

A Machine Learning Approach to Predict Production Time in

Industrialized Building Construction

by

Osama Mohsen

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Construction Engineering and Management

Department of Civil and Environmental Engineering

University of Alberta

© Osama Mohsen, 2021

ii

Abstract

Industrialized building construction is an effective approach for improving the performance and

management of construction projects by offering higher quality products, minimized

environmental impacts, and improved schedule predictability. The industrialized building

construction approach integrates manufacturing principles and techniques into the construction

industry where products (in this case, building components) are built in a controlled factory

environment and then transported, in sequence, to the construction site for the final assembly.

With the marked growth of available data gathered as part of the daily operations in industrialized

building construction facilities, one promising approach is to utilize machine learning techniques

to identify valid, useful, and previously unknown patterns from historical data. These techniques

are used to leverage the use of data to accurately predict the production cycle time. This thesis

presents a framework to investigate potential improvements in estimating cycle time in

industrialized building construction facilities where accurate prediction of cycle time can improve

the quality of production planning and scheduling. The goal is to assist production/project

managers to mitigate any delays and implement alternative actions should there be any unexpected

delays due to factory operations as well as to manage the capacity and workload of the fabrication

facility more efficiently.

The results of two case studies reveal that machine learning approaches can be successfully applied

to accurately predict cycle time in different subsectors of industrialized building construction. The

factors that significantly affect the prediction accuracy are (1) the physical characteristics and

tracking information of products, (2) the engineered features that are generated to capture real-

time loading conditions of the job shop, and (3) the lookback timeframe used for model training

iii

and validation. To examine the effect of shop loading features more thoroughly, a discrete-event

simulation model is developed to investigate the various features that can be captured in the real

system, but for practical reasons are not presently captured in the data, and to investigate their

benefit in terms of improving the predictive accuracy. The major contribution of the research

presented in this dissertation is that it provides practitioners in industrialized building construction

with a roadmap to utilize their available production data for accurate estimates of delivery dates.

The research results are also expected to be a point of reference for future studies in the academic

field and for the industrialized building construction industry.

iv

Preface

This thesis is an original work by Osama Mohsen. No part of this thesis has been previously

published.

v

Dedication

To the soul of my father, Dr. Mohamed, to my kind and caring mother, Amal, to my loving wife,

Mona, and to my beloved children Lyan, Raneem, and Mohamed, I dedicate this work.

“Foresight is not about predicting the future, it's about minimizing surprise.”

Karl Schroeder

vi

Acknowledgments

First of all, my utmost grace and gratitude goes to Almighty God for all his gifts and blessings

upon me and for enlightening my path to complete this dissertation. My sincere appreciation goes

to my supervisors Dr. Yasser Mohamed and Dr. Mohamed Al-Hussein for their continuous

support, guidance, encouragement, and inspiration. Dr. Yasser Mohamed has been an exceptional

academic mentor who never ceased to support me and always provide thoughtful and valuable

advice in both my research and teaching journey. Dr. Maohmed Al-Hussein has always pushed me

to do my best. They both have been great scholars to learn from in all aspects of life. I am also

grateful to Dr. Ahmed Bouferguene for his valuable and insightful feedback given throughout my

academic studies, and to the examining committee members, Dr. Ali Imanpour and Dr. Jeff Rankin

for taking the time to review and critique my work and offer their feedback during my defense.

I would also like extend my profound thanks to my friends and colleagues in the Construction

Engineering and Management group as well as the Department of Civil and Environmental

Engineering at the University of Alberta. To Stephen Hague for his valuable help in developing

the simulation model, to Jonathan Tomalty and Kristin Berg for their effort on editing and

providing valuable suggestions on my work, and to the program service advisors for their

responsiveness and help. Thanks also go to my peers with whom I have fruitful and thoughtful

discussions, Emad Mohamed, Fatima Alsakka, Narges Sajadfar, Mohamad Darwish, AlaaaEldin

Hebiba, Hadia Awad, and Aladdin Alwisy, from which I hope our discussions have helped them

flourish as researchers and engineers as much as it helped me.

vii

Table of Contents

Abstract .. ii

Preface ... iv

Dedication .. v

Acknowledgments .. vi

List of Tables ... x

List of Figures ... xi

Abbreviations ... xiii

Chapter 1 Introduction ... 1

1.1 Background .. 1

1.2 Research Motivation .. 3

1.2.1 Residential wall panels ... 5

1.2.2 Industrial pipe spools .. 6

1.3 Research Objectives ... 7

1.4 Thesis Organization.. 9

Chapter 2 Literature Review ... 11

2.1 Industrialized Building Construction ... 11

2.1.1 Premise of industrialization in building construction ... 11

2.1.2 Industrialization of building construction and Construction 4.0 13

2.2 Production Scheduling in IBC ... 16

2.2.1 Project scheduling and control .. 16

2.2.2 Flow shop scheduling problem ... 19

2.3 Knowledge Discovery in Databases and Data Mining... 23

2.3.1 Knowledge and data .. 23

2.3.2 Data mining and tidy data ... 25

2.3.3 Machine learning algorithms .. 27

2.3.4 Model evaluation and validation ... 38

2.4 Industrial Applications of KDD ... 43

2.4.1 Knowledge discovery in databases in construction .. 43

2.4.2 Manufacturing cycle time predictions using KDD ... 44

2.5 Summary and Research Gaps ... 46

viii

Chapter 3 Research Methodology ... 47

3.1 Proposed Framework.. 47

3.2 Research Methods .. 50

Chapter 4 Residential Wall Panel Fabrication Shop ... 55

4.1 Factory Layout and Process Description .. 55

4.2 Data Acquisition and Description .. 59

4.3 Data Preprocessing ... 63

4.3.1 Main preparation tasks .. 63

4.3.2 Cycle time calculation from raw RFID ... 65

4.4 Feature Engineering and Selection ... 67

4.5 Development of Machine Learning Models... 70

4.5.1 Mining data using regression models ... 70

4.5.2 Comparison of model performances ... 72

4.5.3 Observations on model performances ... 73

4.5.4 Comparison with Little’s law.. 76

4.5.5 Limitations and future work.. 77

Chapter 5 Simulation Modelling.. 78

5.1 Description of the Simulation Model ... 78

5.1.1 Purpose and context .. 78

5.1.2 Discrete-event simulation model .. 80

5.2 Estimating Activity Durations .. 85

5.3 Model Validation and Output ... 88

5.3.1 Model validation and verification ... 88

5.3.2 Simulation model output ... 91

5.4 Discussion and Comparison of ML Models ... 93

5.4.1 Experiment setup .. 93

5.4.2 Results and discussion .. 95

5.4.3 Conclusion .. 98

Chapter 6 Industrial Pipe Spool Fabrication Facility ... 99

6.1 Process Description and Work Sequence ... 100

6.1.1 Drafting and engineering phase .. 100

6.1.2 Material supply phase ... 101

ix

6.1.3 Fabrication phase .. 101

6.1.4 Post-fabrication phase ... 102

6.1.5 Shipping phase .. 103

6.2 Data Identification and Collection ... 104

6.2.1 Collection of raw data ... 104

6.2.2 Identification and description of collected data .. 105

6.3 Data Preparation and Exploration .. 109

6.3.1 Data transformation .. 109

6.3.2 Data cleaning .. 110

6.3.3 Data descriptions ... 111

6.4 Feature Engineering ... 113

6.4.1 Shop utilization features ... 113

6.4.2 Features categorization ... 116

6.5 Machine Learning Models for Regression ... 117

6.5.1 Evaluation of attribute subsets .. 118

6.5.2 Application and comparison of models .. 121

6.5.3 Results and discussion .. 124

6.5.4 Conclusion .. 126

Chapter 7 Conclusions .. 127

7.1 Summary and Conclusions ... 127

7.2 Research Contributions .. 129

7.2.1 Academic contributions .. 129

7.2.2 Industrial contributions ... 130

7.3 Limitations and Future Work ... 131

References .. 134

Appendix A: Python Script for ML Modelling – Case Study 1 .. 161

x

List of Tables

Table 4-1. Statistics summary of attributes in DF2 dataset .. 63

Table 4-2. Main preprocessing steps applied to DF1 and DF2... 64

Table 4-3. Subsets created by combining attributes of the tidy dataset .. 70

Table 4-4. Model performance measures for the datasets described in Table 4-3 72

Table 5-1. Examples of activity duration distributions ... 87

Table 5-2. Description of the datasets used in the experiment ... 94

Table 5-3. Performance measures of ERT model on the four datasets ... 96

Table 6-1. Initial dataset attributes - column headers ... 106

Table 6-2. Spool information example records... 108

Table 6-3. Issuing schedule example records ... 108

Table 6-4. Descriptive statistics of physical numerical attributes and fabrication durations 111

Table 6-5. Attribute subset experiments ... 118

Table 6-6. Performance measures of attribute subsets.. 119

Table 6-7. Summary of Hyperparameter Experiments ... 122

Table 6-8. Performance measures for the final fit models .. 124

xi

List of Figures

Figure 1-1. Time savings in modular construction ... 2

Figure 1-2. Real-time update of production schedule by accurate prediction of CT 4

Figure 1-3. Merging of single-wall panels into a multiwall panel .. 5

Figure 1-4. High-level workflow of the pipe spool fabrication process ... 6

Figure 2-1. Simplified high-level workflow in industrialized building construction 12

Figure 2-2. Example of a typical RFID system setup ... 16

Figure 2-3. Knowledge Tree (from data to wisdom) .. 23

Figure 2-4. Broad categorization of machine learning algorithms ... 28

Figure 2-5. Interaction of agent and environment in reinforcement learning [111] 32

Figure 2-6. A neural network with 2 input features, 1 hidden layer, and 1 output 35

Figure 2-7. Schematic of constructing a random forest (RF) ... 37

Figure 2-8. Schematic of time series cross validation (TSCV) .. 42

Figure 3-1. Proposed framework for production time prediction in IBC environment 48

Figure 3-2. Workflow of the proposed research methods... 52

Figure 4-1. Workflow of wall production line .. 55

Figure 4-2. Shop floor layout and location of RFID antennas between workstations 56

Figure 4-3. Framing station (installation of studs between top and bottom plates) 57

Figure 4-4. Sheathing station (manual nailing of sheets for exterior walls) 58

Figure 4-5. Multifunction bridge (at initial position when receiving a wall panel) 59

Figure 4-6. Flowchart of initial data identification and data preprocessing steps 60

Figure 4-7. Number of RFID readings per month, per week, and per 14-days rolling window ... 61

xii

Figure 4-8. Total panel counts for each daily production rate .. 62

Figure 4-9. Total cycle time (between A1 and A5 in minutes) .. 66

Figure 4-10. Engineered feature calculations for Panel i at the time when it starts production ... 69

Figure 4-11. Data splitting and model evaluation ... 71

Figure 4-12. Minimum MAPE versus Lookback Timeframe for the dataset ‘Engineered’ 76

Figure 5-1. Simulation model produces four datasets .. 79

Figure 5-2. DES environment in Simphony.NET using General Template 81

Figure 5-3. Detailed tasks, resources, and statistics of the framing station 82

Figure 5-4. Simulating delay events at the framing station using the branch element 84

Figure 5-5. Probability distribution of simulated and actual total CT .. 90

Figure 5-6. Probability distribution of actual and simulated CT for the four workstations.......... 90

Figure 5-7. Process of creating and assigning new features within the simulation model 92

Figure 5-8. Effect of lookback duration on MAPE for sample production days 95

Figure 6-1. Main phases of pipe spool fabrication process .. 100

Figure 6-2. Data flow diagram from data sources to initial dataset .. 104

Figure 6-3. Actual and planned total fabrication durations (days) ... 112

Figure 6-4. Computation of SL for a new pipe spool ... 115

Figure 6-5. a) Preparation steps from Raw to Tidy dataset, b) Headers and example records of the

tidy dataset .. 116

Figure 6-6. MAPE for combined number of max. features and min. samples to split 123

Figure 6-7. Kernel density estimate (probability) of planned, actual, and predicted durations .. 125

xiii

Abbreviations

Abbreviation Description

AEC Architecture, engineering, and construction

BIM Building information modelling

BOM Bill of material

BT Buffer table (refer to chapter 4)

CC Correlation coefficient

CCTV Closed-circuit television

CNC Computer numerical control

CRISP-DM Cross-industry standard process model for data mining

CT Production cycle time

CV Cross-validation

DES Discrete-event simulation

DI Diameter inch

DM Data mining

DSL Diameter shop loading feature

DSR Design science research

DT Decision tree (model)

ERT Extremely randomized tree (model)

ETL Extract/transform/load

FE Feature Engineering

xiv

Abbreviation Description

FS Framing station (refer to chapter 4)

GBDT Gradient boosted decision trees (model)

IBC Industrialized building construction

IFC Industry Foundation Classes

ISL Items shop loading feature

IT Idle time

KDD Knowledge discovery in databases

KNN K-nearest neighbors (model)

LOOCV Leave-one-out Cross-Validation

LR Linear regression (model)

LT Production lead time

MAE Mean absolute error

MAPE Mean absolute percentage error

MaxAE Maximum absolute error

MedAE Median absolute error

MFB Multifunction bridge (refer to chapter 4)

MIR Material issue report date

ML Machine learning

MSE Mean square error

MTR Material transfer report date

MWP Multiwall panel

xv

Abbreviation Description

NDE Non-destructive examination

NN Neural networks (model)

OSC Offsite construction

PC Product composition properties

PT Processing time

PWHT Post-weld heat treatment

QC Quality control

RAS Required at site date

RDBMS Rational database management system

RF Random forests (model)

RFID Radio frequency identification

RL Reinforcement learning

SL Shop loading

SS Sheathing station (refer to chapter 4)

SSE Sum of the squared errors

SSL Surface area shop loading feature

SUR Shop utilization ratio

TH Throughput

TSCV Time series cross-validation

WIP Work in progress

WSL Weight shop loading feature

1

Chapter 1 Introduction

1.1 Background

Industrialized building construction (IBC) approaches, including offsite construction,

prefabrication, and modularization, are being used, in some form, by more than 80% of contractors

in the U.S., underscoring the potential for future market growth [1]. In fact, it is projected that

modular construction will reach $130 billion in market value in the U.S. and Europe by 2030 [2].

In Canada, modular construction accounted for a market value of more than 1 billion CAD in 2019

[3]. The growing level of interest in IBC by both industry and the academic community is due to

the numerous benefits and advantages of IBC including shortened project durations, lower overall

project costs, improved on-site safety, higher product quality, increased productivity, reduced

construction wastes [4], and easier implementation of novel techniques and technologies.

Among the top motivation for increasing the adoption of prefabrication and modular construction

is the improved project scheduling [5] accounting for an overall time savings of 20-50% compared

to traditional onsite builds [2]. This is because building construction and site preparation activities

can take place simultaneously, as shown in Figure 1-1, and there is less disruption due to extreme

weather conditions. On the other hand, industrialized building construction is one of the more

complex manufacturing environments due to numerous factors, namely, (i) the diversity of

building components that leads, occasionally, to the full customization of building modules; (ii)

the integration of many sub-systems (structural, electromechanical, finishing) that must be

included in the building; (iii) the large and heavy machinery and components involved; and (iv)

2

the numerous interrelated activities including production, assembly, finishing, delivery, and onsite

installation [6]. All of this imposes challenges to accurately estimate activity durations at the initial

stages of planning and scheduling.

Figure 1-1. Time savings in modular construction

In any manufacturing process, as well as in the context of IBC, a job’s cycle time (CT) is a key

performance metric [7], which is defined as the time taken to complete the production process of

one product, from start to finish. A closely related term is lead time (LT), which is defined as the

time taken from order placement until the ordered item is delivered to the customer. Accurate

forecasting of CT or LT for a product is crucial when determining customer delivery dates, when

scheduling resources and actions, and when controlling and monitoring daily operations. In the

literature, several methods have been developed to predict cycle time [8]. Simulation has been the

most widely used approach in that it can realistically capture the complexities of manufacturing;

however, practical disadvantages include the expense of model development and maintenance, and

the emphasis on average performance rather than on the prediction of cycle time for an individual

product. On the other hand, the most fundamental analytical approach to predict the average cycle

time is Little’s law [9], which states that the inventory between the start and end points of a product

3

routing, which is referred to as work in progress (WIP), is equal to the product of average CT and

throughput (TH), as shown in Equation 1-1:

𝑊𝐼𝑃 = 𝐶𝑇 × 𝑇𝐻 1-1

Such a static model does not predict well because it does not capture the stochastic nature of

manufacturing; nevertheless, it can be used as a benchmark. Notwithstanding a large amount of

data being collected in IBC factories, and the advances over the last decade to automatically gather

and analyze production data, these data are not being fully utilized to improve the decision making

in IBC. Therefore, the present study proposes a middle approach, between a simple statistical

equation and more sophisticated simulation modelling, that uses machine learning (ML)

techniques to predict cycle time, which is believed to provide many advantages to the

industrialized building construction industry.

1.2 Research Motivation

Although industrialized building construction is an interdisciplinary field at the interface of

manufacturing and construction, there have been relatively few studies that investigate the

application of machine learning to predict cycle time in this domain. IBC typically employs a

make-to-order production approach where products (i.e., building components or modules) are

only built after a customer order has been confirmed. Products are also highly customized to satisfy

customer requirements, and their production must be coordinated with site delivery; all the above

factors make the prediction of cycle or lead time a complex task. This research study is conducted

to fill this research gap in the body of knowledge, with practical application to the industry.

Construction scheduling in IBC depends on the schedule of onsite activities, the factory production

4

processes, and the expected delivery dates of raw material from suppliers. As such, production

cycle time constitutes a critical component in this supply chain, from raw material to the end-

product. The main goal of the present study is to devise a robust system for accurately predicting

the cycle time, and, hence, to improve the predictability of that phase of the overall schedule.

Having a more predictable production schedule will allow the production/project manager to

mitigate any delays and implement alternative actions should there be any unexpected interruption

to factory production. In addition, accurate prediction of cycle time enables effective management

of the fabrication facility’s capacity and workload. Figure 1-2 illustrates how the accurate

prediction of cycle time improves factory scheduling by updating the baseline production schedule

with real-time data in the context of the overall construction schedule.

Figure 1-2. Real-time update of production schedule by accurate prediction of CT

To validate the estimation of the production durations using machine learning approaches, case

studies are investigated in two different IBC subsectors. One case is in the residential building

sector where multiwall wood panels are produced in the factory and assembled onsite to construct

single-family houses. The second case is in the industrial construction sector where prefabricated

sections of steel pipes, called pipe spools, are manufactured offsite and delivered for onsite

assembly. The two case studies are briefly described below.

5

1.2.1 Residential wall panels

In the residential housing industry, prefabricated panelized construction refers to a production

system where a house is broken down into wall, floor, and roof elements. These elements are

customized as per client requirements, manufactured in a factory, and then transported to the

jobsite for assembly. The manufactured houses vary in size, shape, and style and have various

customizable options for clients to choose from, adding to the uniqueness of each house [10]. In

the wall production line, single-wall panels for each house are merged into multiwall panels to

optimize workflow and reduce material waste, as shown in Figure 1-3.

Figure 1-3. Merging of single-wall panels into a multiwall panel

Multiwall panels go through different processes and spend varying amounts of time at each

workstation based on their physical properties (e.g., length, height, number and size of studs,

window/door openings) as well as on the utilization of the production line. Also, the amount of

work required to manufacture a wall panel can vary significantly based on the wall type. Interior

walls require framing only, while exterior walls require framing, sheathing, nailing, and may also

6

require window and door installation. Both types of walls are produced on the same production

line causing variations that lead to line imbalances, which may cause large variations in waiting

and processing times.

Predicting the cycle time of each wall panel has been based primarily on the experience of

production managers, which is prone to human error and may not capture the variation that exits

in the processing and waiting times at each individual workstation. Therefore, the proposed

methodology in this thesis is applied to predict the cycle time using machine learning approaches

which utilize the historical data about production of similar wall panels.

1.2.2 Industrial pipe spools

On industrial remote construction jobsites, massive process unit modules consisting of piping,

electrical, and instrumentation equipment are prefabricated in locations closer to major cities, and

then shipped to remote jobsites for assembly [11]. The prefabrication of pipe spools, representing

the largest portion of modules, takes place in a fabrication yard or shop where heavy equipment is

used to assemble sub-components (e.g., pipes, valves, elbows). Before the fabrication of modules,

the associated spools need to be ready; however, a large inventory of pipe spools would increase

the requirements for storage and double handling. Determining the right time to start the

fabrication of a pipe spool can be challenging as there are many factors affecting the fabrication

durations. Figure 1-4 summarizes the general processes involved in spool fabrication, each of

which include several subtasks that are further described in Chapter 6.

Figure 1-4. High-level workflow of the pipe spool fabrication process

7

In a pipe spool factory, fabrication durations are normally determined using heuristics based on

the experience of production coordinators. This is traditionally done with little or no consideration

to shop utilization and workforce availability, given there is a sufficient float allocated in the

schedule [12]. Using heuristic rules for estimating fabrication durations, the lead time of the pipe

spools cannot be accurately forecasted due to several factors. One factor is the difficulty in

quantifying the impact of workforce availability on durations, which causes late delivery of some

products, leading to low customer satisfaction. Meanwhile, other products are ready well in

advance, leading to overloading on the storage and handling capacity of the plant. Another factor

is the availability of raw materials. If there is shortage of materials, shop operations are disrupted

resulting in delays that affect project completion; if there is an abundance of materials, the capacity

and services of material storage and management are overloaded. Therefore, it is necessary to have

a robust method to accurately predict the lead time so that the baseline schedule can be altered to

reflect any possible delays caused by material and/or workforce availability. In this thesis,

predicting lead time using historical data and machine learning approaches is proposed.

1.3 Research Objectives

One characteristic of industrialized building construction is the highly customizable products being

manufactured. By using the latest advances in machine learning, the data that is accumulating

continuously as part of the daily operations in an IBC facility can be leveraged to accurately predict

cycle time, and, therefore, improve production planning and scheduling. To train data-driven

models, we collect, integrate, and prepare data regarding the physical characteristics of building

components, time-specific attributes capturing the planned production durations, and develop a set

of engineered features that captures the real-time loading conditions of the job shop. This study

8

explores the influence of the different product and process attributes on the predictability of cycle

time. The proposed research is built upon the following hypothesis:

“In the context of industrialized building construction, historical data pertaining to the physical

properties of building components and real-time tracking information, when augmented with

engineered features (i.e., shop-loading attributes), will more accurately predict the cycle time

required to manufacture new components, which will improve production planning and

scheduling.”

Specifically, the present study tries to achieve the following four objectives:

1) To accurately predict the cycle time of producing wall panels using machine learning

models and real-time RFID data in a residential manufacturing facility (Chapter 4).

2) To examine how prediction accuracy is improved by augmenting the dataset with

domain-specific shop loading (SL) features, and to examine the effect of different

grouping strategies used to combine several attributes of the dataset (Chapter 4).

3) To investigate which features should be collected, among those that are not practically

collected, to improve the cycle time predictability using discrete-event simulation

(Chapter 5).

4) To examine the generalization of the feature engineering and machine learning

approaches by applying the methodology to an industrial pipe spool fabrication facility

(Chapter 6).

9

1.4 Thesis Organization

This thesis consists of seven chapters. The current chapter provides a concise background of the

current state of industrialized building construction, focusing on the use of machine learning

approaches to tackle scheduling challenges, and briefly describing the two case studies

investigated in this thesis. The research motivation and research objectives are also outlined.

Chapter 2 presents an overview of the literature that is relevant to the domain, problem, and

methods used in the thesis. It includes sections on industrialized building construction, production

scheduling, data mining concepts and techniques, and the industrial applications of knowledge

discovery in databases in construction manufacturing settings.

In Chapter 3, the proposed framework to improve the predictability of production time in

industrialized building construction facilities using machine learning approaches is presented. The

specific research methods and steps are also described in detail.

Chapter 4 presents the implementation of the proposed framework in a case study of a residential

wall panel fabrication facility. The knowledge discovery in databases approach is applied starting

from data acquisition and concluding with model evaluation and lessons learned. The findings

satisfy the first and second objectives of the research.

In Chapter 5, an experiment is developed using discrete-event simulation to investigate the effect

of creating engineered shop-loading features on the accuracy of the predictive models. The

simulation model is developed for the same case study presented in Chapter 4. The goal is to

examine the features attributable to improving cycle time predictability, which aligns with the third

objective.

10

Chapter 6 presents the second case study where the same framework is applied in an industrial

pipe spool fabrication shop. The goal is to examine the generalization of the proposed approach to

a different subsector of industrialized building construction.

The last chapter, Chapter 7, summarizes the work undertaken as described in the thesis and

presents concluding remarks. Furthermore, future research work and academic and industrial

contributions of the present research are presented.

11

Chapter 2 Literature Review

In this chapter, a review of the relevant literature is provided. Given the sophistication and complex

nature of the research problem, four fields are covered in the literature review. The first section

presents an overview of the industrialized building construction industry and the role that the

Construction 4.0 paradigm plays in enabling more efficient design, planning, and delivery of

construction products. The second section provides an overview of production planning focusing

mainly on flow shop scheduling as it is more relevant to industrialized building construction. The

third section provides an overview of data mining and machine learning techniques, focusing more

on the methods used in the present research to predict production time. The fourth section reviews

the industrial applications of knowledge discovery in databases in the construction industry,

specifically the applications to predict production time in manufacturing facilities.

2.1 Industrialized Building Construction

2.1.1 Premise of industrialization in building construction

Various terms such as prefabrication, offsite fabrication, offsite construction (OSC), and modular

construction, to name a few [13,14], might all refer to the same approach: a construction process

that applies manufacturing principles and techniques to construction projects where products (in

this case, building components) go through a particular life-cycle from concept, to design, to

planning, to manufacturing, and then on-site assembly, as shown in Figure 2-1. The appropriate

manufacturing model depends on the construction subsector (private housing, commercial

building, industrial, major projects) being analyzed [15,16]. The term “industrialized building

construction” (IBC) is used hereinafter to denote any of the terms above in which the various

12

elements of residential, commercial, or industrial buildings are produced in a controlled factory

environment. Building components (anything from bathrooms, prewired lighting fixtures, exterior

walls, to complete building modules) are built in the factory and then transported, in sequence, to

the construction site. At the site, a crane is used to lift components or modules off the transport

truck and set them on a permanent foundation. Site crews then attach the components or modules

to each other and to the foundation and seal the building. After setting the building, several

finishing activities take place to complete the building [17–19]. Modular buildings comply with

local building codes similar to those applicable to conventional construction, and are constructed

using the same materials and details as conventional buildings, with minor modifications to

accommodate shipping and installation [6]. The supply chain of industrialized building

construction broadly includes eight main participants: customers (project owners), manufacturers,

dealers, integrated companies (manufacturing and sale), material suppliers, design team

(architects/engineers), general and specialty contractors, and local permit agencies [20].

Figure 2-1. Simplified high-level workflow in industrialized building construction

The burgeoning academic interest in the domain of modular and prefabricated construction has

resulted in a large number of review articles related to industrialized building construction in the

past decade. In the last three years, from 2018 to 2020, some articles applied topic modelling to

examine trending topics and themes in IBC [21], some carried out critical reviews and bibliometric

analysis to highlight key research words, identify research gaps, and suggest future research

13

opportunities in industrialized building construction [22–24], while others focused on critical

reviews of publications about emerging technologies and adoption of digitization in IBC [25–28].

Moreover, a few articles provided systematic reviews on specific topics such as policies and

regulations related to IBC [29], constraints and barriers to the adoption of modular construction

[30–34], construction risk management within the IBC industry [35], the environmental

performance of OSC facilities [36], and supply chain management in IBC [37].

Project planning and design, including workflow optimization and project delivery processes, are

among the more frequently studied research themes in IBC during the past decade [23]. Shortened

project time and the enhanced predictability of activity durations are among the many benefits that

are recognized and reported in the literature when using IBC approaches. As a considerable amount

of data is being generated as part of the daily operations in the fabrication shop, the IBC

environment enables the utilization of the latest technological advances brought by the

Construction 4.0 paradigm which is described in the following section. Essentially, the

development of machine learning models requires substantial amount of accurate data which can

be provided by the manufacturing environment of IBC as opposed to the inferior and scattered

data found in conventional construction. Acquiring, processing, and analyzing large amounts of

data constitute one of the four technologies that are essential in Construction 4.0. Those four

technologies are 3D printing, big data, virtual reality, and Internet of Things [38]. The research

described in this thesis focuses on employing advanced data analytics techniques, including data

mining and machine learning, to estimate the production cycle time of building components.

2.1.2 Industrialization of building construction and Construction 4.0

During the past few decades, the rate of adoption of industrialization techniques in the construction

industry has been limited compared to other fields [39]. However, moving toward more digitized

14

and automated processes offers enormous potential for productivity improvements. In recent years,

the construction industry has realized the importance of using information technologies and data

analytics approaches. The most recent evidence is the emerging paradigm of Construction 4.0, a

term coined in the context of “Industry 4.0” which is the fourth industrial revolution involving

automation, data exchange, and collaboration in manufacturing [40–42]. Muhuri et al. [43]

provides a bibliometric analysis and an extensive overview of recent developments in the field of

Industry 4.0. In essence, Construction 4.0 is the digitization and automation of the AEC industry.

The ideas of Construction 4.0 can be based on two main concepts: digitization of the construction

industry, and industrialization of construction processes [38,44]. Industrialized building

construction promotes the enhancement of construction manufacturing processes by employing

the concepts of mechanization, digitization, and automation in the prefab facility [28,45].

The Construction 4.0 framework provides a mechanism that facilitates the development of a

digitized model of the built environment and/or its processes that supports the design, planning,

monitoring and delivery of construction products. In the context of IBC, the driving technologies

and concepts brought by Construction 4.0 that are relevant in this thesis are the following:

1. Building information modelling (BIM);

2. Automatic data acquisition such as radio frequency identification (RFID); and

3. Advanced data analytics, specifically data mining (DM) and machine learning (ML).

BIM, as one of the most promising developments, has been increasingly adopted in the

architecture, engineering, and construction (AEC) fields. The National Institute of Building

Sciences describes BIM as “a digital representation of physical and functional characteristics of a

facility … a shared knowledge resource for information about a facility forming a reliable basis

for decisions during its life-cycle; defined as existing from earliest conception to demolition” [46].

15

BIM consists mainly of a computer-generated 3D model of a building that contains accurate and

well-defined geometry data as well as an information database that AEC practitioners can use to

design the building and simulate its construction [47]. To improve the performance of the

construction industry and to realize the benefits of both the BIM technology and IBC approach,

the joint application of BIM and IBC has seen increasing applications in both industry and

academia [25]. According to the 2020 American Institute of Architects (AIA) Firm Survey Report,

BIM tools are being used by 100% of large firms, 88% of medium size firms, and 37% of small

firms. Moreover, the global BIM market is expected to grow from $4.5 billion in 2020 to $8.8

billion in 2024 [48]. BIM uses Industry Foundation Classes (IFC) for exchanging building

information among different CAD packages [49]. In the present research, BIM is primarily used

to obtain data about the physical characteristics of building components that are being

manufactured in an IBC facility. This data will be combined with product tracking information

obtained from automatic tracking systems, such as RFID, which will be used as the basis for

developing data-driven ML models to assist in project planning and scheduling.

To enable the application of machine learning predictive models, the availability of large datasets

is crucial. Automatic real-time data acquisition for construction project tracking includes, but is

not limited to, enhanced IT, geospatial, 3D imaging, and augmented reality technologies [50]. One

technology common to IBC is the radio frequency identification (RFID) tracking system. RFID is

used as a sensing mechanism to locate product tags using the electromagnetic field of antennas

that are connected to RFID readers populating a central database. Within any specific setup, each

tag contains unique identification information. Figure 2-2 illustrates a typical RFID system setup

consisting of three main components: a) scanning antennas, b) a transceiver that reads and

interprets the data, and c) transponders/tags that have been programmed with information and are

16

attached to the objects (e.g., wall panels) being tracked. In the literature, Valero et al. (2015) [51]

and Valero and Adán (2016) [52] provide a comprehensive review of recent RFID applications in

the construction industry.

Figure 2-2. Example of a typical RFID system setup

Data mining and machine learning techniques are further discussed in Section 2.3

2.2 Production Scheduling in IBC

2.2.1 Project scheduling and control

Essential insights from the production management field have been and continue to be transferred

to the field of project management [53,54]. Effective project management needs to be integrated

with effective production management to achieve the highest operational improvements. For a

given scope of work, the basic tasks of a project manager involve planning, scheduling, and control

of project activities by using the available resources effectively and efficiently. In the planning

phase, a listing of activities that must be performed to complete the project is developed including

determining the different types of required resources and estimating the duration and costs of

activities. In scheduling, the chronological ordering of the actual tasks is performed, the actual

resources needed at each stage in the project are calculated, and the expected completion time of

each activity is determined. In the control phase, the difference between the scheduled and actual

performance once the project has started is closely monitored and analyzed [55].

17

Scheduling has been defined as “the determination of the timing and sequence of operations in the

project and their assembly to give the overall completion time” [56] and the focus of the research

presented in this thesis is on estimating activity durations. Per PMI’s Guide to the Project

Management Body of Knowledge (PMBOK), estimating activity durations is a process of the

Project Schedule Management knowledge area which encompass several techniques to determine

duration estimates (e.g., expert judgement, analogous estimating, bottom-up estimating) [57].

Developing a schedule for an IBC manufacturing environment, such as panelized wall production

or pipe-spool fabrication, poses unique challenges because of the stochastic nature of such

environments due to the varying customer demands and the highly customizable products being

produced. All planned projects carry an element of risk due to the uncertainties involved during

the planning and scheduling phases. There has been ample research on production planning and

control focusing on different types of manufacturing environments. A few studies were conducted

to improve the production process at panelized wall fabrication facilities. For example, a lean

production approach to improve process planning and control in the home building industry was

developed by Yu [58]; a methodology to improve the panelized home production process through

lean principles and simulation tools was proposed by Shafai [59]; and an integrated production

planning framework for panelized residential buildings using simulation and RFID tracking system

was presented by Altaf [60]. In addition, an integrated project control and monitoring framework

in a steel prefabrication facility using RFID technology and discrete-event simulation was

presented by Azimi et al. [61]. Although many studies and techniques have investigated production

planning and control in industrialized building construction, the application of advanced data

analytics to improve the planning practices and enhance the schedule predictability has not been

fully examined in the construction industry.

18

In practice, activity durations in an IBC manufacturing facility are either estimated based on: (1)

average times obtained from historical data and, for the most part, rely on the experience of project

coordinators or trade foremen for specific job conditions [12], or (2) the unit quantity multiplied

by the production rate (time/unit) for the activity scope of work in the case of deterministic

scheduling [62]. Broadly speaking, there are two main approaches to develop schedules in IBC,

and more generally in construction. The first approach is the traditional critical path method

(CPM), a forward calculation method where the scheduling begins with a fixed start date and the

durations of interdependent activities are estimated to provide an expected completion date. The

second approach is the pull scheduling process, a backward calculation method where the schedule

is developed starting at the end (i.e., based on an approved completion date) and the durations of

each predecessor activity are identified providing a required start date for each product [63,64].

Both approaches are being used in IBC manufacturing; however, the pull-driven approach based

on lean concepts is gaining more acceptance for operations within the production facility.

Nevertheless, the adoption of any scheduling approach and the associated productivity rates is

company-specific [62], and every facility adjusts its scheduling practice as to improve its overall

operational performance.

In one case study, Tommelein, I. (1998) used process modelling to compare various scheduling

approaches in a pipe-spool installation project and concluded that the lean-production pull-driven

technique for scheduling improves the performance of construction processes [63]. Mosayebi et

al. (2012) estimated the effect of different factors on the productivity and, therefore, the duration

of pipe spool fabrication based on observations from previous projects and the expert opinion of

shop superintendents. They concluded that one important factor is the configuration of spools,

which affects the workflow in the shop and can result in an increase in the time required to fabricate

19

a pipe spool by up to 50% [65]. Other case studies investigated different factors that affect the

productivity and, hence, the development of the production schedule in industrialized building

construction manufacturing facility. For example, these factors include using standardized as

opposed to one-of-a-kind components [66], shop layouts and the associated lean production flow

techniques [67], and changing the sequence of assembly activities [68]. In previous case studies,

estimating activity durations appeared to largely depend on: (1) the experience of the production

coordinators or shop foremen, (2) simulated data that were arbitrarily chosen or based on previous

empirical research studies, or (3) averages of historical data that do not capture the uniqueness of

the products or processes under study.

2.2.2 Flow shop scheduling problem

Since the early 1960s, many textbooks and manuscripts have been published focusing on

sequencing and scheduling. More recently, some notable books that cover many aspects of

scheduling, from the elementary to the more advanced topics, include: Project Scheduling A

Research Handbook by Demeulemeester and Herroelen (2002) [55]; Handbook of Scheduling

Algorithms, Models, and Performance Analysis edited by Leung (2004) [69]; Scheduling Theory,

Algorithms, and Systems by Pinedo (2016) [70]; and Principles of Sequencing and Scheduling by

Baker and Trietsch (2018) [71].

Scheduling models are broadly categorized as either deterministic or stochastic [70]. They

basically differ in that “deterministic scheduling involves solving a scheduling problem … when

the various parameters, viz., job processing times, due dates, release dates, and so on, are known

with certainty. On the other hand, stochastic scheduling deals with problems when at least one of

these parameters is not known with certainty” [72]. As the processing times and actual due dates

20

are not known with certainty, scheduling in an IBC manufacturing environment is a prime example

of a stochastic scheduling problem.

In addition to categorizing scheduling models as either deterministic or stochastic, the

manufacturing environment in which these models are applied can be sectorized according to the

layout of the machines, or workstations, and according to how the different job processing routes

are specified. Basic manufacturing layouts include single machine, parallel machine, flow shop,

job shop, open shop, and hybrid layouts [73], which are briefly described as follows.

a) Single machine layout: The shop layout is simply formed by a single machine where each

job must be processed on that machine only once without rerouting. Each job is processed

by the machine for a duration defined as pj processing time units then the job leaves the

machine once finished.

b) Parallel machine layout: As an extension of the single machine layout, a parallel machine

layout has several parallel machines where each job must be processed one by one of m

available machines. Parallel machine models are divided into three categories based on the

speed by which the jobs are processed: identical parallel machines, uniform parallel

machines, and unrelated parallel machines.

c) Flow shop layout: In a flow shop, there are m machines (i.e., workstations) organized in

series, each of which performs a specific task. All the jobs must follow the same processing

order, and each job must visit all machines. When the processing sequence is the same for

all machines (i.e., a job cannot pass another while waiting in a queue), the flow shop is

referred to as permutation flow job.

21

d) Job shop layout: Job shops are similar to the flow shops in that there are m machines

organized in series. However, although each job might have a different route when visiting

the machines, each job must visit all machines exactly once.

e) Open shop layout: The open shop is the more general and complex layout setting where

there are m machines in series and n jobs to be processed by all machines. In this case, each

job can be processed by the machines in any order making the routing of all jobs an

arbitrary, but flexible sequencing task.

f) Hybrid flow layout: In a hybrid layout, there are m production stages, each stage with mi

parallel machines that may be either identical, uniform, or unrelated. The number of

parallel machines at each stage might be different and all routing options are possible. Each

job must be processed once at each stage by one of the available parallel machines.

In addition to the above basic layouts, some prototypical manufacturing environments include

manufacturing cells, assembly shops, production lines, batch shops, and flexible manufacturing

systems.

Most IBC manufacturing environments (e.g., panelized wall production or pipe-spool fabrication)

resemble a mix of flow shops (i.e., a series of machines mi each perform a specific operation on

each job j), and assembly shops or production lines. In an assembly shop, operations for some jobs

need to be finished in order for subsequent operations to begin, which will utilize the previous

operations as raw materials. In a production line (also known as an assembly line), products move

along via some means of transportation (e.g., a conveyor track) and operations are performed on

the products with no buffer between operations. To be consistent with the scheduling literature,

the term “job” refers to the products to be manufactured and in the case of an IBC manufacturing

shop, the job is the building module, component, or part that needs to be fabricated.

22

According to the complexity theory, a branch of computer science, the relationship between

scheduling problems and their solution methods is considered a combinatorial optimization

problem. The complexity here refers to the “computing effort required by a solution algorithm”

[71] which measures, roughly speaking, the number of computations as a function of the problem

size n. Most scheduling problems, except for simple single-machine problems, are classified as

non-deterministic polynomial-time (NP-hard) problems, meaning that an optimal solution to large

scheduling problems is unlikely to be found in an acceptable polynomial time [73]. Therefore,

heuristic solution procedures can offer near-optimal solutions that are practically acceptable with

modest computational requirements. A heuristic method can be defined as “a logical sequence of

steps, the execution of which yields a solution, which is not necessarily optimal. However, the

solution is usually good enough to be used in practice for planning and control purposes” [55].

Most research efforts over the past few decades have been directed toward using heuristics to find

feasible schedules in flow shops [74–76], job shops [77,78], and distributed permutation flow

shops [79–82]. A comparative study that examined existing heuristics and metaheuristics methods

for the permutation flow shop was carried out by Fernandez-Viagas et al. [83].

The current literature has focused on solving the flow shop scheduling problem either with fixed

activity durations or probabilistic durations. The previous studies mainly examined the sequencing

problem and how to find job sequencing that optimizes certain desired criteria (e.g., minimum

overall production duration). However, none of the studies, as to my knowledge, has focused on

developing a framework to accurately estimate individual job durations in a stochastic

environment for industrialized building construction, using the latest advances in machine learning

and data mining techniques. The present research described in this thesis investigates this

application and is set to fill the research gap in the body of knowledge in the context of IBC.

23

2.3 Knowledge Discovery in Databases and Data Mining

2.3.1 Knowledge and data

The term knowledge discovery in databases (KDD) had been adopted by the end of the 1980s to

replace all the terms referring to methods of finding patterns and similarities in raw data, including

knowledge extraction, information discovery, information harvesting, data archeology, and data

pattern processing. KDD is defined as the overall partially automated process of finding valid,

useful, and previously unknown knowledge from data, and data mining (DM) refers to a particular

step in this process [84–86]. The process of generating value from an organization’s intangible

assets is known as knowledge management [87]. Knowledge can be represented as a tree with data

at its base, and with information, knowledge and wisdom at the top as shown in Figure 2-3 [88,89].

Figure 2-3. Knowledge Tree (from data to wisdom)

Data is unorganized information that is processed to make it meaningful, and it consists of facts,

observations, perceptions, numbers, characters, symbols, and images that can be interpreted to

derive meaning. In the construction industry, data represents raw elements such as timestamps

used to track products along the production line or actual daily resource utilization figures during

the execution of a project. Data is transformed to information when these raw elements are

patterned in a certain way making them ready for analysis. Knowledge is then generated as

24

actionable information when certain rules or heuristics are applied to the information, for the

purpose of producing value-added benefits. Knowledge synthesizes and integrates the domain

context, organizational culture, standards, human expertise, management initiatives, and lessons

learned. Wisdom in the knowledge tree signifies the ability to make the right decisions at the right

time using the acquired knowledge to maximize the tangible and intangible benefits. Wisdom is

the value added to knowledge [90].

There are many data sources in construction projects. One of the ways in which raw data can be

categorized is by its structure; it can be structured, semi-structured, or unstructured [91]:

a) Structured data: Structured data has a well-defined structure and can be stored in well-

defined schemas such as databases and in many cases can be represented in a tabular format

with rows and columns. Structured data is objective facts and numbers that can be

collected, exported, stored, and organized in typical databases. Some of the sources of

structured data include SQL databases, BIM models, spreadsheets such as Excel, and

sensors such as RFID tags.

b) Semi-structured data: Semi-structured data is data that has some organizational properties

but lacks a fixed or rigid schema. Semi-structured data cannot be stored in the form of rows

and columns as in databases. It contains tags and elements, or metadata, which is used to

group data and organize it in a hierarchy. Some of the sources of semi-structured data

include E-mails, XML, JSON and other markup languages, and zipped files.

c) Unstructured data: Unstructured data is data that does not have an easily identifiable

structure and, therefore, cannot be organized in a conventional relational database in the

form of rows and columns. It does not follow any particular format, sequence, semantics,

or rules. Unstructured data can deal with the heterogeneity of sources and has a variety of

25

business intelligence and analytics applications. Some of the sources of unstructured data

include web pages, social media feeds, images, video and audio files, and PDF files.

In the present research, the data used to predict production time is composed primarily of structured

data. Here, the raw data represents the physical properties of the building components being

manufactured, the time-related data used to track the products, as well as a set of engineered

attributes (i.e., inferred information) generated to capture the system utilization.

2.3.2 Data mining and tidy data

Data mining may be defined as “the extraction of implicit, previously unknown, and potentially

useful information from data” [90]. The purpose of DM is to develop computer programs that

examine databases automatically, in search of uniformities or useful patterns to inform intelligent

decision making based on data. In this context, machine learning algorithms provide the technical

basis of data mining. Since the two terms (machine learning and data mining) are closely

interrelated and the differences between them might not be very clear in some contexts, throughout

this thesis the two terms may be used interchangeably. Machine learning algorithms build

mathematical models from historical data in order to make predictions when supplied with new

data without being explicitly programmed to perform this task. For an application of data mining

to be effective, domain-specific knowledge is typically integrated within the ML algorithms to

obtain representative results [92]. The application of a data mining process involves:

(i) Creating a dataset: The data mining process starts by creating a dataset that represents

some aspects of the real world. A structured dataset consists of the following: (1)

instances (also referred to as observations, records, or examples), which are objects in

the real world that represent single observations; and (2) features (also referred to as

variables or attributes), which are measurements of the different dimensions or aspects

26

of the instances in the dataset. In essence, we need to present the data in a “tidy” form.

Tidy data is a common term used in data science and has been formally defined by

Wickham (2014) [93] as “a standard way of mapping the meaning of a dataset to its

structure” in which each variable/feature forms a column, each observation/record forms

a row, and each type of observational unit forms a table.

(ii) Tuning the algorithm: Many machine learning techniques have algorithm-dependent

hyperparameters that are selected based on parametric studies, the type of problems,

empirical studies, and even the researcher’s personal experience. The performance (e.g.,

accuracy) of most ML algorithms depends strongly on finding an optimal set of

hyperparameters. There exist various strategies to search for the best combination of

hyperparameters including grid search and random search [94,95]. A combination of

manual and grid/random search is used to search for the optimal combination of a

predefined set of hyperparameters. This tuning allows the algorithm to make better

predictions about the new data instances.

Data mining, and data analytics, can be categorized by the different levels of difficulty, value, and

intelligence they entail [96]. Data analytics can be (i) descriptive to drive patterns that summarize

the datasets; (ii) predictive to forecast the values of certain attributes based on historical

performance; or (iii) prescriptive to derive actions of what should be done and why [97]. Another

way to categorize data mining tasks is by their functionality, as described by Han et al. (2012),

which leads to five categories: characterization and discrimination; association and correlation;

classification and regression; clustering analysis; and outlier analysis [98].

27

Traditional data analysis techniques (e.g., stochastic models and time-series analysis) have major

limitations in terms of extracting knowledge from datasets and are based on developing

mathematical models representing the relationships between established variables. In many cases,

neither the variables nor the relationships between them are easily established [89]. To overcome

these limitations, data mining techniques are used. The data mining process is typically carried out

as part of a larger KDD framework. The KDD used in the present research, within which the DM

process is performed, is described in Chapter 3 as part of the research methodology.

2.3.3 Machine learning algorithms

2.3.3.1 Variables and terminology

As described in the previous section, a record in a dataset is characterized by a set of variables or

features. The set of variables is called inputs, or predictors, when they are measured or preset and

have some influence on one or more outputs, or responses. In classical statistical literature, inputs

are called independent variables, and outputs are called dependent variables [99]. For each

example in the dataset, the output is also known as the label, class, or target value. Following the

same terminology in the literature, hereinafter, an input variable is denoted by X, while output

variables are denoted by Y. If X is a vector, its elements can be accessed by subscripts 𝑋𝑗. Upper

case letters are used to denote the generic aspects of a variable while lower case letters refer to the

actual observed values. A matrix of n input vectors each of size m represents the 𝑛 × 𝑚 matrix

having n examples each with m input variables (features) from the dataset. Because all vectors are

assumed to represent column vectors, the ith row of the matrix X is 𝑥𝑖
𝑇, the vector transpose of 𝑥𝑖.

In summary, the learning algorithm is built using the value of an input vector X in order to make a

good estimation of the output Y, which is typically denoted by �̂�. If 𝑌 ∈ ℝ, then it is necessary that

�̂� ∈ ℝ.

28

When carrying out a KDD experiment, a dataset is typically divided into two subsets: one to build

the predictive model (training set); and one to test the model performance (testing set). This is true

in the case of supervised learning, which will be described in the next subsection. Building a

predictive machine learning model is sometimes referred to as building a learner that will be used

to predict the outcome of new unseen data [99]. Various performance metrics are used to measure

how good a learner is; these evaluation metrics are discussed in Section 2.3.4.1.

2.3.3.2 Types of machine learning algorithms

Depending on the problem to be solved and the purpose of the learning, machine learning

algorithms can be broadly divided into three main categories: supervised learning, unsupervised

learning, and reinforcement learning algorithms [100]. Figure 2-4 shows the broad categories and

subcategories of machine learning algorithms, along with sample use cases.

Figure 2-4. Broad categorization of machine learning algorithms

29

a) Supervised Learning:

In supervised learning, the development of a learner is being supervised by the labelled data

(i.e., by the presence of the outcome variable, Y) to learn the relationships and dependencies

between the input variables and the target output such that these relationships can be used to

predict the output values of new data. Supervised learning algorithms are primarily used for

predictive modelling and analysis. Based on the type of output variable, supervised learning

algorithms are either (i) regression algorithms that predict quantitative output (continuous

values); or (ii) classification algorithms that predict qualitative output (discrete values).

The main objective of this research is the prediction of production time in IBC, which is an

example of a regression task. Regression learning is described in more detail in the next

subsection. For a comprehensive overview of classification techniques, the interested reader

can refer to some notable textbooks about data mining and machine learning such as Data

Mining: Practical Machine Learning Tools and Techniques [90], which focuses on practical

applications, and The Elements of Statistical Learning: Data Mining, Inference, and Prediction

[99], which provides more theoretical coverage.

b) Unsupervised Learning:

In unsupervised learning, there is no dependent random variable, output, or response (i.e., no

outcome measure, Y) based upon which the algorithm can build relationships. The goal here is

to analyze a set of input observations in order to describe how the data is organized or clustered.

Therefore, unsupervised learning algorithms are primarily used for pattern detection and

descriptive modelling. Unsupervised learning techniques include:

30

1) Clustering analysis: In clustering, also called data segmentation, objects that seem to fall

naturally together are grouped. Data objects are grouped based on the concept of minimizing

the distances between data points within the same cluster (i.e., objects are similar), and

maximizing the distance between clusters (i.e., dissimilar objects) [98]. Distances can be

calculated using the Minkowski generalized distance formula between two vectors 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ and 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ ℝ as shown in Equation 2-1:

𝐷(𝑋, 𝑌) = (∑|𝑥𝑖 − 𝑦𝑖|𝑝

𝑛

𝑖=1

)

1
𝑝

 2-1

where p=1 calculates the Manhattan distance and p=2 calculates the Euclidian distance.

Han et al. (2012) [98] grouped the major clustering methods into the following categories:

• Partitioning methods construct k clusters of the data and iteratively assign the n data

points to each cluster. Most partitioning methods are distance-based algorithms such as

k-means [101,102], k-medoids [103,104], and k-modes [105] algorithms.

• Hierarchy methods create hierarchical decompositions of the given data points.

Hierarchical methods can be either agglomerative (bottom-up approach) or divisive

(top-down approach), based on how the hierarchical decomposition is formed [103].

• Density-based methods create clusters based on the density of data points within their

neighbourhood. For each data point within a cluster, the neighborhood of a given radius

has to contain at least a minimum number of points [98] making them robust against

outliers. These methods include DBSCAN (Density-Based Spatial Clustering of

Applications with Noise) [106], and DENCLUE (DENsity-based CLUstEring) [107].

31

• Grid-based methods create a finite number of cells of the data space forming a grid

structure where all clustering operations are performed. An advantage of this approach

is being independent of the number of data points making processing time fast. Such

methods include STING (STatistical INformation Grid) [108], and WaveCluster [109].

2) Association analysis: Frequent patterns are patterns (e.g., itemset) that appear frequently in

a dataset. Association rules are deduced for a set of items that often appear together in a

large transactional or relational dataset. These items are the input variables that are said to

be strongly associated with each other. A typical example of frequent item mining is market

basket analysis in which the task is to analyze customer shopping habits by finding

associations among the items that are bought together. Association rules are said to be strong

if they satisfy both a minimum Support and Confidence levels. Support measures the

percentage of transactions in the dataset that a given rule satisfies and confidence measures

the degree of certainty of the detected association [98]. Let T be the total number of

transactions in a dataset, A and B be two sets of items, and C is the number of transactions

containing both A and B; then, the association rule is an implication of the form 𝐴 ⟹ 𝐵 and

we can calculate the support and confidence as shown in Equations 2-2 and 2-3:

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴 ⟹ 𝐵) = 𝑃(𝐴 ∪ 𝐵) =
|{𝐴 ∪ 𝐵}|

𝑇
 2-2

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐴 ⟹ 𝐵) = 𝑃(𝐵|𝐴) =
|{𝐴 ∪ 𝐵}|

𝐶
 2-3

As the number of attribute values (i.e., itemsets) increases, the number of rules significantly

increases, which is a major problem of this approach. Several algorithms are available to

solve the problem such as Naïve, Apriori, and the Frequent Pattern Tree [89].

32

c) Reinforcement Learning:

Reinforcement learning (RL) is a very broad topic and is beyond the scope of techniques used

in the present research; however, RL is briefly described here for the completeness of ML

categorization. The goal in RL is to develop a system (agent) that learns continually from its

environment by interacting with it. The agent receives a positive or negative reward based on

the action it performs, as shown in Figure 2-5. Since the information about the current state of

the environment typically includes what is known as reward signals, we can think of RL as an

area related to supervised learning [110]. However, in reinforcement learning this feedback is

not the actual (i.e., ground truth) measured value, but rather a measure of how well the action

was evaluated by some reward function. An agent can then use RL, through its interaction with

the environment, to learn the actions that maximize this reward by trial-and-error approaches

or by careful and deliberate planning. For further description, interested readers can refer to the

book by Sutton and Barto: Reinforcement Learning: an Introduction [111].

Figure 2-5. Interaction of agent and environment in reinforcement learning [111]

2.3.3.3 Supervised learning regression techniques

In a regression learning task, we are given a number of input variables (predictors) and a

continuous output variable (target), and we try to find a relationship between those variables that

allows us to predict the outcome of new input variables. There are many regression algorithms

33

used in the literature to estimate task durations ranging from simple methods such as linear

regression (LR) and k-nearest neighbors (kNN), to more advanced techniques and algorithms such

as neural networks (NN) and Random Forests (RF). These methods, which are utilized in the

present research, are briefly described below:

a) Linear Regression (LR)

A linear regression model “makes huge assumptions about structure and yields stable but

possibly inaccurate predictions” [99]. In essence, the output (Y) can be calculated as a

linear combination of input vectors 𝑋𝑇 = (𝑋1, 𝑋2, … , 𝑋𝑛) as per Equation 2-4:

�̂� = 𝛽0 + ∑ 𝑋𝑖

𝑛

𝑖=1

𝛽𝑖 = 𝑋𝑇𝛽 2-4

where �̂� is a single output, 𝛽0 is the intercept or bias of the model, and 𝑋𝑇 denotes vector

or matrix transpose (𝑋𝑖 is a column vector representing the features of a single example).

The second part of the equation, 𝑋𝑇𝛽, is a common way to represent the linear model as an

inner product where the intercept 𝛽0 is included in the vector of coefficients and the

corresponding 𝑋0 is set to the constant variable of 1. The most popular criterion to fit a LR

model to a set of n training datapoints is the method of least squares which works by

minimizing the sum of the squared errors (SSE) of predictions as shown in Equation 2-5:

𝑆𝑆𝐸 = ∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 2-5

LR is described in most standard statistical texts and in some textbooks [112–114]. There

are a few other methods for fitting a multiple linear regression model including Lasso and

Ridge regressions [115–117], which basically add a regularization term to Equation 2-5 in

34

order to solve the problem of multicollinearity and to enhance the prediction accuracy and

interpretability of the model. LR was employed to solve various construction management

problems such as quantifying construction delays [118], predicting construction costs

[119,120], and for cash flow forecasting [121].

b) k-Nearest Neighbors (kNN)

A nearest-neighbors method is an instance-based learning algorithm that “makes very mild

structural assumptions: its predictions are often accurate but can be unstable” [99]. In kNN,

the new instance x (the test datapoint for which we seek to compute its target value) is

compared with existing instances using a distance measure, and the closest k instances to x

are used to calculate its output value [90]. Euclidean distance, shown in Equation 2-6, is

the most widely used metric for distance measure. The output value (Y) of the new instance

is calculated by finding the k observations with 𝑥𝑖 closest to x in input space and averaging

their responses:

�̂�(𝑥) =
1

𝑘
∑ 𝑦𝑖

𝑥𝑖 ∈𝑁𝑘(𝑥)

 2-6

where 𝑁𝑘(𝑥) defines the neighborhood of x as the set of k closest datapoints 𝑥𝑖 in the

training set, and 𝑦𝑖 is the target value for each of those neighbors. While the least-squares

LR tend to have low variance and potentially high bias, the kNN method has high variance

and low bias as it does not rely on any rigid assumptions about the underlying data, and

can adapt to any situation [99]. kNN methods have been applied in several areas in

construction such as construction project document management [122], prediction of

construction cost index [123], and planning of construction technical specifications for

deep foundations [124].

35

c) Neural Networks (NN)

Neural networks represent a large class of learning methods for regression or classification

capable of modelling the nonlinear relationships between inputs and outputs, typically

represented by a multilayer network diagram, as shown in Figure 2-6.

Figure 2-6. A neural network with 2 input features, 1 hidden layer, and 1 output

The derived features of the hidden layer are created from linear combinations of the inputs,

and the output is created as a linear combination of these derived features. There are two

aspects to develop a neural network: to learn the structure of the network, and to learn the

connection weights [90]. Boussabaine [125] described the process of training a NN for

regression as follows: (1) For each example in the training set, input features are fed to the

NN and the specified target value is known. (2) Each hidden feature (a node in the hidden

layer) is created as the weighted sum of all input features given the connection weights. (3)

During this “feed-forward” step, the output node receives the values of each hidden node

and calculate the weighted sum to generate a predicted result. (4) The difference between

the predicted result and the target value represents the system output error. By comparing

36

the obtained error with a specified acceptable error defined in advance, the system decides

if further learning is required. If that is the case, a “back propagation” step is carried out by

calculating the derivative of the squared error with respect to weights at the output node,

and the results are fed back to all hidden nodes. (5) All hidden nodes calculate the weighted

sum of the errors, and each, with the output node, change their weights to compensate for

the corrections. Then, the “feed-forward” step is repeated again and again until an

acceptable result is obtained.

Since the early 1990s, NN was investigated as an innovative management tool in all levels

of construction management and engineering problems [126]. A few examples of NN

applications in construction include predicting labor productivity [127], safe work behavior

[128], and estimating schedule to completion [129] in construction projects.

d) Random Forests (RF)

Random forests are a significant variation of bagging, a technique for model averaging and

improvement. In RF, a number of decision tree (DT) predictors are combined such that

each tree is randomly and independently sampled, making them de-correlated, but with the

same distribution for all trees in the forest [130].

Suppose we have a training set 𝑍 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)}, we fit a model to it

and obtain the prediction �̂� at input x. In bagging (also known as bootstrap aggregation),

this prediction is averaged over a collection of bootstrap samples, thus reducing the

variance, as shown in Figure 2-7. The basic idea in bootstrap sampling is to draw datasets

with replacement randomly from the training data with each sample having the same size

as the original training set [99].

37

Figure 2-7. Schematic of constructing a random forest (RF)

A decision tree, the basic building block of RF, is based on a “divide-and-conquer”

approach to the problem of learning in which a model predicts the target value through a

set of rules that are arranged in a tree-like structure. Constructing a DT begins by selecting

a feature to place at the root node where all observations are assigned. Observations are

then split into subsets (i.e., sub-trees) at lower nodes based on satisfying a condition (e.g.,

𝑥𝑖𝑗 ≤ 𝑐). The splitting process is repeated recursively for each internal node, using only the

observations that reached that node, until all observations reaching a node cannot be further

split [90]. Decision nodes where the splitting processes end are called terminal nodes or

leaves. In regression trees, the splitting decision at each internal node is based on

calculating the SSE, Equation 2-5, between the assigned and actual values for each feature.

The feature that results in the lowest SSE is selected to split the data at that internal node.

DTs are easy to construct, use and interpret; however, they “have one aspect that prevents

38

them from being the ideal tool for predictive learning, namely inaccuracy” [99]. Random

forests can mitigate this problem by significantly improving the accuracy.

RF models have recently been gaining more interest from researchers in several areas in

construction, for applications such as predicting ground surface settlement due to tunnel

construction [131], improving the accuracy of BIM-enabled clash detection [132], and

predicting the compressive strength of high-performance concrete [133].

It should be noted that the brief overview provided above of the regression methods investigated

in the present research is presented at a high level. Each method has many variations and

parameters to consider. In addition, other methods exist that are not investigated as they are either

less common in practice or have some notable limitations. Moreover, when applying the above

methods to the case studies described herein, further details are presented regarding the various

parameters and variations of these methods.

2.3.4 Model evaluation and validation

2.3.4.1 Performance measures
In order to compare different machine learning models to each other, a systematic approach is

employed to determine the performance of each model and its capability to reliably evaluate new

data. There are many measures that are commonly used to evaluate the success of numeric

predictions. The measures, presented here in Equations 2-7 to 2-11, are selected as per the literature

analysis on performance metrics in machine learning regression algorithms by Botchkarev [134].

Given that 𝑎𝑖 is the actual observed target value of example i, 𝑝𝑖 is the predicted target value of

example i, and n is the total number of examples in the dataset, these performance metrics include

the following:

39

a) Mean absolute error (MAE) is the average of absolute individual errors. MAE is typically

assessed based on the average production duration.

MAE =
1

𝑛
∑|𝑎𝑖 − 𝑝𝑖|

𝑛

𝑖=1

 2-7

b) Median absolute error (MedAE) is the median absolute value of all errors. This measure

is more robust than MAE as it is less influenced by outliers.

MedAE = 𝑚𝑒𝑑𝑖𝑎𝑛𝑖=1,𝑛(|𝑎𝑖 − 𝑝𝑖|) 2-8

c) Maximum absolute error (MaxAE) is the maximum absolute error observed in the

predictions of the model. It measures the extreme values and captures the extent of

anomalous examples in the dataset.

MaxAE = 𝑚𝑎𝑥𝑖=1,𝑛(|𝑎𝑖 − 𝑝𝑖|) 2-9

d) Mean absolute percentage error (MAPE) is typically and commonly used as a measure

of quality for regression models because of its very intuitive interpretation in terms of

relative error. It is also known as mean absolute percentage deviation (MAPD).

MAPE =
100

𝑛
∑ |

𝑎𝑖 − 𝑝𝑖

𝑎𝑖
|

𝑛

𝑖=1

 2-10

e) Correlation coefficient (CC) measures the statistical correlation between the actual and

predicted values. It ranges from 1 for perfectly correlated values, to 0 when there is no

correlation, to -1 for perfectly adversely correlated values. CC differs from the other

measures by being scale independent in that if all the predictions are multiplied by a

constant factor and the actual values are left unchanged, this measure is unchanged.

40

CC =
𝑛 ∑ 𝑎𝑖𝑝𝑖 − ∑ 𝑎𝑖 ∑ 𝑝𝑖

√𝑛 ∑ 𝑎𝑖
2 − (∑ 𝑎𝑖)

2 √𝑛 ∑ 𝑝𝑖
2 − (∑ 𝑝𝑖)

2

 2-11

It should be noted that in addition to the correlation coefficient, the coefficient of determination

(R2) is a common accuracy measure for statistical models. However, in the present study CC is

used rather than R2 as the latter is more relevant when describing linear models. The coefficient of

determination basically assesses the improvement in accuracy of the linear model over the mean

value. CC is more relevant to assess the correlation of machine learning models in general as it

considers the actual and predicted values of each record in the dataset. Moreover, CC has been

widely used in many data mining textbooks and previous predictive ML publications as compared

to using the R2 as a measure to assess the model accuracy.

For MAE, MedAE, MaxAE, and MAPE, the lower the value is for each of these performance

measures, the better the results. As for CC, higher positive values are more favorable.

2.3.4.2 Model validation

Model validation is an essential component when developing ML models, without which the

model result cannot be deemed reliable for decision-making purposes. Most of the model

validation techniques are based on analyzing the residuals for homogeneity, stationarity,

independence, or normality [135]. In machine learning, model validation is the process where a

trained model is evaluated with a testing dataset. The testing set is a portion of the whole dataset

and is different and independent from the training set. The purpose here is to test the predictive

ability of the model to generalize to new unseen examples [99]. It is assumed that both the training

and the testing sets are representative samples of the underlying problem. There are many

techniques for ML model evaluation including train-test split and k-fold cross validation [90]. In

train-test split, the dataset is randomly split into two parts, one used for creating the model (i.e.,

41

a training set) and another for testing (i.e., a testing set) to understand what would happen if the

model encounters data it has not seen before. The main shortfall of this method is what is typically

referred to as a sampling bias where the two sets (training and testing) might, by random chance,

not be representative samples of the underlying features of the data. Training sets typically

represent 60–90% of the dataset and the remaining is used for testing. The dilemma with this

technique is that in order to learn a good model, we want to use as much of the data for training as

possible, but that would leave a testing set that may not be sufficient to provide a reliable estimate

of prediction errors; this is the problem that cross-validation (CV) attempts to solve.

Typically, learning schemes involve two stages, one to train the model and the second to optimize

its parameters (i.e., the hyperparameters as describe in Section 2.3.2), and separate sets of data

may be needed in the two stages. The best approach to achieve this and to ensure that the test data

is not used in any way in the model creation, is to randomly divide the dataset into three parts: a

training set, a validation set, and a test set. The training set is used to fit the models; the validation

set is used to tune the model’s parameters by minimizing prediction errors; and the test set is used

to assess the generalization error of the final selected model [90,99].

In k-fold cross-validation, the dataset is split into K roughly equal-size parts. We fit the model

using K-1 parts and calculate the prediction error of the fitted model using the remaining kth part.

This process is repeated K times each time using a different part for testing. Then, the K estimates

of the prediction error are combined and averaged. This technique is used to reduce the variability

introduced by sampling training and testing subsets. The number of repetitions represents the

number of folds of the method, and according to Witten et. al (2011), it has been shown that “10

is about the right number of folds to get the best estimate of error, and there is also some theoretical

evidence that backs this up” [90]. To overcome some challenges related to small dataset, or

42

overfitting, variations to k-fold CV are used including Leave-one-out Cross-Validation (LOOCV)

and Nested-CV. A more sophisticated variation of CV and one that is more relevant to the present

research is time series cross-validation (TSCV). In TSCV, there are a series of test sets, each

consisting of a single example and the corresponding training set consists only of examples that

occurred prior to the example that represents the test set [136]. It is important that all training data

happens before test data as training should not contain information from the future. There is a

temporal dependency between observations that must be preserved when selecting the training and

testing sets. This represents a typical scenario when predicting the production time of a “future”

product in a fabrication shop (e.g., wall panel in IBC) based on the historical data of only products

that were manufactured prior to it.

Figure 2-8. Schematic of time series cross validation (TSCV)

Figure 2-8 shows a schematic of how TSCV works wherein the blue line represents a time period

in the past from which the training examples are used, and the orange dot represents the single test

datapoint. After the raw data are checked for uniformity and consistency as part of the data

preprocessing phase, ML models are tested using actual production duration data using TSCV.

43

2.4 Industrial Applications of KDD

2.4.1 Knowledge discovery in databases in construction

Along with significant support through research and case studies, the application of data-driven

decision making and the related data science techniques contribute substantially to supporting

organizations to make better decisions, which results in a stronger, more feasible business

[137,138]. Substantial improvements in strategies and policies, more informed decisions,

minimized risks, and discovering hidden valuable insights are some of the potential gains from

using data-driven approaches, especially in complex contexts such as the construction industry

[139], and IBC in particular. In this regard, the use of automated data acquisition systems that

integrate data from different sources and employ data analytics has been extensively researched in

the construction literature for the purpose of project monitoring and control [140,141].

Several studies have investigated the application of KDD in the construction industry. For

example, Soibelman and Kim [86] proposed a KDD process to identify the causes of delays in

drainage pipeline installation, focusing largely on data preparation, while Kim et al. [142] used

data mining to identify the key factors that significantly contribute to delays in an on-going

construction project. Also, Hammad [89] proposed a KDD framework to estimate future resource

requirements in multi-project industrial construction. A customized decision tree was developed

to analyze labor productivity and estimate the labor requirements for masonry brickwork [143].

Moreover, a framework is proposed to forecast construction project time and cost using support

vector regression methods [144].

A detailed literature review that highlighted the current applications and future potential of data

analytics in construction affirmed that the adoption of these technologies in construction lags its

wider application in other fields [39]. More recently, various machine learning algorithms are used

44

to detect non-certified work on construction sites using deep learning algorithms [145], to classify

workers encountering high fatality risk accidents at construction sites [146], and to verify the

personal protective equipment compliance of construction workers [147,148]. A hybrid model of

light and natural gradient boosting algorithms is proposed to predict the construction cost during

the early stages of the project [149]. It is evident, from the literature, that the application of machine

learning in many areas of the construction industry is gaining increasing acceptance and adoption;

however, these techniques have seen limited applications in project planning and scheduling in

industrialized building construction.

2.4.2 Manufacturing cycle time predictions using KDD

An overview of datamining applications in manufacturing was previously conducted and indicated

that future research will be focused on the areas of design, shop floor control, supply chain

management, as well as developing solutions that can be easily integrated with existing systems

[150]. Similarly, Choudhary et al. [151] reviewed the literature about KDD and DM in

manufacturing, focusing on categorizing the articles into the five major functions of DM, namely,

description, association, classification, prediction, and clustering. In recent years, there have been

a few studies focusing on predicting LT and CT using machine learning approaches in

manufacturing environments other than IBC. For example, Öztürk et al. [152] used a regression

tree to estimate the lead time in a make-to-order manufacturing facility, while Backus et al. [153]

compared clustering, k-nearest neighbors, and regression trees to predict cycle time in a

semiconductor factory and concluded that a hybrid method of clustering and regression tree

provide superior results. Another study in the context of a wafer fabrication factory estimated a

range for a job cycle time based on a fuzzy data mining approach using a fuzzy backpropagation

network, a principal component analysis, and fuzzy c-means [154]. Another study used genetic

45

programming to predict process cycle time based on system status information [155]. More

recently, Gyulai et al. [156] compared analytical and machine learning techniques for lead time

prediction in the optics industry. They concluded that random forests might be the most accurate

model; however, linear methods provide acceptable accuracy and are simpler to interpret. Also,

Lingitz et al. [157] compared the accuracy of several regression algorithms when predicting lead

time in semiconductor manufacturing and suggested that random forests provide the highest

accuracy in terms of lower normalized root-mean-square error.

The present study builds upon this previous research to achieve accurate prediction of cycle time

in manufacturing environments using machine learning models; the focus of this study is on the

application of ML in the industrialized building construction industry, which differs from other

manufacturing environments as described above. Moreover, previous studies applying machine

learning to predict cycle time have mainly used simulated data, whereas, in the present study, the

data is collected from real-time data acquisition systems (e.g., RFID). As such, the data collected

is more prone to noise compared to simulated data, and, hence, is more challenging to manipulate

and prepare for modelling. Actual production data provides a more accurate and valid

representation of the production system.

46

2.5 Summary and Research Gaps

Construction 4.0 is emerging as a technologically revolutionary paradigm for tackling the dynamic

and uncertain nature of construction operations for improved system predictability. Industrialized

building construction provides an adequate and enabling environment to implement machine

learning modelling, one of the many aspects of this paradigm. Reviewing the relevant literature

covers four essential topics: (1) industrialized building construction industry and the Construction

4.0; (2) production planning focusing mainly on flow shop scheduling; (3) data mining and

machine learning techniques, focusing on the methods used in the present research; and (4) the

applications of ML in the construction industry and the related prediction of production time in

manufacturing environments. The literature review highlights several research gaps, some of

which are investigated in the research described in this thesis. Specifically, the research gaps

motivating the research presented in this thesis are described below:

• Although IBC provides an environment that is suitable for the application of the latest

technological advances brought about by Construction 4.0, the adoption of such technologies

lags other manufacturing sectors.

• The IBC industry can benefit from ML techniques to improve production planning and

scheduling within the fabrication shop by accurately and dynamically estimating the cycle

time of products. This approach has been applied in similar settings, but the particularities

due to the highly customized nature of production in IBC has not been investigated.

• Many machine learning methods can be used for predicting the production time; however, it

is clear from the literature that tree-based methods, specifically RF, provide satisfactory

results in terms of a balance between accuracy and interpretability. RF models have not been

yet applied in industrialized building construction manufacturing settings.

47

Chapter 3 Research Methodology

3.1 Proposed Framework

The goal of the proposed framework is to enable the integration of automatic data acquisition, with

accurate depiction of loading conditions of the job shop, and production scheduling of building

components (i.e., production units) in an industrialized building construction manufacturing

environment. Based on the reviewed literature, existing frameworks and methods can be improved

for such purposes by introducing novel principles of the Industry 4.0 revolution. Focusing on IBC

manufacturing environments and introducing a novel approach to capture real-time shop

utilization, a generic framework for the accurate prediction of production time is proposed to

enable the inclusion of production managers’ experience and knowledge, by way of historical

production data, in the decision-making process. The proposed framework is expected to improve

the production scheduling and cycle time prediction by accurately capturing the dynamicity of the

job shop in industrialized building construction. The proposed framework is illustrated in Figure

3.1 and is developed based on frameworks that appear frequently in the literature on data mining.

Such frameworks include the cross-industry standard process model for data mining (CRISP-DM)

[158], Oracle’s architecture development process [159], the work published by Fayyad et al. [84],

Davenport et al. [160], Dietrich et al. [161], and the IBM foundational methodology for data

science [162].

Product composition (i.e., physical characteristics of building components or modules) and the

production workflow information of these products as they move through the job shop are the main

inputs of the framework. Developed based on the specific manufacturing policies at a particular

IBC facility, on domain knowledge, and on similar manufacturing environments from the

48

literature, the proposed framework can be applied through five main phases, which are described

as follows.

Figure 3-1. Proposed framework for production time prediction in IBC environment

In the production phase, the purpose is to develop an understanding of the actual production

environment by investigating the layout of the job shop, product mixture and sequencing, and the

baseline schedule. Accurate descriptions of the manufacturing environment result in an efficient

collection of relevant data that will be used to build the predictive models. The data acquisition

phase is composed of two parts: data collection techniques, and data storage media. Job workflow

data can be collected using various methods ranging from manual data collection to automatic real-

time systems such as RFID and online video streaming. The purpose of this phase is to

49

systematically collect the relevant data about the flow of each building component along the

production line. Such data are gathered as part of daily operations and can be ‘big’ in terms of size

and speed of collection. The collected data can then be stored in a variety of data repositories either

on-premises or online using structured or unstructured formats (e.g., RDBMS or NoSQL) or a

mixture of both. The data integration phase involves all manipulation processes of raw data to

transform it into interoperable formats that are suitable for data-driven modelling. This phase

includes the extract/transform/load (ETL) process of transferring raw data from data sources to a

data warehouse, data cleaning and wrangling, integration of raw data from different sources, and

the process of feature engineering. These processes might be carried out in a different order and

one can iterate between them until obtaining the tidy dataset. The feature engineering step is of

particular importance as it enables the development of new features that capture real-time loading

conditions of the job shop (i.e., current system utilization). In the model development phase,

machine learning models are developed using the tidy dataset obtained from the data integration

phase. The hyperparameters of the developed models are then tuned and the performance of the

model is assessed using the various performance metrics. This process is iterative as the

hyperparameters are further tuned and adjusted until certain performance criteria is achieved. If

more than one model is developed, statistical significance testing is applied to examine the

difference between these models. The outcome of this phase is a verified and validated model that

can be implemented on the actual production system. The generalization phase includes three

main processes. First, generalization is achieved via sharing the knowledge discovered by applying

the framework processes to a different subsector of industrialized building construction that shares

various aspects in terms of process sequencing, the high level of product customization, and the

perceived dependency on capturing real-time loading conditions of the job shop. Second,

50

conclusions can be drawn about the nature of shop loading features, their common characteristics,

and how to derive them at the different IBC manufacturing environments. Lastly, lessons learned

are documented highlighting the opportunities and challenges in acquiring, processing, and

integrating data.

With respect to the developed framework, the research methods used in the present research are

described in the following section as they apply to the two case studies, which are described briefly

in Sections 1.2.1 and 1.2.2. The research methodology is first positioned within the construction

engineering and management field as design science research.

3.2 Research Methods

The research paradigms under which construction management is categorized has long been

examined and argued [163]. More recently, however, construction management is strongly

contended to be repositioned as a design science rather than as an explanatory science (i.e., social

or natural sciences) [164]. Such an approach will better connect research and practice, and thus

strengthen the relevance of academic construction management. Design science research (DSR),

or constructive research, is the research methodological approach adopted in this research to

develop the proposed framework. The main focus of DSR for solving problems is the development

of a new artifact: a solution-oriented knowledge tool that professionals can use to design solutions

for their field problems [165]. Design science research has been proven to be a suitable research

approach in construction management, especially when developing artifacts to solve problems,

implementing those solutions in the construction domain, and bridging the gap between academia

and industry [166–168].

51

The rigorous procedure of developing an artifact starts by identifying gaps in the literature, then

iteratively developing and evaluating the artifact in a reproducible manner, and lastly,

communicating the outcomes or solutions in a clear and concise manner. Hevner et al. [169]

described seven guidelines for a DSR as follows: 1) design a viable artifact in the form of a model,

a method, or a construct; 2) develop solutions that are relevant to the problem; 3) rigorously

evaluate the utility, quality, and efficacy of the design artifact; 4) provide clear and verifiable

research contributions; 5) use rigorous methods to support both the construction and evaluation of

the artifact; 6) provide the necessary means to reach the desired solutions while satisfying

constraints of the problem environment; and 7) communicate the research effectively to both

technology-oriented and management-oriented audiences.

For the research objectives to be achieved in this thesis, the DSR methodology is followed. The

research methods employed to improve production planning and scheduling in IBC manufacturing

environments is based on the developed framework and is represented by the workflow of

activities shown in Figure 3-2.

Objectives 1 and 2:

The artifact developed to achieve the first and second objectives presented in this thesis consists

of a data-driven predictive model containing the information extracted from a BIM model and an

automated RFID production tracking system and attempts to mine the mapping relationship

between features, which represent product properties and shop utilization, and the CT using

historical data from a wall panel fabrication shop. After identifying and collecting data, the product

composition properties (PC) obtained from the BIM models and the corresponding actual cycle

time for each product (CTact) are cleaned, prepared, and then combined. Essentially, in this phase

52

(i.e., Data Integration phase in Figure 3-1), the following two questions: Is the collected data

representative of the problem to be solved? What efficient cleaning steps should be followed so

that the data is represented in a format suitable for prediction models?

Figure 3-2. Workflow of the proposed research methods

Next, the development of engineered features is carried out using the RFID tracking data to reflect

the real-time loading conditions of the job shop (i.e., shop loading (SL) features). These shop

53

loading features are then combined with existing PC features and are further cleaned and prepared

to eliminate anomalous records. The outcome of this iterative activity is the “tidy dataset”. To

determine the CT, the sets of features, PC and SL, are quantified, and therefore the predicted value

of cycle time, CTpred, can be formulated as shown in Equation 3-1:

𝐶𝑇𝑝𝑟𝑒𝑑 = 𝑓(𝑃𝐶, 𝑆𝐿) 3-1

In the case of wall panels, different versions of the tidy dataset are developed for the purpose of

experimenting with different aspects of data aggregation and integration. Each of these versions

are then fed into the next phase, the ML model development, which involves three iterative

processes: a) tuning the hyperparameters of the various machine learning models, b) determining

the optimum lookback timeframe used to train the models, and c) evaluation and comparison of

model performances. The best model to be used for implementation is then selected to predict the

production cycle time. Model evaluation has two main phases: the diagnostic phase, which is used

to ensure the model is working as intended; and the statistical testing phase, which is applied to

ensure that the data is being properly handled and interpreted within the model. The output of this

phase of the study satisfies the first and second research objectives and is used to support the third

and fourth objectives.

Objective 3:

The artifact developed to achieve the third objective described in this thesis consists of the

development of a discrete-event simulation model with the aim of examining the effect of

generating engineered features that reflect the real-time loading conditions of the job shop (i.e.,

SL features). These features are similar to the features generated during ML model development.

However, here we examine a few SL features that are not practically collected, and in most cases

54

need to be custom-built. The goal of this objective is to investigate how SL features, that are

proposed to improve the predictive accuracy of ML models, can be captured in practice. By using

simulation modelling, the collection of such features in the job shop can be examined. Different

sets of SL features, generated from the simulation model, augment the raw dataset to generate

variations upon which ML models are developed. ML model performances are compared using

the same measures as are applied in Objectives 1 and 2. In conclusion, the simulation model can

be used to propose specific mechanisms for collecting certain types of data that are otherwise not

accounted for during the normal daily operations of the factory. Proposed collection of data would

enhance the development of ML predictive models and would make data preparation and feature

generation more consistent and automated and less prone to subjectivity.

Objective 4:

The artifact developed to achieve the fourth objective in this thesis consists of a data-driven

predictive model similar to the one developed for the first and second objectives. However, the

application is conducted at an industrial pipe-spool fabrication shop with a different time horizon

to be predicted, and different shop settings and manufacturing policies. The goal of this objective

is to examine the generality of the results obtained during the first case study. IBC manufacturing

environments share some similarities with a pipe-spool fabrication shop, namely, the highly

customizable construction products. In any manufacturing facility, the cycle time is greatly

influenced by shop utilization. Although the details of the engineered SL features will depend on

the specific case study and one might need to custom-build these features, due to the similarity of

industrialized building construction environments, these features should capture some aspect of

shop loading to improve the predictability of the cycle time.

55

Chapter 4 Residential Wall Panel Fabrication Shop

This chapter describes the first case study where the proposed framework and methodology are

applied to predict the production cycle time in a wall panel fabrication shop using several machine

learning models. The chapter is divided into five main sections. First, the factory layout and the

manufacturing process are described. Then, data acquisition and descriptive analysis is presented,

followed by a detailed explanation of data cleaning and preparation tasks. The fourth section is

dedicated to the development of engineered features that capture real-time loading conditions of

the job shop. Lastly, the development, evaluation, and comparison of machine learning models are

described in detail.

4.1 Factory Layout and Process Description

The production of prefabricated wall panels at an IBC facility located in Edmonton, Alberta,

Canada is analyzed.

Figure 4-1. Workflow of wall production line

The facility produces wood-framed open-wall panels (i.e., with no electrical or plumbing fixtures),

floor panels, and roof panels that are then transported to the construction sites for assembly. The

56

facility is equipped with state-of-the-art computer numerical control (CNC) production lines

capable of producing building framing components (i.e., wall, floors, roofs, and stairs) using

different processes. The research effort described in this thesis focuses on the wall production

process, which involves framing, sheathing, window and door installation, and loading operations

as shown schematically in Figure 4-1.

The shop floor layout is shown in Figure 4-2, where the scope of the present study is restricted to

the first phase of production (i.e., multiwall panel (MWP) production route), which consists of

four consecutive workstations: framing station (FS), buffer table (BT), sheathing station (SS), and

multifunction bridge (MFB). A wall panel goes through these stations in sequence, and no two

panels are processed at one station at the same time. RFID antennas are located between

consecutive stations where timestamps are recorded by reading RFID tags attached to wall panels

as they pass by the antennas.

Figure 4-2. Shop floor layout and location of RFID antennas between workstations

57

Wall panel production starts at the framing station, Figure 4-3, where workers load the studs (e.g.,

regular, double, or L-shaped) into the machine in sequence, after which the machine nails the studs

to the top and bottom plates of the exterior and interior wall panels. Components such as windows

and doors are built in the component table station and fed to the framing station. To maximize the

utilization of the CNC machine, most MWPs are generated by combining several single-wall

panels together up to 40 ft in length, which is the maximum length of the CNC table. In order to

combine single-wall panels into a multiwall panel, the single-wall panels must all have identical

heights and thicknesses. This is a mathematical optimization problem that was extensively

described and investigated in previous research [60].

Figure 4-3. Framing station (installation of studs between top and bottom plates)

From the framing station, a MWP moves to the buffer table where one or more workers perform

several manual tasks, including correcting errors that result from the framing machine, installing

58

backing and other support material, and marking the wall panel name. The MWP then moves to

the sheathing station, shown in Figure 4-4, where sheathing boards for exterior wall panels are

placed, correctly positioned, and manually nailed. Then, the wall panel is moved to the multi-

function bridge (MFB) for machine nailing. At the MFB, shown in Figure 4-5, the sheathing boards

are automatically, and thoroughly fastened to the studs of the wall panel by a CNC machine using

nail guns that are mounted on the moving bridge. The sheathing boards are only installed on

exterior walls. The MFB process only requires one worker to (i) bring the panel in from the

sheathing station, (ii) initiate the nailing process, and (iii) move the MWP out.

Figure 4-4. Sheathing station (manual nailing of sheets for exterior walls)

The floor layout is configured such that each MWP is framed, prepped, sheathed, and nailed

between antenna locations A1 to A5. Then, each MWP is cut into several single panels and

transferred to a butterfly table, where antenna A6 records when the single wall panel starts the next

59

phase of production. In this study, the analysis focuses on the first phase of production: the MWP

production starting at antenna A1 (located at the start of production at the FS) and ending at

antenna A5 (located at the end of the MFB).

Figure 4-5. Multifunction bridge (at initial position when receiving a wall panel)

4.2 Data Acquisition and Description

The historical raw data analyzed in this study covers a period of 42 months between February 2015

and August 2018. The raw data is composed primarily of two datasets. The first dataset (DF1) is

the “RFID Readings” dataset that contains timestamps for each MWP along the production route.

It consists of 416,948 records and 10 attributes. The second dataset (DF2) is the “Multipanel”

dataset that contains descriptive attributes of each MWP including the physical properties of the

panels. It consists of 39,703 records and 37 attributes. Figure 4-6 shows a flowchart of the initial

60

data identification and data cleaning steps. Initial data identification is performed to include only

the information relevant to the present analysis. These steps depend largely on the domain

knowledge and the specific application. For example, in DF1, the steps include a) removing

records before September 11, 2015, since the factory layout and RFID tracking system setup was

changed, and b) only keeping records corresponding to antennas A1 through A5 as these

correspond to the production of MWPs. As for DF2, the steps include a) removing panels that are

manually manufactured, and d) excluding any attribute where all data are missing or there is only

one dominant value.

Figure 4-6. Flowchart of initial data identification and data preprocessing steps

In addition, as part of this phase of the methodology, descriptive statistics and data visualization

are applied to the datasets to assess the content and quality, and to gain initial insights into the

data. Figure 4-7 shows the total number of RFID readings per month, per week, and using a 14-

61

day rolling window. Periods during which there are a low number of readings, such as from June

2016 to October 2016, might indicate low productivity periods due to market recessions. Such

periods represent abnormal operating conditions and are excluded from the analysis as they may

skew the results.

Figure 4-7. Number of RFID readings per month, per week, and per 14-days rolling window

However, a more consistent indicator of daily productivity is to count the number of panels

produced each day within prescribed ranges of production over the study period. For example,

there were approximately 1,400 panels manufactured when the daily production rate was between

35 and 40 panels/day, which is close to the average daily production, as shown in Figure 4-8.

Working days are excluded if the total daily production is less than 5 or more than 75 panels/day

as production beyond these limits represents abnormal operating conditions. Those out-of-bound

working days cover approximately 3% of the total study period. The purpose of this exercise is to

determine which production days represent anomalous operations and exclude the records during

these days from further analysis. It is worth noting that most of the panels are produced when the

daily production rate is between 30 to 55 panels/day, as shown in Figure 4-8.

62

Figure 4-8. Total panel counts for each daily production rate

Furthermore, Table 4-1 shows a summary of the statistics for the attributes in DF2. Here the

dimensions for MWP length, width, and height are in millimeters, while other numbers represent

the count of the corresponding panel property (e.g., “Window” is the number of normal-sized

windows that the MWP has). By examining the results in Table 4-1, a few observations can be

noted to assist in better understanding the data and determining how different features might affect

the predictability of the cycle time.

It can be noted that some attributes have extreme values compared to the mean and median. For

example, “NailCount”, which represents the total number of nails used during the production of a

single MWP, has an extreme maximum value of 2,466 which is considered an outlier. It can also

be noted that the attribute ‘LargeDoors’ is expected to have minimal influence on the predictability

of CT as most of the panels have no large doors installed. This can be inferred from the value of

zero for the mean, standard deviation, and interquartile range.

Range of most likely
production rates (panels/day)

63

Table 4-1. Statistics summary of attributes in DF2 dataset

 Description mean std min 25% 50% 75% max

Length Panel length 8999 3315 1203 6087 10404 11878 12338
Width Panel height 2525 158 1607 2467 2467 2505 3235
Height Panel thickness 117 29 89 89 140 140 314
Window No. of regular windows 0 1 0 0 0 0 9
LargeWindow No. of large windows 0 1 0 0 0 0 5
Door No. regular doors 1 1 0 0 0 1 10
LargeDoor No. garage doors 0 0 0 0 0 0 3
Sheetfull No. of full sheets for ext. panels 1 2 0 0 0 0 17
SheetPartial No. of partial sheets for ext. panels 3 4 0 0 0 4 31
Cutzone Cuts along MWP to single walls 2 2 0 0 1 3 17
Drillhole No. of drills used to lift panels 4 3 0 2 4 6 26
Stud No. of regular studs 15 7 0 9 15 21 215
DStud No. of double studs 0 0 0 0 0 0 6
LStud No. of L-shaped studs 2 2 0 0 1 3 18
MStud No. of multi-studs 0 1 0 0 0 0 14
Block No. of lumber blocks 1 3 0 0 0 0 42
Backing No. of lumber backings 2 4 0 0 0 3 50
NailCount No. of nails used to install sheets 327 401 0 0 190 566 2466
Nailline Lines along which nails are installed 33 37 0 0 20 63 447

4.3 Data Preprocessing

4.3.1 Main preparation tasks

Data preprocessing is an essential step in the KDD framework to improve the quality and

consistency of the data itself, and, consequently, the quality of the data mining results. Data

preprocessing techniques include cleaning, integration, transformation, and reduction [170]. These

techniques are applied to each dataset. Further preprocessing is applied to the merged dataset as

depicted in Figure 3-2 and Figure 4-6. The main preprocessing steps are summarized in Table 4-2.

64

Table 4-2. Main preprocessing steps applied to DF1 and DF2

 Preprocessing Step Reasoning

“RFID Readings” dataset (DF1)

1 Keeping “InitialReadDateTime” and
“LastReadDateTime”.

Initial and last timestamps used for
time difference calculations.

2 Discarding “LocationSourceAntenna”, “LocationTagID”,
“TagID”, “WallNumber”, and “LastReadDate”.

Contain either redundant or
irrelevant information.

3 Transforming the dataset: each row stores timestamps for
each MWP at each station; the original dataset stores each
timestamp for each panel at each station in a separate row.

To prepare the data in a tidy
format, and to facilitate CT
calculations.

4 Replacing a missing value of timestamps at individual
stations with the mean value provided that the timestamps
at all other stations are not missing.

Replacing missing values so that
the dataset is consistent and
complete.

5 Records, where the production of a panel started on one
day and finished on a subsequent day, are discarded.

Discarding outliers for consistent
cycle time calculations.

“Multipanel” dataset (DF2)

1 Keeping the dimension attributes (“Length”, “Width”, and
“Height”) within a specific range. Panel lengths range
between 1,203 and 12,338 mm; widths range between
1,607 and 3,235 mm; and heights range between 89 and
314 mm.

Only panel manufactured at the
automatic production line are kept.
Smaller panels, that are manually
produced, are discarded.

2 Nominal values of the attribute ‘Type’ are converted to
numbers using the “dummy coding” technique, commonly
known as binarization. There are five unique values:
‘EXT’, ‘INT’, ‘STR’, ‘GAR’, and ‘MEC’.

For all unique values of the
nominal attribute, a new attribute
is created. The attribute
corresponding to the value of the
record gets a value of 1; other
attributes are set to 0.

3 Discarding the attributes “Job”, “Component”, “wall”,
“Siding”, “SidingLine”, “Model”, “Floor”, “Unit”,
“GarageDoor”, “Sequence”, “Basementwall”, “position”,
and “ProductionJob”.

These attributes are irrelevant as
they contain redundant
information, have one unique
value, have few prevalent values,
or have many missing values.

4 Missing values are either replaced using functions defined
by fitting curves to the known values or discarded if they
account for more than 90% of the total count of an
attribute.

Replacing missing values so that
the dataset is consistent and
complete.

65

In general, preprocessing steps include discarding redundant attributes where the information is

captured by other existing and more relevant attributes; transforming the structure of the dataset

so it is a tidy format; replacing missing records or discarding them as applicable; and changing the

type of data so it is more consistent and can be used with a wide variety of machine learning

regression models. Moreover, it should be noted that the attributes “PanelNumber” in DF1 and

“MultiPanel_Name” in DF2 are kept as unique identifiers for each record in the two datasets.

These are common keys that are used, at a later step, to merge the datasets.

4.3.2 Cycle time calculation from raw RFID

As the multiwall panel passes over the RFID antenna, a timestamp is recorded in the attribute

“InitialReadDateTime”. When the panel leaves the RFID antenna range, the attribute

“LastReadDateTime” records another timestamp. Ideally, when there is no interruption or waiting

in the production line, the two timestamps should be similar indicating that the panel has not been

sitting idle over the antenna. The idle time (IT) for panel i can be defined per Equation 4-1:

IT𝑝𝑎𝑛𝑒𝑙 = 𝑡𝑙𝑎𝑠𝑡𝑅𝑒𝑎𝑑,𝑖 − 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑,𝑖 4-1

The intermediate cycle time can be described as the processing time plus the idle time. Time

differences between consecutive antenna locations indicate the time during which the panel is

processed at each of the four intermediate stations. Total CT, referred to as CT𝑎𝑐𝑡, is calculated

according to Equation 4-2 as the sum of these individual workstation times:

𝐶𝑇𝑎𝑐𝑡 = ∑ 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑,𝑖+1 − 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑,𝑖

4

𝑖=1

 4-2

66

where 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑,𝑖+1, and 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑,𝑖 are the timestamps at the end and start antenna locations,

respectively, for station i. It should be noted that CT𝑎𝑐𝑡 as measured in the present study

encompasses processing time, idle time, and the time spent on regular breaks during a typical

working shift. Figure 4-9 shows the histogram and the kernel density smoothing curve of both the

measured cycle time (ActualCT) and the cycle time without the break times (ActualCT-BT). In

the case production facility, there are three break times during a typical working shift: two 15-

minute coffee breaks and one 30-minute lunch break. If the production of the panel falls within

these break times, the measured cycle time is reduced accordingly. In this manner, actual

production times are calculated, and any adverse effect of break times on the accuracy of the cycle

time predictions is mitigated. Hence, ‘ActualCT-BT’, rather than ‘ActualCT’, is used to develop

and test the prediction models.

Figure 4-9. Total cycle time (between A1 and A5 in minutes)

67

4.4 Feature Engineering and Selection

Feature engineering (FE) has been widely used in data-driven modelling to improve the quality of

feature sets. FE mainly encompasses three aspects: feature selection, feature extraction, and feature

construction [171]. In the present research, each record in the tidy dataset stores the physical

properties of a single multiwall panel, as well as the respective actual cycle time, which is the

target value to be predicted. One of the main contributions of this research is to capture the system

status by constructing new features that objectively measure the loading conditions of the job shop

(i.e., SL features). In essence, these new features are constructed to augment the existing features

of a product unit based on the units that immediately precede it along the production line. It is

observed that CT in the IBC factory depends only partially on the physical features of the product

and is governed largely by the SL features (i.e., a measure of how busy the fabrication floor is at

the time production of a new wall panel begins). These shop loading features significantly enhance

the model accuracy and hence the predictability of cycle time. This is mainly due to the fact that

these features capture shop utilization, which otherwise (i.e., if only the physical features such as

length, width, etc., are used) would be unaccounted for.

Let Si represents the set of newly constructed features of product, i. Each feature, 𝑠𝑖
𝑘 ∈ 𝑆𝑖, is

generated in such a manner as to capture attributes of panels that preceded the panel, i, in the

production line but whose production is still underway (i.e., WIP). These WIP panels represent the

current state of system utilization at the moment the production of the current panel, i, begins. If

we let 𝑋𝑛×𝑚 be a matrix in which each row, n, represents one WIP panel preceding the current

panel, and each column, m, represent an existing feature, x. Now, if we consider 𝜃 to be a binary

vector of size m, where each element corresponds to one of the existing features, then a value of 1

corresponds to that feature being considered when calculating the new engineered feature of the

68

current panel and other features are set to 0 and ignored. In this manner, each element of the set Si

is calculated as the sum of the elements of the matrix M as expressed in Equation 4-3:

𝑠𝑖
𝑘 = sum(M) 𝑤ℎ𝑒𝑟𝑒 M = 𝜃 ∙ 𝑋𝑇 = [𝜃1 𝜃2 ⋯ 𝜃𝑚] [

𝑥11 𝑥12 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑛𝑚

] 4-3

Each element of M represents the contribution of each WIP when calculating the corresponding new

engineered feature for panel i. This is a mathematical expression used to implement the algorithm

for calculating each of the new engineered features for each panel in the dataset.

For the present study, SL features are developed to capture the system status based on the production

during one work shift. The constructed features are "𝑊𝑃𝑖", "𝑊𝑃𝐿𝑒𝑛𝑔𝑡ℎ𝑖", and "𝑊𝑃𝑇𝑖𝑚𝑒𝑖", and

they store the number, length, and processing time respectively, of the WIP panels. These features

represent the set Si where each element 𝑠𝑖
𝑘 is being generated by setting the appropriate values of the

binary vector, 𝜃. Given i = {1, 2, ..., n}, where n is the total number of WIP associated with the

current panel, the attributes above are calculated based on Equations 4-4 through 4-7, as follows:

𝑊𝑃𝑖 = |𝐴| = 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑡 𝐴 4-4

𝐴 = {(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝐷𝐹2 | 𝑇1(x) > 𝑇1(y) 𝑎𝑛𝑑 𝑇1(x) < 𝑚𝑎𝑥(𝑇2(y), 𝑇3(y), 𝑇4(y))} 4-5

𝑊𝑃𝐿𝑒𝑛𝑔𝑡ℎ𝑖 = ∑ 𝐿(𝑧[1])

𝑧∈𝐴

 𝑤ℎ𝑒𝑟𝑒 𝑧 = (𝑥, 𝑦) 4-6

𝑊𝑃𝑇𝑖𝑚𝑒𝑖 = ∑ 𝑃𝑇(𝑧[1])

𝑧∈𝐴

 𝑤ℎ𝑒𝑟𝑒 𝑧 = (𝑥, 𝑦) 4-7

where: (x, y) the pair of current panel, x, for which the new features are to be calculated,

and panel y that represents any other panel which is concurrently being processed;

DF denotes the rows in the tidy dataset;

Tk is the timestamp at antenna location Ak where k ∈ {1, 2, 3, 4};

L is the length of panels that satisfy the condition; and

69

PT is the planned processing time of panels that satisfy the condition.

For the current dataset, a Python script is developed to automatically iterate over the records in DF

and create the engineered features, which can be found in Appendix A. Figure 4-10 represents the

process of calculating the length of the WIP panels, "𝑊𝑃𝐿𝑒𝑛𝑔𝑡ℎ𝑖", preceding panel i during a

typical work shift. In this example, 𝑡𝑝,𝑓𝑠 is the timestamp associated with the panel when its

production begins at the framing station, while 𝑡𝑝−1,𝑠𝑠 and 𝑡𝑝−2,𝑚𝑓𝑏 are the timestamps for two

panels that are ahead of the current panel but are still in production.

Figure 4-10. Engineered feature calculations for Panel i at the time when it starts production

Moreover, based on the newly generated features, different versions of the dataset are generated

each of which contains a different set of attributes to examine the effect of different attribute

subsets on the prediction accuracy. These new attributes are created by combining existing

physical characteristics in unified attributes in order to: (1) reduce the dataset dimensions, and (2)

to examine the effect of features granularity on the accuracy of ML models. Table 4-3 summarizes

the experiments conducted using different attribute aggregations. The resulting datasets are the

ones depicted in Figure 4-6 as the tidy datasets.

70

Table 4-3. Subsets created by combining attributes of the tidy dataset

Name Size (records ×
attributes) Description

Raw data 1,094 x 22 Contains only physical properties of panels

Engineered 1,094 x 26 In addition to the physical properties of panels, it contains

engineered features capturing the system status (WP, WPLength,

WPTime, Panels/Day).

Engineered

combined1

1,094 x 18 Combining similar properties of a panel into single attribute:

SheetFP = Sheetfull + SheetPartial

TotalStuds = Stud + 2*DStud + 2*LStud + 3*MStud

BlockBack = Block + Backing

totalWD = Window + LargeWindow + Door + LargeDoor

Engineered

combined2

1,094 x 15 Combining all types of components (openings, stud, sheets,

supportive elements) into one attribute:

Components = totalWD + TotalStuds + SheetFP + BlockBack

4.5 Development of Machine Learning Models

4.5.1 Mining data using regression models

In the present case study, predicting production cycle time is a regression supervised learning task,

and there exist numerous machine learning models to predict a continuous variable of this nature.

Among these, four are selected for our study four models: linear regression (LR), k-nearest

neighbor (KNN), neural network (NN), and random forest (RF). A successful model should

provide reasonably accurate estimates of the cycle time to be used in factory planning and should

be easy to interpret. Representative studies describing these methods include Hastie et al. (2009)

[172] and Witten et al. (2011) [90]. Also, Raschka and Mirjalili (2017) [110] provided practical

applications of machine learning libraries in Python. For a treatment of regression trees and

71

random forests in particular, the interested reader may refer to Breiman et al. (1984) [173] and

Breiman (2001) [130]. The four models mentioned above are selected from among the many

available ML models available for regression based on the following considerations: (1) they range

from simple to implement and easily interpretable (i.e., LR and KNN) to more sophisticated black-

box models (i.e., RF and NN) so that the higher complexity of the models can be examined in

terms of higher accuracy; (2) they have been widely used in the literature to investigate

construction problems; and (3) they have been implemented in previous studies to predict

production CT.

Figure 4-11. Data splitting and model evaluation

The tidy dataset having been developed, the selected models are trained and tested. Per Witten et

al. (2011), the dataset is divided into three subsets: a training set, a validation set, and a test set

[90]. The test set contains the records from one day where cycle time is to be predicted. The

training and validation sets contain the production data from previous days which are used for

72

training and validation using a 5-fold cross-validation (CV) technique, as shown in Figure 4-11.

In the current study, models are trained and tested using Scikit-Learn, a Python open-source library

for machine learning [174].

4.5.2 Comparison of model performances

The performance metrics of the models on the testing sets are shown in Table 4-4 for the four

datasets described in Table 4-3. Refer to Section 2.3.4 for descriptions of these metrics.

Table 4-4. Model performance measures for the datasets described in Table 4-3

ML model LR KNN RF NN
Hyperparameters - k = 11, p=2 400 trees, mae (52, 52) 2000 itr.

Ra
w

da
ta

R2 on training 0.27 0.91 0.80 0.24
MAE 9.2 6.8 5.8 7.7

MedAE 6.7 3.6 3.1 4.8
MaxAE 47.3 42.1 21.7 40.2
MAPE 23.6% 17.3% 17.0% 19.7%

CC -0.03 0.13 0.47 0.19

En
gi

ne
er

ed
 R2 on training 0.46 0.99 0.90 0.42

MAE 7.1 6.1 5.3 6.7
MedAE 5.6 3.4 3.5 4.4
MaxAE 38.2 34.1 31.4 37.9
MAPE 17.8% 14.9% 13.7% 16.4%

CC 0.34 0.47 0.71 0.44

En
gi

ne
er

ed

co
m

bi
ne

d1
 R2 on training 0.43 0.99 0.90 0.40

MAE 6.6 6.1 4.9 6.9
MedAE 4.2 3.4 2.8 5.0
MaxAE 38.1 34.2 30.6 38.4
MAPE 16.4% 14.9% 12.3% 16.7%

CC 0.40 0.47 0.73 0.39

En
gi

ne
er

ed

co
m

bi
ne

d2
 R2 on training 0.41 0.99 0.90 0.39

MAE 6.1 6.0 4.4 6.5
MedAE 4.3 3.3 3.2 4.3
MaxAE 35.2 34.1 29.0 37.7
MAPE 15.0% 14.9% 11.0% 15.6%

CC 0.53 0.47 0.80 0.44

The hyperparameters of the four models have been tuned, using the training and validation dataset,

to attain better performance and robust models. The model performance is measured on the testing

73

dataset. The performance of machine learning algorithms depends strongly on finding an optimal

set of hyperparameters. There exist strategies to search for the best combination of

hyperparameters including grid search and random search [94]. In the present study, a combination

of manual and brute force search using the GridSearchCV method available from the Scikit-Learn

library is used to search for the optimal combination of a predefined set of values for each model’s

hyperparameters. The most important values are listed in Table 4-4 under the corresponding

model’s name.

4.5.3 Observations on model performances

4.5.3.1 General trends

Referring to Table 4-4, a distinct difference can be observed between the MAE and the MedAE

values. The MedAE is smaller than the MAE for all models, a trend aligned with the distribution

pattern of actual cycle time, which is positively skewed (moderately skewed to the right), as shown

in Figure 4-9. This is attributable to the presence of a few outlier records that are significantly

higher than the average values which affect the overall accuracy of the predictive models. Another

observation is that achieving a higher value of R2 on the training set does not necessarily translate

into better performance on the testing set, as can be seen with respect to the performance of KNN,

where the model is observed to have overfit the training data. As this example underscores, the

model performance should not be evaluated based on the metrics of the training set.

Across all models and datasets, the MAPE range between 24% (worst) and 11% (best), and the

CC range between 0.0 (no correlation) and 0.8 (strong positive correlation). Overall, the RF models

have better performance metrics in terms of lower MAE, MedAE, MaxAE, MAPE, and higher

correlation coefficients. It should be noted, however, that RF requires slightly more computational

time. An advantage of RF over other methods is the ability to handle both categorical and

74

continuous attributes, and attributes need not be scaled to common units. When testing several

configurations of RF models, using approximately 400 trees and MAE as the evaluation criterion

when splitting the nodes yielded the best performance.

4.5.3.2 Engineered features

The production system utilization status is valuable information to add to the ML models to

improve the predictability of CT. The raw dataset, ‘Raw data’ in Table 4-3, includes only the

physical properties of the panels; the engineered features that represent the system utilization status

are only included in the other three datasets. Based on the performance measures, using the raw

data without the SL features leads to inferior model performance. The MAPE is found to be as

high as 24%, while the CC is low for all models. Meanwhile, an improvement in MAPE of as

much as 9% is achieved when augmenting the datasets with the proposed SL features. Moreover,

the CC is found to have increased for all models, to as high as 0.80 in the case of the RF model.

Intuitively, augmenting the feature set with engineered features should result in better

predictability of the developed ML models, since this provides in-depth information about how

the production floor is being utilized at the point when production of a new product begins. Based

on the historical data, this assumption is proven to be valid, performance improvements having

been consistently achieved for all models.

4.5.3.3 Combining features

The performance of all models does slightly improve by reducing the granularity of the dataset.

For example, the mean absolute percentage error of the LR, and RF models dropped from 17.8%

and 13.7% in the case of the first version of the engineered dataset, ‘Engineered’, to 15.0% and

11.0% in the case of the reduced dataset, ‘Engineered combined2’, respectively. In the aggregated

75

dataset ‘Engineered combined2’, all components of a wall panel (studs, windows, doors, backing,

and sheathing sheets) are combined and represented by one feature, namely, “Components”.

In addition to requiring less computational time, it can be concluded that reducing the

dimensionality of the data by combining similar attributes does improve the performance in terms

of lower prediction errors and higher CC. This is attributable to the fact that the combined attributes

have a weak correlation with the target feature when computed individually, whereas, when these

attributes are aggregated, the correlation with the target feature is improved and resulted in better

predictability of cycle time. It should be noted, however, that this conclusion is specific to the

current case study and is not necessarily true for all other cases. Further investigation is required

to explore this aspect in the context of other cases.

4.5.3.4 Lookback timeframe for model training

A sample dataset is examined in reference to various lookback timeframes as part of the machine

learning model development phase in order to determine the optimum timeframe used for testing.

The goal here is to investigate the effect of the number of days used to train the model on the model

performance and the predictability of cycle time. For the present case study, using the historical

data of a lookback timeframe of 10 to 20 days for training and validation is found to result in better

performance measure compared to shorter or longer lookback timeframes as shown in Figure 4-12.

That is, to predict cycle time on a specific day, the production data from the previous 10 to 20

workdays is required to train and validate the machine learning models. Using the historical data

in its entirety or using the data from a few previous days usually results in inferior performance.

Figure 4-11 illustrates the manner in which splitting of the data is carried out. It is worth noting

that further investigation is required to examine the full effect of varying lookback timeframes on

different days of the week. This task will be undertaken as part of future work.

76

Figure 4-12. Minimum MAPE versus Lookback Timeframe for the dataset ‘Engineered’

4.5.4 Comparison with Little’s law

The simplest and most widely used analytical method to predict CT is Little’s law, which can be

applied to dynamic systems by dividing the time into finite intervals. As described in Section 1.1,

Little’s law can be used as a benchmark to assess the performance of the proposed approach. Any

of the average CT, throughput (TH), and average units in the system (𝑊𝐼𝑃̅̅ ̅̅ ̅̅) can be calculated by

making observations about the other two quantities over a given time interval [9]. To compare

these quantities, the time interval in the current study is set to be one workday (in this specific

case, it is also one work shift). The average daily production, shown in Figure 4-8, is found to be

39.5 panels/day. Given a 7.5-hour work shift, this translates into a system throughput of about 5

panels/hour. When the observed panel enters the production route, the average number of panels

that are being processed and that remain in the system is found to be 3.5 panels. The CT is then

calculated, using Little’s law, as 43.3 minutes, which is very close to the calculated average of

40.9 minutes as shown in Figure 4-9. Assuming that this average number is used as an estimate of

CT for all panels, the performance metrics used to compare ML models are calculated for the given

77

dataset as follows: MAE = 11 minutes, MedAE = 8 minutes, MaxAE = 36 minutes, and MAPE =

30%. These values are inferior to the values obtained from any of the ML models. Although this

analytical method can be used to capture the average performance of the system by estimating CT

based on the average daily production, error rates are high and the variability in the production

cannot be efficiently captured which is the typical case of most IBC manufacturing environments.

4.5.5 Limitations and future work

The present case study focuses on using existing historical data obtained from an RFID tracking

system in a residential IBC. This data contains considerable noise and requires extensive data

cleaning and preparation. In addition, due to the existing RFID system setup, some data that might

contain valuable information is not collected, especially data associated with panel waiting times

throughout the production process. Therefore, this limitation is further investigated in Chapter 5

by developing a simulation model that can generate the missing data pertaining to waiting and idle

times of panels while in production. Moreover, another limitation is the applicability of ML

approaches to other subsectors of IBC. The goal is to examine the applicability and consistency of

using machine learning models to predict CT in the context of mass customization production

which is an important characteristic of the IBC industry. This limitation is investigated in Chapter

6 by examining a second case study in industrial IBC. It is worth noting that the details of the

engineered feature development reflecting the loading conditions of the job shop will depend on

the specific case study, and some custom development may be required. However, due to the

similarities among IBC manufacturing environments, with some minor customization the

presented features can give a representative picture of the current state of shop utilization in a

given IBC facility and thereby improve the predictability of production CT. Investigating other

case studies in IBC can lead to the generalizations of results obtained in this the present case study.

78

Chapter 5 Simulation Modelling

This chapter describes the development of a discrete-event simulation (DSE) model for the first

case study presented in Chapter 4. The chapter is divided into four main sections. First, the

simulation model environment and the logic based upon which the model is developed are

described in detail. Then, formulas and data distributions used to estimate activity durations are

presented for the various elements of the model. The third section discusses model verification,

validation, and outputs. In the fourth section, machine learning models developed using the

simulated datasets and the resulting improvement are discussed, followed by concluding remarks.

5.1 Description of the Simulation Model

Discrete-event simulation (DES) has been widely used over the past few decades in the

construction and manufacturing industries as a versatile technique to model the various activities

and processes of real-world systems. Many research studies have been carried out to explore

simulation language development, simulation model design, model optimization, and combining

statistical design-of-experiment techniques with simulation modelling [175]. An overview of

advancements in simulation theory and its applications in the construction industry was conducted

by AbouRizk [176]. In this section, the purpose and context of the DES model of this study is

explained, followed by a detailed description of the model and its components.

5.1.1 Purpose and context

The DES model is developed to achieve the third objective of the present research that aims to

examine the effect of generating engineered features that capture the real-time loading conditions

of the job shop (i.e., SL features). Such simulated shop loading features are not practically

79

collected, and in most cases need to be derived from existing data. The goal here is to investigate

how certain SL features would improve the predictive accuracy of machine learning models if the

relevant SL features could be captured in the real-world. Using simulation modelling, the

collection of such features in the facility can be investigated. By experimenting with the DES

model, we are searching for the right set of features that can help to improve the predictability of

cycle time and thereby enhance the performance of data-driven models. The performance of the

machine learning models that were created using the simulated datasets (i.e., with and without SL

features) is examined and compared. Figure 5-1 illustrates the scope of the present DES

experimentations and how they relate to the content in Chapter 4.

Figure 5-1. Simulation model produces four datasets

The integrated data (i.e., the dataset obtained by integrating the physical characteristics of wall

panels and the RFID tracking data as described in Section 4.2) are converted to MS Access

database format (.accdb file), which is the format accepted by the DES modelling tool. This

80

database is used to generate the simulated entities in the simulation environment, each of which

presents a single multiwall panel. The database records are fed into the DES model; the process

for which is described in detail in the next section. The outcomes of the model are stored in four

spreadsheets (.csv files) each of which is then used to build a machine learning model. Each of the

four datasets contains a different set of features: a) the first dataset only contains the physical

characteristics of wall panels, which is hereafter referred to as the ‘raw dataset’; b) the second

dataset adds to the raw dataset a new set of shop loading features that capture the waiting times of

priori panels and starving times of workstations of priori production, and it is hereafter referred to

as the ‘SL wait dataset’; c) the third dataset adds to the raw dataset a set of shop loading features

similar to the ones developed in Chapter 4 (i.e., features capturing the number, length, and

processing times of priori panels), and it is hereafter referred to as the ‘SL length dataset’; and d)

the fourth dataset adds to the raw dataset all shop loading features developed earlier, and it is

hereafter referred to as the ‘SL full dataset’.

5.1.2 Discrete-event simulation model

The multiwall production process is described in Section 4.1 based upon which the detailed DES

model in Figure 5-2 is developed using the General Template in Simphony.NET, a simulation

environment developed by researchers at the University of Alberta [177,178].

The simulation model is colour -coded and subdivided into three main parts for consistent

development, easier implementation, and streamlined maintenance and updating. Each graphical

notation, or object, shown in Figure 5-2 represents an abstraction or summarization of an entity in

the real-world production system. These objects are referred to as modelling elements and are used

to resemble the actual production process. These modelling elements include database, create,

task, resource, capture, release, file, valve, set attribute, counter, execute, branch, composite,

81

destroy, and statistics. In general, the simulation entity, hereinafter the entity, represents a single

MWP and it goes through various modelling elements to complete the simulation. The

DatabaseCreate element is used to generate entities and set their local attributes by reading the

database that is loaded by the Database element. The resource element represents machines and

workers, and each entity is required to capture the associated resources in order to complete a task.

The elements capture, release, and file are used to model the acquiring, releasing, and waiting of

resources. When no resource is available, the entity waits in the file element and the waiting time

is recorded. Actual work taking place in a workstation is represented by the task element where its

time parameter simulates the actual processing time of the activity. After completing the associated

activity, the entity releases the resources and moves forward to the next process.

Figure 5-2. DES environment in Simphony.NET using General Template

82

Part 1 of Figure 5-2 depicts the required resources and their waiting queues. For the MWP

production line described in Section 4.1, the four workstations and the workers are represented by

seven resources in the simulation model. For example, the framing station (FS) and its dedicated

worker are represented by orange-colored file elements in the model and are used to simulate the

framing station (FS) process as described later in this section. Part 2 of the simulation model

includes static and dynamic information blocks as well as statistics elements that store and

aggregate processing and waiting times of each entity. For example, “Local Attributes” are static

information that shows the mapping of MWP data imported form the database to the local

attributes of the entities. This is provided for easier interpretation and development of the model.

Figure 5-3. Detailed tasks, resources, and statistics of the framing station

Part 3 represents the simulated processes where each workstation is represented by a composite

element that accepts an entity (i.e., a multiwall panel) from a previous process, route the entity

through different modelling elements, calculate and store the processing and waiting times, and

then outputs the entity to the next process. As an example, the details of the framing station

83

composite element are shown in Figure 5-3. When an entity is routed to the FS composite element,

it first captures two resources: a) a portion of the framing table equal to the length of the wall panel

where the maximum allowable length is 40 feet, and b) the framer where there is only one available

worker at the framing station. By restricting the resources availability in this fashion, once the

worker has completed the work on one panel, s/he can begin to work on the next panel given that

there is enough space on the framing table to accommodate the next panel. Once the required

resources are captured, the entity is held for a specific length of time depending on the time it takes

to frame the multiwall panel. This time depends on the physical characteristics of the panel and is

coded in the corresponding task element. Estimating activity durations in the simulation model is

known as “input modelling” and is discussed in Section 5.2.

In order to simulate possible delays at the framing station, a composite element is added after the

main processing task with five observed delay incidents (i.e., checking plans, shortage of material,

correcting errors, filling nail magazines, and workers idling) as shown in Figure 5-4. Each type of

delay has a probability of occurrence and an average duration that are calculated based on the

collected observations and further discussed in Section 5.2. It should be noted that only one type

of delay might occur for an individual panel component. Before and after the framing task element

and the delay composite element there are three set attribute elements that are used to set the value

of local entity attributes to the current simulation time (e.g., LX(100) = TimeNow in Figure 5-4).

By doing so, the processing and delay times at the framing station are calculated as the difference

between the respective local attributes. Once an entity exits the delay composite element, it releases

the framer resource and captures the next station (i.e., the buffer table (BT)) if it is not occupied

by a preceding entity. If the buffer table is available, the entity exits the FS composite element

which denotes the completion of the framing process.

84

Figure 5-4. Simulating delay events at the framing station using the branch element

Following the same logic and similar approach, the entity moves sequentially forward to the buffer

table, sheathing station, and multifunction bridge composite elements. At each workstation, the

resources are captured and released between operations and the corresponding processing time is

collected through statistics elements and stored in local attributes of the entity. Once an entity

passes through all the workstations, all processing cycle and delay times are collected, and the

entity is routed to the “Charts & Printing” composite element before being destroyed by a destroy

element, which simulates the completion of this phase of production. Within the “Charts &

Printing” element, an execute element is used to convert and store all the data and statistics of the

passing entity (i.e., MWP physical properties and the simulated processing and waiting times) into

a record in a spreadsheet (.csv file) for each day of production. Spreadsheets for all production

days are then combined and used for later analysis and to develop the machine learning models.

85

The simulation model runs until it has executed all the entities that exist in the database. The DES

model is setup to process wall panels on a daily basis (i.e., process and record statistics of the

panels that have the same ‘date’ attribute from the database). The counter elements within the

model are used to count and track the number of entities passing through a specific path. This is

used for the verification process of the model, which is described in Section 5.3.1.

5.2 Estimating Activity Durations

In practice, if an activity is performed repeatedly, it takes a different duration every time it is

carried out. This duration depends on a large number of factors including worker skill level,

material availability, and machine performance, to a name a few. Activity durations in discrete-

event simulation are traditionally modelled using probability distributions [176]. For each activity

in the model, the task time required to complete the activity is estimated by using a) a closed-form

formula that largely depends on the physical characteristics of the panel being processed, or b) a

random variate sampled from a probability distribution that is fitted to actual data (i.e., actual data

is either collected during a time study or extracted from RIFD timestamps).

Each MWP has different attributes (e.g., type, length, width, number of regular studs, number of

windows/doors) which are required to estimate the processing time at different workstations and

to route the entity as it travels through the DES model. For example, the processing time to

complete the framing of single panel i, T𝑓𝑟𝑎𝑚𝑒,𝑖, is the summation of installing individual

components and is calculated using Equation 5-1 as follows:

T𝑓𝑟𝑎𝑚𝑒,𝑖 = 𝑇𝑃,𝑖 + (𝑆𝑅𝑖 ∗ 𝑇𝑆𝑅,𝑖) + (𝑆𝐷𝐿𝑖 ∗ 𝑇𝑆𝐷𝐿,𝑖) + (𝑆𝑀𝑖 ∗ 𝑇𝑆𝑀,𝑖) + (𝑂𝑆𝑖 ∗ 𝑇𝑂𝑆,𝑖) + (𝑂𝐿𝑖 ∗ 𝑇𝑂𝐿,𝑖) 5-1

where: 𝑇𝑃,𝑖 is the time required to load the top and bottom plates;

86

𝑆𝑅𝑖 is the total number of regular studs (i.e., 2" × 4" or 2" × 6" standard stud);

𝑇𝑆𝑅 is the time required to nail a single regular stud to the top and bottom plates;

𝑆𝐷𝐿𝑖 is the total number of double and L-shaped studs;

𝑇𝑆𝐷𝐿 is the time required to nail a single double or L-shaped stud;

𝑆𝑀𝑖 is the total number of multi-studs (i.e., 3 or more studs installed together);

𝑇𝑆𝑀 is the time required to nail a single multi-stud;

𝑂𝑆𝑖 is the total number of small openings (window or door assembly);

𝑇𝑂𝑆 is the time required to install a single small opening component;

𝑂𝐿𝑖 is the total number of large openings (window or door assembly); and

𝑇𝑂𝐿 is the time required to install a single large opening component.

As for the sheathing station (SS), the time required to install sheathing sheets for exterior panels,

T𝑠ℎ𝑒𝑎𝑡ℎ𝐸,𝑖, is the summation of the time required to place the sheets and then nail them to the frame

by workers as per Equation 5-2. For interior panels, the entities bypass the installation path as

interior panels do not have sheathing. This routing logic is built within the DES model.

T𝑠ℎ𝑒𝑎𝑡ℎ𝐸,𝑖 = (𝑆𝑆𝐹𝑖 + 𝑆𝑆𝑃𝑖) ∗ 𝑇𝑝𝑙𝑎𝑐𝑒 + (𝑆𝑆𝐹𝑖 + 𝑆𝑆𝑃𝑖) ∗ 𝑇𝑛𝑎𝑖𝑙 5-2

where: 𝑆𝑆𝐹𝑖 is the total number of full sheets of sheathing for panel i;

𝑆𝑆𝑃𝑖 is the total number of partial sheets of sheathing for panel i;

𝑇𝑝𝑙𝑎𝑐𝑒 is the time required to place a single full or partial sheet; and

𝑇𝑛𝑎𝑖𝑙 is the time required to nail a single full or partial sheet.

87

Work at the sheathing station is advanced primarily by manual workers, thus the process time for

each task can be considered deterministic by splitting the entire process into sub-task groups. It

should be noted that the time required to install single components as described in the above

equations (i.e., time required nail a single stud or place a single full sheet) can either be

deterministic or stochastic drawn from a probability distribution. Examples of activity durations,

calculated in minutes, at each of the four workstations are shown in Table 5-1. Duration

distributions are either developed based on 1) actual RFID timestamps for triangular and beta

distributions, or 2) observations of the production floor operations for constant values. In the

Duration Distribution column, the three numbers indicated as being sampled from a triangular

distribution refer to the lowest, highest, and most likely values.

Table 5-1. Examples of activity duration distributions

Workstation Activity Duration Distribution (minutes)

Framing
Station

Nailing single regular stud Triangular(0.10, 0.70, 0.15)

Nailing single double/L-shaped stud Triangular(0.20, 0.95, 0.35)

Nailing single multi-stud Triangular(0.30, 1.40, 0.45)

Installing small opening assembly Triangular(0.80, 2.00, 1.00)

Installing large opening assembly Triangular(1.00, 2.20, 1.20)

Checking plans – delay Triangular(0.05, 0.35, 0.16)

Correcting errors – delay Triangular(0.05, 1.00, 0.30)

Buffer Table
Preparing cuts Constant(0.50 * #cutzones)

Correcting errors for interior panels Beta(2.02, 7.13, 0.03, 34.95)

Correcting errors for exterior panels Beta(2.13, 11.13, 0.33, 54.5)

Sheathing
Station

Placing exterior sheets Constant(0.30 * #sheets)

Nailing exterior sheets Constant(0.20 * #sheets)

Moving interior panels Constant(0.25)

Multifunction
Bridge

Refilling nail magazine Triangular(1.00, 2.00, 1.50)

Various delays – for exterior panels Triangular(1.50, 9.00, 4.50)

Removing wastes – for interior panels Constant(0.05 * panel length)

88

To determine the delays that might occur at the framing station, the durations of individual delays

are observed, and the distribution for delay time and the probability of delay occurrence are

calculated. The likelihood of a delay occurrence happening is calculated as the number of

observations where that type of delay occurs over the total number of observed delays.

5.3 Model Validation and Output

5.3.1 Model validation and verification

Simulation model verification is the process carried out to ensure the model has been correctly

implemented, while model validation refers to confirming that the model emulates the real-world

system to an acceptable level of accuracy. More formally, model verification is defined as

“ensuring that the computer program of the computerized model and its implementation are

correct”, and model validation is defined as “the substantiation that a computerized model within

its domain of applicability possesses a satisfactory range of accuracy consistent with the intended

application of the model” [179].

The developed simulation model can be verified in several ways. One way is by including a

dynamic counter that changes as the entities pass through the model. This is implemented by the

text block that changes the simulation run and the target date as shown in the lower right corner of

Part 2 in Figure 5-2. As the entities flow through the model, the simulation run, and the target date

(i.e., the date at which panel production took place) are updated as well as the processing times at

each workstation which verify that the model is implemented correctly. Moreover, the total number

of entities created matches the total number of entities destroyed. The model entities are traced

along the simulation time using several counter elements to determine if the model logic and

89

branch probabilities are correct. Also, the model integrity check provided by Simphony.NET is

used prior to model execution where logical, data, and computer language errors that are identified.

The simulation model is validated at two levels. First, the simulated total cycle time is compared

with the actual cycle time obtained from the RFID tracking system. This comparison is carried out

by examining the mean value and variance of the two cycle times and checking the statistical

significance of the difference using two-tail paired t-test statistics at a 95% confidence level (i.e.,

at a significance level 𝛼 = 0.05). The paired sample t-test is a statistical procedure used to

determine whether the mean difference between two sets of observations is zero, and is performed

by comparing the calculated p-value to the given significance level, 𝛼. Given the mean of

simulation cycle times, 𝜇𝑠𝑖𝑚, and the mean of actual cycle times, 𝜇𝑎𝑐𝑡, the null hypothesis, 𝐻𝑜, and

alternative hypothesis, 𝐻𝑎, are set as shown in Equation 5-3.

𝐻𝑜: 𝜇𝑠𝑖𝑚 − 𝜇𝑎𝑐𝑡 = 0 𝑎𝑛𝑑 𝐻𝑎: 𝜇𝑠𝑖𝑚 − 𝜇𝑎𝑐𝑡 ≠ 0 5-3

The simulated data has been randomly sampled from all available data based on stratified sampling

where each month represents one stratum. Given a sample of one month which contains a total of

503 records representing 18 working days, the mean values of simulated and actual cycle time data

are 𝜇𝑠𝑖𝑚 = 44.6 minutes, and 𝜇𝑎𝑐𝑡 = 43.6 minutes, respectively, as shown in Figure 5-5. The p-

value is calculated as 0.182, which is greater than the selected level of significance of 0.05 which

leads to the conclusion of failing to reject the null hypothesis. That is, from a statistical viewpoint,

the performance of the simulation model is very comparable to the actual production system which

validates the overall model. The second level of validation is performed at the workstation level.

Each workstation time is validated by comparing the simulated CT and actual CT extracted from

the RFID timestamps. Figure 5-6 shows the empirical density distribution of actual cycle times (in

orange) along with the simulated cycle times (in blue) for each of the four workstations.

90

Figure 5-5. Probability distribution of simulated and actual total CT

Figure 5-6. Probability distribution of actual and simulated CT for the four workstations

91

The vertical lines in Figure 5-6 indicate the median value of each cycle time. One observation is

that the actual cycle time curve is more tortuous compared to the smoother simulated curve which

is an indication of more irregularities during actual operations. Except for the sheathing station,

the two curves (i.e., actual and simulated) seem to follow the same pattern and are very comparable

suggesting that the simulation model is valid at the workstation level. As for the sheathing station,

the apparent difference between the two curves might be due to the nature of operations at this

station since they are more manual and less predictable, which indicates the simulation model does

not accurately capture the variability of the operations.

Nevertheless, this behavior does not affect the validity of the simulation output as the purpose of

the model is not to examine what-if scenarios in which case the model might need to be more

accurate at an individual workstation level.

5.3.2 Simulation model output

Simulation model outputs can be very diverse, ranging from statistics reports to graphical

representations of target variable distributions. However, the purpose of the present DES study, as

described in Section 5.1.1, is to generate additional features capturing some aspect of the real-time

loading conditions of the job shop. Those features are not present in the original dataset and might

be impractical or impossible to extract from the raw data. Hence, the main output of the present

simulation model is a spreadsheet (.csv file) that contains the original dataset augmented with

additional engineered features. This dataset is used to generate four datasets, each of which

contains a different set of features as described in Section 5.1.1 and are used to develop the ML

models as illustrated in Figure 5-1 and further described in Section 5.4. For the second dataset (i.e.,

‘SL wait dataset’), the features generated from the DES model capture some aspect of the real-

92

time loading conditions of the job shop that cannot be extracted from actual data, and they include

the following:

a) Features that record the waiting time of the panel preceding the current active panel, i.e.,

“priori wait @FS”, “priori wait @BT”, and “priori wait @SS”.

b) Features that record the starving time of workstations before the current active panel starts the

production process, i.e., “starving @BT”, “starving @SS”, and “starving @MFB”.

Those two sets of features are believed to capture important aspects of the system status at the time

the current panel enters the production line. The effect of the newly created features is investigated

when developing the ML models by examining the improvement of the predictive accuracy when

those features are added to the dataset as compared to the raw dataset. As the simulation entity

goes through the simulation model, those features are captured and stored in global attributes (i.e.,

GX attributes in Simphony.NET) and assigned to the next panel. Figure 5-7 illustrates how the

process generates the new features and assigns them to entities. Before the entity exits the

simulation at the destroy element, a new record capturing all the entity features (i.e., raw features

and SL features) is added to the spreadsheet.

Figure 5-7. Process of creating and assigning new features within the simulation model

93

Moreover, the third dataset (i.e., ‘SL length dataset’) adds to the raw dataset a set of SL features

that capture the number, length, and processing times of priori panels. These shop loading features

are similar to the ones generated from the actual RFID timestamps, as described in Section 4.4.

5.4 Discussion and Comparison of ML Models

5.4.1 Experiment setup

Based on the sample data used to create the DES model and the resultant dataset (i.e., the dataset

containing original features augmented with SL features generated using the simulation model),

an experiment is conducted to examine the effect of those newly generated features on the

predictive accuracy of ML models. An approach similar to the one used Chapter 4 in is used to

prepare the data, develop the machine learning models, and compare their performance. The

experiment comprises the development of an Extremely Randomized Tree (ERT) model [180]

with optimized hyperparameters for the four datasets described in Table 5-2.

The target variable is set as the simulated total CT, which is now considered as the ground-truth

against which the predictions obtained from the ML models are compared. Three performance

comparisons are conducted: (1) to examine the improvement in CT predictability when adding ‘SL

wait features’ to the dataset (i.e., using the second dataset), (2) to examine the improvement in CT

predictability when adding ‘SL length features’ to the dataset (i.e., using the third dataset), and (3)

to examine the improvement in CT predictability by adding all SL features to the dataset (i.e.,

using the fourth dataset). In each experiment, the dataset is divided into training and testing sets.

The ERT model is developed using the training set and the performance is measured on the testing

set using the measures described in Section 2.3.4. The testing set is always selected to be the

records of one day (i.e., the one day where cycle times are to be predicted) for which the prediction

94

of the model is tested while the training set is selected to be some previous lookback timeframe.

As part of the model development exercise, it is necessary to determine the optimal lookback

timeframe used for the training set for this type of time-sensitive prediction.

Table 5-2. Description of the datasets used in the experiment

Dataset
Name

Description Attributes

raw
dataset

raw dataset that contains only
the physical characteristics of
wall panels – no SL features

'FirstReadDate', 'Length', 'Width',

'Type', 'Cutzone', 'Drillhole',

'Stud', 'DStud', 'LStud', 'MStud',

'SmallOpenings', 'LargeOpenings',

'BlockBacking', 'NailCount',

'NailLine', 'Sheetfull',

'SheetPartial'

SL wait
dataset

raw dataset augmented with
SL features capturing priori
waiting time of WIP and
priori starving time of
workstations

'FirstReadDate', 'Length', 'Width',

'Type', 'Cutzone', 'Drillhole',

'Stud', 'DStud', 'LStud', 'MStud',

'SmallOpenings', 'LargeOpenings',

'BlockBacking', 'NailCount',

'NailLine', 'Sheetfull',

'SheetPartial', 'Wait@FS',

'Wait@BT', 'Wait@SS', 'starve@BT',

'starve@SS', 'starve@MFB'

SL length
dataset

raw dataset augmented with
SL features capturing the
number, length, and
processing time of priori
panels (SL features of
Chapter 4)

'FirstReadDate', 'Length', 'Width',

'Type', 'Cutzone', 'Drillhole',

'Stud', 'DStud', 'LStud', 'MStud',

'SmallOpenings', 'LargeOpenings',

'BlockBacking', 'NailCount',

'NailLine', 'Sheetfull',

'SheetPartial', 'WP', 'WPLength',

'WPTime'

SL full
dataset

raw dataset augmented with
all SL features described
above

'FirstReadDate', 'Length', 'Width',

'Type', 'Cutzone', 'Drillhole',

'Stud', 'DStud', 'LStud', 'MStud',

'SmallOpenings', 'LargeOpenings',

'BlockBacking', 'NailCount',

'NailLine', 'Sheetfull',

'SheetPartial', 'Wait@FS',

'Wait@BT', 'Wait@SS', 'starve@BT',

'starve@SS', 'starve@MFB', 'WP',

'WPLength', 'WPTime'

The lookback timeframe refers to the number of days from the historical data used to train the

model, as described in Section 4.5.1 and shown in Figure 2-8. This duration may have a substantial

95

effect on the accuracy of the model, and it is largely dependent on the specific dataset used. After

conducting several experiments, it is determined that a lookback duration of 5 days is optimal

when developing the model. The effect of the lookback duration on the mean absolute percentage

error (MAPE) is illustrated in Figure 5-8 for a few sample production days.

Figure 5-8. Effect of lookback duration on MAPE for sample production days

5.4.2 Results and discussion

Based on the above, ERT models are developed using the optimized parameters to predict the cycle

time for the four datasets described in Table 5-2. The ERT optimized parameters include a

lookback timeframe of five days, a number of trees to train of 400, and the number of features used

to train the model is 90% of the total number of features for each dataset.

The results of the performance measures are summarized in Table 5-3 where the last row of the

table shows the improvements achieved when SL features are added to the raw dataset. This

improvement is measured as the reduction in MAPE when SL features are included. It is worth

96

noting that the performance results represent the average values for running the experiments for

ten randomly sampled days.

Table 5-3. Performance measures of ERT model on the four datasets

 Dataset 1
raw data

Dataset 2
‘wait’ SL

Dataset 3
‘length’ SL

Dataset 4
All SL features

Mean Absolute Error (MAE) 8.35 6.84 6.91 6.44
Median Absolute Error
(MedAE) 6.95 5.77 6.01 5.18

Maximum Error (MaxAE) 21.46 19.44 18.16 17.66
Mean Absolute Percentage Error
(MAPE) 21.0% 16.5% 17.3% 14.6%

Correlation Coefficient (CC) 0.53 0.66 0.67 0.70

Improvement on MAPE n/a 4.5% 3.7% 6.4%

Examining the results of the performance measures in Table 5-3, it is observed that there is a

consistent improvement in the model’s predictive accuracy when shop loading features capturing

some aspects of the real-time loading conditions of the job shop are added to the dataset. Dataset

1, the raw dataset with only the physical properties, shows inferior performance measures with an

average MAPE value of 21%. In particular, the model performance improves by a reduction of

4.5% in MAPE score and an increase of 13% in CC when SL waiting time features (i.e., Dataset

2) are added; by a reduction of 3.7% in MAPE score and an increase of 14% in CC when SL length

features (i.e., Dataset 3) are added, and when all SL features are added (i.e., Dataset 4) the

reduction in MAPE is 6.4% and the increase in CC is 17%. All other performance measures exhibit

similar improvement trends. The results of performance measures also show that all datasets

exhibit similar trends by being positively skewed (i.e., the distribution of predicted CT has a long

tail to the right). This can be inferred from the MAE scores being consistently greater than the

MedAE scores for each of the four datasets. These results show consistency in performance

97

improvement when shop loading features augment the raw dataset, which achieves the third

objective in this thesis.

Moreover, it is observed that augmenting the raw dataset with different sets of SL features

improves the performance of the machine learning models differently. Capturing the waiting time

of prior panels and the starving time of workstations of priori production (i.e., as in the case of

Dataset 2) is more beneficial than capturing the number, length, and processing time of priori

panels (i.e., as in the case of Dataset 3). However, combining the two sets of features (i.e., as in

the case of Dataset 4) offers the most significant improvement on the performance measures. Thus,

the more information we can gather about panels immediately preceding the current panel in the

production line, the better our ability to develop ML models with more accurate prediction power.

On another note, when using simulated datasets, the overall performance improvement (i.e., better

predictability as observed by lower error measures and higher CC) is similar and comparable with

the performance improvement observed using the actual data as described in Chapter 4. In both

cases, the reduction in MAPE varies between 3% and 10% and the increase in CC varies between

13% and 56%. The difference in performance improvements between the simulated and actual

data might be due to a few factors. One factor is that the development of the DES model may not

accurately capture the actual nature of the production system because of the varying timeframe

upon which the models were developed. The DES model was developed in 2019 while the

available RFID data used to develop the ML models was made available for a different time period

from 2015 to 2018. From this viewpoint, although the production system layout has not

dramatically changed, numerous factors might have substantial effects on the system dynamics

and how the collected data reflect the actual system performance. For example, the market supply

and demand in the IBC industry are volatile as can be observed by the various cycles of high

98

activity and recessions, as shown in Figure 4-7. Also, the skills of the available workers

significantly affect the production. Skilled workers tend to perform manual tasks more efficiently

than unskilled workers, a factor that was not implemented when developing the simulation model.

Another factor is the nature of the generated SL features which might capture different aspects of

loading conditions of the job shop. In essence, although capturing the waiting time of prior panels

in the system and the starving time of workstations in the simulated environment seem intuitively

informative, these generated features seem to capture the loading conditions differently than what

SL features developed based on actual RFID data capture. Nevertheless, capturing real-time

loading conditions of the job shop does indeed improve the prediction accuracy in both cases.

5.4.3 Conclusion

In conclusion, the simulation model can be used to propose specific mechanisms for collecting

certain types of data that are otherwise not accounted for during the normal daily operations of the

factory. The proposed collection of these specific features is suggested to enhance the development

of ML predictive models and reduce the effort necessary for data preparation as well as rendering

the generation process of relevant features more consistent and automated and less prone to

subjectivity and customizations. In order to reap the full benefits of the simulated data, the

simulation model needs to be developed based on actual data that reflect the current layout and

operation of the production line. The simulation model, nevertheless, supports the hypothesis that

real-time loading conditions of the job shop constitute a crucial element that should be included in

the dataset in order to improve the predictive accuracy of any ML model. The loading conditions

of the job shop can be represented by many forms and the right set of features that capture those

conditions require a thorough understanding of the production process under investigation.

99

Chapter 6 Industrial Pipe Spool Fabrication Facility

This chapter describes the second case study where the proposed framework is applied to predict

the fabrication duration in a pipe-spool fabrication shop. Following a brief introduction, the chapter

is divided into five main sections. First, the manufacturing processes and work sequence are

described. Then, data identification and collection are presented, followed by a detailed

explanation of data cleaning and preparation tasks. The fourth section is dedicated to the

development of engineered features that capture real-time loading conditions of the job shop.

Lastly, the development, evaluation, and comparison of regression machine learning models are

described.

Industrial construction projects such as petroleum refineries and oil and gas production facilities

require intensive piping that connects a variety of equipment that is used to transport processed

fluids and gases [181]. Because of time and space limitations, these industrial construction projects

rely heavily on offsite prefabrication and preassembly. The prefabricated components of a piping

system are called pipe spools and include pipes, fittings, elbows, flanges, and other components

that differ widely in terms of material, shape, finish, and other properties. The number of pipe

spools can be in the order of thousands in a typical-sized (i.e., $200–$300 million) industrial

project [182]. These components are preassembled into modules before being shipped to remote

sites for final assembly. The fabrication process takes place in a fabrication yard or shop and

typically includes cutting, fitting, welding, quality control checking, stress relief, hydro testing,

painting, and other surface finishing [65,182]. Before the fabrication of modules, the associated

spools need to be ready; however, a large inventory of pipe spools would increase the requirements

for storage and result in double handling. Determining the right time to start the fabrication of a

100

pipe spool can be challenging as many factors affect the fabrication duration such as product

specifications, workforce performance, shop loading and its capacity. Such conditions may lead to

unbalanced production and impose challenges when predicting the completion time.

6.1 Process Description and Work Sequence

The case study analyzed in this chapter is an industrial pipe fabrication shop located in Alberta,

Canada. Pipe spool fabrication involves several sequential phases as illustrated in Figure 6-1.

Figure 6-1. Main phases of pipe spool fabrication process

6.1.1 Drafting and engineering phase

This phase involves breaking the whole project into smaller work packages, each of which consists

of the fabrication of a manageable pipe spool segment. The CAD drawings received from the

designer are transformed into isometric drawings and typically contain a bill of materials (BOM)

table. The isometrics drawings are detailed and then checked for consistency and errors. A

preliminary construction schedule is prepared based on the fabrication packages. The BOM, shop

101

drawings, and relevant information about the fabrication process are put together in what is known

as the shop fabrication package. The material issue report (MIR) date records the date at which the

raw materials for each package are required, and it represents the starting of the fabrication process

of the pipe spool.

6.1.2 Material supply phase

Once the shop fabrication package is ready, the material supply phase starts with the “Receive

Raw Materials” activity, which refers to the process of verifying, storing, and recording all the

bulk material shipments of each project. The fabrication package cannot be issued until all the raw

materials required for each package has a status of “available” in the material management

database. A work crew picks up the required material based on the BOM by a) assembling all the

non-pipe components (i.e., fittings such as elbows, valves, supports) on carts or pallets, and b)

identifying and cutting the required pipes to the specified lengths using the cut summary sheet.

Once all the fittings are placed on carts and the pipes have been cut and marked with a spool

identifier, all materials are transported to the fabrication shop. Then, the remaining documentation

including the isometric drawings and the package schedule is attached and delivered to the

fabrication foreman in order to start the fabrication phase.

6.1.3 Fabrication phase

The primary value-added activities are carried out during this phase. The fabrication phase

primarily consists of two sequential processes: fitting and welding. The fitting process requires

assembling the components according to the drawings and specifications, and it typically involves

pipe edge preparation (i.e., beveling and grinding), alignment and levelling of pipe assemblies,

and tack welding of components to secure them in place. The welding process completes the

welding of the fitted and partially finished subassemblies using various welding techniques. The

102

entire pipe spooling process can be classified as either roll fitting and welding (RFW) or position

fitting and welding (PFW). In RFW, the main pipe is rotated using a rolling machine, and the

worker (i.e., welder) does not need to change their position to perform the task. In PFW, portions

of the main pipe are too large to be turned by rolling machines in which case the subcomponents

need to be aligned using pipe stands where the worker moves around to fit and weld the pipes. The

process of PFW is generally more time-consuming than that of RFW. Hence, as an objective of

pipe spool fabrication sequencing, considerable efforts are typically taken to reduce the required

number of PFW [183]. The quality control (QC) procedures are typically carried out during both

fitting and welding processes to check the alignment of the spools and the quality of the welding

to ensure conformance with project specifications.

6.1.4 Post-fabrication phase

Once the fabrication phase is completed and before the spools can be delivered to the customer,

post-fabrication processes need to be performed. It should be noted that post-fabrication tasks are

performed either on all the welds or a random sample depending on project requirements. The

material transfer report (MTR) date records when all fabrication and post-fabrication processes are

complete, and it represents the finishing of the fabrication process of the pipe spool.

The post-fabrication phase typically starts with a detailed visual inspection of the pipe spool to

check its dimensions, alignment, weld quality, and conformance with drawings. Then,

nondestructive examination (NDE), also known as nondestructive inspection or testing, is

performed. NDE methods rely upon the use of electromagnetic radiation, sound, and other types

of signals to examine the pipe spools for integrity, composition, and conditions without affecting

the serviceability of the spools. Common nondestructive examination methods include

radiographic and ultrasonic testing [184], which are used to analyze the quality of the weld

103

throughout its cross-section. Other NDE methods are described on the American Society for

Nondestructive Testing website [185]. Post-weld heat treatment (PWHT) might be required

depending on the type of material and pressures to which the pipe spool will be subjected during

operation. PWHT is the process of reducing or redistributing the residual stress caused by the high-

temperature gradients during the welding process. It is performed so that the internal structures of

the metal are harmonized by reheating the weld and surrounding area of metal to below the lower

transformation temperature at a controlled rate, keeping at that temperature for a specific time, and

then cooling at a controlled rate [186]. Another type of testing that may be required is the hydro

test, which involves pressurizing the pipes to a factor greater than its operating design pressure.

This pressure is set by code (i.e., ASME III and ASME B31.1) and is often 1.5 × 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 to ensure

the welds can withstand operating loads [187]. Although this test is required for all spools

subjected to a pressurized environment, the testing can be performed either before or after its

installation in a module or when installed on site. When spools are to be welded together after

being placed in the module or shipped for site assembly, hydro testing is performed after the final

onsite assembly is completed. Once all the required inspections and tests are completed, pipe

spools may be routed to the paint shop for sandblasting and coating. Each spool has specialized

testing and painting requirements based on project specifications.

6.1.5 Shipping phase

After the post-fabrication phase, individual or batches of spools are marked as ready for delivery.

Batching of spools leads to further uncertainty being introduced to the scheduling. The shipping

phase includes tagging each spool with a unique identifier and preparing the turnover package that

contains copies of all the documentation utilized during fabrication and testing. Once the turnover

package is prepared, the spools are either shipped to the construction site individually (i.e., ship

104

loose) or placed in a piping module in the module yard (i.e., mod yard) to be shipped as a complete

structure.

6.2 Data Identification and Collection

6.2.1 Collection of raw data

The raw dataset analyzed in this study covers a period of approximately 18 months from September

2013 to February 2015 (based on actual fabrication dates as opposed to planned dates). The initial

dataset is available as an MS Excel binary spreadsheet (.xlsb) provided by the industrial partner

for analysis. In a previous study, an author developed a system to integrate data collection systems

in the fabrication shop with heuristic scheduling rules provided by the manufacturing facility

experts [12]. Figure 6-2 illustrates a data flow diagram where the information is accessed through

three different data sources managed by two databases: Drafting Database, and Material

Management Database.

Figure 6-2. Data flow diagram from data sources to initial dataset

105

For the present analysis, the drafting database provides spool characteristics and some milestone

tracking information that are exported to a spreadsheet called “FabStatus”. The material

management database provides a) material forecast and availability information that is exported to

a spreadsheet called “FabShortage”, and b) fabrication tracking and storing milestone tracking

information that is exported to a spreadsheet called “FabTrack”. These three data sources are

combined together in a new data spreadsheet. A unique identifying number for each spool, called

“Control Number”, is created in the form of xxx-yyyyyy where xxx is the last three digits of the

project number and yyyyyy is a serial number for a spool in that specific project. All redundant and

repeated fields are removed at this stage and the material availability, number of items, and largest

diameter of each spool is determined by consolidating information available at a component level.

The output of this phase is the “Initial Dataset”, where each row represents a single pipe spool

along with all associated information.

6.2.2 Identification and description of collected data

The collected historical data is investigated with the goal of developing ML models that can predict

the fabrication duration and estimate delivery date of future pipe spools. A pipe spool fabrication

shop in Alberta has made data available for analysis that includes fabrication progress milestones

that have been tracked. By looking at past fabrication durations, it is anticipated that useful

relationships may be drawn to estimate the scheduling of future projects. The “Initial Dataset”

spreadsheet has 68 attributes that have been obtained from the data collection tasks as described

in the previous section. These attributes are described in Table 6-1 and organized into several

categories. The seven fabrication processes (i.e., Fit, Weld, QC, NDE, PWHT, Hydrotest, and

Paint) have similar attributes pertaining to the scheduling of these processes and are shown in full

in order to present the complete composition of the dataset.

106

Table 6-1. Initial dataset attributes - column headers

Category Attribute Description

Spool
Information

Control Number Unique identifier of the spool
Project Project of which the spool is part
FIWP Field Installation Work Package of which the spool is part
Priority Assigned priority order of the FIWP
Diameter Inches Sum of the diameter inches to be welded
Max Size Diameter of the largest item in the spool
Grade Code for the material grade or type for the spool
Weight Total weight of the spool, computed at the drafting stage
Surface Area Surface area that a spool occupies
No. of items Total number of components making up the spool

Fabrication
Details

Status Fabrication status of a spool (i.e., On Hold or In Fab)
Bay # Number of the shop bay where the spool is fabricated
ECN Column Engineering Change Notice (contains subcontractor info)
Hold Details Any details regarding a client hold
Drawing Check Date Date the spool drawing has been checked

Issuing
Schedule

Material Available? Yes/No attribute derived using Material Management Data
RAS Date Required At Site Date - spool completion deadline
Expected Ship Date Date computed after a spool fitting has been completed
MIR Number Material Issue Report number
Planned MIR Date Scheduled Material Issue Report date of the spool, based

on RAS date
Actual MIR Date Actual Material Issue Report Date – represents the start

date of the spool
Planned Matl Issue Date Date by when material is required to be prepared
Actual Matl Issue Date Actual date when material preparation was complete
Location Spool fabrication location (either Bay# or Subcontractor)

Fitting
Schedule

Scheduled Duration

Scheduling and tracking attributes for the Fitting process

Scheduled Start Date
Actual Start Date
Scheduled Finish Date
Actual Finish Date
Actual Duration

Welding
Schedule

Scheduled Duration

Scheduling and tracking attributes for the Welding process

Scheduled Start Date
Actual Start Date
Scheduled Finish Date
Actual Finish Date
Actual Duration

107

Category Attribute Description

QC
Schedule

Scheduled Duration

Scheduling and tracking attributes for the Visual Inspection
process

Scheduled Start Date
Actual Start Date
Scheduled Finish Date
Actual Finish Date
Actual Duration

PWHT
Schedule

Scheduled Duration

Scheduling and tracking attributes for the Post-Weld Heat
Treatment process

Scheduled Start Date
Actual Start Date
Scheduled Finish Date
Actual Finish Date
Actual Duration

NDE
Schedule

Scheduled Duration

Scheduling and tracking attributes for the Non-Destructive
Examination process

Scheduled Start Date
Actual Start Date
Scheduled Finish Date
Actual Finish Date
Actual Duration

Hydro
Testing

Schedule

Scheduled Duration

Scheduling and tracking attributes for the Hydro Testing
process

Scheduled Start Date
Actual Start Date
Scheduled Finish Date
Actual Finish Date
Actual Duration

Paint
Schedule

Scheduled Duration

Scheduling and tracking attributes for the Painting process

Scheduled Start Date
Actual Start Date
Scheduled Finish Date
Actual Finish Date
Actual Duration

Transfer
Dates

MRR Date Material Receiving Report - represents a transfer of the
spool between business units

MTR Date Material Transfer Report - represents the completion date
of the spool

The scheduled dates are computed from the preliminary schedule developed during the drafting

phase (RAS Date), whereas the actual dates are obtained from the tracking databases. Table 6-2

108

and Table 6-3 show example records from the spool information and issuing schedule categories,

respectively.

Table 6-2. Spool information example records

Control
Number Project FIWP Priority Diamete

r Inches
Max
Size

Material
Grade Weight Surface

Area
No. of
items

130 - 010005 3215130 MD-02-52 10 12 20.00 G 1246.23 96.63 2.00
140 - 030047 3215140 W04-PM-1103-52 08 33.5 6.00 A 255.06 14.40 11.00
290 - 070007 3215290 D-PIP-13-3-SL 19 8 12.00 E 75.07 12.30 4.00
461 - 082082 3215461 200NLA201-15E-08 07 28 4.00 A 471.40 47.95 5.00

Table 6-3. Issuing schedule example records

Material
Available? RAS Date Expected

Ship Date MIR Number Planned
MIR Date

Actual MIR
Date

Planned
Matl Issue

Date

Actual
Matl Issue

Date
Location

Y Jun 25 '14 May 22 '14 MIR-130019 May 14 '14 Apr 09 '14 May 22 '14 Apr 28 '14 Bay # 2
Y Sep 27 '14 Oct 23 '14 MIR-140056 Aug 18 '14 Sep 17 '14 Aug 25 '14 Sep 19 '14 Academy Fabrication
Y Jun 04 '14 Jan 21 '14 MIR-290074 Apr 29 '14 Nov 28 '13 May 06 '14 Jan 09 '14 Bay # 1
Y Jul 15 '14 Jul 29 '14 MIR-461112 Jun 03 '14 Jun 11 '14 Jun 10 '14 Jul 03 '14 Bay # 4

It is crucial to identify unreliable or inconsistent data and carefully work around it. The attributes

above have been carefully examined to determine which attributes are to be included in the current

analysis. Attributes are discarded if they a) contain many missing data, b) contain redundant

information that is available within other attributes, c) lack consistency in terms of content and

value (i.e., data have been collected inconsistently over time between projects), or d) adds no value

to the current analysis (i.e., heuristically they do not affect the prediction of fabrication duration).

To avoid analyzing incomplete or incorrect data, heuristic approaches are followed to exclude

certain columns and records; then, comprehensive data cleaning and preparation is carried out as

described in the following section.

109

6.3 Data Preparation and Exploration

The raw dataset for this study is obtained in the form of a spreadsheet that contains 14,829 rows

(i.e., records) and 68 columns (i.e., features or attributes). The dataset includes a mixture of

categorical and numerical attributes. Although these attributes are grouped into several categories

for the ease of referencing as described in Table 6-1, they can be classified primarily as being

either spool identification and physical descriptions (e.g., control number, max size, weight), or

tracking dates (e.g., planned and actual MIR and MTR dates).

6.3.1 Data transformation

Date attributes present difficulties for data processing and might not be meaningful for the purpose

of predicting durations. The difference between two date attributes is more useful because it

indicates the duration to be investigated. The first step is to calculate the actual fabrication

duration, FabDur, by using actual dates of major milestones. Those milestones include (1) the

actual MIR date ,which marks the start of the overall fabrication process; (2) the fit actual finish

date, FitactualF, which indicates the end of the fitting process, prior to the start of welding; (3) the

QC actual finish date, QCactualF, which indicates the finish of quality control visual inspection prior

to the start of post-fabrication processes; and (4) the actual MTR date, which marks the end of the

fabrication process. Fabrication duration is then calculated as per Equation 6-1.

𝐹𝑎𝑏𝐷𝑢𝑟 = 𝑀𝑇𝑅 𝑑𝑎𝑡𝑒 − 𝑀𝐼𝑅 𝑑𝑎𝑡𝑒 ∶ 𝑀𝐼𝑅 ≤ 𝐹𝑖𝑡𝑎𝑐𝑡𝑢𝑎𝑙𝐹 ≤ 𝑄𝐶𝑎𝑐𝑡𝑢𝑎𝑙𝐹 ≤ 𝑀𝑇𝑅 6-1

The condition imposed by the above equation is for consistency and practicality where the total

fabrication duration needs to be valid and non-negative. Given missing date fields, which are

denoted by the symbol ‘/’ in the dataset, or inconsistent dates (e.g., 𝑄𝐶𝑎𝑐𝑡𝑢𝑎𝑙𝐹 > 𝐹𝑖𝑡𝑎𝑐𝑡𝑢𝑎𝑙𝐹),

applying the above equation will produce data cells with an error or negative value, which are

110

marked as invalid and are later removed from the dataset. Moreover, planned durations of the

major milestones described above are calculated based on the planned finish dates. For example,

the planned duration for the fitting process is calculated as the difference between the scheduled

MIR and scheduled fitting process dates. It should be noted that determining the planned durations

can be a challenging task since there exist many missing values. In such cases where one of the

planned dates is missing, it was reasonable to assume the planned duration to be equal to the

median value of actual durations. Four planned durations are calculated: MIR→Fit, Fit→QC,

QC→MTR, and MIR→MTR. These planned durations will form one group of attributes that are

used to experiment with ML model development.

6.3.2 Data cleaning

After calculating the total fabrication duration and the planned duration of major milestones, the

following steps describe how the records and attributes are further prepared and cleaned for

analysis (refer to Table 6-1 for attribute descriptions).

1) Records:

a. Records with invalid total fabrication durations are removed.

b. Records where the attribute “Diameter Inches” is missing or equal to zero are removed.

2) Attributes:

a. Only “Control Number” is kept as a unique identifier for each pipe spool. Fabrication and

other spool information are discarded as being irrelevant to the current analysis.

b. Only actual and planned dates for MIR, fitting process, QC process, MTR, and RAS are

kept for the purpose of calculating planned durations. These date attributes are discarded

after completing the calculations and validation.

111

c. All data pertaining to the post-fabrication processes (e.g., PWHT and Paint) are replaced

with a “Yes/No” attribute to indicate if the respective process has been completed or not for

the specific pipe spool. Planned dates for post-fabrication processes are mostly missing and

actual dates are not available for new products for which the duration is to be predicted.

6.3.3 Data descriptions

In this section, descriptive statistics are presented with respect to the physical numerical attributes

of pipe spools and the planned and actual fabrication durations in order to gain a better

understanding of the data and the process it represents. As can be observed in Table 6-4, most

minimum values of physical attributes indicate unrealistic values, which might be due to

inconsistency in collecting raw data (e.g., erroneous measurement, or wrong data entries). This is

an indicator that these attributes may not be very informative for the purpose of predicting

fabrication time. Intuitively, “Diameter Inch” is the attribute that would affect the fabrication

duration the most as the time spent on fitting and welding is largely determined by how many

inches need to be worked on. However, other physical attributes might affect the time of material

storage and transportation as well as the type of welding material and techniques.

Table 6-4. Descriptive statistics of physical numerical attributes and fabrication durations

 mean std min 25% 50% 75% max

Diameter Inches 19.93 25.42 0.50 6.00 12.00 24.00 552.00

Weight (lbs) 436 1171 0.36 40 103 282 26304

Surface Area 28.87 54.68 0.05 4.98 10.86 26.91 1020.39

No of items 4.25 2.83 1.00 2.00 3.00 5.00 24.00

Max Size 4.72 4.78 0.50 2.00 3.00 6.00 36.00

Planned MIR to Fit 14.34 1.55 8.0 13.0 14.0 15.0 21.0

Planned Fit to QC 2.96 0.33 -5.0 3.0 3.0 3.0 4.0

Planned QC to MTR 12.49 4.68 6.0 10.0 11.0 15.0 32.0

Planned MIR to MTR 29.88 4.65 19.0 27.0 29.0 32.0 53.0

Fab Duration 41.49 22.28 1.00 25.00 39.00 53.00 169.00

112

The values for actual fabrication durations average around 42 days with a median value of 39 days

and an extreme maximum value of 169 days. These values indicate a positively skewed distribution

of the actual fabrication durations (i.e., an empirical distribution plot with a long tail to the right).

Figure 6-3 shows the distribution of actual fabrication durations (i.e., Fab Duration) where it can

be observed that most durations fall in the range of 15 to 55 days. Also shown in the figure is the

distribution of planned fabrication durations (i.e., Planned MIR to MTR) with a much smaller

spread as compared to the actual durations. By comparing actual and planned durations, one can

observe the over-optimistic approach followed when planning pipe spool fabrication as compared

to the actual shop performance. Therefore, adopting a data-driven approach would provide more

robust and realistic schedules. Such an approach would also adapt to future changes in the

performance and allow for faster and smarter shop control.

Figure 6-3. Actual and planned total fabrication durations (days)

113

As part of the data preparation phase, and in addition to the insights gained from the descriptive

statistical analysis, the fabrication dates have been examined for logical sequencing of events. Due

to inconsistency in data collection and recording, dates for completing some activities are recorded

as having occurred after some successor activities. For example, the fitting process can only start

after the raw material has been delivered to the fabrication shop, which in turn only occurs after

the MIR is issued. In a large number of instances, the MIR date has a later date than the start of

the fitting process, which cannot practically happen. Similar observations are noted for logical

sequencing of post-fabrication processes. For this reason, several intermediate date attributes (i.e.,

between MIR and MTR) have been discarded as previously described. It should be noted that

arriving at the tidy dataset as described above is a two-way approach where a thorough

understanding of each activity and planning and control methods employed at each stage is

required. Also, examining the raw data has added to a deeper understanding of the underlying

processes and activities.

6.4 Feature Engineering

6.4.1 Shop utilization features

Similar to the first case study investigated in Chapter 4, information about the loading conditions

of the job shop is believed to have a major impact on the overall fabrication duration. It is

anticipated that shop loading at the time a new pipe spool starts production affects processing

priorities, waiting time between fabrication phases, and the congestion levels at different

workstations. To be able to quantify the shop loading conditions at the start date of fabrication, a

measure of the shop utilization is developed based on the current volume of work being performed

at the job shop. The four available physical characteristics of a pipe spool (i.e., Diameter Inches,

114

Weight, Surface Area, and No. of Items) are used each in combination with fabrication tracking

information to derive four shop loading (SL) parameters. Each parameter represents the shop

utilization at the start date of fabrication based on one physical feature.

For the diameter inch (DI) shop loading parameter (DSL), it is computed using Equation 6-2 for a

new pipe spool k by adding the DI of all the pipe spools that are still in fabrication at the time the

new spool starts its production by the actual start date (MIR). The diameter inch count is commonly

used as a measure of the amount of welding labor required. For example, the amount of labor

required to weld a standard 12-inch carbon steel pipe is expressed as 12 DI. Diameter inch is the

main factor used for the purpose of scheduling, cost estimating, and productivity measure [65,67].

𝐷𝑆𝐿𝑘 = ∑ 𝐷𝐼𝑖

𝑛

𝑖=1

∶ 𝑀𝐼𝑅𝑘 ≥ 𝑀𝐼𝑅𝑖 𝑎𝑛𝑑 𝑀𝐼𝑅𝑘 ≤ 𝑀𝑇𝑅𝑖 6-2

where: 𝐷𝑆𝐿𝑘 is the “Diameter Inches” shop loading of spool k;

 𝑀𝐼𝑅𝑘 is the actual fabrication start date of spool k;

 𝑀𝐼𝑅𝑖 is the fabrication start date of spool i;

 𝑀𝑇𝑅𝑖 is the fabrication finish date of spool i;

 𝐷𝐼𝑖 is the Diameter Inches of spool i at the start date; and

 n is the number of pipe spools i when spool k starts production.

Other shop loading features, including “Weight” shop loading (WSL), “Surface Area” shop

loading (SSL), and “No of Items” shop loading (ISL), are calculated using a similar approach. The

reason for deriving several shop loading features is to later examine which physical property has

the largest effect on the predictability of fabrication duration. Before being added to the dataset,

the four derived shop loading features (i.e., DSL, WSL, SSL, and ISL) are normalized so that the

values lie between 0 and 1 [90]. Equation 6-3 shows how the DSL attribute is normalized:

115

𝑁𝑜𝑟𝑚. 𝐷𝑆𝐿𝑘 =
𝐷𝑆𝐿𝑘 − 𝐷𝑆𝐿𝑚𝑖𝑛

𝐷𝑆𝐿𝑚𝑎𝑥 − 𝐷𝑆𝐿𝑚𝑖𝑛
 6-3

In addition to the derived shop loading features described above, a shop utilization ratio (SUR) is

calculated as the ratio between the actual DSL and the planned DSL as per Equation 6-4:

𝑆𝑈𝑅𝑘 =
𝑎𝑐𝑡𝑢𝑎𝑙 𝐷𝑆𝐿𝑘

𝑝𝑎𝑙𝑛𝑛𝑒𝑑 𝐷𝑆𝐿𝑘
 6-4

The planned 𝐷𝑆𝐿𝑘 is calculated when spool k starts production as per Equation 6-2 based on the

planned MIR date and the planned finish date (i.e., RAS date). Essentially, this ratio reports how

busy the job shop actually is in comparison to what has been planned, which is believed to capture

the agreement/difference between the actual and planned scheduling of the work. A graphical

representation of computing a shop loading feature is illustrated in Figure 6-4 showing three pipe

spools that are in production at the fabrication start date of a new pipe spool.

Figure 6-4. Computation of SL for a new pipe spool

116

6.4.2 Features categorization

After applying the cleaning and preparation steps as previously described, five engineered features

capturing shop utilization are derived as presented in Section 6.4.1. For consistent referencing, and

to be able to examine the effect of different subsets of features on the prediction accuracy of

fabrication durations, features are categorized into four groups:

a) Features pertaining to the physical properties that describe the dimensional and composition

characteristics of the pipe spool. Those features include “Diameter Inches”, “Weight”,

“Surface Area”, “No of Items”, “Max Size”, and “Grade”.

b) Features pertaining to post-fabrication phase indicating whether or not a post-fab process is

applied to the spool. Those binary features include “Paint”, “Hydrotest”, and “PWHT”.

c) Features pertaining to the planned fabrication durations that computed the planned total

duration “MIR to MTR” and its subprocesses “MIR to Fit”, “Fit to QC”, and “QC to MTR”.

d) Features pertaining to shop loading that capture the real-time loading conditions of the job

shop (i.e., shop utilization) depending on different physical characteristics. Those include

“Norm. DSL”, “Norm. WSL”, “Norm. SSL”, “Norm. ISL”, and “SUR”.

Figure 6-5. a) Preparation steps from Raw to Tidy dataset, b) Headers and example records of the
tidy dataset

117

The tidy dataset consists of 6,989 records and 20 attributes. Figure 6-5 illustrates the change in

dataset dimensions during the development of the tidy dataset. The bottom part of the figure shows

the final complete dataset that is ready for analysis. As described above, the features are grouped

into four sets with the target attribute conventionally located as the last column.

6.5 Machine Learning Models for Regression

Several experiments are conducted with the aim of developing an optimal ML regression model

to predict the fabrication durations in the pipe spool shop. There are various available ML models

that are suitable for regression analysis; however, due to recent advances, easier interpretability,

and successful implementations in many fields, the focus in this case study will mainly be on tree-

based ensemble algorithms including random forests (RF), extremely randomized tree or extra

trees (ERT), and gradient boosted decision trees (GBDT). RF and ERT belong to a class of

ensemble models called bagging, while GBDT is a boosting algorithm [188,189]. In addition, the

prediction results of these models are compared to the use of simple averaging of actual historical

durations to estimate future fabrication durations. Simple averaging (i.e., use of Little’s Law) is

used as a benchmark as it is used as a heuristic rule in practice.

Before examining the various ML models, it is necessary to carry out a set of experiments to

evaluate the viability the performance of different subsets of attributes as described in the next

section. Attribute subsets are constructed to examine the effect of inclusion and exclusion of

various levels of information on the performance of the ML models. The most promising attribute

sets are carried forward for further experimentation. Subsequently, the hyperparameters of the best

performing model on the optimal attribute dataset are tuned to achieve the best performance.

118

6.5.1 Evaluation of attribute subsets

Presented in Table 6-5 are the different attribute subsets created for experimentation. The subsets

present all possible combinations of the different attribute groups described in Section 6.4.2. Each

dataset combination has been assigned an experiment number with a brief description.

Table 6-5. Attribute subset experiments

Su
bs

et
 N

o.

Attribute Description

Sp
oo

l P
hy

si
ca

l
Pr

op
er

tie
s

Po
st-

Fa
b

Pr
oc

es
se

s

Sh
op

 L
oa

di
ng

A

ttr
ib

ut
es

Pl
an

ne
d

D
ur

at
io

ns

Fa
br

ic
at

io
n

D
ur

at
io

n
(ta

rg
et

)

1 Dataset with all attributes including SL and planned durations ✓ ✓ ✓ ✓ ✓

2 Dataset with only spool information ✓ ✓

3 Dataset with only spool information and post-fab processes ✓ ✓ ✓

4 Dataset with only spool information and SL ✓ ✓ ✓

5 Dataset with only spool information and planned durations ✓ ✓ ✓

6 Dataset with all attributes except planned durations ✓ ✓ ✓ ✓

7 Dataset with all attributes except SL ✓ ✓ ✓ ✓

8 Dataset with spool information, SL, and planned durations ✓ ✓ ✓ ✓

The performance measures, described in Section 2.3.4.1, are used to compare the various

combination of attributes defined as subsets in Table 6-5. The subsets are evaluated based on a

default RF model with 100 trees, the mean square error (MSE) as the criterion to measure the

quality of a split, and the maximum possible depth of the trees. In these preliminary experiments,

each dataset has been split into 80% training set and 20% testing set. The model is developed using

the training set and the performance is measured on the testing set. The results of attribute subset

performance measures are summarized in Table 6-6.

119

Table 6-6. Performance measures of attribute subsets

Subset No. 1 2 3 4 5 6 7 8

Mean Abs. Error 9.05 14.89 13.84 10.02 13.72 9.36 13.51 9.15

Median Abs. Error 5.67 10.93 9.88 6.36 10.07 5.99 9.76 5.79

Maximum Error 108.17 92.25 103.05 103.73 101.82 105.02 100.81 109.18

Mean Abs. Percentage
Error 30.48% 59.8% 52.04% 36.11% 51.2% 31.69% 50.24% 30.94%

Correlation Coefficient 0.77 0.47 0.54 0.74 0.55 0.76 0.57 0.77

The results show a consistent behavior, except for the maximum error, for all performance

measures across all datasets as these measures are correlated to each other. Therefore, any measure

can be used for comparison purposes. One important result that can be observed from Table 6-6 is

the improved performance when the shop loading attributes are included in the dataset. This can

be noted by the higher correlation coefficients (i.e., around 0.76) and the lower error measures

(e.g., MAPE is about 32%) for the Datasets 1, 4, 6, and 8 where the SL attributes are included.

When SL attributes are not present in the dataset, the results are inferior (e.g., MAPE as high as

60%) from which we can conclude that SL attributes are crucial for the development of optimal

ML models.

Out of the four subsets where the shop loading attributes are included, the two with the slightly

better performance measures (i.e., higher CC and lower MAPE) are Subsets 1 and 8, which are

then used to further evaluate the effect of each individual shop loading attribute on the model

performance. By selecting relevant SL attributes and discarding less-informative ones, the model

performance is improved, and the computational requirements to develop and maintain the model

are decreased.

120

According to the binomial theory, the number of k-combinations for all k is the number of all

possible subsets of a set of n numbers; therefore, the total number of all possible combinations of

the five SL attributes is found to be 31 subsets as per Equation 6-5.

(
𝑛
1

) + (
𝑛
2

) + ⋯ + (
𝑛
𝑘

) = 2𝑛 − 1 6-5

Experiments are carried out to find the optimal combination of SL attributes using the two

candidate Subsets 1 and 8. The performance measures are calculated for each trial and compared

in a similar manner as is shown in Table 6-6. Out of the 62 possible subsets (i.e., 31 possibilities

for each of Subsets 1 and 8), it is observed that the change in performance measures is moderate

with a CC ranging between 0.74 and 0.77, while MAPE ranges between 37% to 30%. When only

one SL attribute is included, the results are inferior in general (worse results when using only SUR)

indicating that more than one SL attribute should be included in the subset to arrive at a better

performance. The effect on model performance when including post-fab processes (i.e., the

difference between Subsets 1 and 8) is negligible; therefore, to reduce the dataset dimensionality,

Subset 8, which excludes post-fab attributes, is used for further analysis since the post-fab

attributes do not seem to be very informative in predicting fabrication durations.

After examining the different combinations of shop loading attributes, it is observed that

discarding the WSL attribute does not jeopardize the overall performance. Therefore, it was

decided to keep the other four attributes (i.e., DSL, SSL, ISL and SUR) in Subset 8 and carry the

resulting subset forward to develop and compare the various ML models. The resulting subset is

referred to hereinafter as Subset 8A, and the corresponding performance measures are calculated

as 0.77 and 30.6% for the CC and MAPE, respectively.

121

6.5.2 Application and comparison of models

For the Subset 8A described in the previous section, three tree-based ensemble algorithms are

applied to predict the fabrication durations (i.e., Random Forests, Extremely Randomized Trees,

and Gradient Boosting Decision Trees). Experiments to tune the hyperparameters of each of those

models are carried out to achieve an optimal result. The three algorithms are employed using

Scikit-Learn, a Python open-source library for machine learning [174], and the variable names

shown below in parentheses refer to the parameters used in the library.

6.5.2.1 Tuning of hyperparameters

In an RF model, each tree in the ensemble is constructed from sample records drawn from the

training set with replacement (i.e., a bootstrap sample). Also, when splitting each node, the

optimum split is determined either using all input features or a random subset of features. In an

ERT model, unpruned trees are built using the whole training set as opposed to bootstrap samples

as in the case of RF. Moreover, the nodes are split fully at random through which “the explicit

randomization of the cut-point and attribute combined with ensemble averaging should be able to

reduce variance more strongly than the weaker randomization schemes used by other methods”

[180] that uses locally optimized cut-points. In an GBDT model, decision trees are added to the

ensemble one at a time where a subsequent model is fit to correct the prediction errors made by a

prior model. Therefore, the final predictor includes combining “weak” models sequentially where

the loss gradient of a differentiable loss function is minimized at each step.

All algorithms have three main and common parameters to configure: 1) the number of trees of

the ensemble (n_estimators), 2) the size of the random subset of features (max_features), and

3) the minimum number of samples required for splitting a node (min_samples_split). For each

of these parameters, several experiments are carried out to obtain the optimal values by exhaustive

122

search over the range of heuristically selected values while holding all other parameters constant.

For the number of trees, experiments are conducted for values ranging from 100 (i.e., default value)

to 3000 trees in order to obtain a value that is large enough to ensure convergence of the ensemble

effect for the present dataset. For the maximum number of features randomly selected at each node,

Breiman [130] suggested to use one-third of the features while Geurts et al. [180] argues that using

all the features results in better models. Accordingly, an experiment is conducted to examine the

range of values between the two suggested limits (i.e., between 6 and 17 features for the present

dataset Subset 8A). As for the minimum number of samples required to split an internal node,

values between 2 (i.e., default value) and 12 are examined. In general, larger values lead to smaller

trees, higher bias, and smaller variance; however, the optimal value largely depends on the level

of noise in the dataset. The percentage of training set used to fit each individual tree (i.e.,

max_samples for RF, and subsample for GBDT) are examined for values ranging from 70% to

100%. It is observed that values above 90% yield substantially better performance for both the RF

and GBDT models. This parameter is not applicable for the ERT model as the whole training set

is used to fit the model. The results of the hyperparameter tuning experiments are summarized in

Table 6-7 where these optimum values are used to fit the final models and compare the results in

the following section.

Table 6-7. Summary of Hyperparameter Experiments

range of

tested values RF ERT GBDT

n_estimators 100 – 3000 200 400 3000

max_features 6 – 17 16 16 15

min_samples_split 2 – 12 2 2 4

max_samples/subsample 70% – 100% 97% n/a 93%

123

As an illustrative example of one of the experiments, Figure 6-6 shows a grid of the MAPE results

for each possible combination of the two parameters, (max_features) and (min_samples_split),

for each of the three models. The size of the circle indicates the relative value of MAPE where

smaller circles correspond to better performance measures. The circles highlighted in red represent

the six minimum MAPE for different combinations of the two parameters for the Subset 8A

dataset. It can be observed that the performance of both the RF and ERT models are more

consistent compared to the GBDT model.

Figure 6-6. MAPE for combined number of max. features and min. samples to split

6.5.2.2 Comparison of model performances

Given the optimum hyperparameters obtained and described in the previous section, the three

models (i.e., RF, ERT, and GBDT) are trained and tested using a 5-fold cross-validation technique.

In addition, in order to compare the computational efficiency, the average training and testing

times for each model are also calculated. For accurate, fair, and consistent comparison of the time

requirements, the models are compared by setting the number of trees to 200. This is because the

number of trees (i.e., n_estimators parameter) has the largest effect on the time required for

124

training any tree-based model. Summarized in Table 6-8 are the performance measures, described

in Section 2.3.4.1, for the three models along with the time required for training and testing. Also,

the last column presents the error measures for using simple averaging (i.e., using the average of

actual historical durations, which is equal to 41 days) as an estimator of fabrication duration for

future pipe spools.

Table 6-8. Performance measures for the final fit models

 RF ERT GBDT Simple
Averaging

Mean Absolute Error (MAE) 9.50 8.93 10.38 16.35

Median Absolute Error (MedAE) 6.11 5.06 7.05 13.96

Maximum Error (MaxAE) 89.62 76.78 88.09 66.95

Mean Absolute Percentage Error (MAPE) 28.6% 26.6% 31.6% 60.3%

Correlation Coefficient (CC) 0.74 0.74 0.71 n/a

Training Time (seconds) @ 200 trees 6.84 3.62 2.11 n/a

Testing Time (seconds) @ 200 trees 0.085 0.098 0.006 n/a

6.5.3 Results and discussion

Examining the results of the performance measures in Table 6-8, one can clearly observe the

substantial improved accuracy in predicting the fabrication duration when using any of the

proposed ML models as compared to the heuristically simple estimate (i.e., using the average of

actual historical durations). In general, the MAPE can be reduced by more than 30% when using

the proposed predictive models and the MAE decreases by approximately 50%.

The results of performance measures also show that the ERT model outperforms RF and GBDT

models in terms of lower error measures (e.g., MAPE of 26.6% compared to 28.6% and 31.6%,

125

respectively). Both RF and ERT exhibit better performance than GBDT even though the latter is

faster to train and test. The training time seems to be better for GBDT using the default settings

(i.e., when setting the number of trees to 200); however, when using the optimized

hyperparameters, the computational requirements, as summarized in Table 6-7, significantly

increase for the GBDT while both the RF and ERT exhibits similar behaviors. The CCs are not

significantly different among the three models indicating moderate-strong positive correlation

between the actual and predicted fabrication durations.

Figure 6-7 shows the distribution of actual durations (in red) in comparison with the predicted

durations using each of the models. It can be observed that ERT (in orange) is the closest to actual

durations, which aligns with the performance measure in Table 6-8.

Figure 6-7. Kernel density estimate (probability) of planned, actual, and predicted durations

126

6.5.4 Conclusion

The exercise of selecting the relevant features, including features that capture real-time loading

conditions of the job shop, is crucial as it improves the results significantly as described earlier.

Also, experimenting with hyperparameters and tuning their values improves the performance of

all models significantly. These two sets of experiments (i.e., feature engineering and

hyperparameter tuning) are very important in the development of optimal ML models.

Tree-based models in general have a few common parameters that affect their performance

including the number of trees in the ensemble, the size of the random subset of features, and the

minimum number of samples required for splitting a node. Other parameters might affect the

performance but to a lesser extent.

In summary, predicting the fabrication duration in a pipe spool shop is a representative example

of a typical industrialized building construction factory. One distinguishing attribute is the highly

customizable and variable type and volume of production. Examining various ML models proves

their ability to accurately predict the production time. However, it is crucial to develop and include

engineered features that capture the shop utilization in order to achieve acceptable predictions.

Although the engineered features need to be developed in a customized fashion that incorporates

case-specific knowledge, it is observed that those features nevertheless capture some aspect of the

system utilization. In the pipe spool fabrication shop, the developed features capture the real-time

shop loading conditions at the time a new pipe spools starts production. In this case, shop loading

conditions capture the amount of variation in physical attributes of concurrently processed spools

and assign the newly computed feature to the new spool. These generated features have been

proven to add valuable information that assists in the predictability of the fabrication durations of

the new pipe spools.

127

Chapter 7 Conclusions

7.1 Summary and Conclusions

This thesis presents the hypothesis that a data-driven framework using machine learning

approaches can improve the planning and scheduling practice in industrialized building

construction (IBC). The research presented in the thesis suggests that the production time, and

consequently the delivery dates, can be accurately predicted in IBC fabrication shops by utilizing

the product characteristics, fabrication tracking data, and a set of engineered features.

In essence, a data-driven framework, which is based on similar frameworks described in the

literature, is proposed with the addition of and focus on generating features that capture some

aspect of the real-time loading conditions of the job shop. Those features significantly improve the

predictive accuracy of the machine learning models developed to estimate the fabrication duration.

More accurate prediction of fabrication durations implies better estimation of delivery dates and

hence improved production scheduling and customer satisfaction.

After an introduction, the thesis starts, in Chapter 2, by a broad literature review about IBC,

production scheduling, and the application of machine learning predictive modelling in the

construction industry. The chapter also covers an overview of the specific machine learning

methods used in this thesis. The developed framework and the methodology followed in this thesis

are described in Chapter 3, which also include a discussion on the positioning of construction

management research under the design science umbrella rather than as an explanatory science. The

implementation of the methodology covers two case studies: the first is at a residential wall panel

fabrication factory, described in Chapter 4, and the second is at a pipe spool fabrication shop for

128

industrial construction, discussed in Chapter 6. In Chapter 5, a simulation study is conducted to

investigate more thoroughly the generation of features capturing some aspects of loading

conditions of the job shop with the goal to improve the predictive accuracy of ML models. This

experimentation is applied to the first case study described in Chapter 4.

In conclusion, the thesis proposes that machine learning methods can be used to accurately predict

the production cycle time in industrialized building construction, and as a result the scheduling

process can be improved. The accuracy of the developed ML models can be improved by

augmenting the process dataset with engineered features capturing the real-time loading conditions

of the job shop without which the performance of such models might be sub-optimal. Real-time

loading conditions of the job shop constitute a crucial component of the dataset that needs to be

included in order to improve the predictive accuracy of any machine learning model. The loading

conditions of the job shop can be represented using various features and the development of the

right set of such features requires a thorough understanding of the production process under

investigation. This imposes a requirement that these features be custom-built and because of their

dependency on the specific case study, a good understanding of the associated production process

is mandatory. Nevertheless, those features are essential to the development of ML models and

must capture the loading conditions of the job shop in one way or another. The use of machine

learning models to predict production time results in an approximately 25% improvement in the

accuracy as compared to using simple averaging estimates based on historical data. Augmenting

the dataset with SL features increases the accuracy by an additional 10%.

Moreover, the lookback timeframe used to train the model has a significant effect on the prediction

accuracy of the cycle time. Selecting the right timeframe is also case specific; however, using a

129

short timeframe or using the entire dataset to train the model often results in inferior performance

as compared to selecting the right timeframe.

7.2 Research Contributions

7.2.1 Academic contributions

The academic contributions of the research presented in this thesis can be summarized as follows:

• The proposed framework provides a comprehensive roadmap to analyze raw data in

order to predict production cycle time, specific to industrialized building construction.

It considers 1) the streamlining of factory operations from the design stage to the

delivery and assembly on site, 2) the high level of customization of the building

components, which makes this industry dissimilar to the mass production realized in

other manufacturing environments, and 3) the seasonality of supply and demand in IBC

which are inherently captured in the production data and can significantly affect

predictability of production time.

• The methodology used in this thesis represents a practical approach to estimate the time

required to produce building components based on the physical characteristics of the

component and the holistic production operations. This means that new features are

developed from existing properties in order to capture how the factory settings (e.g.,

shop capacity, dynamic utilization of the production line, storage and delivery to the

site, number of available workers) influence the estimation of production time.

• In order to improve the predictive accuracy of the machine learning models used to

estimate the production time, simulation modelling is used to investigate the different

130

features that are attributable to improving the predictability of production time and thus

improve the performance of data-driven models. Those features are not present in the

original dataset and might be impractical or impossible to extract from the raw data or

to collect in practice.

7.2.2 Industrial contributions

The industrial contributions of the research presented in this thesis can be summarized as follows:

• The proposed framework recognizes and identifies the common challenges faced by the

industrialized construction industry in regard to data collection, storage, preprocessing,

and analysis. Identifying these challenges enables decision makers to better understand

the obstacles that hinder the wider adoption of data analytics in the industry, since a lack

of adoption of data analytics results in missing the opportunity to use and benefit from

this available commodity – the data.

• The proposed framework can provide an alternative method of predicting future

uncertainties in terms of production time and resource utilization using existing

obtainable data without the expertise required to develop more sophisticated simulation

models.

• An integral part of the proposed framework is to develop a practical guideline to clean

and prepare the raw data prior to actual modelling and prediction. This task, when done

in a systematic and consistent manner, can save much of the time and effort used to

develop a data-driven predictive model. Industry practitioners can use the developed

procedures as an integral part of data collection and processing operations.

131

7.3 Limitations and Future Work

Based on the research conducted in this thesis, the following are some of the limitations of the

present research and the proposed future research directions:

• The applicability of the research in this thesis has been proven to generalize to

fabrication shops in the industrialized building construction industry by examining two

cases studies that share some common aspects of construction manufacturing

environments yet belong to different subsectors (i.e., residential construction and

industrial construction). Although the generalization is illustrated by the two case

studies, more research might be needed to further support the generalization of the

results and draw conclusions based on the common aspects in IBC manufacturing

facilities. Such common aspects include the high level of customization characterizing

most building products, the variability in supply and demand of the industrial building

construction market, and the inconsistency of labor availability and skill levels.

• The results of the accurate cycle time prediction (i.e., the output of machine learning

models) can be leveraged by the automatic integration of ML algorithms with existing

production scheduling and tracking systems. By doing so, it is possible to provide very

accurate estimates of delivery dates for new products once the production is started. The

integration with existing systems can be accomplished at varying levels of details

including a dashboard that is updated in real-time to indicate if the new product will be

completed as per the preliminary planned schedule, or whether additional time may be

required based on shop utilization or material availability.

132

• One possible improvement to collecting and capturing real-time data in the fabrication

shop could be to use a computerized vision-based system to capture real-time loading

conditions of the job shop. One example is to use CCTV video streaming, when it is

available, to capture shop activities and utilize advanced machine learning techniques

to extract production and waiting times as well as the number of workers at each

workstation from the multimedia data. Using video capturing techniques can improve

the ease of data collection and can provide accurate calculations of production and

waiting times compared to using RFID data.

• Simulation modelling requires regular and manual updates and revisions to ensure the

simulation model represents the most recent production process. Along with each

update, model validation and verification are required, which are tedious and

monotonous tasks. A comprehensive automatic integration of the data collection

systems (e.g., RFID or CCTV), simulation modelling, and ML predictive models can

make this process more reliable, consistent, and error-free. The integration between

simulation model and ML models can be carried out to automatically create simulated

data that capture real-time shop loading conditions that may not otherwise be readily

available by the data collection and tracking systems.

• The approach and methods used in the present thesis has focused on predicting the

production cycle time to support short-term scheduling and planning in industrialized

building construction facilities. The collected data, the developed machine learning

models, and the constructed engineered features support time prediction for short-term

scheduling because it is assumed that only the recent conditions of the production line

(e.g., factory layout, processing sequencing, interruptions, labor skills) will affect the

133

cycle time. Any changes that would have occurred longtime in the past will be

suppressed by recent changes of production line conditions. On the other hand,

therefore, mid-term and long-term planning, which spans from a few months to a few

years, is not investigated. This is a limitation of the present study and is expected to be

a promising area of future research.

134

References

[1] USG Corporation and U.S. Chamber of Commerce, Commercial Construction Index Q1

2018, 2018. https://www.uschamber.com/report/usg-us-chamber-commerce-commercial-

construction-index-2018-q1 (accessed April 2, 2021).

[2] N. Bertram, S. Fuchs, J. Mischke, R. Palter, G. Strube, J. Woetzel, Modular construction:

From projects to products, 2019. https://www.mckinsey.com/business-

functions/operations/our-insights/modular-construction-from-projects-to-products

(accessed April 2, 2021).

[3] Modular Building Institute, 2020 Canadian Commercial Modular Construction Annual

Report, 2020. https://www.modular.org/HtmlPage.aspx?name=2020-MBI-annual-reports

(accessed April 2, 2021).

[4] M. Kamali, K. Hewage, Life cycle performance of modular buildings: A critical review,

Renew. Sustain. Energy Rev. 62 (2016) pp. 1171–1183.

https://doi.org/10.1016/j.rser.2016.05.031.

[5] Dodge Data & Analytics, Prefabrication and Modular Construction 2020, 2020, (ISBN:

1800591446).

[6] M.A. Mullens, Factory Design for Modular Homebuilding: Equipping the Modular

Factory for Success, Constructability Press, Winter Park, FL, 2011, (ISBN: 978-

0983321200).

[7] M.E. Pfund, S.J. Mason, J.W. Fowler, Semiconductor Manufacturing Scheduling and

135

Dispatching, in: Handb. Prod. Sched., Kluwer Academic Publishers, Boston, 2006: pp.

213–241. https://doi.org/10.1007/0-387-33117-4_9.

[8] S.-H. Chung, H.-W. Huang, Cycle time estimation for wafer fab with engineering lots, IIE

Trans. 34 (2002) pp. 105–118. https://doi.org/10.1080/07408170208928854.

[9] W.J. Hopp, M.L. Spearman, Basic Factory Dynamics, in: Fact. Phys. Found. Manuf.

Manag., 2nd edition, McGraw-Hill/Irwin, Boston, MA, 2000: pp. 213–247 (ISBN:

9780256247954).

[10] M.S. Altaf, A. Bouferguene, H. Liu, M. Al-Hussein, H. Yu, Integrated production

planning and control system for a panelized home prefabrication facility using simulation

and RFID, Autom. Constr. 85 (2018) pp. 369–383.

https://doi.org/10.1016/j.autcon.2017.09.009.

[11] O. Bedair, Engineering Challenges in the Design of Alberta’s Oil Sands Projects, Pract.

Period. Struct. Des. Constr. 18 (2013) pp. 247–260. https://doi.org/10.1061/(asce)sc.1943-

5576.0000163.

[12] Cristian Petre, Instance-Based Model for Predicting Total Fabrication Duration of

Industrial Pipe Spools, MSc Thesis, University of Alberta, 2016.

https://doi.org/https://doi.org/10.7939/R39Z90P2N.

[13] C. Goodier, A. Gibb, Future opportunities for offsite in the UK, Constr. Manag. Econ. 25

(2007) pp. 585–595. https://doi.org/10.1080/01446190601071821.

[14] Z. Li, G.Q. Shen, X. Xue, Critical review of the research on the management of

prefabricated construction, Habitat Int. 43 (2014) pp. 240–249.

136

https://doi.org/10.1016/j.habitatint.2014.04.001.

[15] J. Barlow, From Craft Production to Mass Customisation. Innovation Requirements for

the UK Housebuilding Industry, Hous. Stud. 14 (1999) pp. 23–42.

https://doi.org/10.1080/02673039982984.

[16] G. Winch, Models of Manufacturing and The Construction Process: The Genesis of Re-

engineering Construction, Build. Res. Inf. 31 (2003) pp. 107–118.

https://doi.org/10.1080/09613210301995.

[17] D. Carlson, Automated Builder: Dictionary Encyclopedia of Industrialized Housing, 3rd

edition, Automated Builder Magazine, Publications Division, CMN Associates,

Carpinteria, CA, 1995, (ISBN: 978-0960740826).

[18] M.A. Mullens, M.E. Kelley, Lean Homebuilding Using Modular Technology, Hous. Soc.

31 (2004) pp. 41–54. https://doi.org/10.1080/08882746.2004.11430497.

[19] A. Gianino, The Modular Home, Storey Publishing, LLC, 2005, (ISBN: 9781612122687).

[20] H. Said, A.R. Ali, M. Alshehri, Analysis of the Growth Dynamics and Structure of the

Modular Building Construction Industry, in: Constr. Res. Congr. 2014, American Society

of Civil Engineers, Reston, VA, 2014: pp. 1977–1986.

https://doi.org/10.1061/9780784413517.202.

[21] G. Liu, J.H. Nzige, K. Li, Trending topics and themes in offsite construction(OSC)

research: The application of topic modelling, Constr. Innov. 19 (2019) pp. 343–366.

https://doi.org/10.1108/CI-03-2018-0013.

[22] M.R. Hosseini, I. Martek, E.K. Zavadskas, A.A. Aibinu, M. Arashpour, N. Chileshe,

137

Critical evaluation of off-site construction research: A Scientometric analysis, Autom.

Constr. 87 (2018) pp. 235–247. https://doi.org/10.1016/j.autcon.2017.12.002.

[23] R. Jin, S. Gao, A. Cheshmehzangi, E. Aboagye-Nimo, A holistic review of off-site

construction literature published between 2008 and 2018, J. Clean. Prod. 202 (2018) pp.

1202–1219. https://doi.org/10.1016/j.jclepro.2018.08.195.

[24] S. Abdelmageed, T. Zayed, A study of literature in modular integrated construction -

Critical review and future directions, J. Clean. Prod. 277 (2020) p. 124044.

https://doi.org/10.1016/j.jclepro.2020.124044.

[25] X. Yin, H. Liu, Y. Chen, M. Al-Hussein, Building information modelling for off-site

construction: Review and future directions, Autom. Constr. 101 (2019) pp. 72–91.

https://doi.org/10.1016/j.autcon.2019.01.010.

[26] X. Li, G.Q. Shen, P. Wu, T. Yue, Integrating Building Information Modeling and

Prefabrication Housing Production, Autom. Constr. 100 (2019) pp. 46–60.

https://doi.org/10.1016/j.autcon.2018.12.024.

[27] M. Wang, C.C. Wang, S. Sepasgozar, S. Zlatanova, A systematic review of digital

technology adoption in off-site construction: Current status and future direction towards

industry 4.0, Buildings. 10 (2020) pp. 1–29. https://doi.org/10.3390/buildings10110204.

[28] B. Qi, M. Razkenari, A. Costin, C. Kibert, M. Fu, A Systematic Review of Emerging

Technologies in Industrialized Construction, J. Build. Eng. 39 (2021) p. 102265.

https://doi.org/10.1016/j.jobe.2021.102265.

[29] T. Luo, X. Xue, Y. Wang, W. Xue, Y. Tan, A systematic overview of prefabricated

138

construction policies in China, J. Clean. Prod. 280 (2021) p. 124371.

https://doi.org/10.1016/j.jclepro.2020.124371.

[30] B.G. Hwang, M. Shan, K.Y. Looi, Key constraints and mitigation strategies for

prefabricated prefinished volumetric construction, J. Clean. Prod. 183 (2018) pp. 183–193.

https://doi.org/10.1016/j.jclepro.2018.02.136.

[31] W. Zhang, M.W. Lee, L. Jaillon, C.S. Poon, The hindrance to using prefabrication in

Hong Kong’s building industry, J. Clean. Prod. 204 (2018) pp. 70–81.

https://doi.org/10.1016/j.jclepro.2018.08.190.

[32] I.Y. Wuni, G.Q. Shen, Barriers to the adoption of modular integrated construction:

Systematic review and meta-analysis, integrated conceptual framework, and strategies, J.

Clean. Prod. 249 (2020) p. 119347. https://doi.org/10.1016/j.jclepro.2019.119347.

[33] M. Razkenari, A. Fenner, A. Shojaei, H. Hakim, C. Kibert, Perceptions of offsite

construction in the United States: An investigation of current practices, J. Build. Eng. 29

(2020) p. 101138. https://doi.org/10.1016/j.jobe.2019.101138.

[34] T. Salama, O. Moselhi, M. Al-Hussein, Overview of the Characteristics of the Modular

Industry and Barriers to its Increased Market Share, Int. J. Ind. Constr. 2 (2021) pp. 30–

53. https://doi.org/10.29173/ijic249.

[35] A. Darko, A.P.C. Chan, Y. Yang, M.O. Tetteh, Building information modeling (BIM)-

based modular integrated construction risk management – Critical survey and future

needs, Comput. Ind. 123 (2020) p. 103327.

https://doi.org/10.1016/j.compind.2020.103327.

139

[36] R. Jin, J. Hong, J. Zuo, Environmental performance of off-site constructed facilities: A

critical review, Energy Build. 207 (2020) p. 109567.

https://doi.org/10.1016/j.enbuild.2019.109567.

[37] Z. Wang, H. Hu, J. Gong, X. Ma, W. Xiong, Precast supply chain management in off-site

construction: A critical literature review, J. Clean. Prod. 232 (2019) pp. 1204–1217.

https://doi.org/10.1016/j.jclepro.2019.05.229.

[38] E. Forcael, I. Ferrari, A. Opazo-vega, Construction 4 . 0 : A Literature Review, (2020).

[39] M. Bilal, L.O. Oyedele, J. Qadir, K. Munir, S.O. Ajayi, O.O. Akinade, H.A. Owolabi,

H.A. Alaka, M. Pasha, Big Data in the Construction Industry: A review of Present Status,

Opportunities, and Future Trends, Adv. Eng. Informatics. 30 (2016) pp. 500–521.

https://doi.org/10.1016/j.aei.2016.07.001.

[40] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, M. Hoffmann, Industry 4.0, Bus. Inf. Syst. Eng.

6 (2014) pp. 239–242. https://doi.org/10.1007/s12599-014-0334-4.

[41] M. Hermann, T. Pentek, B. Otto, Design Principles for Industrie 4.0 Scenarios, in: 49th

Hawaii Int. Conf. Syst. Sci., Koloa, HI, 2016: pp. 3928–3937.

https://doi.org/10.1109/HICSS.2016.488.

[42] K. Schwab, The Fourth Industrial Revolution, Crown Business, New York, 2017, (ISBN:

9781524758868).

[43] P.K. Muhuri, A.K. Shukla, A. Abraham, Industry 4.0: A bibliometric analysis and detailed

overview, Eng. Appl. Artif. Intell. 78 (2019) pp. 218–235.

https://doi.org/10.1016/j.engappai.2018.11.007.

140

[44] F. Craveiro, J.P. Duarte, H. Bartolo, P.J. Bartolo, Additive manufacturing as an enabling

technology for digital construction: A perspective on Construction 4.0, Autom. Constr.

103 (2019) pp. 251–267. https://doi.org/10.1016/j.autcon.2019.03.011.

[45] M. Spisakova, M. Kozlovska, Options of Customization in Industrialized Methods of

Construction in Terms of Construction 4.0, in: Lect. Notes Civ. Eng., Springer

International Publishing, 2020: pp. 444–451. https://doi.org/10.1007/978-3-030-27011-

7_56.

[46] National BIM Standard - United States, Natl. Inst. Build. Sci. (2021).

https://www.nationalbimstandard.org/faqs (accessed March 6, 2021).

[47] S. Kubba, Building Information Modeling, in: Handb. Green Build. Des. Constr., Elsevier,

2012: pp. 201–226. https://doi.org/10.1016/B978-0-12-385128-4.00005-6.

[48] K. Baker, J. Mentz, J. Riskus, M. Russo, Firm Survey Report, The American Institute of

Architects, Washington, DC, 2020, (ISBN: 978-1-57165-016-0).

https://www.taylorfrancis.com/books/9781000705829/chapters/10.4324/9780429347856-

31.

[49] J. Sinopoli, Design, Construction, and Renovations, in: Smart Build. Syst. Archit. Owners

Build., Elsevier, 2010: pp. 139–158. https://doi.org/10.1016/B978-1-85617-653-8.00013-

2.

[50] T. Omar, M.L. Nehdi, Data acquisition technologies for construction progress tracking,

Autom. Constr. 70 (2016) pp. 143–155. https://doi.org/10.1016/j.autcon.2016.06.016.

[51] E. Valero, A. Adán, C. Cerrada, Evolution of RFID Applications in Construction: A

141

Literature Review, Sensors. 15 (2015) pp. 15988–16008.

https://doi.org/10.3390/s150715988.

[52] E. Valero, A. Adán, Integration of RFID with other technologies in construction,

Measurement. 94 (2016) pp. 614–620.

https://doi.org/10.1016/j.measurement.2016.08.037.

[53] E.M. Goldratt, Critical chain, North River Press, Great Barrington, Mass., 1997, (ISBN:

9780884271536).

[54] L.P. Leach, Critical Chain Project Management Improves Project Performance, Proj.

Manag. J. 30 (1999) pp. 39–51. https://doi.org/10.1177/875697289903000207.

[55] E.L. Demeulemeester, W. Herroelen, Project Scheduling A Research Handbook, 1st

edition, Springer US, Boston, MA, 2002. https://doi.org/10.1007/b101924.

[56] S. Mubarak, Introduction, in: Constr. Proj. Sched. Control, 3rd edition, John Wiley &

Sons, Inc., Hoboken, New Jersey, 2015: pp. 1–14 (ISBN: 9781118846018).

[57] P.M. Institute, A guide to the project management body of knowledge (PMBOK guide),

6th edition, Project Management Institute, Newton Square, PA, 2017, (ISBN:

9781628253900).

[58] H. Yu, An integrated approach toward lean for production homebuilders, PhD Thesis,

University of Alberta, 2010. https://doi.org/https://doi.org/10.7939/R39Q65.

[59] L. Shafai, Simulation Based Process Flow Improvement for Wood Framing Home

Building Production Lines, MSc Thesis, University of Alberta, 2012.

https://doi.org/https://doi.org/10.7939/R3SP65.

142

[60] M.S. Altaf, Integrated Production Planning and Control System for Prefabrication of

Panelized Construction for Residential Building, PhD Thesis, University of Alberta, 2016.

https://doi.org/https://doi.org/10.7939/R3QZ22N9G.

[61] R. Azimi, S. Lee, S.M. Abourizk, A. Alvanchi, A framework for an automated and

integrated project monitoring and control system for steel fabrication projects, Autom.

Constr. 20 (2011) pp. 88–97. https://doi.org/10.1016/j.autcon.2010.07.001.

[62] C. Carson, P. Oakander, C. Relyea, Schedule Development, in: CPM Sched. Constr. Best

Pract. Guidel., Project Management Institute, Inc., Newtown Square, PA, 2014 (ISBN:

978-1-62825-037-4). https://learning.oreilly.com/library/view/cpm-scheduling-

for/9781628250732/.

[63] I.D. Tommelein, Pull-Driven Scheduling for Pipe-Spool Installation: Simulation of Lean

Construction Technique, J. Constr. Eng. Manag. 124 (1998) pp. 279–288.

https://doi.org/10.1061/(ASCE)0733-9364(1998)124:4(279).

[64] A. Benarroche, Construction Pull Planning Scheduling Backward Can Improve

Efficiency, Constr. Paym. Blog. (2020). https://www.levelset.com/blog/construction-pull-

planning/ (accessed July 24, 2021).

[65] S.P. Mosayebi, A.R. Fayek, L. Yakemchuk, S. Waters, Factors Affecting Productivity of

Pipe Spool Fabrication, Int. J. Archit. Eng. Constr. 1 (2012) pp. 30–36.

https://doi.org/10.7492/ijaec.2012.003.

[66] I.D. Tommelein, Process Benefits From Use of Standard Products – Simulation

Experiments Using the Pipe Spool Model, in: 14th Annu. Conf. Int. Gr. Lean Constr.,

143

Santiago, Chile, 2006: pp. 177–189.

[67] P. Wang, Y. Mohamed, S.M. Abourizk, A.R.T. Rawa, Flow Production of Pipe Spool

Fabrication: Simulation to Support Implementation of Lean Technique, J. Constr. Eng.

Manag. 135 (2009) pp. 1027–1038. https://doi.org/10.1061/(ASCE)CO.1943-

7862.0000068.

[68] D. Hu, Y. Mohamed, Pipe Spool Fabrication Sequencing by Automated Planning, in:

Constr. Res. Congr. 2012, American Society of Civil Engineers, West Lafayette, Indiana,

2012: pp. 495–504. https://doi.org/10.1061/9780784412329.050.

[69] J.Y.-T. Leung, ed., Handbook of Scheduling: Algorithms, Models, and Performance

Analysis, Chapman and Hall/CRC, New York, 2004.

https://doi.org/10.1201/9780203489802.

[70] M.L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th ed., Springer

International Publishing, 2016. https://doi.org/10.1007/978-3-319-26580-3.

[71] K.R. Baker, D. Trietsch, Principles of Sequencing and Scheduling, John Wiley & Sons,

Inc., Hoboken, NJ, USA, 2018. https://doi.org/10.1002/9781119262602.

[72] S.C. Sarin, B. Nagarajan, L. Liao, Stochastic Scheduling, Cambridge University Press,

Cambridge, 2010. https://doi.org/10.1017/CBO9780511778032.

[73] J.M. Framinan, R. Leisten, R. Ruiz García, Manufacturing Scheduling Systems An

Integrated View on Models, Methods and Tools, Springer London, London, 2014.

https://doi.org/10.1007/978-1-4471-6272-8.

[74] H. Aydilek, A. Allahverdi, Heuristics for no-wait flowshops with makespan subject to

144

mean completion time, Appl. Math. Comput. 219 (2012) pp. 351–359.

https://doi.org/10.1016/j.amc.2012.06.024.

[75] C. Rajendran, H. Ziegler, An efficient heuristic for scheduling in a flowshop to minimize

total weighted flowtime of jobs, Eur. J. Oper. Res. 103 (1997) pp. 129–138.

https://doi.org/10.1016/S0377-2217(96)00273-1.

[76] C. Rajendran, Heuristic algorithm for scheduling in a flowshop to minimize total

flowtime, Int. J. Prod. Econ. 29 (1993) pp. 65–73. https://doi.org/10.1016/0925-

5273(93)90024-F.

[77] M.T. Pereira, M.C. Santoro, An integrative heuristic method for detailed operations

scheduling in assembly job shop systems, Int. J. Prod. Res. 49 (2011) pp. 6089–6105.

https://doi.org/10.1080/00207543.2010.527385.

[78] M. Yazdani, A. Aleti, S.M. Khalili, F. Jolai, Optimizing the sum of maximum earliness

and tardiness of the job shop scheduling problem, Comput. Ind. Eng. 107 (2017) pp. 12–

24. https://doi.org/10.1016/j.cie.2017.02.019.

[79] Q.K. Pan, L. Gao, L. Wang, J. Liang, X.Y. Li, Effective heuristics and metaheuristics to

minimize total flowtime for the distributed permutation flowshop problem, Expert Syst.

Appl. 124 (2019) pp. 309–324. https://doi.org/10.1016/j.eswa.2019.01.062.

[80] V. Fernandez-Viagas, P. Perez-Gonzalez, J.M. Framinan, The distributed permutation

flow shop to minimise the total flowtime, Comput. Ind. Eng. 118 (2018) pp. 464–477.

https://doi.org/10.1016/j.cie.2018.03.014.

[81] B. Naderi, R. Ruiz, A scatter search algorithm for the distributed permutation flowshop

145

scheduling problem, Eur. J. Oper. Res. 239 (2014) pp. 323–334.

https://doi.org/10.1016/j.ejor.2014.05.024.

[82] S.Y. Wang, L. Wang, M. Liu, Y. Xu, An effective estimation of distribution algorithm for

solving the distributed permutation flow-shop scheduling problem, Int. J. Prod. Econ. 145

(2013) pp. 387–396. https://doi.org/10.1016/j.ijpe.2013.05.004.

[83] V. Fernandez-Viagas, R. Ruiz, J.M. Framinan, A new vision of approximate methods for

the permutation flowshop to minimise makespan: State-of-the-art and computational

evaluation, Eur. J. Oper. Res. 257 (2017) pp. 707–721.

https://doi.org/10.1016/j.ejor.2016.09.055.

[84] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, From Data Mining to Knowledge Discovery

in Databases, AI Mag. 17 (1996) pp. 37–54. https://doi.org/10.1609/aimag.v17i3.1230.

[85] P. Cabena, R. Stadler, J. Verhees, A. Zanasi, P. Hadjnian, Discovering data mining from

concept to implementation, Prentice Hall, New Jersey, 1998, (ISBN: 978-0137439805).

[86] L. Soibelman, H. Kim, Data Preparation Process for Construction Knowledge Generation

through Knowledge Discovery in Databases, J. Comput. Civ. Eng. 16 (2002) pp. 39–48.

https://doi.org/10.1061/(ASCE)0887-3801(2002)16:1(39).

[87] M. Alavi, D.E. Leidner, Review: Knowledge Management and Knowledge Management

Systems: Conceptual Foundations and Research Issues, MIS Q. 25 (2001) p. 107.

https://doi.org/10.2307/3250961.

[88] J. Liebowitz, I. Megbolugbe, A set of frameworks to aid the project manager in

conceptualizing and implementing knowledge management initiatives, Int. J. Proj. Manag.

146

21 (2003) pp. 189–198. https://doi.org/10.1016/S0263-7863(02)00093-5.

[89] A.M. Hammad, An Integrated Framework for Managing Labour Resources Data in

Industrial Construction Projects: A Knowledge Discovery in Data (KDD) Approach, PhD

Thesis, University of Alberta, 2009.

https://www.collectionscanada.gc.ca/obj/thesescanada/vol2/002/NR55814.PDF (accessed

April 2, 2021).

[90] I.H. Witten, E. Frank, M.A. Hall, Data Mining: Practical Machine Learning Tools and

Techniques, 3rd edition, Morgan Kaufmann, Burlington, MA, 2011.

https://doi.org/10.1007/s00170-004-2497-5.

[91] L. Soibelman, J. Wu, C. Caldas, I. Brilakis, K.Y. Lin, Management and analysis of

unstructured construction data types, Adv. Eng. Informatics. 22 (2008) pp. 15–27.

https://doi.org/10.1016/j.aei.2007.08.011.

[92] M. Bilal, L.O. Oyedele, Guidelines for applied machine learning in construction

industry—A case of profit margins estimation, Adv. Eng. Informatics. 43 (2020) p.

101013. https://doi.org/10.1016/j.aei.2019.101013.

[93] H. Wickham, Tidy Data, J. Stat. Softw. 59 (2014) pp. 1–23.

https://doi.org/10.18637/jss.v059.i10.

[94] J. Bergstra, Y. Bengio, Random Search for Hyper-Parameter Optimization, J. Mach.

Learn. Res. 13 (2012) pp. 281–305.

https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf (accessed April 2,

2021).

147

[95] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar, Hyperband: A novel

bandit-based approach to hyperparameter optimization, J. Mach. Learn. Res. 18 (2018) pp.

1–52.

[96] R. Akerkar, ed., Advanced Data Analytics for Business, in: Big Data Comput., Chapman

and Hall/CRC, Boca Raton, FL, 2013: pp. 373–397. https://doi.org/10.1201/b16014.

[97] K. Lepenioti, A. Bousdekis, D. Apostolou, G. Mentzas, Prescriptive analytics: Literature

review and research challenges, Int. J. Inf. Manage. 50 (2020) pp. 57–70.

https://doi.org/10.1016/j.ijinfomgt.2019.04.003.

[98] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, 3rd edition, Elsevier,

2012. https://doi.org/10.1016/C2009-0-61819-5.

[99] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining,

Inference, and Prediction, 2nd edition, Springer New York, New York, NY, 2009.

https://doi.org/10.1007/978-0-387-84858-7.

[100] X.S. Yang, Introduction to Algorithms for Data Mining and Machine Learning, Elsevier,

2019. https://doi.org/10.1016/C2018-0-02034-4.

[101] J.B. MacQueen, Some methods for classification and analysis of multivariate

observations, in: Proc. Fifth Berkeley Symp. Math. Stat. Probab., University of California

Press, 1967: pp. 281–297.

http://www.cs.cmu.edu/~bhiksha/courses/mlsp.fall2010/class14/macqueen.pdf.

[102] D. Arthur, S. Vassilvitskii, K-means++: The advantages of careful seeding, Proc.

Eighteenth Annu. ACM-SIAM Symp. Discret. Algorithms. (2007) pp. 1027–1035.

148

https://www2.cs.duke.edu/courses/cps296.2/spring07/papers/kMeansPlusPlus.pdf.

[103] L. Kaufman, P.J. Rousseeuw., Finding Groups in Data, John Wiley & Sons, Inc.,

Hoboken, NJ, USA, 1990. https://doi.org/10.1002/9780470316801.

[104] H.S. Park, C.H. Jun, A simple and fast algorithm for K-medoids clustering, Expert Syst.

Appl. 36 (2009) pp. 3336–3341. https://doi.org/10.1016/j.eswa.2008.01.039.

[105] A. Chaturvedi, K. Foods, P.E. Green, J.D. Carroll, K-modes clustering, J. Classif. 18

(2001) pp. 35–55. https://doi.org/10.1007/s00357-001-0004-3.

[106] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise, in: Second Int. Conf. Knowl. Discov.

Data Min., Portland, OR, 1996: pp. 226–231.

[107] A. Hinneburg, D.A. Keim, A General Approach to Clustering in Large Databases with

Noise, Knowl. Inf. Syst. 5 (2003) pp. 387–415. https://doi.org/10.1007/s10115-003-0086-

9.

[108] W. Wang, J. Yang, R. Muntz, STING : A statistical information grid approach to spatial

data mining, Proc. 23rd Int. Conf. Very Large Databases, VLDB 1997. (1997) pp. 186–

195.

[109] G. Sheikholeslami, S. Chatterjee, A. Zhang, Wavecluster: A multi-resolution clustering

approach for very large spatial databases, in: Proc. 24th Int. Conf. Very Large Data Bases,

New York, NY, 1998: pp. 428–439 (ISBN: 1558605665).

[110] S. Raschka, V. Mirjalili, Python Machine Learning - Second Edition, 2nd edition, Packt

Publishing, Birmingham, 2017, (ISBN: 9781787125933).

149

[111] R.S. Sutton, A.G. Barto, Reinforcement Learning : an Introduction, 2nd edition, MIT

Press, Cambridge, MA, 2018, (ISBN: 978-0262039246).

https://mitpress.mit.edu/books/reinforcement-learning-second-edition.

[112] S. Weisberg, Applied Linear Regression, 4th edition, John Wiley & Sons, Hoboken, New

Jersey, 2014, (ISBN: 9781118594858).

[113] J. Groß, Linear Regression, 1st edition, Springer Berlin Heidelberg, Berlin, Heidelberg,

2003. https://doi.org/10.1007/978-3-642-55864-1.

[114] D.J. Olive, Linear Regression, Springer International Publishing, Cham, 2017.

https://doi.org/10.1007/978-3-319-55252-1.

[115] G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning,

Springer New York, New York, NY, 2013. https://doi.org/10.1007/978-1-4614-7138-7.

[116] R. Tibshirani, Regression Shrinkage and Selection via the Lasso, J. R. Stat. Soc. 58 (1996)

pp. 267–288. https://www.jstor.org/stable/2346178.

[117] A.E. Hoerl, R.W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal

Problems, Technometrics. 12 (1970) pp. 55–67.

https://doi.org/10.1080/00401706.1970.10488634.

[118] A.H. Al-Momani, Construction delay: a quantitative analysis, Int. J. Proj. Manag. 18

(2000) pp. 51–59. https://doi.org/10.1016/S0263-7863(98)00060-X.

[119] D.J. Lowe, M.W. Emsley, A. Harding, Predicting Construction Cost Using Multiple

Regression Techniques, J. Constr. Eng. Manag. 132 (2006) pp. 750–758.

https://doi.org/10.1061/(ASCE)0733-9364(2006)132:7(750).

150

[120] T.M. Zayed, D.W. Halpin, Productivity and Cost Regression Models for Pile

Construction, J. Constr. Eng. Manag. 131 (2005) pp. 779–789.

https://doi.org/10.1061/(ASCE)0733-9364(2005)131:7(779).

[121] K. Blyth, A. Kaka, A novel multiple linear regression model for forecasting S‐curves,

Eng. Constr. Archit. Manag. 13 (2006) pp. 82–95.

https://doi.org/10.1108/09699980610646511.

[122] M. Al Qady, A. Kandil, Automatic Classification of Project Documents on the Basis of

Text Content, J. Comput. Civ. Eng. 29 (2015) p. 04014043.

https://doi.org/10.1061/(asce)cp.1943-5487.0000338.

[123] J. Wang, B. Ashuri, Predicting ENR’S Construction Cost Index Using the Modified K

Nearest Neighbors (KNN) Algorithm, in: Constr. Res. Congr. 2016, American Society of

Civil Engineers, Reston, VA, 2016: pp. 2502–2509.

https://doi.org/10.1061/9780784479827.249.

[124] Y. Zhang, L. Ding, P.E.D. Love, Planning of Deep Foundation Construction Technical

Specifications Using Improved Case-Based Reasoning with Weighted k-Nearest

Neighbors, J. Comput. Civ. Eng. 31 (2017) p. 04017029.

https://doi.org/10.1061/(ASCE)CP.1943-5487.0000682.

[125] A.H. Boussabaine, The use of artificial neural networks in construction management: A

review, Constr. Manag. Econ. 14 (1996) pp. 427–436.

https://doi.org/10.1080/014461996373296.

[126] O. Moselhi, T. Hegazy, P. Fazio, Neural Networks as Tools in Construction, J. Constr.

151

Eng. Manag. 117 (1991) pp. 606–625. https://doi.org/10.1061/(ASCE)0733-

9364(1991)117:4(606).

[127] G. Heravi, E. Eslamdoost, Applying Artificial Neural Networks for Measuring and

Predicting Construction-Labor Productivity, J. Constr. Eng. Manag. 141 (2015) p.

04015032. https://doi.org/10.1061/(asce)co.1943-7862.0001006.

[128] D.A. Patel, K.N. Jha, Neural Network Model for the Prediction of Safe Work Behavior in

Construction Projects, J. Constr. Eng. Manag. 141 (2015) p. 04014066.

https://doi.org/10.1061/(asce)co.1943-7862.0000922.

[129] M.-Y. Cheng, Y.-H. Chang, D. Korir, Novel Approach to Estimating Schedule to

Completion in Construction Projects Using Sequence and Nonsequence Learning, J.

Constr. Eng. Manag. 145 (2019) p. 04019072. https://doi.org/10.1061/(asce)co.1943-

7862.0001697.

[130] L. Breiman, Random forests, Mach. Learn. 45 (2001) pp. 5–32.

https://doi.org/10.1023/A:1010933404324.

[131] J. Zhou, X. Shi, K. Du, X. Qiu, X. Li, H.S. Mitri, Development of Ground Movements

Due to a Shield Tunnelling Prediction Model Using Random Forests, in: Geo-China 2016,

American Society of Civil Engineers, Reston, VA, 2016: pp. 108–115.

https://doi.org/10.1061/9780784480106.014.

[132] Y. Hu, D. Castro-Lacouture, Clash Relevance Prediction Based on Machine Learning, J.

Comput. Civ. Eng. 33 (2019) pp. 1–15. https://doi.org/10.1061/(ASCE)CP.1943-

5487.0000810.

152

[133] Q. Han, C. Gui, J. Xu, G. Lacidogna, A generalized method to predict the compressive

strength of high-performance concrete by improved random forest algorithm, Constr.

Build. Mater. 226 (2019) pp. 734–742. https://doi.org/10.1016/j.conbuildmat.2019.07.315.

[134] A. Botchkarev, A New Typology Design of Performance Metrics to Measure Errors in

Machine Learning Regression Algorithms, Interdiscip. J. Information, Knowledge,

Manag. 14 (2019) pp. 045–076. https://doi.org/10.28945/4184.

[135] H. Wang, H. Zheng, Model Validation, Machine Learning, in: Encycl. Syst. Biol.,

Springer New York, New York, NY, 2013: pp. 1406–1407. https://doi.org/10.1007/978-1-

4419-9863-7_233.

[136] R.J. Hyndman, G. Athanasopoulos, Forecasting: principles and practice, (2021).

https://otexts.com/fpp3/tscv.html (accessed March 31, 2021).

[137] F. Provost, T. Fawcett, Data Science and its Relationship to Big Data and Data-Driven

Decision Making, Big Data. 1 (2013) pp. 51–59. https://doi.org/10.1089/big.2013.1508.

[138] J. Dean, Big Data, Data Mining, and Machine Learning: Value Creation for Business

Leaders and Practitioners, John Wiley and Sons, Hoboken, NJ, 2014, (ISBN:

9781118920695).

[139] N. Naderpajouh, J. Choi, M. Hastak, Exploratory Framework for Application of Analytics

in the Construction Industry, J. Manag. Eng. 32 (2016) p. 04015047.

https://doi.org/10.1061/(ASCE)ME.1943-5479.0000409.

[140] S. El-Omari, O. Moselhi, Integrating automated data acquisition technologies for progress

reporting of construction projects, Autom. Constr. 20 (2011) pp. 699–705.

153

https://doi.org/10.1016/j.autcon.2010.12.001.

[141] E. Elbeltagi, M. Dawood, Integrated visualized time control system for repetitive

construction projects, Autom. Constr. 20 (2011) pp. 940–953.

https://doi.org/10.1016/j.autcon.2011.03.012.

[142] H. Kim, L. Soibelman, F. Grobler, Factor selection for delay analysis using Knowledge

Discovery in Databases, Autom. Constr. 17 (2008) pp. 550–560.

https://doi.org/10.1016/j.autcon.2007.10.001.

[143] V.S. Desai, S. Joshi, Application of Decision Tree Technique to Analyze Construction

Project Data, in: S.K. Prasad, H.M. Vin, S. Sahni, M.P. Jaiswal, B. Thipakorn (Eds.), Inf.

Syst. Technol. Manag., Springer Berlin Heidelberg, Berlin, Heidelberg, 2010: pp. 304–

313. https://doi.org/10.1007/978-3-642-12035-0_30.

[144] M. Wauters, M. Vanhoucke, Support Vector Machine Regression for project control

forecasting, Autom. Constr. 47 (2014) pp. 92–106.

https://doi.org/10.1016/j.autcon.2014.07.014.

[145] Q. Fang, H. Li, X. Luo, L. Ding, T.M. Rose, W. An, Y. Yu, A deep learning-based

method for detecting non-certified work on construction sites, Adv. Eng. Informatics. 35

(2018) pp. 56–68. https://doi.org/10.1016/j.aei.2018.01.001.

[146] J. Choi, B. Gu, S. Chin, J.-S. Lee, Machine learning predictive model based on national

data for fatal accidents of construction workers, Autom. Constr. 110 (2020) pp. 1–14.

https://doi.org/10.1016/j.autcon.2019.102974.

[147] N.D. Nath, A.H. Behzadan, S.G. Paal, Deep learning for site safety: Real-time detection of

154

personal protective equipment, Autom. Constr. 112 (2020) pp. 1–20.

https://doi.org/10.1016/j.autcon.2020.103085.

[148] J. Wu, N. Cai, W. Chen, H. Wang, G. Wang, Automatic detection of hardhats worn by

construction personnel: A deep learning approach and benchmark dataset, Autom. Constr.

106 (2019) pp. 1–7. https://doi.org/10.1016/j.autcon.2019.102894.

[149] D. Chakraborty, H. Elhegazy, H. Elzarka, L. Gutierrez, A novel construction cost

prediction model using hybrid natural and light gradient boosting, Adv. Eng. Informatics.

46 (2020) pp. 1–10. https://doi.org/10.1016/j.aei.2020.101201.

[150] J.A. Harding, M. Shahbaz, Srinivas, A. Kusiak, Data Mining in Manufacturing: A

Review, J. Manuf. Sci. Eng. 128 (2006) pp. 969–976. https://doi.org/10.1115/1.2194554.

[151] A.K. Choudhary, J.A. Harding, M.K. Tiwari, Data mining in manufacturing: a review

based on the kind of knowledge, J. Intell. Manuf. 20 (2009) pp. 501–521.

https://doi.org/10.1007/s10845-008-0145-x.

[152] A. Öztürk, S. Kayalıgil, N.E. Özdemirel, Manufacturing lead time estimation using data

mining, Eur. J. Oper. Res. 173 (2006) pp. 683–700.

https://doi.org/10.1016/j.ejor.2005.03.015.

[153] P. Backus, M. Janakiram, S. Mowzoon, G.C. Runger, A. Bhargava, Factory Cycle-Time

Prediction With a Data-Mining Approach, IEEE Trans. Semicond. Manuf. 19 (2006) pp.

252–258. https://doi.org/10.1109/TSM.2006.873400.

[154] T. Chen, R. Romanowski, Precise and Accurate Job Cycle Time Forecasting in a Wafer

Fabrication Factory with a Fuzzy Data Mining Approach, Math. Probl. Eng. 2013 (2013)

155

pp. 1–14. https://doi.org/10.1155/2013/496826.

[155] B. Can, C. Heavey, A Demonstration of Machine Learning for Explicit Functions for

Cycle Time Prediction Using MES Data, in: 2016 Winter Simul. Conf., Washington, DC,

2016: pp. 2500–2511. https://doi.org/10.1109/WSC.2016.7822289.

[156] D. Gyulai, A. Pfeiffer, G. Nick, V. Gallina, W. Sihn, L. Monostori, Lead time prediction

in a flow-shop environment with analytical and machine learning approaches, IFAC-

PapersOnLine. 51 (2018) pp. 1029–1034. https://doi.org/10.1016/j.ifacol.2018.08.472.

[157] L. Lingitz, V. Gallina, F. Ansari, D. Gyulai, A. Pfeiffer, W. Sihn, L. Monostori, Lead time

prediction using machine learning algorithms: A case study by a semiconductor

manufacturer, Procedia CIRP. 72 (2018) pp. 1051–1056.

https://doi.org/10.1016/j.procir.2018.03.148.

[158] P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, R. Wirth, CRISP-

DM 1.0 Step-by-Step Data Mining Guide, 2000. https://the-modeling-agency.com/crisp-

dm.pdf (accessed April 2, 2021).

[159] P. Heller, D. Piziak, R. Stackowiak, A. Licht, T. Luckenbach, B. Cauthen, A. Misra, J.

Wyant, J. Knudsen, An Enterprise Architect’s Guide to Big Data — Reference

Architecture Overview, 2016.

http://www.oracle.com/technetwork/topics/entarch/articles/oea-big-data-guide-

1522052.pdf (accessed April 2, 2021).

[160] T.H. Davenport, J.G. Harris, R. Morison, Analytics at Work: Smarter Decisions, Better

Results, Harvard Business Press, Boston, Massachusetts, 2010, (ISBN: 9781422177693).

156

[161] D. Dietrich, B. Heller, Y. Beibei, Data Science & Big Data Analytics: Discovering,

Analyzing, Visualizing and Presenting Data, John Wiley & Sons, Indianapolis, IN, 2015,

(ISBN: 9781118876138).

[162] J.B. Rollins, Foundational Methodology for Data Science, IBM Anal. (2015).

https://tdwi.org/~/media/64511A895D86457E964174EDC5C4C7B1.PDF (accessed April

2, 2021).

[163] D. Seymour, J. Rooke, The culture of the industry and the culture of research, Constr.

Manag. Econ. 13 (1995) pp. 511–523. https://doi.org/10.1080/01446199500000059.

[164] L. Koskela, Which Kind of Science Is Construction Management?, in: 16th Annu. Conf.

Int. Gr. Lean Constr., Manchester, UK, 2008: pp. 51–60.

https://iglc.net/Papers/Details/584.

[165] J.E. van Aken, Management Research as a Design Science: Articulating the Research

Products of Mode 2 Knowledge Production in Management, Br. J. Manag. 16 (2005) pp.

19–36. https://doi.org/10.1111/j.1467-8551.2005.00437.x.

[166] C.G. Da Rocha, C.T. Formoso, P. Tzortzopoulos-Fazenda, L. Koskela, A. Tezel, Design

Science Research in Lean Construction: Process and Outcomes, in: 20th Conf. Int. Gr.

Lean Constr., San Diego, California, 2012. https://iglc.net/Papers/Details/770.

[167] S. Khan, P. Tzortzopoulos, Using Design Science Research and Action Research to

Bridge the Gap Between Theory and Practice in Lean Construction Research, in: 26th

Annu. Conf. Int. Gr. Lean Constr. Evol. Lean Constr. Towar. Matur. Prod. Manag. Across

Cult. Front., Chennai, India, 2018: pp. 209–219. https://doi.org/10.24928/2018/0409.

157

[168] F.R. Hamzeh, G. El Samad, S. Emdanat, Advanced Metrics for Construction Planning, J.

Constr. Eng. Manag. 145 (2019) pp. 1–16. https://doi.org/10.1061/(ASCE)CO.1943-

7862.0001702.

[169] A.R. Hevner, S.T. March, J. Park, S. Ram, Design Science in Information Systems

Research, MIS Q. 28 (2004) pp. 75–105. https://doi.org/10.2307/25148625.

[170] S. Chakrabarti, E. Cox, E. Frank, R.H. Güting, J. Han, X. Jiang, M. Kamber, S.S.

Lightstone, T.P. Nadeau, R.E. Neapolitan, D. Pyle, M. Refaat, M. Schneider, T.J. Teorey,

I.H. Witten, Data Mining Know It All, Morgan Kaufmann, Burlington, MA, 2009, (ISBN:

9780123746290).

[171] Y. Li, C. Yang, Domain knowledge based explainable feature construction method and its

application in ironmaking process, Eng. Appl. Artif. Intell. 100 (2021) p. 104197.

https://doi.org/10.1016/j.engappai.2021.104197.

[172] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning, 2nd edition,

Springer New York, New York, NY, 2009. https://doi.org/10.1007/978-0-387-84858-7.

[173] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification And Regression Trees,

1st edition, Routledge, 1984. https://doi.org/10.1201/9781315139470.

[174] G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, A. Mueller, Scikit-learn:

Machine Learning in Python, J. Mach. Learn. Res. 12 (2011) pp. 2825–2830.

http://jmlr.csail.mit.edu/papers/volume12/pedregosa11a/pedregosa11a.pdf (accessed April

2, 2021).

[175] R.N. Callahan, K.M. Hubbard, N.M. Bacoski, The use of simulation modeling and

158

factorial analysis as a method for process flow improvement, Int. J. Adv. Manuf. Technol.

29 (2006) pp. 202–208. https://doi.org/10.1007/s00170-004-2497-5.

[176] S. AbouRizk, Role of Simulation in Construction Engineering and Management, J. Constr.

Eng. Manag. 136 (2010) pp. 1140–1153. https://doi.org/10.1061/(ASCE)CO.1943-

7862.0000220.

[177] S. AbouRizk, Y. Mohamed, Simphony-an integrated environment for construction

simulation, in: 2000 Winter Simul. Conf. Proc., IEEE, 2000: pp. 1907–1914.

https://doi.org/10.1109/WSC.2000.899185.

[178] S. AbouRizk, S. Hague, R. Ekyalimpa, S. Newstead, Simphony: a next generation

simulation modelling environment for the construction domain, J. Simul. 10 (2016) pp.

207–215. https://doi.org/10.1057/jos.2014.33.

[179] R.G. Sargent, Verification And Validation Of Simulation Models: An Advanced Tutorial,

in: 2020 Winter Simul. Conf., IEEE, 2020: pp. 16–29.

https://doi.org/10.1109/WSC48552.2020.9384052.

[180] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn. 63 (2006)

pp. 3–42. https://doi.org/10.1007/s10994-006-6226-1.

[181] M. Nahangi, J. Yeung, J. Amaral, F.N. Freitas, S. Walbridge, C.T. Haas, Automated

Deviation Analysis for As-Built Status Assessment of Steel Assemblies and Pipe Spools,

in: Comput. Civ. Build. Eng., American Society of Civil Engineers, Reston, VA, 2014: pp.

2063–2070. https://doi.org/10.1061/9780784413616.256.

[182] J. Song, C.T. Haas, C. Caldas, E. Ergen, B. Akinci, Automating the task of tracking the

159

delivery and receipt of fabricated pipe spools in industrial projects, Autom. Constr. 15

(2006) pp. 166–177. https://doi.org/10.1016/j.autcon.2005.03.001.

[183] D. Hu, Y. Mohamed, A dynamic programming solution to automate fabrication

sequencing of industrial construction components, Autom. Constr. 40 (2014) pp. 9–20.

https://doi.org/10.1016/j.autcon.2013.12.013.

[184] R.S. Sharpe, NDT handbook, second edition, volume 3: radiography and radiographic

testing, 1985. https://doi.org/10.1016/0308-9126(85)90030-6.

[185] American Society for Nondestructive Testing, Introduciton to Nondestructive Testing,

(2021).

https://asnt.org/MajorSiteSections/About/Introduction_to_Nondestructive_Testing.aspx

(accessed May 10, 2021).

[186] Welding Technology Institute of Austalia Guidance Note 6 - post weld heat treatment of

welded structures, 2003.

http://vibfem.com.au/resources/stress_relieving/post_weld_HT.pdf (accessed May 10,

2021).

[187] G. Antaki, R. Gilada, Design Basis Loads and Qualification, 2015.

https://doi.org/10.1016/b978-0-12-417248-7.00002-3.

[188] H. Drucker, Improving Regressors using Boosting Techniques, in: 14th Int. Conf. Mach.

Learn., Morgan Kaufmann, 1997: pp. 107–115.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.21.5683&rep=rep1&type=pdf.

[189] Y. Freund, R.E. Schapire, A Decision-Theoretic Generalization of On-Line Learning and

160

an Application to Boosting, J. Comput. Syst. Sci. 55 (1997) pp. 119–139.

https://doi.org/https://doi.org/10.1006/jcss.1997.1504.

161

Appendix A: Python Script for ML Modelling – Case

Study 1

Table of Contents (TOC)

1. Importing Libraries & Defining Functions

2. Loading raw data & Initial Preparation

3. Descriptive Statistics & Data Visualization

3.1. Visualization of raw data in (df1)

3.2. Visualization of raw data in (df2)

4. Advanced Data Preparation

4.1. Data Preparation in (df1)

4.1.1. Replace Missing Values, Remove 'NaT', and Add 'Panels/Day'

4.1.2. Calculation of Actual Cycle Time - 'ActualCT'

4.2. Data Preparation in (df2)

5. Data Processing and Merging

5.1. Merging Dataframes and Generating Features

5.2. Saving Merged Dataframes to CSV

6. Cycle Time (CT) Prediction

6.1. Experiment A (1 Target Day, 1 Model and 1 Dataframe)

6.2. Experiment B (Many Target Days, 1 Model and 1 Dataframe)

6.3. Full Experiment (1 target day, 4 models and 4 dataframes)

1. Importing Libraries & Defining Functions

↑ back to TOC

importing libraries
import pandas as pd
from pandas.plotting import register_matplotlib_converters
import numpy as np
import random
from datetime import *

162

import os
from itertools import chain
from scipy import stats
from matplotlib import pyplot as plt; from matplotlib import cm
import matplotlib.dates as mdates; import matplotlib.ticker as mticker
import seaborn as sns

importing Sci-kit Learn libraries
from sklearn import linear_model, ensemble, neural_network, tree, neighbors
from sklearn import metrics
from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.model_selection import train_test_split, cross_val_predict
from sklearn.model_selection import cross_validate, KFold, GridSearchCV
from sklearn.preprocessing import StandardScaler, PolynomialFeatures

setting custom options
%matplotlib inline
pd.options.mode.chained_assignment = None
pd.set_option('display.max_columns', 50, 'display.max_rows',2000)
np.set_printoptions(precision=3, suppress=True)

setting the folder from which data is read
folder = r"F:\Academic\Publications\Journals\04\Python"; os.chdir(folder)

a function to calculate the time difference in minutes between two timestamps
def calculateTimeDiff(initialTime, lastTime):
 if lastTime.day == initialTime.day:
 timeDelta = lastTime - initialTime
 # returning the time difference in minutes
 return round(timeDelta.total_seconds()/60, 2)
 else:
 return -1

a function to extract the values from the boxplot and save it as a dataframe
def getBoxplotData(box, labels):
 rows = []
 # looping over each box which represents one variable
 for x in range(len(labels)):
 dict1 = {}
 dict1['Label'] = labels[x]
 dict1['Lower Cap'] = box['caps'][x*2].get_ydata()[0]
 dict1['25th quartile'] = box['boxes'][x].get_ydata()[0]
 dict1['Median'] = box['medians'][x].get_ydata()[0]
 dict1['75th quartile'] = box['boxes'][x].get_ydata()[2]
 dict1['Upper Cap'] = box['caps'][(x*2)+1].get_ydata()[0]
 dict1['Outliers Count'] = len(box['fliers'][x].get_ydata())
 rows.append(dict1)
 return pd.DataFrame(rows)

a function to train a model and calculate its accuracy on the 'training' set
def train_and_evaluate(clf, X_train, y_train, print_score=True):
 clf.fit(X_train, y_train)
 if print_score:
 score = clf.score(X_train, y_train)
 print("Coefficient of determination (R\u00b2)= {0:.4f}".format(score))

163

a function to evaluate the performance of the model on the 'testing' set
def measure_performance(X, y, clf, show_accuracy=True,
 show_classification_report=True,
 show_confusion_matrix=True,
 show_Reg_metrics=False):
 y_pred = clf.predict(X)
 if show_accuracy:
 print("Accuracy:{0:.3f}".format(metrics.accuracy_score(y, y_pred)), "\n")
 if show_classification_report:
 print("Classification report")
 print(metrics.classification_report(y, y_pred), "\n")
 if show_confusion_matrix:
 print("Confusion matrix")
 print(metrics.confusion_matrix(y, y_pred), "\n")
 if show_Reg_metrics:
 values = []
 values.append(round(metrics.mean_absolute_error(y, y_pred), 2))
 values.append(round(metrics.median_absolute_error(y, y_pred), 2))
 values.append(round(metrics.max_error(y, y_pred), 2))
 values.append(str(round(metrics.mean_absolute_percentage_error(y, y_pred), 2)
*100) +"%")
 values.append(round(metrics.r2_score(y, y_pred), 2))
 values.append(round(stats.pearsonr(y, y_pred)[0], 2))
 names = ['Mean Absolute Error (MAE)', 'Median Absolute Error (MedAE)', 'Maxim
um Error (MaxE)',
 'Mean Absolute Percentage Error (MAPE)', 'Coefficient of determinati
on (R\u00b2)',
 'Correlation Coefficient (CC)']
 return pd.DataFrame(values, index=names, columns=['Performance Metrics'])

print("Successful. All required libraries have been loaded.")

164

2. Loading raw data & Initial Preparation

↑ back to TOC

file_name = r"RFID_RawData.xlsx"

Reading RFID, multipanel, and production data each into a dataframe
rfidreading = pd.read_excel(file_name, sheet_name="RFIDReadings")
multipanel = pd.read_excel(file_name, sheet_name="Multipanel")
production = pd.read_excel(file_name, sheet_name="ProductionVolume")

RFID Readings dataframe (df1)
df1 = rfidreading.copy(deep=True)
print("The size of RFID Readings dataframe (df1) = {} rows by {} columns".format(df1.
shape[0], df1.shape[1]))
deleting records where 'FirstReadDate' occured on or before 2015-09-10
because factory setup has changed making data not relevant to the study
df1 = df1.loc[df1["FirstReadDate"] > datetime(2015, 9, 10)]
keeping rows where 'AntennaDescription' = A1, A2, A3, A4, or A5
these readings represent the Multiwall production phase
df1 = df1.loc[(df1["AntennaDescription"] == "A1") | (df1["AntennaDescription"] == "A2
") | (df1["AntennaDescription"] == "A3")
 | (df1["AntennaDescription"] == "A4") | (df1["AntennaDescription"] == "
A5")]
keeping only relevant columns in df1
"WallNumber" has redundant ID info that is already present in "PanelNumber"
"LocationSourceAntenna" and "LocationTagID" are not required for the study
"TagID" and "LastReadDate" contains redundant information
df1.drop(['TagID', 'WallNumber', 'LocationSourceAntenna', 'LocationTagID', 'LastReadD
ate'], axis=1, inplace=True)
print("Size after initial data filtering = {} rows by {} columns".format(df1.shape[0]
, df1.shape[1]))
print("---")

Multipanel dataframe (df2)
df2 = multipanel.copy(deep=True)
print("The size of Multipanel dataframe (df2) = {} rows by {} columns".format(df2.sha
pe[0], df2.shape[1]))
keeping only rows where 'Panel Attribute' = 'Wall line'
manually manufactured panels are execluded
df2 = df2.loc[df2["Panel Attribute"] == "Wall line"]
keeping only relevant columns in df2
description of deleted columns can be found in Chapter 4
df2.drop(['Job', 'Component', 'Wall', 'Panel Attribute', 'TypeX', 'Siding', 'SidingLi
ne', 'Model', 'Floor', 'Unit',
 'GarageDoor', 'Drywall', 'Sequence', 'Basementwall', 'position', 'Productio
nJob'], axis=1, inplace=True)
print("Size after initial data filtering = {} rows by {} columns".format(df2.shape[0]
, df2.shape[1]))
print("---")

ProductionVolume dataframe (df3)
df3 = production.copy(deep=True)
print("The size of ProductionVolume dataframe (df3) = {} rows by {} columns".format(d

165

f3.shape[0], df3.shape[1]))
deleting records where 'Date1' <= 2015-09-10) to match the condition for df1
df3 = df3.loc[df3["Date1"] > datetime(2015, 9, 10)]
df3.reset_index(drop=True, inplace=True)
changing the type of 'Date1' from datetime.datetime to datetime.date
date values are later compared with other date fields
date1 = lambda row: row["Date1"].date()
df3["Date1"] = df3.apply(date1, axis=1)
print("Size after initial data filtering = {} rows by {} columns".format(df3.shape[0]
, df3.shape[1]))

166

3. Descriptive Statistics & Data Visualization

↑ back to TOC

3.1 Visualization of raw data in (df1)

n = df1.shape[0]; print("Total number of RFID readings =", n)
sList, nList = ['A1', 'A2', 'A3', 'A4', 'A5'], []

a loop to count the number of RFID readings at each of the five stations
for i in range(len(sList)):
 x = df1.loc[df1['AntennaDescription'] == sList[i]]['AntennaDescription'].count()
 nList.append([x, str(round(x/n*100, 2))+'%'])
table = pd.DataFrame(nList, index=sList, columns=['Total RFID readings', '% of total
reading'])
display(table)

plt.figure(figsize=(12, 6))
plt.bar(x=sList, height=np.array(nList).T[0].astype(int), color='blue', alpha=0.6)

a loop to display the % on top of each bar of the histogram
for i in range(len(sList)):
 y = int(np.array(nList).T[0][i])+20
 s = table.at[sList[i], '% of total reading']
 plt.text(x=sList[i], y=y, s=s, horizontalalignment='center', fontsize=13)

plt.ylim(36900, 38200)
plt.yticks(list(range(36900, 38200, 100)))
plt.title("Total Number of Readings at Each Antenna Location", fontsize=16)
plt.xlabel("Antenna Location", fontsize=14); plt.ylabel("RFID Readings Count", fontsi
ze=14)
plt.grid(); plt.show()

register_matplotlib_converters()
counting how many readings each multiwall panel has every day
df1_grouped = df1.groupby(['FirstReadDate', 'PanelNumber']).count().reset_index().set
_index('FirstReadDate')
df1_daily = df1_grouped.groupby(['FirstReadDate']).sum()

the function to aggregate with in resampling and moving window
aggFunction = 'sum'
resampling to monthly, weekly frequencies, and using 14-day rolling window, aggrega
ting all by 'aggFunction'
df1_monthly = df1_daily.resample('M').agg(aggFunction)
df1_weekly = df1_daily.resample('W').agg(aggFunction)
df1_14d = df1_daily.rolling(window=14, center=True).agg(aggFunction)

using seaborn default style and set the default figure size
sns.set(rc={'figure.figsize':(16, 8)}); fig, ax = plt.subplots()

start and end of the date range to extract
start, end = '2015-09', '2018-08'

ax.plot(df1_monthly.loc[start:end, 'AntennaDescription'], marker='o', linewidth=0.9,

167

label='Monthly Sum')
ax.plot(df1_weekly.loc[start:end, 'AntennaDescription'], marker='.', markersize=5, la
bel='Weekly Sum')
ax.plot(df1_14d.loc[start:end, 'AntennaDescription'], marker='.', linestyle='--', lab
el='14-d Rolling Sum')
ax.legend(ncol=3, fontsize=14)

ax.set_ylabel('Total Number of RFID Readings', fontsize=16)
setting x-axis major ticks to monthly interval
ax.xaxis.set_major_locator(mdates.MonthLocator())
tick_loc = ax.get_xticks().tolist()
ax.set_xticks(tick_loc)
formatting x-tick labels as '3-letter month' and '2-digit year'
ax.set_xticklabels(labels=tick_loc, rotation=90, fontsize=13)
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b \'%y'))
plt.show()

creating a dataframe to count the number of panles produced each day
dfPanelCount = df1.groupby(['FirstReadDate', 'PanelNumber']).count()
dfPanelperDay = dfPanelCount.reset_index().groupby('FirstReadDate').agg({'PanelNumber
':'count'})

fig, ax = plt.subplots()
ax.plot(dfPanelperDay.loc['2015-09':'2015-12'].resample('W').sum(), label='2015')
ax.plot(dfPanelperDay.loc['2016-01':'2016-12'].resample('W').sum(), label='2016')
ax.plot(dfPanelperDay.loc['2017-01':'2017-12'].resample('W').sum(), label='2017')
ax.plot(dfPanelperDay.loc['2018-01':'2018-08'].resample('W').sum(), label='2018')
ax.legend(ncol=4, fontsize=14)

ax.set_ylabel('Number of Panels Produced Each Week', fontsize=16)
setting x-axis major ticks to monthly interval
ax.xaxis.set_major_locator(mdates.MonthLocator())
tick_loc = ax.get_xticks().tolist()
ax.set_xticks(tick_loc)
formatting x-tick labels as '3-letter month' and '2-digit year'
ax.set_xticklabels(labels=tick_loc, rotation=90, fontsize=13)
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b \'%y'))
plt.show()

3.2 Visualization of raw data in (df2)

↑ back to Heading 3

using seaborn default style and set the default figure size
sns.set(rc={'figure.figsize':(16, 12)})
plotting the heatmap of correlation between attributes
correlation = df2.corr(method='pearson')
sns.heatmap(correlation, xticklabels=correlation.columns, yticklabels=correlation.col
umns,
 cmap='RdBu_r', annot=True, linewidth=0.5, square=True)
plt.show()

displaying summary statistics of attributes in df2
df2stat = df2.describe().T.loc[:, ['mean', 'std', 'min', '25%', '50%', '75%', 'max']]
.round()

168

display(df2stat)

counting the number of interior and exterior panel as % of the total number of pane
ls
numIntExt = df2.loc[(df2['Type']=='INT') | (df2['Type']=='EXT')]['Type'].count()
numType = df2['Type'].count()

print("Number of 'INT' and 'EXT' panel types is {}% of all panels".format(round(numIn
tExt/numType*100, 2)))

169

4. Advanced Data Preparing

↑ back to TOC

4.1 Data Preparation in (df1)

transforming df1 so that each station is represented by two columns ('stationName_i
nitial' and 'stationName_last')
such that, for each record: 'stationName_initial' = minimum value found in 'Initial
ReadDateTime' and
'stationName_last' = maximum value found in 'LastReadDa
teTime'

df1Transformed = (df1.groupby(["PanelNumber", "AntennaDescription", "FirstReadDate"])
These are the indexes we want group by
.agg({"InitialReadDateTime": 'min', "LastReadDateTime": 'min'}) # We want to aggregat
ge based on two values of Time
.unstack(level="AntennaDescription") # Move station to column section
.droplevel(0,axis=1) # Reduce outermost multi-index of agg column 'Time'
.reset_index()) # completely remove multi-index and make simple table

renaming columns in df1Transformed
df1Transformed.columns = ['PanelNumber', 'FirstReadDate', 'A1_initial', 'A2_initial',
'A3_initial', 'A4_initial',
 'A5_initial', 'A1_last', 'A2_last', 'A3_last', 'A4_last', '
A5_last']
display(df1Transformed.head(5))

4.1.1 Replace Missing Values, Remove 'NaT', and Add 'Panels/Day'

replace missing values at station 'A1' provided that the values in all other statio
ns are not missing
the time at 'A1' is updated by randomly subtracting 8 to 12 minutes from the time a
t station 'A2'
fillA1i = lambda row: row["A2_initial"]-timedelta(minutes=np.random.uniform(8, 12)) i
f pd.isnull(row["A1_initial"]) & pd.notnull(row["A2_initial"])\
& pd.notnull(row["A3_initial"]) & pd.notnull(row["A4_initial"]) & pd.notnull(row["A5_
initial"]) else row["A1_initial"]
df1Transformed["A1_initial"] = df1Transformed.apply(fillA1i, axis=1)

fillA1l = lambda row: row["A2_last"]-timedelta(minutes=np.random.uniform(8, 12)) if p
d.isnull(row["A1_last"]) & pd.notnull(row["A2_last"])\
& pd.notnull(row["A3_last"]) & pd.notnull(row["A4_last"]) & pd.notnull(row["A5_last"]
) else row["A1_last"]
df1Transformed["A1_last"] = df1Transformed.apply(fillA1l, axis=1)

replace missing values at station 'A2' provided that the values in all other statio
ns are not missing
the time at 'A2' is closer to 'A1' than to 'A3', therefore, the time at 'A2' is upd
ated by
adding 1/4 of the time difference (A3-A1) to the time at station 'A1'
fillA2i = lambda row: row["A1_initial"]+(row["A3_initial"]-row["A1_initial"])/4 if pd
.isnull(row["A2_initial"]) & pd.notnull(row["A1_initial"])\
& pd.notnull(row["A3_initial"]) & pd.notnull(row["A4_initial"]) & pd.notnull(row["A5_

170

initial"]) else row["A2_initial"]
df1Transformed["A2_initial"] = df1Transformed.apply(fillA2i, axis=1)

fillA2l = lambda row: row["A1_last"]+(row["A3_last"]-row["A1_last"])/4 if pd.isnull(r
ow["A2_last"]) & pd.notnull(row["A1_last"])\
& pd.notnull(row["A3_last"]) & pd.notnull(row["A4_last"]) & pd.notnull(row["A5_last"]
) else row["A2_last"]
df1Transformed["A2_last"] = df1Transformed.apply(fillA2l, axis=1)

replace missing values at station 'A3' provided that the values in all other statio
ns are not missing
the time at 'A3' is assumed to fall in the middle between 'A2' and 'A4', therefore,
the time at 'A3' is updated by
adding 1/2 of the time difference (A4-A2) to the time at station 'A2'
fillA3i = lambda row: row["A2_initial"]+(row["A4_initial"]-row["A2_initial"])/2 if pd
.isnull(row["A3_initial"]) & pd.notnull(row["A1_initial"])\
& pd.notnull(row["A2_initial"]) & pd.notnull(row["A4_initial"]) & pd.notnull(row["A5_
initial"]) else row["A3_initial"]
df1Transformed["A3_initial"] = df1Transformed.apply(fillA3i, axis=1)

fillA3l = lambda row: row["A2_last"]+(row["A4_last"]-row["A2_last"])/2 if pd.isnull(r
ow["A3_last"]) & pd.notnull(row["A1_last"])\
& pd.notnull(row["A2_last"]) & pd.notnull(row["A4_last"]) & pd.notnull(row["A5_last"]
) else row["A3_last"]
df1Transformed["A3_last"] = df1Transformed.apply(fillA3l, axis=1)

replace missing values at station 'A4' provided that the values in all other statio
ns are not missing
the time at 'A4' is closer to 'A5' than to 'A3', therefore, the time at 'A4' is upd
ated by
adding 3/4 of the time difference (A5-A3) to the time at station 'A3'
fillA4i = lambda row: row["A3_initial"]+3*(row["A5_initial"]-row["A3_initial"])/4 if
pd.isnull(row["A4_initial"]) & pd.notnull(row["A1_initial"])\
& pd.notnull(row["A2_initial"]) & pd.notnull(row["A3_initial"]) & pd.notnull(row["A5_
initial"]) else row["A4_initial"]
df1Transformed["A4_initial"] = df1Transformed.apply(fillA4i, axis=1)

fillA4l = lambda row: row["A3_last"]+3*(row["A5_last"]-row["A3_last"])/4 if pd.isnull
(row["A4_last"]) & pd.notnull(row["A1_last"])\
& pd.notnull(row["A2_last"]) & pd.notnull(row["A3_last"]) & pd.notnull(row["A5_last"]
) else row["A4_last"]
df1Transformed["A4_last"] = df1Transformed.apply(fillA4l, axis=1)

replace missing values at station 'A5' provided that the values in all other statio
ns are not missing
the time at 'A5' is updated by randomly adding 8 to 12 minutes to the time at stati
on 'A4'
fillA5i = lambda row: row["A4_initial"]+timedelta(minutes=np.random.uniform(8, 12)) i
f pd.isnull(row["A5_initial"]) & pd.notnull(row["A1_initial"])\
& pd.notnull(row["A2_initial"]) & pd.notnull(row["A3_initial"]) & pd.notnull(row["A4_
initial"]) else row["A5_initial"]
df1Transformed["A5_initial"] = df1Transformed.apply(fillA5i, axis=1)

fillA5l = lambda row: row["A4_last"]+timedelta(minutes=np.random.uniform(8, 12)) if p
d.isnull(row["A5_last"]) & pd.notnull(row["A1_last"])\

171

& pd.notnull(row["A2_last"]) & pd.notnull(row["A3_last"]) & pd.notnull(row["A4_last"]
) else row["A5_last"]
df1Transformed["A5_last"] = df1Transformed.apply(fillA5l, axis=1)

creating a data frame to count the number of panels per day, before the removal of
'NaT' values
dfPanelCount = df1Transformed.groupby(['FirstReadDate', 'PanelNumber']).count()
dfPanelperDay = dfPanelCount.reset_index().groupby('FirstReadDate').agg({'PanelNumber
':'count'})
Add a new attribute that stores the number of panels produced each day
df1Transformed = pd.merge(left = df1Transformed,
 right = dfPanelperDay.reset_index(),
 left_on='FirstReadDate',
 right_on='FirstReadDate')
df1Transformed.rename(columns={'PanelNumber_y':'Panels/Day', 'PanelNumber_x':'PanelNu
mber'}, inplace=True)

removing rows with any remaining 'NaT' values from the dataframe
df1Transformed.dropna(axis=0, how='any', inplace=True)

keeping records where the total number of panels per day is more than 5 and less th
an 80
df1Transformed = df1Transformed.loc[(df1Transformed['Panels/Day']>5) & (df1Transforme
d['Panels/Day']<=75)]
df1Transformed.reset_index(drop=True, inplace=True)

plotting the distribution/histogram of Panels/Day
sns.set_style("ticks")
dailyPro = df1Transformed['Panels/Day'].mean()
print("Average Daily Production = {} panles/day".format(round(dailyPro, 2)))
print("Average Hourly Production = {} panles/hour".format(round(dailyPro/8, 2)))

plt.figure(figsize=(18, 12))
plt.hist(df1Transformed['Panels/Day'], bins=range(5,76, 5), rwidth=0.95, alpha=0.50,
label='Total production of five days')
plt.hist(df1Transformed['Panels/Day'], bins=range(5,76, 1), rwidth=0.70, alpha=0.95,
label='Single daily production value')

plt.axvline(x=30, linestyle='--', linewidth=1.6, color='red', alpha=0.6)
plt.axvline(x=55, linestyle='--', linewidth=1.6, color='red', alpha=0.6)

plt.annotate("Avg. Daily Production = {} panles/day".format(round(dailyPro, 1)),
 xy=(15, 470), xycoords='axes points', fontsize=18)
plt.annotate("Avg. Hourly Production = {} panles/hour".format(round(dailyPro/8, 1)),
 xy=(15, 445), xycoords='axes points', fontsize=18)

plt.xlabel("Total Daily Production (panels/day)", fontsize=22)
plt.ylabel("Total Panel Count at Production Level", fontsize=22)
plt.xlim((3, 77)); plt.xticks(range(5, 80, 5), fontsize=16)
plt.yticks(range(0, 2001, 100), fontsize=16)
plt.grid(True); plt.legend(ncol=2, fontsize=20, loc='upper left'); plt.show()

4.1.2 Calculation of Actual Cycle Time - 'ActualCT'

172

adding columns to calculate the time differences between consecutive antenna locati
ons using:
calculateTimeDiff(initialTime, lastTime); each time difference corresponds to the c
ycle time at a single workstation
For example, 'TotalTime12' --> 'Framing Station' and 'NoIdle12' --> 'Framing Statio
n' without idle time

stationNames = df1Transformed.columns[2:12]
for x in range(4):
 condition1 = lambda row: calculateTimeDiff(row[stationNames[x]], row[stationNames
[x+1]])
 newColumn1 = "Time"+str(x+1)+str(x+2)
 df1Transformed[newColumn1] = df1Transformed.apply(condition1, axis=1)

dropping panels where the production is not completed in the same day
df1Transformed = df1Transformed.loc[~((df1Transformed['A5_last']-df1Transformed['A1_i
nitial']) > timedelta(hours=12))]
only keeping records with positive value of cycle time at each workstation
df1Transformed = df1Transformed.loc[(df1Transformed["Time12"]>0) & (df1Transformed["T
ime23"]>0) &
 (df1Transformed["Time34"]>0) & (df1Transformed["T
ime45"]>0)]
df1Transformed.sort_values(by='FirstReadDate', inplace=True)
df1Transformed.reset_index(drop=True, inplace=True)

Time between A1 and A5 is calculated by summing up the cycle times of individual wo
rkstations
total15 = lambda row: (row["Time12"] + row["Time23"] + row["Time34"] + row["Time45"])
df1Transformed["ActualCT"] = df1Transformed.apply(total15, axis=1)

adding a column to calculate 'ActualCT' - break time
df1Transformed['ActualCT-BT'] = df1Transformed['ActualCT']

if the production of a wall panel overlaps with a break time, subtract that break t
ime from the total cycle time
break times are a) 15 minutes from 9:30 AM to 9:45 AM
b) 30 minutes from 12:0 PM to 12:30 PM
c) 15 minutes from 2:30 PM to 2:45 PM
for index, row in df1Transformed.iterrows():
 if (row['A1_initial'].time() < time(9,30)) & (row['A5_last'].time() > time(9,45))
:
 if (row['ActualCT-BT'] - 15) <= 0:
 pass
 else:
 df1Transformed.at[index, 'ActualCT-BT'] = row['ActualCT-BT'] - 15
 if (row['A1_initial'].time() < time(12,0)) & (row['A5_last'].time() > time(12,30)
):
 if (row['ActualCT-BT'] - 30) <= 0:
 pass
 else:
 df1Transformed.at[index, 'ActualCT-BT'] = row['ActualCT-BT'] - 30
 if (row['A1_initial'].time() < time(14,30)) & (row['A5_last'].time() > time(14,45
)):
 if (row['ActualCT-BT'] - 15) <= 0:
 pass

173

 else:
 df1Transformed.at[index, 'ActualCT-BT'] = row['ActualCT-BT'] - 15

display(df1Transformed.iloc[:,12:].head(5))

plotting boxplots for station times and total cycle time, to visualize the distribu
tion of outliers
plt.figure(figsize=(12, 8))
data = [df1Transformed['Time12'], df1Transformed['Time23'], df1Transformed['Time34'],
 df1Transformed['Time45'], df1Transformed['ActualCT']]
labels = [i.name for i in data]

box = plt.boxplot(x=data, labels=labels, vert=True, showmeans=True, sym='r+')
plt.ylabel("Production Time (minutes)", fontsize=16)
plt.yticks(range(-5, 400, 20), fontsize=13)
plt.grid(True); plt.show()

adding a dataframe to summarize the boxplot values (upper and lower limits)
getBoxplotData(box, labels)

plotting the time-difference between antenna locations A1 and A5 (total time)
plt.figure(figsize=(15, 9))
sns.histplot(df1Transformed['ActualCT'], label='ActualCT', stat='count', kde=True, co
lor='red', alpha=0.5)
sns.histplot(df1Transformed['ActualCT-BT'], label='ActualCT-BT', stat='count', kde=Tr
ue, alpha=0.8)

avg1, med1 = round(df1Transformed['ActualCT'].mean(), 1), round(df1Transformed['Actua
lCT'].median(),1)
plt.axvline(x=avg1, linestyle='--', linewidth=1.6, color='red')
avg2, med2 = round(df1Transformed['ActualCT-BT'].mean(), 1), round(df1Transformed['Ac
tualCT-BT'].median(), 1)
plt.axvline(x=avg2, linestyle='--', linewidth=1.6, color='blue')

plt.xlabel("Total Cycle Time (in minutes)", fontsize=16); plt.ylabel("Count", fontsiz
e=16)
plt.xticks(range(0, 141, 5), fontsize=13); plt.yticks(range(0, 751, 50), fontsize=13)
plt.xlim((0, 140))

plt.annotate("ActualCT mean and median:", xycoords='data', xy=(avg1-0.5, 600), fontsi
ze=15,
 xytext=(70, 610), arrowprops={'arrowstyle':'->', 'color':'black'})
plt.annotate("[{}, {}]".format(avg1, med1), xycoords='data', xy=(108, 610), fontsize=
15)
plt.annotate("ActualCT-BT mean and median:", xycoords='data', xy=(avg2-0.5, 550), fon
tsize=15,
 xytext=(70, 560), arrowprops={'arrowstyle':'->', 'color':'black'})
plt.annotate("[{}, {}]".format(avg2, med2), xycoords='data', xy=(108, 560), fontsize=
15)
plt.legend(ncol=2, fontsize=15); plt.grid(True, alpha=0.7, linestyle='--'); plt.show(
)

df1stat = df1Transformed.describe().T.loc[:, ['mean', 'std', 'min', '25%', '50%', '75
%', 'max']].round(2)
display(df1stat)

174

var1 = df1Transformed['ActualCT']; var2 = df1Transformed['ActualCT-BT']
cc, p_value = stats.pearsonr(var1, var2)
print("Correlation Coefficient (CC) between 'ActualCT' and 'ActualCT-BT' ={}\np-value
for CC ={}".format(cc, p_value))

categorizing the target variable 'ActualCT' ---> 'CT_binned'
using custom ranges for bins = {'low', 'below-norm', 'normal', 'above-norm', 'high'
}
group_names = ['low', 'below-norm', 'normal', 'above-norm', 'high']
avg, std = df1Transformed['ActualCT'].mean(), df1Transformed['ActualCT'].std()

creating bin limits based on the average value and std. deviation of 'ActualCT'
l0, lmax = 0, df1Transformed['ActualCT'].max()
l25, l75 = df1stat.loc['ActualCT', '25%'], df1stat.loc['ActualCT', '75%']
capL, capH = l25 - (l75-l25), l75 + (l75-l25)
bins = [l0, capL, l25, l75, capH, lmax]

df1Transformed['CT_binned'] = pd.cut(df1Transformed['ActualCT'], bins, labels=group_n
ames,)

4.2 Data Preparation in (df2)

↑ back to Heading 4

skipping the first 3 columns in df2 ('MultiPanel_Name', 'Length', 'Width'), a count
er is used to track this order in the loop
counter = 0

calculate the percentage of the two most-occuring values in each column
if the sum of these two values is 90% or more, this column(attribute) is to be dele
ted from df2

percentage1, percentage2, columnNames = [], [], []
creating a list to store column names where the total percentage is 90% or more
columnsToDel = []

for columnName in df2:
 counter += 1
 # skipping the first 3 columns
 if counter > 3:
 val = df2[columnName].value_counts()
 columnNames.append(columnName)
 pr1 = round(100*val.tolist()[0]/sum(val.tolist()), 2); percentage1.append(pr1
)
 pr2 = round(100*val.tolist()[1]/sum(val.tolist()), 2); percentage2.append(pr2
)
 if (pr1+pr2) >= 90:
 columnsToDel.append(columnName)

displaying all columns with the percentages of the two most-occuring values and thi
er sum
total = [sum(x) for x in zip(percentage1, percentage2)]
templist = list(zip(columnNames, percentage1, percentage2, (total)))
percentageDF = pd.DataFrame(templist, columns=["Attr.", "Value 1 freq. (%)", "Value 2

175

freq. (%)", "Both Values freq. (%)"])
percentageDF.set_index("Attr.", inplace=True); display(percentageDF)

replacing values of the column 'Type' to numeric 'EXT', 'GAR', 'MEC' --> 1, 'INT',
'STR', 'NaN' --> 0
df2['Type'].replace(to_replace=['EXT', 'GAR', 'MEC', 'INT', 'STR', np.nan], value=[1,
1, 1, 0, 0, 0], inplace=True)

print(df2.columns)

df22 = df2.copy(deep=True)
deleting rows where the following dimension limits apply:
a)'Length' < 1200mm, b) 'Width' > 3300mm or < 1400mm
df22 = df22.loc[(df22["Length"] >= 1200) & (df22["Width"] >= 1400) & (df22["Width"] <
= 3300)]
cols = ['MultiPanel_Name', 'Length', 'Width', 'Height', 'Type', 'Window', 'LargeWindo
w', 'Door', 'LargeDoor', 'Sheetfull',
 'SheetPartial', 'Cutzone', 'Drillhole', 'Stud', 'DStud', 'LStud', 'MStud', 'B
lock', 'Backing', 'NailCount', 'Nailline']
df22 = df22[cols]
Scenario 0, df22, original data frame
print("Scenario 0: df22 shape is", df22.shape)

Scenario 1, df2_v1, add new attributes, created by combining existing attributes
df22_v1 = df22.copy(deep=True)
df22_v1['totalWD'] = df22_v1['Window'] + df22_v1['LargeWindow'] + df22_v1['Door'
] + df22_v1['LargeDoor']
df22_v1['TotalStuds'] = df22_v1['Stud'] + 2*df22_v1['DStud'] + 2*df22_v1['LStud'] +
3*df22_v1['MStud']
df22_v1['SheetFP'] = df22_v1['Sheetfull'] + df22_v1['SheetPartial']
df22_v1['BlockBacking'] = df22_v1['Block'] + df22_v1['Backing']
df22_v1.drop(columns=['Window', 'LargeWindow', 'Door', 'LargeDoor', 'Sheetfull', 'She
etPartial',
 'Stud', 'DStud', 'LStud', 'MStud', 'Block', 'Backing'], inplac
e=True)
df22_v1.reset_index(drop=True, inplace=True)
print("Scenario 1: df22_v1 shape is", df22_v1.shape)

Scenario 2, df2_v2, add new attributes, created by combining existing attributes
df22_v2 = df22_v1.copy(deep=True)
df22_v2['Components'] = df22_v2['totalWD'] + df22_v2['TotalStuds'] + df22_v2['Sheet
FP'] + df22_v2['BlockBacking']
df22_v2.drop(columns=['totalWD', 'TotalStuds', 'SheetFP', 'BlockBacking'], inplace=Tr
ue)
df22_v2.reset_index(drop=True, inplace=True)
print("Scenario 2: df22_v2 shape is", df22_v2.shape)

Scenario 3, df2_v3, add new attributes, created by combining existing attributes
this scenario is developed for the simulation model (i.e., Chapter 5)
df22_v3 = df22.copy(deep=True)
df22_v3['SmallOpenings'] = df22_v3['Window'] + df22_v3['Door']
df22_v3['LargeOpenings'] = df22_v3['LargeWindow'] + df22_v3['LargeDoor']
df22_v3['BlockBacking'] = df22_v3['Block'] + df22_v3['Backing']
df22_v3.drop(columns=['Height', 'Window', 'Door', 'LargeWindow', 'LargeDoor', 'Block'
, 'Backing'], inplace=True)

176

cols = ['MultiPanel_Name', 'Length', 'Width', 'Type', 'Cutzone', 'Drillhole', 'Stud',
'DStud', 'LStud', 'MStud',
 'SmallOpenings', 'LargeOpenings', 'BlockBacking', 'NailCount', 'Nailline', '
Sheetfull', 'SheetPartial']
df22_v3 = df22_v3[cols]
df22_v3.reset_index(drop=True, inplace=True)
print("Scenario 3: df22_v3 shape is", df22_v3.shape)

177

5. Data Processing and Merging

↑ back to TOC

n1 = df1Transformed['FirstReadDate'].nunique()
print("Total number of production days = {} working days".format(n1))

5.1 Merging Dataframes and Generating Features

create an empty list to store the final dataframes
df_final_list = []

creating a list of cleaned dataframes of panel properties
df22_list = [df22, df22_v1, df22_v2, df22_v3]

for dataframe in df22_list:
 # merging 'df1Transformed' with each of the dataframes in 'df22_list'
 df1_merged = pd.merge(left=df1Transformed, right=dataframe, left_on="PanelNumber"
, right_on="MultiPanel_Name")
 df1_merged['WP'] = 0
 df1_merged['WPLength'] = 0
 df1_merged['WPTime'] = 0.0

 # extracting a slice of the data frame between start and end dates
 startDate, endDate = datetime(2015, 9, 1), datetime(2018, 8, 31)
 tempDF0 = df1_merged.loc[(df1_merged["FirstReadDate"] >= startDate) & (df1_merged
["FirstReadDate"] <= endDate)]
 tempDF0.reset_index(drop=True, inplace=True)

 # creating a list of unique dates by ignoring duplicates in 'FirstReadDate'
 listOfDates = pd.to_datetime(tempDF0['FirstReadDate'].unique().tolist())
 listOfDates = listOfDates.sort_values()

 counter = 0
 for day in listOfDates:
 tempDF1 = tempDF0.loc[tempDF0["FirstReadDate"] == day]
 tempDF1.reset_index(drop=True, inplace=True)

 for index, row in tempDF1.iterrows():
 # extracting the start time of processing a panel from the timestamp in '
A1_initial'
 panel_start = row['A1_initial']
 num, length, time = 0, 0, 0
 # for all other panels on the same day, check how many panels have alread
y been in production
 # and are still in-process (i.e. WIP) when the current panel enters the p
roduction
 for index2, row2 in tempDF1.iterrows():
 a1_other = row2['A1_initial']
 a2_other = row2['A2_initial']
 a3_other = row2['A3_initial']
 a4_other = row2['A4_initial']
 a5_other = row2['A5_initial']

178

 if (panel_start > a1_other) and (
 (panel_start < a2_other) or (panel_start < a3_other) or (panel_st
art < a4_other) or (panel_start < a5_other)):
 num += 1
 length += row2['Length']
 time += row2['ActualCT']
 tempDF1.at[index, 'WP'], tempDF1.at[index, 'WPLength'], tempDF1.at[index,
'WPTime'] = num, length, time

 counter += 1
 if counter > 1:
 df_final = pd.concat([df_final, tempDF1], ignore_index=True)
 else:
 df_final = tempDF1
 ###
###############################

 df_final.drop(columns=['MultiPanel_Name', 'A2_initial', 'A3_initial', 'A4_initial
', 'A5_initial',
 'A1_last', 'A2_last', 'A3_last', 'A4_last', 'A5_last'], in
place=True)

 # rearranging columns so target attributes 'ActualCT', 'ActualCT-BT', and 'CT_bin
ned' are the last columns in the dataframe
 CT_index = df_final.columns.get_loc('ActualCT')
 cols = df_final.columns.tolist()
 cols = cols[:CT_index] + cols[CT_index+3:] + cols[CT_index:CT_index+3]
 df_final = df_final[cols]

 # rearranging columns so that 'Panels/Day' is placed before the target columns in
the dataframe
 PD_index = df_final.columns.get_loc('Panels/Day')
 cols = df_final.columns.tolist()
 cols = cols[:PD_index] + cols[PD_index+1:-3] + [cols[PD_index]] + cols[-3:]
 df_final = df_final[cols]

 # sorting records by 'FirstReadDate'
 df_final.sort_values(by='FirstReadDate', ascending=True, inplace=True, ignore_ind
ex=True)
 df_final['FirstReadDate'] = df_final['FirstReadDate'].dt.date
 df_final_list.append(df_final)

adding the raw dataset (without the generated attributes) to the list of dataframes
df_raw = df_final_list[0].drop(['WP', 'WPLength', 'WPTime', 'Panels/Day'], axis=1)
df_final_list.insert(0, df_raw)
print("Merging of all dataframes has been completed")

using seaborn default style and set the default figure size
sns.set(rc={'figure.figsize':(16, 12)})
lengthIndex = df_final_list[2].columns.get_loc('Length')
plotting the heatmap of correlation between attributes
pc = df_final_list[2].iloc[:, lengthIndex:].corr(method='pearson')
sns.heatmap(pc, xticklabels=pc.columns, yticklabels=pc.columns,
 cmap='RdBu_r', annot=True, linewidth=0.5, square=True)
plt.show()

179

5.2 Saving Merged Dataframes to CSV

↑ back to Heading 5

saving final data frames to CSV files
names = ['df_raw', 'df_final', 'df_final_v1', 'df_final_v2', 'df_final_v3']
i = 0
for dataframe in df_final_list:
 file_name = "{}_{}_{}.csv".format(i+1, str(date.today()), names[i])
 dataframe.to_csv("CSV\{}".format(file_name), index=False)
 i += 1

180

6. Cycle Time (CT) Prediction

↑ back to TOC

6.1 Experiment A (1 Target Dat, 1 Model and 1 Dataframe)

the variable 'df_id' refers to one of the four dataframes in the list 'df_final_lis
t' = {0, 1, 2, 3}
df_0 = raw dataset without SL features
df_1 = dataset with SL features with no feature combination
df_2 = dataset with SL features with physical features combined into 4 features
df_3 = dataset with SL features with physical features combined into 1 feature
df_i = 2; dataframe = df_final_list[df_i].copy(deep=True)

specify the start and end dates for the experiment
sDate, eDate = date(2017,6,13), date(2017,6,21)

dataframe = dataframe.loc[(dataframe["FirstReadDate"] >= sDate) & (dataframe["FirstRe
adDate"] <= eDate)]
dataframe.reset_index(drop=True, inplace=True)
listOfDates = pd.to_datetime(dataframe['FirstReadDate'].unique().tolist()).sort_value
s()
print(listOfDates)

splitting the dataframe into two sets: a training set, and a testing set
df_training = dataframe.loc[dataframe['FirstReadDate'] != listOfDates[-1]]
df_training.reset_index(drop=True, inplace=True)
df_testing = dataframe.loc[dataframe['FirstReadDate'] == listOfDates[-1]]
df_testing.reset_index(drop=True, inplace=True)
storing independent features in the variable 'X' and the target attribute 'ActualCT
-BT' in the variable 'y'
'7' represents the location of 'Lenght' and '-3' exclude targe variables from the i
ndependent variables 'X'
X_train = df_training.values[:, 7:-3]
y_train = df_training['ActualCT-BT'].values
X_test = df_testing.values[:, 7:-3]
y_test = df_testing['ActualCT-BT'].values

test_dim, train_dim = df_testing.shape[0], df_training.shape[0]
print("Testing set represents {}% of the whole data\n".format(round(test_dim/(test_di
m+train_dim), 2)*100))

experimenting with a Random Forest model
clf = ensemble.RandomForestRegressor(n_estimators=1000, criterion='mse', random_state
=66)

print("Training the model:")
train_and_evaluate(clf, X_train, y_train)
print("Performance on the testing set:")
measure_performance(X_test, y_test, clf, False, False, False, True)

6.2 Experiment B (Many Target Days, 1 Model and 1 Dataframe)

181

↑ back to Heading 6

experimenting with an ETR model
clf = ensemble.ExtraTreesRegressor(n_estimators=500, criterion='mse', random_state=66
)
df_i = 2; dataframe = df_final_list[df_i]

specify the range of dates to check 'startDate' and 'endDate'
and the length of historical timeframe to check 'lookbackTime'
startDate, endDate = date(2017,1,1), date(2017,12,31)
lookbackTime = 5

dataframe = dataframe.loc[(dataframe['FirstReadDate'] >= startDate) & (dataframe['Fir
stReadDate'] <= endDate)]
dataframe = dataframe.loc[(dataframe['Panels/Day'] >= 10) & (dataframe['Panels/Day']
<= 70)]

determining the unique dates between startDate and endDate (eliminating duplicates)
uniqDays = dataframe['FirstReadDate'].unique()

Looping over Target Date Range (startDate --> endDate)

a list to store the results
results = []
creating an empty dataframe to append results to it
newDF = pd.DataFrame(columns = dataframe.columns)

for day in uniqDays[5:]:
 # locating the starting day of the prediction lookback timeframe
 sDayLoc = np.asarray(np.array(uniqDays) == day).nonzero()[0][0] - lookbackTime
 sDay = uniqDays[sDayLoc]
 #print("Start Day: {}, Testing Day: {}".format(sDay, day))

 # splitting the dataframe into two sets: a training set, and a testing set
 df_training = dataframe.loc[(dataframe['FirstReadDate'] >= sDay) & (dataframe['Fi
rstReadDate'] < day)]
 df_training.reset_index(drop=True, inplace=True)
 df_testing = dataframe.loc[dataframe['FirstReadDate'] == day]
 df_testing.reset_index(drop=True, inplace=True)
 # storing independent features in the variable 'X' and the target attribute 'Actu
alCT-BT' in the variable 'y'
 # '7' represents the location of 'Lenght' and '-3' exclude targe variables from t
he independent variables 'X'
 x_train = df_training.values[:, 7:-3]
 y_train = df_training['ActualCT-BT'].values
 x_test = df_testing.values[:, 7:-3]
 y_test = df_testing['ActualCT-BT'].values

 # fitting the model on the training set, and predicting target values on the test
ing set
 train_and_evaluate(clf, x_train, y_train, False)
 y_pred = clf.predict(x_test)

 # storing the predicted value in the dataframe, and appending the results to newD

182

F one day for each loop
 dayDF = dataframe.loc[dataframe['FirstReadDate'] == day]
 dayDF['PredictedCT'] = y_pred
 newDF = newDF.append(dayDF)

 MAE = metrics.mean_absolute_error(y_test, y_pred)
 MedAE = metrics.median_absolute_error(y_test, y_pred)
 MaxAE = metrics.max_error(y_test, y_pred)
 MAPE = metrics.mean_absolute_percentage_error(y_test, y_pred)
 CC = stats.pearsonr(y_test, y_pred)

 # A dictionary to aggregate the results of each subset
 dict1 = {}
 dict1['Start Date'], dict1['Target Date'] = sDay, day
 dict1['MAE'] = round(MAE, 2)
 dict1['MedAE'] = round(MedAE, 2)
 dict1['MaxAE'] = round(MaxAE, 2)
 dict1['MAPE'] = round(MAPE*100, 2)
 dict1['CC'] = round(CC[0], 2)
 results.append(dict1)

creating a dataframe to summarize the results
resultsDF = pd.DataFrame(results)
display(resultsDF.head(10))

plt.figure(figsize=(16, 10))

plotting the actual cycle time and the predicted results of the four models
sns.histplot(newDF['ActualCT-BT'], label='ActualCT-BT', stat='probability', kde=True,
color='red')
sns.histplot(newDF['PredictedCT'], label='PredictedCT', stat='probability', kde=True,
color='blue', alpha=0.5)

plotting vertical lines for average values
avgAct = round(newDF.loc[:, 'ActualCT-BT'].mean(), 1); plt.axvline(x=avgAct, linestyl
e='--', linewidth=1.6, color='red')
plt.annotate("Avgerage actual CT = {} minutes".format(avgAct), xycoords='data', xy=(a
vgAct-0.2, 0.064), fontsize=16,
 xytext=(60, 0.061), arrowprops={'arrowstyle':'->', 'color':'black'})
avgPre = round(newDF.loc[:, 'PredictedCT'].mean(), 1); plt.axvline(x=avgPre, linestyl
e='--', linewidth=1.6, color='blue')
plt.annotate("Avgerage predicted CT = {} minutes".format(avgPre), xycoords='data', xy
=(avgPre-0.2, 0.060), fontsize=16,
 xytext=(60, 0.057), arrowprops={'arrowstyle':'->', 'color':'black'})

plt.xlabel("Production Cycle Time (in minutes)", fontsize=16); plt.xticks(range(0, 12
1, 5), fontsize=13); plt.xlim((0, 121))
plt.ylabel("Probability", fontsize=16); plt.yticks(np.arange(0, 0.071, 0.01), fontsiz
e=13)

plt.legend(ncol=2, fontsize=14); plt.grid(True); plt.show()

Experimenting with Different Lookback Timeframes

183

df_i = 2; dataframe = df_final_list[df_i]
lookbackTime = range(1, 31)

lists to store the results
results = [[] for _ in range(len(lookbackTime))]
creating empty dataframes to append results to it
newDFList = [pd.DataFrame(columns = dataframe.columns) for _ in range(len(lookbackTim
e))]

for day in uniqDays[len(lookbackTime):]:
 #print("\nTesting Day: {}".format(day))

 for index, lb in enumerate(lookbackTime):
 print('.', end='')
 # locating the starting day of the prediction lookback time
 sDayLoc = np.asarray(np.array(uniqDays) == day).nonzero()[0][0] - lb
 sDay = uniqDays[sDayLoc]
 #print("Start Day: {}, Testing Day: {}".format(sDay, day))

 # splitting the dataframe into two sets: a training set, and a testing set
 df_training = dataframe.loc[(dataframe['FirstReadDate'] >= sDay) & (dataframe
['FirstReadDate'] < day)]
 df_training.reset_index(drop=True, inplace=True)
 df_testing = dataframe.loc[dataframe['FirstReadDate'] == day]
 df_testing.reset_index(drop=True, inplace=True)
 # storing independent features in the variable 'X' and the target attribute '
ActualCT-BT' in the variable 'y'
 # '7' represents the location of 'Lenght' and '-3' exclude targe variables fr
om the independent variables 'X'
 x_train = df_training.values[:, 7:-3]
 y_train = df_training['ActualCT-BT'].values
 x_test = df_testing.values[:, 7:-3]
 y_test = df_testing['ActualCT-BT'].values

 # Fitting the model on the training set, and predicting target values on the
testing set
 train_and_evaluate(clf, x_train, y_train, False)
 y_pred = clf.predict(x_test)

 # storing the predicted value in the dataframe, and appending the results to
newDF one day for each loop
 dayDF = dataframe.loc[dataframe['FirstReadDate'] == day]
 dayDF['PredictedCT'] = y_pred
 newDFList[index] = newDFList[index].append(dayDF)

 MAE = metrics.mean_absolute_error(y_test, y_pred)
 MedAE = metrics.median_absolute_error(y_test, y_pred)
 MaxAE = metrics.max_error(y_test, y_pred)
 MAPE = metrics.mean_absolute_percentage_error(y_test, y_pred)
 CC = stats.pearsonr(y_test, y_pred)

 # A dictionary to aggregate the results of each subset
 dict1 = {}
 dict1['Start Date'], dict1['Target Date'] = sDay, day
 dict1['Lookback Time'] = lb

184

 dict1['MAE'] = round(MAE, 2)
 dict1['MedAE'] = round(MedAE, 2)
 dict1['MaxAE'] = round(MaxAE, 2)
 dict1['MAPE'] = round(MAPE*100, 2)
 dict1['CC'] = round(CC[0], 2)
 results[index].append(dict1)

aggregating the results of all lookback timeframes performance metrics into one dat
aframe
resultsDFALL = pd.DataFrame(columns=pd.DataFrame(results[0]).columns)

for index, table in enumerate(results):
 resultsDF = pd.DataFrame(table)
 resultsDFALL = resultsDFALL.append(resultsDF)
display(resultsDFALL.sort_values(by='MAPE').head(50))

resultsDFALL.reset_index(drop=True, inplace=True)
grp = resultsDFALL.groupby(by='Lookback Time')
groupedDF = grp.min().reset_index()

plt.figure(figsize=(14, 7))
x = groupedDF['Lookback Time'].tolist()
y = groupedDF['MAPE'].tolist()
sns.regplot(x=x, y=y, order=6, ci=0, scatter_kws={'s':60}, marker='s')

plt.xlabel("Lookback Timeframe (days)", size=16); plt.xticks(range(1,31), fontsize=14
, rotation=0)
plt.ylabel("MAPE (%)", size=16); plt.yticks(fontsize=14, rotation=0)
plt.grid(True); plt.show()

6.3 Full Experiment (1 target day, 4 models and 4 dataframes)

↑ back to Heading 6

a list storing the names of the four dataframes, which will be used in the loop to
iterate over these dataframes
datasetNames = ['df_raw', 'df_SLfeatures', 'df_SLfeaturse_v1', 'df_SLfeatures_v2']
specify the start and end dates for the experiment
sDate, eDate = date(2017,5,24), date(2017,6,12)

a list to store the four dataframes with predicted values for each model
df_predicted = []

looping over the four dataframes and for each one, train the four models (LR, KNN,
RF, and NN)
and calculate five performance metrics; then display the results for each dataframe
in a table
for df_i in range(len(datasetNames)):
 print('----- Experiment on dataframe "{}" -----'.format(datasetNames[df_i]))
 # the variable 'df_id' refers to one of the four dataframes in the list 'df_final
_list' = {0, 1, 2, 3}
 dataframe = df_final_list[df_i].copy(deep=True)

 dataframe = dataframe.loc[(dataframe["FirstReadDate"] >= sDate) & (dataframe["Fir
stReadDate"] <= eDate)]

185

 listOfDates = pd.to_datetime(dataframe['FirstReadDate'].unique().tolist()).sort_v
alues()
 #print(listOfDates)

 # test set consists of records of one day - End Date 'eDate'
 # training set consists of recoreds in all working days from 'sDate' until one da
y before 'eDate'
 df_training = dataframe.loc[(dataframe['FirstReadDate'] != listOfDates[-1])]
 df_training.reset_index(drop=True, inplace=True)
 df_testing = dataframe.loc[(dataframe['FirstReadDate'] == listOfDates[-1])]
 df_testing.reset_index(drop=True, inplace=True)
 # storing independent features in the variable 'X' and the target attribute 'Actu
alCT-BT' in the variable 'y'
 # '7' represents the location of 'Lenght' and '-3' exclude targe variables from t
he independent variables 'X'
 X_train = df_training.values[:, 7:-3]
 y_train = df_training['ActualCT-BT'].values
 X_test = df_testing.values[:, 7:-3]
 y_test = df_testing['ActualCT-BT'].values

 reg_1 = linear_model.LinearRegression(normalize=True)
 reg_2 = neighbors.KNeighborsRegressor(n_neighbors=11, weights='distance', p=2)
 reg_3 = ensemble.RandomForestRegressor(n_estimators=1000, criterion='mae', random
_state=66)
 reg_4 = neural_network.MLPRegressor(hidden_layer_sizes=(52, 52), solver='lbfgs',
 activation='relu', max_iter=2000, random_stat
e=99)

 modelList, modelName = [reg_1, reg_2, reg_3, reg_4], ['LR', 'KNN', 'RF', 'NN']
 scores, counter = [], 0
 for index, model in enumerate(modelList):
 print("* Model: {}".format(modelName[index]))
 # Fitting the model on training set, and predicting the target on testing set
 train_and_evaluate(model, X_train, y_train, True)
 y_pred = model.predict(X_test)
 # store the predicted values in the dataframe
 col_name = 'pred_' + modelName[counter]
 counter += 1
 df_testing[col_name] = y_pred

 MAE = metrics.mean_absolute_error(y_test, y_pred)
 MedAE = metrics.median_absolute_error(y_test, y_pred)
 MaxAE = metrics.max_error(y_test, y_pred)
 MAPE = metrics.mean_absolute_percentage_error(y_test, y_pred)
 CC = stats.pearsonr(y_test, y_pred)
 # a dictionary to aggregate the results of each run
 dict1 = {}
 dict1['MAE'] = round(MAE, 2)
 dict1['MedAE'] = round(MedAE, 2)
 dict1['MaxAE'] = round(MaxAE, 2)
 dict1['MAPE'] = round(MAPE*100, 2)
 dict1['CC'] = round(CC[0], 2)
 scores.append(dict1)

 df_predicted.append(df_testing)

186

 # create and display a dataframe of the results for each dataset
 scoresDF = pd.DataFrame(scores, index=modelName)
 display(scoresDF.T)

