results are presented

and discussed.
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4.5.1 Case Study I: IEEE 37-Node Test Feeder

In this case study, the effectiveness of the dynamic MG formation approach is

demonstrated based on the modified IEEE 37-Node Test Feeder [92]. Specifically,

one tie-line is newly added between nodes 725 and 741. The load demands are

the same as those in [68]. Four critical loads are distributed at nodes 704, 705,

730 and 734, respectively. A total of twelve nodes can be used for MER con-

nection. Also, there are four master MERs with generation capacity P
ms

k =182kW

and Q
ms

k =137kVar, and six slave MERs with generation capacity P
sl

z =100kW and

Q
sl

z =75kVar are available for restoration.

1) Restoration When Utility Power Unavailable: In this subcase, the dynamic MG

formation approach is validated considering that natural disasters only cause dam-

ages on the bulk system and the utility power is unavailable. The problem is solved

within 11.54s of wall time. The total load shed cost is 0, which implies all the loads

are restored. The total MER operational cost is $2, 510.5, which is resulted by the

deployment of three master MERs and six slave MERs. It indicates that even though

there are four master MERs and six slave MERs, not all of them should be utilized

considering the operational cost. Moreover, the deployment of MERs is shown in

Fig. 4.3, where master MERs from #1 to #3 are transported to MER connection

nodes 730, 705 and 737, establishing four MGs from #1 to #3, respectively. The

line switches (702, 703), (708, 709) and (711, 738) are open to form MG bound-

aries. The slave MERs from #1 to #6 are allocated to MER connection nodes 709,

744, 720, 710, 711 and 706, supplying supplemental power, and maintaining the

nodal voltages within an acceptable range [0.95, 1.05]. In particular, MG #2 con-

tains the most number of slave MERs, since the load demands within MG #2 equals

448.7kW, which is the highest among all MGs. Thus, more MERs are needed for

restoration. In addition, it can be demonstrated that slave MERs are very useful

in voltage regulation. For example, Fig. 4.4 depicts the results of nodal voltages,

which are all within the limitation. Nevertheless, if we force all the slave MERs to

the roots of their MGs, which means the voltage regulation cannot be fully imple-

mented, the load shed will be increased to 460.85kW. It means more load should
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be shed to meet the requirement of voltage limitation, even though the generation

capacity is sufficient.

2) Restoration When Damages Occur on PDSs: In this subcase, not only the utility

power is unavailable after natural disasters, but also three damages occur on both

of the primary and secondary feeders. The problem is solved within 14.12s of

wall time. The simulation results are shown in Fig. 4.5. Specifically, the total

weighted load shed is 88.23kW. The total MER operational cost is $2, 869.5, which

includes $2, 469.5 of four master MERs’ operation and $400.0 of four slave MERs’

operation. Note that considering the minimization of the MER operational cost,

only four out of six available slave MERs are utilized. Also, in Fig. 4.5, nodes

710, 735, 736 and 742 are shed due to shortages of master MERs, and node 722
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is not restored because of generation capacity deficiency in MG #3. The tie-line

(725, 741) is closed such that nodes 711, 737, 738, 740 and 741 can be transferred

to MG #3 to get emergency services. If there is no tie-line, the total weighted load

shed will be increased to 218.24kW.

In addition, we would like to emphasize that the number of MER connection nodes

has a significant impact on the performance of restoration. For example, if the

number of MER connection nodes is reduced from twelve to eight, which are nodes

705, 708, 709, 710, 711, 714, 720 and 744, the total load shed will be increased from

88.23kW to 114.05kW. And, if we are given only four MER connection nodes 709,

711, 714 and 744, then the total load shed will be further increased to 271.84kW.

These additional load shed are resulted by the limited number of MER connec-
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tion nodes, rather than generation capacity deficiency. In other words, even though

the load demand can be satisfied by generation, load shed can still happen when

the MER connection nodes are not sufficient for MER deployment to maintain the

nodal voltages within an acceptable range. For example, the solution to the MG

formation of only four MER connection nodes 709, 711, 714 and 744 can be shown

in Fig. 4.6. The generation and demands of each MG are listed in Table 4.2. We

can see that the load demands covered by each MG is lower than the corresponding

generation capacity, which means the load demands of all the MGs can be satis-

fied by the generation capacity. However, not all the covered load in each MG are

restored, since the limited MER connection nodes are not sufficient for MER de-

ployment that can restore all the covered load and maintain the nodal voltage within

the limitation at the same time.

To further analyze the impact of the MER connection nodes on the performance

of restoration, we randomly generate 100 samples of four nodes, and then calcu-

late their average total load shed. We also do the same sampling for twelve, eight,

twelve, sixteen and twenty MER connection nodes. The results are listed in Table

4.3. We can see that the average total load shed decreases, and the MER average

utilization rate increases, along with the increase of the number of MER connection

nodes. This demonstrates that the performance of restoration can be improved by

large-scale MER deployment. It also indicates that if we want to well-utilize the

flexibility of MERs, sufficient number of MER connection nodes equipped with

electrical infrastructures are required. Otherwise, MERs cannot be well taken ad-

vantage of. Moreover, in terms of computational time, Table 4.3 shows that it in-

creases when the number of MER connection node increases. The reason is that the

solution space will become more complicated, when the scale that can be used to

deploy the MERs gets larger.

4.5.2 Case Study II: IEEE 123-Node Test Feeder

In this case study, the effectiveness of the dynamic MG formation will be further

validated on the modified IEEE 123-Node Test Feeder. Specifically, two tie-lines

(48, 250) and (66, 104) are added. The load demands are randomly generated ac-
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Table 4.2: Generation Capacity and Load Demands of MGs
MG Index No. 1 No. 2 No. 3 No. 4

Generation Capacity 282kW 282kW 282kW 282kW
Load Covered 192.8kW 222.6kW 220.9kW 197.1kW
Load Restored 170.0kW 181.5kW 180.3kW 178.4kW

Table 4.3: Comparisons of MER Connection Nodes for Case I

Load Shed
Number of MER Connection Nodes

4 8 12 16 20
Min. 273.0kW 91.5kW 88.2kW 88.2kW 88.2kW
Avg. 488.7kW 254.8kW 142.5kW 107.3kW 92.5kW
Max. 724.9kW 559.1kW 329.5kW 310.9kW 177.4kW

Avg. UR 43.74% 64.48% 74.43% 77.55% 78.87%
Avg. CT 8.81s 10.82s 13.17s 14.92s 15.60s

Note: Utilization Rate (UR)=Total Restored Load Demand/Total MER Generation Capacity. CT:
Computational Time.

cording to [68]. Thirty-six nodes are utilized as MER connection nodes. Nine

critical loads are at nodes 07, 23, 38, 50, 60, 55, 73, 87, 98, and 105, respectively.

Nodes 07 and 105 are selected as two key locations that should be restored as long

as they are covered by MGs. A total of there are six master MERs with generation

capacity P
ms

k =410kW and Q
ms

k =310kVar, and six slave MERs with generation ca-

pacity P
sl

z =250kW and Q
sl

z =170kVar are available for load restoration. A total of

twelve damages occur on both of the primary and secondary feeders. The traffic

information are considered through collapsed roads that can hinder the transporta-

tion of MERs. The depot is located at node 104. The confidence level η = 0.9 and

deviation σn = 0.1 are assumed for the uncertain outputs of MERs. The restora-

tion result is shown in Fig. 4.7. The total weighted load shed is 579.31kW, where

nodes 44, 149 and 450 are shed because of generation capacity deficiency. Such a

result is determined by considering the MER output uncertainties. If the uncertain-

ties are not included in the optimization, the total weighted load shed will be de-

creased to 546.71kW. In other words, a more conservative solution can be achieved

by considering the uncertainties, such that the solution can be robust to deal with

the worst-case scenario. From Fig. 4.7, we can observe that the system operator
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Figure 4.7: Results of IEEE 123-Node Test Feeder.

ensures power supply to the key locations at nodes 7 and 105, because they can be

covered by MGs established by MERs. Also, it can be shown that line switches are

very effective in isolating faults. For example, after natural disasters, DL (52, 152)

is damaged. Accordingly, line switches (13, 152) and (52, 53) are open to prevent

the fault from propagating. In other words, nodes 52 and 152 are isolated by line

switches so that the fault will not affect the other parts of the PDS. Similarly, dam-

ages occur on the secondary network under node 65, thus the load switch is open

to isolate the fault. Furthermore, it can be shown that the traffic information can

hinder the transportation of MERs. For example, in Fig. 4.7, nodes 112, 113 and

114 are shed because the only road between nodes 108 and 109 is collapsed, hence

no MERs can be transported to node 122 to establish a MG.

In addition, the same evaluation of the impact of the number of MER connection

nodes on the performance of restoration is conducted as that in Case Study I. We

randomly generate 100 samples of twelve, eighteen, twenty-four, thirty and thirty-

six nodes as MER connection nodes, and then calculate their average total load

shed. The results are listed in Table 4.4. It can be seen that a large number of

MER connection nodes can result in a lower average total load shed. However,

107



a larger number of MER connection nodes does not guarantee a lower total load

shed. For examples, in Table 4.4, the minimum total load shed achieved by the

samples of twenty-four MER connection nodes is 647.5kW, whereas the maximum

total load shed achieved by the samples of thirty MER connection nodes, which is

995.8kW, is even higher than the former. It implies that not only the number of MER

connection nodes is relevant, but the locations of these nodes is also important.

A large number of MER connection nodes with randomly generated locations can

deteriorate the efficiency of MERs in restoration. In this sense, the optimal locations

of MER connection nodes needs further investigation, especially when considering

the randomness of natural disasters. We will left this for future work.

Moreover, to further demonstrate the advantage of the proposed dynamic MG for-

mation approach in the application of large-scale MER deployment, we make com-

parisons between the proposed approach and the MG formation approaches in [68,

74, 75]. The comparisons are conducted in terms of the number of MER connec-

tion nodes. We randomly generate 50 samples of twelve, twenty-four, thirty-six,

and forty-eight nodes being MER connection nodes, and then we implement the

proposed approach and the approaches in [68, 74, 75]. The results are listed in

Table 4.5. We can see that the proposed dynamic MG formation approach always

consumes the least computational time. Specifically, when the number of MER

connection nodes is smaller, the proposed approach not differs significantly from

the existing approaches. Yet, along with this number getting larger, the solutions

can still be determined by our proposed approach within several minutes, whereas

the others can take much more time. Because the computational time is a part of

the response time to the outages, the proposed MG formation approach with an im-

proved computational efficiency is more applicable in practice, especially in terms

of large-scale MER deployment in PDSs.

4.5.3 Case Study III: IEEE 8500-Node Test Feeder

In this subsection, we further validate the advantage of the proposed MG formation

approach in large-scale MER deployment compared with other approaches based

on the modified IEEE 8500-Node Test Feeder. The primary network of this feeder
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Table 4.4: Comparisons of MER Connection Nodes for Case II

Load Shed
Number of MER Connection Nodes

18 24 30 36
Min. 691.3kW 647.5kW 622.3kW 601.8kW
Avg. 876.7kW 817.4kW 750.1kW 711.6kW
Max. 1502.8kW 1243.2kW 995.8kW 927.1kW

Table 4.5: Computational Comparison of IEEE 123-Node Test Feeder
Average Number of MER Connection Nodes

Comput. Time 12 24 36 48
Ref. [68] 291.44s 753.24s 1681.79s 3112.28s
Ref. [74] 251.03s 623.31s 1140.45s 2518.09s
Ref. [75] 225.51s 521.89s 922.64s 2257.83s
Proposed 177.13s 192.66s 230.43s 261.90s

contains 2,469 nodes with a total load demand of 10, 773kW. Following the work

in [142], a network with a reduced size with 1,150 nodes is generated. The network

parameters can be found in [142]. There are six master MERs with generation

capacity P
ms

k =1,720kW and Q
ms

k =1,370kVar, and ten slave MERs with generation

capacity P
sl

z =250kW and Q
sl

z =170kVar are available. A total of fifteen damaged

DLs are randomly generated. In addition, a time limitation of 2 hours is set for the

Gurobi solver. It means that the optimization will be terminated when time runs out.

Fig. 4.8 shows the results of MG formation when there exist 24 MER connection

nodes. We can see that six microgrids are established with a total restored load

of 8278.59kW. In addition, the same evaluation of the impact of the number of

MER connection nodes on the performance of restoration is conducted as that in

Case Studies I and II. We randomly generate 15 samples of twelve, twenty-four,

thirty-six and forty-eight nodes as MER connection nodes, and then calculate their

average total load shed. From Table 4.6, it is clear that along with the increasing

of the number of MER connection nodes, our proposed approach can achieve an

acceptable computational time, which is around 40.0 minutes. By contrast, the other

approaches consume too much computational time. In particular, when the number

of MER connection nodes is larger than 24, the computation cannot be completed
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Table 1: Nodes in test networks.

Test network Number of nodes
European test feeder 900
8500 entity test feeder 2.500
NetworkX geometric network 2.000

to fulfill the properties of a small-world network to
form the search set S:

S= A{m}[B{n}[C{n},k = m+n+n, (6)

where the notation A{m} indicates that m random
nodes are selected from A.

A smaller range from B and C e.g. n = 5 is re-
turned and a larger range from A e.g. m = 10 is re-
turned. A larger portion of nodes from A is used to in-
crease the probability of returning a local node which
may be relevant for the request and to support the un-
derlying algorithm, which has several functions that
requires the nearest neighbours of a node. S in equa-
tion 6, is sorted according to the distance to the given
target node defined in the query and returned to the
network query or to the underlying routing algorithm.

4 PROOF OF CONCEPT

To evaluate the efficiency of the routing table, it was
tested in 3 different scenarios. The scenarios consists
of networks based on the IEEE European Low Volt-
age Test Feeder, the IEEE 8500 Entity Test Feeder
(Dugan et al., 2009) and a generated geometric scale
free network created with the Python library Net-
workX (Hagberg et al., 2008).

The routing table design has been implemented
in a prototype overlay network along with an imple-
mentation of the default Kademlia specification. The
two implementations utilizes the same underlying al-
gorithms described by Kademlia.

The IEEE Test Feeder networks, shown in figure
4, provides realistic test cases for testing the location
aspect of the heuristic and routing. The test feeders
are used both to provide the location data as well as
the initialization of the DHT state of the communica-
tion links between the nodes in the overlay network.
Using the test feeder as a model for a computer net-
work, where every node is more or less chain-linked
to only one or two other nodes, results in an unnatural
state on initialization for the overlay network. It does
however provide a good initialization state for com-
paring how efficient the routing is able to find its way
through the network and to analyze how the routing
table is built as it interacts with the network.

Tests are performed using multiple iterations, each
with a randomized start point and end points in the

(a) 900 node test feeder lay-
out.

(b) 2.500 node test feeder
layout.

Figure 4: IEEE Test Feeders.

network. Each iteration has multiple sub-iterations
using the same starting node for the iteration, but with
randomized end nodes. This ensures that the network
is subjected to queries across more than 90% of the
network.

As each search in the network results in a path
that has a different length and because the nodes are
randomly chosen, the results cannot be directly com-
pared and needs to be normalized with the shortest
path. The shortest path is obtained by utilizing Di-
jkstra’s shortest path algorithm on the full network
model, which is used to initialize the network. The
resulting efficiency factor w can be used to compare
the tests:

w =
query path length
shortest path

, (7)

where the query path length is the total path tra-
versed in the query including the path count of the
sub-queries sent as parallel queries in the algorithm.
Note, that w may be less than 1, as the query path may
be shorter than the initial path length after routing ta-
ble updates.

To simulate an active network, where every node
is alive, each node should randomly do some work to
exercise its routing table, this will help build the con-
nections between the nodes. To achieve this, a random
amount of nodes performs a search in the network for
each sub-iteration of the reference node.

4.1 Test Configuration

The test feeder networks are tested with the standard
bucket size k = 20 and k = 10 for the default overlay
network and with a range of sizes, noted in table 2,
for the multi-dimensional routing table. The purpose
is to explore the impact of various bucket sizes. Since
a bucket size of 3.000 would equate to a DHT that can
contain every node in the European test feeder and
about half of the nodes in the 8500 entity test feeder
network, it is necessary to test the network using a
smaller bucket size to simulate a network where the
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Figure 4.8: Results of IEEE 8500-Node Test Feeder.

within 2.0 hours. These results show that our proposed approach has an obvious

advantage in large-scale MER deployment compared with the other approaches,

especially in large power distribution networks.

4.6 Summary

In this chapter, a dynamic MG formation approach is proposed for resilient load

restoration in PDSs with consideration of large-scale MER deployment. Then, to

improve the computational efficiency, an adaptive LinDistflow model is proposed

according to the LinDistflow model and the single commodity flow in graph the-

ory. In addition, by incorporating the adaptive LinDistflow model as power flow

constraints, a dynamic MG formation problem is formulated as an MINLP prob-

lem. Accordingly, a linearization technique is proposed based on the propositional

logic constraints. Compared to the existing MG formation approaches based on

the LinDistflow model, the proposed one can achieve a reduced number of vari-
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Table 4.6: Computational Comparison of IEEE 8500-Node Test Feeder
Average Number of MER Connection Nodes

Comput. Time 12 24 36 48
Ref. [68] 116.4min > 2.0h > 2.0h > 2.0h
Ref. [74] 103.5min > 2.0h > 2.0h > 2.0h
Ref. [75] 67.9min > 2.0h > 2.0h > 2.0h
Proposed 33.8min 39.5min 43.2min 47.1min

ables and constraints and computational complexity. Moreover, the effectiveness of

the proposed dynamic MG formation approach is demonstrated based on the IEEE

37-Node, IEEE 123-Node and IEEE 8500-Node Test Feeders. It shows that the

large-scale MER deployment can result in a lower average total load shed.

111



Chapter 5

Stochastic Sequential Restoration for
Resilient Cyber-Physical PDSs

In this research, we propose a stochastic sequential restoration scheme for CPDSs

considering resilience. The sequential restoration problem is formulated as a UMDP

with hurricanes incorporated as natural disasters. Different wind velocities and di-

rections are considered as hurricane scenarios, which are used to obtain the fragility

of distribution lines. The fragility functions are further used for the derivation of

uncertain state transition functions of the UMDP. The minimax regret optimiza-

tion considering the sample weights of UMDP is presented. The robust sequential

actions are determined, such that the loads can be restored in a timely manner.

To improve computational efficiency, a minimax regret policy iteration algorithm

is presented based on the regret Bellman equation. Case studies are conducted

based on the IEEE 123-Node Test Feeder and historical data of Hurricane Bonnie

to demonstrate the effectiveness of the proposed scheme.

5.1 System Model

In this section, the cyber-physical distribution system model and the stochastic hur-

ricane damage model are presented.

5.1.1 Cyber-Physical Distribution System Model

In this research, the CPDS is considered as a graph represented by G = (N,L),

where N is the set of electrical nodes, and L is the set of DLs. A set of nodes
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Figure 5.1: An illustration of cyber-physical distribution system model.

G ⊂ N are selected as the locations where DGs are deployed. The DLs are clas-

sified into non-switchable lines and switchable lines according to the installation

of RCSs. Also, following the works in [62], the concept of node cell is adopted.

It is defined as “a set of nodes that are directly interconnected by non-switchable

lines without being able to be sectionalized by RCSs”. Note that it is assumed that

RCSs are integrated with feeder terminal units (FTUs), which can be used to com-

municate with base stations through wireless links. Without loss of generality, an

example can be given in Fig. 5.1(a), which is a CPDS containing six node cells,

six RCSs, one control center and two base stations. Note that a base station can

cover several RCSs through wireless links. For example, as shown in Fig. 5.1(a),

RCSs (N1, N5), (N4, N5) and (N5, N6) are under the range of base station 2. If

the OPGW between the control center and one base station is damaged, then all the

wireless links of the RCSs under this base station will be disconnected. Hence, in

this research, a wirelessly connected or disconnected RCS is referring to whether

the wireless link is operational or not. If not, the RCSs can only be manually oper-

ated by crews in the field without being controlled remotely.

When outages occur, the system operator will sequentially restore loads utilizing

RCSs and DGs. Specifically, commands will be sent from the control center to

the wirelessly connected RCSs for remote operation, and crews will be dispatched

to operate the wirelessly disconnected RCSs manually. Initially, the system is in
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a state with all the node cells unserved. Next, every time when taking actions on

RCSs, a new state will be observed by the system operator. This research aims to

determine the optimal RCS operation in each state, which can guide the system op-

erator to restore the loads as fast as possible. Fig. 5.1(b) shows an illustration of the

sequential restoration. After several steps of RCS operations, a new system state

is observed by the system operator with RCSs (N2, N3), (N3, N6) and (N4, N5)

closed. Then, node cells N3 and N6 can be powered by DG at N2, and node cell

N5 can be supplied by DG at N4. For a specific state, since the network topology is

given, which is dependent on the status of RCSs and node cells, the real and reac-

tive power flows, and the nodal voltages can be calculated based on the linearized

DistFlow model as follows [68]

F p
mg = umgD

p
m +

∑
h F

p
hg, ∀m ∈ N, h ∈ Nch(m), (5.1)

F q
mg = umgD

q
m +

∑
h F

q
hg, ∀m ∈ N, h ∈ Nch(m), (5.2)

vmg − vhg = rmhF
p
mg + xmhF

q
mg, ∀m ∈ N, h ∈ Nch(m), (5.3)

where umg denotes the restoration status of nodem ∈ N with respect to DG at node

g ∈ G. If umg = 1, it means node m is restored by DG at node g, and vice versa.

Also, in equation (5.3), the reference voltage is selected as 1 p.u. In addition, the

the total weighted load shed (S) can be calculated as

S =
∑

m∈N
∑

g∈G(1− umg)wmDp
m. (5.4)

where wm denotes load weight. Note that umg changes with the status of RCSs,

hence the operation of RCSs can result in different total restored load. Also, the

total weighted load shed S will be included into the cost function in Section 5.2.

Then, shedding critical loads can lead to a higher cost, which will not be preferred.

Accordingly, critical loads will be prioritized in terms of restoration.

5.1.2 Stochastic Hurricane Damage Model

Since a node cell is composed of a set of nodes connected via DLs, the fragility of

a node cell can be obtained based on the fragility of DLs within the node cell, given
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by

P n
i (ω) = 1−∏(m,h)∈Li(1− P l

mh(ψω, θω)) (5.5)

where P l
mh(ψω, θω) is the failure probability of DL (m,h) under wind velocity ψω

and wind direction θω. Equation (5.5) means that a single damaged DL can make

the node cell unable to be energized. In addition, a DL refers to the line between two

nodes, which is normally composed of several conductors and poles [143]. Also,

a conductor can be deemed as a segment of a DL between two poles. It means the

fragility of a DL is associated with the fragility of poles and conductors, given by

P l
mh(ψω, θw) =1−∏b∈Pmh(1− P p

b (ψω)) (5.6)∏
d∈Cmh(1− P c

d (ψω, θw)),

where P p
b (ψω) and P c

d (ψω, θw) are the failure probability of pole b supporting DL

(m,h) and the failure probability of conductor d of DL (m,h), respectively. More-

over, the fragility of pole b ∈ Pmh can be modeled as a lognormal cumulative

distribution function, given by [144]

P p
b (ψω) = Φ[ln(ψω/mb)/ζb] (5.7)

where mb is the median of the structural capacity, and ζb is the logarithmic standard

deviation of intensity measure, which varies with different types of poles. Further-

more, the damages of conductors can be induced by fallen trees during hurricanes,

while the probability of a tree falling on conductor d ∈ Cmh is related to not only

wind speed but also wind direction [145]. Hence, the fragility of conductor d ∈ Cmh

can be given by

P c
d (ψω, θw) = 1−∏z∈Td(1− P ct

z (ψω, θw)) (5.8)

P ct
z (ψω, θw) = min{((θbz − |θpz − θw|)/θbz)P t

z(ψω), 0} (5.9)

where P ct
z (ψω, θw) is the failure probability of conductor d caused by tree z. Also,

θbz is the bound angle of tree z falling on conductor c with respect to the direction

perpendicular to conductor c, and θpz is the angle of tree z falling perpendicular

to conductor d, as shown in Fig. 5.2. In other words, the failure probability of

conductor d caused by tree z will reach the maximum value when the tree falls
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Figure 5.2: An illustration of fallen trees contacting conductors.

perpendicularly on the conductor, i.e., P ct
z (ψω, θw) = P t

z(ψω), and will be reduced

to 0 when the tree can not contact the conductor, i.e., (θbz − |θpz − θw|)/θbz ≤ 0.

Moreover, P t
z(ψω) represents the failure probability of tree z ∈ Td, which can be

stated as [146]

P t
z(ψω) =

exp[τ1 + τ3(ψω/ψm)Hτ2 ]

1 + exp[τ1 + τ3(ψω/ψm)Hτ2 ]
(5.10)

where τ1, τ2 and τ3 are tree species parameters, H denotes the diameter at breast

height, and ψm is the maximum wind speed. In practice, the diameter at breast

height H is typically measured at 1.3m above ground using tape measures [147].

Also, the bound angle can be obtained based on the tree height and the perpendic-

ular distance from the tree to the conductor by applying trigonometric principles.

And the tree height can be measured using ultrasound hypsometers [148].

5.1.3 Stochastic Manual RCS Operation Model

If damages occur on the OPGW between the control center and one base station

after hurricanes, the RCSs covered by such a base station should be operated man-

ually [149]. While, the operation duration is with randomness due to geographic

conditions [150]. Thus, the probability of completing the manual operation of a

RCS within duration t can be modeled as a normal cumulative distribution func-

tion, given by

Pm
ij (t) = Φ[(t− µij)/σij] (5.11)
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where µij is the mean of manual operation duration, and σij is the standard devia-

tion. Note that unlike the uncertain damages on DLs after hurricanes, the damages

of OPGWs can be easily determined by trying communicate with the base sta-

tion [151]. Hence, the out of connection base stations and their covered RCSs can

be observed by the system operator.

5.2 Stochastic Sequential CPDS Restoration Problem
Formulation

MDP is a powerful tool for sequential decision making in stochastic dynamic en-

vironments. In traditional setup, the policy is evaluated based on state transition

functions with certain probabilities. Nevertheless, in many applications, the tran-

sition probabilities of an MDP cannot be specified exactly. They are often esti-

mated from collected data or prediction models. This can result in uncertain tran-

sition functions, which is referred to as MDP model uncertainty. For example, for

hurricanes, different wind velocities ψω and directions θω can produce different

hurricane scenarios (ψω, θω). Accordingly, different scenarios can lead to uncer-

tainties in transition functions. In this respect, UMDPs can be utilized to capture

the MDP model uncertainty through defining an uncertainty set of transition func-

tions. One transition function is associated with a sample of UMDP [152]. Also,

minimax regret optimizations provide a viable solution to obtain robust policies of

UMDPs [153]. However, traditional minimax regret optimizations treat transition

functions equally, without considering the sample weight. But, in our case, the oc-

currence of hurricane scenarios can be different. Therefore, equal treatments are not

practical. To address the above issues, in this section, we first formulate the stochas-

tic sequential CPDS restoration problem as a UMDP to handle the stochastic nature

of hurricanes. Then, we present the minimax regret optimization considering the

sample weights of UMDP.

5.2.1 Formulating the Problem as a UMDP

In this research, a UMDP with a tupleM = (S,A, T , C) is defined for the stochas-

tic sequential CPDS restoration scheme. In particular, S is the discrete state space,
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Figure 5.3: An illustration of formulating the problem as a UMDP.

A is the discrete action space, T denotes a set of transition functions, and C is

the cost function. The uncertainty of a UMDP comes from the uncertainty set T ,

which is composed of more than one transition function, i.e., T = {T1, T2, ..., T|Ω|}.
Each function Tω forms a complete MDP with a tupleM′ = (S,A, Tω, C), which

is referred to as a sample of UMDP, represented by ω. The problem formulation

can be illustrated in Fig. 5.3. It can be considered as an interaction between the

system operator and the stochastic environment. Specifically, the system operator

will take an action regarding RCS operation in one state. Then, the system will

transition into some other state with uncertain transition probabilities resulted by

different hurricane scenarios. After that, the system operator will observe the new

state, and based on which another action will be taken. The objective is to find the

robust policy mapping from states to actions, such that the loads can be restored as

fast as possible. Next, we introduce the UMDP for the stochastic sequential CPDS

restoration problem in details.

1) State: The state refers to the characteristics of the current environment observed

by the system operator. It is denoted by a vector s ∈ S, which contains the status

of RCSs and node cells. Herein, we use γij to denote the status of RCSs. It can be
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in open status O, closed status C, unknown status N , and under manual operation

status M, i.e., γij ∈ {O, C,N ,M}. The unknown status N represents that the

RCS is wirelessly disconnected. The under manual operation status M refers to

the status of RCSs during manual operation by crew members. Similarly, we use

αi to represent the status of node cells. It can be in intact status I, damaged status

D, and uncertain status U , i.e., αi ∈ {I,D,U}. The damaged status means that

some damages occur in node cell i. The uncertain status means that the status of

node cell i is uncertain to the system operator. Then, the state can be represented by

s = (γij, αj)|(i,j)∈R. Moreover, at the very beginning of the restoration, the system

operator has no information about the damages in the CPDS. Hence, the system is

in a specific initial state s0. In this state, the status of all node cells are uncertain

(U), the status of all wirelessly connected RCSs are open (O), and the status of all

wirelessly disconnected RCSs are unknown (N ).

2) Action: The action is the choice chosen by the system operator based on the

current state. It can be denoted by a vector a ∈ A, whose elements are the indices

of RCSs that will be operated by the action. Specifically, an action is composed

of multiple RCS operations. For example, as shown in Fig. 5.1, one of the fea-

sible actions is a = {(N1, N2), (N4, N5)}. It implies that RCSs (N1, N2) and

(N4, N5) will be under operation. Furthermore, there are two different operations

for wirelessly connected and disconnected RCSs. For a wirelessly connected RCS

(i, j), the operation refers to remote operation, used to close the RCS remotely. It

becomes feasible, when the following conditions hold:

I RCS (i, j) is in the open status, i.e., γij = O;

I Node cell j is in the uncertain status, i.e., αj = U ;

I RCS (i, j) is connected with a closed status RCS (k, i) on one side, and also

connected with an open status RCS (j, k′) on the other side, i.e., γki = C, and

γjk′ = O. It implies that node cell i is in the intact status, i.e., αi = I. Note that a

DG node is also considered a closed status RCS.

Also, for a wirelessly disconnected RCS (i, j), the operation refers to manual op-
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eration, used to dispatch crews to confirm the status of nodel cell j, and manually

operate the RCS. The crews in the field will either open the RCS if nodel cell j is

damaged, or close the RCS if it is intact. The manual operation becomes feasible,

when the following conditions hold:

I RCS (i, j) is in the unknown status, i.e., γij = N ;

I Node cell j is in the uncertain status, i.e., αj = U ;

3) Transition Function Set: In the UMDP, the set of transition functions is com-

posed of multiple transition functions, i.e., T = {T1, T2, ..., T|Ω|}. One transition

function Tω ∈ T yields a probability distribution over the next state s′, which

the system may transition into, when action a is taken in the current state s, i.e.,

Pω(s′|s, a) = Tω(s, a, s′). Also, a sample of UMDP ω ∈ Ω is considered as a hurri-

cane scenario with specific wind velocities ψω and directions θω. It means that one

hurricane scenario (ψω, θω) corresponds to one sample of UMDP ω, and one sample

of UMDP is associated with one transition function Tω. Moreover, since a state is

composed of the status of RCSs and node cells, the state transition also means the

transitions of RCS and node cell status. Hence, the state transition probability can

be derived based on the RCS and the node cell status transition probability, given

by

Pω(s′|s, a) =
∏

(i,j)∈R Pω(γ′ij, α
′
j|γij, αj, a) (5.12)

where Pω(γ′ij, α
′
j|γij, αj, a) is the probability that the status of RCS (i, j) and node

cell j transition into γ′ij and α′j from γij and αj , when taking action a. Furthermore,

for RCSs and node cells, the status transition is subject to some constraints, and the

status transition probability can be obtained as follows:

I When γij = O, αj = U and (i, j) ∈ a, it means that RCS (i, j) is wirelessly

connected, and a remote operation is applied to this RCS. Accordingly, in the next

step, one feasible transition is γ′ij = C and α′j = I. This happens when node cell j

is intact, and can be energized. Thus, the status transition probability equals to the

node cell intact probability, given by

Pω(γ′ij =C, α′j =I|γij =O, αj =U , a) = (1− P n
j (ω)). (5.13)
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Another feasible transition is γ′ij = O and α′j = D. This happens when damages

occur in node cell j, and RCS (i, j) is open to isolate the fault. Thus, the status

transition probability equals to the node cell damage probability, stated as

Pω(γ′ij =O, α′j =D|γij =O, αj =U , a) = P n
j (ω). (5.14)

I When γij = N , αj = U and (i, j) ∈ a, it means that RCS (i, j) is wirelessly

disconnected, and a manual operation is applied to this RCS. Then, the first feasible

transition is γ′ij = C and α′j = I. This happens when the crews confirm that node

cell j is intact, and can be energized by manually closing RCS (i, j). Therefore,

the status transition probability equals to the node cell intact probability times the

manual operation completion probability, given by

Pω(γ′ij =C, α′j =I|γij =N , αj =U , a)=(1−P n
j (ω))Pm

ij . (5.15)

The status in the next step can also be γ′ij = O and α′j = D. It happens when

the crews confirm that some damages occur in node cell j, and RCS (i, j) should

be open. Hence, the status transition probability equals to the node cell failure

probability times the manual operation completion probability, given by

Pω(γ′ij =O, α′j =D|γij =N , αj =U , a) = P ω
j P

m
ij . (5.16)

The third feasible transition is γ′ij = M and α′j = U . It means the crews have

not completed the confirmation and manual operation. Thus, the status transition

probability equals to the manual operation incompletion probability, given by

Pω(γ′ij =M, α′j =U|γij =N , αj =U , a) = (1− Pm
ij ). (5.17)

IWhen (i, j) /∈ a, it means in the current step no operation is conducted on RCS

(i, j). Hence, the status of RCS (i, j) and node cell j remain the same, i.e., γ′ij = γij

and α′j = αj . The status transition probability is given by

Pω(γ′ij =γij, α
′
j =αj|γij, αj, a) = 1. (5.18)

4) Cost Function: The cost function reflects the immediate cost when the system

transitions into a state. It is composed of the total load shed cost, and the penalty of

voltage and DG capacity violation in state s, given by

C(s) = csS(s) + λvV(s) + λpP(s) + λqQ(s) (5.19)
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where S(s) is the total load shed when the system is in state s. Also, V(s) is the

penalty function of voltage, given by

V(s)=
∑

m[max(0,
∑

gvmg−v)+max(0, v−∑gvmg)], (5.20)

where v and v are the upper and lower bounds for voltage, respectively. Similarly,

the penalty function of DG generation capacity P(s) and Q(s) in state s can be

derived as, given by

P(s) =
∑

g[max(0,
∑

m umgD
p
m − P g), (5.21)

Q(s) =
∑

g[max(0,
∑

m umgD
q
m −Qg), (5.22)

where P g and Qg denote the upper bounds for the active and reactive capacity of

DG located at node g, respectively.

5.2.2 Minimax Regret Optimization in UMDPs

Minimax regret has been considered as an objective to find robust policies in UMDPs

[154]. The regret for a fixed policy π ∈ Π under a sample of a UMDP ω ∈ Ω can

be stated as

regπω(s0) = V π
ω (s0)− V π∗

ω (s0), (5.23)

where V π
ω (s) is the expected cost of state s when acting under policy π, which can

be derived by the Bellman equation as

V π
ω (s) = C(s) + γ

∑
s′∈S Tω(s, a, s′)V π

ω (s′), (5.24)

where a = π(s) is the action chosen by policy π in state s. Also, when considering

the weight of samples of UMDP (βω), equation (5.22) can be rewritten as follows,

regπω(s0) = βω(V π
ω (s0)− V π∗

ω (s0)). (5.25)

It means that the regret for π will be scaled by the weight of each sample. For

example, the regret for the sample with lower weight will be scaled down much

lower than its original regret, i.e., (V π
ω (s0) − V π∗

ω (s0)). In the case of sequential

restoration after hurricanes, the data of wind velocity and wind direction, i.e., hur-

ricane scenarios (ψω, θω), can be recorded by weather instruments [155]. Hence,

the occurrence of hurricane scenarios can be derived, and be used as the UMDP
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sample weight (βω). Then, the threat of the scenario with lower occurrence should

be scaled by lower weight than the one with higher occurrence. Note that if the

data are not available, the wind-field model can also be used to predict the wind

velocity and wind direction [156]. In addition, π∗ is the optimal policy which can

achieve the lowest expected cost for every state. In other words, the regret repre-

sents the performance gap between a policy π and the optimal policy π∗, measured

in a competitive environment. This environment consists of an agent (i.e., system

operator) performing actions following policy π, and an adversary (i.e., hurricane

damages) responding to the actions by applying the worst-case sample of UMDP.

Specifically, the adversary intends to maximize the regret for policy π, using the

most adversarial sample of UMDP, given by

maxω∈Ω reg
π
ω(s0). (5.26)

The agent aims to search for the optimal minimax regret policy π∗reg that can mini-

mize the maximum regret, given by

(P1) π∗reg = arg minπ∈Π maxω∈Ω reg
π
ω(s0). (5.27)

Problem (P1) forms the minimax regret optimization in the UMDP. Based on the

above-mentioned discussion, the UMDP sample weight (βω) can also be considered

as a measure to adjust the attacking level of an adversary sample of UMDP.

5.3 Stochastic Sequential CPDS Restoration Problem
Solution

The minimax regret policy in UMDPs can be exactly optimized by reformulating

problem (P1) as a mixed integer linear programming (MILP) problem [157]. How-

ever, this approach scales poorly with respect to the number of state-action pairs.

To this end, an approximate solution is proposed to optimize the minimax regret

policy in a recursive manner. The solution procedure is shown in Fig. 5.4. First, a

regret Bellman equation is presented to calculate the regret considering the sample

weights of UMDP through dynamic programming. Second, the uncertainty depen-

dencies over state-action pairs are decoupled by allowing the transition probabilities

of two adjacent state-actions being obtained from different samples of UMDP. This
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Figure 5.4: An illustration of the proposed approximate solution procedure.

can transform problem (P1) into a stochastic game between an agent and a single-

step adversary. At last, a minimax regret policy iteration algorithm is presented

to optimize the minimax regret policy iteratively. In the rest of this section, the

solution is introduced in details.

5.3.1 Exact Solution via Mixed Integer Linear Programming

The minimax regret policy can be exactly optimized through solving problem (P1)

using MILP as follows [157],

(P2) minπ̂R(s0) (5.28)

s.t.R(s0) ≥ βω(V π̂ω (s0)− V π̂∗ω (s0)), ∀ω ∈ Ω (5.29)

V π̂ω (s) = C(s) + γ
∑

s′∈S Tω(s, a, s′)V π̂ω (s′), ∀s, a, ω (5.30)∑
a∈A π̂sa = 1, ∀s, (5.31)

whereR is an auxiliary variable for the regret optimization, hence we haveR(s0) =

minπ∈Π maxω∈Ω reg
π
ω(s0) when the reget is optimized. Constraint (5.29) means that

R(s0) should be greater than the regret under any samples of the UMDP. Constraint

(5.30) calculates the expected cost. Constraint (5.31) means that the system opera-

tor can choose one single action in each state, which corresponds to the determin-

istic policy. Note that π̂ is the vector of π̂sa, which is a binary variable. If π̂sa = 1,

we have a = π(s). In other words, π̂ can be considered as the auxiliary variables

for policy π in the MILP. Furthermore, as MILP problems are NP-Hard, problem

(P2) cannot be solved in polynomial time. It means that computing the minimax
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regret policy exactly via MILPs is only feasible for small UMDPs. For example,

the branch and bound (B&B) algorithm is widely used in solving MILPs. However,

in our problem, the computational complexity is O(2|S||A|), which is exponential

with respect to the number of state-action pairs (|S||A|). In other words, along with

the increasing number of binary variables π̂sa, the computational burden becomes

heavier. Thus, using MILP to solve the problem scales poorly with respect to the

number of state-action pairs.

5.3.2 Approximate Solution Based on Regret Bellman Equation

In this subsection, an approximate solution is proposed to optimize the minimax

regret policy in a recursive manner with a reduced computational complexity. The

approximate solution is developed based on three Theorems. In particular, Theo-

rem 5.1 shows that the regret can be calculated recursively using the regret Bellman

equation. Yet, since the transition function set is dependent over state-action pairs,

the computational burden is heavier. Accordingly, Theorem 5.2 indicates that af-

ter decoupling uncertainty dependencies to reduce the computational complexity,

the approximate regret policy is equivalent to the robust policy of robust MDP.

Then, the minimax regret policy iteration algorithm can be developed by employ-

ing the robust policy iteration algorithm presented in [158]. Lastly, Theorem 5.3

is to demonstrate the convergence of the proposed algorithm. Next, we present the

approximate solution in details. We first present the regret Bellman equation to

compute the regret for a policy via dynamic programming.

Theorem 1. The regret for a policy π ∈ Π under a sample of UMDP ω ∈ Ω can be

calculated recursively using the regret Bellman equation as follows,

regπω(s) = βωGω(s, a) + γ
∑

s′∈S Tω(s, a, s′)regπω(s′), (5.32)

where Gω(s, a)= Qπ∗
ω (s, a)− V π∗

ω (s) (5.33)

Qπ∗
ω (s, a)=C(s) + γ

∑
s′∈S Tω(s, a, s′)V π∗

ω (s′). (5.34)

Note that Gω(s, a) denotes the suboptimality gap attributed to state-action pair

(s, a) under a sample of UMDP ω. It is the difference in the value of a state between
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taking an action a and taking an action following the optimal policy π∗.

Proof: Substituting equation (5.25) into (5.24), we have

regπω(s)=βω(C(s)+γ
∑

s′ Tω(s, a, s′)V π
ω (s′)−V π∗

ω (s)). (5.35)

From equation (5.25), the following equation can be derived

βωV
π
ω (s) = regπω(s) + βωV

π∗
ω (s). (5.36)

Then, substituting equation (5.36) into (5.35), we can derive

regπω(s) = βωC(s) + γ
∑

s′∈S Tω(s, a, s′)βωV
π∗
ω (s)−

βωV
π∗
ω (s) + γ

∑
s′∈S Tω(s, a, s′)regπω(s), (5.37)

which is equivalent to equation (5.31). �

Because a sample of UMDP ω ∈ Ω is associated with wind velocity ψω and di-

rection θw, the transition function set T is dependent over state-action pairs (s, a).

It means that for all the state-action pairs, the transition probabilities Tω(s, a, s′)

should be obtained from the same transition function Tω with certain ω. Also, the

minimax regret policy should be evaluated under one sample of UMDP. Hence,

to solve problem (P1) using the regret Bellman equation recursively, we can cal-

culate the regret with respect to any policy and any sample of UMDP using the

exhaustive search algorithm. Then, the policy which can minimize the maximum

regret is selected as the optimal minimax regret policy π∗reg. The computational

complexity is O(|S||A||Ω|), which is exponential to the action space A. To re-

duce the computational complexity, we can decouple the dependent uncertainties

between two adjacent state-action pairs. Specifically, for one state-action pair (s, a)

and subsequent state-action pairs (s′, a′) and (s′′, a′′), the transition probabilities

Tω(s, a, s′) and Tω′(s′, a′, s′′) are not limited to be obtained from the same sample

of UMDP, i.e., ω can be different from ω′. This uncertainty decoupling can trans-

form problem (P1) into a stochastic game between an agent (system operator), and

a single-step adversary (hurricane damages). At each step, the agent chooses an

action a = π(s) for state s to minimize the regret, whereas the single-step adver-

sary reacts to this action by choosing one sample of UMDP to maximize the regret.
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Algorithm 1: Minimax regret policy iteration algorithm

01: Calculate V π∗
ω (s) using standard policy iteration, ∀s, ω

02: Initialize regt(s), and π randomly
03: ∆← 2ε /* Policy Evaluation */
04: while ∆ ≥ ε do
05: for each s ∈ S do
06: regt+1(s)←maxη{βηGη(s, a)+γ

∑
s′Tη(s, a, s

′)regt(s′)}
07: ∆← max(∆, |regt+1(s)− regt(s)|)
08: policy-stable← true /* Policy Improvement */
09: for each s ∈ S do
11: old-policy← π(s)
12: π(s)←arg min

a
max
η
{βηGη(s, a)+γ

∑
s′
Tη(s, a, s

′)regt+1
η (s′)}

13: if old-policy 6= π(s) then policy-stable← false
14: if policy-stable = true then return π̃∗reg ← π

15: else go to line 03 for policy evaluation

Herein, we use η : S ×A × Ω → {0, 1} to denote the single-step adversary map-

ping. If η(s, a, ω) = 1, it means that the single-step adversary chooses the sample

of UMDP ω for adversarial reaction on the action taken by the agent. Then, the

stochastic game can be stated as

(P3) π̃∗reg = arg minπ∈Π maxη reg
π(s0). (5.38)

where π̃∗reg is the approximate minimax regret policy.

Theorem 2. Finding the approximate regret policy to Problem (P3) is equivalent to

finding the robust policy to the robust Markov Decision Process (RMDP) in [159]

as follows:

(P4) π∗robust = arg minπ∈Π maxη V
π(s0). (5.39)

Proof: Finding the robust policy for problem (P4) can be considered as a stochastic

game between an agent who takes an action, and an adversary which responds to

the action by applying the worst-case parameters at each step. �

Accordingly, the robust policy iteration algorithm [158] can be extended after mod-

ification to determine the approximate regret policy π̃∗reg. Specifically, as the regret

Bellman equation contains the suboptimality gap term G(s, a), standard policy iter-

ation should be conducted first to obtain the optimal value of each sample of UMDP,
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i.e., V π∗
ω (s). Herein, we present Algorithm 1, which is the minimax regret policy

iteration for problem (P3). From lines 04-08, the policy evaluation is conducted to

calculate the regret given one specific policy π. From lines 09-14, the policy will

be improved by updating the action a for each state s using the regret calculated by

lines 04-08. In particular, in line 12, the action a will be selected which can mini-

mize the maximum regret. Moreover, the iteration will continue until the regret and

the policy converge.

Theorem 3. The minimax regret policy iteration is guaranteed to converge, since

after t iterations, we have

|regt(s)− regπ(s)| ≤ γt||reg0 − regπ||∞, ∀s. (5.40)

Proof: It can be shown that the regret regt(s) converges to regπ(s) as t increases

as follows,

∀s, |regt+1(s)− regπ(s)|

= |maxη{βηGη(s, a)+γ
∑

s′ Tη(s, a, s
′)regt+1(s′)}

−maxη{βηGη(s, a)+γ
∑

s′ Tη(s, a, s
′)regπ(s′)}|

≤ γmaxη |
∑

s′ Tη(s, a, s
′){regt(s′)− regπ(s′)}|

≤ γmaxη{
∑

s′ Tη(s, a, s
′)|regt(s′)− regπ(s′)|}

≤ γ||regt − regπ||∞ ≤ γt+1|reg0 − regπ||∞. (5.41)

Also, we have γt → 0 when t inceases, hence regt(s)→ regπ(s) after tmany times

of iteration. �

Furthermore, the computational complexity of the minimax regret policy iteration

algorithm is reduced to O(|S||A||Ω|). Compared with the exponential complex-

ity O(2|S||A|) by using the MILP reformulation, and the exponential complex-

ity O(|S||A||Ω|) using the exhaustive search algorithm based on the regret Bell-

man equation, the reduced complexity is linear to the number of state-action pairs

|S||A|, and the number of samples of UMDP |Ω|. In practice, the number of

switches that can be used for sectionalization in a distribution network is not that

large, accordingly the number of reasonable network topologies and the number
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Figure 5.5: An illustration of the modified IEEE 123-Node Test Feeder.

of possible operations on RCSs are limited. Because the states represent network

topologies and the actions refer to RCS operations, the number of state-action pairs

is also limited. Therefore, the proposed stochastic sequential CPDS restoration

scheme can be applicable in realistic distribution systems.

5.4 Case Study

In this section, the test system is set up. The simulation and comparison is con-

ducted based on the IEEE 123-Node Test Feeder and historical data of Hurricane

Bonnie.

5.4.1 Test System Setup

To illustrate the effectiveness of the proposed stochastic sequential CPDS restora-

tion scheme, case studies are conducted on a PC with Intel CORE i7-10700 CPU

and 8 GB DDR4 RAM. The modified IEEE 123-Node Test Feeder in [62] is adopted

as the CPDS, as shown in Fig. 5.5. For the physical layer, there are five substations

distributed at nodes 150, 195, 251, 350 and 451, respectively. Also, three DGs are

installed at three substation nodes 150, 350 and 451, respectively, with the same

generation capacity P g = 1400kW and Qg = 1000kVar. It means that the restora-

tion can only be performed by using DGs during outages after hurricanes. Also, a
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Table 5.1: Hurricane Bonnie Wind Speed and Direction
Sample 1 2 3 4 5

Speed (m/s) 13.9 19.7 27.8 29.3 32.5

Direction (Degree) 67 45 34 65 46

Weight 0.20 0.15 0.15 0.10 0.40

total of sixteen RCSs partition the distribution network into fifteen node cells, as

shown in Fig. 5.5. The total load demand is 3, 490kW. For the cyber layer, one

control center is located at node 53. It communicates with four base stations from

#1 to #4 located at nodes 23, 34, 63 and 67 through the OPGWs, respectively. The

base stations, which adopt the IEEE 802.11ah standard (Wi-Fi HaLow), have a link

range of 1 km. We want to note that the communication standard is not necessar-

ily to be Wi-Fi. For example, LTE can also utilized to achieve a relatively longer

coverage range. Also, it is assumed that the species of trees on the side of DLs

are acer rubrum with parameters τ1 = −2.261, τ2 = 0.426, and τ3 = 1.140. The

distance from trees to DLs is 5m. The heights of DLs are 10m. The tree heights

are randomly generated in [10, 15]m. The diameter at breast heights are randomly

generated in [0.4, 0.6]m. All the trees are planted along the direction of DLs with a

spacing of 15m. After hurricanes, the control center cannot communicate with base

station #4. Therefore, the RCSs covered only by base station #4, i.e., RCSs R11

and R15, can only be operated manually by crews. Moreover, the historical data

of Hurricane Bonnie is adopted to model the hurricane impact [155]. This hurri-

cane made landfalls on the Costa Rica–Nicaragua border, and destructively crossed

Nicaragua and Costa Rica from east to west on August 27, 1998, at 04:00 UTC. A

total of five hurricane scenarios in terms of wind speed are selected, which are with

scales < 15m/s, 15 − 20m/s, 20 − 25m/s, 25 − 30m/s and > 35m/s. The system

operator is assumed to make restoration decisions at 22 : 00 UTC. Table 5.1 shows

the average wind velocity and wind direction of each scenario. The occurrence of

each scenario is considered as the UMDP sample weight. Different pairs of wind

speeds and wind directions can result in different DL failure probabilities, and then

MDP transition functions with respective sample weights.
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Figure 5.6: An illustration of restored load after state transition following the mini-
max regret policy.

5.4.2 Simulation Results and Analysis

In this subsection, we take the hurricane damage scenario shown in Fig. 5.6 as an

example to illustrate the minimax regret policy. Specifically, in this scenario, some

damages occurred in node cell N10 after the hurricane. The main grid is collapsed,

which means only the DGs located at nodes 150, 350 and 451 can be utilized for

restoration. Note that the system operator has no information on the fault location.

All the observation is the current state, which contains the status of RCSs and node

cells. Thus, the system operator needs to take actions based on the current state
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Figure 5.7: Comparison in terms of restored load between the minimax regret policy
and the optimal policy of Sample 1.

following the minimax regret policy. The simulation results of the minimax regret

policy can be shown in Fig. 5.6. In the initial state s0, the system operator will

operate RCSs R1, R8 and R10. Because there are no damages in node cells N1,

N6 and N7, the status of RCSs R1, R8 and R10 will transition into closed status

from open status. Then, node cells N1, N6 and N7 can be recognized intact and

be energized by DGs at N11, N13 and N14, respectively. In state s1, the status of

RCSs R2 and R12 will transition into closed status by remote operation. The crews

will be dispatched to operate wirelessly disconnected RCS R11 manually. Then,

the system will transition into state s2 with node cells N2 and N9 being further

restored. In state s2, when the system operator tried to energize node cell N10, RCS

R13 tripped because some damages occurred in N10. Hence, the status of RCS R13

will transition back into open status, and the status of node cell N10 will transition

from uncertain status into damaged status. Furthermore, the system operator will

close RCS R3 and R6 step by step, such that node cells N3 and N5 can be restored

sequentially. Lastly, the system will remain in state s4 until the manual operation of

RCS R11 is completed. Then, the total amount of restored load is 2, 740kW. Note

that the system operator will not try to operate RCS R4, because the energization of

node cell N4 can induce generation deficiency of DG at node cell N11.

To further illustrate the minimax regret policy, we present the optimal policy π∗ of

Sample 1 of UMDP, as shown in Fig. 5.7. It can be seen that, under this specific

damage scenario, the optimal policy π∗ of Sample 1 can achieve a faster restora-
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and the policy of Sample 1.

tion scheme. For example, in state s2, a total of 2, 340kW of load demand can

be restored by the optimal policy, compared with 1, 585kW achieved by the mini-

max regret policy. The reason is that by following the optimal policy of Sample 1,

node cell N5 can be restored as earlier as in state s2 by taking remote operation on

RCS R7 in state s1. In comparison, the minimax regret policy will not obtain the

same amount of restored load until the system transitions into state s5. However,

the optimal policy of a specific sample is not robust in dealing with MDP model

uncertainties. In other words, because the wind velocity and wind direction of hur-

ricanes can change, its impact on CPDSs can be various and uncertain to the system

operator. For example, the optimal policy of Sample 1 is not the optimal policy of

Sample 4, because node cell N6 is very likely to experience damages. Accordingly,

restoring node cell N5 by DGs at N13 following the optimal policy of Sample 1 is

very risky for Sample 4. In this sense, the minimax regret policy is adopted as a ro-

bust solution. It represents the best action that the system operator can conduct step

by step considering the worst-case attack from different hurricane scenarios. Also,

the minimax regret policy can achieve a higher resilience in terms of restoration.

Herein, we randomly generated 5,000 damage scenarios and adopt the resilience

metric in [160] for resilience evaluation. The comparison between the average re-

stored loads of the minimax regret policy and the optimal policy of Sample 1 is

shown in Fig. 5.8. From the resilience trapezoid, we can observe that the minimax

regret policy of UMDP can achieve a faster restoration. It demonstrates that the
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proposed restoration scheme can effectively enhance the system resilience.

Another feature is that the computational time of the minimax regret policy us-

ing the proposed approximate solution is 173.4s. However, the computational time

using the exhaustive search based on the regret Bellman equation is 728.9s, and

that using the MILP reformulation failed to obtain a solution within a time limit

of 1, 800s. This feature is critical for restoration decision making since a prompt

response is necessary during outages. Also, the computational time reduction val-

idates the efficiency of the approximate solution. To further validate the expected

performance of the minimax regret policy, we perform the proposed stochastic se-

quential CPDS restoration scheme on 5, 000 randomly generated damage scenar-

ios. The results show that by considering MDP model uncertainties using minimax

regret optimization, the restoration can speed up by 13.3% on average over the op-

timal policy of samples of UMDP. It means that considering the stochastic nature

of hurricanes in terms of wind speeds and directions, the minimax regret policy of

UMDP can be more robust compared with the optimal policy of traditional MDP.

5.4.3 Comparative Studies and Analysis

To evaluate the performance regarding uncertain damages and communication in-

terruption resulted from cyber-physical interdependence, we compare the following

schemes:

1. Proposed scheme considering both uncertain damages and communication

interruption;

2. Scheme in [88] considering uncertain damages without communication inter-

ruption;

3. Scheme in [62] without considering uncertain damages and communication

interruption.

The comparison is based on 50 randomly generated damage scenarios. The results

are listed in Table 5.2. It can be observed that Scheme 3 behaves the worst with

134



Table 5.2: Results of Comparative Studies of Different Schemes
Scheme 1 Scheme 2 Scheme 3

Avg. Restored Load 2,985kW 2,540kW 1,950kW

DG Utilization Rate 71.1% 60.5% 46.4%

only 1, 950kW average restored load and 46.4% DG utilization rate. The reason

is that the deterministic approach obtains the restoration scheme requiring explicit

damage information. Hence, any unknown damages can interrupt the sequential

restoration as scheduled. Also, by considering uncertain damages, the restoration

performance can be improved. For example, the average restored load and the DG

utilization rate are increased to 2, 540kW and 60.5%, respectively, by using Scheme

2. However, because of ignoring communication interruption, Scheme 2 can not ob-

tain the best solution. In other words, the sequential restoration will be interrupted

when operating the wirelessly disconnected RCSs. By contrast, Scheme 1, which

is the proposed scheme, can achieve the highest amount of average restored load

with 2, 985kW, and the DG utilization rate can be further increased to 71.1%. This

is benefited from considering both uncertain damages and communication interrup-

tion of CPDSs.

5.5 Summary

In this chapter, we propose a stochastic sequential restoration scheme based on

UMDPs. The cyber-physical interdependent impact, including uncertain damages

and communication interruption are considered via transition probabilities. Dif-

ferent wind velocities and wind directions are incorporated as hurricane scenarios

to model the uncertain state transition functions of UMDP. The minimax regret

optimization considering the sample weights of UMDP is presented to obtain the

robust sequential restoration actions. A minimax regret policy iteration algorithm is

presented based on the regret Bellman equation to reduce the computational com-

plexity. Case studies show that the performance of restoration can be improved by

considering both uncertain damages and communication interruption.
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Chapter 6

Conclusions and Future Works

In the 21st century, climate change has emerged as an urgent global concern, un-

leashing a cascade of environmental variations that escalate the frequency and sever-

ity of natural disasters. Consequently, power grids are facing significant challenges

in terms of stability and reliability. For example, the continuing rises in global

temperatures can bring about devastating storms and wildfires, which can signif-

icantly damage electrical infrastructures, interrupt power services and cause sub-

stantial economic losses. This spotlights the critical need for power grid resilience,

which is defined as the ability to withstand and recover from disruptions. Then, how

to effectively enhance grid resilience to alleviate the impact of natural disasters be-

comes a topical issue in both industry and academia. On the other hand, smart

grids represent a modernized electrical infrastructure that leverages advanced com-

munication, control, and monitoring technologies. Unlike traditional grids, smart

grids enable bidirectional communications between utilities and consumers, facili-

tating real-time data exchange and intelligent decision-making. Also, through the

deployment of sensors, smart meters, and automation systems, utilities can gain in-

sights into grid conditions, optimize resource allocation, and reconfigure network

topologies, and respond rapidly to disruptions. Therefore, smart grid allows for en-

hanced grid management, improved efficiency, and increased reliability, laying the

foundation for resilient power systems. However, one of the greatest challenges is

the effective integration and utilization of emerging smart devices, such as DERs,

MERs and IEDs, in a resilience-oriented framework. In particular, the inherent ran-
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domness of natural disasters can complicate this task, which demands systematic

research for a better utilization of smart devices in respond to natural disasters.

To achieve resilience-oriented planning and operation for smart PDSs against natu-

ral disasters, stochastic models and the corresponding optimization problems have

been investigated in this thesis. Firstly, the stochastic planning of resilient PDSs

considering uncertain impacts of earthquakes is investigated. The portfolio of re-

silient countermeasures including hardening DLs and investing new MEGs and

MESSs are addressed through a two-stage stochastic programming problem. The

MEG and MESS coordination including co-allocation and energy exchange is in-

corporated, such that the solution can be more resilient and cost-saving. Secondly,

a data-driven PDS resilience enhancement strategy is proposed to deal with post-

restoration failures. By employing HHMMs and historical earthquake data, the pre-

disaster MEG investment and pre-positioning against multi-shocks, and the post-

disaster MEG reallocation and repair scheduling against aftershocks are addressed.

Thirdly, a dynamic MG formation approach for large-scale MER deployment is

proposed. Through the novel presented adaptive LinDistflow model, the computa-

tional efficiency of the MG formation is significantly improved. Last but not least,

the problem of sequential load restoration in CPDSs against hurricanes is investi-

gated. By formulating the problem as a UMDP, the cyber-physical interdependent

impacts caused by hurricanes is addressed.

6.1 Contributions of Thesis

The main contributions of this thesis can be summarized as follows:

• A stochastic spatial seismic damage model is developed based on the stochas-

tic seismic impact analysis of PDSs. A stochastic resilient PDS planning

problem with a bi-level structure is formulated considering coordination be-

tween MEGs and MESSs. A solution procedure is proposed to reformulate

the problem with min max form into a problem with min min form and de-

compose the problem into two subproblems to speed up the computation.

• A RI metric is developed based on HHMM and historical earthquake data
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to stochastically evaluate restoration path resilience. A data-driven PDS re-

silience enhancement strategy is proposed for resilient MEG investment, pre-

positioning and reallocation, and repair scheduling of restoration paths. An

iterative algorithm based on linear programming relaxation is proposed to

reduce the computational complexity of the repair scheduling problem.

• An adaptive LinDistflow model is proposed based on the LinDistflow model

and the single commodity flow in graph theory. A dynamic MG formation

problem is proposed considering large-scale deployment of MERs. A lin-

earization technique based on the propositional logic constraints is proposed

to address the problem nonlinearity. Computational complexity is analyzed,

which shows that the proposed dynamic MG formation approach can improve

the computational efficiency without loss of optimality.

• A sequential CPDS restoration scheme is proposed by formulating the prob-

lem as a UMDP with uncertain state transition functions. The cyber-physical

interdependent impacts are modeled by integrating the hurricane fragility of

DLs. To address model uncertainties of a UMDP resulted by various wind

velocities and directions with respective occurrence, a minimax regret opti-

mization considering sample weights is presented. An approximate solution

based on the regret Bellman equation and the minimax regret policy iteration

algorithm is proposed to improve computational efficiency.

6.2 Directions for Future Work

The stochastic resilience-oriented smart PDS planning and operation against nat-

ural disasters is a broad research area. Although several critical issues have been

addressed in this thesis, there are still many research issues to be investigated. The

following topics are proposed for future work:

• For the stochastic planning strategy of resilient PDSs against earthquakes,

traditional services provided by MEGs and MESSs can be incorporated into

the optimization problem. For examples, MEGs can provide backup capacity
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during planned maintenance of substations, or be used when a service terri-

tory is experiencing a temporary load increase [161]. Also, MESSs can store

power during light loading and deliver power back when demand is high for

load leveling [162]. In other words, if traditional services provided by MERs

can be considered together with the emergency services, the utilization of

MERs can be further improved. Advanced algorithms can be developed to

improve the computational efficiency of the proposed planning strategy, while

taking into account MEG and MESS coordination for cost-saving. In addi-

tion, the planning problem for resilient cyber-physical PDSs is still an open

issue. However, disasters such as earthquakes can not only damage the phys-

ical system for power supply, but also interrupt the communication on the

cyber layer. Thus, a planning solution can be more realistic if both cyber and

physical conditions are included in the optimization problem.

• The application of the data-driven PDS resilience enhancement strategy against

multi-shocks of earthquakes in unbalanced three-phase systems needs further

investigation. Moreover, the study of the repair scheduling problem con-

sidering stochastic repair time requires future research. In this thesis, the

repair time is considered to be deterministic. However, if stochastic repair

time can be involved, the performance of the repair process can be poten-

tially improved. In addition, the proposed RI metric is developed based

on historical data. However, how to utilize the newly collected data of on-

going multi-shocks of earthquakes to adjust the RI in real time to improve

the resilience evaluation performance needs further investigation. The robust

anytime learning which allows continuous learning in a changing environ-

ment [163] may pave the way for addressing this issue. And we will leave

this for future work.

• For the dynamic MG formation approach based on the proposed adaptive

LinDistflow model, whether the MG formation based on the current damage

information can incorporate the consideration of future potential damage in-

formation needs further investigation. To this end, the multi-period distribu-
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tionally robust optimization in [164] can be employed to include the uncertain

future damages using the ambiguity set. Then, the current MG formation so-

lution can be robust to the future damage scenarios. However, this still needs

further research. Besides, the application of the proposed dynamic MG for-

mation approach on different natural disasters with randomness still needs to

be studied. The proposed approach can be a foundation of MG formation in

the resilient planning and operation problem with stochastic analysis. How-

ever, the efficiency of problem solving needs further evaluation and advanced

algorithms needs to be developed.

• The sequential CPDS restoration scheme can be extended to address other

types of natural disasters by incorporating different models. However, the

unique damage impact of different natural disasters still needs further inves-

tigation. For example, how to consider the stochastic nature of wildfires in-

cluding the shape of fire flame, wind speed and surface temperature of power

lines in a UMDP is still an open issue. Also, the sequential CPDS restora-

tion scheme can be further investigated when renewable energy sources are

integrated. Due to the intermittent characteristic of renewable energy output,

new strategies should be developed to address the challenges. For example,

the uncertainties of wind and solar power can be incorporated into state tran-

sition functions. And the robust MDP can be utilized to address uncertainties

in model parameters in MDPs. Also, the reinforcement learning can be em-

ployed to learn the optimal behavior in this stochastic environment. Another

research direction exists in interdisciplinary research involves collaboration

and integration of electric systems and transportation systems. Since traffic

information may affect crew dispatching, how to incorporate crew routing

into the proposed restoration scheme considering cyber-physical interdepen-

dent impacts requires further research.
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A. C. Marchesan, K. T. Martin, E. F. Schneider, and A. S. Bretas, “Service

restoration in distribution systems based on multi-objective genetic algorithm

considering repair and switching time,” in Proc. ISGT Latin America’19,

pp. 1–6, IEEE, 2019.

[151] Z. Feng and Z. Yuexia, “Study on smart grid communications system based

on new generation wireless technology,” in Proc. ICECC’11, pp. 1673–1678,

IEEE, 2011.

[152] A. Ahmed, P. Varakantham, M. Lowalekar, Y. Adulyasak, and P. Jaillet,

“Sampling based approaches for minimizing regret in uncertain markov de-

cision processes (mdps),” JAIR, vol. 59, pp. 229–264, Jul. 2017.

[153] M. Rigter, B. Lacerda, and N. Hawes, “Minimax regret optimisation for ro-

bust planning in uncertain markov decision processes,” in Proc. AAAI’21,

vol. 35, pp. 11930–11938, May 2021.

[154] H. Xu and S. Mannor, “Parametric regret in uncertain markov decision pro-

cesses,” in Proc. IEEE CDC’09, pp. 3606–3613, Dec. 2009.

[155] J. L. Schroeder and D. A. Smith, “Hurricane bonnie wind flow characteristics

as determined from wemite,” J. Wind Eng. Ind. Aerodyn., vol. 91, pp. 767–

789, MAY 2003.

[156] P. J. Vickery and L. A. Twisdale, “Wind-field and filling models for hurricane

wind-speed predictions,” J. Struct. Eng., vol. 121, pp. 1700–1709, Nov. 1995.

[157] A. Ahmed, P. Varakantham, Y. Adulyasak, and P. Jaillet, “Regret based ro-

bust solutions for uncertain markov decision processes,” Proc. NeurIPS’13,

vol. 26, 2013.

[158] G. N. Iyengar, “Robust dynamic programming,” Math. Oper. Res., vol. 30,

pp. 257–280, May 2005.

[159] W. Wiesemann, D. Kuhn, and B. Rustem, “Robust markov decision pro-

cesses,” Math. Oper. Res., vol. 38, pp. 153–183, Nov. 2013.

[160] M. Panteli, P. Mancarella, D. N. Trakas, E. Kyriakides, and N. D. Hatziar-

gyriou, “Metrics and quantification of operational and infrastructure re-

155



silience in power systems,” IEEE Trans. Power Syst., vol. 32, pp. 4732–4742,

Feb. 2017.

[161] “Benefits of using mobile transformers and mobile substations for rapidly

restoring electrical service,” tech. rep., U.S. Department of Energy, 2006.

[162] H. Abdeltawab and Y. A.-R. I. Mohamed, “Mobile energy storage sizing and

allocation for multi-services in power distribution systems,” IEEE Access,

vol. 7, pp. 176613–176623, Dec. 2019.

[163] M. Suilen, T. D. Simão, D. Parker, and N. Jansen, “Robust anytime learning

of markov decision processes,” Proc. NeurIPS’22, vol. 35, pp. 28790–28802,

Nov. 2022.

[164] Z. Wu and K. Sun, “Distributionally robust optimization with wasserstein

metric for multi-period portfolio selection under uncertainty,” Appl. Math.

Modell., vol. 117, pp. 513–528, May 2023.

156


	Introduction
	Background
	General Terms and Definitions
	Power System Resilience
	Load Restoration
	Cyber-physical Power Systems
	Mixed Integer Programming
	Two-stage Stochastic Programming
	Hidden Markow Model
	Markov Decision Process

	Research Definition and Literature Review
	Stochastic Planning for Resilient PDSs
	Resilient Opertation Against Post-Restoration Failures
	Microgrid Formation for Large-Scale MER Allocation
	Sequential Restoration in Cyber-Physical PDSs

	Thesis Motivation and Contributions
	Stochastic Planning for PDS Resilience Enhancement Against Earthquakes
	Data-Driven Resilience Enhancement for PDSs Against Multi-shocks of Earthquakes Under Uncertainties
	Efficient MG Formation for Resilient PDSs Considering Large-Scale Deployment of MERs
	Stochastic Sequential Restoration for Resilient Cyber-Physical PDSs Against Hurricanes

	Thesis Outline

	Stochastic Planning for PDS Resilience Enhancement Against Earthquakes
	System Model
	Power Distribution System Model
	Linearized Distflow Model for Microgrid Formation
	Stochastic Spatial Seismic Damage Model
	Stochastic Repair Model of Damaged DLs

	Stochastic Resilient PDS Planning Problem Formulation
	Upper-Level Resilient PDS Planning Problem
	Lower-Level PDS Contingency Operation Problem
	Complete Stochastic Resilient PDS Planning Problem

	Stochastic Resilient PDS Planning Problem Solution
	Seismic Scenario Aggregation
	Endogenous Uncertainty Relaxation
	Reformulation of the SRDSPP
	Decomposition of the SRDSPP

	Case Study
	Test System Setup
	Case Study I: IEEE 37-Node Test Feeder
	Case Study II: IEEE 123-Node Test Feeder
	Case Study III: Comparison with Other Strategies

	Summary

	Data-Driven Resilience Enhancement for PDSs Against Multi-shocks of Earthquakes Under Uncertainties
	System Model
	Power Distribution System Model
	Stochastic Seismic Impact Model for PDSs
	Stochastic Seismic Impact Model for Restoration Paths

	Formulation of Data-Driven PDS Resilience Enhancement Problem
	Resistibility Indices Based on HHMMs
	Pre-Disaster MEG Investment and Pre-Positioning
	Post-Disaster MEG Reallocation and Repair Scheduling

	Solutions of Data-Driven PDS Resilience Enhancement Problem
	HHMM Reformulation and Solution
	Linearization of the Repair Scheduling Problem
	Iterative Algorithm for the Repair Scheduling Problem

	Case Study
	Test System Setup and Historical Data Analysis
	MEG Investment and Pre-positioning
	MEG Reallocation and Repair Scheduling
	Comparison with Other Existing Strategies

	Summary

	Efficient MG Formation for Resilient PDSs Considering Large-Scale Deployment of MERs
	System Model
	Power Distribution System Model
	Linearized Distflow Model for Microgrid Formation

	Adaptive Linearized DistFlow Model
	Representing Power as Commodities
	Power Flow Calculation Based on Commodity Flow
	Extension to the Application Considering Losses

	Dynamic Microgrid Formation Problem Formulation
	Objective Function
	Constraints

	Dynamic Microgrid Formation Problem Solution
	Linearization Technique for Nonlinear Constraints
	Comparisons in terms of Computation

	Case Study
	Case Study I: IEEE 37-Node Test Feeder
	Case Study II: IEEE 123-Node Test Feeder
	Case Study III: IEEE 8500-Node Test Feeder

	Summary

	Stochastic Sequential Restoration for Resilient Cyber-Physical PDSs
	System Model
	Cyber-Physical Distribution System Model
	Stochastic Hurricane Damage Model
	Stochastic Manual RCS Operation Model

	Stochastic Sequential CPDS Restoration Problem Formulation
	Formulating the Problem as a UMDP
	Minimax Regret Optimization in UMDPs

	Stochastic Sequential CPDS Restoration Problem Solution
	Exact Solution via Mixed Integer Linear Programming
	Approximate Solution Based on Regret Bellman Equation

	Case Study
	Test System Setup
	Simulation Results and Analysis
	Comparative Studies and Analysis

	Summary

	Conclusions and Future Works
	Contributions of Thesis
	Directions for Future Work


