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Abstract 

Industrialized building construction is an effective approach for improving the performance and 

management of construction projects by offering higher quality products, minimized 

environmental impacts, and improved schedule predictability. The industrialized building 

construction approach integrates manufacturing principles and techniques into the construction 

industry where products (in this case, building components) are built in a controlled factory 

environment and then transported, in sequence, to the construction site for the final assembly. 

With the marked growth of available data gathered as part of the daily operations in industrialized 

building construction facilities, one promising approach is to utilize machine learning techniques 

to identify valid, useful, and previously unknown patterns from historical data. These techniques 

are used to leverage the use of data to accurately predict the production cycle time. This thesis 

presents a framework to investigate potential improvements in estimating cycle time in 

industrialized building construction facilities where accurate prediction of cycle time can improve 

the quality of production planning and scheduling. The goal is to assist production/project 

managers to mitigate any delays and implement alternative actions should there be any unexpected 

delays due to factory operations as well as to manage the capacity and workload of the fabrication 

facility more efficiently. 

The results of two case studies reveal that machine learning approaches can be successfully applied 

to accurately predict cycle time in different subsectors of industrialized building construction. The 

factors that significantly affect the prediction accuracy are (1) the physical characteristics and 

tracking information of products, (2) the engineered features that are generated to capture real-

time loading conditions of the job shop, and (3) the lookback timeframe used for model training 
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and validation. To examine the effect of shop loading features more thoroughly, a discrete-event 

simulation model is developed to investigate the various features that can be captured in the real 

system, but for practical reasons are not presently captured in the data, and to investigate their 

benefit in terms of improving the predictive accuracy. The major contribution of the research 

presented in this dissertation is that it provides practitioners in industrialized building construction 

with a roadmap to utilize their available production data for accurate estimates of delivery dates. 

The research results are also expected to be a point of reference for future studies in the academic 

field and for the industrialized building construction industry.  
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Chapter 1 Introduction 

 

1.1 Background 

Industrialized building construction (IBC) approaches, including offsite construction, 

prefabrication, and modularization, are being used, in some form, by more than 80% of contractors 

in the U.S., underscoring the potential for future market growth [1]. In fact, it is projected that 

modular construction will reach $130 billion in market value in the U.S. and Europe by 2030 [2]. 

In Canada, modular construction accounted for a market value of more than 1 billion CAD in 2019 

[3]. The growing level of interest in IBC by both industry and the academic community is due to 

the numerous benefits and advantages of IBC including shortened project durations, lower overall 

project costs, improved on-site safety, higher product quality, increased productivity, reduced 

construction wastes [4], and easier implementation of novel techniques and technologies. 

Among the top motivation for increasing the adoption of prefabrication and modular construction 

is the improved project scheduling [5] accounting for an overall time savings of 20-50% compared 

to traditional onsite builds [2]. This is because building construction and site preparation activities 

can take place simultaneously, as shown in Figure 1-1, and there is less disruption due to extreme 

weather conditions. On the other hand, industrialized building construction is one of the more 

complex manufacturing environments due to numerous factors, namely, (i) the diversity of 

building components that leads, occasionally, to the full customization of building modules; (ii) 

the integration of many sub-systems (structural, electromechanical, finishing) that must be 

included in the building; (iii) the large and heavy machinery and components involved; and (iv) 
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the numerous interrelated activities including production, assembly, finishing, delivery, and onsite 

installation [6]. All of this imposes challenges to accurately estimate activity durations at the initial 

stages of planning and scheduling. 

 

Figure 1-1. Time savings in modular construction 

In any manufacturing process, as well as in the context of IBC, a job’s cycle time (CT) is a key 

performance metric [7], which is defined as the time taken to complete the production process of 

one product, from start to finish. A closely related term is lead time (LT), which is defined as the 

time taken from order placement until the ordered item is delivered to the customer. Accurate 

forecasting of CT or LT for a product is crucial when determining customer delivery dates, when 

scheduling resources and actions, and when controlling and monitoring daily operations. In the 

literature, several methods have been developed to predict cycle time [8]. Simulation has been the 

most widely used approach in that it can realistically capture the complexities of manufacturing; 

however, practical disadvantages include the expense of model development and maintenance, and 

the emphasis on average performance rather than on the prediction of cycle time for an individual 

product. On the other hand, the most fundamental analytical approach to predict the average cycle 

time is Little’s law [9], which states that the inventory between the start and end points of a product 
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routing, which is referred to as work in progress (WIP), is equal to the product of average CT and 

throughput (TH), as shown in Equation 1-1: 

𝑊𝐼𝑃 = 𝐶𝑇 × 𝑇𝐻 1-1 

Such a static model does not predict well because it does not capture the stochastic nature of 

manufacturing; nevertheless, it can be used as a benchmark. Notwithstanding a large amount of 

data being collected in IBC factories, and the advances over the last decade to automatically gather 

and analyze production data, these data are not being fully utilized to improve the decision making 

in IBC. Therefore, the present study proposes a middle approach, between a simple statistical 

equation and more sophisticated simulation modelling, that uses machine learning (ML) 

techniques to predict cycle time, which is believed to provide many advantages to the 

industrialized building construction industry. 

1.2 Research Motivation 

Although industrialized building construction is an interdisciplinary field at the interface of 

manufacturing and construction, there have been relatively few studies that investigate the 

application of machine learning to predict cycle time in this domain. IBC typically employs a 

make-to-order production approach where products (i.e., building components or modules) are 

only built after a customer order has been confirmed. Products are also highly customized to satisfy 

customer requirements, and their production must be coordinated with site delivery; all the above 

factors make the prediction of cycle or lead time a complex task. This research study is conducted 

to fill this research gap in the body of knowledge, with practical application to the industry. 

Construction scheduling in IBC depends on the schedule of onsite activities, the factory production 
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processes, and the expected delivery dates of raw material from suppliers. As such, production 

cycle time constitutes a critical component in this supply chain, from raw material to the end-

product. The main goal of the present study is to devise a robust system for accurately predicting 

the cycle time, and, hence, to improve the predictability of that phase of the overall schedule. 

Having a more predictable production schedule will allow the production/project manager to 

mitigate any delays and implement alternative actions should there be any unexpected interruption 

to factory production. In addition, accurate prediction of cycle time enables effective management 

of the fabrication facility’s capacity and workload. Figure 1-2 illustrates how the accurate 

prediction of cycle time improves factory scheduling by updating the baseline production schedule 

with real-time data in the context of the overall construction schedule. 

 

Figure 1-2. Real-time update of production schedule by accurate prediction of CT 

To validate the estimation of the production durations using machine learning approaches, case 

studies are investigated in two different IBC subsectors. One case is in the residential building 

sector where multiwall wood panels are produced in the factory and assembled onsite to construct 

single-family houses. The second case is in the industrial construction sector where prefabricated 

sections of steel pipes, called pipe spools, are manufactured offsite and delivered for onsite 

assembly. The two case studies are briefly described below. 
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1.2.1 Residential wall panels 

In the residential housing industry, prefabricated panelized construction refers to a production 

system where a house is broken down into wall, floor, and roof elements. These elements are 

customized as per client requirements, manufactured in a factory, and then transported to the 

jobsite for assembly. The manufactured houses vary in size, shape, and style and have various 

customizable options for clients to choose from, adding to the uniqueness of each house [10]. In 

the wall production line, single-wall panels for each house are merged into multiwall panels to 

optimize workflow and reduce material waste, as shown in Figure 1-3. 

 

Figure 1-3. Merging of single-wall panels into a multiwall panel 

Multiwall panels go through different processes and spend varying amounts of time at each 

workstation based on their physical properties (e.g., length, height, number and size of studs, 

window/door openings) as well as on the utilization of the production line. Also, the amount of 

work required to manufacture a wall panel can vary significantly based on the wall type. Interior 

walls require framing only, while exterior walls require framing, sheathing, nailing, and may also 
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require window and door installation. Both types of walls are produced on the same production 

line causing variations that lead to line imbalances, which may cause large variations in waiting 

and processing times. 

Predicting the cycle time of each wall panel has been based primarily on the experience of 

production managers, which is prone to human error and may not capture the variation that exits 

in the processing and waiting times at each individual workstation. Therefore, the proposed 

methodology in this thesis is applied to predict the cycle time using machine learning approaches 

which utilize the historical data about production of similar wall panels. 

1.2.2 Industrial pipe spools 

On industrial remote construction jobsites, massive process unit modules consisting of piping, 

electrical, and instrumentation equipment are prefabricated in locations closer to major cities, and 

then shipped to remote jobsites for assembly [11]. The prefabrication of pipe spools, representing 

the largest portion of modules, takes place in a fabrication yard or shop where heavy equipment is 

used to assemble sub-components (e.g., pipes, valves, elbows). Before the fabrication of modules, 

the associated spools need to be ready; however, a large inventory of pipe spools would increase 

the requirements for storage and double handling. Determining the right time to start the 

fabrication of a pipe spool can be challenging as there are many factors affecting the fabrication 

durations. Figure 1-4 summarizes the general processes involved in spool fabrication, each of 

which include several subtasks that are further described in Chapter 6. 

 

Figure 1-4. High-level workflow of the pipe spool fabrication process 
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In a pipe spool factory, fabrication durations are normally determined using heuristics based on 

the experience of production coordinators. This is traditionally done with little or no consideration 

to shop utilization and workforce availability, given there is a sufficient float allocated in the 

schedule [12]. Using heuristic rules for estimating fabrication durations, the lead time of the pipe 

spools cannot be accurately forecasted due to several factors. One factor is the difficulty in 

quantifying the impact of workforce availability on durations, which causes late delivery of some 

products, leading to low customer satisfaction. Meanwhile, other products are ready well in 

advance, leading to overloading on the storage and handling capacity of the plant. Another factor 

is the availability of raw materials. If there is shortage of materials, shop operations are disrupted 

resulting in delays that affect project completion; if there is an abundance of materials, the capacity 

and services of material storage and management are overloaded. Therefore, it is necessary to have 

a robust method to accurately predict the lead time so that the baseline schedule can be altered to 

reflect any possible delays caused by material and/or workforce availability. In this thesis, 

predicting lead time using historical data and machine learning approaches is proposed. 

1.3 Research Objectives 

One characteristic of industrialized building construction is the highly customizable products being 

manufactured. By using the latest advances in machine learning, the data that is accumulating 

continuously as part of the daily operations in an IBC facility can be leveraged to accurately predict 

cycle time, and, therefore, improve production planning and scheduling. To train data-driven 

models, we collect, integrate, and prepare data regarding the physical characteristics of building 

components, time-specific attributes capturing the planned production durations, and develop a set 

of engineered features that captures the real-time loading conditions of the job shop. This study 
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explores the influence of the different product and process attributes on the predictability of cycle 

time. The proposed research is built upon the following hypothesis: 

“In the context of industrialized building construction, historical data pertaining to the physical 

properties of building components and real-time tracking information, when augmented with 

engineered features (i.e., shop-loading attributes), will more accurately predict the cycle time 

required to manufacture new components, which will improve production planning and 

scheduling.” 

 

Specifically, the present study tries to achieve the following four objectives: 

1) To accurately predict the cycle time of producing wall panels using machine learning 

models and real-time RFID data in a residential manufacturing facility (Chapter 4). 

2) To examine how prediction accuracy is improved by augmenting the dataset with 

domain-specific shop loading (SL) features, and to examine the effect of different 

grouping strategies used to combine several attributes of the dataset (Chapter 4). 

3) To investigate which features should be collected, among those that are not practically 

collected, to improve the cycle time predictability using discrete-event simulation 

(Chapter 5). 

4) To examine the generalization of the feature engineering and machine learning 

approaches by applying the methodology to an industrial pipe spool fabrication facility 

(Chapter 6). 
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1.4 Thesis Organization 

This thesis consists of seven chapters. The current chapter provides a concise background of the 

current state of industrialized building construction, focusing on the use of machine learning 

approaches to tackle scheduling challenges, and briefly describing the two case studies 

investigated in this thesis. The research motivation and research objectives are also outlined. 

Chapter 2 presents an overview of the literature that is relevant to the domain, problem, and 

methods used in the thesis. It includes sections on industrialized building construction, production 

scheduling, data mining concepts and techniques, and the industrial applications of knowledge 

discovery in databases in construction manufacturing settings. 

In Chapter 3, the proposed framework to improve the predictability of production time in 

industrialized building construction facilities using machine learning approaches is presented. The 

specific research methods and steps are also described in detail. 

Chapter 4 presents the implementation of the proposed framework in a case study of a residential 

wall panel fabrication facility. The knowledge discovery in databases approach is applied starting 

from data acquisition and concluding with model evaluation and lessons learned. The findings 

satisfy the first and second objectives of the research. 

In Chapter 5, an experiment is developed using discrete-event simulation to investigate the effect 

of creating engineered shop-loading features on the accuracy of the predictive models. The 

simulation model is developed for the same case study presented in Chapter 4. The goal is to 

examine the features attributable to improving cycle time predictability, which aligns with the third 

objective. 
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Chapter 6 presents the second case study where the same framework is applied in an industrial 

pipe spool fabrication shop. The goal is to examine the generalization of the proposed approach to 

a different subsector of industrialized building construction. 

The last chapter, Chapter 7, summarizes the work undertaken as described in the thesis and 

presents concluding remarks. Furthermore, future research work and academic and industrial 

contributions of the present research are presented. 
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Chapter 2 Literature Review 

In this chapter, a review of the relevant literature is provided. Given the sophistication and complex 

nature of the research problem, four fields are covered in the literature review. The first section 

presents an overview of the industrialized building construction industry and the role that the 

Construction 4.0 paradigm plays in enabling more efficient design, planning, and delivery of 

construction products. The second section provides an overview of production planning focusing 

mainly on flow shop scheduling as it is more relevant to industrialized building construction. The 

third section provides an overview of data mining and machine learning techniques, focusing more 

on the methods used in the present research to predict production time. The fourth section reviews 

the industrial applications of knowledge discovery in databases in the construction industry, 

specifically the applications to predict production time in manufacturing facilities. 

2.1 Industrialized Building Construction 

2.1.1 Premise of industrialization in building construction 

Various terms such as prefabrication, offsite fabrication, offsite construction (OSC), and modular 

construction, to name a few [13,14], might all refer to the same approach: a construction process 

that applies manufacturing principles and techniques to construction projects where products (in 

this case, building components) go through a particular life-cycle from concept, to design, to 

planning, to manufacturing, and then on-site assembly, as shown in Figure 2-1. The appropriate 

manufacturing model depends on the construction subsector (private housing, commercial 

building, industrial, major projects) being analyzed [15,16]. The term “industrialized building 

construction” (IBC) is used hereinafter to denote any of the terms above in which the various 
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elements of residential, commercial, or industrial buildings are produced in a controlled factory 

environment. Building components (anything from bathrooms, prewired lighting fixtures, exterior 

walls, to complete building modules) are built in the factory and then transported, in sequence, to 

the construction site. At the site, a crane is used to lift components or modules off the transport 

truck and set them on a permanent foundation. Site crews then attach the components or modules 

to each other and to the foundation and seal the building. After setting the building, several 

finishing activities take place to complete the building [17–19]. Modular buildings comply with 

local building codes similar to those applicable to conventional construction, and are constructed 

using the same materials and details as conventional buildings, with minor modifications to 

accommodate shipping and installation [6]. The supply chain of industrialized building 

construction broadly includes eight main participants: customers (project owners), manufacturers, 

dealers, integrated companies (manufacturing and sale), material suppliers, design team 

(architects/engineers), general and specialty contractors, and local permit agencies [20]. 

 

Figure 2-1. Simplified high-level workflow in industrialized building construction 

The burgeoning academic interest in the domain of modular and prefabricated construction has 

resulted in a large number of review articles related to industrialized building construction in the 

past decade. In the last three years, from 2018 to 2020, some articles applied topic modelling to 

examine trending topics and themes in IBC [21], some carried out critical reviews and bibliometric 

analysis to highlight key research words, identify research gaps, and suggest future research 



13 
 

opportunities in industrialized building construction [22–24], while others focused on critical 

reviews of publications about emerging technologies and adoption of digitization in IBC [25–28]. 

Moreover, a few articles provided systematic reviews on specific topics such as policies and 

regulations related to IBC [29], constraints and barriers to the adoption of modular construction 

[30–34], construction risk management within the IBC industry [35], the environmental 

performance of OSC facilities [36], and supply chain management in IBC [37]. 

Project planning and design, including workflow optimization and project delivery processes, are 

among the more frequently studied research themes in IBC during the past decade [23]. Shortened 

project time and the enhanced predictability of activity durations are among the many benefits that 

are recognized and reported in the literature when using IBC approaches. As a considerable amount 

of data is being generated as part of the daily operations in the fabrication shop, the IBC 

environment enables the utilization of the latest technological advances brought by the 

Construction 4.0 paradigm which is described in the following section. Essentially, the 

development of machine learning models requires substantial amount of accurate data which can 

be provided by the manufacturing environment of IBC as opposed to the inferior and scattered 

data found in conventional construction. Acquiring, processing, and analyzing large amounts of 

data constitute one of the four technologies that are essential in Construction 4.0. Those four 

technologies are 3D printing, big data, virtual reality, and Internet of Things [38]. The research 

described in this thesis focuses on employing advanced data analytics techniques, including data 

mining and machine learning, to estimate the production cycle time of building components. 

2.1.2 Industrialization of building construction and Construction 4.0 

During the past few decades, the rate of adoption of industrialization techniques in the construction 

industry has been limited compared to other fields [39]. However, moving toward more digitized 
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and automated processes offers enormous potential for productivity improvements. In recent years, 

the construction industry has realized the importance of using information technologies and data 

analytics approaches. The most recent evidence is the emerging paradigm of Construction 4.0, a 

term coined in the context of “Industry 4.0” which is the fourth industrial revolution involving 

automation, data exchange, and collaboration in manufacturing [40–42]. Muhuri et al. [43] 

provides a bibliometric analysis and an extensive overview of recent developments in the field of 

Industry 4.0. In essence, Construction 4.0 is the digitization and automation of the AEC industry. 

The ideas of Construction 4.0 can be based on two main concepts: digitization of the construction 

industry, and industrialization of construction processes [38,44]. Industrialized building 

construction promotes the enhancement of construction manufacturing processes by employing 

the concepts of mechanization, digitization, and automation in the prefab facility [28,45]. 

The Construction 4.0 framework provides a mechanism that facilitates the development of a 

digitized model of the built environment and/or its processes that supports the design, planning, 

monitoring and delivery of construction products. In the context of IBC, the driving technologies 

and concepts brought by Construction 4.0 that are relevant in this thesis are the following: 

1. Building information modelling (BIM); 

2. Automatic data acquisition such as radio frequency identification (RFID); and 

3. Advanced data analytics, specifically data mining (DM) and machine learning (ML). 

BIM, as one of the most promising developments, has been increasingly adopted in the 

architecture, engineering, and construction (AEC) fields. The National Institute of Building 

Sciences describes BIM as “a digital representation of physical and functional characteristics of a 

facility … a shared knowledge resource for information about a facility forming a reliable basis 

for decisions during its life-cycle; defined as existing from earliest conception to demolition” [46]. 
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BIM consists mainly of a computer-generated 3D model of a building that contains accurate and 

well-defined geometry data as well as an information database that AEC practitioners can use to 

design the building and simulate its construction [47]. To improve the performance of the 

construction industry and to realize the benefits of both the BIM technology and IBC approach, 

the joint application of BIM and IBC has seen increasing applications in both industry and 

academia [25]. According to the 2020 American Institute of Architects (AIA) Firm Survey Report, 

BIM tools are being used by 100% of large firms, 88% of medium size firms, and 37% of small 

firms. Moreover, the global BIM market is expected to grow from $4.5 billion in 2020 to $8.8 

billion in 2024 [48]. BIM uses Industry Foundation Classes (IFC) for exchanging building 

information among different CAD packages [49]. In the present research, BIM is primarily used 

to obtain data about the physical characteristics of building components that are being 

manufactured in an IBC facility. This data will be combined with product tracking information 

obtained from automatic tracking systems, such as RFID, which will be used as the basis for 

developing data-driven ML models to assist in project planning and scheduling. 

To enable the application of machine learning predictive models, the availability of large datasets 

is crucial. Automatic real-time data acquisition for construction project tracking includes, but is 

not limited to, enhanced IT, geospatial, 3D imaging, and augmented reality technologies [50]. One 

technology common to IBC is the radio frequency identification (RFID) tracking system. RFID is 

used as a sensing mechanism to locate product tags using the electromagnetic field of antennas 

that are connected to RFID readers populating a central database. Within any specific setup, each 

tag contains unique identification information. Figure 2-2 illustrates a typical RFID system setup 

consisting of three main components: a) scanning antennas, b) a transceiver that reads and 

interprets the data, and c) transponders/tags that have been programmed with information and are 
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attached to the objects (e.g., wall panels) being tracked. In the literature, Valero et al. (2015) [51] 

and Valero and Adán (2016) [52] provide a comprehensive review of recent RFID applications in 

the construction industry. 

 
Figure 2-2. Example of a typical RFID system setup 

Data mining and machine learning techniques are further discussed in Section 2.3 

2.2 Production Scheduling in IBC 

2.2.1 Project scheduling and control 

Essential insights from the production management field have been and continue to be transferred 

to the field of project management [53,54]. Effective project management needs to be integrated 

with effective production management to achieve the highest operational improvements. For a 

given scope of work, the basic tasks of a project manager involve planning, scheduling, and control 

of project activities by using the available resources effectively and efficiently. In the planning 

phase, a listing of activities that must be performed to complete the project is developed including 

determining the different types of required resources and estimating the duration and costs of 

activities. In scheduling, the chronological ordering of the actual tasks is performed, the actual 

resources needed at each stage in the project are calculated, and the expected completion time of 

each activity is determined. In the control phase, the difference between the scheduled and actual 

performance once the project has started is closely monitored and analyzed [55]. 
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Scheduling has been defined as “the determination of the timing and sequence of operations in the 

project and their assembly to give the overall completion time” [56] and the focus of the research 

presented in this thesis is on estimating activity durations. Per PMI’s Guide to the Project 

Management Body of Knowledge (PMBOK), estimating activity durations is a process of the 

Project Schedule Management knowledge area which encompass several techniques to determine 

duration estimates (e.g., expert judgement, analogous estimating, bottom-up estimating) [57]. 

Developing a schedule for an IBC manufacturing environment, such as panelized wall production 

or pipe-spool fabrication, poses unique challenges because of the stochastic nature of such 

environments due to the varying customer demands and the highly customizable products being 

produced. All planned projects carry an element of risk due to the uncertainties involved during 

the planning and scheduling phases. There has been ample research on production planning and 

control focusing on different types of manufacturing environments. A few studies were conducted 

to improve the production process at panelized wall fabrication facilities. For example, a lean 

production approach to improve process planning and control in the home building industry was 

developed by Yu [58]; a methodology to improve the panelized home production process through 

lean principles and simulation tools was proposed by Shafai [59]; and an integrated production 

planning framework for panelized residential buildings using simulation and RFID tracking system 

was presented by Altaf [60]. In addition, an integrated project control and monitoring framework 

in a steel prefabrication facility using RFID technology and discrete-event simulation was 

presented by Azimi et al. [61]. Although many studies and techniques have investigated production 

planning and control in industrialized building construction, the application of advanced data 

analytics to improve the planning practices and enhance the schedule predictability has not been 

fully examined in the construction industry. 
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In practice, activity durations in an IBC manufacturing facility are either estimated based on: (1) 

average times obtained from historical data and, for the most part, rely on the experience of project 

coordinators or trade foremen for specific job conditions [12], or (2) the unit quantity multiplied 

by the production rate (time/unit) for the activity scope of work in the case of deterministic 

scheduling [62]. Broadly speaking, there are two main approaches to develop schedules in IBC, 

and more generally in construction. The first approach is the traditional critical path method 

(CPM), a forward calculation method where the scheduling begins with a fixed start date and the 

durations of interdependent activities are estimated to provide an expected completion date. The 

second approach is the pull scheduling process, a backward calculation method where the schedule 

is developed starting at the end (i.e., based on an approved completion date) and the durations of 

each predecessor activity are identified providing a required start date for each product [63,64]. 

Both approaches are being used in IBC manufacturing; however, the pull-driven approach based 

on lean concepts is gaining more acceptance for operations within the production facility. 

Nevertheless, the adoption of any scheduling approach and the associated productivity rates is 

company-specific [62], and every facility adjusts its scheduling practice as to improve its overall 

operational performance. 

In one case study, Tommelein, I. (1998) used process modelling to compare various scheduling 

approaches in a pipe-spool installation project and concluded that the lean-production pull-driven 

technique for scheduling improves the performance of construction processes [63]. Mosayebi et 

al. (2012) estimated the effect of different factors on the productivity and, therefore, the duration 

of pipe spool fabrication based on observations from previous projects and the expert opinion of 

shop superintendents. They concluded that one important factor is the configuration of spools, 

which affects the workflow in the shop and can result in an increase in the time required to fabricate 
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a pipe spool by up to 50% [65]. Other case studies investigated different factors that affect the 

productivity and, hence, the development of the production schedule in industrialized building 

construction manufacturing facility. For example, these factors include using standardized as 

opposed to one-of-a-kind components [66], shop layouts and the associated lean production flow 

techniques [67], and changing the sequence of assembly activities [68]. In previous case studies, 

estimating activity durations appeared to largely depend on: (1) the experience of the production 

coordinators or shop foremen, (2) simulated data that were arbitrarily chosen or based on previous 

empirical research studies, or (3) averages of historical data that do not capture the uniqueness of 

the products or processes under study. 

2.2.2 Flow shop scheduling problem 

Since the early 1960s, many textbooks and manuscripts have been published focusing on 

sequencing and scheduling. More recently, some notable books that cover many aspects of 

scheduling, from the elementary to the more advanced topics, include: Project Scheduling A 

Research Handbook by Demeulemeester and Herroelen (2002) [55]; Handbook of Scheduling 

Algorithms, Models, and Performance Analysis edited by Leung (2004) [69]; Scheduling Theory, 

Algorithms, and Systems by Pinedo (2016) [70]; and Principles of Sequencing and Scheduling by 

Baker and Trietsch (2018) [71]. 

Scheduling models are broadly categorized as either deterministic or stochastic [70]. They 

basically differ in that “deterministic scheduling involves solving a scheduling problem … when 

the various parameters, viz., job processing times, due dates, release dates, and so on, are known 

with certainty. On the other hand, stochastic scheduling deals with problems when at least one of 

these parameters is not known with certainty” [72]. As the processing times and actual due dates 
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are not known with certainty, scheduling in an IBC manufacturing environment is a prime example 

of a stochastic scheduling problem. 

In addition to categorizing scheduling models as either deterministic or stochastic, the 

manufacturing environment in which these models are applied can be sectorized according to the 

layout of the machines, or workstations, and according to how the different job processing routes 

are specified. Basic manufacturing layouts include single machine, parallel machine, flow shop, 

job shop, open shop, and hybrid layouts [73], which are briefly described as follows. 

a) Single machine layout: The shop layout is simply formed by a single machine where each 

job must be processed on that machine only once without rerouting. Each job is processed 

by the machine for a duration defined as pj processing time units then the job leaves the 

machine once finished. 

b) Parallel machine layout: As an extension of the single machine layout, a parallel machine 

layout has several parallel machines where each job must be processed one by one of m 

available machines. Parallel machine models are divided into three categories based on the 

speed by which the jobs are processed: identical parallel machines, uniform parallel 

machines, and unrelated parallel machines. 

c) Flow shop layout: In a flow shop, there are m machines (i.e., workstations) organized in 

series, each of which performs a specific task. All the jobs must follow the same processing 

order, and each job must visit all machines. When the processing sequence is the same for 

all machines (i.e., a job cannot pass another while waiting in a queue), the flow shop is 

referred to as permutation flow job. 
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d) Job shop layout: Job shops are similar to the flow shops in that there are m machines 

organized in series. However, although each job might have a different route when visiting 

the machines, each job must visit all machines exactly once. 

e) Open shop layout: The open shop is the more general and complex layout setting where 

there are m machines in series and n jobs to be processed by all machines. In this case, each 

job can be processed by the machines in any order making the routing of all jobs an 

arbitrary, but flexible sequencing task. 

f) Hybrid flow layout: In a hybrid layout, there are m production stages, each stage with mi 

parallel machines that may be either identical, uniform, or unrelated. The number of 

parallel machines at each stage might be different and all routing options are possible. Each 

job must be processed once at each stage by one of the available parallel machines. 

In addition to the above basic layouts, some prototypical manufacturing environments include 

manufacturing cells, assembly shops, production lines, batch shops, and flexible manufacturing 

systems. 

Most IBC manufacturing environments (e.g., panelized wall production or pipe-spool fabrication) 

resemble a mix of flow shops (i.e., a series of machines mi each perform a specific operation on 

each job j), and assembly shops or production lines. In an assembly shop, operations for some jobs 

need to be finished in order for subsequent operations to begin, which will utilize the previous 

operations as raw materials. In a production line (also known as an assembly line), products move 

along via some means of transportation (e.g., a conveyor track) and operations are performed on 

the products with no buffer between operations. To be consistent with the scheduling literature, 

the term “job” refers to the products to be manufactured and in the case of an IBC manufacturing 

shop, the job is the building module, component, or part that needs to be fabricated. 
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According to the complexity theory, a branch of computer science, the relationship between 

scheduling problems and their solution methods is considered a combinatorial optimization 

problem. The complexity here refers to the “computing effort required by a solution algorithm” 

[71] which measures, roughly speaking, the number of computations as a function of the problem 

size n. Most scheduling problems, except for simple single-machine problems, are classified as 

non-deterministic polynomial-time (NP-hard) problems, meaning that an optimal solution to large 

scheduling problems is unlikely to be found in an acceptable polynomial time [73]. Therefore, 

heuristic solution procedures can offer near-optimal solutions that are practically acceptable with 

modest computational requirements. A heuristic method can be defined as “a logical sequence of 

steps, the execution of which yields a solution, which is not necessarily optimal. However, the 

solution is usually good enough to be used in practice for planning and control purposes” [55]. 

Most research efforts over the past few decades have been directed toward using heuristics to find 

feasible schedules in flow shops [74–76], job shops [77,78], and distributed permutation flow 

shops [79–82]. A comparative study that examined existing heuristics and metaheuristics methods 

for the permutation flow shop was carried out by Fernandez-Viagas et al. [83]. 

The current literature has focused on solving the flow shop scheduling problem either with fixed 

activity durations or probabilistic durations. The previous studies mainly examined the sequencing 

problem and how to find job sequencing that optimizes certain desired criteria (e.g., minimum 

overall production duration). However, none of the studies, as to my knowledge, has focused on 

developing a framework to accurately estimate individual job durations in a stochastic 

environment for industrialized building construction, using the latest advances in machine learning 

and data mining techniques. The present research described in this thesis investigates this 

application and is set to fill the research gap in the body of knowledge in the context of IBC. 
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2.3 Knowledge Discovery in Databases and Data Mining 

2.3.1 Knowledge and data 

The term knowledge discovery in databases (KDD) had been adopted by the end of the 1980s to 

replace all the terms referring to methods of finding patterns and similarities in raw data, including 

knowledge extraction, information discovery, information harvesting, data archeology, and data 

pattern processing. KDD is defined as the overall partially automated process of finding valid, 

useful, and previously unknown knowledge from data, and data mining (DM) refers to a particular 

step in this process [84–86]. The process of generating value from an organization’s intangible 

assets is known as knowledge management [87]. Knowledge can be represented as a tree with data 

at its base, and with information, knowledge and wisdom at the top as shown in Figure 2-3 [88,89]. 

 
Figure 2-3. Knowledge Tree (from data to wisdom) 

Data is unorganized information that is processed to make it meaningful, and it consists of facts, 

observations, perceptions, numbers, characters, symbols, and images that can be interpreted to 

derive meaning. In the construction industry, data represents raw elements such as timestamps 

used to track products along the production line or actual daily resource utilization figures during 

the execution of a project. Data is transformed to information when these raw elements are 

patterned in a certain way making them ready for analysis. Knowledge is then generated as 
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actionable information when certain rules or heuristics are applied to the information, for the 

purpose of producing value-added benefits. Knowledge synthesizes and integrates the domain 

context, organizational culture, standards, human expertise, management initiatives, and lessons 

learned. Wisdom in the knowledge tree signifies the ability to make the right decisions at the right 

time using the acquired knowledge to maximize the tangible and intangible benefits. Wisdom is 

the value added to knowledge [90]. 

There are many data sources in construction projects. One of the ways in which raw data can be 

categorized is by its structure; it can be structured, semi-structured, or unstructured [91]: 

a) Structured data: Structured data has a well-defined structure and can be stored in well-

defined schemas such as databases and in many cases can be represented in a tabular format 

with rows and columns. Structured data is objective facts and numbers that can be 

collected, exported, stored, and organized in typical databases. Some of the sources of 

structured data include SQL databases, BIM models, spreadsheets such as Excel, and 

sensors such as RFID tags. 

b) Semi-structured data: Semi-structured data is data that has some organizational properties 

but lacks a fixed or rigid schema. Semi-structured data cannot be stored in the form of rows 

and columns as in databases. It contains tags and elements, or metadata, which is used to 

group data and organize it in a hierarchy. Some of the sources of semi-structured data 

include E-mails, XML, JSON and other markup languages, and zipped files.  

c) Unstructured data: Unstructured data is data that does not have an easily identifiable 

structure and, therefore, cannot be organized in a conventional relational database in the 

form of rows and columns. It does not follow any particular format, sequence, semantics, 

or rules. Unstructured data can deal with the heterogeneity of sources and has a variety of 
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business intelligence and analytics applications. Some of the sources of unstructured data 

include web pages, social media feeds, images, video and audio files, and PDF files. 

In the present research, the data used to predict production time is composed primarily of structured 

data. Here, the raw data represents the physical properties of the building components being 

manufactured, the time-related data used to track the products, as well as a set of engineered 

attributes (i.e., inferred information) generated to capture the system utilization. 

2.3.2 Data mining and tidy data 

Data mining may be defined as “the extraction of implicit, previously unknown, and potentially 

useful information from data” [90]. The purpose of DM is to develop computer programs that 

examine databases automatically, in search of uniformities or useful patterns to inform intelligent 

decision making based on data. In this context, machine learning algorithms provide the technical 

basis of data mining. Since the two terms (machine learning and data mining) are closely 

interrelated and the differences between them might not be very clear in some contexts, throughout 

this thesis the two terms may be used interchangeably. Machine learning algorithms build 

mathematical models from historical data in order to make predictions when supplied with new 

data without being explicitly programmed to perform this task. For an application of data mining 

to be effective, domain-specific knowledge is typically integrated within the ML algorithms to 

obtain representative results [92]. The application of a data mining process involves: 

(i) Creating a dataset: The data mining process starts by creating a dataset that represents 

some aspects of the real world. A structured dataset consists of the following: (1) 

instances (also referred to as observations, records, or examples), which  are objects in 

the real world that represent single observations; and (2) features (also referred to as 

variables or attributes), which are measurements of the different dimensions or aspects 
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of the instances in the dataset. In essence, we need to present the data in a “tidy” form. 

Tidy data is a common term used in data science and has been formally defined by 

Wickham (2014) [93] as “a standard way of mapping the meaning of a dataset to its 

structure” in which each variable/feature forms a column, each observation/record forms 

a row, and each type of observational unit forms a table. 

(ii) Tuning the algorithm: Many machine learning techniques have algorithm-dependent 

hyperparameters that are selected based on parametric studies, the type of problems, 

empirical studies, and even the researcher’s personal experience. The performance (e.g., 

accuracy) of most ML algorithms depends strongly on finding an optimal set of 

hyperparameters. There exist various strategies to search for the best combination of 

hyperparameters including grid search and random search [94,95]. A combination of 

manual and grid/random search is used to search for the optimal combination of a 

predefined set of hyperparameters. This tuning allows the algorithm to make better 

predictions about the new data instances. 

Data mining, and data analytics, can be categorized by the different levels of difficulty, value, and 

intelligence they entail [96]. Data analytics can be (i) descriptive to drive patterns that summarize 

the datasets; (ii) predictive to forecast the values of certain attributes based on historical 

performance; or (iii) prescriptive to derive actions of what should be done and why [97]. Another 

way to categorize data mining tasks is by their functionality, as described by Han et al. (2012), 

which leads to five categories: characterization and discrimination; association and correlation; 

classification and regression; clustering analysis; and outlier analysis [98]. 
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Traditional data analysis techniques (e.g., stochastic models and time-series analysis) have major 

limitations in terms of extracting knowledge from datasets and are based on developing 

mathematical models representing the relationships between established variables. In many cases, 

neither the variables nor the relationships between them are easily established [89]. To overcome 

these limitations, data mining techniques are used. The data mining process is typically carried out 

as part of a larger KDD framework. The KDD used in the present research, within which the DM 

process is performed, is described in Chapter 3 as part of the research methodology. 

2.3.3 Machine learning algorithms 

2.3.3.1 Variables and terminology 

As described in the previous section, a record in a dataset is characterized by a set of variables or 

features. The set of variables is called inputs, or predictors, when they are measured or preset and 

have some influence on one or more outputs, or responses. In classical statistical literature, inputs 

are called independent variables, and outputs are called dependent variables [99]. For each 

example in the dataset, the output is also known as the label, class, or target value. Following the 

same terminology in the literature, hereinafter, an input variable is denoted by X, while output 

variables are denoted by Y. If X is a vector, its elements can be accessed by subscripts 𝑋𝑗. Upper 

case letters are used to denote the generic aspects of a variable while lower case letters refer to the 

actual observed values. A matrix of n input vectors each of size m represents the 𝑛 × 𝑚 matrix 

having n examples each with m input variables (features) from the dataset. Because all vectors are 

assumed to represent column vectors, the ith row of the matrix X is 𝑥𝑖
𝑇, the vector transpose of 𝑥𝑖. 

In summary, the learning algorithm is built using the value of an input vector X in order to make a 

good estimation of the output Y, which is typically denoted by �̂�. If 𝑌 ∈ ℝ, then it is necessary that 

�̂� ∈ ℝ. 
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When carrying out a KDD experiment, a dataset is typically divided into two subsets: one to build 

the predictive model (training set); and one to test the model performance (testing set). This is true 

in the case of supervised learning, which will be described in the next subsection. Building a 

predictive machine learning model is sometimes referred to as building a learner that will be used 

to predict the outcome of new unseen data [99]. Various performance metrics are used to measure 

how good a learner is; these evaluation metrics are discussed in Section 2.3.4.1. 

2.3.3.2 Types of machine learning algorithms 

Depending on the problem to be solved and the purpose of the learning, machine learning 

algorithms can be broadly divided into three main categories: supervised learning, unsupervised 

learning, and reinforcement learning algorithms [100]. Figure 2-4 shows the broad categories and 

subcategories of machine learning algorithms, along with sample use cases. 

 

Figure 2-4. Broad categorization of machine learning algorithms 
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a) Supervised Learning: 

In supervised learning, the development of a learner is being supervised by the labelled data 

(i.e., by the presence of the outcome variable, Y) to learn the relationships and dependencies 

between the input variables and the target output such that these relationships can be used to 

predict the output values of new data. Supervised learning algorithms are primarily used for 

predictive modelling and analysis. Based on the type of output variable, supervised learning 

algorithms are either (i) regression algorithms that predict quantitative output (continuous 

values); or (ii) classification algorithms that predict qualitative output (discrete values). 

The main objective of this research is the prediction of production time in IBC, which is an 

example of a regression task. Regression learning is described in more detail in the next 

subsection. For a comprehensive overview of classification techniques, the interested reader 

can refer to some notable textbooks about data mining and machine learning such as Data 

Mining: Practical Machine Learning Tools and Techniques [90], which focuses on practical 

applications, and The Elements of Statistical Learning: Data Mining, Inference, and Prediction 

[99], which provides more theoretical coverage. 

b) Unsupervised Learning: 

In unsupervised learning, there is no dependent random variable, output, or response (i.e., no 

outcome measure, Y) based upon which the algorithm can build relationships. The goal here is 

to analyze a set of input observations in order to describe how the data is organized or clustered. 

Therefore, unsupervised learning algorithms are primarily used for pattern detection and 

descriptive modelling. Unsupervised learning techniques include: 
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1) Clustering analysis: In clustering, also called data segmentation, objects that seem to fall 

naturally together are grouped. Data objects are grouped based on the concept of minimizing 

the distances between data points within the same cluster (i.e., objects are similar), and 

maximizing the distance between clusters (i.e., dissimilar objects) [98]. Distances can be 

calculated using the Minkowski generalized distance formula between two vectors 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ ℝ and 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ ℝ as shown in Equation 2-1: 

𝐷(𝑋, 𝑌) =  (∑|𝑥𝑖 − 𝑦𝑖|𝑝

𝑛

𝑖=1

)

1
𝑝

 2-1 

where p=1 calculates the Manhattan distance and p=2 calculates the Euclidian distance. 

Han et al. (2012) [98] grouped the major clustering methods into the following categories: 

• Partitioning methods construct k clusters of the data and iteratively assign the n data 

points to each cluster. Most partitioning methods are distance-based algorithms such as 

k-means [101,102], k-medoids [103,104], and k-modes [105] algorithms. 

• Hierarchy methods create hierarchical decompositions of the given data points. 

Hierarchical methods can be either agglomerative (bottom-up approach) or divisive 

(top-down approach), based on how the hierarchical decomposition is formed [103]. 

• Density-based methods create clusters based on the density of data points within their 

neighbourhood. For each data point within a cluster, the neighborhood of a given radius 

has to contain at least a minimum number of points [98] making them robust against 

outliers. These methods include DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) [106], and DENCLUE (DENsity-based CLUstEring) [107]. 
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• Grid-based methods create a finite number of cells of the data space forming a grid 

structure where all clustering operations are performed. An advantage of this approach 

is being independent of the number of data points making processing time fast. Such 

methods include STING (STatistical INformation Grid) [108], and WaveCluster [109]. 

2) Association analysis: Frequent patterns are patterns (e.g., itemset) that appear frequently in 

a dataset. Association rules are deduced for a set of items that often appear together in a 

large transactional or relational dataset. These items are the input variables that are said to 

be strongly associated with each other. A typical example of frequent item mining is market 

basket analysis in which the task is to analyze customer shopping habits by finding 

associations among the items that are bought together. Association rules are said to be strong 

if they satisfy both a minimum Support and Confidence levels. Support measures the 

percentage of transactions in the dataset that a given rule satisfies and confidence measures 

the degree of certainty of the detected association [98]. Let T be the total number of 

transactions in a dataset, A and B be two sets of items, and C is the number of transactions 

containing both A and B; then, the association rule is an implication of the form 𝐴 ⟹ 𝐵 and 

we can calculate the support and confidence as shown in Equations 2-2 and 2-3: 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴 ⟹ 𝐵) = 𝑃(𝐴 ∪ 𝐵) =
|{𝐴 ∪ 𝐵}|

𝑇
 2-2 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐴 ⟹ 𝐵) = 𝑃(𝐵|𝐴) =
|{𝐴 ∪ 𝐵}|

𝐶
 2-3 

As the number of attribute values (i.e., itemsets) increases, the number of rules significantly 

increases, which is a major problem of this approach. Several algorithms are available to 

solve the problem such as Naïve, Apriori, and the Frequent Pattern Tree [89]. 
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c) Reinforcement Learning: 

Reinforcement learning (RL) is a very broad topic and is beyond the scope of techniques used 

in the present research; however, RL is briefly described here for the completeness of ML 

categorization. The goal in RL is to develop a system (agent) that learns continually from its 

environment by interacting with it. The agent receives a positive or negative reward based on 

the action it performs, as shown in Figure 2-5. Since the information about the current state of 

the environment typically includes what is known as reward signals, we can think of RL as an 

area related to supervised learning [110]. However, in reinforcement learning this feedback is 

not the actual (i.e., ground truth) measured value, but rather a measure of how well the action 

was evaluated by some reward function. An agent can then use RL, through its interaction with 

the environment, to learn the actions that maximize this reward by trial-and-error approaches 

or by careful and deliberate planning. For further description, interested readers can refer to the 

book by Sutton and Barto: Reinforcement Learning: an Introduction [111]. 

 

Figure 2-5. Interaction of agent and environment in reinforcement learning [111] 

2.3.3.3 Supervised learning regression techniques 

In a regression learning task, we are given a number of input variables (predictors) and a 

continuous output variable (target), and we try to find a relationship between those variables that 

allows us to predict the outcome of new input variables. There are many regression algorithms 
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used in the literature to estimate task durations ranging from simple methods such as linear 

regression (LR) and k-nearest neighbors (kNN), to more advanced techniques and algorithms such 

as neural networks (NN) and Random Forests (RF). These methods, which are utilized in the 

present research, are briefly described below: 

a) Linear Regression (LR) 

A linear regression model “makes huge assumptions about structure and yields stable but 

possibly inaccurate predictions” [99]. In essence, the output (Y) can be calculated as a 

linear combination of input vectors 𝑋𝑇 = (𝑋1, 𝑋2, … , 𝑋𝑛) as per Equation 2-4: 

�̂� = 𝛽0 + ∑ 𝑋𝑖

𝑛

𝑖=1

𝛽𝑖 =  𝑋𝑇𝛽 2-4 

where �̂� is a single output, 𝛽0 is the intercept or bias of the model, and 𝑋𝑇 denotes vector 

or matrix transpose (𝑋𝑖 is a column vector representing the features of a single example). 

The second part of the equation, 𝑋𝑇𝛽, is a common way to represent the linear model as an 

inner product where the intercept 𝛽0 is included in the vector of coefficients and the 

corresponding 𝑋0  is set to the constant variable of 1. The most popular criterion to fit a LR 

model to a set of n training datapoints is the method of least squares which works by 

minimizing the sum of the squared errors (SSE) of predictions as shown in Equation 2-5: 

𝑆𝑆𝐸 = ∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 2-5 

LR is described in most standard statistical texts and in some textbooks [112–114]. There 

are a few other methods for fitting a multiple linear regression model including Lasso and 

Ridge regressions [115–117], which basically add a regularization term to Equation 2-5 in 
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order to solve the problem of multicollinearity and to enhance the prediction accuracy and 

interpretability of the model. LR was employed to solve various construction management 

problems such as quantifying construction delays [118], predicting construction costs 

[119,120], and for cash flow forecasting [121]. 

b) k-Nearest Neighbors (kNN) 

A nearest-neighbors method is an instance-based learning algorithm that “makes very mild 

structural assumptions: its predictions are often accurate but can be unstable” [99]. In kNN, 

the new instance x (the test datapoint for which we seek to compute its target value) is 

compared with existing instances using a distance measure, and the closest k instances to x 

are used to calculate its output value [90]. Euclidean distance, shown in Equation 2-6, is 

the most widely used metric for distance measure. The output value (Y) of the new instance 

is calculated by finding the k observations with 𝑥𝑖 closest to x in input space and averaging 

their responses: 

�̂�(𝑥) =
1

𝑘
∑ 𝑦𝑖

𝑥𝑖 ∈𝑁𝑘(𝑥)

 2-6 

where 𝑁𝑘(𝑥) defines the neighborhood of x as the set of k closest datapoints 𝑥𝑖 in the 

training set, and 𝑦𝑖 is the target value for each of those neighbors. While the least-squares 

LR tend to have low variance and potentially high bias, the kNN method has high variance 

and low bias as it does not rely on any rigid assumptions about the underlying data, and 

can adapt to any situation [99]. kNN methods have been applied in several areas in 

construction such as construction project document management [122], prediction of 

construction cost index [123], and planning of construction technical specifications for 

deep foundations [124]. 
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c) Neural Networks (NN) 

Neural networks represent a large class of learning methods for regression or classification 

capable of modelling the nonlinear relationships between inputs and outputs, typically 

represented by a multilayer network diagram, as shown in Figure 2-6. 

 

Figure 2-6. A neural network with 2 input features, 1 hidden layer, and 1 output 

The derived features of the hidden layer are created from linear combinations of the inputs, 

and the output is created as a linear combination of these derived features. There are two 

aspects to develop a neural network: to learn the structure of the network, and to learn the 

connection weights [90]. Boussabaine [125] described the process of training a NN for 

regression as follows: (1) For each example in the training set, input features are fed to the 

NN and the specified target value is known. (2) Each hidden feature (a node in the hidden 

layer) is created as the weighted sum of all input features given the connection weights. (3) 

During this “feed-forward” step, the output node receives the values of each hidden node 

and calculate the weighted sum to generate a predicted result. (4) The difference between 

the predicted result and the target value represents the system output error. By comparing 
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the obtained error with a specified acceptable error defined in advance, the system decides 

if further learning is required. If that is the case, a “back propagation” step is carried out by 

calculating the derivative of the squared error with respect to weights at the output node, 

and the results are fed back to all hidden nodes. (5) All hidden nodes calculate the weighted 

sum of the errors, and each, with the output node, change their weights to compensate for 

the corrections. Then, the “feed-forward” step is repeated again and again until an 

acceptable result is obtained. 

Since the early 1990s, NN was investigated as an innovative management tool in all levels 

of construction management and engineering problems [126]. A few examples of NN 

applications in construction include predicting labor productivity [127], safe work behavior 

[128], and estimating schedule to completion [129] in construction projects.  

d) Random Forests (RF) 

Random forests are a significant variation of bagging, a technique for model averaging and 

improvement. In RF, a number of decision tree (DT) predictors are combined such that 

each tree is randomly and independently sampled, making them de-correlated, but with the 

same distribution for all trees in the forest [130]. 

Suppose we have a training set 𝑍 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)}, we fit a model to it 

and obtain the prediction �̂� at input x. In bagging (also known as bootstrap aggregation), 

this prediction is averaged over a collection of bootstrap samples, thus reducing the 

variance, as shown in Figure 2-7. The basic idea in bootstrap sampling is to draw datasets 

with replacement randomly from the training data with each sample having the same size 

as the original training set [99]. 
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Figure 2-7. Schematic of constructing a random forest (RF) 

A decision tree, the basic building block of RF, is based on a “divide-and-conquer” 

approach to the problem of learning in which a model predicts the target value through a 

set of rules that are arranged in a tree-like structure. Constructing a DT begins by selecting 

a feature to place at the root node where all observations are assigned. Observations are 

then split into subsets (i.e., sub-trees) at lower nodes based on satisfying a condition (e.g., 

𝑥𝑖𝑗 ≤ 𝑐). The splitting process is repeated recursively for each internal node, using only the 

observations that reached that node, until all observations reaching a node cannot be further 

split [90]. Decision nodes where the splitting processes end are called terminal nodes or 

leaves. In regression trees, the splitting decision at each internal node is based on 

calculating the SSE, Equation 2-5, between the assigned and actual values for each feature. 

The feature that results in the lowest SSE is selected to split the data at that internal node. 

DTs are easy to construct, use and interpret; however, they “have one aspect that prevents 
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them from being the ideal tool for predictive learning, namely inaccuracy” [99]. Random 

forests can mitigate this problem by significantly improving the accuracy. 

RF models have recently been gaining more interest from researchers in several areas in 

construction, for applications such as predicting ground surface settlement due to tunnel 

construction [131], improving the accuracy of BIM-enabled clash detection [132], and 

predicting the compressive strength of high-performance concrete [133]. 

It should be noted that the brief overview provided above of the regression methods investigated 

in the present research is presented at a high level. Each method has many variations and 

parameters to consider. In addition, other methods exist that are not investigated as they are either 

less common in practice or have some notable limitations. Moreover, when applying the above 

methods to the case studies described herein, further details are presented regarding the various 

parameters and variations of these methods. 

2.3.4 Model evaluation and validation 

2.3.4.1 Performance measures 
In order to compare different machine learning models to each other, a systematic approach is 

employed to determine the performance of each model and its capability to reliably evaluate new 

data. There are many measures that are commonly used to evaluate the success of numeric 

predictions. The measures, presented here in Equations 2-7 to 2-11, are selected as per the literature 

analysis on performance metrics in machine learning regression algorithms by Botchkarev [134]. 

Given that 𝑎𝑖 is the actual observed target value of example i, 𝑝𝑖 is the predicted target value of 

example i, and n is the total number of examples in the dataset, these performance metrics include 

the following: 
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a) Mean absolute error (MAE) is the average of absolute individual errors. MAE is typically 

assessed based on the average production duration. 

MAE = 
1

𝑛
∑|𝑎𝑖 − 𝑝𝑖|

𝑛

𝑖=1

 2-7 

b) Median absolute error (MedAE) is the median absolute value of all errors. This measure 

is more robust than MAE as it is less influenced by outliers. 

MedAE = 𝑚𝑒𝑑𝑖𝑎𝑛𝑖=1,𝑛(|𝑎𝑖 − 𝑝𝑖|) 2-8 

c) Maximum absolute error (MaxAE) is the maximum absolute error observed in the 

predictions of the model. It measures the extreme values and captures the extent of 

anomalous examples in the dataset. 

MaxAE = 𝑚𝑎𝑥𝑖=1,𝑛(|𝑎𝑖 − 𝑝𝑖|) 2-9 

d) Mean absolute percentage error (MAPE) is typically and commonly used as a measure 

of quality for regression models because of its very intuitive interpretation in terms of 

relative error. It is also known as mean absolute percentage deviation (MAPD). 

MAPE = 
100

𝑛
∑ |

𝑎𝑖 − 𝑝𝑖

𝑎𝑖
|

𝑛

𝑖=1

 2-10 

e) Correlation coefficient (CC) measures the statistical correlation between the actual and 

predicted values. It ranges from 1 for perfectly correlated values, to 0 when there is no 

correlation, to -1 for perfectly adversely correlated values. CC differs from the other 

measures by being scale independent in that if all the predictions are multiplied by a 

constant factor and the actual values are left unchanged, this measure is unchanged. 
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CC = 
𝑛 ∑ 𝑎𝑖𝑝𝑖 − ∑ 𝑎𝑖 ∑ 𝑝𝑖

√𝑛 ∑ 𝑎𝑖
2 − (∑ 𝑎𝑖)

2 √𝑛 ∑ 𝑝𝑖
2 − (∑ 𝑝𝑖)

2

 2-11 

It should be noted that in addition to the correlation coefficient, the coefficient of determination 

(R2) is a common accuracy measure for statistical models. However, in the present study CC is 

used rather than R2 as the latter is more relevant when describing linear models. The coefficient of 

determination basically assesses the improvement in accuracy of the linear model over the mean 

value. CC is more relevant to assess the correlation of machine learning models in general as it 

considers the actual and predicted values of each record in the dataset. Moreover, CC has been 

widely used in many data mining textbooks and previous predictive ML publications as compared 

to using the R2 as a measure to assess the model accuracy. 

For MAE, MedAE, MaxAE, and MAPE, the lower the value is for each of these performance 

measures, the better the results. As for CC, higher positive values are more favorable. 

2.3.4.2 Model validation 

Model validation is an essential component when developing ML models, without which the 

model result cannot be deemed reliable for decision-making purposes. Most of the model 

validation techniques are based on analyzing the residuals for homogeneity, stationarity, 

independence, or normality [135]. In machine learning, model validation is the process where a 

trained model is evaluated with a testing dataset. The testing set is a portion of the whole dataset 

and is different and independent from the training set. The purpose here is to test the predictive 

ability of the model to generalize to new unseen examples [99]. It is assumed that both the training 

and the testing sets are representative samples of the underlying problem. There are many 

techniques for ML model evaluation including train-test split and k-fold cross validation [90]. In 

train-test split, the dataset is randomly split into two parts, one used for creating the model (i.e., 
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a training set) and another for testing (i.e., a testing set) to understand what would happen if the 

model encounters data it has not seen before. The main shortfall of this method is what is typically 

referred to as a sampling bias where the two sets (training and testing) might, by random chance, 

not be representative samples of the underlying features of the data. Training sets typically 

represent 60–90% of the dataset and the remaining is used for testing. The dilemma with this 

technique is that in order to learn a good model, we want to use as much of the data for training as 

possible, but that would leave a testing set that may not be sufficient to provide a reliable estimate 

of prediction errors; this is the problem that cross-validation (CV) attempts to solve. 

Typically, learning schemes involve two stages, one to train the model and the second to optimize 

its parameters (i.e., the hyperparameters as describe in Section 2.3.2), and separate sets of data 

may be needed in the two stages. The best approach to achieve this and to ensure that the test data 

is not used in any way in the model creation, is to randomly divide the dataset into three parts: a 

training set, a validation set, and a test set. The training set is used to fit the models; the validation 

set is used to tune the model’s parameters by minimizing prediction errors; and the test set is used 

to assess the generalization error of the final selected model [90,99]. 

In k-fold cross-validation, the dataset is split into K roughly equal-size parts. We fit the model 

using K-1 parts and calculate the prediction error of the fitted model using the remaining kth part. 

This process is repeated K times each time using a different part for testing. Then, the K estimates 

of the prediction error are combined and averaged. This technique is used to reduce the variability 

introduced by sampling training and testing subsets. The number of repetitions represents the 

number of folds of the method, and according to Witten et. al (2011), it has been shown that “10 

is about the right number of folds to get the best estimate of error, and there is also some theoretical 

evidence that backs this up” [90]. To overcome some challenges related to small dataset, or 
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overfitting, variations to k-fold CV are used including Leave-one-out Cross-Validation (LOOCV) 

and Nested-CV. A more sophisticated variation of CV and one that is more relevant to the present 

research is time series cross-validation (TSCV). In TSCV, there are a series of test sets, each 

consisting of a single example and the corresponding training set consists only of examples that 

occurred prior to the example that represents the test set [136]. It is important that all training data 

happens before test data as training should not contain information from the future. There is a 

temporal dependency between observations that must be preserved when selecting the training and 

testing sets. This represents a typical scenario when predicting the production time of a “future” 

product in a fabrication shop (e.g., wall panel in IBC) based on the historical data of only products 

that were manufactured prior to it.  

 

Figure 2-8. Schematic of time series cross validation (TSCV) 

Figure 2-8 shows a schematic of how TSCV works wherein the blue line represents a time period 

in the past from which the training examples are used, and the orange dot represents the single test 

datapoint. After the raw data are checked for uniformity and consistency as part of the data 

preprocessing phase, ML models are tested using actual production duration data using TSCV. 
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2.4 Industrial Applications of KDD 

2.4.1 Knowledge discovery in databases in construction 

Along with significant support through research and case studies, the application of data-driven 

decision making and the related data science techniques contribute substantially to supporting 

organizations to make better decisions, which results in a stronger, more feasible business 

[137,138]. Substantial improvements in strategies and policies, more informed decisions, 

minimized risks, and discovering hidden valuable insights are some of the potential gains from 

using data-driven approaches, especially in complex contexts such as the construction industry 

[139], and IBC in particular. In this regard, the use of automated data acquisition systems that 

integrate data from different sources and employ data analytics has been extensively researched in 

the construction literature for the purpose of project monitoring and control [140,141]. 

Several studies have investigated the application of KDD in the construction industry. For 

example, Soibelman and Kim [86] proposed a KDD process to identify the causes of delays in 

drainage pipeline installation, focusing largely on data preparation, while Kim et al. [142] used 

data mining to identify the key factors that significantly contribute to delays in an on-going 

construction project. Also, Hammad [89] proposed a KDD framework to estimate future resource 

requirements in multi-project industrial construction. A customized decision tree was developed 

to analyze labor productivity and estimate the labor requirements for masonry brickwork [143]. 

Moreover, a framework is proposed to forecast construction project time and cost using support 

vector regression methods [144]. 

A detailed literature review that highlighted the current applications and future potential of data 

analytics in construction affirmed that the adoption of these technologies in construction lags its 

wider application in other fields [39]. More recently, various machine learning algorithms are used 
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to detect non-certified work on construction sites using deep learning algorithms [145], to classify 

workers encountering high fatality risk accidents at construction sites [146], and to verify the 

personal protective equipment compliance of construction workers [147,148]. A hybrid model of 

light and natural gradient boosting algorithms is proposed to predict the construction cost during 

the early stages of the project [149]. It is evident, from the literature, that the application of machine 

learning in many areas of the construction industry is gaining increasing acceptance and adoption; 

however, these techniques have seen limited applications in project planning and scheduling in 

industrialized building construction. 

2.4.2 Manufacturing cycle time predictions using KDD 

An overview of datamining applications in manufacturing was previously conducted and indicated 

that future research will be focused on the areas of design, shop floor control, supply chain 

management, as well as developing solutions that can be easily integrated with existing systems 

[150]. Similarly, Choudhary et al. [151] reviewed the literature about KDD and DM in 

manufacturing, focusing on categorizing the articles into the five major functions of DM, namely, 

description, association, classification, prediction, and clustering. In recent years, there have been 

a few studies focusing on predicting LT and CT using machine learning approaches in 

manufacturing environments other than IBC. For example, Öztürk et al. [152] used a regression 

tree to estimate the lead time in a make-to-order manufacturing facility, while Backus et al. [153] 

compared clustering, k-nearest neighbors, and regression trees to predict cycle time in a 

semiconductor factory and concluded that a hybrid method of clustering and regression tree 

provide superior results. Another study in the context of a wafer fabrication factory estimated a 

range for a job cycle time based on a fuzzy data mining approach using a fuzzy backpropagation 

network, a principal component analysis, and fuzzy c-means [154]. Another study used genetic 
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programming to predict process cycle time based on system status information [155]. More 

recently, Gyulai et al. [156] compared analytical and machine learning techniques for lead time 

prediction in the optics industry. They concluded that random forests might be the most accurate 

model; however, linear methods provide acceptable accuracy and are simpler to interpret. Also, 

Lingitz et al. [157] compared the accuracy of several regression algorithms when predicting lead 

time in semiconductor manufacturing and suggested that random forests provide the highest 

accuracy in terms of lower normalized root-mean-square error. 

The present study builds upon this previous research to achieve accurate prediction of cycle time 

in manufacturing environments using machine learning models; the focus of this study is on the 

application of ML in the industrialized building construction industry, which differs from other 

manufacturing environments as described above. Moreover, previous studies applying machine 

learning to predict cycle time have mainly used simulated data, whereas, in the present study, the 

data is collected from real-time data acquisition systems (e.g., RFID). As such, the data collected 

is more prone to noise compared to simulated data, and, hence, is more challenging to manipulate 

and prepare for modelling. Actual production data provides a more accurate and valid 

representation of the production system. 
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2.5 Summary and Research Gaps 

Construction 4.0 is emerging as a technologically revolutionary paradigm for tackling the dynamic 

and uncertain nature of construction operations for improved system predictability. Industrialized 

building construction provides an adequate and enabling environment to implement machine 

learning modelling, one of the many aspects of this paradigm. Reviewing the relevant literature 

covers four essential topics: (1) industrialized building construction industry and the Construction 

4.0; (2) production planning focusing mainly on flow shop scheduling; (3) data mining and 

machine learning techniques, focusing on the methods used in the present research; and (4) the 

applications of ML in the construction industry and the related prediction of production time in 

manufacturing environments. The literature review highlights several research gaps, some of 

which are investigated in the research described in this thesis. Specifically, the research gaps 

motivating the research presented in this thesis are described below: 

• Although IBC provides an environment that is suitable for the application of the latest 

technological advances brought about by Construction 4.0, the adoption of such technologies 

lags other manufacturing sectors. 

• The IBC industry can benefit from ML techniques to improve production planning and 

scheduling within the fabrication shop by accurately and dynamically estimating the cycle 

time of products. This approach has been applied in similar settings, but the particularities 

due to the highly customized nature of production in IBC has not been investigated. 

• Many machine learning methods can be used for predicting the production time; however, it 

is clear from the literature that tree-based methods, specifically RF, provide satisfactory 

results in terms of a balance between accuracy and interpretability. RF models have not been 

yet applied in industrialized building construction manufacturing settings.  
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Chapter 3 Research Methodology 

3.1 Proposed Framework 

The goal of the proposed framework is to enable the integration of automatic data acquisition, with 

accurate depiction of loading conditions of the job shop, and production scheduling of building 

components (i.e., production units) in an industrialized building construction manufacturing 

environment. Based on the reviewed literature, existing frameworks and methods can be improved 

for such purposes by introducing novel principles of the Industry 4.0 revolution. Focusing on IBC 

manufacturing environments and introducing a novel approach to capture real-time shop 

utilization, a generic framework for the accurate prediction of production time is proposed to 

enable the inclusion of production managers’ experience and knowledge, by way of historical 

production data, in the decision-making process. The proposed framework is expected to improve 

the production scheduling and cycle time prediction by accurately capturing the dynamicity of the 

job shop in industrialized building construction. The proposed framework is illustrated in Figure 

3.1 and is developed based on frameworks that appear frequently in the literature on data mining. 

Such frameworks include the cross-industry standard process model for data mining (CRISP-DM) 

[158], Oracle’s architecture development process [159], the work published by Fayyad et al. [84], 

Davenport et al. [160], Dietrich et al. [161], and the IBM foundational methodology for data 

science [162]. 

Product composition (i.e., physical characteristics of building components or modules) and the 

production workflow information of these products as they move through the job shop are the main 

inputs of the framework. Developed based on the specific manufacturing policies at a particular 

IBC facility, on domain knowledge, and on similar manufacturing environments from the 
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literature, the proposed framework can be applied through five main phases, which are described 

as follows. 

 

Figure 3-1. Proposed framework for production time prediction in IBC environment 

In the production phase, the purpose is to develop an understanding of the actual production 

environment by investigating the layout of the job shop, product mixture and sequencing, and the 

baseline schedule. Accurate descriptions of the manufacturing environment result in an efficient 

collection of relevant data that will be used to build the predictive models. The data acquisition 

phase is composed of two parts: data collection techniques, and data storage media. Job workflow 

data can be collected using various methods ranging from manual data collection to automatic real-

time systems such as RFID and online video streaming. The purpose of this phase is to 
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systematically collect the relevant data about the flow of each building component along the 

production line. Such data are gathered as part of daily operations and can be ‘big’ in terms of size 

and speed of collection. The collected data can then be stored in a variety of data repositories either 

on-premises or online using structured or unstructured formats (e.g., RDBMS or NoSQL) or a 

mixture of both. The data integration phase involves all manipulation processes of raw data to 

transform it into interoperable formats that are suitable for data-driven modelling. This phase 

includes the extract/transform/load (ETL) process of transferring raw data from data sources to a 

data warehouse, data cleaning and wrangling, integration of raw data from different sources, and 

the process of feature engineering. These processes might be carried out in a different order and 

one can iterate between them until obtaining the tidy dataset. The feature engineering step is of 

particular importance as it enables the development of new features that capture real-time loading 

conditions of the job shop (i.e., current system utilization). In the model development phase, 

machine learning models are developed using the tidy dataset obtained from the data integration 

phase. The hyperparameters of the developed models are then tuned and the performance of the 

model is assessed using the various performance metrics. This process is iterative as the 

hyperparameters are further tuned and adjusted until certain performance criteria is achieved. If 

more than one model is developed, statistical significance testing is applied to examine the 

difference between these models. The outcome of this phase is a verified and validated model that 

can be implemented on the actual production system. The generalization phase includes three 

main processes. First, generalization is achieved via sharing the knowledge discovered by applying 

the framework processes to a different subsector of industrialized building construction that shares 

various aspects in terms of process sequencing, the high level of product customization, and the 

perceived dependency on capturing real-time loading conditions of the job shop. Second, 
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conclusions can be drawn about the nature of shop loading features, their common characteristics, 

and how to derive them at the different IBC manufacturing environments. Lastly, lessons learned 

are documented highlighting the opportunities and challenges in acquiring, processing, and 

integrating data. 

With respect to the developed framework, the research methods used in the present research are 

described in the following section as they apply to the two case studies, which are described briefly 

in Sections 1.2.1 and 1.2.2. The research methodology is first positioned within the construction 

engineering and management field as design science research. 

3.2 Research Methods 

The research paradigms under which construction management is categorized has long been 

examined and argued [163]. More recently, however, construction management is strongly 

contended to be repositioned as a design science rather than as an explanatory science (i.e., social 

or natural sciences) [164]. Such an approach will better connect research and practice, and thus 

strengthen the relevance of academic construction management. Design science research (DSR), 

or constructive research, is the research methodological approach adopted in this research to 

develop the proposed framework. The main focus of DSR for solving problems is the development 

of a new artifact: a solution-oriented knowledge tool that professionals can use to design solutions 

for their field problems [165]. Design science research has been proven to be a suitable research 

approach in construction management, especially when developing artifacts to solve problems, 

implementing those solutions in the construction domain, and bridging the gap between academia 

and industry [166–168]. 



51 
 

The rigorous procedure of developing an artifact starts by identifying gaps in the literature, then 

iteratively developing and evaluating the artifact in a reproducible manner, and lastly, 

communicating the outcomes or solutions in a clear and concise manner. Hevner et al. [169] 

described seven guidelines for a DSR as follows: 1) design a viable artifact in the form of a model, 

a method, or a construct; 2) develop solutions that are relevant to the problem; 3) rigorously 

evaluate the utility, quality, and efficacy of the design artifact; 4) provide clear and verifiable 

research contributions; 5) use rigorous methods to support both the construction and evaluation of 

the artifact; 6) provide the necessary means to reach the desired solutions while satisfying 

constraints of the problem environment; and 7) communicate the research effectively to both 

technology-oriented and management-oriented audiences. 

For the research objectives to be achieved in this thesis, the DSR methodology is followed. The 

research methods employed to improve production planning and scheduling in IBC manufacturing 

environments is based on the developed framework and is represented by the workflow of 

activities shown in Figure 3-2. 

Objectives 1 and 2: 

The artifact developed to achieve the first and second objectives presented in this thesis consists 

of a data-driven predictive model containing the information extracted from a BIM model and an 

automated RFID production tracking system and attempts to mine the mapping relationship 

between features, which represent product properties and shop utilization, and the CT using 

historical data from a wall panel fabrication shop. After identifying and collecting data, the product 

composition properties (PC) obtained from the BIM models and the corresponding actual cycle 

time for each product (CTact) are cleaned, prepared, and then combined. Essentially, in this phase 
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(i.e., Data Integration phase in Figure 3-1), the following two questions: Is the collected data 

representative of the problem to be solved? What efficient cleaning steps should be followed so 

that the data is represented in a format suitable for prediction models? 

 

Figure 3-2. Workflow of the proposed research methods 

Next, the development of engineered features is carried out using the RFID tracking data to reflect 

the real-time loading conditions of the job shop (i.e., shop loading (SL) features). These shop 
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loading features are then combined with existing PC features and are further cleaned and prepared 

to eliminate anomalous records. The outcome of this iterative activity is the “tidy dataset”. To 

determine the CT, the sets of features, PC and SL, are quantified, and therefore the predicted value 

of cycle time, CTpred, can be formulated as shown in Equation 3-1: 

𝐶𝑇𝑝𝑟𝑒𝑑 = 𝑓(𝑃𝐶, 𝑆𝐿) 3-1 

In the case of wall panels, different versions of the tidy dataset are developed for the purpose of 

experimenting with different aspects of data aggregation and integration. Each of these versions 

are then fed into the next phase, the ML model development, which involves three iterative 

processes: a) tuning the hyperparameters of the various machine learning models, b) determining 

the optimum lookback timeframe used to train the models, and c) evaluation and comparison of 

model performances. The best model to be used for implementation is then selected to predict the 

production cycle time. Model evaluation has two main phases: the diagnostic phase, which is used 

to ensure the model is working as intended; and the statistical testing phase, which is applied to 

ensure that the data is being properly handled and interpreted within the model. The output of this 

phase of the study satisfies the first and second research objectives and is used to support the third 

and fourth objectives. 

Objective 3: 

The artifact developed to achieve the third objective described in this thesis consists of the 

development of a discrete-event simulation model with the aim of examining the effect of 

generating engineered features that reflect the real-time loading conditions of the job shop (i.e., 

SL features). These features are similar to the features generated during ML model development. 

However, here we examine a few SL features that are not practically collected, and in most cases 
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need to be custom-built. The goal of this objective is to investigate how SL features, that are 

proposed to improve the predictive accuracy of ML models, can be captured in practice. By using 

simulation modelling, the collection of such features in the job shop can be examined. Different 

sets of SL features, generated from the simulation model, augment the raw dataset to generate 

variations upon which ML models are developed. ML model performances are compared using 

the same measures as are applied in Objectives 1 and 2. In conclusion, the simulation model can 

be used to propose specific mechanisms for collecting certain types of data that are otherwise not 

accounted for during the normal daily operations of the factory. Proposed collection of data would 

enhance the development of ML predictive models and would make data preparation and feature 

generation more consistent and automated and less prone to subjectivity. 

Objective 4: 

The artifact developed to achieve the fourth objective in this thesis consists of a data-driven 

predictive model similar to the one developed for the first and second objectives. However, the 

application is conducted at an industrial pipe-spool fabrication shop with a different time horizon 

to be predicted, and different shop settings and manufacturing policies. The goal of this objective 

is to examine the generality of the results obtained during the first case study. IBC manufacturing 

environments share some similarities with a pipe-spool fabrication shop, namely, the highly 

customizable construction products. In any manufacturing facility, the cycle time is greatly 

influenced by shop utilization. Although the details of the engineered SL features will depend on 

the specific case study and one might need to custom-build these features, due to the similarity of 

industrialized building construction environments, these features should capture some aspect of 

shop loading to improve the predictability of the cycle time. 
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Chapter 4 Residential Wall Panel Fabrication Shop 

This chapter describes the first case study where the proposed framework and methodology are 

applied to predict the production cycle time in a wall panel fabrication shop using several machine 

learning models. The chapter is divided into five main sections. First, the factory layout and the 

manufacturing process are described. Then, data acquisition and descriptive analysis is presented, 

followed by a detailed explanation of data cleaning and preparation tasks. The fourth section is 

dedicated to the development of engineered features that capture real-time loading conditions of 

the job shop. Lastly, the development, evaluation, and comparison of machine learning models are 

described in detail. 

4.1 Factory Layout and Process Description 

The production of prefabricated wall panels at an IBC facility located in Edmonton, Alberta, 

Canada is analyzed.  

 
Figure 4-1. Workflow of wall production line 

The facility produces wood-framed open-wall panels (i.e., with no electrical or plumbing fixtures), 

floor panels, and roof panels that are then transported to the construction sites for assembly. The 
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facility is equipped with state-of-the-art computer numerical control (CNC) production lines 

capable of producing building framing components (i.e., wall, floors, roofs, and stairs) using 

different processes. The research effort described in this thesis focuses on the wall production 

process, which involves framing, sheathing, window and door installation, and loading operations 

as shown schematically in Figure 4-1. 

The shop floor layout is shown in Figure 4-2, where the scope of the present study is restricted to 

the first phase of production (i.e., multiwall panel (MWP) production route), which consists of 

four consecutive workstations: framing station (FS), buffer table (BT), sheathing station (SS), and 

multifunction bridge (MFB). A wall panel goes through these stations in sequence, and no two 

panels are processed at one station at the same time. RFID antennas are located between 

consecutive stations where timestamps are recorded by reading RFID tags attached to wall panels 

as they pass by the antennas. 

 

Figure 4-2. Shop floor layout and location of RFID antennas between workstations 
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Wall panel production starts at the framing station, Figure 4-3, where workers load the studs (e.g., 

regular, double, or L-shaped) into the machine in sequence, after which the machine nails the studs 

to the top and bottom plates of the exterior and interior wall panels. Components such as windows 

and doors are built in the component table station and fed to the framing station. To maximize the 

utilization of the CNC machine, most MWPs are generated by combining several single-wall 

panels together up to 40 ft in length, which is the maximum length of the CNC table. In order to 

combine single-wall panels into a multiwall panel, the single-wall panels must all have identical 

heights and thicknesses. This is a mathematical optimization problem that was extensively 

described and investigated in previous research [60]. 

 

Figure 4-3. Framing station (installation of studs between top and bottom plates) 

From the framing station, a MWP moves to the buffer table where one or more workers perform 

several manual tasks, including correcting errors that result from the framing machine, installing 



58 
 

backing and other support material, and marking the wall panel name. The MWP then moves to 

the sheathing station, shown in Figure 4-4, where sheathing boards for exterior wall panels are 

placed, correctly positioned, and manually nailed. Then, the wall panel is moved to the multi-

function bridge (MFB) for machine nailing. At the MFB, shown in Figure 4-5, the sheathing boards 

are automatically, and thoroughly fastened to the studs of the wall panel by a CNC machine using 

nail guns that are mounted on the moving bridge. The sheathing boards are only installed on 

exterior walls. The MFB process only requires one worker to (i) bring the panel in from the 

sheathing station, (ii) initiate the nailing process, and (iii) move the MWP out. 

 

Figure 4-4. Sheathing station (manual nailing of sheets for exterior walls) 

The floor layout is configured such that each MWP is framed, prepped, sheathed, and nailed 

between antenna locations A1 to A5. Then, each MWP is cut into several single panels and 

transferred to a butterfly table, where antenna A6 records when the single wall panel starts the next 
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phase of production. In this study, the analysis focuses on the first phase of production: the MWP 

production starting at antenna A1 (located at the start of production at the FS) and ending at 

antenna A5 (located at the end of the MFB). 

 

Figure 4-5. Multifunction bridge (at initial position when receiving a wall panel) 

4.2 Data Acquisition and Description 

The historical raw data analyzed in this study covers a period of 42 months between February 2015 

and August 2018. The raw data is composed primarily of two datasets. The first dataset (DF1) is 

the “RFID Readings” dataset that contains timestamps for each MWP along the production route. 

It consists of 416,948 records and 10 attributes. The second dataset (DF2) is the “Multipanel” 

dataset that contains descriptive attributes of each MWP including the physical properties of the 

panels. It consists of 39,703 records and 37 attributes. Figure 4-6 shows a flowchart of the initial 
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data identification and data cleaning steps. Initial data identification is performed to include only 

the information relevant to the present analysis. These steps depend largely on the domain 

knowledge and the specific application. For example, in DF1, the steps include a) removing 

records before September 11, 2015, since the factory layout and RFID tracking system setup was 

changed, and b) only keeping records corresponding to antennas A1 through A5 as these 

correspond to the production of MWPs. As for DF2, the steps include a) removing panels that are 

manually manufactured, and d) excluding any attribute where all data are missing or there is only 

one dominant value. 

 
Figure 4-6. Flowchart of initial data identification and data preprocessing steps 

In addition, as part of this phase of the methodology, descriptive statistics and data visualization 

are applied to the datasets to assess the content and quality, and to gain initial insights into the 

data. Figure 4-7 shows the total number of RFID readings per month, per week, and using a 14-



61 
 

day rolling window. Periods during which there are a low number of readings, such as from June 

2016 to October 2016, might indicate low productivity periods due to market recessions. Such 

periods represent abnormal operating conditions and are excluded from the analysis as they may 

skew the results. 

 
Figure 4-7. Number of RFID readings per month, per week, and per 14-days rolling window 

However, a more consistent indicator of daily productivity is to count the number of panels 

produced each day within prescribed ranges of production over the study period. For example, 

there were approximately 1,400 panels manufactured when the daily production rate was between 

35 and 40 panels/day, which is close to the average daily production, as shown in Figure 4-8. 

Working days are excluded if the total daily production is less than 5 or more than 75 panels/day 

as production beyond these limits represents abnormal operating conditions. Those out-of-bound 

working days cover approximately 3% of the total study period. The purpose of this exercise is to 

determine which production days represent anomalous operations and exclude the records during 

these days from further analysis. It is worth noting that most of the panels are produced when the 

daily production rate is between 30 to 55 panels/day, as shown in Figure 4-8. 
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Figure 4-8. Total panel counts for each daily production rate 

Furthermore, Table 4-1 shows a summary of the statistics for the attributes in DF2. Here the 

dimensions for MWP length, width, and height are in millimeters, while other numbers represent 

the count of the corresponding panel property (e.g., “Window” is the number of normal-sized 

windows that the MWP has). By examining the results in Table 4-1, a few observations can be 

noted to assist in better understanding the data and determining how different features might affect 

the predictability of the cycle time. 

It can be noted that some attributes have extreme values compared to the mean and median. For 

example, “NailCount”, which represents the total number of nails used during the production of a 

single MWP, has an extreme maximum value of 2,466 which is considered an outlier. It can also 

be noted that the attribute ‘LargeDoors’ is expected to have minimal influence on the predictability 

of CT as most of the panels have no large doors installed. This can be inferred from the value of 

zero for the mean, standard deviation, and interquartile range. 

Range of most likely 
production rates (panels/day) 



63 
 

Table 4-1. Statistics summary of attributes in DF2 dataset 

 Description mean std min 25% 50% 75% max 

Length Panel length 8999 3315 1203 6087 10404 11878 12338 
Width Panel height 2525 158 1607 2467 2467 2505 3235 
Height Panel thickness 117 29 89 89 140 140 314 
Window No. of regular windows 0 1 0 0 0 0 9 
LargeWindow No. of large windows 0 1 0 0 0 0 5 
Door No. regular doors 1 1 0 0 0 1 10 
LargeDoor No. garage doors 0 0 0 0 0 0 3 
Sheetfull No. of full sheets for ext. panels 1 2 0 0 0 0 17 
SheetPartial No. of partial sheets for ext. panels 3 4 0 0 0 4 31 
Cutzone Cuts along MWP to single walls 2 2 0 0 1 3 17 
Drillhole No. of drills used to lift panels 4 3 0 2 4 6 26 
Stud No. of regular studs 15 7 0 9 15 21 215 
DStud No. of double studs 0 0 0 0 0 0 6 
LStud No. of L-shaped studs 2 2 0 0 1 3 18 
MStud No. of multi-studs 0 1 0 0 0 0 14 
Block No. of lumber blocks 1 3 0 0 0 0 42 
Backing No. of lumber backings 2 4 0 0 0 3 50 
NailCount No. of nails used to install sheets 327 401 0 0 190 566 2466 
Nailline Lines along which nails are installed 33 37 0 0 20 63 447 

 

4.3 Data Preprocessing 

4.3.1 Main preparation tasks 

Data preprocessing is an essential step in the KDD framework to improve the quality and 

consistency of the data itself, and, consequently, the quality of the data mining results. Data 

preprocessing techniques include cleaning, integration, transformation, and reduction [170]. These 

techniques are applied to each dataset. Further preprocessing is applied to the merged dataset as 

depicted in Figure 3-2 and Figure 4-6. The main preprocessing steps are summarized in Table 4-2. 
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Table 4-2. Main preprocessing steps applied to DF1 and DF2 

 Preprocessing Step Reasoning 

“RFID Readings” dataset (DF1) 

1 Keeping “InitialReadDateTime” and 
“LastReadDateTime”. 

Initial and last timestamps used for 
time difference calculations. 

2 Discarding “LocationSourceAntenna”, “LocationTagID”, 
“TagID”, “WallNumber”, and “LastReadDate”. 

Contain either redundant or 
irrelevant information. 

3 Transforming the dataset: each row stores timestamps for 
each MWP at each station; the original dataset stores each 
timestamp for each panel at each station in a separate row. 

To prepare the data in a tidy 
format, and to facilitate CT 
calculations. 

4 Replacing a missing value of timestamps at individual 
stations with the mean value provided that the timestamps 
at all other stations are not missing. 

Replacing missing values so that 
the dataset is consistent and 
complete. 

5 Records, where the production of a panel started on one 
day and finished on a subsequent day, are discarded. 

Discarding outliers for consistent 
cycle time calculations. 

“Multipanel” dataset (DF2) 

1 Keeping the dimension attributes (“Length”, “Width”, and 
“Height”) within a specific range. Panel lengths range 
between 1,203 and 12,338 mm; widths range between 
1,607 and 3,235 mm; and heights range between 89 and 
314 mm. 

Only panel manufactured at the 
automatic production line are kept. 
Smaller panels, that are manually 
produced, are discarded.  

2 Nominal values of the attribute ‘Type’ are converted to 
numbers using the “dummy coding” technique, commonly 
known as binarization. There are five unique values: 
‘EXT’, ‘INT’, ‘STR’, ‘GAR’, and ‘MEC’. 

For all unique values of the 
nominal attribute, a new attribute 
is created. The attribute 
corresponding to the value of the 
record gets a value of 1; other 
attributes are set to 0. 

3 Discarding the attributes “Job”, “Component”, “wall”, 
“Siding”, “SidingLine”, “Model”, “Floor”, “Unit”, 
“GarageDoor”, “Sequence”, “Basementwall”, “position”, 
and “ProductionJob”. 

These attributes are irrelevant as 
they contain redundant 
information, have one unique 
value, have few prevalent values, 
or have many missing values. 

4 Missing values are either replaced using functions defined 
by fitting curves to the known values or discarded if they 
account for more than 90% of the total count of an 
attribute. 

Replacing missing values so that 
the dataset is consistent and 
complete. 
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In general, preprocessing steps include discarding redundant attributes where the information is 

captured by other existing and more relevant attributes; transforming the structure of the dataset 

so it is a tidy format; replacing missing records or discarding them as applicable; and changing the 

type of data so it is more consistent and can be used with a wide variety of machine learning 

regression models. Moreover, it should be noted that the attributes “PanelNumber” in DF1 and 

“MultiPanel_Name” in DF2 are kept as unique identifiers for each record in the two datasets. 

These are common keys that are used, at a later step, to merge the datasets. 

 

4.3.2 Cycle time calculation from raw RFID 

As the multiwall panel passes over the RFID antenna, a timestamp is recorded in the attribute 

“InitialReadDateTime”. When the panel leaves the RFID antenna range, the attribute 

“LastReadDateTime” records another timestamp. Ideally, when there is no interruption or waiting 

in the production line, the two timestamps should be similar indicating that the panel has not been 

sitting idle over the antenna. The idle time (IT) for panel i can be defined per Equation 4-1: 

IT𝑝𝑎𝑛𝑒𝑙 = 𝑡𝑙𝑎𝑠𝑡𝑅𝑒𝑎𝑑,𝑖 − 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑,𝑖  4-1 

The intermediate cycle time can be described as the processing time plus the idle time. Time 

differences between consecutive antenna locations indicate the time during which the panel is 

processed at each of the four intermediate stations. Total CT, referred to as CT𝑎𝑐𝑡, is calculated 

according to Equation 4-2 as the sum of these individual workstation times: 

𝐶𝑇𝑎𝑐𝑡 = ∑ 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑,𝑖+1 − 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑,𝑖

4

𝑖=1

 4-2 
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where 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑,𝑖+1, and 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑅𝑒𝑎𝑑,𝑖 are the timestamps at the end and start antenna locations, 

respectively, for station i. It should be noted that CT𝑎𝑐𝑡 as measured in the present study 

encompasses processing time, idle time, and the time spent on regular breaks during a typical 

working shift. Figure 4-9 shows the histogram and the kernel density smoothing curve of both the 

measured cycle time (ActualCT) and the cycle time without the break times (ActualCT-BT). In 

the case production facility, there are three break times during a typical working shift: two 15-

minute coffee breaks and one 30-minute lunch break. If the production of the panel falls within 

these break times, the measured cycle time is reduced accordingly. In this manner, actual 

production times are calculated, and any adverse effect of break times on the accuracy of the cycle 

time predictions is mitigated. Hence, ‘ActualCT-BT’, rather than ‘ActualCT’, is used to develop 

and test the prediction models.  

 

Figure 4-9. Total cycle time (between A1 and A5 in minutes) 



67 
 

4.4 Feature Engineering and Selection 

Feature engineering (FE) has been widely used in data-driven modelling to improve the quality of 

feature sets. FE mainly encompasses three aspects: feature selection, feature extraction, and feature 

construction [171]. In the present research, each record in the tidy dataset stores the physical 

properties of a single multiwall panel, as well as the respective actual cycle time, which is the 

target value to be predicted. One of the main contributions of this research is to capture the system 

status by constructing new features that objectively measure the loading conditions of the job shop 

(i.e., SL features). In essence, these new features are constructed to augment the existing features 

of a product unit based on the units that immediately precede it along the production line. It is 

observed that CT in the IBC factory depends only partially on the physical features of the product 

and is governed largely by the SL features (i.e., a measure of how busy the fabrication floor is at 

the time production of a new wall panel begins). These shop loading features significantly enhance 

the model accuracy and hence the predictability of cycle time. This is mainly due to the fact that 

these features capture shop utilization, which otherwise (i.e., if only the physical features such as 

length, width, etc., are used) would be unaccounted for. 

Let Si represents the set of newly constructed features of product, i. Each feature, 𝑠𝑖
𝑘 ∈ 𝑆𝑖, is 

generated in such a manner as to capture attributes of panels that preceded the panel, i, in the 

production line but whose production is still underway (i.e., WIP). These WIP panels represent the 

current state of system utilization at the moment the production of the current panel, i, begins. If 

we let 𝑋𝑛×𝑚 be a matrix in which each row, n, represents one WIP panel preceding the current 

panel, and each column, m, represent an existing feature, x. Now, if we consider 𝜃 to be a binary 

vector of size m, where each element corresponds to one of the existing features, then a value of 1 

corresponds to that feature being considered when calculating the new engineered feature of the 
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current panel and other features are set to 0 and ignored. In this manner, each element of the set Si 

is calculated as the sum of the elements of the matrix M as expressed in Equation 4-3: 

𝑠𝑖
𝑘 = sum(M) 𝑤ℎ𝑒𝑟𝑒 M = 𝜃 ∙ 𝑋𝑇 = [𝜃1 𝜃2  ⋯ 𝜃𝑚] [

𝑥11 𝑥12   ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑛𝑚

] 4-3 

Each element of M represents the contribution of each WIP when calculating the corresponding new 

engineered feature for panel i. This is a mathematical expression used to implement the algorithm 

for calculating each of the new engineered features for each panel in the dataset. 

For the present study, SL features are developed to capture the system status based on the production 

during one work shift. The constructed features are "𝑊𝑃𝑖", "𝑊𝑃𝐿𝑒𝑛𝑔𝑡ℎ𝑖", and "𝑊𝑃𝑇𝑖𝑚𝑒𝑖", and 

they store the number, length, and processing time respectively, of the WIP panels. These features 

represent the set Si where each element 𝑠𝑖
𝑘 is being generated by setting the appropriate values of the 

binary vector, 𝜃. Given i = {1, 2, ..., n}, where n is the total number of WIP associated with the 

current panel, the attributes above are calculated based on Equations 4-4 through 4-7, as follows: 

𝑊𝑃𝑖 = |𝐴| = 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑠𝑒𝑡 𝐴 4-4 

𝐴 = {(𝑥, 𝑦): 𝑥, 𝑦 ∈ 𝐷𝐹2 | 𝑇1(x) > 𝑇1(y) 𝑎𝑛𝑑 𝑇1(x) < 𝑚𝑎𝑥(𝑇2(y), 𝑇3(y), 𝑇4(y))} 4-5 

𝑊𝑃𝐿𝑒𝑛𝑔𝑡ℎ𝑖 = ∑ 𝐿(𝑧[1])

𝑧∈𝐴

 𝑤ℎ𝑒𝑟𝑒 𝑧 = (𝑥, 𝑦) 4-6 

𝑊𝑃𝑇𝑖𝑚𝑒𝑖 = ∑ 𝑃𝑇(𝑧[1])

𝑧∈𝐴

 𝑤ℎ𝑒𝑟𝑒 𝑧 = (𝑥, 𝑦) 4-7 

where: (x, y) the pair of current panel, x, for which the new features are to be calculated, 

and panel y that represents any other panel which is concurrently being processed; 

DF  denotes the rows in the tidy dataset; 

Tk is the timestamp at antenna location Ak where k ∈ {1, 2, 3, 4}; 

L is the length of panels that satisfy the condition; and 
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PT is the planned processing time of panels that satisfy the condition. 

For the current dataset, a Python script is developed to automatically iterate over the records in DF 

and create the engineered features, which can be found in Appendix A. Figure 4-10 represents the 

process of calculating the length of the WIP panels, "𝑊𝑃𝐿𝑒𝑛𝑔𝑡ℎ𝑖", preceding panel i during a 

typical work shift. In this example, 𝑡𝑝,𝑓𝑠 is the timestamp associated with the panel when its 

production begins at the framing station, while 𝑡𝑝−1,𝑠𝑠 and 𝑡𝑝−2,𝑚𝑓𝑏 are the timestamps for two 

panels that are ahead of the current panel but are still in production. 

 

Figure 4-10. Engineered feature calculations for Panel i at the time when it starts production 

 

Moreover, based on the newly generated features, different versions of the dataset are generated 

each of which contains a different set of attributes to examine the effect of different attribute 

subsets on the prediction accuracy. These new attributes are created by combining existing 

physical characteristics in unified attributes in order to: (1) reduce the dataset dimensions, and (2) 

to examine the effect of features granularity on the accuracy of ML models. Table 4-3 summarizes 

the experiments conducted using different attribute aggregations. The resulting datasets are the 

ones depicted in Figure 4-6 as the tidy datasets. 
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Table 4-3. Subsets created by combining attributes of the tidy dataset 

Name Size (records × 
attributes) Description 

Raw data 1,094 x 22 Contains only physical properties of panels 

Engineered 1,094 x 26 In addition to the physical properties of panels, it contains 

engineered features capturing the system status (WP, WPLength, 

WPTime, Panels/Day). 

Engineered 

combined1 

1,094 x 18 Combining similar properties of a panel into single attribute: 

SheetFP = Sheetfull + SheetPartial 

TotalStuds = Stud + 2*DStud + 2*LStud + 3*MStud 

BlockBack = Block + Backing 

totalWD = Window + LargeWindow + Door + LargeDoor 

Engineered 

combined2 

1,094 x 15 Combining all types of components (openings, stud, sheets, 

supportive elements) into one attribute: 

Components = totalWD + TotalStuds + SheetFP + BlockBack 

 

4.5 Development of Machine Learning Models 

4.5.1 Mining data using regression models 

In the present case study, predicting production cycle time is a regression supervised learning task, 

and there exist numerous machine learning models to predict a continuous variable of this nature. 

Among these, four are selected for our study four models: linear regression (LR), k-nearest 

neighbor (KNN), neural network (NN), and random forest (RF). A successful model should 

provide reasonably accurate estimates of the cycle time to be used in factory planning and should 

be easy to interpret. Representative studies describing these methods include Hastie et al. (2009) 

[172] and Witten et al. (2011) [90]. Also, Raschka and Mirjalili (2017) [110] provided practical 

applications of machine learning libraries in Python. For a treatment of regression trees and 
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random forests in particular, the interested reader may refer to Breiman et al. (1984) [173] and 

Breiman (2001) [130]. The four models mentioned above are selected from among the many 

available ML models available for regression based on the following considerations: (1) they range 

from simple to implement and easily interpretable (i.e., LR and KNN) to more sophisticated black-

box models (i.e., RF and NN) so that the higher complexity of the models can be examined in 

terms of higher accuracy; (2) they have been widely used in the literature to investigate 

construction problems; and (3) they have been implemented in previous studies to predict 

production CT. 

 
Figure 4-11. Data splitting and model evaluation 

The tidy dataset having been developed, the selected models are trained and tested. Per Witten et 

al. (2011), the dataset is divided into three subsets: a training set, a validation set, and a test set 

[90]. The test set contains the records from one day where cycle time is to be predicted. The 

training and validation sets contain the production data from previous days which are used for 
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training and validation using a 5-fold cross-validation (CV) technique, as shown in Figure 4-11. 

In the current study, models are trained and tested using Scikit-Learn, a Python open-source library 

for machine learning [174]. 

4.5.2 Comparison of model performances 

The performance metrics of the models on the testing sets are shown in Table 4-4 for the four 

datasets described in Table 4-3. Refer to Section 2.3.4 for descriptions of these metrics. 

Table 4-4. Model performance measures for the datasets described in Table 4-3 

ML model LR KNN RF NN 
Hyperparameters - k = 11, p=2 400 trees, mae (52, 52) 2000 itr. 

Ra
w 

da
ta

 

R2 on training 0.27 0.91 0.80 0.24 
MAE 9.2 6.8 5.8 7.7 

MedAE 6.7 3.6 3.1 4.8 
MaxAE 47.3 42.1 21.7 40.2 
MAPE 23.6% 17.3% 17.0% 19.7% 

CC -0.03 0.13 0.47 0.19 

En
gi

ne
er

ed
 R2 on training 0.46 0.99 0.90 0.42 

MAE 7.1 6.1 5.3 6.7 
MedAE 5.6 3.4 3.5 4.4 
MaxAE 38.2 34.1 31.4 37.9 
MAPE 17.8% 14.9% 13.7% 16.4% 

CC 0.34 0.47 0.71 0.44 

En
gi

ne
er

ed
 

co
m

bi
ne

d1
 R2 on training 0.43 0.99 0.90 0.40 

MAE 6.6 6.1 4.9 6.9 
MedAE 4.2 3.4 2.8 5.0 
MaxAE 38.1 34.2 30.6 38.4 
MAPE 16.4% 14.9% 12.3% 16.7% 

CC 0.40 0.47 0.73 0.39 

En
gi

ne
er

ed
 

co
m

bi
ne

d2
 R2 on training 0.41 0.99 0.90 0.39 

MAE 6.1 6.0 4.4 6.5 
MedAE 4.3 3.3 3.2 4.3 
MaxAE 35.2 34.1 29.0 37.7 
MAPE 15.0% 14.9% 11.0% 15.6% 

CC 0.53 0.47 0.80 0.44 
 

The hyperparameters of the four models have been tuned, using the training and validation dataset, 

to attain better performance and robust models. The model performance is measured on the testing 
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dataset. The performance of machine learning algorithms depends strongly on finding an optimal 

set of hyperparameters. There exist strategies to search for the best combination of 

hyperparameters including grid search and random search [94]. In the present study, a combination 

of manual and brute force search using the GridSearchCV method available from the Scikit-Learn 

library is used to search for the optimal combination of a predefined set of values for each model’s 

hyperparameters. The most important values are listed in Table 4-4 under the corresponding 

model’s name. 

4.5.3 Observations on model performances 

4.5.3.1 General trends 

Referring to Table 4-4, a distinct difference can be observed between the MAE and the MedAE 

values. The MedAE is smaller than the MAE for all models, a trend aligned with the distribution 

pattern of actual cycle time, which is positively skewed (moderately skewed to the right), as shown 

in Figure 4-9. This is attributable to the presence of a few outlier records that are significantly 

higher than the average values which affect the overall accuracy of the predictive models. Another 

observation is that achieving a higher value of R2 on the training set does not necessarily translate 

into better performance on the testing set, as can be seen with respect to the performance of KNN, 

where the model is observed to have overfit the training data. As this example underscores, the 

model performance should not be evaluated based on the metrics of the training set. 

Across all models and datasets, the MAPE range between 24% (worst) and 11% (best), and the 

CC range between 0.0 (no correlation) and 0.8 (strong positive correlation). Overall, the RF models 

have better performance metrics in terms of lower MAE, MedAE, MaxAE, MAPE, and higher 

correlation coefficients. It should be noted, however, that RF requires slightly more computational 

time. An advantage of RF over other methods is the ability to handle both categorical and 
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continuous attributes, and attributes need not be scaled to common units. When testing several 

configurations of RF models, using approximately 400 trees and MAE as the evaluation criterion 

when splitting the nodes yielded the best performance. 

4.5.3.2 Engineered features 

The production system utilization status is valuable information to add to the ML models to 

improve the predictability of CT. The raw dataset, ‘Raw data’ in Table 4-3, includes only the 

physical properties of the panels; the engineered features that represent the system utilization status 

are only included in the other three datasets. Based on the performance measures, using the raw 

data without the SL features leads to inferior model performance. The MAPE is found to be as 

high as 24%, while the CC is low for all models. Meanwhile, an improvement in MAPE of as 

much as 9% is achieved when augmenting the datasets with the proposed SL features. Moreover, 

the CC is found to have increased for all models, to as high as 0.80 in the case of the RF model. 

Intuitively, augmenting the feature set with engineered features should result in better 

predictability of the developed ML models, since this provides in-depth information about how 

the production floor is being utilized at the point when production of a new product begins. Based 

on the historical data, this assumption is proven to be valid, performance improvements having 

been consistently achieved for all models. 

4.5.3.3 Combining features 

The performance of all models does slightly improve by reducing the granularity of the dataset. 

For example, the mean absolute percentage error of the LR, and RF models dropped from 17.8% 

and 13.7% in the case of the first version of the engineered dataset, ‘Engineered’, to 15.0% and 

11.0% in the case of the reduced dataset, ‘Engineered combined2’, respectively. In the aggregated 
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dataset ‘Engineered combined2’, all components of a wall panel (studs, windows, doors, backing, 

and sheathing sheets) are combined and represented by one feature, namely, “Components”. 

In addition to requiring less computational time, it can be concluded that reducing the 

dimensionality of the data by combining similar attributes does improve the performance in terms 

of lower prediction errors and higher CC. This is attributable to the fact that the combined attributes 

have a weak correlation with the target feature when computed individually, whereas, when these 

attributes are aggregated, the correlation with the target feature is improved and resulted in better 

predictability of cycle time. It should be noted, however, that this conclusion is specific to the 

current case study and is not necessarily true for all other cases. Further investigation is required 

to explore this aspect in the context of other cases. 

4.5.3.4 Lookback timeframe for model training 

A sample dataset is examined in reference to various lookback timeframes as part of the machine 

learning model development phase in order to determine the optimum timeframe used for testing. 

The goal here is to investigate the effect of the number of days used to train the model on the model 

performance and the predictability of cycle time. For the present case study, using the historical 

data of a lookback timeframe of 10 to 20 days for training and validation is found to result in better 

performance measure compared to shorter or longer lookback timeframes as shown in Figure 4-12. 

That is, to predict cycle time on a specific day, the production data from the previous 10 to 20 

workdays is required to train and validate the machine learning models. Using the historical data 

in its entirety or using the data from a few previous days usually results in inferior performance. 

Figure 4-11 illustrates the manner in which splitting of the data is carried out. It is worth noting 

that further investigation is required to examine the full effect of varying lookback timeframes on 

different days of the week. This task will be undertaken as part of future work. 
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Figure 4-12. Minimum MAPE versus Lookback Timeframe for the dataset ‘Engineered’ 

4.5.4 Comparison with Little’s law 

The simplest and most widely used analytical method to predict CT is Little’s law, which can be 

applied to dynamic systems by dividing the time into finite intervals. As described in Section 1.1, 

Little’s law can be used as a benchmark to assess the performance of the proposed approach. Any 

of the average CT, throughput (TH), and average units in the system (𝑊𝐼𝑃̅̅ ̅̅ ̅̅ ) can be calculated by 

making observations about the other two quantities over a given time interval [9]. To compare 

these quantities, the time interval in the current study is set to be one workday (in this specific 

case, it is also one work shift). The average daily production, shown in Figure 4-8, is found to be 

39.5 panels/day. Given a 7.5-hour work shift, this translates into a system throughput of about 5 

panels/hour. When the observed panel enters the production route, the average number of panels 

that are being processed and that remain in the system is found to be 3.5 panels. The CT is then 

calculated, using Little’s law, as 43.3 minutes, which is very close to the calculated average of 

40.9 minutes as shown in Figure 4-9. Assuming that this average number is used as an estimate of 

CT for all panels, the performance metrics used to compare ML models are calculated for the given 
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dataset as follows: MAE = 11 minutes, MedAE = 8 minutes, MaxAE = 36 minutes, and MAPE = 

30%. These values are inferior to the values obtained from any of the ML models. Although this 

analytical method can be used to capture the average performance of the system by estimating CT 

based on the average daily production, error rates are high and the variability in the production 

cannot be efficiently captured which is the typical case of most IBC manufacturing environments. 

4.5.5 Limitations and future work 

The present case study focuses on using existing historical data obtained from an RFID tracking 

system in a residential IBC. This data contains considerable noise and requires extensive data 

cleaning and preparation. In addition, due to the existing RFID system setup, some data that might 

contain valuable information is not collected, especially data associated with panel waiting times 

throughout the production process. Therefore, this limitation is further investigated in Chapter 5 

by developing a simulation model that can generate the missing data pertaining to waiting and idle 

times of panels while in production. Moreover, another limitation is the applicability of ML 

approaches to other subsectors of IBC. The goal is to examine the applicability and consistency of 

using machine learning models to predict CT in the context of mass customization production 

which is an important characteristic of the IBC industry. This limitation is investigated in Chapter 

6 by examining a second case study in industrial IBC. It is worth noting that the details of the 

engineered feature development reflecting the loading conditions of the job shop will depend on 

the specific case study, and some custom development may be required. However, due to the 

similarities among IBC manufacturing environments, with some minor customization the 

presented features can give a representative picture of the current state of shop utilization in a 

given IBC facility and thereby improve the predictability of production CT. Investigating other 

case studies in IBC can lead to the generalizations of results obtained in this the present case study.  
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Chapter 5 Simulation Modelling 

This chapter describes the development of a discrete-event simulation (DSE) model for the first 

case study presented in Chapter 4. The chapter is divided into four main sections. First, the 

simulation model environment and the logic based upon which the model is developed are 

described in detail. Then, formulas and data distributions used to estimate activity durations are 

presented for the various elements of the model. The third section discusses model verification, 

validation, and outputs. In the fourth section, machine learning models developed using the 

simulated datasets and the resulting improvement are discussed, followed by concluding remarks. 

5.1 Description of the Simulation Model 

Discrete-event simulation (DES) has been widely used over the past few decades in the 

construction and manufacturing industries as a versatile technique to model the various activities 

and processes of real-world systems. Many research studies have been carried out to explore 

simulation language development, simulation model design, model optimization, and combining 

statistical design-of-experiment techniques with simulation modelling [175]. An overview of 

advancements in simulation theory and its applications in the construction industry was conducted 

by AbouRizk [176]. In this section, the purpose and context of the DES model of this study is 

explained, followed by a detailed description of the model and its components. 

5.1.1 Purpose and context 

The DES model is developed to achieve the third objective of the present research that aims to 

examine the effect of generating engineered features that capture the real-time loading conditions 

of the job shop (i.e., SL features). Such simulated shop loading features are not practically 
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collected, and in most cases need to be derived from existing data. The goal here is to investigate 

how certain SL features would improve the predictive accuracy of machine learning models if the 

relevant SL features could be captured in the real-world. Using simulation modelling, the 

collection of such features in the facility can be investigated. By experimenting with the DES 

model, we are searching for the right set of features that can help to improve the predictability of 

cycle time and thereby enhance the performance of data-driven models. The performance of the 

machine learning models that were created using the simulated datasets (i.e., with and without SL 

features) is examined and compared. Figure 5-1 illustrates the scope of the present DES 

experimentations and how they relate to the content in Chapter 4. 

 

Figure 5-1. Simulation model produces four datasets 

The integrated data (i.e., the dataset obtained by integrating the physical characteristics of wall 

panels and the RFID tracking data as described in Section 4.2) are converted to MS Access 

database format (.accdb file), which is the format accepted by the DES modelling tool. This 
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database is used to generate the simulated entities in the simulation environment, each of which 

presents a single multiwall panel. The database records are fed into the DES model; the process 

for which is described in detail in the next section. The outcomes of the model are stored in four 

spreadsheets (.csv files) each of which is then used to build a machine learning model. Each of the 

four datasets contains a different set of features: a) the first dataset only contains the physical 

characteristics of wall panels, which is hereafter referred to as the ‘raw dataset’; b) the second 

dataset adds to the raw dataset a new set of shop loading features that capture the waiting times of 

priori panels and starving times of workstations of priori production, and it is hereafter referred to 

as the ‘SL wait dataset’; c) the third dataset adds to the raw dataset a set of shop loading features 

similar to the ones developed in Chapter 4 (i.e., features capturing the number, length, and 

processing times of priori panels), and it is hereafter referred to as the ‘SL length dataset’; and d) 

the fourth dataset adds to the raw dataset all shop loading features developed earlier, and it is 

hereafter referred to as the ‘SL full dataset’. 

5.1.2 Discrete-event simulation model 

The multiwall production process is described in Section 4.1 based upon which the detailed DES 

model in Figure 5-2 is developed using the General Template in Simphony.NET, a simulation 

environment developed by researchers at the University of Alberta [177,178]. 

The simulation model is colour -coded and subdivided into three main parts for consistent 

development, easier implementation, and streamlined maintenance and updating. Each graphical 

notation, or object, shown in Figure 5-2 represents an abstraction or summarization of an entity in 

the real-world production system. These objects are referred to as modelling elements and are used 

to resemble the actual production process. These modelling elements include database, create, 

task, resource, capture, release, file, valve, set attribute, counter, execute, branch, composite, 
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destroy, and statistics. In general, the simulation entity, hereinafter the entity, represents a single 

MWP and it goes through various modelling elements to complete the simulation. The 

DatabaseCreate element is used to generate entities and set their local attributes by reading the 

database that is loaded by the Database element. The resource element represents machines and 

workers, and each entity is required to capture the associated resources in order to complete a task. 

The elements capture, release, and file are used to model the acquiring, releasing, and waiting of 

resources. When no resource is available, the entity waits in the file element and the waiting time 

is recorded. Actual work taking place in a workstation is represented by the task element where its 

time parameter simulates the actual processing time of the activity. After completing the associated 

activity, the entity releases the resources and moves forward to the next process. 

 

Figure 5-2. DES environment in Simphony.NET using General Template 
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Part 1 of Figure 5-2 depicts the required resources and their waiting queues. For the MWP 

production line described in Section 4.1, the four workstations and the workers are represented by 

seven resources in the simulation model. For example, the framing station (FS) and its dedicated 

worker are represented by orange-colored file elements in the model and are used to simulate the 

framing station (FS) process as described later in this section. Part 2 of the simulation model 

includes static and dynamic information blocks as well as statistics elements that store and 

aggregate processing and waiting times of each entity. For example, “Local Attributes” are static 

information that shows the mapping of MWP data imported form the database to the local 

attributes of the entities. This is provided for easier interpretation and development of the model. 

 

Figure 5-3. Detailed tasks, resources, and statistics of the framing station 

Part 3 represents the simulated processes where each workstation is represented by a composite 

element that accepts an entity (i.e., a multiwall panel) from a previous process, route the entity 

through different modelling elements, calculate and store the processing and waiting times, and 

then outputs the entity to the next process. As an example, the details of the framing station 
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composite element are shown in Figure 5-3. When an entity is routed to the FS composite element, 

it first captures two resources: a) a portion of the framing table equal to the length of the wall panel 

where the maximum allowable length is 40 feet, and b) the framer where there is only one available 

worker at the framing station. By restricting the resources availability in this fashion, once the 

worker has completed the work on one panel, s/he can begin to work on the next panel given that 

there is enough space on the framing table to accommodate the next panel. Once the required 

resources are captured, the entity is held for a specific length of time depending on the time it takes 

to frame the multiwall panel. This time depends on the physical characteristics of the panel and is 

coded in the corresponding task element. Estimating activity durations in the simulation model is 

known as “input modelling” and is discussed in Section 5.2. 

In order to simulate possible delays at the framing station, a composite element is added after the 

main processing task with five observed delay incidents (i.e., checking plans, shortage of material, 

correcting errors, filling nail magazines, and workers idling) as shown in Figure 5-4. Each type of 

delay has a probability of occurrence and an average duration that are calculated based on the 

collected observations and further discussed in Section 5.2. It should be noted that only one type 

of delay might occur for an individual panel component. Before and after the framing task element 

and the delay composite element there are three set attribute elements that are used to set the value 

of local entity attributes to the current simulation time (e.g., LX(100) = TimeNow in Figure 5-4). 

By doing so, the processing and delay times at the framing station are calculated as the difference 

between the respective local attributes. Once an entity exits the delay composite element, it releases 

the framer resource and captures the next station (i.e., the buffer table (BT)) if it is not occupied 

by a preceding entity. If the buffer table is available, the entity exits the FS composite element 

which denotes the completion of the framing process. 



84 
 

 

Figure 5-4. Simulating delay events at the framing station using the branch element 

Following the same logic and similar approach, the entity moves sequentially forward to the buffer 

table, sheathing station, and multifunction bridge composite elements. At each workstation, the 

resources are captured and released between operations and the corresponding processing time is 

collected through statistics elements and stored in local attributes of the entity. Once an entity 

passes through all the workstations, all processing cycle and delay times are collected, and the 

entity is routed to the “Charts & Printing” composite element before being destroyed by a destroy 

element, which simulates the completion of this phase of production. Within the “Charts & 

Printing” element, an execute element is used to convert and store all the data and statistics of the 

passing entity (i.e., MWP physical properties and the simulated processing and waiting times) into 

a record in a spreadsheet (.csv file) for each day of production. Spreadsheets for all production 

days are then combined and used for later analysis and to develop the machine learning models. 
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The simulation model runs until it has executed all the entities that exist in the database. The DES 

model is setup to process wall panels on a daily basis (i.e., process and record statistics of the 

panels that have the same ‘date’ attribute from the database). The counter elements within the 

model are used to count and track the number of entities passing through a specific path. This is 

used for the verification process of the model, which is described in Section 5.3.1.  

5.2 Estimating Activity Durations 

In practice, if an activity is performed repeatedly, it takes a different duration every time it is 

carried out. This duration depends on a large number of factors including worker skill level, 

material availability, and machine performance, to a name a few. Activity durations in discrete-

event simulation are traditionally modelled using probability distributions [176]. For each activity 

in the model, the task time required to complete the activity is estimated by using a) a closed-form 

formula that largely depends on the physical characteristics of the panel being processed, or b) a 

random variate sampled from a probability distribution that is fitted to actual data (i.e., actual data 

is either collected during a time study or extracted from RIFD timestamps). 

Each MWP has different attributes (e.g., type, length, width, number of regular studs, number of 

windows/doors) which are required to estimate the processing time at different workstations and 

to route the entity as it travels through the DES model. For example, the processing time to 

complete the framing of single panel i, T𝑓𝑟𝑎𝑚𝑒,𝑖, is the summation of installing individual 

components and is calculated using Equation 5-1 as follows: 

T𝑓𝑟𝑎𝑚𝑒,𝑖 = 𝑇𝑃,𝑖 + (𝑆𝑅𝑖 ∗ 𝑇𝑆𝑅,𝑖) + (𝑆𝐷𝐿𝑖 ∗ 𝑇𝑆𝐷𝐿,𝑖) + (𝑆𝑀𝑖 ∗ 𝑇𝑆𝑀,𝑖) + (𝑂𝑆𝑖 ∗ 𝑇𝑂𝑆,𝑖) + (𝑂𝐿𝑖 ∗ 𝑇𝑂𝐿,𝑖) 5-1 

where:  𝑇𝑃,𝑖 is the time required to load the top and bottom plates; 
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𝑆𝑅𝑖 is the total number of regular studs (i.e., 2" × 4" or 2" × 6" standard stud); 

𝑇𝑆𝑅 is the time required to nail a single regular stud to the top and bottom plates; 

𝑆𝐷𝐿𝑖 is the total number of double and L-shaped studs; 

𝑇𝑆𝐷𝐿 is the time required to nail a single double or L-shaped stud;  

𝑆𝑀𝑖 is the total number of multi-studs (i.e., 3 or more studs installed together); 

𝑇𝑆𝑀 is the time required to nail a single multi-stud; 

𝑂𝑆𝑖 is the total number of small openings (window or door assembly); 

𝑇𝑂𝑆 is the time required to install a single small opening component; 

𝑂𝐿𝑖 is the total number of large openings (window or door assembly); and 

𝑇𝑂𝐿 is the time required to install a single large opening component. 

As for the sheathing station (SS), the time required to install sheathing sheets for exterior panels, 

T𝑠ℎ𝑒𝑎𝑡ℎ𝐸,𝑖, is the summation of the time required to place the sheets and then nail them to the frame 

by workers as per Equation 5-2. For interior panels, the entities bypass the installation path as 

interior panels do not have sheathing. This routing logic is built within the DES model. 

T𝑠ℎ𝑒𝑎𝑡ℎ𝐸,𝑖 = (𝑆𝑆𝐹𝑖 + 𝑆𝑆𝑃𝑖) ∗ 𝑇𝑝𝑙𝑎𝑐𝑒 + (𝑆𝑆𝐹𝑖 + 𝑆𝑆𝑃𝑖) ∗ 𝑇𝑛𝑎𝑖𝑙  5-2 

where:  𝑆𝑆𝐹𝑖 is the total number of full sheets of sheathing for panel i; 

𝑆𝑆𝑃𝑖 is the total number of partial sheets of sheathing for panel i; 

𝑇𝑝𝑙𝑎𝑐𝑒 is the time required to place a single full or partial sheet; and 

𝑇𝑛𝑎𝑖𝑙 is the time required to nail a single full or partial sheet. 



87 
 

Work at the sheathing station is advanced primarily by manual workers, thus the process time for 

each task can be considered deterministic by splitting the entire process into sub-task groups. It 

should be noted that the time required to install single components as described in the above 

equations (i.e., time required nail a single stud or place a single full sheet) can either be 

deterministic or stochastic drawn from a probability distribution. Examples of activity durations, 

calculated in minutes, at each of the four workstations are shown in Table 5-1. Duration 

distributions are either developed based on 1) actual RFID timestamps for triangular and beta 

distributions, or 2) observations of the production floor operations for constant values. In the 

Duration Distribution column, the three numbers indicated as being sampled from a triangular 

distribution refer to the lowest, highest, and most likely values. 

Table 5-1. Examples of activity duration distributions 

Workstation Activity Duration Distribution (minutes) 

Framing 
Station 

Nailing single regular stud Triangular(0.10, 0.70, 0.15) 

Nailing single double/L-shaped stud Triangular(0.20, 0.95, 0.35) 

Nailing single multi-stud Triangular(0.30, 1.40, 0.45) 

Installing small opening assembly Triangular(0.80, 2.00, 1.00) 

Installing large opening assembly Triangular(1.00, 2.20, 1.20) 

Checking plans – delay Triangular(0.05, 0.35, 0.16) 

Correcting errors – delay Triangular(0.05, 1.00, 0.30) 

Buffer Table 
Preparing cuts Constant(0.50 * #cutzones) 

Correcting errors for interior panels Beta(2.02, 7.13, 0.03, 34.95) 

Correcting errors for exterior panels Beta(2.13, 11.13, 0.33, 54.5) 

Sheathing 
Station 

Placing exterior sheets Constant(0.30 * #sheets) 

Nailing exterior sheets Constant(0.20 * #sheets) 

Moving interior panels Constant(0.25) 

Multifunction 
Bridge 

Refilling nail magazine Triangular(1.00, 2.00, 1.50) 

Various delays – for exterior panels Triangular(1.50, 9.00, 4.50) 

Removing wastes – for interior panels Constant(0.05 * panel length) 

 



88 
 

To determine the delays that might occur at the framing station, the durations of individual delays 

are observed, and the distribution for delay time and the probability of delay occurrence are 

calculated. The likelihood of a delay occurrence happening is calculated as the number of 

observations where that type of delay occurs over the total number of observed delays. 

 

5.3 Model Validation and Output 

5.3.1 Model validation and verification 

Simulation model verification is the process carried out to ensure the model has been correctly 

implemented, while model validation refers to confirming that the model emulates the real-world 

system to an acceptable level of accuracy. More formally, model verification is defined as 

“ensuring that the computer program of the computerized model and its implementation are 

correct”, and model validation is defined as “the substantiation that a computerized model within 

its domain of applicability possesses a satisfactory range of accuracy consistent with the intended 

application of the model” [179]. 

The developed simulation model can be verified in several ways. One way is by including a 

dynamic counter that changes as the entities pass through the model. This is implemented by the 

text block that changes the simulation run and the target date as shown in the lower right corner of 

Part 2 in Figure 5-2. As the entities flow through the model, the simulation run, and the target date 

(i.e., the date at which panel production took place) are updated as well as the processing times at 

each workstation which verify that the model is implemented correctly. Moreover, the total number 

of entities created matches the total number of entities destroyed. The model entities are traced 

along the simulation time using several counter elements to determine if the model logic and 
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branch probabilities are correct. Also, the model integrity check provided by Simphony.NET is 

used prior to model execution where logical, data, and computer language errors that are identified. 

The simulation model is validated at two levels. First, the simulated total cycle time is compared 

with the actual cycle time obtained from the RFID tracking system. This comparison is carried out 

by examining the mean value and variance of the two cycle times and checking the statistical 

significance of the difference using two-tail paired t-test statistics at a 95% confidence level (i.e., 

at a significance level 𝛼 = 0.05). The paired sample t-test is a statistical procedure used to 

determine whether the mean difference between two sets of observations is zero, and is performed 

by comparing the calculated p-value to the given significance level, 𝛼. Given the mean of 

simulation cycle times, 𝜇𝑠𝑖𝑚, and the mean of actual cycle times, 𝜇𝑎𝑐𝑡, the null hypothesis, 𝐻𝑜, and 

alternative hypothesis, 𝐻𝑎, are set as shown in Equation 5-3. 

𝐻𝑜: 𝜇𝑠𝑖𝑚 − 𝜇𝑎𝑐𝑡 = 0 𝑎𝑛𝑑 𝐻𝑎: 𝜇𝑠𝑖𝑚 − 𝜇𝑎𝑐𝑡 ≠ 0 5-3 

The simulated data has been randomly sampled from all available data based on stratified sampling 

where each month represents one stratum. Given a sample of one month which contains a total of 

503 records representing 18 working days, the mean values of simulated and actual cycle time data 

are 𝜇𝑠𝑖𝑚 = 44.6 minutes, and 𝜇𝑎𝑐𝑡 = 43.6 minutes, respectively, as shown in Figure 5-5. The p-

value is calculated as 0.182, which is greater than the selected level of significance of 0.05 which 

leads to the conclusion of failing to reject the null hypothesis. That is, from a statistical viewpoint, 

the performance of the simulation model is very comparable to the actual production system which 

validates the overall model. The second level of validation is performed at the workstation level. 

Each workstation time is validated by comparing the simulated CT and actual CT extracted from 

the RFID timestamps. Figure 5-6 shows the empirical density distribution of actual cycle times (in 

orange) along with the simulated cycle times (in blue) for each of the four workstations.  
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Figure 5-5. Probability distribution of simulated and actual total CT 

 

Figure 5-6. Probability distribution of actual and simulated CT for the four workstations 
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The vertical lines in Figure 5-6 indicate the median value of each cycle time. One observation is 

that the actual cycle time curve is more tortuous compared to the smoother simulated curve which 

is an indication of more irregularities during actual operations. Except for the sheathing station, 

the two curves (i.e., actual and simulated) seem to follow the same pattern and are very comparable 

suggesting that the simulation model is valid at the workstation level. As for the sheathing station, 

the apparent difference between the two curves might be due to the nature of operations at this 

station since they are more manual and less predictable, which indicates the simulation model does 

not accurately capture the variability of the operations. 

Nevertheless, this behavior does not affect the validity of the simulation output as the purpose of 

the model is not to examine what-if scenarios in which case the model might need to be more 

accurate at an individual workstation level. 

5.3.2 Simulation model output 

Simulation model outputs can be very diverse, ranging from statistics reports to graphical 

representations of target variable distributions. However, the purpose of the present DES study, as 

described in Section 5.1.1, is to generate additional features capturing some aspect of the real-time 

loading conditions of the job shop. Those features are not present in the original dataset and might 

be impractical or impossible to extract from the raw data. Hence, the main output of the present 

simulation model is a spreadsheet (.csv file) that contains the original dataset augmented with 

additional engineered features. This dataset is used to generate four datasets, each of which 

contains a different set of features as described in Section 5.1.1 and are used to develop the ML 

models as illustrated in Figure 5-1 and further described in Section 5.4. For the second dataset (i.e., 

‘SL wait dataset’), the features generated from the DES model capture some aspect of the real-
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time loading conditions of the job shop that cannot be extracted from actual data, and they include 

the following: 

a) Features that record the waiting time of the panel preceding the current active panel, i.e., 

“priori wait @FS”, “priori wait @BT”, and “priori wait @SS”. 

b) Features that record the starving time of workstations before the current active panel starts the 

production process, i.e., “starving @BT”, “starving @SS”, and “starving @MFB”. 

Those two sets of features are believed to capture important aspects of the system status at the time 

the current panel enters the production line. The effect of the newly created features is investigated 

when developing the ML models by examining the improvement of the predictive accuracy when 

those features are added to the dataset as compared to the raw dataset. As the simulation entity 

goes through the simulation model, those features are captured and stored in global attributes (i.e., 

GX attributes in Simphony.NET) and assigned to the next panel. Figure 5-7 illustrates how the 

process generates the new features and assigns them to entities. Before the entity exits the 

simulation at the destroy element, a new record capturing all the entity features (i.e., raw features 

and SL features) is added to the spreadsheet. 

 
Figure 5-7. Process of creating and assigning new features within the simulation model 
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Moreover, the third dataset (i.e., ‘SL length dataset’) adds to the raw dataset a set of SL features 

that capture the number, length, and processing times of priori panels. These shop loading features 

are similar to the ones generated from the actual RFID timestamps, as described in Section 4.4. 

5.4 Discussion and Comparison of ML Models 

5.4.1 Experiment setup 

Based on the sample data used to create the DES model and the resultant dataset (i.e., the dataset 

containing original features augmented with SL features generated using the simulation model), 

an experiment is conducted to examine the effect of those newly generated features on the 

predictive accuracy of ML models. An approach similar to the one used Chapter 4 in is used to 

prepare the data, develop the machine learning models, and compare their performance. The 

experiment comprises the development of an Extremely Randomized Tree (ERT) model [180] 

with optimized hyperparameters for the four datasets described in Table 5-2. 

The target variable is set as the simulated total CT, which is now considered as the ground-truth 

against which the predictions obtained from the ML models are compared. Three performance 

comparisons are conducted: (1) to examine the improvement in CT predictability when adding ‘SL 

wait features’ to the dataset (i.e., using the second dataset), (2) to examine the improvement in CT 

predictability when adding ‘SL length features’ to the dataset (i.e., using the third dataset), and (3) 

to examine the improvement in CT predictability by adding all SL features to the dataset (i.e., 

using the fourth dataset). In each experiment, the dataset is divided into training and testing sets. 

The ERT model is developed using the training set and the performance is measured on the testing 

set using the measures described in Section 2.3.4. The testing set is always selected to be the 

records of one day (i.e., the one day where cycle times are to be predicted) for which the prediction 
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of the model is tested while the training set is selected to be some previous lookback timeframe. 

As part of the model development exercise, it is necessary to determine the optimal lookback 

timeframe used for the training set for this type of time-sensitive prediction. 

Table 5-2. Description of the datasets used in the experiment 

Dataset 
Name 

Description Attributes 

raw 
dataset 

raw dataset that contains only 
the physical characteristics of 
wall panels – no SL features 

'FirstReadDate', 'Length', 'Width', 

'Type', 'Cutzone', 'Drillhole', 

'Stud', 'DStud', 'LStud', 'MStud', 

'SmallOpenings', 'LargeOpenings', 

'BlockBacking', 'NailCount', 

'NailLine', 'Sheetfull', 

'SheetPartial' 

SL wait 
dataset 

raw dataset augmented with 
SL features capturing priori 
waiting time of WIP and 
priori starving time of 
workstations 

'FirstReadDate', 'Length', 'Width', 

'Type', 'Cutzone', 'Drillhole', 

'Stud', 'DStud', 'LStud', 'MStud', 

'SmallOpenings', 'LargeOpenings', 

'BlockBacking', 'NailCount', 

'NailLine', 'Sheetfull', 

'SheetPartial', 'Wait@FS', 

'Wait@BT', 'Wait@SS', 'starve@BT', 

'starve@SS', 'starve@MFB' 

SL length 
dataset 

raw dataset augmented with 
SL features capturing the 
number, length, and 
processing time of priori 
panels (SL features of 
Chapter 4) 

'FirstReadDate', 'Length', 'Width', 

'Type', 'Cutzone', 'Drillhole', 

'Stud', 'DStud', 'LStud', 'MStud', 

'SmallOpenings', 'LargeOpenings', 

'BlockBacking', 'NailCount', 

'NailLine', 'Sheetfull', 

'SheetPartial', 'WP', 'WPLength', 

'WPTime' 

SL full 
dataset 

raw dataset augmented with 
all SL features described 
above 

'FirstReadDate', 'Length', 'Width', 

'Type', 'Cutzone', 'Drillhole', 

'Stud', 'DStud', 'LStud', 'MStud', 

'SmallOpenings', 'LargeOpenings', 

'BlockBacking', 'NailCount', 

'NailLine', 'Sheetfull', 

'SheetPartial', 'Wait@FS', 

'Wait@BT', 'Wait@SS', 'starve@BT', 

'starve@SS', 'starve@MFB', 'WP', 

'WPLength', 'WPTime' 

 

The lookback timeframe refers to the number of days from the historical data used to train the 

model, as described in Section 4.5.1 and shown in Figure 2-8. This duration may have a substantial 
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effect on the accuracy of the model, and it is largely dependent on the specific dataset used. After 

conducting several experiments, it is determined that a lookback duration of 5 days is optimal 

when developing the model. The effect of the lookback duration on the mean absolute percentage 

error (MAPE) is illustrated in Figure 5-8 for a few sample production days. 

 

Figure 5-8. Effect of lookback duration on MAPE for sample production days 

5.4.2 Results and discussion 

Based on the above, ERT models are developed using the optimized parameters to predict the cycle 

time for the four datasets described in Table 5-2. The ERT optimized parameters include a 

lookback timeframe of five days, a number of trees to train of 400, and the number of features used 

to train the model is 90% of the total number of features for each dataset. 

The results of the performance measures are summarized in Table 5-3 where the last row of the 

table shows the improvements achieved when SL features are added to the raw dataset. This 

improvement is measured as the reduction in MAPE when SL features are included. It is worth 
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noting that the performance results represent the average values for running the experiments for 

ten randomly sampled days. 

Table 5-3. Performance measures of ERT model on the four datasets 

 Dataset 1 
raw data 

Dataset 2 
‘wait’ SL 

Dataset 3 
‘length’ SL 

Dataset 4 
All SL features 

Mean Absolute Error (MAE) 8.35 6.84 6.91 6.44 
Median Absolute Error 
(MedAE) 6.95 5.77 6.01 5.18 

Maximum Error (MaxAE) 21.46 19.44 18.16 17.66 
Mean Absolute Percentage Error 
(MAPE) 21.0% 16.5% 17.3% 14.6% 

Correlation Coefficient (CC) 0.53 0.66 0.67 0.70 

Improvement on MAPE n/a 4.5% 3.7% 6.4% 
 

Examining the results of the performance measures in Table 5-3, it is observed that there is a 

consistent improvement in the model’s predictive accuracy when shop loading features capturing 

some aspects of the real-time loading conditions of the job shop are added to the dataset. Dataset 

1, the raw dataset with only the physical properties, shows inferior performance measures with an 

average MAPE value of 21%. In particular, the model performance improves by a reduction of 

4.5% in MAPE score and an increase of 13% in CC when SL waiting time features (i.e., Dataset 

2) are added; by a reduction of 3.7% in MAPE score and an increase of 14% in CC when SL length 

features (i.e., Dataset 3) are added, and when all SL features are added (i.e., Dataset 4) the 

reduction in MAPE is 6.4% and the increase in CC is 17%. All other performance measures exhibit 

similar improvement trends. The results of performance measures also show that all datasets 

exhibit similar trends by being positively skewed (i.e., the distribution of predicted CT has a long 

tail to the right). This can be inferred from the MAE scores being consistently greater than the 

MedAE scores for each of the four datasets. These results show consistency in performance 
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improvement when shop loading features augment the raw dataset, which achieves the third 

objective in this thesis. 

Moreover, it is observed that augmenting the raw dataset with different sets of SL features 

improves the performance of the machine learning models differently. Capturing the waiting time 

of prior panels and the starving time of workstations of priori production (i.e., as in the case of 

Dataset 2) is more beneficial than capturing the number, length, and processing time of priori 

panels (i.e., as in the case of Dataset 3). However, combining the two sets of features (i.e., as in 

the case of Dataset 4) offers the most significant improvement on the performance measures. Thus, 

the more information we can gather about panels immediately preceding the current panel in the 

production line, the better our ability to develop ML models with more accurate prediction power. 

On another note, when using simulated datasets, the overall performance improvement (i.e., better 

predictability as observed by lower error measures and higher CC) is similar and comparable with 

the performance improvement observed using the actual data as described in Chapter 4. In both 

cases, the reduction in MAPE varies between 3% and 10% and the increase in CC varies between 

13% and 56%. The difference in performance improvements between the simulated and actual 

data might be due to a few factors. One factor is that the development of the DES model may not 

accurately capture the actual nature of the production system because of the varying timeframe 

upon which the models were developed. The DES model was developed in 2019 while the 

available RFID data used to develop the ML models was made available for a different time period 

from 2015 to 2018. From this viewpoint, although the production system layout has not 

dramatically changed, numerous factors might have substantial effects on the system dynamics 

and how the collected data reflect the actual system performance. For example, the market supply 

and demand in the IBC industry are volatile as can be observed by the various cycles of high 
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activity and recessions, as shown in Figure 4-7. Also, the skills of the available workers 

significantly affect the production. Skilled workers tend to perform manual tasks more efficiently 

than unskilled workers, a factor that was not implemented when developing the simulation model. 

Another factor is the nature of the generated SL features which might capture different aspects of 

loading conditions of the job shop. In essence, although capturing the waiting time of prior panels 

in the system and the starving time of workstations in the simulated environment seem intuitively 

informative, these generated features seem to capture the loading conditions differently than what 

SL features developed based on actual RFID data capture. Nevertheless, capturing real-time 

loading conditions of the job shop does indeed improve the prediction accuracy in both cases. 

5.4.3 Conclusion 

In conclusion, the simulation model can be used to propose specific mechanisms for collecting 

certain types of data that are otherwise not accounted for during the normal daily operations of the 

factory. The proposed collection of these specific features is suggested to enhance the development 

of ML predictive models and reduce the effort necessary for data preparation as well as rendering 

the generation process of relevant features more consistent and automated and less prone to 

subjectivity and customizations. In order to reap the full benefits of the simulated data, the 

simulation model needs to be developed based on actual data that reflect the current layout and 

operation of the production line. The simulation model, nevertheless, supports the hypothesis that 

real-time loading conditions of the job shop constitute a crucial element that should be included in 

the dataset in order to improve the predictive accuracy of any ML model. The loading conditions 

of the job shop can be represented by many forms and the right set of features that capture those 

conditions require a thorough understanding of the production process under investigation.  
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Chapter 6 Industrial Pipe Spool Fabrication Facility  

This chapter describes the second case study where the proposed framework is applied to predict 

the fabrication duration in a pipe-spool fabrication shop. Following a brief introduction, the chapter 

is divided into five main sections. First, the manufacturing processes and work sequence are 

described. Then, data identification and collection are presented, followed by a detailed 

explanation of data cleaning and preparation tasks. The fourth section is dedicated to the 

development of engineered features that capture real-time loading conditions of the job shop. 

Lastly, the development, evaluation, and comparison of regression machine learning models are 

described. 

Industrial construction projects such as petroleum refineries and oil and gas production facilities 

require intensive piping that connects a variety of equipment that is used to transport processed 

fluids and gases [181]. Because of time and space limitations, these industrial construction projects 

rely heavily on offsite prefabrication and preassembly. The prefabricated components of a piping 

system are called pipe spools and include pipes, fittings, elbows, flanges, and other components 

that differ widely in terms of material, shape, finish, and other properties. The number of pipe 

spools can be in the order of thousands in a typical-sized (i.e., $200–$300 million) industrial 

project [182]. These components are preassembled into modules before being shipped to remote 

sites for final assembly. The fabrication process takes place in a fabrication yard or shop and 

typically includes cutting, fitting, welding, quality control checking, stress relief, hydro testing, 

painting, and other surface finishing [65,182]. Before the fabrication of modules, the associated 

spools need to be ready; however, a large inventory of pipe spools would increase the requirements 

for storage and result in double handling. Determining the right time to start the fabrication of a 
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pipe spool can be challenging as many factors affect the fabrication duration such as product 

specifications, workforce performance, shop loading and its capacity. Such conditions may lead to 

unbalanced production and impose challenges when predicting the completion time. 

6.1 Process Description and Work Sequence 

The case study analyzed in this chapter is an industrial pipe fabrication shop located in Alberta, 

Canada. Pipe spool fabrication involves several sequential phases as illustrated in Figure 6-1. 

 

Figure 6-1. Main phases of pipe spool fabrication process 

6.1.1 Drafting and engineering phase 

This phase involves breaking the whole project into smaller work packages, each of which consists 

of the fabrication of a manageable pipe spool segment. The CAD drawings received from the 

designer are transformed into isometric drawings and typically contain a bill of materials (BOM) 

table. The isometrics drawings are detailed and then checked for consistency and errors. A 

preliminary construction schedule is prepared based on the fabrication packages. The BOM, shop 
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drawings, and relevant information about the fabrication process are put together in what is known 

as the shop fabrication package. The material issue report (MIR) date records the date at which the 

raw materials for each package are required, and it represents the starting of the fabrication process 

of the pipe spool. 

6.1.2 Material supply phase 

Once the shop fabrication package is ready, the material supply phase starts with the “Receive 

Raw Materials” activity, which refers to the process of verifying, storing, and recording all the 

bulk material shipments of each project. The fabrication package cannot be issued until all the raw 

materials required for each package has a status of “available” in the material management 

database. A work crew picks up the required material based on the BOM by a) assembling all the 

non-pipe components (i.e., fittings such as elbows, valves, supports) on carts or pallets, and b) 

identifying and cutting the required pipes to the specified lengths using the cut summary sheet. 

Once all the fittings are placed on carts and the pipes have been cut and marked with a spool 

identifier, all materials are transported to the fabrication shop. Then, the remaining documentation 

including the isometric drawings and the package schedule is attached and delivered to the 

fabrication foreman in order to start the fabrication phase. 

6.1.3 Fabrication phase 

The primary value-added activities are carried out during this phase. The fabrication phase 

primarily consists of two sequential processes: fitting and welding. The fitting process requires 

assembling the components according to the drawings and specifications, and it typically involves 

pipe edge preparation (i.e., beveling and grinding), alignment and levelling of pipe assemblies, 

and tack welding of components to secure them in place. The welding process completes the 

welding of the fitted and partially finished subassemblies using various welding techniques. The 
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entire pipe spooling process can be classified as either roll fitting and welding (RFW) or position 

fitting and welding (PFW). In RFW, the main pipe is rotated using a rolling machine, and the 

worker (i.e., welder) does not need to change their position to perform the task. In PFW, portions 

of the main pipe are too large to be turned by rolling machines in which case the subcomponents 

need to be aligned using pipe stands where the worker moves around to fit and weld the pipes. The 

process of PFW is generally more time-consuming than that of RFW. Hence, as an objective of 

pipe spool fabrication sequencing, considerable efforts are typically taken to reduce the required 

number of PFW [183]. The quality control (QC) procedures are typically carried out during both 

fitting and welding processes to check the alignment of the spools and the quality of the welding 

to ensure conformance with project specifications. 

6.1.4 Post-fabrication phase 

Once the fabrication phase is completed and before the spools can be delivered to the customer, 

post-fabrication processes need to be performed. It should be noted that post-fabrication tasks are 

performed either on all the welds or a random sample depending on project requirements. The 

material transfer report (MTR) date records when all fabrication and post-fabrication processes are 

complete, and it represents the finishing of the fabrication process of the pipe spool. 

The post-fabrication phase typically starts with a detailed visual inspection of the pipe spool to 

check its dimensions, alignment, weld quality, and conformance with drawings. Then, 

nondestructive examination (NDE), also known as nondestructive inspection or testing, is 

performed. NDE methods rely upon the use of electromagnetic radiation, sound, and other types 

of signals to examine the pipe spools for integrity, composition, and conditions without affecting 

the serviceability of the spools. Common nondestructive examination methods include 

radiographic and ultrasonic testing [184], which are used to analyze the quality of the weld 
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throughout its cross-section. Other NDE methods are described on the American Society for 

Nondestructive Testing website [185]. Post-weld heat treatment (PWHT) might be required 

depending on the type of material and pressures to which the pipe spool will be subjected during 

operation. PWHT is the process of reducing or redistributing the residual stress caused by the high-

temperature gradients during the welding process. It is performed so that the internal structures of 

the metal are harmonized by reheating the weld and surrounding area of metal to below the lower 

transformation temperature at a controlled rate, keeping at that temperature for a specific time, and 

then cooling at a controlled rate [186]. Another type of testing that may be required is the hydro 

test, which involves pressurizing the pipes to a factor greater than its operating design pressure. 

This pressure is set by code (i.e., ASME III and ASME B31.1) and is often 1.5 × 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 to ensure 

the welds can withstand operating loads [187]. Although this test is required for all spools 

subjected to a pressurized environment, the testing can be performed either before or after its 

installation in a module or when installed on site. When spools are to be welded together after 

being placed in the module or shipped for site assembly, hydro testing is performed after the final 

onsite assembly is completed. Once all the required inspections and tests are completed, pipe 

spools may be routed to the paint shop for sandblasting and coating. Each spool has specialized 

testing and painting requirements based on project specifications. 

6.1.5 Shipping phase 

After the post-fabrication phase, individual or batches of spools are marked as ready for delivery. 

Batching of spools leads to further uncertainty being introduced to the scheduling. The shipping 

phase includes tagging each spool with a unique identifier and preparing the turnover package that 

contains copies of all the documentation utilized during fabrication and testing. Once the turnover 

package is prepared, the spools are either shipped to the construction site individually (i.e., ship 
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loose) or placed in a piping module in the module yard (i.e., mod yard) to be shipped as a complete 

structure. 

6.2 Data Identification and Collection 

6.2.1 Collection of raw data 

The raw dataset analyzed in this study covers a period of approximately 18 months from September 

2013 to February 2015 (based on actual fabrication dates as opposed to planned dates). The initial 

dataset is available as an MS Excel binary spreadsheet (.xlsb) provided by the industrial partner 

for analysis. In a previous study, an author developed a system to integrate data collection systems 

in the fabrication shop with heuristic scheduling rules provided by the manufacturing facility 

experts [12]. Figure 6-2 illustrates a data flow diagram where the information is accessed through 

three different data sources managed by two databases: Drafting Database, and Material 

Management Database. 

 

Figure 6-2. Data flow diagram from data sources to initial dataset 
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For the present analysis, the drafting database provides spool characteristics and some milestone 

tracking information that are exported to a spreadsheet called “FabStatus”. The material 

management database provides a) material forecast and availability information that is exported to 

a spreadsheet called “FabShortage”, and b) fabrication tracking and storing milestone tracking 

information that is exported to a spreadsheet called “FabTrack”. These three data sources are 

combined together in a new data spreadsheet. A unique identifying number for each spool, called 

“Control Number”, is created in the form of xxx-yyyyyy where xxx is the last three digits of the 

project number and yyyyyy is a serial number for a spool in that specific project. All redundant and 

repeated fields are removed at this stage and the material availability, number of items, and largest 

diameter of each spool is determined by consolidating information available at a component level. 

The output of this phase is the “Initial Dataset”, where each row represents a single pipe spool 

along with all associated information. 

6.2.2 Identification and description of collected data 

The collected historical data is investigated with the goal of developing ML models that can predict 

the fabrication duration and estimate delivery date of future pipe spools. A pipe spool fabrication 

shop in Alberta has made data available for analysis that includes fabrication progress milestones 

that have been tracked. By looking at past fabrication durations, it is anticipated that useful 

relationships may be drawn to estimate the scheduling of future projects. The “Initial Dataset” 

spreadsheet has 68 attributes that have been obtained from the data collection tasks as described 

in the previous section. These attributes are described in Table 6-1 and organized into several 

categories. The seven fabrication processes (i.e., Fit, Weld, QC, NDE, PWHT, Hydrotest, and 

Paint) have similar attributes pertaining to the scheduling of these processes and are shown in full 

in order to present the complete composition of the dataset. 
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Table 6-1. Initial dataset attributes - column headers 

Category Attribute Description 

Spool 
Information 

Control Number Unique identifier of the spool 
Project Project of which the spool is part 
FIWP Field Installation Work Package of which the spool is part 
Priority Assigned priority order of the FIWP 
Diameter Inches Sum of the diameter inches to be welded 
Max Size Diameter of the largest item in the spool 
Grade Code for the material grade or type for the spool 
Weight Total weight of the spool, computed at the drafting stage 
Surface Area Surface area that a spool occupies 
No. of items Total number of components making up the spool 

Fabrication 
Details 

Status Fabrication status of a spool (i.e., On Hold or In Fab) 
Bay # Number of the shop bay where the spool is fabricated 
ECN Column Engineering Change Notice (contains subcontractor info) 
Hold Details Any details regarding a client hold 
Drawing Check Date Date the spool drawing has been checked 

Issuing 
Schedule 

Material Available? Yes/No attribute derived using Material Management Data 
RAS Date Required At Site Date - spool completion deadline 
Expected Ship Date Date computed after a spool fitting has been completed 
MIR Number Material Issue Report number 
Planned MIR Date Scheduled Material Issue Report date of the spool, based 

on RAS date 
Actual MIR Date Actual Material Issue Report Date – represents the start 

date of the spool 
Planned Matl Issue Date Date by when material is required to be prepared 
Actual Matl Issue Date Actual date when material preparation was complete 
Location Spool fabrication location (either Bay# or Subcontractor) 

Fitting 
Schedule 

Scheduled Duration 

Scheduling and tracking attributes for the Fitting process 

Scheduled Start Date 
Actual Start Date 
Scheduled Finish Date 
Actual Finish Date 
Actual Duration 

Welding 
Schedule 

Scheduled Duration 

Scheduling and tracking attributes for the Welding process 

Scheduled Start Date 
Actual Start Date 
Scheduled Finish Date 
Actual Finish Date 
Actual Duration 
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Category Attribute Description 

QC 
Schedule 

Scheduled Duration 

Scheduling and tracking attributes for the Visual Inspection 
process 

Scheduled Start Date 
Actual Start Date 
Scheduled Finish Date 
Actual Finish Date 
Actual Duration 

PWHT 
Schedule 

Scheduled Duration 

Scheduling and tracking attributes for the Post-Weld Heat  
Treatment process 

Scheduled Start Date 
Actual Start Date 
Scheduled Finish Date 
Actual Finish Date 
Actual Duration 

NDE 
Schedule 

Scheduled Duration 

Scheduling and tracking attributes for the Non-Destructive  
Examination process 

Scheduled Start Date 
Actual Start Date 
Scheduled Finish Date 
Actual Finish Date 
Actual Duration 

Hydro 
Testing 

Schedule 

Scheduled Duration 

Scheduling and tracking attributes for the Hydro Testing 
process 

Scheduled Start Date 
Actual Start Date 
Scheduled Finish Date 
Actual Finish Date 
Actual Duration 

Paint 
Schedule 

Scheduled Duration 

Scheduling and tracking attributes for the Painting process 

Scheduled Start Date 
Actual Start Date 
Scheduled Finish Date 
Actual Finish Date 
Actual Duration 

Transfer 
Dates 

MRR Date Material Receiving Report - represents a transfer of the 
spool between business units 

MTR Date Material Transfer Report - represents the completion date 
of the spool 

 

The scheduled dates are computed from the preliminary schedule developed during the drafting 

phase (RAS Date), whereas the actual dates are obtained from the tracking databases. Table 6-2 
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and Table 6-3 show example records from the spool information and issuing schedule categories, 

respectively. 

Table 6-2. Spool information example records 

Control 
Number Project FIWP Priority Diamete

r Inches
Max 
Size

Material 
Grade Weight Surface 

Area
No. of 
items

130 - 010005 3215130 MD-02-52 10 12 20.00 G 1246.23 96.63 2.00
140 - 030047 3215140 W04-PM-1103-52 08 33.5 6.00 A 255.06 14.40 11.00
290 - 070007 3215290 D-PIP-13-3-SL 19 8 12.00 E 75.07 12.30 4.00
461 - 082082 3215461 200NLA201-15E-08 07 28 4.00 A 471.40 47.95 5.00  

Table 6-3. Issuing schedule example records 

Material 
Available? RAS Date Expected 

Ship Date MIR Number Planned 
MIR Date

Actual MIR 
Date

Planned 
Matl Issue 

Date

Actual 
Matl Issue 

Date
Location

Y Jun 25 '14 May 22 '14 MIR-130019 May 14 '14 Apr 09 '14 May 22 '14 Apr 28 '14 Bay # 2
Y Sep 27 '14 Oct 23 '14 MIR-140056 Aug 18 '14 Sep 17 '14 Aug 25 '14 Sep 19 '14 Academy Fabrication
Y Jun 04 '14 Jan 21 '14 MIR-290074 Apr 29 '14 Nov 28 '13 May 06 '14 Jan 09 '14 Bay # 1
Y Jul 15 '14 Jul 29 '14 MIR-461112 Jun 03 '14 Jun 11 '14 Jun 10 '14 Jul 03 '14 Bay # 4  

It is crucial to identify unreliable or inconsistent data and carefully work around it. The attributes 

above have been carefully examined to determine which attributes are to be included in the current 

analysis. Attributes are discarded if they a) contain many missing data, b) contain redundant 

information that is available within other attributes, c) lack consistency in terms of content and 

value (i.e., data have been collected inconsistently over time between projects), or d) adds no value 

to the current analysis (i.e., heuristically they do not affect the prediction of fabrication duration). 

To avoid analyzing incomplete or incorrect data, heuristic approaches are followed to exclude 

certain columns and records; then, comprehensive data cleaning and preparation is carried out as 

described in the following section. 
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6.3 Data Preparation and Exploration 

The raw dataset for this study is obtained in the form of a spreadsheet that contains 14,829 rows 

(i.e., records) and 68 columns (i.e., features or attributes). The dataset includes a mixture of 

categorical and numerical attributes. Although these attributes are grouped into several categories 

for the ease of referencing as described in Table 6-1, they can be classified primarily as being 

either spool identification and physical descriptions (e.g., control number, max size, weight), or 

tracking dates (e.g., planned and actual MIR and MTR dates). 

6.3.1 Data transformation 

Date attributes present difficulties for data processing and might not be meaningful for the purpose 

of predicting durations. The difference between two date attributes is more useful because it 

indicates the duration to be investigated. The first step is to calculate the actual fabrication 

duration, FabDur, by using actual dates of major milestones. Those milestones include (1) the 

actual MIR date ,which marks the start of the overall fabrication process; (2) the fit actual finish 

date, FitactualF, which indicates the end of the fitting process, prior to the start of welding; (3) the 

QC actual finish date, QCactualF, which indicates the finish of quality control visual inspection prior 

to the start of post-fabrication processes; and (4) the actual MTR date, which marks the end of the 

fabrication process. Fabrication duration is then calculated as per Equation 6-1. 

𝐹𝑎𝑏𝐷𝑢𝑟 =  𝑀𝑇𝑅 𝑑𝑎𝑡𝑒 − 𝑀𝐼𝑅 𝑑𝑎𝑡𝑒 ∶  𝑀𝐼𝑅 ≤ 𝐹𝑖𝑡𝑎𝑐𝑡𝑢𝑎𝑙𝐹 ≤ 𝑄𝐶𝑎𝑐𝑡𝑢𝑎𝑙𝐹 ≤ 𝑀𝑇𝑅 6-1 

The condition imposed by the above equation is for consistency and practicality where the total 

fabrication duration needs to be valid and non-negative. Given missing date fields, which are 

denoted by the symbol ‘/’ in the dataset, or inconsistent dates (e.g., 𝑄𝐶𝑎𝑐𝑡𝑢𝑎𝑙𝐹 > 𝐹𝑖𝑡𝑎𝑐𝑡𝑢𝑎𝑙𝐹), 

applying the above equation will produce data cells with an error or negative value, which are 
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marked as invalid and are later removed from the dataset. Moreover, planned durations of the 

major milestones described above are calculated based on the planned finish dates. For example, 

the planned duration for the fitting process is calculated as the difference between the scheduled 

MIR and scheduled fitting process dates. It should be noted that determining the planned durations 

can be a challenging task since there exist many missing values. In such cases where one of the 

planned dates is missing, it was reasonable to assume the planned duration to be equal to the 

median value of actual durations. Four planned durations are calculated: MIR→Fit, Fit→QC, 

QC→MTR, and MIR→MTR. These planned durations will form one group of attributes that are 

used to experiment with ML model development. 

6.3.2 Data cleaning 

After calculating the total fabrication duration and the planned duration of major milestones, the 

following steps describe how the records and attributes are further prepared and cleaned for 

analysis (refer to Table 6-1 for attribute descriptions). 

1) Records: 

a. Records with invalid total fabrication durations are removed. 

b. Records where the attribute “Diameter Inches” is missing or equal to zero are removed. 

2) Attributes: 

a. Only “Control Number” is kept as a unique identifier for each pipe spool. Fabrication and 

other spool information are discarded as being irrelevant to the current analysis. 

b. Only actual and planned dates for MIR, fitting process, QC process, MTR, and RAS are 

kept for the purpose of calculating planned durations. These date attributes are discarded 

after completing the calculations and validation. 
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c. All data pertaining to the post-fabrication processes (e.g., PWHT and Paint) are replaced 

with a “Yes/No” attribute to indicate if the respective process has been completed or not for 

the specific pipe spool. Planned dates for post-fabrication processes are mostly missing and 

actual dates are not available for new products for which the duration is to be predicted. 

6.3.3 Data descriptions 

In this section, descriptive statistics are presented with respect to the physical numerical attributes 

of pipe spools and the planned and actual fabrication durations in order to gain a better 

understanding of the data and the process it represents. As can be observed in Table 6-4, most 

minimum values of physical attributes indicate unrealistic values, which might be due to 

inconsistency in collecting raw data (e.g., erroneous measurement, or wrong data entries). This is 

an indicator that these attributes may not be very informative for the purpose of predicting 

fabrication time. Intuitively, “Diameter Inch” is the attribute that would affect the fabrication 

duration the most as the time spent on fitting and welding is largely determined by how many 

inches need to be worked on. However, other physical attributes might affect the time of material 

storage and transportation as well as the type of welding material and techniques. 

Table 6-4. Descriptive statistics of physical numerical attributes and fabrication durations 

 mean std min 25% 50% 75% max 

Diameter Inches 19.93 25.42 0.50 6.00 12.00 24.00 552.00 

Weight (lbs) 436 1171 0.36 40 103 282 26304 

Surface Area 28.87 54.68 0.05 4.98 10.86 26.91 1020.39 

No of items 4.25 2.83 1.00 2.00 3.00 5.00 24.00 

Max Size 4.72 4.78 0.50 2.00 3.00 6.00 36.00 

Planned MIR to Fit 14.34 1.55 8.0 13.0 14.0 15.0 21.0 

Planned Fit to QC 2.96 0.33 -5.0 3.0 3.0 3.0 4.0 

Planned QC to MTR 12.49 4.68 6.0 10.0 11.0 15.0 32.0 

Planned MIR to MTR 29.88 4.65 19.0 27.0 29.0 32.0 53.0 

Fab Duration 41.49 22.28 1.00 25.00 39.00 53.00 169.00 
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The values for actual fabrication durations average around 42 days with a median value of 39 days 

and an extreme maximum value of 169 days. These values indicate a positively skewed distribution 

of the actual fabrication durations (i.e., an empirical distribution plot with a long tail to the right). 

Figure 6-3 shows the distribution of actual fabrication durations (i.e., Fab Duration) where it can 

be observed that most durations fall in the range of 15 to 55 days. Also shown in the figure is the 

distribution of planned fabrication durations (i.e., Planned MIR to MTR) with a much smaller 

spread as compared to the actual durations. By comparing actual and planned durations, one can 

observe the over-optimistic approach followed when planning pipe spool fabrication as compared 

to the actual shop performance. Therefore, adopting a data-driven approach would provide more 

robust and realistic schedules. Such an approach would also adapt to future changes in the 

performance and allow for faster and smarter shop control. 

 

Figure 6-3. Actual and planned total fabrication durations (days) 
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As part of the data preparation phase, and in addition to the insights gained from the descriptive 

statistical analysis, the fabrication dates have been examined for logical sequencing of events. Due 

to inconsistency in data collection and recording, dates for completing some activities are recorded 

as having occurred after some successor activities. For example, the fitting process can only start 

after the raw material has been delivered to the fabrication shop, which in turn only occurs after 

the MIR is issued. In a large number of instances, the MIR date has a later date than the start of 

the fitting process, which cannot practically happen. Similar observations are noted for logical 

sequencing of post-fabrication processes. For this reason, several intermediate date attributes (i.e., 

between MIR and MTR) have been discarded as previously described. It should be noted that 

arriving at the tidy dataset as described above is a two-way approach where a thorough 

understanding of each activity and planning and control methods employed at each stage is 

required. Also, examining the raw data has added to a deeper understanding of the underlying 

processes and activities. 

6.4 Feature Engineering 

6.4.1 Shop utilization features 

Similar to the first case study investigated in Chapter 4, information about the loading conditions 

of the job shop is believed to have a major impact on the overall fabrication duration. It is 

anticipated that shop loading at the time a new pipe spool starts production affects processing 

priorities, waiting time between fabrication phases, and the congestion levels at different 

workstations. To be able to quantify the shop loading conditions at the start date of fabrication, a 

measure of the shop utilization is developed based on the current volume of work being performed 

at the job shop. The four available physical characteristics of a pipe spool (i.e., Diameter Inches, 
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Weight, Surface Area, and No. of Items) are used each in combination with fabrication tracking 

information to derive four shop loading (SL) parameters. Each parameter represents the shop 

utilization at the start date of fabrication based on one physical feature. 

For the diameter inch (DI) shop loading parameter (DSL), it is computed using Equation 6-2 for a 

new pipe spool k by adding the DI of all the pipe spools that are still in fabrication at the time the 

new spool starts its production by the actual start date (MIR). The diameter inch count is commonly 

used as a measure of the amount of welding labor required. For example, the amount of labor 

required to weld a standard 12-inch carbon steel pipe is expressed as 12 DI. Diameter inch is the 

main factor used for the purpose of scheduling, cost estimating, and productivity measure [65,67]. 

𝐷𝑆𝐿𝑘 =  ∑ 𝐷𝐼𝑖

𝑛

𝑖=1

∶ 𝑀𝐼𝑅𝑘 ≥ 𝑀𝐼𝑅𝑖 𝑎𝑛𝑑 𝑀𝐼𝑅𝑘 ≤ 𝑀𝑇𝑅𝑖 6-2 

where:  𝐷𝑆𝐿𝑘  is the “Diameter Inches” shop loading of spool k; 

  𝑀𝐼𝑅𝑘 is the actual fabrication start date of spool k; 

  𝑀𝐼𝑅𝑖 is the fabrication start date of spool i; 

  𝑀𝑇𝑅𝑖 is the fabrication finish date of spool i; 

  𝐷𝐼𝑖 is the Diameter Inches of spool i at the start date; and 

  n is the number of pipe spools i when spool k starts production. 

Other shop loading features, including “Weight” shop loading (WSL), “Surface Area” shop 

loading (SSL), and “No of Items” shop loading (ISL), are calculated using a similar approach. The 

reason for deriving several shop loading features is to later examine which physical property has 

the largest effect on the predictability of fabrication duration. Before being added to the dataset, 

the four derived shop loading features (i.e., DSL, WSL, SSL, and ISL) are normalized so that the 

values lie between 0 and 1 [90]. Equation 6-3 shows how the DSL attribute is normalized: 
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𝑁𝑜𝑟𝑚. 𝐷𝑆𝐿𝑘 =  
𝐷𝑆𝐿𝑘 − 𝐷𝑆𝐿𝑚𝑖𝑛

𝐷𝑆𝐿𝑚𝑎𝑥 − 𝐷𝑆𝐿𝑚𝑖𝑛
 6-3 

In addition to the derived shop loading features described above, a shop utilization ratio (SUR) is 

calculated as the ratio between the actual DSL and the planned DSL as per Equation 6-4: 

𝑆𝑈𝑅𝑘 =  
𝑎𝑐𝑡𝑢𝑎𝑙 𝐷𝑆𝐿𝑘

𝑝𝑎𝑙𝑛𝑛𝑒𝑑 𝐷𝑆𝐿𝑘
 6-4 

The planned 𝐷𝑆𝐿𝑘 is calculated when spool k starts production as per Equation 6-2 based on the 

planned MIR date and the planned finish date (i.e., RAS date). Essentially, this ratio reports how 

busy the job shop actually is in comparison to what has been planned, which is believed to capture 

the agreement/difference between the actual and planned scheduling of the work. A graphical 

representation of computing a shop loading feature is illustrated in Figure 6-4 showing three pipe 

spools that are in production at the fabrication start date of a new pipe spool. 

 

Figure 6-4. Computation of SL for a new pipe spool 
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6.4.2 Features categorization 

After applying the cleaning and preparation steps as previously described, five engineered features 

capturing shop utilization are derived as presented in Section 6.4.1. For consistent referencing, and 

to be able to examine the effect of different subsets of features on the prediction accuracy of 

fabrication durations, features are categorized into four groups: 

a) Features pertaining to the physical properties that describe the dimensional and composition 

characteristics of the pipe spool. Those features include “Diameter Inches”, “Weight”, 

“Surface Area”, “No of Items”, “Max Size”, and “Grade”. 

b) Features pertaining to post-fabrication phase indicating whether or not a post-fab process is 

applied to the spool. Those binary features include “Paint”, “Hydrotest”, and “PWHT”. 

c) Features pertaining to the planned fabrication durations that computed the planned total 

duration “MIR to MTR” and its subprocesses “MIR to Fit”, “Fit to QC”, and “QC to MTR”. 

d) Features pertaining to shop loading that capture the real-time loading conditions of the job 

shop (i.e., shop utilization) depending on different physical characteristics. Those include 

“Norm. DSL”, “Norm. WSL”, “Norm. SSL”, “Norm. ISL”, and “SUR”. 

 

Figure 6-5. a) Preparation steps from Raw to Tidy dataset, b) Headers and example records of the 
tidy dataset 
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The tidy dataset consists of 6,989 records and 20 attributes. Figure 6-5 illustrates the change in 

dataset dimensions during the development of the tidy dataset. The bottom part of the figure shows 

the final complete dataset that is ready for analysis. As described above, the features are grouped 

into four sets with the target attribute conventionally located as the last column. 

6.5 Machine Learning Models for Regression 

Several experiments are conducted with the aim of developing an optimal ML regression model 

to predict the fabrication durations in the pipe spool shop. There are various available ML models 

that are suitable for regression analysis; however, due to recent advances, easier interpretability, 

and successful implementations in many fields, the focus in this case study will mainly be on tree-

based ensemble algorithms including random forests (RF), extremely randomized tree or extra 

trees (ERT), and gradient boosted decision trees (GBDT). RF and ERT belong to a class of 

ensemble models called bagging, while GBDT is a boosting algorithm [188,189]. In addition, the 

prediction results of these models are compared to the use of simple averaging of actual historical 

durations to estimate future fabrication durations. Simple averaging (i.e., use of Little’s Law) is 

used as a benchmark as it is used as a heuristic rule in practice. 

Before examining the various ML models, it is necessary to carry out a set of experiments to 

evaluate the viability the performance of different subsets of attributes as described in the next 

section. Attribute subsets are constructed to examine the effect of inclusion and exclusion of 

various levels of information on the performance of the ML models. The most promising attribute 

sets are carried forward for further experimentation. Subsequently, the hyperparameters of the best 

performing model on the optimal attribute dataset are tuned to achieve the best performance. 
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6.5.1 Evaluation of attribute subsets 

Presented in Table 6-5 are the different attribute subsets created for experimentation. The subsets 

present all possible combinations of the different attribute groups described in Section 6.4.2. Each 

dataset combination has been assigned an experiment number with a brief description. 

Table 6-5. Attribute subset experiments 
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1 Dataset with all attributes including SL and planned durations ✓ ✓ ✓ ✓ ✓ 

2 Dataset with only spool information ✓    ✓ 

3 Dataset with only spool information and post-fab processes ✓ ✓   ✓ 

4 Dataset with only spool information and SL ✓  ✓  ✓ 

5 Dataset with only spool information and planned durations ✓   ✓ ✓ 

6 Dataset with all attributes except planned durations ✓ ✓ ✓  ✓ 

7 Dataset with all attributes except SL ✓ ✓  ✓ ✓ 

8 Dataset with spool information, SL, and planned durations ✓  ✓ ✓ ✓ 
 

The performance measures, described in Section 2.3.4.1, are used to compare the various 

combination of attributes defined as subsets in Table 6-5. The subsets are evaluated based on a 

default RF model with 100 trees, the mean square error (MSE) as the criterion to measure the 

quality of a split, and the maximum possible depth of the trees. In these preliminary experiments, 

each dataset has been split into 80% training set and 20% testing set. The model is developed using 

the training set and the performance is measured on the testing set. The results of attribute subset 

performance measures are summarized in Table 6-6. 
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Table 6-6. Performance measures of attribute subsets 

Subset No. 1 2 3 4 5 6 7 8 

Mean Abs. Error 9.05 14.89 13.84 10.02 13.72 9.36 13.51 9.15 

Median Abs. Error 5.67 10.93 9.88 6.36 10.07 5.99 9.76 5.79 

Maximum Error 108.17 92.25 103.05 103.73 101.82 105.02 100.81 109.18 

Mean Abs. Percentage 
Error 30.48% 59.8% 52.04% 36.11% 51.2% 31.69% 50.24% 30.94% 

Correlation Coefficient 0.77 0.47 0.54 0.74 0.55 0.76 0.57 0.77 

 

The results show a consistent behavior, except for the maximum error, for all performance 

measures across all datasets as these measures are correlated to each other. Therefore, any measure 

can be used for comparison purposes. One important result that can be observed from Table 6-6 is 

the improved performance when the shop loading attributes are included in the dataset. This can 

be noted by the higher correlation coefficients (i.e., around 0.76) and the lower error measures 

(e.g., MAPE is about 32%) for the Datasets 1, 4, 6, and 8 where the SL attributes are included. 

When SL attributes are not present in the dataset, the results are inferior (e.g., MAPE as high as 

60%) from which we can conclude that SL attributes are crucial for the development of optimal 

ML models. 

Out of the four subsets where the shop loading attributes are included, the two with the slightly 

better performance measures (i.e., higher CC and lower MAPE) are Subsets 1 and 8, which are 

then used to further evaluate the effect of each individual shop loading attribute on the model 

performance. By selecting relevant SL attributes and discarding less-informative ones, the model 

performance is improved, and the computational requirements to develop and maintain the model 

are decreased. 



120 
 

According to the binomial theory, the number of k-combinations for all k is the number of all 

possible subsets of a set of n numbers; therefore, the total number of all possible combinations of 

the five SL attributes is found to be 31 subsets as per Equation 6-5. 

(
𝑛
1

) + (
𝑛
2

) + ⋯ + (
𝑛
𝑘

) =  2𝑛 − 1 6-5 

Experiments are carried out to find the optimal combination of SL attributes using the two 

candidate Subsets 1 and 8. The performance measures are calculated for each trial and compared 

in a similar manner as is shown in Table 6-6. Out of the 62 possible subsets (i.e., 31 possibilities 

for each of Subsets 1 and 8), it is observed that the change in performance measures is moderate 

with a CC ranging between 0.74 and 0.77, while MAPE ranges between 37% to 30%. When only 

one SL attribute is included, the results are inferior in general (worse results when using only SUR) 

indicating that more than one SL attribute should be included in the subset to arrive at a better 

performance. The effect on model performance when including post-fab processes (i.e., the 

difference between Subsets 1 and 8) is negligible; therefore, to reduce the dataset dimensionality, 

Subset 8, which excludes post-fab attributes, is used for further analysis since the post-fab 

attributes do not seem to be very informative in predicting fabrication durations. 

After examining the different combinations of shop loading attributes, it is observed that 

discarding the WSL attribute does not jeopardize the overall performance. Therefore, it was 

decided to keep the other four attributes (i.e., DSL, SSL, ISL and SUR) in Subset 8 and carry the 

resulting subset forward to develop and compare the various ML models. The resulting subset is 

referred to hereinafter as Subset 8A, and the corresponding performance measures are calculated 

as 0.77 and 30.6% for the CC and MAPE, respectively. 
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6.5.2 Application and comparison of models 

For the Subset 8A described in the previous section, three tree-based ensemble algorithms are 

applied to predict the fabrication durations (i.e., Random Forests, Extremely Randomized Trees, 

and Gradient Boosting Decision Trees). Experiments to tune the hyperparameters of each of those 

models are carried out to achieve an optimal result. The three algorithms are employed using 

Scikit-Learn, a Python open-source library for machine learning [174], and the variable names 

shown below in parentheses refer to the parameters used in the library. 

6.5.2.1 Tuning of hyperparameters 

In an RF model, each tree in the ensemble is constructed from sample records drawn from the 

training set with replacement (i.e., a bootstrap sample). Also, when splitting each node, the 

optimum split is determined either using all input features or a random subset of features. In an 

ERT model, unpruned trees are built using the whole training set as opposed to bootstrap samples 

as in the case of RF. Moreover, the nodes are split fully at random through which “the explicit 

randomization of the cut-point and attribute combined with ensemble averaging should be able to 

reduce variance more strongly than the weaker randomization schemes used by other methods” 

[180] that uses locally optimized cut-points. In an GBDT model, decision trees are added to the 

ensemble one at a time where a subsequent model is fit to correct the prediction errors made by a 

prior model. Therefore, the final predictor includes combining “weak” models sequentially where 

the loss gradient of a differentiable loss function is minimized at each step. 

All algorithms have three main and common parameters to configure: 1) the number of trees of 

the ensemble (n_estimators), 2) the size of the random subset of features (max_features), and 

3) the minimum number of samples required for splitting a node (min_samples_split). For each 

of these parameters, several experiments are carried out to obtain the optimal values by exhaustive 
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search over the range of heuristically selected values while holding all other parameters constant. 

For the number of trees, experiments are conducted for values ranging from 100 (i.e., default value) 

to 3000 trees in order to obtain a value that is large enough to ensure convergence of the ensemble 

effect for the present dataset. For the maximum number of features randomly selected at each node, 

Breiman [130] suggested to use one-third of the features while Geurts et al. [180] argues that using 

all the features results in better models. Accordingly, an experiment is conducted to examine the 

range of values between the two suggested limits (i.e., between 6 and 17 features for the present 

dataset Subset 8A). As for the minimum number of samples required to split an internal node, 

values between 2 (i.e., default value) and 12 are examined. In general, larger values lead to smaller 

trees, higher bias, and smaller variance; however, the optimal value largely depends on the level 

of noise in the dataset. The percentage of training set used to fit each individual tree (i.e., 

max_samples for RF, and subsample for GBDT) are examined for values ranging from 70% to 

100%. It is observed that values above 90% yield substantially better performance for both the RF 

and GBDT models. This parameter is not applicable for the ERT model as the whole training set 

is used to fit the model. The results of the hyperparameter tuning experiments are summarized in 

Table 6-7 where these optimum values are used to fit the final models and compare the results in 

the following section. 

Table 6-7. Summary of Hyperparameter Experiments 

 
range of 

tested values RF ERT GBDT 

n_estimators 100 – 3000 200 400 3000 

max_features 6 – 17 16 16 15 

min_samples_split 2 – 12 2 2 4 

max_samples/subsample 70% – 100% 97% n/a 93% 
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As an illustrative example of one of the experiments, Figure 6-6 shows a grid of the MAPE results 

for each possible combination of the two parameters, (max_features) and (min_samples_split), 

for each of the three models. The size of the circle indicates the relative value of MAPE where 

smaller circles correspond to better performance measures. The circles highlighted in red represent 

the six minimum MAPE for different combinations of the two parameters for the Subset 8A 

dataset. It can be observed that the performance of both the RF and ERT models are more 

consistent compared to the GBDT model. 

 

Figure 6-6. MAPE for combined number of max. features and min. samples to split 

 

6.5.2.2 Comparison of model performances 

Given the optimum hyperparameters obtained and described in the previous section, the three 

models (i.e., RF, ERT, and GBDT) are trained and tested using a 5-fold cross-validation technique. 

In addition, in order to compare the computational efficiency, the average training and testing 

times for each model are also calculated. For accurate, fair, and consistent comparison of the time 

requirements, the models are compared by setting the number of trees to 200. This is because the 

number of trees (i.e., n_estimators parameter) has the largest effect on the time required for 
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training any tree-based model. Summarized in Table 6-8 are the performance measures, described 

in Section 2.3.4.1, for the three models along with the time required for training and testing. Also, 

the last column presents the error measures for using simple averaging (i.e., using the average of 

actual historical durations, which is equal to 41 days) as an estimator of fabrication duration for 

future pipe spools. 

Table 6-8. Performance measures for the final fit models 

 RF ERT GBDT Simple 
Averaging 

Mean Absolute Error (MAE) 9.50 8.93 10.38 16.35 

Median Absolute Error (MedAE) 6.11 5.06 7.05 13.96 

Maximum Error (MaxAE) 89.62 76.78 88.09 66.95 

Mean Absolute Percentage Error (MAPE) 28.6% 26.6% 31.6% 60.3% 

Correlation Coefficient (CC) 0.74 0.74 0.71 n/a 

Training Time (seconds) @ 200 trees 6.84 3.62 2.11 n/a 

Testing Time (seconds) @ 200 trees 0.085 0.098 0.006 n/a 

 

6.5.3 Results and discussion 

Examining the results of the performance measures in Table 6-8, one can clearly observe the 

substantial improved accuracy in predicting the fabrication duration when using any of the 

proposed ML models as compared to the heuristically simple estimate (i.e., using the average of 

actual historical durations). In general, the MAPE can be reduced by more than 30% when using 

the proposed predictive models and the MAE decreases by approximately 50%. 

The results of performance measures also show that the ERT model outperforms RF and GBDT 

models in terms of lower error measures (e.g., MAPE of 26.6% compared to 28.6% and 31.6%, 
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respectively). Both RF and ERT exhibit better performance than GBDT even though the latter is 

faster to train and test. The training time seems to be better for GBDT using the default settings 

(i.e., when setting the number of trees to 200); however, when using the optimized 

hyperparameters, the computational requirements, as summarized in Table 6-7, significantly 

increase for the GBDT while both the RF and ERT exhibits similar behaviors. The CCs are not 

significantly different among the three models indicating moderate-strong positive correlation 

between the actual and predicted fabrication durations. 

Figure 6-7 shows the distribution of actual durations (in red) in comparison with the predicted 

durations using each of the models. It can be observed that ERT (in orange) is the closest to actual 

durations, which aligns with the performance measure in Table 6-8. 

 

Figure 6-7. Kernel density estimate (probability) of planned, actual, and predicted durations 
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6.5.4 Conclusion 

The exercise of selecting the relevant features, including features that capture real-time loading 

conditions of the job shop, is crucial as it improves the results significantly as described earlier. 

Also, experimenting with hyperparameters and tuning their values improves the performance of 

all models significantly. These two sets of experiments (i.e., feature engineering and 

hyperparameter tuning) are very important in the development of optimal ML models. 

Tree-based models in general have a few common parameters that affect their performance 

including the number of trees in the ensemble, the size of the random subset of features, and the 

minimum number of samples required for splitting a node. Other parameters might affect the 

performance but to a lesser extent. 

In summary, predicting the fabrication duration in a pipe spool shop is a representative example 

of a typical industrialized building construction factory. One distinguishing attribute is the highly 

customizable and variable type and volume of production. Examining various ML models proves 

their ability to accurately predict the production time. However, it is crucial to develop and include 

engineered features that capture the shop utilization in order to achieve acceptable predictions. 

Although the engineered features need to be developed in a customized fashion that incorporates 

case-specific knowledge, it is observed that those features nevertheless capture some aspect of the 

system utilization. In the pipe spool fabrication shop, the developed features capture the real-time 

shop loading conditions at the time a new pipe spools starts production. In this case, shop loading 

conditions capture the amount of variation in physical attributes of concurrently processed spools 

and assign the newly computed feature to the new spool. These generated features have been 

proven to add valuable information that assists in the predictability of the fabrication durations of 

the new pipe spools.  
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Chapter 7 Conclusions  

7.1 Summary and Conclusions 

This thesis presents the hypothesis that a data-driven framework using machine learning 

approaches can improve the planning and scheduling practice in industrialized building 

construction (IBC). The research presented in the thesis suggests that the production time, and 

consequently the delivery dates, can be accurately predicted in IBC fabrication shops by utilizing 

the product characteristics, fabrication tracking data, and a set of engineered features. 

In essence, a data-driven framework, which is based on similar frameworks described in the 

literature, is proposed with the addition of and focus on generating features that capture some 

aspect of the real-time loading conditions of the job shop. Those features significantly improve the 

predictive accuracy of the machine learning models developed to estimate the fabrication duration. 

More accurate prediction of fabrication durations implies better estimation of delivery dates and 

hence improved production scheduling and customer satisfaction. 

After an introduction, the thesis starts, in Chapter 2, by a broad literature review about IBC, 

production scheduling, and the application of machine learning predictive modelling in the 

construction industry. The chapter also covers an overview of the specific machine learning 

methods used in this thesis. The developed framework and the methodology followed in this thesis 

are described in Chapter 3, which also include a discussion on the positioning of construction 

management research under the design science umbrella rather than as an explanatory science. The 

implementation of the methodology covers two case studies: the first is at a residential wall panel 

fabrication factory, described in Chapter 4, and the second is at a pipe spool fabrication shop for 
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industrial construction, discussed in Chapter 6. In Chapter 5, a simulation study is conducted to 

investigate more thoroughly the generation of features capturing some aspects of loading 

conditions of the job shop with the goal to improve the predictive accuracy of ML models. This 

experimentation is applied to the first case study described in Chapter 4. 

In conclusion, the thesis proposes that machine learning methods can be used to accurately predict 

the production cycle time in industrialized building construction, and as a result the scheduling 

process can be improved. The accuracy of the developed ML models can be improved by 

augmenting the process dataset with engineered features capturing the real-time loading conditions 

of the job shop without which the performance of such models might be sub-optimal. Real-time 

loading conditions of the job shop constitute a crucial component of the dataset that needs to be 

included in order to improve the predictive accuracy of any machine learning model. The loading 

conditions of the job shop can be represented using various features and the development of the 

right set of such features requires a thorough understanding of the production process under 

investigation. This imposes a requirement that these features be custom-built and because of their 

dependency on the specific case study, a good understanding of the associated production process 

is mandatory. Nevertheless, those features are essential to the development of ML models and 

must capture the loading conditions of the job shop in one way or another. The use of machine 

learning models to predict production time results in an approximately 25% improvement in the 

accuracy as compared to using simple averaging estimates based on historical data. Augmenting 

the dataset with SL features increases the accuracy by an additional 10%. 

Moreover, the lookback timeframe used to train the model has a significant effect on the prediction 

accuracy of the cycle time. Selecting the right timeframe is also case specific; however, using a 
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short timeframe or using the entire dataset to train the model often results in inferior performance 

as compared to selecting the right timeframe. 

7.2 Research Contributions 

7.2.1 Academic contributions 

The academic contributions of the research presented in this thesis can be summarized as follows: 

• The proposed framework provides a comprehensive roadmap to analyze raw data in 

order to predict production cycle time, specific to industrialized building construction. 

It considers 1) the streamlining of factory operations from the design stage to the 

delivery and assembly on site, 2) the high level of customization of the building 

components, which makes this industry dissimilar to the mass production realized in 

other manufacturing environments, and 3) the seasonality of supply and demand in IBC 

which are inherently captured in the production data and can significantly affect 

predictability of production time. 

• The methodology used in this thesis represents a practical approach to estimate the time 

required to produce building components based on the physical characteristics of the 

component and the holistic production operations. This means that new features are 

developed from existing properties in order to capture how the factory settings (e.g., 

shop capacity, dynamic utilization of the production line, storage and delivery to the 

site, number of available workers) influence the estimation of production time. 

• In order to improve the predictive accuracy of the machine learning models used to 

estimate the production time, simulation modelling is used to investigate the different 
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features that are attributable to improving the predictability of production time and thus 

improve the performance of data-driven models. Those features are not present in the 

original dataset and might be impractical or impossible to extract from the raw data or 

to collect in practice. 

7.2.2 Industrial contributions 

The industrial contributions of the research presented in this thesis can be summarized as follows: 

• The proposed framework recognizes and identifies the common challenges faced by the 

industrialized construction industry in regard to data collection, storage, preprocessing, 

and analysis. Identifying these challenges enables decision makers to better understand 

the obstacles that hinder the wider adoption of data analytics in the industry, since a lack 

of adoption of data analytics results in missing the opportunity to use and benefit from 

this available commodity – the data. 

• The proposed framework can provide an alternative method of predicting future 

uncertainties in terms of production time and resource utilization using existing 

obtainable data without the expertise required to develop more sophisticated simulation 

models. 

•  An integral part of the proposed framework is to develop a practical guideline to clean 

and prepare the raw data prior to actual modelling and prediction. This task, when done 

in a systematic and consistent manner, can save much of the time and effort used to 

develop a data-driven predictive model. Industry practitioners can use the developed 

procedures as an integral part of data collection and processing operations. 
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7.3 Limitations and Future Work 

Based on the research conducted in this thesis, the following are some of the limitations of the 

present research and the proposed future research directions: 

• The applicability of the research in this thesis has been proven to generalize to 

fabrication shops in the industrialized building construction industry by examining two 

cases studies that share some common aspects of construction manufacturing 

environments yet belong to different subsectors (i.e., residential construction and 

industrial construction). Although the generalization is illustrated by the two case 

studies, more research might be needed to further support the generalization of the 

results and draw conclusions based on the common aspects in IBC manufacturing 

facilities. Such common aspects include the high level of customization characterizing 

most building products, the variability in supply and demand of the industrial building 

construction market, and the inconsistency of labor availability and skill levels. 

• The results of the accurate cycle time prediction (i.e., the output of machine learning 

models) can be leveraged by the automatic integration of ML algorithms with existing 

production scheduling and tracking systems. By doing so, it is possible to provide very 

accurate estimates of delivery dates for new products once the production is started. The 

integration with existing systems can be accomplished at varying levels of details 

including a dashboard that is updated in real-time to indicate if the new product will be 

completed as per the preliminary planned schedule, or whether additional time may be 

required based on shop utilization or material availability. 
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• One possible improvement to collecting and capturing real-time data in the fabrication 

shop could be to use a computerized vision-based system to capture real-time loading 

conditions of the job shop. One example is to use CCTV video streaming, when it is 

available, to capture shop activities and utilize advanced machine learning techniques 

to extract production and waiting times as well as the number of workers at each 

workstation from the multimedia data. Using video capturing techniques can improve 

the ease of data collection and can provide accurate calculations of production and 

waiting times compared to using RFID data. 

• Simulation modelling requires regular and manual updates and revisions to ensure the 

simulation model represents the most recent production process. Along with each 

update, model validation and verification are required, which are tedious and 

monotonous tasks. A comprehensive automatic integration of the data collection 

systems (e.g., RFID or CCTV), simulation modelling, and ML predictive models can 

make this process more reliable, consistent, and error-free. The integration between 

simulation model and ML models can be carried out to automatically create simulated 

data that capture real-time shop loading conditions that may not otherwise be readily 

available by the data collection and tracking systems. 

• The approach and methods used in the present thesis has focused on predicting the 

production cycle time to support short-term scheduling and planning in industrialized 

building construction facilities. The collected data, the developed machine learning 

models, and the constructed engineered features support time prediction for short-term 

scheduling because it is assumed that only the recent conditions of the production line 

(e.g., factory layout, processing sequencing, interruptions, labor skills) will affect the 
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cycle time. Any changes that would have occurred longtime in the past will be 

suppressed by recent changes of production line conditions. On the other hand, 

therefore, mid-term and long-term planning, which spans from a few months to a few 

years, is not investigated. This is a limitation of the present study and is expected to be 

a promising area of future research. 
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Appendix A: Python Script for ML Modelling – Case 

Study 1 

Table of Contents (TOC) 

1. Importing Libraries & Defining Functions 

2. Loading raw data & Initial Preparation 

3. Descriptive Statistics & Data Visualization 

3.1. Visualization of raw data in (df1) 

3.2. Visualization of raw data in (df2) 

4. Advanced Data Preparation 

4.1. Data Preparation in (df1) 

4.1.1. Replace Missing Values, Remove 'NaT', and Add 'Panels/Day' 

4.1.2. Calculation of Actual Cycle Time - 'ActualCT' 

4.2. Data Preparation in (df2) 

5. Data Processing and Merging 

5.1. Merging Dataframes and Generating Features 

5.2. Saving Merged Dataframes to CSV 

6. Cycle Time (CT) Prediction 

6.1. Experiment A (1 Target Day, 1 Model and 1 Dataframe) 

6.2. Experiment B (Many Target Days, 1 Model and 1 Dataframe) 

6.3. Full Experiment (1 target day, 4 models and 4 dataframes) 

 

1. Importing Libraries & Defining Functions 

↑  back to TOC 

# importing libraries 
import pandas as pd 
from pandas.plotting import register_matplotlib_converters 
import numpy as np 
import random 
from datetime import * 
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import os 
from itertools import chain 
from scipy import stats 
from matplotlib import pyplot as plt; from matplotlib import cm 
import matplotlib.dates as mdates; import matplotlib.ticker as mticker 
import seaborn as sns 
 
# importing Sci-kit Learn libraries 
from sklearn import linear_model, ensemble, neural_network, tree, neighbors 
from sklearn import metrics 
from sklearn.feature_selection import SelectKBest, f_regression 
from sklearn.model_selection import train_test_split, cross_val_predict 
from sklearn.model_selection import cross_validate, KFold, GridSearchCV 
from sklearn.preprocessing import StandardScaler, PolynomialFeatures 
 
# setting custom options 
%matplotlib inline 
pd.options.mode.chained_assignment = None 
pd.set_option('display.max_columns', 50, 'display.max_rows',2000) 
np.set_printoptions(precision=3, suppress=True) 
 
# setting the folder from which data is read 
folder = r"F:\Academic\Publications\Journals\04\Python"; os.chdir(folder) 
 
# a function to calculate the time difference in minutes between two timestamps 
def calculateTimeDiff(initialTime, lastTime): 
    if lastTime.day == initialTime.day: 
        timeDelta = lastTime - initialTime 
        # returning the time difference in minutes 
        return round(timeDelta.total_seconds()/60, 2) 
    else: 
        return -1 
     
# a function to extract the values from the boxplot and save it as a dataframe 
def getBoxplotData(box, labels): 
    rows = [] 
    # looping over each box which represents one variable 
    for x in range(len(labels)): 
        dict1 = {} 
        dict1['Label'] = labels[x] 
        dict1['Lower Cap'] = box['caps'][x*2].get_ydata()[0] 
        dict1['25th quartile'] = box['boxes'][x].get_ydata()[0] 
        dict1['Median'] = box['medians'][x].get_ydata()[0] 
        dict1['75th quartile'] = box['boxes'][x].get_ydata()[2] 
        dict1['Upper Cap'] = box['caps'][(x*2)+1].get_ydata()[0] 
        dict1['Outliers Count'] = len(box['fliers'][x].get_ydata()) 
        rows.append(dict1) 
    return pd.DataFrame(rows) 
     
# a function to train a model and calculate its accuracy on the 'training' set 
def train_and_evaluate(clf, X_train, y_train, print_score=True): 
    clf.fit(X_train, y_train) 
    if print_score: 
        score = clf.score(X_train, y_train) 
        print("Coefficient of determination (R\u00b2)= {0:.4f}".format(score)) 
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# a function to evaluate the performance of the model on the 'testing' set 
def measure_performance(X, y, clf, show_accuracy=True, 
                        show_classification_report=True, 
                        show_confusion_matrix=True, 
                        show_Reg_metrics=False): 
    y_pred = clf.predict(X) 
    if show_accuracy: 
        print("Accuracy:{0:.3f}".format(metrics.accuracy_score(y, y_pred)), "\n")     
    if show_classification_report: 
        print("Classification report") 
        print(metrics.classification_report(y, y_pred), "\n")    
    if show_confusion_matrix: 
        print("Confusion matrix") 
        print(metrics.confusion_matrix(y, y_pred), "\n") 
    if show_Reg_metrics: 
        values = [] 
        values.append(round(metrics.mean_absolute_error(y, y_pred), 2)) 
        values.append(round(metrics.median_absolute_error(y, y_pred), 2)) 
        values.append(round(metrics.max_error(y, y_pred), 2)) 
        values.append(str(round(metrics.mean_absolute_percentage_error(y, y_pred), 2)
*100) +"%") 
        values.append(round(metrics.r2_score(y, y_pred), 2)) 
        values.append(round(stats.pearsonr(y, y_pred)[0], 2)) 
        names = ['Mean Absolute Error (MAE)', 'Median Absolute Error (MedAE)', 'Maxim
um Error (MaxE)', 
                 'Mean Absolute Percentage Error (MAPE)', 'Coefficient of determinati
on (R\u00b2)', 
                 'Correlation Coefficient (CC)'] 
        return pd.DataFrame(values, index=names, columns=['Performance Metrics']) 
 
print("Successful. All required libraries have been loaded.") 
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2. Loading raw data & Initial Preparation 

↑  back to TOC 

file_name = r"RFID_RawData.xlsx" 
 
# Reading RFID, multipanel, and production data each into a dataframe 
rfidreading = pd.read_excel(file_name, sheet_name="RFIDReadings") 
multipanel = pd.read_excel(file_name, sheet_name="Multipanel") 
production = pd.read_excel(file_name, sheet_name="ProductionVolume") 

# RFID Readings dataframe (df1) 
df1 = rfidreading.copy(deep=True) 
print("The size of RFID Readings dataframe (df1) = {} rows by {} columns".format(df1.
shape[0], df1.shape[1])) 
# deleting records where 'FirstReadDate' occured on or before 2015-09-10 
# because factory setup has changed making data not relevant to the study 
df1 = df1.loc[df1["FirstReadDate"] > datetime(2015, 9, 10)] 
# keeping rows where 'AntennaDescription' = A1, A2, A3, A4, or A5 
# these readings represent the Multiwall production phase 
df1 = df1.loc[(df1["AntennaDescription"] == "A1") | (df1["AntennaDescription"] == "A2
") | (df1["AntennaDescription"] == "A3") 
              | (df1["AntennaDescription"] == "A4") | (df1["AntennaDescription"] == "
A5")] 
# keeping only relevant columns in df1 
# "WallNumber" has redundant ID info that is already present in "PanelNumber" 
# "LocationSourceAntenna" and "LocationTagID" are not required for the study 
# "TagID" and "LastReadDate" contains redundant information 
df1.drop(['TagID', 'WallNumber', 'LocationSourceAntenna', 'LocationTagID', 'LastReadD
ate'], axis=1, inplace=True) 
print("Size after initial data filtering = {} rows by {} columns".format(df1.shape[0]
, df1.shape[1])) 
print("---------------------------------------------------------------------") 
 
# Multipanel dataframe (df2) 
df2 = multipanel.copy(deep=True) 
print("The size of Multipanel dataframe (df2) = {} rows by {} columns".format(df2.sha
pe[0], df2.shape[1])) 
# keeping only rows where 'Panel Attribute' = 'Wall line' 
# manually manufactured panels are execluded 
df2 = df2.loc[df2["Panel Attribute"] == "Wall line"] 
# keeping only relevant columns in df2 
# description of deleted columns can be found in Chapter 4 
df2.drop(['Job', 'Component', 'Wall', 'Panel Attribute', 'TypeX', 'Siding', 'SidingLi
ne', 'Model', 'Floor', 'Unit', 
          'GarageDoor', 'Drywall', 'Sequence', 'Basementwall', 'position', 'Productio
nJob'], axis=1, inplace=True) 
print("Size after initial data filtering = {} rows by {} columns".format(df2.shape[0]
, df2.shape[1])) 
print("---------------------------------------------------------------------") 
 
# ProductionVolume dataframe (df3) 
df3 = production.copy(deep=True) 
print("The size of ProductionVolume dataframe (df3) = {} rows by {} columns".format(d
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f3.shape[0], df3.shape[1])) 
# deleting records where 'Date1' <= 2015-09-10) to match the condition for df1 
df3 = df3.loc[df3["Date1"] > datetime(2015, 9, 10)] 
df3.reset_index(drop=True, inplace=True) 
# changing the type of 'Date1' from datetime.datetime to datetime.date 
# date values are later compared with other date fields 
date1 = lambda row: row["Date1"].date() 
df3["Date1"] = df3.apply(date1, axis=1) 
print("Size after initial data filtering = {} rows by {} columns".format(df3.shape[0]
, df3.shape[1])) 
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3. Descriptive Statistics & Data Visualization 

↑  back to TOC 

3.1 Visualization of raw data in (df1) 

n = df1.shape[0]; print("Total number of RFID readings =", n) 
sList, nList = ['A1', 'A2', 'A3', 'A4', 'A5'], [] 
 
# a loop to count the number of RFID readings at each of the five stations 
for i in range(len(sList)): 
    x = df1.loc[df1['AntennaDescription'] == sList[i]]['AntennaDescription'].count() 
    nList.append([x, str(round(x/n*100, 2))+'%']) 
table = pd.DataFrame(nList, index=sList, columns=['Total RFID readings', '% of total 
reading']) 
display(table) 
 
plt.figure(figsize=(12, 6)) 
plt.bar(x=sList, height=np.array(nList).T[0].astype(int), color='blue', alpha=0.6) 
 
# a loop to display the % on top of each bar of the histogram 
for i in range(len(sList)): 
    y = int(np.array(nList).T[0][i])+20 
    s = table.at[sList[i], '% of total reading'] 
    plt.text(x=sList[i], y=y, s=s, horizontalalignment='center', fontsize=13) 
 
plt.ylim(36900, 38200) 
plt.yticks(list(range(36900, 38200, 100))) 
plt.title("Total Number of Readings at Each Antenna Location", fontsize=16) 
plt.xlabel("Antenna Location", fontsize=14); plt.ylabel("RFID Readings Count", fontsi
ze=14) 
plt.grid(); plt.show() 

register_matplotlib_converters() 
# counting how many readings each multiwall panel has every day 
df1_grouped = df1.groupby(['FirstReadDate', 'PanelNumber']).count().reset_index().set
_index('FirstReadDate') 
df1_daily = df1_grouped.groupby(['FirstReadDate']).sum() 
 
# the function to aggregate with in resampling and moving window 
aggFunction = 'sum' 
# resampling to monthly, weekly frequencies, and using 14-day rolling window, aggrega
ting all by 'aggFunction' 
df1_monthly = df1_daily.resample('M').agg(aggFunction) 
df1_weekly = df1_daily.resample('W').agg(aggFunction) 
df1_14d = df1_daily.rolling(window=14, center=True).agg(aggFunction) 
 
# using seaborn default style and set the default figure size 
sns.set(rc={'figure.figsize':(16, 8)}); fig, ax = plt.subplots() 
 
# start and end of the date range to extract 
start, end = '2015-09', '2018-08' 
 
ax.plot(df1_monthly.loc[start:end, 'AntennaDescription'], marker='o', linewidth=0.9, 
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label='Monthly Sum') 
ax.plot(df1_weekly.loc[start:end, 'AntennaDescription'], marker='.', markersize=5, la
bel='Weekly Sum') 
ax.plot(df1_14d.loc[start:end, 'AntennaDescription'], marker='.', linestyle='--', lab
el='14-d Rolling Sum') 
ax.legend(ncol=3, fontsize=14) 
 
ax.set_ylabel('Total Number of RFID Readings', fontsize=16) 
# setting x-axis major ticks to monthly interval 
ax.xaxis.set_major_locator(mdates.MonthLocator()) 
tick_loc = ax.get_xticks().tolist() 
ax.set_xticks(tick_loc) 
# formatting x-tick labels as '3-letter month' and '2-digit year' 
ax.set_xticklabels(labels=tick_loc, rotation=90, fontsize=13) 
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b \'%y')) 
plt.show() 

# creating a dataframe to count the number of panles produced each day 
dfPanelCount = df1.groupby(['FirstReadDate', 'PanelNumber']).count() 
dfPanelperDay = dfPanelCount.reset_index().groupby('FirstReadDate').agg({'PanelNumber
':'count'}) 
 
fig, ax = plt.subplots() 
ax.plot(dfPanelperDay.loc['2015-09':'2015-12'].resample('W').sum(), label='2015') 
ax.plot(dfPanelperDay.loc['2016-01':'2016-12'].resample('W').sum(), label='2016') 
ax.plot(dfPanelperDay.loc['2017-01':'2017-12'].resample('W').sum(), label='2017') 
ax.plot(dfPanelperDay.loc['2018-01':'2018-08'].resample('W').sum(), label='2018') 
ax.legend(ncol=4, fontsize=14) 
 
ax.set_ylabel('Number of Panels Produced Each Week', fontsize=16) 
# setting x-axis major ticks to monthly interval 
ax.xaxis.set_major_locator(mdates.MonthLocator()) 
tick_loc = ax.get_xticks().tolist() 
ax.set_xticks(tick_loc) 
# formatting x-tick labels as '3-letter month' and '2-digit year' 
ax.set_xticklabels(labels=tick_loc, rotation=90, fontsize=13) 
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b \'%y')) 
plt.show() 

3.2 Visualization of raw data in (df2) 

↑  back to Heading 3 

# using seaborn default style and set the default figure size 
sns.set(rc={'figure.figsize':(16, 12)}) 
# plotting the heatmap of correlation between attributes 
correlation = df2.corr(method='pearson') 
sns.heatmap(correlation, xticklabels=correlation.columns, yticklabels=correlation.col
umns, 
            cmap='RdBu_r', annot=True, linewidth=0.5, square=True) 
plt.show() 

# displaying summary statistics of attributes in df2 
df2stat = df2.describe().T.loc[:, ['mean', 'std', 'min', '25%', '50%', '75%', 'max']]
.round() 
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display(df2stat) 
 
# counting the number of interior and exterior panel as % of the total number of pane
ls 
numIntExt = df2.loc[(df2['Type']=='INT') | (df2['Type']=='EXT')]['Type'].count() 
numType = df2['Type'].count() 
 
print("Number of 'INT' and 'EXT' panel types is {}% of all panels".format(round(numIn
tExt/numType*100, 2))) 
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4. Advanced Data Preparing 

↑  back to TOC 

4.1 Data Preparation in (df1) 

# transforming df1 so that each station is represented by two columns ('stationName_i
nitial' and 'stationName_last') 
# such that, for each record: 'stationName_initial' = minimum value found in 'Initial
ReadDateTime' and  
#                             'stationName_last' = maximum value found in 'LastReadDa
teTime' 
 
df1Transformed = (df1.groupby(["PanelNumber", "AntennaDescription", "FirstReadDate"]) 
# These are the indexes we want group by 
.agg({"InitialReadDateTime": 'min', "LastReadDateTime": 'min'}) # We want to aggregat
ge based on two values of Time 
.unstack(level="AntennaDescription") # Move station to column section 
.droplevel(0,axis=1) # Reduce outermost multi-index of agg column 'Time' 
.reset_index()) # completely remove multi-index and make simple table 
 
# renaming columns in df1Transformed 
df1Transformed.columns = ['PanelNumber', 'FirstReadDate', 'A1_initial', 'A2_initial', 
'A3_initial', 'A4_initial', 
                          'A5_initial', 'A1_last', 'A2_last', 'A3_last', 'A4_last', '
A5_last'] 
display(df1Transformed.head(5)) 

4.1.1 Replace Missing Values, Remove 'NaT', and Add 'Panels/Day' 

# replace missing values at station 'A1' provided that the values in all other statio
ns are not missing 
# the time at 'A1' is updated by randomly subtracting 8 to 12 minutes from the time a
t station 'A2' 
fillA1i = lambda row: row["A2_initial"]-timedelta(minutes=np.random.uniform(8, 12)) i
f pd.isnull(row["A1_initial"]) & pd.notnull(row["A2_initial"])\ 
& pd.notnull(row["A3_initial"]) & pd.notnull(row["A4_initial"]) & pd.notnull(row["A5_
initial"]) else row["A1_initial"] 
df1Transformed["A1_initial"] = df1Transformed.apply(fillA1i, axis=1) 
 
fillA1l = lambda row: row["A2_last"]-timedelta(minutes=np.random.uniform(8, 12)) if p
d.isnull(row["A1_last"]) & pd.notnull(row["A2_last"])\ 
& pd.notnull(row["A3_last"]) & pd.notnull(row["A4_last"]) & pd.notnull(row["A5_last"]
) else row["A1_last"] 
df1Transformed["A1_last"] = df1Transformed.apply(fillA1l, axis=1) 
################################################################ 
# replace missing values at station 'A2' provided that the values in all other statio
ns are not missing 
# the time at 'A2' is closer to 'A1' than to 'A3', therefore, the time at 'A2' is upd
ated by 
# adding 1/4 of the time difference (A3-A1) to the time at station 'A1' 
fillA2i = lambda row: row["A1_initial"]+(row["A3_initial"]-row["A1_initial"])/4 if pd
.isnull(row["A2_initial"]) & pd.notnull(row["A1_initial"])\ 
& pd.notnull(row["A3_initial"]) & pd.notnull(row["A4_initial"]) & pd.notnull(row["A5_
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initial"]) else row["A2_initial"] 
df1Transformed["A2_initial"] = df1Transformed.apply(fillA2i, axis=1) 
 
fillA2l = lambda row: row["A1_last"]+(row["A3_last"]-row["A1_last"])/4 if pd.isnull(r
ow["A2_last"]) & pd.notnull(row["A1_last"])\ 
& pd.notnull(row["A3_last"]) & pd.notnull(row["A4_last"]) & pd.notnull(row["A5_last"]
) else row["A2_last"] 
df1Transformed["A2_last"] = df1Transformed.apply(fillA2l, axis=1) 
################################################################ 
# replace missing values at station 'A3' provided that the values in all other statio
ns are not missing 
# the time at 'A3' is assumed to fall in the middle between 'A2' and 'A4', therefore, 
the time at 'A3' is updated by 
# adding 1/2 of the time difference (A4-A2) to the time at station 'A2' 
fillA3i = lambda row: row["A2_initial"]+(row["A4_initial"]-row["A2_initial"])/2 if pd
.isnull(row["A3_initial"]) & pd.notnull(row["A1_initial"])\ 
& pd.notnull(row["A2_initial"]) & pd.notnull(row["A4_initial"]) & pd.notnull(row["A5_
initial"]) else row["A3_initial"] 
df1Transformed["A3_initial"] = df1Transformed.apply(fillA3i, axis=1) 
 
fillA3l = lambda row: row["A2_last"]+(row["A4_last"]-row["A2_last"])/2 if pd.isnull(r
ow["A3_last"]) & pd.notnull(row["A1_last"])\ 
& pd.notnull(row["A2_last"]) & pd.notnull(row["A4_last"]) & pd.notnull(row["A5_last"]
) else row["A3_last"] 
df1Transformed["A3_last"] = df1Transformed.apply(fillA3l, axis=1) 
################################################################ 
# replace missing values at station 'A4' provided that the values in all other statio
ns are not missing 
# the time at 'A4' is closer to 'A5' than to 'A3', therefore, the time at 'A4' is upd
ated by 
# adding 3/4 of the time difference (A5-A3) to the time at station 'A3' 
fillA4i = lambda row: row["A3_initial"]+3*(row["A5_initial"]-row["A3_initial"])/4 if 
pd.isnull(row["A4_initial"]) & pd.notnull(row["A1_initial"])\ 
& pd.notnull(row["A2_initial"]) & pd.notnull(row["A3_initial"]) & pd.notnull(row["A5_
initial"]) else row["A4_initial"] 
df1Transformed["A4_initial"] = df1Transformed.apply(fillA4i, axis=1) 
 
fillA4l = lambda row: row["A3_last"]+3*(row["A5_last"]-row["A3_last"])/4 if pd.isnull
(row["A4_last"]) & pd.notnull(row["A1_last"])\ 
& pd.notnull(row["A2_last"]) & pd.notnull(row["A3_last"]) & pd.notnull(row["A5_last"]
) else row["A4_last"] 
df1Transformed["A4_last"] = df1Transformed.apply(fillA4l, axis=1) 
################################################################ 
# replace missing values at station 'A5' provided that the values in all other statio
ns are not missing 
# the time at 'A5' is updated by randomly adding 8 to 12 minutes to the time at stati
on 'A4' 
fillA5i = lambda row: row["A4_initial"]+timedelta(minutes=np.random.uniform(8, 12)) i
f pd.isnull(row["A5_initial"]) & pd.notnull(row["A1_initial"])\ 
& pd.notnull(row["A2_initial"]) & pd.notnull(row["A3_initial"]) & pd.notnull(row["A4_
initial"]) else row["A5_initial"] 
df1Transformed["A5_initial"] = df1Transformed.apply(fillA5i, axis=1) 
 
fillA5l = lambda row: row["A4_last"]+timedelta(minutes=np.random.uniform(8, 12)) if p
d.isnull(row["A5_last"]) & pd.notnull(row["A1_last"])\ 
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& pd.notnull(row["A2_last"]) & pd.notnull(row["A3_last"]) & pd.notnull(row["A4_last"]
) else row["A5_last"] 
df1Transformed["A5_last"] = df1Transformed.apply(fillA5l, axis=1) 
################################################################ 
 
# creating a data frame to count the number of panels per day, before the removal of 
'NaT' values 
dfPanelCount = df1Transformed.groupby(['FirstReadDate', 'PanelNumber']).count() 
dfPanelperDay = dfPanelCount.reset_index().groupby('FirstReadDate').agg({'PanelNumber
':'count'}) 
# Add a new attribute that stores the number of panels produced each day 
df1Transformed = pd.merge(left = df1Transformed, 
                          right = dfPanelperDay.reset_index(), 
                          left_on='FirstReadDate', 
                          right_on='FirstReadDate') 
df1Transformed.rename(columns={'PanelNumber_y':'Panels/Day', 'PanelNumber_x':'PanelNu
mber'}, inplace=True) 
 
# removing rows with any remaining 'NaT' values from the dataframe 
df1Transformed.dropna(axis=0, how='any', inplace=True) 
 
# keeping records where the total number of panels per day is more than 5 and less th
an 80 
df1Transformed = df1Transformed.loc[(df1Transformed['Panels/Day']>5) & (df1Transforme
d['Panels/Day']<=75)] 
df1Transformed.reset_index(drop=True, inplace=True) 

# plotting the distribution/histogram of Panels/Day 
sns.set_style("ticks") 
dailyPro = df1Transformed['Panels/Day'].mean() 
print("Average Daily Production = {} panles/day".format(round(dailyPro, 2))) 
print("Average Hourly Production = {} panles/hour".format(round(dailyPro/8, 2))) 
 
plt.figure(figsize=(18, 12)) 
plt.hist(df1Transformed['Panels/Day'], bins=range(5,76, 5), rwidth=0.95, alpha=0.50, 
label='Total production of five days') 
plt.hist(df1Transformed['Panels/Day'], bins=range(5,76, 1), rwidth=0.70, alpha=0.95, 
label='Single daily production value') 
 
plt.axvline(x=30, linestyle='--', linewidth=1.6, color='red', alpha=0.6) 
plt.axvline(x=55, linestyle='--', linewidth=1.6, color='red', alpha=0.6) 
 
plt.annotate("Avg. Daily Production   = {} panles/day".format(round(dailyPro, 1)), 
             xy=(15, 470), xycoords='axes points', fontsize=18) 
plt.annotate("Avg. Hourly Production = {} panles/hour".format(round(dailyPro/8, 1)), 
             xy=(15, 445), xycoords='axes points', fontsize=18) 
 
plt.xlabel("Total Daily Production (panels/day)", fontsize=22) 
plt.ylabel("Total Panel Count at Production Level", fontsize=22) 
plt.xlim((3, 77)); plt.xticks(range(5, 80, 5), fontsize=16) 
plt.yticks(range(0, 2001, 100), fontsize=16) 
plt.grid(True); plt.legend(ncol=2, fontsize=20, loc='upper left'); plt.show() 

4.1.2 Calculation of Actual Cycle Time - 'ActualCT' 



172 
 

# adding columns to calculate the time differences between consecutive antenna locati
ons using: 
# calculateTimeDiff(initialTime, lastTime); each time difference corresponds to the c
ycle time at a single workstation 
# For example, 'TotalTime12' --> 'Framing Station' and 'NoIdle12' --> 'Framing Statio
n' without idle time 
 
stationNames = df1Transformed.columns[2:12] 
for x in range(4): 
    condition1 = lambda row: calculateTimeDiff(row[stationNames[x]], row[stationNames
[x+1]]) 
    newColumn1 = "Time"+str(x+1)+str(x+2) 
    df1Transformed[newColumn1] = df1Transformed.apply(condition1, axis=1) 
     
# dropping panels where the production is not completed in the same day 
df1Transformed = df1Transformed.loc[~((df1Transformed['A5_last']-df1Transformed['A1_i
nitial']) > timedelta(hours=12))] 
# only keeping records with positive value of cycle time at each workstation 
df1Transformed = df1Transformed.loc[(df1Transformed["Time12"]>0) & (df1Transformed["T
ime23"]>0) & 
                                    (df1Transformed["Time34"]>0) & (df1Transformed["T
ime45"]>0)] 
df1Transformed.sort_values(by='FirstReadDate', inplace=True) 
df1Transformed.reset_index(drop=True, inplace=True) 
 
# Time between A1 and A5 is calculated by summing up the cycle times of individual wo
rkstations 
total15 = lambda row: (row["Time12"] + row["Time23"] + row["Time34"] + row["Time45"]) 
df1Transformed["ActualCT"] = df1Transformed.apply(total15, axis=1) 

# adding a column to calculate 'ActualCT' - break time 
df1Transformed['ActualCT-BT'] = df1Transformed['ActualCT'] 
 
# if the production of a wall panel overlaps with a break time, subtract that break t
ime from the total cycle time 
# break times are a) 15 minutes from 9:30 AM to 9:45 AM 
#                 b) 30 minutes from 12:0 PM to 12:30 PM 
#                 c) 15 minutes from 2:30 PM to 2:45 PM 
for index, row in df1Transformed.iterrows(): 
    if (row['A1_initial'].time() < time(9,30)) & (row['A5_last'].time() > time(9,45))
: 
        if (row['ActualCT-BT'] - 15) <= 0: 
            pass 
        else: 
            df1Transformed.at[index, 'ActualCT-BT'] = row['ActualCT-BT'] - 15 
    if (row['A1_initial'].time() < time(12,0)) & (row['A5_last'].time() > time(12,30)
): 
        if (row['ActualCT-BT'] - 30) <= 0: 
            pass 
        else: 
            df1Transformed.at[index, 'ActualCT-BT'] = row['ActualCT-BT'] - 30 
    if (row['A1_initial'].time() < time(14,30)) & (row['A5_last'].time() > time(14,45
)): 
        if (row['ActualCT-BT'] - 15) <= 0: 
            pass 
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        else: 
            df1Transformed.at[index, 'ActualCT-BT'] = row['ActualCT-BT'] - 15 
 
display(df1Transformed.iloc[:,12:].head(5)) 

# plotting boxplots for station times and total cycle time, to visualize the distribu
tion of outliers 
plt.figure(figsize=(12, 8)) 
data = [df1Transformed['Time12'], df1Transformed['Time23'], df1Transformed['Time34'], 
        df1Transformed['Time45'], df1Transformed['ActualCT']] 
labels = [i.name for i in data] 
 
box = plt.boxplot(x=data, labels=labels, vert=True, showmeans=True, sym='r+') 
plt.ylabel("Production Time (minutes)", fontsize=16) 
plt.yticks(range(-5, 400, 20), fontsize=13) 
plt.grid(True); plt.show() 
 
# adding a dataframe to summarize the boxplot values (upper and lower limits) 
getBoxplotData(box, labels) 

# plotting the time-difference between antenna locations A1 and A5 (total time) 
plt.figure(figsize=(15, 9)) 
sns.histplot(df1Transformed['ActualCT'], label='ActualCT', stat='count', kde=True, co
lor='red', alpha=0.5) 
sns.histplot(df1Transformed['ActualCT-BT'], label='ActualCT-BT', stat='count', kde=Tr
ue,  alpha=0.8) 
 
avg1, med1 = round(df1Transformed['ActualCT'].mean(), 1), round(df1Transformed['Actua
lCT'].median(),1) 
plt.axvline(x=avg1, linestyle='--', linewidth=1.6, color='red') 
avg2, med2 = round(df1Transformed['ActualCT-BT'].mean(), 1), round(df1Transformed['Ac
tualCT-BT'].median(), 1) 
plt.axvline(x=avg2, linestyle='--', linewidth=1.6, color='blue') 
 
plt.xlabel("Total Cycle Time (in minutes)", fontsize=16); plt.ylabel("Count", fontsiz
e=16) 
plt.xticks(range(0, 141, 5), fontsize=13); plt.yticks(range(0, 751, 50), fontsize=13) 
plt.xlim((0, 140)) 
 
plt.annotate("ActualCT mean and median:", xycoords='data', xy=(avg1-0.5, 600), fontsi
ze=15, 
             xytext=(70, 610), arrowprops={'arrowstyle':'->', 'color':'black'}) 
plt.annotate("[{}, {}]".format(avg1, med1), xycoords='data', xy=(108, 610), fontsize=
15) 
plt.annotate("ActualCT-BT mean and median:", xycoords='data', xy=(avg2-0.5, 550), fon
tsize=15, 
             xytext=(70, 560), arrowprops={'arrowstyle':'->', 'color':'black'}) 
plt.annotate("[{}, {}]".format(avg2, med2), xycoords='data', xy=(108, 560), fontsize=
15) 
plt.legend(ncol=2, fontsize=15); plt.grid(True, alpha=0.7, linestyle='--'); plt.show(
) 
 
df1stat = df1Transformed.describe().T.loc[:, ['mean', 'std', 'min', '25%', '50%', '75
%', 'max']].round(2) 
display(df1stat) 
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var1 = df1Transformed['ActualCT']; var2 = df1Transformed['ActualCT-BT'] 
cc, p_value = stats.pearsonr(var1, var2) 
print("Correlation Coefficient (CC) between 'ActualCT' and 'ActualCT-BT' ={}\np-value 
for CC ={}".format(cc, p_value)) 

# categorizing the target variable 'ActualCT' ---> 'CT_binned' 
# using custom ranges for bins = {'low', 'below-norm', 'normal', 'above-norm', 'high'
} 
group_names = ['low', 'below-norm', 'normal', 'above-norm', 'high'] 
avg, std = df1Transformed['ActualCT'].mean(), df1Transformed['ActualCT'].std() 
 
# creating bin limits based on the average value and std. deviation of 'ActualCT' 
l0, lmax = 0, df1Transformed['ActualCT'].max() 
l25, l75 = df1stat.loc['ActualCT', '25%'], df1stat.loc['ActualCT', '75%'] 
capL, capH = l25 - (l75-l25), l75 + (l75-l25) 
bins = [l0, capL, l25, l75, capH, lmax] 
 
df1Transformed['CT_binned'] = pd.cut(df1Transformed['ActualCT'], bins, labels=group_n
ames, ) 

4.2 Data Preparation in (df2) 

↑  back to Heading 4 

# skipping the first 3 columns in df2 ('MultiPanel_Name', 'Length', 'Width'), a count
er is used to track this order in the loop 
counter = 0 
 
# calculate the percentage of the two most-occuring values in each column 
# if the sum of these two values is 90% or more, this column(attribute) is to be dele
ted from df2 
 
percentage1, percentage2, columnNames = [], [], [] 
# creating a list to store column names where the total percentage is 90% or more 
columnsToDel = [] 
 
for columnName in df2: 
    counter += 1 
    # skipping the first 3 columns 
    if counter > 3: 
        val = df2[columnName].value_counts() 
        columnNames.append(columnName) 
        pr1 = round(100*val.tolist()[0]/sum(val.tolist()), 2); percentage1.append(pr1
) 
        pr2 = round(100*val.tolist()[1]/sum(val.tolist()), 2); percentage2.append(pr2
) 
        if (pr1+pr2) >= 90: 
            columnsToDel.append(columnName) 
 
# displaying all columns with the percentages of the two most-occuring values and thi
er sum 
total = [sum(x) for x in zip(percentage1, percentage2)] 
templist = list(zip(columnNames, percentage1, percentage2, (total))) 
percentageDF = pd.DataFrame(templist, columns=["Attr.", "Value 1 freq. (%)", "Value 2 
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freq. (%)", "Both Values freq. (%)"]) 
percentageDF.set_index("Attr.", inplace=True); display(percentageDF) 

# replacing values of the column 'Type' to numeric 'EXT', 'GAR', 'MEC' --> 1, 'INT', 
'STR', 'NaN' --> 0 
df2['Type'].replace(to_replace=['EXT', 'GAR', 'MEC', 'INT', 'STR', np.nan], value=[1, 
1, 1, 0, 0, 0], inplace=True) 
 
print(df2.columns) 

df22 = df2.copy(deep=True) 
# deleting rows where the following dimension limits apply: 
# a)'Length' < 1200mm, b) 'Width' > 3300mm or < 1400mm 
df22 = df22.loc[(df22["Length"] >= 1200) & (df22["Width"] >= 1400) & (df22["Width"] <
= 3300)] 
cols = ['MultiPanel_Name', 'Length', 'Width', 'Height', 'Type', 'Window', 'LargeWindo
w', 'Door', 'LargeDoor', 'Sheetfull', 
        'SheetPartial', 'Cutzone', 'Drillhole', 'Stud', 'DStud', 'LStud', 'MStud', 'B
lock', 'Backing', 'NailCount', 'Nailline'] 
df22 = df22[cols] 
# Scenario 0, df22, original data frame 
print("Scenario 0: df22   shape is", df22.shape) 
 
# Scenario 1, df2_v1, add new attributes, created by combining existing attributes 
df22_v1 = df22.copy(deep=True) 
df22_v1['totalWD']      = df22_v1['Window'] + df22_v1['LargeWindow'] + df22_v1['Door'
] + df22_v1['LargeDoor'] 
df22_v1['TotalStuds']   = df22_v1['Stud'] + 2*df22_v1['DStud'] + 2*df22_v1['LStud'] + 
3*df22_v1['MStud'] 
df22_v1['SheetFP']      = df22_v1['Sheetfull'] + df22_v1['SheetPartial'] 
df22_v1['BlockBacking'] = df22_v1['Block'] + df22_v1['Backing'] 
df22_v1.drop(columns=['Window', 'LargeWindow', 'Door', 'LargeDoor', 'Sheetfull', 'She
etPartial', 
                      'Stud', 'DStud', 'LStud', 'MStud', 'Block',  'Backing'], inplac
e=True) 
df22_v1.reset_index(drop=True, inplace=True) 
print("Scenario 1: df22_v1 shape is", df22_v1.shape) 
 
# Scenario 2, df2_v2, add new attributes, created by combining existing attributes 
df22_v2 = df22_v1.copy(deep=True) 
df22_v2['Components']   = df22_v2['totalWD'] + df22_v2['TotalStuds'] + df22_v2['Sheet
FP'] + df22_v2['BlockBacking'] 
df22_v2.drop(columns=['totalWD', 'TotalStuds', 'SheetFP', 'BlockBacking'], inplace=Tr
ue) 
df22_v2.reset_index(drop=True, inplace=True) 
print("Scenario 2: df22_v2 shape is", df22_v2.shape) 
 
# Scenario 3, df2_v3, add new attributes, created by combining existing attributes 
# this scenario is developed for the simulation model (i.e., Chapter 5) 
df22_v3 = df22.copy(deep=True) 
df22_v3['SmallOpenings'] = df22_v3['Window'] + df22_v3['Door'] 
df22_v3['LargeOpenings'] = df22_v3['LargeWindow'] + df22_v3['LargeDoor'] 
df22_v3['BlockBacking']  = df22_v3['Block'] + df22_v3['Backing'] 
df22_v3.drop(columns=['Height', 'Window', 'Door', 'LargeWindow', 'LargeDoor', 'Block'
, 'Backing'], inplace=True) 
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cols = ['MultiPanel_Name', 'Length', 'Width', 'Type', 'Cutzone', 'Drillhole', 'Stud', 
'DStud', 'LStud', 'MStud', 
        'SmallOpenings', 'LargeOpenings', 'BlockBacking', 'NailCount', 'Nailline',  '
Sheetfull', 'SheetPartial'] 
df22_v3 = df22_v3[cols] 
df22_v3.reset_index(drop=True, inplace=True) 
print("Scenario 3: df22_v3 shape is", df22_v3.shape) 
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5. Data Processing and Merging 

↑  back to TOC 

n1 = df1Transformed['FirstReadDate'].nunique() 
print("Total number of production days = {} working days".format(n1)) 

5.1 Merging Dataframes and Generating Features 

# create an empty list to store the final dataframes 
df_final_list = [] 
 
# creating a list of cleaned dataframes of panel properties 
df22_list = [df22, df22_v1, df22_v2, df22_v3] 
 
for dataframe in df22_list: 
    # merging 'df1Transformed' with each of the dataframes in 'df22_list' 
    df1_merged = pd.merge(left=df1Transformed, right=dataframe, left_on="PanelNumber"
, right_on="MultiPanel_Name") 
    df1_merged['WP'] = 0 
    df1_merged['WPLength'] = 0 
    df1_merged['WPTime'] = 0.0 
 
    # extracting a slice of the data frame between start and end dates 
    startDate, endDate = datetime(2015, 9, 1), datetime(2018, 8, 31) 
    tempDF0 = df1_merged.loc[(df1_merged["FirstReadDate"] >= startDate) & (df1_merged
["FirstReadDate"] <= endDate)] 
    tempDF0.reset_index(drop=True, inplace=True) 
 
    # creating a list of unique dates by ignoring duplicates in 'FirstReadDate' 
    listOfDates = pd.to_datetime(tempDF0['FirstReadDate'].unique().tolist()) 
    listOfDates = listOfDates.sort_values() 
 
    counter = 0 
    for day in listOfDates: 
        tempDF1 = tempDF0.loc[tempDF0["FirstReadDate"] == day] 
        tempDF1.reset_index(drop=True, inplace=True) 
 
        for index, row in tempDF1.iterrows(): 
            # extracting the start time of processing a panel from the timestamp in '
A1_initial' 
            panel_start = row['A1_initial'] 
            num, length, time = 0, 0, 0 
            # for all other panels on the same day, check how many panels have alread
y been in production 
            # and are still in-process (i.e. WIP) when the current panel enters the p
roduction 
            for index2, row2 in tempDF1.iterrows(): 
                a1_other = row2['A1_initial'] 
                a2_other = row2['A2_initial'] 
                a3_other = row2['A3_initial'] 
                a4_other = row2['A4_initial'] 
                a5_other = row2['A5_initial'] 
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                if (panel_start > a1_other) and ( 
                    (panel_start < a2_other) or (panel_start < a3_other) or (panel_st
art < a4_other) or (panel_start < a5_other)): 
                    num += 1 
                    length += row2['Length'] 
                    time += row2['ActualCT'] 
            tempDF1.at[index, 'WP'], tempDF1.at[index, 'WPLength'], tempDF1.at[index, 
'WPTime'] = num, length, time 
         
        counter += 1 
        if counter > 1: 
            df_final = pd.concat([df_final, tempDF1], ignore_index=True) 
        else: 
            df_final = tempDF1 
        #############################################################################
############################### 
 
    df_final.drop(columns=['MultiPanel_Name', 'A2_initial', 'A3_initial', 'A4_initial
', 'A5_initial', 
                           'A1_last', 'A2_last', 'A3_last', 'A4_last', 'A5_last'], in
place=True) 
     
    # rearranging columns so target attributes 'ActualCT', 'ActualCT-BT', and 'CT_bin
ned' are the last columns in the dataframe 
    CT_index = df_final.columns.get_loc('ActualCT') 
    cols = df_final.columns.tolist() 
    cols = cols[:CT_index] + cols[CT_index+3:] + cols[CT_index:CT_index+3] 
    df_final = df_final[cols] 
     
    # rearranging columns so that 'Panels/Day' is placed before the target columns in 
the dataframe 
    PD_index = df_final.columns.get_loc('Panels/Day') 
    cols = df_final.columns.tolist() 
    cols = cols[:PD_index] + cols[PD_index+1:-3] + [cols[PD_index]] + cols[-3:] 
    df_final = df_final[cols] 
     
    # sorting records by 'FirstReadDate' 
    df_final.sort_values(by='FirstReadDate', ascending=True, inplace=True, ignore_ind
ex=True) 
    df_final['FirstReadDate'] = df_final['FirstReadDate'].dt.date 
    df_final_list.append(df_final) 
 
# adding the raw dataset (without the generated attributes) to the list of dataframes 
df_raw = df_final_list[0].drop(['WP', 'WPLength', 'WPTime', 'Panels/Day'], axis=1) 
df_final_list.insert(0, df_raw) 
print("Merging of all dataframes has been completed") 

# using seaborn default style and set the default figure size 
sns.set(rc={'figure.figsize':(16, 12)}) 
lengthIndex = df_final_list[2].columns.get_loc('Length') 
# plotting the heatmap of correlation between attributes 
pc = df_final_list[2].iloc[:, lengthIndex:].corr(method='pearson') 
sns.heatmap(pc, xticklabels=pc.columns, yticklabels=pc.columns, 
            cmap='RdBu_r', annot=True, linewidth=0.5, square=True) 
plt.show() 
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5.2 Saving Merged Dataframes to CSV 

↑  back to Heading 5 

# saving final data frames to CSV files 
names = ['df_raw', 'df_final', 'df_final_v1', 'df_final_v2', 'df_final_v3'] 
i = 0 
for dataframe in df_final_list: 
    file_name = "{}_{}_{}.csv".format(i+1, str(date.today()), names[i]) 
    dataframe.to_csv("CSV\{}".format(file_name), index=False) 
    i += 1 
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6. Cycle Time (CT) Prediction 

↑  back to TOC 

6.1 Experiment A (1 Target Dat, 1 Model and 1 Dataframe) 

# the variable 'df_id' refers to one of the four dataframes in the list 'df_final_lis
t' = {0, 1, 2, 3} 
# df_0 = raw dataset without SL features 
# df_1 = dataset with SL features with no feature combination 
# df_2 = dataset with SL features with physical features combined into 4 features 
# df_3 = dataset with SL features with physical features combined into 1 feature 
df_i = 2; dataframe = df_final_list[df_i].copy(deep=True) 
 
# specify the start and end dates for the experiment 
sDate, eDate = date(2017,6,13), date(2017,6,21) 
 
dataframe = dataframe.loc[(dataframe["FirstReadDate"] >= sDate) & (dataframe["FirstRe
adDate"] <= eDate)] 
dataframe.reset_index(drop=True, inplace=True) 
listOfDates = pd.to_datetime(dataframe['FirstReadDate'].unique().tolist()).sort_value
s() 
print(listOfDates) 
 
# splitting the dataframe into two sets: a training set, and a testing set 
df_training = dataframe.loc[dataframe['FirstReadDate'] != listOfDates[-1]] 
df_training.reset_index(drop=True, inplace=True) 
df_testing = dataframe.loc[dataframe['FirstReadDate'] == listOfDates[-1]] 
df_testing.reset_index(drop=True, inplace=True) 
# storing independent features in the variable 'X' and the target attribute 'ActualCT
-BT' in the variable 'y' 
# '7' represents the location of 'Lenght' and '-3' exclude targe variables from the i
ndependent variables 'X' 
X_train = df_training.values[:, 7:-3] 
y_train = df_training['ActualCT-BT'].values 
X_test = df_testing.values[:, 7:-3] 
y_test = df_testing['ActualCT-BT'].values 
 
test_dim, train_dim = df_testing.shape[0], df_training.shape[0] 
print("Testing set represents {}% of the whole data\n".format(round(test_dim/(test_di
m+train_dim), 2)*100)) 
 
# experimenting with a Random Forest model 
clf = ensemble.RandomForestRegressor(n_estimators=1000, criterion='mse', random_state
=66) 
 
print("Training the model:") 
train_and_evaluate(clf, X_train, y_train) 
print("Performance on the testing set:") 
measure_performance(X_test, y_test, clf, False, False, False, True) 

6.2 Experiment B (Many Target Days, 1 Model and 1 Dataframe) 
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↑  back to Heading 6 

# experimenting with an ETR model 
clf = ensemble.ExtraTreesRegressor(n_estimators=500, criterion='mse', random_state=66
) 
df_i = 2; dataframe = df_final_list[df_i] 
 
# specify the range of dates to check 'startDate' and 'endDate' 
# and the length of historical timeframe to check 'lookbackTime' 
startDate, endDate = date(2017,1,1), date(2017,12,31) 
lookbackTime = 5 
 
dataframe = dataframe.loc[(dataframe['FirstReadDate'] >= startDate) & (dataframe['Fir
stReadDate'] <= endDate)] 
dataframe = dataframe.loc[(dataframe['Panels/Day'] >= 10) & (dataframe['Panels/Day'] 
<= 70)] 
 
# determining the unique dates between startDate and endDate (eliminating duplicates) 
uniqDays = dataframe['FirstReadDate'].unique() 

Looping over Target Date Range (startDate --> endDate) 

# a list to store the results 
results = [] 
# creating an empty dataframe to append results to it 
newDF = pd.DataFrame(columns = dataframe.columns) 
 
for day in uniqDays[5:]: 
    # locating the starting day of the prediction lookback timeframe 
    sDayLoc = np.asarray(np.array(uniqDays) == day).nonzero()[0][0] - lookbackTime 
    sDay = uniqDays[sDayLoc] 
    #print("Start Day: {}, Testing Day: {}".format(sDay, day)) 
     
    # splitting the dataframe into two sets: a training set, and a testing set 
    df_training = dataframe.loc[(dataframe['FirstReadDate'] >= sDay) & (dataframe['Fi
rstReadDate'] < day)] 
    df_training.reset_index(drop=True, inplace=True) 
    df_testing = dataframe.loc[dataframe['FirstReadDate'] == day] 
    df_testing.reset_index(drop=True, inplace=True) 
    # storing independent features in the variable 'X' and the target attribute 'Actu
alCT-BT' in the variable 'y' 
    # '7' represents the location of 'Lenght' and '-3' exclude targe variables from t
he independent variables 'X' 
    x_train = df_training.values[:, 7:-3] 
    y_train = df_training['ActualCT-BT'].values 
    x_test = df_testing.values[:, 7:-3] 
    y_test = df_testing['ActualCT-BT'].values   
     
    # fitting the model on the training set, and predicting target values on the test
ing set 
    train_and_evaluate(clf, x_train, y_train, False) 
    y_pred = clf.predict(x_test) 
     
    # storing the predicted value in the dataframe, and appending the results to newD
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F one day for each loop 
    dayDF = dataframe.loc[dataframe['FirstReadDate'] == day] 
    dayDF['PredictedCT'] = y_pred 
    newDF = newDF.append(dayDF) 
     
    MAE = metrics.mean_absolute_error(y_test, y_pred) 
    MedAE = metrics.median_absolute_error(y_test, y_pred) 
    MaxAE = metrics.max_error(y_test, y_pred) 
    MAPE = metrics.mean_absolute_percentage_error(y_test, y_pred) 
    CC = stats.pearsonr(y_test, y_pred) 
 
    # A dictionary to aggregate the results of each subset 
    dict1 = {} 
    dict1['Start Date'], dict1['Target Date'] = sDay, day 
    dict1['MAE'] = round(MAE, 2) 
    dict1['MedAE'] = round(MedAE, 2) 
    dict1['MaxAE'] = round(MaxAE, 2) 
    dict1['MAPE'] = round(MAPE*100, 2) 
    dict1['CC'] = round(CC[0], 2) 
    results.append(dict1) 

# creating a dataframe to summarize the results 
resultsDF = pd.DataFrame(results) 
display(resultsDF.head(10)) 

plt.figure(figsize=(16, 10)) 
 
# plotting the actual cycle time and the predicted results of the four models 
sns.histplot(newDF['ActualCT-BT'], label='ActualCT-BT', stat='probability', kde=True, 
color='red') 
sns.histplot(newDF['PredictedCT'], label='PredictedCT', stat='probability', kde=True, 
color='blue', alpha=0.5) 
 
# plotting vertical lines for average values 
avgAct = round(newDF.loc[:, 'ActualCT-BT'].mean(), 1); plt.axvline(x=avgAct, linestyl
e='--', linewidth=1.6, color='red') 
plt.annotate("Avgerage actual CT = {} minutes".format(avgAct), xycoords='data', xy=(a
vgAct-0.2, 0.064), fontsize=16, 
            xytext=(60, 0.061), arrowprops={'arrowstyle':'->', 'color':'black'}) 
avgPre = round(newDF.loc[:, 'PredictedCT'].mean(), 1); plt.axvline(x=avgPre, linestyl
e='--', linewidth=1.6, color='blue') 
plt.annotate("Avgerage predicted CT = {} minutes".format(avgPre), xycoords='data', xy
=(avgPre-0.2, 0.060), fontsize=16, 
            xytext=(60, 0.057), arrowprops={'arrowstyle':'->', 'color':'black'}) 
 
plt.xlabel("Production Cycle Time (in minutes)", fontsize=16); plt.xticks(range(0, 12
1, 5), fontsize=13); plt.xlim((0, 121)) 
plt.ylabel("Probability", fontsize=16); plt.yticks(np.arange(0, 0.071, 0.01), fontsiz
e=13) 
 
plt.legend(ncol=2, fontsize=14); plt.grid(True); plt.show() 

Experimenting with Different Lookback Timeframes 
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df_i = 2; dataframe = df_final_list[df_i] 
lookbackTime = range(1, 31) 
 
# lists to store the results 
results = [[] for _ in range(len(lookbackTime))] 
# creating empty dataframes to append results to it 
newDFList = [pd.DataFrame(columns = dataframe.columns) for _ in range(len(lookbackTim
e))] 
 
for day in uniqDays[len(lookbackTime):]: 
    #print("\nTesting Day: {}".format(day)) 
     
    for index, lb in enumerate(lookbackTime): 
        print('.', end='') 
        # locating the starting day of the prediction lookback time 
        sDayLoc = np.asarray(np.array(uniqDays) == day).nonzero()[0][0] - lb 
        sDay = uniqDays[sDayLoc] 
        #print("Start Day: {}, Testing Day: {}".format(sDay, day)) 
         
        # splitting the dataframe into two sets: a training set, and a testing set 
        df_training = dataframe.loc[(dataframe['FirstReadDate'] >= sDay) & (dataframe
['FirstReadDate'] < day)] 
        df_training.reset_index(drop=True, inplace=True) 
        df_testing = dataframe.loc[dataframe['FirstReadDate'] == day] 
        df_testing.reset_index(drop=True, inplace=True) 
        # storing independent features in the variable 'X' and the target attribute '
ActualCT-BT' in the variable 'y' 
        # '7' represents the location of 'Lenght' and '-3' exclude targe variables fr
om the independent variables 'X' 
        x_train = df_training.values[:, 7:-3] 
        y_train = df_training['ActualCT-BT'].values 
        x_test = df_testing.values[:, 7:-3] 
        y_test = df_testing['ActualCT-BT'].values   
 
        # Fitting the model on the training set, and predicting target values on the 
testing set 
        train_and_evaluate(clf, x_train, y_train, False) 
        y_pred = clf.predict(x_test) 
 
        # storing the predicted value in the dataframe, and appending the results to 
newDF one day for each loop 
        dayDF = dataframe.loc[dataframe['FirstReadDate'] == day] 
        dayDF['PredictedCT'] = y_pred 
        newDFList[index] = newDFList[index].append(dayDF) 
 
        MAE = metrics.mean_absolute_error(y_test, y_pred) 
        MedAE = metrics.median_absolute_error(y_test, y_pred) 
        MaxAE = metrics.max_error(y_test, y_pred) 
        MAPE = metrics.mean_absolute_percentage_error(y_test, y_pred) 
        CC = stats.pearsonr(y_test, y_pred) 
 
        # A dictionary to aggregate the results of each subset 
        dict1 = {} 
        dict1['Start Date'], dict1['Target Date'] = sDay, day 
        dict1['Lookback Time'] = lb 
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        dict1['MAE'] = round(MAE, 2) 
        dict1['MedAE'] = round(MedAE, 2) 
        dict1['MaxAE'] = round(MaxAE, 2) 
        dict1['MAPE'] = round(MAPE*100, 2) 
        dict1['CC'] = round(CC[0], 2) 
        results[index].append(dict1) 

# aggregating the results of all lookback timeframes performance metrics into one dat
aframe 
resultsDFALL = pd.DataFrame(columns=pd.DataFrame(results[0]).columns) 
 
for index, table in enumerate(results): 
    resultsDF = pd.DataFrame(table) 
    resultsDFALL = resultsDFALL.append(resultsDF) 
display(resultsDFALL.sort_values(by='MAPE').head(50)) 

resultsDFALL.reset_index(drop=True, inplace=True) 
grp = resultsDFALL.groupby(by='Lookback Time') 
groupedDF = grp.min().reset_index() 
 
plt.figure(figsize=(14, 7)) 
x = groupedDF['Lookback Time'].tolist() 
y = groupedDF['MAPE'].tolist() 
sns.regplot(x=x, y=y, order=6, ci=0, scatter_kws={'s':60}, marker='s') 
 
plt.xlabel("Lookback Timeframe (days)", size=16); plt.xticks(range(1,31), fontsize=14
, rotation=0) 
plt.ylabel("MAPE (%)", size=16); plt.yticks(fontsize=14, rotation=0) 
plt.grid(True); plt.show() 

6.3 Full Experiment (1 target day, 4 models and 4 dataframes) 

↑  back to Heading 6 

# a list storing the names of the four dataframes, which will be used in the loop to 
iterate over these dataframes 
datasetNames = ['df_raw', 'df_SLfeatures', 'df_SLfeaturse_v1', 'df_SLfeatures_v2'] 
# specify the start and end dates for the experiment 
sDate, eDate = date(2017,5,24), date(2017,6,12) 
 
# a list to store the four dataframes with predicted values for each model 
df_predicted = [] 
 
# looping over the four dataframes and for each one, train the four models (LR, KNN, 
RF, and NN) 
# and calculate five performance metrics; then display the results for each dataframe 
in a table 
for df_i in range(len(datasetNames)): 
    print('----- Experiment on dataframe "{}" -----'.format(datasetNames[df_i])) 
    # the variable 'df_id' refers to one of the four dataframes in the list 'df_final
_list' = {0, 1, 2, 3} 
    dataframe = df_final_list[df_i].copy(deep=True) 
     
    dataframe = dataframe.loc[(dataframe["FirstReadDate"] >= sDate) & (dataframe["Fir
stReadDate"] <= eDate)] 
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    listOfDates = pd.to_datetime(dataframe['FirstReadDate'].unique().tolist()).sort_v
alues() 
    #print(listOfDates) 
     
    # test set consists of records of one day - End Date 'eDate' 
    # training set consists of recoreds in all working days from 'sDate' until one da
y before 'eDate' 
    df_training = dataframe.loc[(dataframe['FirstReadDate'] != listOfDates[-1])] 
    df_training.reset_index(drop=True, inplace=True) 
    df_testing = dataframe.loc[(dataframe['FirstReadDate'] == listOfDates[-1])] 
    df_testing.reset_index(drop=True, inplace=True) 
    # storing independent features in the variable 'X' and the target attribute 'Actu
alCT-BT' in the variable 'y' 
    # '7' represents the location of 'Lenght' and '-3' exclude targe variables from t
he independent variables 'X' 
    X_train = df_training.values[:, 7:-3] 
    y_train = df_training['ActualCT-BT'].values 
    X_test = df_testing.values[:, 7:-3] 
    y_test = df_testing['ActualCT-BT'].values 
 
    reg_1 = linear_model.LinearRegression(normalize=True) 
    reg_2 = neighbors.KNeighborsRegressor(n_neighbors=11, weights='distance', p=2) 
    reg_3 = ensemble.RandomForestRegressor(n_estimators=1000, criterion='mae', random
_state=66) 
    reg_4 = neural_network.MLPRegressor(hidden_layer_sizes=(52, 52), solver='lbfgs', 
                                        activation='relu', max_iter=2000, random_stat
e=99) 
 
    modelList, modelName = [reg_1, reg_2, reg_3, reg_4], ['LR', 'KNN', 'RF', 'NN'] 
    scores, counter = [], 0 
    for index, model in enumerate(modelList): 
        print("* Model: {}".format(modelName[index])) 
        # Fitting the model on training set, and predicting the target on testing set 
        train_and_evaluate(model, X_train, y_train, True) 
        y_pred = model.predict(X_test)       
        # store the predicted values in the dataframe 
        col_name = 'pred_' + modelName[counter] 
        counter += 1 
        df_testing[col_name] = y_pred 
         
        MAE = metrics.mean_absolute_error(y_test, y_pred) 
        MedAE = metrics.median_absolute_error(y_test, y_pred) 
        MaxAE = metrics.max_error(y_test, y_pred) 
        MAPE = metrics.mean_absolute_percentage_error(y_test, y_pred) 
        CC = stats.pearsonr(y_test, y_pred) 
        # a dictionary to aggregate the results of each run 
        dict1 = {} 
        dict1['MAE'] = round(MAE, 2) 
        dict1['MedAE'] = round(MedAE, 2) 
        dict1['MaxAE'] = round(MaxAE, 2) 
        dict1['MAPE'] = round(MAPE*100, 2) 
        dict1['CC'] = round(CC[0], 2) 
        scores.append(dict1) 
     
    df_predicted.append(df_testing) 
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    # create and display a dataframe of the results for each dataset 
    scoresDF = pd.DataFrame(scores, index=modelName) 
    display(scoresDF.T) 


