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Abstract

A large portion of quantitative information about entities mentioned in Web

pages is expressed as Web tables, and these tables often lack proper schema

and annotation, which introduces challenges for the purpose of querying and

further analysis. In this thesis, we study the problem of annotating the nu-

merical columns of Web tables by linking them to properties in a knowledge

graph.

Unlike some approaches in the literature that use contextual information

(such as column headers and captions), which can be missing or not reliable, or

labeled data for model training, which can be difficult to obtain, our approach

relies only on the semantic information readily available in knowledge graphs.

We show that our approach can reliably detect both semantic types (e.g.,

height) and unit labels (e.g., centimeters) when the semantic type is present

in the knowledge graph.

Our evaluation on real-world web tables data shows that our method out-

performs, in terms of precision and F1 score, some of the state-of-the-art ap-

proaches on semantic labeling. Our evaluation also gives an insight of precision

on unit detection given that no previous works have explored the similar prob-

lem to the best of our knowledge.
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Chapter 1

Introduction

1.1 Motivation

There are hundreds of millions of relational tables that are embedded in the

HTML content of webpages [5], and many of these tables contain highly valu-

able data. To leverage this data in downstream tasks (e.g . question answering

and information extraction), one requires some knowledge of the semantics of

the rows and the columns. For example, consider a few industrialized countries

and some quantitative information about each country, as shown in Table 1.1.

Without knowing what the numerical columns are describing about the coun-

tries in the table, one cannot use the data for further analysis.

China 1,373,541 4,566 8,147.94
United States 323,995 3,602 57,951.58
Japan 126,702 1,368 38,761.82
Germany 80,722 1,050 42,107.52

Table 1.1: A few industrialized countries

1.1.1 Knowledge Graph

Knowledge graph (KG) is a way of storing and representing massive unstruc-

tured data that may be used by computer systems for possible annotations.

Specifically, knowledge graphs describe real-world entities and their relation-

ships to one another [33], and are frequently used in many research and busi-

ness applications [25], [35]. The term “knowledge graph” starts gaining pop-
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ulation when Google first introduced its knowledge graph in 2012, with the

goal of enhancing its search function and enabling search for real-world objects

instead of strings [11]. The term has been frequently used since then, with

no official or clear formal definition given. Recently, researchers have tried to

define a knowledge graph to be a graph structure describing real-world entities

and their interrelations, as well as possible classes and relations of entities in

a schema [27].

There are many existing knowledge graphs that are publicly available such

as DBpedia 1, WikiData2 and YAGO3. These knowledge graphs extract and

derive their knowledge about entities from different sources. DBpedia extracts

structured information from Wikipedia, and keeps track of any changes in

Wikipedia articles. It also derives its own set of cross-domain ontology, which

is constructed by mapping the most commonly used infoboxes4. WikiData

leverages and stores structured data from wiki projects such as Wikipedia,

Wikitionary, Wikisource, etc. It also accepts human contribution and is main-

tained by Wikimedia community. WikiData focuses mainly on items or enti-

ties, where each entity is assigned a unique ID. YAGO is another knowledge

graph where they extract data from a variety of sources such as Wikipedia,

WordNet5, WikiData, GeoNames6 and others. All data in YAGO is manually

curated in order to maximize accuracy. In this thesis we mainly use Wiki-

Data as our knowledge graph, but other knowledge graphs may also be used

instead. An example representation of knowledge about an entity is shown in

Figure 1.1.

One common property of the knowledge graphs listed above is that the

data can be are modeled as RDF graphs. It is a model for linked data and

is commonly used for knowledge graphs. The model consists of a finite set of

RDF triples (s, p, o) where s, p and o in the triple represent subject, predicate

and object in that order. As an example, in Figure 1.1 the corresponding

1http://dbpedia.org/
2https://www.wikidata.org/
3https://yago-knowledge.org/
4https://www.dbpedia.org/about/
5https://wordnet.princeton.edu/
6https://www.geonames.org/
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RDF triple for the information “Messi works for FC Barcelona” is (Lionel

Messi, Employer, FC Barcelona). In this thesis, we use the term “property”

for predicates in an RDF triple. One advantage of modeling data as RDF is

that the data can be accessed and leveraged using SPARQL queries, which

allows for complex query searches that suit specific information needs.

We observe that many properties of an entity is expressed in numeric values

such as “birth year” and “base salary” in Figure 1.1. In our problem, if we

treat the knowledge graph and its numeric properties as sources of semantic

information, the columns of a table may be annotated with semantic types from

a knowledge graph, and those annotations can provide a basic understanding

of the table semantics for many applications that are either trained on or work

with knowledge graphs.

1.1.2 Challenges

There are some challenges in mapping the columns of a table to a semantic

type in a knowledge graph. First, many values in web tables are less likely

to be present in a knowledge graph. This is a common problem for both

textual and numerical columns. Second, numerical values often provide a

quantitative description of an entity or a relationship and there can be slight

differences between sources. For example, the height of Gheorghe Muresan, a

basketball player, is listed 231cm inWikipedia 7 and 234cm inWikidata 8. This

makes the problem of matching and annotation for numerical columns more

challenging. Third, numerical quantities often change over time. For example,

it is less likely for a country name to change but a country population, GDP,

import and export values can change from one year to next. Finally, numerical

quantities can be expressed in different units and scales, and this introduces

another twist in matching numerical columns.

Annotating tabular data is mostly studied in the context of entity types and

for textual columns [6], [10], [37]. Despite the fact that numerical data makes

7https://en.wikipedia.org/wiki/List_of_tallest_players_in_National_

Basketball_Association_history
8https://www.wikidata.org/wiki/Q460116
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up over 40% of the content of Web tables [31], the annotation of numeric

columns has not been much explored in the literature. While some of the

approaches developed for textual columns may be applied to numerical data

(e.g . [34], [36]), a common approach for annotating numerical columns has

been based on a comparison of the column statistics (e.g . mean and standard

deviation) to detect if column values follow the same distribution as a known

distribution such as a semantic type in a knowledge graph [17], [22], [29], [30].

The two underlying assumptions here are that the values of each semantic

type follows a known distribution (e.g . normal, exponential, gamma, etc.) and

that the query column is a random sample from the same distribution. These

assumptions are easily violated in real world settings, and the query column

may not be a random sample of the target population. For example, the query

column may be associated to a selected set of entities (e.g . the GDP of a few

industrialized countries) whereas the target semantic type may represent a

larger population (e.g . the GDP of all countries). Also a fundamental problem

here is using the statistical test to accept the hypothesis that the sample is

taken from a distribution; we can reject the null hypothesis when the means

are apart but we cannot accept it when the means are close. Other approaches

(e.g . [34]) adopt supervised learning where the performance heavily depends on

the choice of labeled data and the alignment of query columns with the labeled

data. There is also the cost of labelling, which can be enormous for preparing

sufficient data for training. There are also approaches for unit labeling based

on table metadata such as column headers [31]. These approaches are not

applicable when such data do not exist or are not reliable.

1.2 Problem Definition

The problem studied in this thesis is given a table with one or more numerical

columns, we want to assign to each numerical column the most likely semantic

types and unit labels. We refer to a column being tagged or annotated as a

query column. The set of potential candidate semantic types is provided by

knowledge graph properties.
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Definition 1 (Query column). A query column is a set of numerical values

of arbitrary length that the user is interested in finding the semantic meaning

of.

We further define “KG property” to be a collection of values in a knowledge

graph that describe the same predicate (e.g . height), and the name of the

predicate may provide an annotation for the values in the collection.

Definition 2 (Knowledge graph property). A knowledge graph property, or

KG property, is a set of numeric values extracted from the object field in RDF

triples of a knowledge graph that have the same predicate. The name of the

predicate is set to be the label of the set of extracted values.

Column annotation tasks are often transformed into matching between a

query column and KG properties. In this thesis, we consider matching as

a mapping construction between the query column and KG properties. In

mathematics, the term mapping generally refers to value assignments from

one set to another. In our context we adapt the following definition:

Definition 3 (Cost). A Cost value is a measurement of degree of difference

between two numeric values. It represents how far apart two numeric values

are. The cost value is smaller when two numeric values are close, and is larger

when two numeric values appears to be different. In this work, we define the

Cost value to be the absolute difference between two numeric values, where

Cost(a, b) = |a− b| and a, b ∈ R.

Definition 4 (Mapping). Given a query column and a KG property, a map-

ping is a set of value assignments that prescribes for each value in the query

column a value in the KG property. Each mapping is associated with a total

Cost representing the distance between the query column and the KG property.

Here we set the constraint that a mapping must be constructed from a

query column to a KG property. Based on the definition of mapping, each

value in the domain needs to be mapped. For knowledge graph in general,

we expect the size of a candidate KG property to be much larger than the
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size of a query column. Thus a mapping from KG property to query column

will mostly contain irrelevant value assignments, therefore less meaningful.

Figure 1.2 shows a graphical representation of possible mappings from query

column to KG property. We will review this definition and explain mapping

in more detail in Chapter 3.

Definition 5 (Injective Property). Given a mapping between a query column

and a KG property, the mapping is injective where each value in the query

column is mapped to a unique value in the KG property. In other words,

no two values in the query column are mapped to the same value in the KG

property.

It is desirable to have the injective property because it ensures that the cost

of a mapping represents the actual distance between two numeric columns. For

mappings without the injective property, values from the query column may

be mapped to an outlier by chance. This can happen if the query column and

KG property are sampled from different distributions and an outlier exists in

the KG property which is closer to the query column, all values in the query

column may map to the outlier and have a relatively small cost. As the size

of KG property increases, the chance of matching to an outlier also increases,

and the algorithm may be biased towards larger KG properties.

However, the injective property may not be applicable for all cases. When

the size of the query column is greater than the size of KG property, an injective

mapping is not possible. In order to allow mapping construction in such cases,

we relax the injective property and let values in the KG property to be mapped

more than once.

Our objectives is: (1) given a numeric column q and a candidate column

c, find a mapping f : q → c such that
∑

(u,v)∈f Cost(u, v) is minimized; (2)

given a collection of candidate numeric columns C, for each c ∈ C, construct

a mapping fc as described in (1), and return the numeric column c subject to:

min
c∈C

∑

(u,v)∈fc

Cost(u, v). (1.1)

Figure 1.3 gives an illustration of finding the desired KG property.
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Our work makes two main contributions in annotating numerical column.

The first is that we propose a framework for mapping query columns to a

knowledge graph and show that such mappings can provide reliable semantic

types to the query columns. In addition, We develop some pruning strategies

to filter mappings that cannot produce “good” solutions hence saving the

optimization time. The second contribution is that our proposed framework

is able to detect the associated unit label of a numerical column if one exists.

Particularly, our framework relies solely on the content in a column, and does

not require additional sources such as column headers. To the best of our

knowledge, no previous works have tried tackling a similar problem. Our

work provides novel insight on how much we can achieve on the task of unit

labeling. Finally, we evaluate our work on real data and show that our method

significantly improves upon the state-of-the-art in terms of the precision of

predicting the semantic labels.

1.4 Outline

In the rest of this thesis, we first start with introducing related works in Chap-

ter 2 along with brief explanations of the techniques they use. We present our

method in Chapter 3 in two steps: Section 3.2 explains the process of com-

piling necessary knowledge from a knowledge graph, and Section 3.3 discusses

the problem of mapping construction between a query column and knowledge

graph properties. We present our evaluation results in Chapter 4. This in-

cludes a performance comparison on the task of semantic and unit labeling

with baseline methods, and a comprehensive study of the impact of all pa-

rameters used in our method. Finally, we show our conclusion and discuss

limitations and future work directions in Chapter 5.
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Chapter 2

Related Works

There has been a growing research interest in annotating the columns of tables

collected from the Web and open data sources. The goal has been at predicting

a semantic label to each column of a table that can help downstream tasks such

as web searching and schema completion that use those tables. This chapter

introduces existing works closely related to the goal listed above. The related

works can be grouped into (1) knowledge graph matching-based approaches

and (2) a variety of supervised approaches. Since our method integrates knowl-

edge graph matching in the annotation process, we first present related works

that are built on the same principle. Next, we introduce a few works which

utilizes different supervised techniques including deep learning and probabilis-

tic graphical model. Then, we briefly review a few works that target columns

in general without treating numerical columns differently. After that, we also

review one previous work on unit detection which is used as one baseline in

our evaluation. Finally, we summarize the limitations of the existing related

works.

2.1 Property Matching in Knowledge Graph

One of the key challenges in KG property matching is how to recognize sim-

ilar properties given a query column. In previous works, the measurement of

similarity is often viewed as a distance measure. Thus, the problem becomes

finding KG properties that have the least distance to a given query column.

We discuss a few techniques in property matching as well as the distance

11



measurements they have used.

2.1.1 Similarity-based Scoring

Hignette et al . [13] propose a scoring function that calculates a score for each

ontology t given a query column col. The score is based on two components: (1)

the matching of the column title and (2) the matching of the unit information

in the column content. A sub-score is computed for each component and the

sub-scores are combined by a product. The ontology that has the highest final

score is returned as a label. The scoring function can be written as:

Score(t, col) = 1− (1− scoretitle(t, col)) ∗ (1− scoreunit(t, col)), (2.1)

where scoretitle(t, col) is the term similarity between the column title and the

ontology name. The authors do not specify what similarity measurement is

used in this paper. Based on the equation, any similarity function that returns

a similarity value between 0 and 1 is valid. Possible similarity functions include

Jaccard Similarity and normalized Cosine Similarity. The actual result may

vary depending on if constraints such as order and stop words are considered.

scoreunit(t, col) is the unit similarity between a unit u listed in the column

and the set of units Tu associated with t. scoreunit(t, col) equals to 1
|Tu|

if

t ∈ Tu, and 0 otherwise. If the unit information is missing in the query

column, u is set to a special value equivalent to “no unit” value in ontology.

The term scoreunit(t, col) is set in a way that matching a unit in an ontology

with less units is preferred over matching to ontology with more units. The

goal of the final scoring function is to maximize the impact of sub-scores when

the component shows strong evidence of matching. An exact match of either

component will result in a final score of 1. On the other hand, if one component

does not match, the final score depends solely on the other.

2.1.2 Statistical Tests

There are a number of works that treat each numerical column as a sample

and use statistical tests to detect if two samples are drawn from the same
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distributions [17], [22], [29], [30]. With one sample taken from a column in

a knowledge graph, its label is known and can be assigned to columns that

are not in the knowledge graph but have similar distributions. The process of

statistical test often sets the null hypothesis to be that the two samples are

drawn from the same distribution, then calculates a p-value that indicates how

likely one can actually observe the given samples under the assumption that

the null hypothesis is true. Finally the decision of whether the null hypoth-

esis can be rejected is made based on the p-value. Kacprzak et al . [17] use

Kolmogorov–Smirnov(KS) test to compare a query column with knowledge

graph columns. Neumaier et al . [22] attempt to improve this by clustering the

knowledge graph properties and breaking them into more refined “content”.

By having smaller knowledge graph columns, the size difference between a

query column and a knowledge graph column may be reduced, leading to a

more precise comparison. The KS test is shown to have better performance

than other tests such as Welch’s t-test and Mann-Whiteney U-test in the liter-

ature [22], [30]. It is a nonparametric test which compares the distance of two

empirical distribution functions. Unlike Welch’s t-test and Mann-Whiteney

U-test, which assume the data to be normally distributed, the KS test does

not make assumptions on the distribution of the data other than assuming

the distribution is continuous. This is an advantage when applying the model

to more general cases. The KS statistics D with respect to two distribution

functions F1 and F2 is given as:

D = sup
x

|F1(x)− F2(x)|, (2.2)

where sup is the supremum of the set of distances between F1 and F2 across all

x. Intuitively, it can be seen as the greatest value among all distances in the

set. An illustration of KS statistics of two empirical distribution functions is

shown in Figure 2.1. Not surprisingly, if two sets of numeric values are equally

distributed, the statistics D converges to 0.

Since we are interested in finding the distance between a query column

and KG properties, there are two approaches in the literature for obtaining a
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unsupervised manner in order to create clusters that are more effective in

a classification. There are existing methods that first cluster the knowledge

graph and then predict a matching cluster using a classifier. As briefly men-

tioned in Section 2.1.2, Neumaier et al . [22] cluster the knowledge graph using

a rule-based hierarchical clustering algorithm. Values in the knowledge graph

are clustered as raw data, where the label of KG property is not used in the

clustering process. The clustering stops when the distances between all possi-

ble sub-clusters and the parent cluster are less than a threshold. They define

the finest clusters as “contents”. Note that each content may contain values

from multiple KG properties, and may be assigned multiple property labels. In

addition to clustering, the algorithm also builds a type hierarchy on top of the

clusters. The types of KG properties are extracted from sub-type relations in

the knowledge graph. This will be the objects of the predicates, for example,

“rdfs:subClassOf” in DBpedia and “P279” in WikiData. An example of the

type hierarchy is shown in Figure 2.2. Given a query column, the algorithm

determines the matching content using a KNN classifier, where the distance

measurement used in KNN is the p-value returned by the statistical test. At

the end a matched KG property is assigned to the query column by majority

voting among all properties in the top k nearest contents.

Similarly, Alobaid et al . [1], [2] also cluster the knowledge graph, but they

extract the typology features such as ordinal, nominal and interval-ratio, from

each knowledge graph property as well as from the query column. Then they

treat each KG property as a separate cluster and extract numerical features

according to its topology. For the topology type of “categorical”, the number

of categories and percentage of each category are extracted as feature. For all

other types, they compute trimean and t-std as features. The trimean of a

cluster is computed as:

Trimean =
Q1 + 2 ∗Q2 +Q3

4
, (2.3)

where Q1, Q2 and Q3 represent 25%, 50% and 75% quartiles respectively. The

t-std refers to the standard deviation with trimean, which replaces mean with
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Pham et al . [29] train binary classifiers including logistic regression and

random forest based on the similarity between the query column and labeled

columns. The features for classifiers include a variation of the Jaccard Simi-

larity that captures the overlap range of two sets of numerical values, as well

as a binary KS distance. The Jaccard Similarity is computed as follows:

NumJaccard(s1, s2) =
min(max(s1),max(s2))−max(min(s1),min(s2))

max(max(s1),max(s2))−min(min(s1),min(s2))
.

(2.5)

This score gives rough estimate of similarity based on the minimum and

the maximum values of two sets of numbers. It is easy to compute but does

not capture enough information and may under-estimate the similarity in some

cases. Thus, the KS distance is used as a complementary input of the classi-

fiers.

Prior machine learning algorithms such as Logistic Regression and SVM,

suffer from curse of dimensionality due to their shallow structure, thus only

work on relatively small feature sets [15], [18]. Recently a number of works

adapt the deep learning framework which supports a significantly larger num-

ber of features and samples [15]. Deep learning is developed from artificial

neural networks, where it adopts the hierarchical structures in layer connection

and have multiple levels of representation [9], [20]. Each level of representation

is transformed to the next level using a non-linear transformation, and a com-

position of enough such transformations is able to approximate very complex

functions [20]. Deep learning has shown to have improvement in the processing

of natural data and extracted features comparing to prior machine learning

techniques [9], [20]. Next, we review some works that take a deep learning

approach. Nguyen et al . [23] train a CNN network that uses various sampling

techniques to construct features. They also utilize representation learning to

generate column embedding which is then used as the input of the network.

Recent work introduces Sherlock [15], which is a multi-layer feedforward neu-

ral network built for single column semantic type detection. It formulates

the semantic annotation problem into a multi-class prediction where each se-
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mantic type is represented as a class. It extracts three levels of embedding

from column content including character embeddings, word embeddings and

paragraph embeddings. These features are designed for textual columns. The

character embeddings include for example, “fraction of values with numerical

characters” and the count of special characters such as “-” and “/”. The Word

embedding is designed for characterizing the semantic content of the words.

Words are mapped to high-dimensional fixed-length numeric vectors where

the words with similar semantic content are “closer” in the multi-dimensional

space. In Sherlock, the authors use pre-trained GloVe dictionary [28] where it

contains 50-dimensional representations of 400,000 English words. Paragraph

embeddings is able to convert a piece of text into a numeric vector, and is

commonly used for document similarity [8]. In Sherlock, the authors use a

pre-trained paragraph embedding proposed in [19], and they treat each col-

umn as a “paragraph” where values in each cell are “words”. Global statistics

such as mean and standard deviation are extracted as features for numeric

columns. It also includes features like “column entropy”, which determines

how uniformly values are distributed in a column. The size of the numeric

features is 27 in total. Zhang et al . [36] adopt the structure from Sherlock,

and improve it by adding cross-column influence in their prediction model.

They use the same feature set as Sherlock, but the three levels of embedding

features are compressed to dense feature vectors with 1560 dimensions, and

the global statistic features with 27 dimensions are concatenated to the em-

bedding features. This produce a vector of 1587 dimensions in total. They

have also used the batch normalization technique to process the features. It

is proposed by Ioffe et al . [16] and is used for accelerating the training of the

deep networks. An overview of features and the network structure used in [15],

[36] is shown in Figure 2.4.

2.3 Annotating Entity Columns

The large body of work on annotating web tables has focused on textual and

categorical columns, and a popular approach has been utilizing the power of a
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knowledge graph for the annotation. These works are not directly related to

our problem, but they provide valuable ideas and insights that may be adapted

to our problem.

A general approach has been mapping a column to an entry in the knowl-

edge graph [6], [10], [37]. Chen et al . [6] do this by finding an embedding

of each entity and classifying the query column to a knowledge graph class.

The embedding of a column or a class here is a matrix which is fed into a

CNN network for classification. Alternatively, Efthymiou et al . [10] consider

cell level matching, which assigns a property label to each cell, and use the

majority vote to predict a semantic label for the query column.

To better model the relationship between different columns with the same

or similar semantic labels, several works have modeled a corpus of tables using

a probabilistic graph model [21], [34]. Limaye et al . [21] build a probabilis-

tic graphical model that describes the type similarity between columns in an

annotated dataset and assign a label to a query column that maximizes the

joint probability of matching each cell text to an entity label and each column

header to an entity type.

2.4 Unit Extractor

There is also some work on unit labeling, which is relevant to ours. Sarawagi

et al . [31] propose a pattern-based approach to extract units from column

headers. They compile a set of units from a knowledge graph, and train a

rule based unit extractor that is based on a Context Free Grammar (CFG).

A subset of their grammar rules are shown in Figure 2.5. As each header can

be parsed using multiple grammar rules, a discriminator scoring function is

learned. They also consider relative-frequency and co-occurrence statistics in

the corpus of tables to disambiguate the extracted units.

2.5 Limitations

Many of the KG matching-based approaches use adhoc features and heuris-

tics (e.g. topology features in Alobaid et al . [2] and the clustering method
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As for the unit extractor, there are two main issues. First, the unit string is

expected to appear in column headers whereas our analyzes of a real web table

dataset shows that only less than 20% of the numeric columns contain unit

strings, which means that this method is not applicable for more than 80%

of the columns. Second, the method relies on identifiers to detect compound

units. For example, this method fails to extract the unit “Newton-metre”,

written as “Nm”, which is a compound unit with a hidden multiplication

symbol in the middle. This method recognizes it as “Nanometre”.
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Chapter 3

Methodology

Our approach for annotating numerical columns makes use of a knowledge

graph (KG) for semantic labels. Under the closed world assumption, the knowl-

edge graph is treated as “complete,” and any semantic type that does not exist

in the KG is deemed not to exist. The same or a similar assumption is made in

many approaches on linking and disambiguating entities mentioned in text [7],

[14], [32] and web tables [3] as well as in approaches for annotating tabular

data [6], [10], [37].

3.1 System Architecture

As shown in Figure 3.1, our system architecture mainly consists of two compo-

nents: (1) compiling candidate labels, and (2) mapping query columns. Com-

piling candidate labels can be done offline as it is usually a one-time process,

and it can be done either at the beginning or after the knowledge graph has

gone through a major change. We discuss these components in more details

next.

3.2 Compiling Candidate Labels

A source for compiling candidate labels is public knowledge graphs (such as

Wikidata, Freebase, Dbpedia), with their structured content about many en-

tities. Many of these knowledge graphs keep various quantitative information

about entities. Information about each entity is often stored as a set of state-
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but can describe totally different properties. It is not also necessary for two

columns that describe the same property to have the same distributions. For

example, age can be different for people living in different countries or even

the same country and in different times. Hence the null hypothesis may be

rejected but the two columns may still have the same labels.

We treat column mapping as a cost optimization, where each mapping of

a candidate column is associated with a cost and we want to find a mapping

with the least cost. Assuming that the true label of the query column has a

corresponding property in the knowledge graph, we expect one such property

can be identified through a cost optimization. However, false mappings are

also expected especially when there is a large number of candidates. Since each

property is usually associated with an entity type (e.g. the population of a

country or the age of a person), one way to avoid or reduce the number of false

mappings is to detect the type of the query entity column first. For example,

knowing that a query column describes countries, the set of candidate labels

is limited to properties that can be assigned to a country.

3.3.1 Entity Type Detection

If the given numeric column is associated with an entity column, we want to

detect the semantic type of that entity column. This can be seen as another

type annotation task, which is outside the scope of this work. However, the

problem is studied in the literature [6], [10], [21], and several methods have

been proposed; any of those methods can be readily used here. In this paper,

we apply a variation of majority voting, where each cell content of the entity

column in the query table is mapped to an entity in the knowledge graph, the

entity type(s) of the matching entities in the knowledge graph are looked up,

and the entity type that covers the largest number of entities in the query

column is selected as the entity type.

Bounding the type of an entity column in a query table reduces the number

of candidate mappings of other columns but it does not limit the set of can-

didates only to the direct properties of the entity type. For example, a query

table describing basketball player may have attributes that belong to the entity
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type person, and limiting the candidates to the direct properties of basketball

player will miss those properties. To avoid such cases, we want to include, as

candidate semantic types, those properties that are associated with an entity

through the type hierarchy. For this, we want to check for each pair of entity

types Si and Sj in the type hierarchy if there exists a sub-type relationship in

the form of a path from Si to Sj. If such path exists, we know Sj is the more

specific type and will inherit the properties of its super-type Si. All such paths

in the type hierarchy from the root to an entity (as shown in Figure 3.3) are

candidate types that can be assigned to the entity. The set of candidate paths

for all query column entities can be ranked based on their frequency and the

most frequent path can be selected as the query column type.

A caveat in detecting the entity type is that entity mentions in a query

table can belong to many different types, and the most frequent candidate

type may not have the majority vote. As a solution, we may set a threshold τ

based on the size of the column, and if a candidate type has a frequency less

than τ , we may conclude that entities in this particular column do not agree

on a type label.

3.3.2 Cost Optimization

We want to find out if a given query column is sampled from the domain of

a knowledge graph property (i.e. the set of values it takes), but we cannot

always expect overlaps between numerical sets. More often, numbers that de-

scribe the same property are close in terms of the absolute value or statistical

measures. Statistical measures look at the overall distribution and are more

accurate when the sample size is sufficiently large and the knowledge graph is

near-complete (i.e., it include the set of all values it can take). Under more

realistic settings where query columns are small and knowledge graph prop-

erties are incomplete, a more effective measurement is desired. We formulate

the problem as a bipartite matching between two bags representing the query

column q and a knowledge graph property c, and focus on the micro-level sim-

ilarity, which is the differences in element-wise matching. With the distance

between mapped values considered as a dis-similarity measure, our goal is to
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measure between two numbers. In this paper, the absolute difference is used

as the distance function.

If E denotes the set of all edges, we want to find a flow f : E → {0, 1}

where the total cost

Cost(q, c) =
∑

(u,v)∈f

Cost(u, v) (3.2)

is minimized subject to
∑

e∈E f(e) = |Vq|.

3.4 Label Prediction

A label predication algorithm will need to compare the query column q to

all candidate columns C in the knowledge graph, following the cost optimiza-

tion as discussed above, and will return top-k nearest neighbours, in terms of

Cost(q, c) for c ∈ C, as possible types. Each such type assigns a property and

a unit to the query column. If the query column is associated with an entity

type, the number of candidate types may be reduced. For example, if an entity

has type “human”, it is likely to have properties such as birth year, height and

weight. On the other hand, it is unlikely that it has property GDP. Hence,

for a given query table, the entity type may first be detected (as discussed in

Section 3.3.1), and only properties of the detected entity type are considered

as candidate types.

As comparing a query column to all semantic types in a knowledge graph

or the semantic types that are associated with an entity type can be costly,

we next discuss a few strategies to reduce the cost in Section 3.5.

3.5 Running Time Improvements

An efficient algorithm for the minimum cost flow problem is the network sim-

plex algorithm of Orlin [26], which runs in O(min(n2m2logn, n2mlog(nC)))

where n is the number of nodes in the network, m is the number of edges and

C is the maximum edge cost. For small integer edge costs, which is usually the

case for numerical columns, the algorithm runs in O(n2m). The algorithm can
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be expensive for large query and knowledge graph columns, hence one wants

to effectively reduce the running time. We next introduce a few techniques to

reduce both the search space and the running time.

3.5.1 Reducing the Size of the Query Column

Under an injective mapping, every element of the query column q is mapped to

a distinct element of c, hence it is expected that |Vq| ≤ |Vc|. In more realistic

settings, the knowledge graph is rarely complete and an injective mapping may

not be possible for large query columns. At the same time, mapping large query

columns can be costly since the time increases quadratically with the number

of nodes. One strategy to reduce the cost of mapping is to reduce the size of

Vq. For example, if the size of Vq exceeds a limit l, one may select a random

sample of size l for the mapping. Our hypothesis is that the query column can

be sampled and that mapping a sample can provide a good estimate of the

semantic label if the sample is large enough. In our experiments, we evaluate

different sample sizes and how both the accuracy and the running time are

affected.

3.5.2 Pruning Candidate Columns

Finding a mapping between a query column and every candidate column can

be costly when there are a large number of candidates, and a question is if this

cost can be reduced without affecting the correctness of the algorithm. The

idea here is that a full costly mapping may be avoided when the mapping does

not provide a better solution than what is already computed. Suppose we are

are interested in top k mappings with the least cost. If there is evidence that

a candidate column cannot have a cost less than what we have already seen,

there is no need to perform a full mapping. For our pruning, we introduce two

lower bounds.

Lemma 1 (LB1). Consider two columns q and c with non-overlapping ranges,

and let qmin and qmax be respectively the largest and smallest elements in q and

cmin and cmax be respectively the largest and smallest elements in c. There are
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two cases (as shown in Figure 3.6).

(a) If qmax ≤ cmin, then dist(qmax, cmin) ∗ |q| is a lower bound on the cost of

the mapping, i.e. Cost(q, c) ≥ dist(qmax, cmin) ∗ |q|.

(b) If qmin ≥ cmax, then dist(cmax, qmin) ∗ |q| is a lower bound on the cost of

the mapping, i.e. Cost(q, c) ≥ dist(cmax, qmin) ∗ |q|.

Proof. Assume qmax ≤ cmin, then

Cost(q, c) ≤
∑

qi∈q

|qi − cmin|, under a non-injective mapping and

Cost(q, c) =
∑

qi∈q

|qi − cmin| under a injective mapping.

Since qi ≤ qmax,

|qi − cmin| ≥ |qmax − cmin|,

Cost(q, c) =
∑

qi∈q

|qi − cmin| ≥ |q| ∗ |qmax − cmin| = LB1,

which implies LB1 is a lower bound of Cost(q, c).

The proof is similar when qmin ≥ cmax in Case (b).

The lower bound is pretty easy to compute especially if the minimum and

the maximum values of each column are computed in advance. Our next lower

bound provides a tighter bound and is more accurate.

Lemma 2 (LB2). Consider two columns q and c and let Mc be a mapping

between q and c where each element of q is mapped to its closest element in c

with no constraint on the number of query elements that can be mapped to c.

Then Cost(q, c) ≥
∑

e∈Mc
Cost(e).

Proof. We need to show:

(1) LB2 is a lower bound. This is equivalent to show that LB2 ≤ Cost(q, c);

(2) LB2 is a tighter lower bound than LB1. In other words, LB2 ≥ LB1.

Proof of (1):

Denote with M1 the actual mapping between q and c and M2 the map-

ping under LB2. Then cost(M2) = LB2. Suppose the claim of the lemma

does not hold and this means that LB2 > Cost(M1) and
∑

ei∈M2
Cost(ei) >

34





column in the ordered list of candidates, we compute LB2 for the candidate

column and prune the column if LB2 is greater than or equal to the largest

cost in pq. Otherwise we compute the exact cost of the column and push the

column to pq if the exact cost is less than the cost of a column in the queue.

The algorithm stops when the next column has a lower bound that is greater

than the cost of all columns in the queue. Algorithm 1 gives the steps of our

column matching including the steps of pruning.

Algorithm 1 Column Matching with Pruning

1: q ← query column
2: C ← sorted candidate columns based on LB1

3: topK ← initialized priority queue
4: i← 0
5: while LB1(C[i]) < max(topK) do
6: if LB2(C[i]) < max(topK) then
7: M ← cost of mapping (q, C[i])
8: if M < max(topK) then
9: push C[i] to topK

10: i ← i + 1

11: return topK
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Chapter 4

Evaluation

This section presents an experimental evaluation of our algorithms and pruning

strategies under different parameter settings and in comparison with competi-

tors from the literature. After discussing our evaluation setup, Section 4.2 com-

pares the performance of our proposed method with the existing approaches [2],

[31], [36] that are considered state-of-the-art in semantic and unit labeling,

Section 4.3 investigates the choice of parameters and how the performance of

our method is affected under different settings, and Section 4.4 evaluates the

effectiveness of our pruning strategies in reducing the search space.

Dataset
Numerical
columns

Entity
types

Semantic
labels

Unit
labels

Average
query size

WDC 133 27 22 3 27.49
Wikitables 262 96 77 43 20.97

Table 4.1: Statistics of the testing corpus

4.1 Evaluation Setup

The corpus of web tables used in our evaluation was extracted from two

sources: (1) wikiTables [4], which contains 1.9 million tables extracted from

Wikipedia, and WDC table corpus 2015 where tables are extracted from Com-

mon Crawl 1.

1http://data.dws.informatik.uni-mannheim.de/webtables/2015-07/

relationalCorpus/compressed/
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We randomly selected 300 numeric columns from each source, and for each

numeric column, we also extracted the entity or subject column from the same

table (when present) and the column headers (if any) 2. This resulted in 300

pairs of entity-numeric column pairs, which were manually annotated with

entity type for the entity column and the semantic and unit labels for the nu-

meric column. The annotation was done by two individuals, in a peer review

manner, and the column pairs that received the same labels by both annota-

tors were selected as our testing corpus. The two annotators were responsible

for providing an entity type, a semantic label as well as a unit label for each

query pair given, and they could use column headers and/or search the knowl-

edge graph and other online sources to assist them in their annotations. Some

statistics of our testing corpus is given in Table 4.1. For example, our annota-

tors agreed on the labels of 262 columns from Wikitables, which belonged to

96 different entity types, and 133 columns from WDC, which belonged to 27

different entity types. The rest of the columns either could not be annotated

or an agreement was not reached. Also not many unit labels could be assigned

by our annotators to the columns from the WDC corpus. For the same reson,

we evaluate the task of unit annotation on WikiTables dataset only, whereas

semantic annotation is evaluated on both datasets.

We used Wikidata as our knowledge graph, and extracted type relation

from the database dump as of June 2020 3. We excluded knowledge graph

properties that only contained a single numerical value. Such properties may

not construct useful mappings since values in the query column all maps to

that single value. Besides, removing those properties reduces the number of

KG properties by 50%, which effectively reduce the search space. The statistics

of the extracted types are shown in Table 4.2.

The performance of our algorithms was measured in terms of precision, i.e.

the fraction of annotated query columns that are correctly labeled, and recall,

i.e. the fraction of all query columns that are correctly labeled. We report

2The column header was not used in our method but it was used by some of our com-
petitors as well as by our annotators when assigning the labels.

3https://www.wikidata.org/wiki/Wikidata:Database_download
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Entity types Properties Units (Entity,Property,Unit) triples

473 13149 640 17617

Table 4.2: Statistics of the extracted types from Wikidata

the precision at k and the F1 score, consistent with the reported results of our

competitors [2], [31].

For our performance comparison on semantic labelling, we compare our

algorithm with two baseline methods: TTLA [2] and the Kolmogorov Smirnov

(KS) test which is used in a few related work [17], [22], [29]. We rank the

candidate columns based on the p-value returned by the KS test and select

top k results. The algorithm of Alobaid et al. [2] requires the entity type as

input, which is not the case for our method. In our comparison with Alobaid

et al., we provide all methods with the entity type label for a fair comparison.

However, we also separately evaluate the performance of our method with-

out providing the entity type label. For a performance comparison on unit

labeling, we compare our algorithm with UnitTagger [31]. Since our method

and UnitTagger rely on different column components (with UnitTagger using

the column header and our approach using the column content), a comparison

under an exact same setting is not possible. On the other hand, to the best of

our knowledge, there is no prior work that annotate the unit label based on

the content of a column. Therefore we propose a setting that aims at finding

out how much our method can achieve. For this, we report the number of

columns that have the unit string in the header, and for which UnitTagger is

applicable. We test our method on the same data without using the column

headers, and report the precision of both methods. Our method is clearly

orthogonal to UnitTagger and the two methods can be combined for a better

performance.

4.2 Performance Comparison

Tables 4.3 and 4.4 show the performance of our semantic labeling, in terms

of precision and the F1 score, compared to the state-of-the-art baselines. For
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the first three methods (i.e., TTLA, KS-Test, Proposed), the performance is

reported with the entity type provided. The performance of our method is also

reported without providing the entity type; this is denoted as Proposed-w/o.

In our entity type detection, we set the parameter τ to 50% ∗ |q|, to indicate

that a majority vote is needed for an entity type to be selected.

4.2.1 Results on Semantic Labeling

Method Annotated Precision@k F1@k

k = 1

TTLA 168 0.107 0.135
KS-Test 131 0.099 0.094
Proposed 131 0.221 0.199

Proposed-w/o 95 0.137 0.094

k = 3

TTLA 168 0.155 0.180
KS-Test 131 0.160 0.128
Proposed 131 0.351 0.298

Proposed-w/o 95 0.284 0.186

k = 5

TTLA 168 0.179 0.205
KS-Test 131 0.244 0.217
Proposed 131 0.397 0.331

Proposed-w/o 95 0.357 0.230

Table 4.3: Performance of semantic labeling on Wikitables with 262 columns
compared to our baselines

The results in Tables 4.3 and 4.4 show that our approach achieves a higher

precision and F1 score than TTLA and KS-test on both datasets. For top three

labels (k=3), the precision of our algorithm on Wikitables is more than twice

that of our baselines, and a similar pattern is seen in terms of the F1 score as

well. On WDC, our algorithm also performs better than our baselines but the

gap is not as wide as the gap on Wikitables. The difference in performance

between the two datasets may be due to the use of Wikidata as our knowledge

graph, which is expected to have more overlapping content with wikitables

than WDC. With a big gap between our approach and KS-test, it is clear that

a statistical testing for real web table columns that are not large (the average

column size for Wikitables was 21 and for WDC was 27) is less effective,

whereas our mapping-based approach works much better on the same datasets.
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Method Annotated Precision@k F1@k

k = 1

TTLA 67 0.074 0.072
KS-Test 101 0.069 0.100
Proposed 101 0.119 0.165

Proposed-w/o 72 0.083 0.086

k = 3

TTLA 67 0.209 0.194
KS-Test 101 0.129 0.178
Proposed 101 0.218 0.284

Proposed-w/o 72 0.139 0.140

k = 5

TTLA 67 0.209 0.194
KS-Test 101 0.277 0.347

Proposed 101 0.277 0.347

Proposed-w/o 72 0.263 0.250

Table 4.4: Performance of semantic labeling on WDC with 133 columns com-
pared to our baselines

The performance of our method drops with an entity type detection module

(denoted as proposed-w/o) due to any possible noise that may be introduced,

but the results are still comparable to those of our baselines despite the fact

that our approach has to detect the entity type whereas the baselines are

provided with a correct entity type.

dataset Total Annotated Precision@1
WikiTables 262 258 0.159

WDC 131 127 0.300

Table 4.5: Performance of SATO on semantic labeling

We also try to compare our method with recent supervised approach. The

result in Table 4.5 shows the performance of SATO [36] on our testing dataset.

We use their pre-trained model in this experiment. SATO does not match

columns to knowledge graph properties, thus exact matches to the annotated

label are not possible. We manually check the label returned by SATO and

compare with our annotated label. Results show that under this setting, the

performance of SATO is not satisfactory. It reaches a precision of 0.159 in

WikiTable dataset and 0.3 on WDC dataset. By looking further into the re-

sults, we found that for columns only containing integer values, SATO predict

all of them as “rank”. We also observed that SATO does excellent in predict-
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ing rank and year columns. This explains why performance on WDC dataset

is better: in WDC dataset 13.9% of the columns are rank or year, and the

proportion is higher than what is in for WikiTables. In our setting each query

column is independent from others, where SATO cannot take advantage of

cross-column relations. This could be another reason it is under-performing.

4.2.2 Results on Unit Labeling

In our Wikitables collection of 262 columns, our annotators found only 110

columns with a clear unit indicator in the column headers, and the rest of

the columns had no units. The no-unit columns included properties with no

associated unit (e.g. “population”) as well as cases where the unit was missing

due to incomplete headers. We did not distinguish between the two cases and

both were removed from our unit labelling evaluation.

Our algorithm applied to the remaining 110 columns with known unit la-

bels resulted in 25 correct labels, which translates to a precision of 0.227. This

labelling was solely based on mapping query columns to knowledge graph prop-

erties and without using query column headers. There are clearly some chal-

lenges for this method of labelling, especially when there are unit mismatches.

For example, the query column can be in “hectare” but the corresponding KG

property may only be in “square metre.”

For a comparison, we also ran UnitTagger [31] on the same set of 110

columns with the unit given in the header. UnitTagger could pull a correct

unit for 79 columns (a precision of 0.718) and missing 31 columns even though

the unit was in the header. For example, it was not able to recognize some

compounded units like “ $ million.” Given that our method is orthogonal to

UnitTagger, one using the header and another using the content, it is possible

to combine the two approaches to achieve a better performance; this is outside

the scope of this paper and is not further pursued. An idea of combining the

two methods is listed in Section 5.3.
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ping constraint may be relaxed, allowing multiple values of the query column

to be mapped to the same value of a KG property. We refer to this as sam-

pling KG with replacements, on the basis that the query is sampled from the

domain of a KG column allowing replacements. Table 4.6 shows the effect of

replacements on the precision for 200 randomly selected queries. In our exper-

iment, we partition the knowledge graph columns into query and KG columns

with ratios (60%, 40%) and (70%, 30%), to ensure query columns are larger

than the matching KG columns. The minimum number of replacements is set

to ⌈ |q|
|c|
⌉ − 1 for constructing a valid mapping.

query size 1 1.5 2 2.5 unlimited
60% 0.760 0.735 0.720 0.730 0.660
70% 0.730 0.710 0.710 0.705 0.590

Table 4.6: Precision varying the number of replacements

As expected, the best mapping, in terms of precision, is when there is

the least number of replacements. As the number of replacements increases,

the precision drops but the drop is not significant for small numbers of re-

placements. We also show the result when there is no limit on the number

of replacements, which is equivalent to ranking the candidate columns based

on LB2. Clearly we want to keep the number of replacements close to the

minimum ⌈ |q|
|c|
⌉ − 1 to reduce the impact on precision as well as the running

time, which increases with the number of candidate KG columns.

4.4 Effectiveness of Pruning

Tables 4.7 and 4.8 show the effectiveness of our pruning under the two lower

bounds, LB1 and LB2, introduced in Section 3.5.2. For a set of 100 query

columns randomly selected from our Wikitables dataset, we report the num-

ber of candidate columns pruned by each of LB1 and LB2. Our experiment is

conducted under two settings: (1) mapping query columns to the entire can-

didate columns set (shown in Table 4.7), and (2) mapping query columns to

only candidate columns of a matching entity type (shown in Table 4.8). Note
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that LB1 is a looser lower bound but more efficient, and it is applied prior to

LB2 in our pruning steps in Algorithm 1. k is set to 3 in this experiment.

Lower bound Columns Pruned Left
LB1 17617 13096.8 (74.3%) 4520.2 (25.7%)
LB2 4520.2 4222.9 (93.4%) 297.3 (6.6%)

Overall 17617 17319.7 (98.3%) 297.3 (1.7%)

Table 4.7: Columns pruned by our lower bounds (without bounding the entity
types), averaged over 100 query columns

Lower bound Columns Pruned Left
LB1 40.73 25.84 (63.4%) 14.89 (36.6%)
LB2 14.89 11.12 (74.7%) 3.76 (25.3%)

Overall 40.73 36.97 (90.7%) 3.76 (9.3%)

Table 4.8: Columns pruned by lower our bounds (with entity types bounded),
averaged over 100 query columns

We find that without bounding the entity type to reduce the search space,

most of the columns can be pruned with an average of 2% of the KG columns

left for the mapping construction. When the entity type is bounded, there is

less number of candidate columns to be pruned. This results in pruning 91%

of the columns in our experiment, and leaving less than, on average, 4 columns

for a cost optimization.
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Chapter 5

Conclusion

5.1 Summary

In this thesis we have studied the problem of semantic and unit annotation of

numerical columns in web tables, and proposed a KG matching based method

for column annotation. We have formulated the problem as an optimization

where a least cost mapping to a KG column is sought.

We evaluated our method on manually labeled dataset from two real-world

web table sources, and compared our method with some of the state-of-the-

art methods with a similar setting to ours, as well as a recent supervised

approach. The results show that our proposed method performs better in

terms of precision and the F1 score under our evaluation settings comparing

to the baselines.

5.2 Limitations

Our work faces some limitation where the main limitation is the incomplete-

ness of knowledge graphs. Our work is under the assumption of having a

complete knowledge graph, which is not possible in realistic settings. As a

result, many columns are not annotatable since they are not recorded in the

knowledge graph. For cases where knowledge graph provides sufficient infor-

mation, our method performs reasonably well. Another limitation is running

time. As shown in Figure 4.2, the running time increases quadratically as the

size of query column increases in the stage of finding optimal mapping, which
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may be infeasible for large columns. This may force us to abandon mapping

construction for the entire column, and instead we take samples of smaller sizes

as a workaround. Having smaller query size may reduce precision as shown in

Figure 4.1.

5.3 Future Work Directions

Our work leads to a few interesting directions. First, as our work matches

entity types and not the actual entities, a question is if the presence of query

entities in the knowledge graph can help with the annotations. Second, two

columns with the same semantic labels may not match if they are given in

different units (e.g., pounds vs kilograms). Detecting possible transformations

between different units and incorporating this in retrievals is another direction.

Finally, numeric values in a column may vastly differ from knowledge graph

entries if a scalar multiplier is applied such as “million”. As mentioned in

Section 4.2, one idea to combine our method with existing methods is to first

detecting scalar in the query column using UnitTagger, and then apply the

scalar multiplier to the query column. This will reduce errors in mapping

construction and may improve the performance.

48



References

[1] A. Alobaid and O. Corcho, “Fuzzy semantic labeling of semi-structured
numerical datasets,” in Knowledge Engineering and Knowledge Manage-
ment, C. Faron Zucker, C. Ghidini, A. Napoli, and Y. Toussaint, Eds.,
Cham: Springer International Publishing, 2018, pp. 19–33, isbn: 978-3-
030-03667-6.

[2] A. Alobaid, E. Kacprzak, and Ó. Corcho, “Typology-based semantic
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Lange, and J. Heflin, Eds., Cham: Springer International Publishing,
2017, pp. 260–277, isbn: 978-3-319-68288-4.
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Flöck, and Y. Gil, Eds., Cham: Springer International Publishing, 2016,
pp. 446–462.

[30] S. Ramnandan, A. Mittal, C. A. Knoblock, and P. Szekely, “Assign-
ing semantic labels to data sources,” in The Semantic Web. Latest Ad-
vances and New Domains, F. Gandon, M. Sabou, H. Sack, C. d’Amato,
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