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Abstract 

Each individual chromatogram is typically very sparse, especially when 

coupled with a technique such as mass spectrometry. Only a small portion 

of the recorded data actually contains potentially useful information. Since 

the inclusion of irrelevant information will have detrimental effects upon 

the resulting chemometric model, variable selection is an essential step in 

pre-processing of raw chromatographic data. Presented here is a model 

evaluation metric named cluster resolution which was developed to, when 

used in conjunction with variable ranking metrics such ANOVA or 

selectivity ratio, guide the variable selection process. 

Retention time shifts are another problem that makes application of 

chemometric techniques to chromatographic data more challenging. While 

numerous alignment algorithms are available, alignment remains a 

challenge when dealing with highly dissimilar samples. To solve this 

problem, deuterated alkane ladder-based alignment was developed. 

Finally, the tools developed in the course of this study were applied to 

pre-processing of casework fire debris data for the purpose of 

classification of fire debris based on ignitable liquid content. This project 

was performed in collaboration with Royal Canadian Mounted Police. The 

developed tools allowed effective chromatographic alignment and variable 
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selection, which permitted the construction of the first chemometric 

models able to reliably classify casework fire debris based on the 

presence or absence of gasoline. 
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1 Chapter One: Introduction1 

Molecular separations are often used to analyze complex mixtures 

associated with highly complex challenges in fields such as metabolomics 

and forensics. Recently, there has been increased interest in applying 

chemometric techniques to separations data. Chemometrics provides 

powerful tools to assist in the interpretation and visualization of complex 

data so that these complex questions can be addressed. However, prior to 

the application of chemometric techniques, separations data must be pre-

processed so that the resulting model is focused on relevant variations 

within the data. The goal of my work has been to develop tools to assist in 

the preparation of separations data for chemometric analysis. The primary 

contributions are a metric termed cluster resolution (CR) which has been 

developed to assist in the automation of variable selection routines and 

the implementation of an alignment algorithm that relies on a retention 

ladder of deuterated alkanes. These allow for the alignment of 

chromatographic data with highly variable compositions across samples. 

The techniques developed have been successfully applied to determine 

the presence of gasoline in casework arson debris samples. 

 

 

                                                            
1 A version of this chapter has been published as J. J. Harynuk, A. P. de la Mata, N. A. Sinkov, 
Application of Chemometrics to the Interpretation of Analytical Separations Data, In 
Chemometrics in Practical Applications. K. Varmuza, InTech, Rijeka, 2012, 305‐326.    



 

    2   

1.1 Separation methods and chemometrics. 

Analytical techniques are applied to a sample with the goal of 

answering some question about the sample based on the presence and/or 

abundance of one or more analytes. However, real-world samples are 

usually present as complex mixtures which, in addition to the analyte(s) of 

interest, contain matrix components which are largely irrelevant to 

answering the fundamental question at hand. These matrix components 

are often present in significantly higher amounts than analytes of interest, 

both in terms of the number of components and their concentrations.  

While in some cases selective identification and quantification of 

analytes may be possible, often separations techniques such as liquid 

chromatography (LC), gas chromatography (GC), or electrophoresis must 

be applied. With individual components in the mixture separated, they can 

be detected and quantified individually to arrive at an answer to the 

question about the sample. Recently, more complex analytical questions 

are being asked, such as identifying the origin of a food product [1,2,3], 

identifying the presence or absence of ignitable liquids in a sample of 

debris from a fire [4,5,6], or determining the disease state of a patient 

based on analysis of a blood sample [7,8,9]. Answering these types of 

questions usually involves far more than simply quantifying a couple of 

analytes in the sample and requires the identification of complex patterns 

of variables in the data. For example, relative abundances of select 
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alkanes and alkyl benzenes can be used for the purpose of identifying 

gasoline in an arson debris sample [10].  

Chemometrics is a discipline that uses mathematical and statistical 

tools to extract useful chemical information from raw chemical data [11]. 

The extracted information can be used to answer questions about 

samples (e.g. classification or quantification) or optimize measurement 

procedures and experiments [12,13]. A wide variety of chemometric 

methods have been developed for the purpose of extracting chemical 

information from data. Some examples are the exploratory approaches 

such as principal component analysis (PCA) [14] and cluster analysis [15], 

the calibration approaches such as multiple linear regression (MLR) [16], 

principal component regression (PCR) [17,18], partial least squares 

regression (PLS) [17,19, 20], and the classification approaches such as 

soft independent modelling by class analogy (SIMCA) [21], partial least 

squares discriminant analysis (PLS-DA) [22], and orthogonal least 

squares discriminant analysis (OPLS-DA) [23]. The approaches listed 

above are just a few examples of the variety of tools today’s analysts have 

at their disposal. 

1.1.1 Chromatography 

Chromatography is an approach widely used for the separation, 

purification, and analysis of mixtures. Generally, analytes contained in a 

mobile phase, which is usually a gas or a liquid, are flowed past a 
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stationary phase, which is usually a viscous liquid or a solid supported 

inside a chromatographic column. Depending on the possible molecular 

interactions between analytes and the stationary and mobile phases, as 

well as other conditions, such as temperature, pH, etc., different 

compounds will partition between the two phases to varying degrees. As a 

result of this differential partitioning, separation will be observed, with 

analytes associating more strongly with the mobile phase passing through 

the column more quickly than those with a greater affinity for the stationary 

phase [24]. 

Among the numerous types of chromatography developed, the most 

common ones are liquid chromatography (LC), where the mobile phase is 

a liquid, and gas chromatography (GC), where the mobile phase is a gas. 

A block diagram of a chromatographic system is provided in Figure 1-1.  

 

Figure 1-1:  Block diagram of a chromatographic system  
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In GC, which was used for the bulk of the research in this work, 

stationary phases are either solid, or more often highly cross-linked 

polymers with liquid-like properties while the mobile phase is a gas, 

usually helium or hydrogen. There are many modes of LC, ranging from 

reverse-phase liquid chromatography (RPLC), normal-phase liquid 

chromatography (NPLC), ion chromatography (IC), size exclusion 

chromatography (SEC), hydrophilic interaction liquid chromatography 

(HILIC) and affinity chromatography (AC). Different types of 

chromatography have their advantages and disadvantages and are 

suitable for different kinds of samples. For example, GC requires volatile 

or semi-volatile analytes. Thus large biomolecules which would thermally 

degrade before volatilizing are not amenable to GC analysis. In general, 

the choice of a chromatographic technique depends on the type of sample 

being analyzed, required analysis time, resources available, etc. [24,25]. 

When dealing with highly complex samples, so-called comprehensive 

multidimensional separations such as GC×GC or LC×LC [26,27,28,29,30] 

are emerging as useful options in the analyst’s toolbox. With these 

techniques, a mixture of analytes is sequentially separated by two different 

mechanisms. For example, in the case of GC×GC a sample might be 

separated first on a non-polar column, followed by a separation on a polar 

column. These techniques are capable of separating exceedingly complex 

mixtures comprising thousands of individual compounds. Due to the vastly 

improved separation power of these techniques, the resulting data are 
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much more information-rich than data from one-dimensional separations. 

As a result of the power of these techniques, they are well-suited to 

addressing complex questions. However, to fully exploit their immense 

potential, the development of chemometric tools for processing their data 

is essential. 

1.1.2  Chromatographic data. 

Before discussing the application of chemometric techniques to 

chromatographic separations, the form of the data obtained from such 

chromatographic systems must be understood. The detector signal 

obtained from a separation represents the detector response as a function 

of time with a single analyte ideally providing a single Gaussian peak.  

 

Figure 1-2: Segment of a GC-MS Total Ion Current chromatogram of gasoline 
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Figure 1-2 depicts a segment of a gas chromatography-mass 

spectrometry (GC-MS) chromatogram of a gasoline sample. The plot is of 

total ion current (the sum of the abundances of all ions in each scan) vs. 

time. This chromatogram was collected with a data rate of approximately 

10 Hz. Thus, this 7-minute segment of data consists of about 4200 

individual data points. To obtain an accurate peak profile, the instrument 

should acquire 10 points across each peak [31]. The data rate of 10 Hz is 

acceptable for this chromatogram where peaks are about 2 s wide at the 

base. In cases where there are narrower peaks, such as would be the 

case with a GC×GC separation, higher data rates, on the order of 50-200 

Hz, would be required for quantitative analysis. 

Another important consideration is the nature of the detector. The 

chromatogram in Figure 1-2 is an example of a univariate detector 

response. Even though the MS collected data for many ions, the TIC is the 

sum of these ions and the multivariate nature of the MS data is lost in this 

representation. Other examples of univariate detectors include a flame 

ionization detector (FID) in GC or a refractive index detector in LC. The 

difference between a univariate and a multivariate response is illustrated 

in Figure 1-3, which presents the same data as in Figure 1-2, with the full 

mass spectral dimension of information preserved. 
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Figure 1-3: Section of a GC-MS chromatogram of gasoline showing MS 
information. Darker colour indicates stronger intensity. 

In Figure 1-3, the intensity of an ion at certain mass/charge ratio (m/z) 

at a given time point (scan) is represented as an individual variable. The 

number of scans in Figure 1-3 is the same as in Figure 1-2 (4200 scans) 

but now individual ion intensities for ions with m/z ratios ranging from 30 to 

150 are considered, a total of 121 ions. As a result, this section of the 

chromatogram consists of 508 200 (4200×121) variables, a much larger 

number than seen with a univariate detector. As a comparison, a 10-

minute long GC-FID chromatogram with the detector operating at 10 Hz 

will provide 6000 variables while an hour-long GC×GC-MS analysis 

collecting ions over a range of 30-300 m/z at 200 Hz will provide 195 120 

000 individual data points.  
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In the interpretation of separations data, there are two fundamental 

approaches that can be taken. The most common is to integrate the peaks 

to obtain a table of peak areas for each sample. Chemometric techniques 

may then be applied to the data which have been reduced to a simple 

peak table. The other approach, which is becoming more popular, is to 

apply chemometric techniques to the raw chromatographic data directly in 

an attempt to extract useful features from it. These approaches will be 

discussed further in this chapter.   

1.2  Challenges posed by chromatographic data. 

Chromatographic data poses unique challenges to the application of 

chemometrics. To obtain the best results when applying chemometric 

methods to chromatographic data, it is essential that the analyst 

understands both the chromatographic and chemometric techniques used. 

Analytical separations data, like data derived from any other analytical 

instrument, are based on chemical and non-chemical aspects of the 

analysis. While non-chemical variation is irrelevant, chemical variation can 

be both relevant and irrelevant to a given analytical question. Consider the 

case of determining whether an individual is healthy or sick based on an 

LC analysis of a blood sample. Chromatograms obtained from sick and 

healthy groups of individuals will contain signals from numerous 

metabolites. The responses of some metabolites will increase or decrease 

depending on the disease state, while other metabolites’ variability will not 

be related to the disease state. Furthermore, many of the metabolites’ 
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responses will also be influenced by day-to-day activities (e.g. diet). The 

challenge is to identify relevant chemical variation in the sample (that 

which is indicative of a disease state) while ignoring irrelevant chemical 

variations. In addition to sample variability, there are often other 

components of the signal to deal with, such as stationary phase “bleed”, 

which contribute additional irrelevant chemical variation to the data.  

Non-chemical variation includes retention time shifts of peaks due to 

fluctuations in operating conditions, baseline drift for non-chemical 

reasons, electronic noise, etc. When significant irrelevant variation is 

present, it interferes with the analysis, degrading the quality of the 

resultant model [32]. Therefore, prior to the application of chemometric 

tools to separations data, analysts must pre-process the data to ensure 

that the tools are focused on relevant chemical variation while ignoring 

irrelevant variations of both chemical and non-chemical natures. Utilizing 

integrated peak tables is one of the ways to correct for non-chemical 

variation to some extent. However severe non-chemical variation may 

make accurate integration and assignment of chromatographic peaks 

impossible.  

1.2.1  Baseline and noise 

Most chromatographic data will contain some degree of background 

noise. In the case of LC separations, the composition of the mobile phase 

will change during a gradient separation, possibly introducing baseline 
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drift. Gradual build-up and slow, prolonged elution of strongly-retained 

matrix components can also cause baseline drift. Figure 1-4 presents an 

example of baseline drift in LC. 

 

Figure 1-4: A gradient LC chromatogram of edible oils showing baseline drift. 

Similarly, in temperature-programmed GC, increased levels of 

stationary phase bleed will be observed at higher temperatures. Noise and 

drift could also result from factors such as contamination of mobile phase 

or change in detector response with time. 

1.2.2  Retention time shifts 

Retention time shifts are a common problem in chromatographic 

separations. When chemometric analyses are performed on integrated 

peak tables, minor retention time shifts will not pose many problems as 

long as the peaks are identified correctly. However, when retention time 
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shifts are severe, problems with peak identification may arise since 

identification is often based on retention time. When dealing with complex 

samples where the identity of some peaks may be unknown, retention 

time shifts can make comparisons between chromatograms challenging or 

even impossible. If analytes are misidentified, the resulting model will 

likely produce nonsensical output. 

When raw chromatographic signals are used, even minor shifts in 

retention can pose severe problems for chemometric analysis even with 

relatively simple samples. Figure 1.5 presents a simulation of misaligned 

peaks. 

 

Figure 1-5:  Misaligned simulated Gaussian peaks. Squares, asterisks and 
triangles show same data points on the two peaks. Dashed lines 
indicate difference in signal recorded for two peaks at the same time 
point. Widths and amplitudes of the peaks are identical. 
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In the figure, the two peaks represent the same compound and they 

should elute at the same time. However, they do not. As a consequence, 

the signal in the blue peak is not recorded in the expected locations in the 

signal vector. The data points indicated by the squares, triangles, and 

asterisks would occur at the same three times if the peaks were aligned. 

However, there is a significant difference in the intensities recorded at the 

same points in time in the two analyses. When attempting to use 

chemometric techniques on such misaligned raw data, variation in the 

data introduced by the misalignment will severely degrade the model. 

There are many causes of retention time shifts. In GC, peaks may shift 

due to changes in the stationary phase through degradation, decreasing 

retention times over time; build-up of heavy matrix components which foul 

the column, effectively changing the chemistry of the stationary phase; 

minor gas leaks which may alter the flow rate of carrier gas; or hot or cold 

spots created on the column if portions of it come into contact with objects 

such as walls of the oven. In LC, peak shifts may be due to small 

fluctuations in mobile phase composition from one run to the next; 

temperature fluctuations which can in turn affect solvent viscosity as well 

as partitioning of compounds between mobile and stationary phases; or 

changes in the stationary phase of the column due to degradation and 

fouling.  

Shifts in retention times are minimized by proper instrument 

maintenance, precise control of instrumental conditions as well as by 
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using approaches such as retention time locking in GC to account for 

variations in instrument performance [33,34]. However, even with these 

efforts, some variability in retention time will remain. Additionally, 

researchers may wish to combine data from samples that were analyzed 

on different instruments by different people in different laboratories over a 

period of months or years. 

1.2.3  Data overload 

The over-abundance of data coming from the detector poses its own 

challenges. Chemometric analyses are generally performed on a data 

matrix where the number of columns is equal to number of variables and 

the number of rows is equal to the number of samples. Considering a data 

set comprising 200 samples analyzed by the GC×GC-MS example from 

Section 1.1.2 where a single chromatogram contained ~200 million 

individual variables, the resultant 200-chromatogram dataset will contain 

almost 40 billion individual variables. Such a massive dataset can exceed 

the capabilities of a computer system and, even if the system can handle 

the sheer number of variables, it will slow down the data analysis. Most 

importantly, only a very small fraction of the data matrix will contain 

meaningful data: most of chromatogram will contain only baseline and 

noise (Figure 1-3), especially in the case of multidimensional 

chromatography and chromatography involving multivariate detectors 

[35,36,37,38]. Inclusion of this massive quantity of irrelevant data will have 
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a significant deleterious effect upon the resulting model, necessitating 

some kind of variable selection [13]. 

1.3  Preparation of chromatographic data for 
chemometric analysis 

Due to the issues described in Section 1.2, it is necessary to process 

chromatographic data prior to chemometric analysis. As discussed before, 

one way of achieving this is to use an integrated peak table. Another way 

is to process raw data with the goal of addressing the problems of 

alignment and the size of the data set. Advantages and disadvantages of 

using raw data instead of integrated peak tables, as well as some ways of 

processing the raw data, will be discussed in this section. 

1.3.1  Baseline correction 

The goal of baseline correction is to separate the analyte signal of 

interest from signal which arises due to factors such as changes in mobile 

phase composition in LC or stationary phase bleed in GC, as well as from 

signal due to electronic noise. A variety of baseline correction methods are 

available in the literature, common approaches being to fit a curve though 

the baseline and subtract this curve from the chromatogram, yielding a 

baseline-corrected signal. Alternatively, the baseline can be modeled 

using factor models and then excluded from the analysis [39]. 

The curve fitting approach is used in most commercial software 

packages provided by vendors of separations equipment. The algorithms 
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used in this approach will fit an equation (usually a first-order polynomial) 

across segments of the chromatogram using regions where no analyte 

signal is present to determine the coefficients of the polynomial. The 

background signal is then interpolated in regions where analytes are 

eluting. With the equation of the background signal determined, the fitted 

curve can then be subtracted from the signal [40,41,42,43,44]. An 

example of baseline correction using curve fitting is demonstrated in 

Figure 1-6. 

 

Figure 1-6:  Baseline correction of one of the LC chromatograms from Figure 1-4. 
Blue line represents uncorrected chromatogram while red line 
represents a chromatogram corrected using a second-order 
polynomial. 
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1.3.2  Retention shift alignment 

The retention times of analytes will fluctuate from one analytical run to 

the next. Before chemometric techniques can be applied to the data, these 

fluctuations must be corrected. This correction will ensure that the signal 

from each analyte in each chromatogram is correctly registered within the 

data matrix to be processed. There are essentially two approaches 

available to the analyst: the use of integrated peak tables, or the 

mathematical warping of the raw signal. 

Use of integrated peak tables is a straightforward way to ensure that 

analytical separations data are properly aligned for chemometric 

processing. To utilize this approach, the analyst must be able to reliably 

assign a unique identifier to each peak in each sample of the data set. 

This will ensure that the same compound is identified with the same 

identifier in each sample, even if the exact identity of each compound is 

not determined. A series of labels such as “Unknown x”, where x is a 

numerical identifier would be acceptable, as long as the compounds were 

matched correctly. Rather than identifying peaks by retention time, an 

analyst could use relative retention times or retention indices to adjust for 

slight variations in the elution times. Algorithms for aligning peak tables 

generally perform well, as long as at least some peaks can be easily and 

reliably matched across all chromatograms [45]. One major downside of 

this approach stems from its reliance on integrated peak tables. 

Integration algorithms are not perfect and can provide integration errors 
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due to poorly-resolved or tailing peaks or peaks that are missed due to 

falling outside of integration thresholds in the software [46,47]. These 

errors will impact any subsequent analysis.  

Alignment of raw chromatographic signals prior to chemometric 

processing is more complex than the alignment of peak tables. When 

deciding which approach to use for raw signal alignment, one of the first 

questions to be answered is whether the analysis is to be qualitative or 

quantitative since some alignment methods can distort peaks, affecting 

their quantification. Some of the more common alignment algorithms 

include correlation optimized warping (COW) [48,49], correlation optimized 

shifting (coshift) [50], and a piecewise peak-matching algorithm [51], 

among others [52,53,54,55,56].  

In instances where peak shifts are non-systematic, COW is a popular 

algorithm. COW relies on warping (stretching or compressing) segments 

of a sample signal such that the correlation coefficient between the 

sample and a reference signal is maximized for each interval. Care must 

be taken with the selection of the input parameters to avoid significant 

changes in peak shapes since this approach to the warping of the 

chromatogram may affect peak areas, potentially leading to poor 

quantitative conclusions [48,49]. 

Coshift is a fast and simple alignment algorithm [50]. This algorithm is 

useful when data only require a single left-right shift in retention time 



 

    19   

(decrease in retention times or increase in retention times). The entire 

data matrix is shifted in one or the other direction by a set amount, 

maximizing the correlation between the data matrix being aligned and a 

target. The single shifting value for the entire data matrix is a weakness, 

especially for chromatographic data where peaks in a single 

chromatogram can shift in different directions and to different extents. To 

address this problem, an algorithm termed icoshift (interval-correlation-

shifting) has been derived from coshift [57]. Icoshift aligns each data 

matrix to a target by maximizing the cross-correlation between the sample 

and the target within a series of intervals defined by the user. Since 

multiple intervals are used, separation data where shifts vary in magnitude 

and direction can be aligned. These alignment algorithms have been 

successfully applied to one-dimensional data [1,58,59] and with some 

modifications to two-dimensional data as well [60]. It is important to note 

that coshift and icoshift algorithms do not distort peak shapes and, as a 

result, do not introduce errors into quantitative results. 

The piecewise peak matching algorithm [51] provides another avenue 

for chromatographic alignment. In this approach, peaks are first identified 

in a target chromatogram. Then, for each sample chromatogram, the 

algorithm identifies peaks located within predetermined time windows of 

the peaks identified in the target chromatogram. Peaks within windows are 

then considered to come from the same compound, and are matched. As 

a result, the chromatograms are aligned by warping the regions between 
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the peak apexes. A variant of this algorithm has been developed to utilize 

MS data, if available [61]. In this case, the mass spectrum at the apex of a 

given peak in the target chromatogram is compared to the mass spectrum 

of each peak within a set window on the sample chromatogram. If the 

peak apex spectra between the target and sample peaks have a high 

enough match quality, the peaks are aligned. Depending on the number 

and relative positions of the peaks in chromatograms matched using this 

approach, peak shapes may be altered due to chromatogram warping, 

possibly affecting quantitative results. A general scheme for peak 

alignment using this approach is described in Figure 1-7.  

 

Figure 1-7:  Flowchart for the piecewise peak matching algorithm, adapted from 
Johnson et al., 2003 [51] 

One of the challenges for all alignment algorithms is that they perform 

best when the chemical composition of the samples being aligned is 

reasonably consistent. In cases where the chemical composition of the 
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sample and matrix are highly variable, conventional alignment algorithms 

can fail. This situation is observed with arson debris where the matrix is 

extremely variable from one sample to the next. This challenge was 

addressed in this work, and will be described in Chapter 3.  

1.3.3  Variable selection 

High data acquisition rates combined with potentially long analysis 

times can result in a large number of data points collected for a given 

separation, as discussed in Section 1.2.3. In most separations, the 

majority of the data are collected by the detector at times when no 

analytes are eluting from the chromatographic column and contain only 

background and detector noise. The problem becomes more severe when 

multivariate detectors, such as spectroscopic and especially mass, are 

used. At a given point in time, many of the recorded data in the spectral 

dimension will not contain useful information, even at times when an 

analyte of interest is eluting. In addition to background and noise, many 

components in the mixture can be completely irrelevant to analysis 

[36,37,62]. Consequently, only a very small portion of a chromatographic 

signal has any potential utility. It is also well known that any chemometric 

model will be heavily influenced by the specific variables that are included 

in its construction [63]. 

The inclusion of irrelevant data will be detrimental to the model 

because the mathematics will attempt to account for variation observed in 
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the data, both relevant and irrelevant. Consequently if the model is forced 

to model noise, that will result in a decrease in its predictive ability. Worse, 

given enough irrelevant variables, the model might actually fit the training 

data reasonably well and provide a seemingly useful prediction, but upon 

validation the model would be discovered to be fitting noise and 

generating poor predictions. Finally, the inclusion of extraneous variables 

would also increase the demands on the computer system being 

employed, making model construction slower, or, in the case of very large 

numbers of variables, outright impossible. Therefore, prior to chemometric 

analysis, the chromatographic data must be reduced to a manageable 

size.  

One way to achieve data reduction is to use a table of integrated peaks 

instead of the raw chromatographic data. This has the advantage of 

reducing the number of variables to those compounds included in the 

peak list, which is usually a relatively small number, removing baseline 

noise and, if the analyst knows which exact peaks are relevant to analysis, 

removing signal from irrelevant compounds. Potential problems with this 

approach have been described in Section 1.3.2. Additionally, some peaks 

identified may be irrelevant to analysis, necessitating further variable 

selection. This can be true in the case of multidimensional separations 

where a peak table can easily contain hundreds, if not thousands of 

compounds [64].  
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In the case of multivariate detection, it may be advantageous to 

monitor only one or a few channels such as wavelengths, mass/charge 

ratios, etc. This will allow the analyst to selectively detect only a portion of 

the analytes, avoiding many interfering species, as well as greatly 

reducing the size of the data. However, in these cases the analyst must 

know exactly what signals to use or risk missing important features of the 

data encoded in the channels that were ignored. Further, using this 

approach destroys much of the multivariate advantage that can otherwise 

be realized through using these more complex detection strategies. 

Objective feature selection techniques generally have two steps: 

variable ranking, and variable selection. Objective variable ranking 

techniques such as selectivity ratio (SR) plots [65,66], analysis of variance 

(ANOVA) [62], and informative vectors [67] have the distinct advantage 

that that variables are ranked based on a mathematically calculable 

“perceived utility” rather than a subjective analyst’s perception. In 

essence, the data are given the chance to inform the user of what is likely 

relevant and what is likely noise, providing an approach that can be 

generalized to any set of analytical data.  

ANOVA is an effective method when the goal is to discriminate 

between two or more classes of samples. ANOVA calculates the F ratio 

for each variable: the ratio of between-class variance to within-class 

variance. If the F ratio for a given variable is high, it is considered more 

valuable for describing the difference between classes. With F ratio 



 

    24   

calculated for every data point in the chromatogram, the variables can be 

ranked in order of decreasing F ratio. A chemometric model can then be 

constructed using a fraction of variables having the highest F ratio. One 

significant advantage of ANOVA is that the calculations are relatively 

simple and the algorithm can be written with memory conservation in 

mind, which allows it to be easily and directly applied to data sets with 

very large numbers of samples and variables (hundreds or thousands of 

samples, each containing millions of variables), something that is more 

challenging when using other feature ranking approaches. 

Selectivity Ratio is another feature ranking technique that can aid 

feature selection prior to chemometric analysis [65,66]. This approach 

involves the creation of a PLS-DA model that includes all candidate 

variables. Regression coefficients from the PLS-DA model are then used 

to calculate scores and loadings for the single target-projected (TP) 

component, which provides a TP model [65]. From this, the ratio of 

explained variance to residual variance for each variable in the TP model 

will provide the SR for each candidate variable, upon which variables can 

be ranked [65,66,68,69]. SR produces a ranking that is slightly different 

than that produced by ANOVA, though a direct comparison of the two 

metrics on chromatographic data has not yet been published. 

Once variables have been ranked, those to be included in the model 

must be selected. One approach is to use a certain number of top-ranked 

variables that would provide best class discrimination [36,62]. However, 
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no variable ranking metric is perfect and it is possible that a variable, even 

if it is ranked relatively high, may end up harming the resulting model while 

a relatively lower ranked variable would provide a net positive effect. To 

address this problem, a model can be constructed using a forward-

selection or backwards elimination approach in an attempt to maximize 

some metric of model quality [70,71,72]. 

Model quality can be assessed based on several metrics such as 

mean correct classification rates [66], receiver operating characteristic 

(ROC) curves [73] or the degree of separation between classes of 

samples in principal component (or latent variable) space, for example 

using either a Euclidian distance-based metric [35]. A new metric of model 

quality that accounts for size and shape of clusters [36,37] was developed 

as the heart of the research presented in this thesis. This metric, termed 

cluster resolution (CR) will be described in great detail in Chapter 2, and 

its application in model optimization will be demonstrated in Chapters 2, 3 

and 4.  

1.3.4 Validation 

Validation is one of the most important steps in model construction, 

especially when processing raw separations data and if a feature ranking 

approach such as ANOVA was used. As discussed previously, a data set 

consisting of raw separations data may contain on the order of 105 to 106 

data points for each sample. In the cases of such overdetermined systems 
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it is entirely possible to select combinations of variables containing only 

noise that will, by random chance, indicate a difference between the 

samples. When handling raw separations data, a good approach to avoid 

this problem is to break the data into separate sets. For example, a 

training set to construct the model, an optimization set to optimize data 

processing parameters (such as alignment and feature selection), and 

finally a test set to determine if the optimized model has any meaning. Of 

course this does require that the data are collected for a large number of 

samples so that a representative population of samples can be provided 

for each of the subsets of data. 

1.4  Scope of thesis 

The goal of my work has been to develop tools for processing 

chromatographic data prior to chemometric analysis. The cluster 

resolution metric has been developed to guide the variable selection 

process. In response to the variability observed in GC-MS chromatograms 

of arson debris, a deuterated alkane ladder-based alignment approach 

was also developed. The techniques were then applied to the automated 

optimization of models for the identification of traces of gasoline in 

casework arson debris data in collaboration with the Royal Canadian 

Mounted Police (RCMP). 
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1.4.1  Cluster resolution metric 

When modeling a system with a goal of discriminating between 

samples, clusters of points representing different classes of samples must 

be separated in the model space. When optimizing the population of 

variables to include in the model, a metric of model quality is required. In 

principle, the separation between clusters of points can be used as a 

model quality metric. A previously proposed metric for evaluating 

separation between clusters of points, called the degree-of-class-

separation [62], measures the between-class variance relative to the 

within-class variance of two clusters of points on a scores plot. However, 

this metric represents clusters of points on a scores plot as circles (or 

spheres). Since clusters of points are often better represented by 

confidence ellipses (or ellipsoids) than circles (or spheres), a metric that 

addresses the shortcoming of considering clusters of points being 

perfectly symmetrical shapes was developed. The metric was termed 

cluster resolution (CR). Initially, cluster resolution was developed to 

consider projections of models into a two-LV space, but later was 

expanded to simultaneously consider data in a three-LV space. This is 

presented in Chapter 2. 

1.4.2  Deuterated alkane ladder-based alignment of GC data 

Alignment of highly dissimilar chromatograms in a dataset can be 

challenging since many chromatograms will not share sufficient common 

features to ensure reliable alignment. This can be especially true in 
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forensic analyses such as the analysis of arson debris since the chemical 

nature of debris matrices is extremely diverse and unpredictable. To 

address this issue, an alignment method for GC-MS data relying on 

spiking the sample with a deuterated n-alkane ladder has been developed, 

and is presented in Chapter 3. The deuterated alkanes show unique 

fragmentation patterns in the MS dimension. As a result, elution times of 

the ladder components can be determined in each chromatogram even 

when some of the deuterated components are co-eluting with abundant 

matrix components. The deuterated alkanes then serve as anchors for the 

alignment algorithm. 

1.4.3  Detection of gasoline in casework arson debris 
samples 

Finally, CR and ladder-based alignment techniques have been utilized 

for alignment and variable selection in GC-MS chromatograms of real 

arson debris data. The data were obtained from actual casework samples 

at the Royal Canadian Mounted Police National Centre for Forensic 

Services in Edmonton, Alberta. They were collected by different people on 

different instruments over the course of several months. As a result, 

severe chromatographic alignment issues are present in the data. In 

Chapter 4, the deuterated alkane ladder alignment and CR-guided feature 

selection were applied successfully to develop a model that was capable 

of determining the presence or absence of gasoline in the debris samples. 
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2 Chapter Two: Cluster resolution, a robust metric of 
model quality2 

When applying chemometric techniques directly to raw 

chromatographic data, some form of variable selection is necessary. This 

is especially true for GC-MS data [1,2]. A few examples of data reduction 

strategies were discussed in Section 1.3.3 including integrated peak 

tables [3,4], single ion monitoring [5] (SIM) or extracted ion 

chromatograms [6,7] (EICs). However, those techniques have severe 

limitations. First, a priori knowledge is required for an analyst to select the 

portion of data to be used. This information may be unavailable when the 

system is not well understood. Second, SIM and EIC approaches will 

select mostly background variables and signal due to irrelevant analytes. 

Using total ion current [8] (TIC) chromatograms is another option, but this 

results in the loss of MS information as well as the inclusion of irrelevant 

data. An alternative to the above methods is to utilize an objective variable 

ranking technique.  

2.1  Variable selection process 

After variables are ranked, the analyst will then need to choose an 

appropriate way of selecting the variables based on their rank. This 

requires the calculation of a metric of model quality. When modeling data 

using chemometric techniques, there are essentially two types of models: 

                                                            
2 This chapter is based on the following papers: N.A. Sinkov, J.J. Harynuk, Talanta 83 (2011) 1079‐
1087 and N.A. Sinkov, J.J. Harynuk, Talanta 103 (2013) 252‐259. 
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classification/exploration models and regression models [1]. In this thesis, 

we have focused on variable selection processes for classification and 

exploration models of data. Consequently, the discussion is limited to 

variable selection for these types of models.  

2.1.1  Variable ranking 

Variable ranking methods use a calculated metric to estimate the 

potential value of each variable in a data set. Variables are then ranked 

relative to each other by this metric, which allows the analyst to determine 

which variables should be used to construct the model. When deciding 

which exact variables to use, the analyst will either use variables ranked 

above some threshold (i.e. variables above a specific ranking score, or 

above a certain percentile score), excluding all variables that fall below the 

threshold or perform further variable selection. In either case, an 

evaluation of model quality is required before a decision can be reached 

on what threshold to use or what to do during a given selection step. 

Examples of ranking metrics include, but are not limited to, ANOVA-

based ranking [9,10,11,12,13], SR-based ranking [14,15,16], and 

informative vectors [17]. Apart from their inherent advantage of objectivity, 

objective ranking strategies also allow the user to consider more 

candidate variables without requiring a priori information. This allows for 

easier automation of the variable selection process. 
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Once variables have been ranked, the analyst determines which 

variables are to be used. Variables with a higher ranking are more likely to 

improve the class separation, while those with a lower ranking are more 

likely to be irrelevant. On one hand, as more variables are included, it is 

more likely that information useful for class discrimination will be included 

in the model. On the other hand as lower ranked variables are added to 

the model, each additional variable is likely to be less useful than the 

previous ones [1]. On the other hand, with each new variable that is 

added, more noise is inevitably added to the model, reducing the model’s 

ability to discriminate between classes. At some point, the addition of new 

variables will result in an overall loss of model quality. Thus a strategy that 

balances the costs and benefits of adding variables to the model is 

required to guide the selection of variables prior to further analysis. 

2.1.2  Variable selection strategy 

A simple way to address the task of variable selection is to use 

variables ranked above a certain threshold [9,10,11,12,13,14,15,17]. To 

determine this threshold, an analyst would construct models using 

different thresholds and see which of the models performed best. When 

the number of variables that can be potentially included in the model is 

large and the analyst has little information as to which or how many 

variables will actually be useful, many models will need to be constructed 

and evaluated, requiring considerable time and effort. Additionally, when 

all variables above a specific threshold are selected without further testing, 
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a large number of correlated variables may be included in the model. 

When those variables come from a single analyte, it can result in over-

representation of that analyte signal in the model, potentially degrading 

predictive ability of the model. 

Stepwise approaches such as forward selection (FS) or backward 

elimination (BE) (Figure 2-1) are also popular [18,19,20]. In FS, a model is 

constructed with either one or a small number of variables and the quality 

of the model is evaluated. Then, a new variable is added, a new model is 

constructed, and its quality is evaluated. If the model improved as a result 

of adding the variable, the new variable is permanently retained in the 

model. If not, the variable is excluded.  

In BE, a model is first created using all the variables to be considered. 

The quality of the original model is calculated, a single variable is 

eliminated, and the quality of the new model is calculated. If the original 

model had a higher quality score, the eliminated variable is replaced. 

Otherwise, the variable is eliminated permanently.  
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 Figure 2-1:  A schematic showing two of the stepwise variable selection 
techniques. A represents forward selection technique while B 
represents backwards elimination technique. “i” shows variables used 
in the first step of the selection while “ii” shows variables selected 
after the process is complete.  “1” means that a variable is included in 
the model while “0” means that variable is excluded from the model. 

Both approaches have advantages and disadvantages: FS is 

considered to be more computationally efficient, while BE considers each 

variable in the context of both variables permanently included in the model 

and unchecked variables. FS and BE are just two examples of stepwise 

approaches [18]. In the latter stages of this work a hybrid BE/FS approach 

was adopted as described in Section 2.3.2. Regardless of the variable 

selection strategy used, the quality of the model should be evaluated 

during each selection step. 
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2.1.3  Evaluation of model quality. 

The evaluation of model quality is a central step in the optimization 

process. Some examples of approaches to model evaluation are the root 

mean square error of cross-validation (RMSECV) [17], the receiver 

operating characteristic (ROC) curves [21], or metrics based on Euclidian 

[2,11] or Mahalanobis [5,22] distances. When the goal is to distinguish 

between samples, it is desirable when scores for samples belonging to the 

same class are similar in PC or LV space, while scores for samples 

belonging to different classes are as different as possible. The degree of 

class separation metric defines the separation as the Euclidean distance 

in PC space between the centroids of two clusters of points, divided by the 

square root of the summed variances of each point in a cluster, relative to 

the centroid of the cluster [2,11]. Effectively, it will consider a cluster of 

points to be a circle (in 2-component space) or a (hyper)sphere (in 3+ 

component space). The calculation is fast; however, clusters of points 

usually do not resemble circles and are instead better defined by 

confidence ellipses. A metric termed cluster resolution (CR) has been 

developed in our group to quantify the separation between two clusters of 

points and is the topic of this chapter. 

2.2  Cluster resolution metric in two dimensions 
 

The CR metric is based upon determining at what maximum 

confidence limit a pair of confidence ellipses described around a pair of 

clusters will still not collide. In my first study of the CR metric, it was 
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applied to the determination of the optimal number of variables to include 

in the construction of a PCA model with the goal of separating three 

classes of gasoline in the two-dimensional space described by PCs 1 and 

2. Raw GC-MS data and ANOVA-based ranking were used. 

2.2.1  Calculation of cluster resolution 

The first step in the calculation of CR for a pair of clusters is to 

construct an ellipse at an initial confidence limit. A cluster is defined as the 

collection of scores of samples belonging to the same class on PCs (or 

LVs) 1 and 2. Considering only the data from a single class, the scores for 

the points in the cluster provide new variables from which a two-

component PCA model is constructed upon mean-centered data, with no 

other scaling. The resultant loading vectors for PCs 1 and 2 provide the 

directions of the major and minor axes for the resulting confidence ellipse 

that describes the class. Then, using eigenvalues for the two components, 

the critical Hotelling T2 value for a given confidence limit and the number 

of samples in the class will be used to calculate the lengths of each of the 

ellipse’s axes. This process is repeated every time a new confidence 

ellipse needs to be constructed. 

To construct a confidence ellipse for a class, the covariance matrix of 

the scores belonging to the samples in the class is first calculated: 

ࡿ ൌ 	 ଵ

௡ିଵ
  (2-1)  ࢄࢀࢄ
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Where S is the scores covariance matrix, n is the number of samples 

contained in the cluster being evaluated, and X is a matrix where the rows 

are the samples in the cluster and the columns are the scores of each 

sample on PCs 1 and 2. 

Next, singular value decomposition (SVD) is performed on the 

covariance matrix: 

ࡿ ൌ  (2-2)  ࢀࢂࡸࢁ	

Where U and V in this case are identical and provide loading vectors 

for the model describing the confidence ellipse, while L is a diagonal 

matrix of eigenvalues for components 1 and 2 of the new model.  

That information, along with the number of samples in the cluster, 

permits the determination of the Hotelling T2 value for a given confidence 

limit [23]: 

  ܶଶ ൌ 	 ௣
ሺ௡ିଵሻ

௡ି௣
,ߙሺܨ ,݌ ݊ െ   ሻ  (2-3)݌

Where p is number of components in the model, n is the number of 

samples in the class, α is the confidence limit and F(α,p,n-p) is the F 

statistic for given values of α, p and n.  

The length of each confidence ellipse axis (l) is given by: 

݈ ൌ 	√ܶଶ ൈ   (4-2)  ܮ
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When the length of the major axis is calculated, L is the eigenvalue for 

PC 1, and when the length of the minor axis is calculated, L is the 

eigenvalue of PC 2.  

As a result, lengths and directions of the axes describing the ellipses at 

a given confidence limit are known. Next, a set of approximately 1000 

evenly-spaced points are distributed along the circumference of each 

ellipse. 

This is achieved by warping a circle comprising 1 000 000 points until it 

is superimposable on the confidence ellipse. To reduce the number of 

points in the ellipse, its circumference is calculated using Rajmanujan’s 

approximation [24] and divided by 1000 to yield the desired distance 

between two adjacent points, d. Then, beginning at an arbitrary point on 

the circumference of the ellipse, the algorithm proceeds along the ellipse 

until a point a distance d along the ellipse is found. Points between the 

starting point and this second point are then discarded. This process is 

repeated around the entire ellipse with the result being an ellipse with 

approximately 1000 points distributed mostly evenly along its 

circumference.  

The choice of 1000 points was made because it provides a balance 

between accurate representation of ellipses and computational speed. 

The obtained confidence ellipse is then rotated around the origin so that 

major and minor axes match the directions of the loadings of PC1 and 
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PC2 (of the model calculated for that cluster), respectively. Finally, the 

ellipse is moved in the original model space so that center of the ellipse 

matches center of the cluster. The process is then repeated to obtain the 

second ellipse in the pair that needs to be constructed. 

To determine if two confidence ellipses overlap at a given confidence 

level, the Euclidean distances between all points on one ellipse and those 

on a second ellipse are calculated, a total of approximately 1 000 000 

distances depending on the exact number of points along the 

circumference of each ellipse. The minimum of these distances (Dmin) is 

then compared to half the sum of the distances between two neighbouring 

points on the circumferences of each ellipse (Dcritical). If Dmin, is less than 

Dcritical, the two ellipses are deemed to overlap. 

The Dcritical is given by: 

௖௥௜௧௜௖௔௟ܦ ൌ 	
ଵ

ଶ
ሺܦ஺ ൈ   ஻ሻ  (2-5)ܦ

Where DA is the average distance between neighbouring points on the 

confidence ellipse A and DB is the average distance between neighbouring 

points on the confidence ellipse B. 

To determine the maximum confidence limit at which ellipses will not 

overlap, the algorithm begins with an arbitrary confidence limit for each 

pair of classes (in this work we chose to use 75%) and determines if there 

is any overlap. If overlap is detected, the algorithm decreases the 
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confidence limit for both ellipses in a stepwise fashion until overlap is no 

longer detected. Conversely, if there is no overlap detected, the algorithm 

increases the confidence limits of the two ellipses until overlap is detected. 

The highest confidence limit at which there is no overlap detected is 

defined as the cluster resolution for that particular pair of classes. Cluster 

resolution is calculated for each pair of classes separately and will have a 

value between 0 and 1 (representing 0 and 100% confidence limits). It 

should also be noted that for a given pair of clusters, the algorithm will 

always converge to the same value of CR, regardless of the initial guess. 

The only consequence of a poor initial guess is increase in computational 

time the first time CR value is calculated for a given pair of classes. 

During determination of the optimal number of variables to use, the 

highest-ranked unused variables are added to the model with each step. 

The first time that CR is determined for a given pair of classes, the 

algorithm starts with the arbitrary confidence limit (75%). However, after 

the first iteration, the cluster resolution for each pair of clusters is stored 

and used as the starting point for subsequent iterations with additional 

variables. This approach recognizes that addition or deletion of a variable 

will typically have a small effect on CR, so the number of calculations in 

each step is minimized, resulting in faster calculations. Figures showing 

the step-by step construction of a confidence ellipse are presented in 

Appendix 1. As shown in Figure 2-2, the measured CR value will depend 

on the orientations of clusters as well as their shapes. 
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Figure 2-2:  Two clusters of points with 75, 95 and 99 % confidence ellipses. A 
Ellipses are oriented parallel to each other, and B ellipses oriented 
such that they have some overlap. The centroids of the ellipses and 
the sizes of the ellipses have not changed during the rotation. 

  

A

B
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2.2.2 Application of two-dimensional cluster resolution. 

The first step in automated variable selection is to rank the variables 

according to some metric, such as ANOVA or SR. The choice of ranking 

metric is up to the analyst, though it should be noted that in our work we 

have observed that different ranking metrics produce different optimal 

models exhibiting maximal cluster resolution. In this study ANOVA ranking 

was used, as it is computationally inexpensive and straightforward. The 

two main limitations in using ANOVA are that it assumes that the observed 

variance is normally distributed, and that when used on a data set where 

the number of variables vastly exceeds the number of samples (which is a 

very relevant concern when dealing with chromatographic data) it is 

entirely possible for ANOVA to find some features that can discriminate 

between classes based upon nothing other than random fluctuations in the 

data as opposed to meaningful variances. The later limitation can be 

addressed through splitting the data into a training set and a validation set. 

The output of ANOVA is a series of F ratios for each variable. The F 

ratio is a measure of the ratio of between-class variance to within-class 

variance [9,10,11]. If a variable has an elevated F ratio, then it is deemed 

to be more valuable for describing the difference between classes. Once 

the F ratio is calculated for every data point in the chromatogram, the 

variables are ranked in order of decreasing F ratio. A PCA model is then 

constructed using a fraction of variables that have the highest F ratio. 
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Since the CR metric used during this study worked in two dimensions, the 

PCA model contained two components.  

Once a model is constructed, scores from samples belonging to a 

given class will form a cluster in a certain region on the scores plot, and 

confidence ellipses can be described around the cluster formed by each 

class.  The cluster resolution between each pair of classes is then 

calculated. In this study, the process was repeated, including more and 

more top-ranked variables with every step, until the desired endpoint is 

reached. As the number of variables was increased in each step, the 

threshold above which ranked variables on the ranking would be 

introduced was decreased. There are different ways to define the 

endpoint. For example, it may be defined by a pre-set number of variables 

or the number of variables where the resolution is maximized (such as 

when the critical pair of classes shows the highest cluster resolution or 

when product of all cluster resolutions for all class pairs is maximized). It 

may also be defined by the minimum cluster resolution becoming greater 

than a threshold value, for example 0.95 (meaning that no confidence 

ellipses exhibit overlap at the 95% confidence level). In this study, the 

algorithm was allowed to run until a set number of variables had been 

checked. 
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2.2.3 Experimental 

To demonstrate cluster resolution and its use in automated feature 

selection, a set of gasoline samples was used. Three samples of gasoline 

having octane ratings of 87, 89, and 91 were obtained from a single local 

gas station in Edmonton, Alberta, Canada. These samples were diluted 

20:1 by volume in pentane and analyzed using GC-MS. The GC-MS used 

for these experiments was a 7890A GC with a 5975 quadrupole MS 

(Agilent Technologies, Mississauga, ON) equipped with a 30 m × 250 μm; 

0.25 μm HP-5 column (Agilent). The carrier gas used was helium at 

constant flow rate of 1.0 mL⋅min-1. The injector was held constant at 

250 °C and a volume of 0.2 μL was injected with a split ratio of 100:1. The 

temperature program for the GC was 50 °C (3.5 min hold) with a 20 

°C⋅min-1 ramp to 300 °C. The transfer line and source temperatures were 

185 and 230 °C, respectively. The total run time was 16 min. The initial 

solvent delay was 2.5 min and mass spectra were collected from m/z 30 to 

m/z 300 at the rate of 9.2 spectra/s. 

A total of 24 chromatograms were collected for each of the gasoline 

samples over a period of two weeks. The entire raw mass chromatogram 

for each analysis was exported as a .csv file, which was then imported into 

MATLAB 7.10.0 (The Mathworks, Natick, MA) as a 7400×271 (scan 

number × m/z ratio) matrix using a lab-written algorithm. Data were then 

handled in MATLAB using lab-written algorithms. Chemometric models 

were constructed using PLS toolbox 5.2 (Eigenvector Research Inc., 
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Wenatchee, WA). The calculations were performed on an Intel Core i5 

750 2.76 GHz processor with 8 GB of RAM and 64-bit Microsoft Windows 

7 Professional operating system. 

2.2.4 Results and discussion. 

As a demonstration, the CR metric was used in an algorithm to 

automatically select the features in the data which can be used to 

construct the PCA model having the greatest degree of separation 

between clusters for each class. In our example, the data consisted of 72 

GC-MS chromatograms of gasoline samples having three different octane 

ratings. The 72 chromatograms were randomly split into a training set 

(containing 16 chromatograms from each class) and a test set (containing 

the remaining 8 chromatograms from each class). This was repeated 4 

times to obtain a total of five different randomly chosen training and test 

sets to evaluate the stability of the solution to minor variations in the 

training data. Finally the procedure was performed on the complete set of 

data with no test set. 

For data alignment, chromatograms were aligned using a homemade 

alignment function based upon the piecewise alignment algorithm 

developed by Johnson et al [25], with an additional mass spectral 

confirmation of features to be matched, though in principle any alignment 

algorithm could be used. The target used for data alignment was a 

composite chromatogram of a series of aligned gasoline samples of 
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different octane ratings. This ensured that all components present in the 

samples were present in the alignment target, if not necessarily at the 

same abundances. The aligned matrices were then unfolded along the 

time axis to yield a series of vectors. ANOVA ranking was applied to the 

set of 48 chromatograms in each training set using a lab-written algorithm. 

For each set, this yielded a vector of F ratios that was used to rank the 

features. The test data sets were aligned as well, but were not used in 

calculation of F ratios. Baseline correction was not necessary as the 

ANOVA process automatically down-weights background ions which do 

not vary significantly from sample to sample. 

With variables now ranked by their F ratios, the data in the training sets 

were autoscaled and for each step in the selection process, subsets of 

data containing all rows (samples) and the desired number of columns 

(features) were extracted and used to construct a two-component PCA 

model. The cluster resolution between each possible pairing of classes on 

the scores plot for PC1 vs. PC2 was then calculated on the basis of the 

training data set. This step was repeated sequentially, adding more and 

more variables at each step to find the optimal number of variables to 

include in the PCA model for each training set.  

The original training data set comprised a matrix of 48 rows 

(representing samples), and 2 005 400 columns (representing variables). 

In all cases except one, the maximum number of variables to be included 

was limited to 100 000. In one case calculations were performed up to the 
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total data set of 2×106 variables to demonstrate the problem with utilizing 

the entire raw data file, especially when the data are incredibly sparse 

(Figure 2-3 C). In terms of computational time, it may take a few minutes 

to calculate the initial cluster resolution. The exact time depends on the 

data, the initial confidence limit guess and the step size used for changing 

the confidence limits as the algorithm must incrementally adjust from the 

arbitrary initial value until a collision is observed. However, as the 

resolutions that are found in a given iteration are used as the starting 

points for the subsequent iteration, the speed is limited by how fast 

variables can be extracted from a dataset and the PCA model can be 

constructed. In practice the process took about two seconds per step. To 

efficiently determine the optimal number of variables to use, a large step 

size can be used in the first pass through the data to find the approximate 

location of the optimum. Then progressively smaller step sizes can be 

used in the vicinity of the optimum to locate its exact position. Additionally, 

when determining CR for a given pair of clusters, the incremental changes 

in confidence limit tested must become smaller as the confidence limit 

approaches 100%. The reason for that is that a relatively small change in 

confidence limit will result in large change in the size of the confidence 

ellipses. 

Figure 2-3 depicts the results of the optimization process for the first of 

the five sets of data. The cluster resolution between pairs of ellipses is 

plotted on the y-axis vs. the number of features that are included in the 
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model. It is apparent from Figure 2-3 that with few variables it is relatively 

easy to model the differences between 87- and 89-octane gasolines and 

87- and 91-octane gasolines. Conversely, it is difficult to distinguish 

between 89- and 91-octane gasolines, which represent the critical pair of 

clusters in this case. This figure also highlights the advantage of using a 

metric that is bounded between 0 and 1. Overall model quality may be 

assessed by taking the product of individual cluster resolutions. In Figure 

2-3, it is apparent that at a low number of included variables, 89- and 91-

octane gasolines are not separated, a fact that is accurately reflected by 

the product of individual cluster resolutions. 
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Figure 2-3:  Resolution of gasoline clusters as a function of the number of 
variables used for Set 1. A close up of the region from 0 to 5000 
included variables; B close up of the region from 0 to 100 000 
included variables; C full resolution plot from 0 to 2 000 000 included 
variables. 
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gasolines shows marked improvement, with the 95 % confidence ellipses 

becoming separated when 1945 variables are used and reaching a 

maximum at 2761 variables when used on Set 1. As this pair of clusters 

was always limiting the quality of the model (as seen from Figure 2-4), the 

optimal number of features was determined based on the resolution of this 

pair. Investigating the trend in resolutions beyond this optimum, a gradual 

decrease in the resolution for the critical pair was observed until about 

20 000 variables (Figure 2-3 B). Figure 2-3 C demonstrates the extreme 

degradation in resolution that is observed when a very large number of 

variables is included in the model.  
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Figure 2-4:  Scores plots for selected PCA models for set 1. Red triangles 
represent 87-octane gasoline, green circles represent 89-octane 
gasoline and blue squares represent 91-octane gasoline. Filled 
markers represent samples used for feature selection and model 
construction. Hollow markers represent test data to which model was 
applied. 95% confidence ellipses indicated for each class. A, B, C, D, 
E show plots for 1000, 1945, 2761, 5000, and 100 000 included 
variables, respectively. 

Figure 2-4 depicts the scores plots from the two-component PCA 

models constructed using different numbers of variables to highlight the 

regions in Figure 2-3. As predicted by the plot in Figure 2-3 A, a 1000-

variable model does not include sufficient features to separate all of the 

classes at the 95 % confidence level. Overlap of the 89- and 91-octane 

gasoline samples is observed, while the 87-octane gasoline is well 

separated from the other two. The model constructed using 1945 variables 

(Figure 2-4 B) should show that all ellipses are separated at the 95% 

confidence level, with 89 and 91 octane rating samples being barely 
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separated. The model that is constructed using 2761 variables (Figure 2-4 

C) exhibits the best overall resolution between the three classes. The 

addition of more variables (e.g. the 5000-variable model shown in Figure 

2-4 D) somewhat decreases the resolution. In the extreme case that far 

too many variables are included (100 000, Figure 2-4 E) the quality of the 

model is degraded to a large extent, with all ellipses exhibiting significant 

overlap at 95 % confidence level.  

The model constructed using the optimum number of points from the 

training set, shown in Figure 2-4 C, was applied to the test set data. It can 

be observed that all samples from the test set fall within their respective 

confidence ellipses. Similar results were also observed for other sets, as 

summarized in Table 2-1. Additionally, when different training sets were 

selected from the original data set, the number of variables required to 

reach the optimum did not show much variation. Moreover, the optimum 

that is indicated by the least-separated class is identical (or very similar) to 

the optimum determined from the product of the resolutions between all 

pairings, and in both cases most points fall into their respective 95% 

confidence ellipses (Table 2-1).  

After important variables have been identified, their positions in the 

original data can be identified and a binary mask may be generated to 

visualize the relevant chromatographic information. 
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Table 2-1:  Numbers of variables identified as optimum for a given set using a 
given metric as well as false positive and false negative rates. FP – 
False Positive. Samples in the test set that do not fall within 95 % 
confidence ellipse of their class. FN – False Negative. Samples in the 
test set that fall inside 95 % confidence ellipse of at least one other 
class. n – Number of variables at optimum. All Train – numbers of 
variables at optimum of a set that includes all data. 

 Cluster resolution Euclidian distance 
 Critical pair Product Critical pair Product 

Set n FP FN n FP FN n FP FN n FP FN 
1 2761 0 1 2761 0 1 29900 8 3 97600 12 2 
2 2461 0 1 2461 0 1 9300 0 4 66600 8 2 
3 2265 0 1 2265 0 1 24900 0 1 56800 10 0 
4 2985 0 1 2657 0 2 31800 12 2 98400 16 2 
5 3189 0 2 3194 0 2 31100 6 10 92600 12 11 

Average 2732 ± 376 2668 ± 350 25400 ± 9400 82400 ± 19300 
All train 2027 2027 22900 62000 
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Figure 2-5:  Mask representing variables selected by the algorithm. Black dots 
indicate variables selected, white space indicates variables not 
selected. A shows full time axis, B shows a close-up of the region of 
the chromatogram where most variables were selected 

 In the mask (Figure 2-5), the included variables are assigned a value 

of one and excluded variables are assigned a value of zero. Applying this 
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mask to a chromatogram will result in only the relevant variables 

remaining, as shown in Figure 2-6. 

 

 

Figure 2-6:  A segment of a GC-MS chromatogram of gasoline sample. A shows 
raw signal. B shows only signal due to the variables selected. Darker 
points represent stronger signal. 
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As can be seen, the process selected signal due to two coeluting 

compounds which allow discrimination between the three classes of 

gasoline. Investigation of the raw GC-MS data indicates that the 

compound responsible for the ions at m/z ratios of 91, 78, 65, 52, and 39 

is toluene. These variables are added first. As can be seen in Figure 2-3 

A, it is relatively easy to distinguish between 87- and 89-octane and 87- 

and 91-octane gasolines but difficult to distinguish between 89- and 91-

octane gasolines. This is indeed what is observed in the GC-MS data. The 

89- and 91-octane gasolines have similarly high concentrations of toluene 

and other aromatics while the concentrations of these compounds are 

relatively low in the 87-octane gasoline.  

The second compound that was included by the algorithm, indicated by 

the points that elute slightly before toluene (m/z 43, 57, 71, 85, and 99) 

are due to a hydrocarbon that coelutes with toluene. Based on the mass 

spectrum of the compound it is a branched, saturated hydrocarbon having 

eight total carbons, likely 4-methyl heptane. Inspection of the 

chromatographic data shows that these features are in fact due to a 

compound which has a relatively high concentration in the 87- and 89-

octane gasoline samples and a relatively low concentration in the 91-

octane gasoline. This indicates that the selection process is able to 

automatically identify features in the data that have an actual chemical 

origin. Furthermore, it shows the power of using the raw chromatographic 

data over integrated peak tables: if integrated peak areas were used here, 
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it is very likely that the alkane would not have been observed due to the 

coelution with the much larger toluene peak. The other observation is that 

a further data preprocessing step could be implemented to reduce the 

number of ions considered for the model. Here, most of the approximately 

2500 variables were used to describe essentially two chromatographic 

peaks. This will be the subject of future research. 

The cluster resolution metric was then compared to a previously 

described metric which is based on the Euclidean distance between the 

centroids of pairs of classes relative to square root of the sum of the 

variance within each group [2,11]. Figures 2-7 A and 2-7 B show the 

degree of class separation for each set of classes, as well as the product 

of the class separations (which has been suggested as a parameter for 

optimizing overall class separation [9]), using the same test data as the 

one used with the CR metric. When the product of class separations for 

three classes was considered, the optimal separation was predicted to be 

at 29 900 variables. A visual inspection of the scores plot in Figure 2-7 C 

and the one created using the optimum number of variables predicted by 

the algorithm using cluster resolution (Figure 2-4 C) shows that the cluster 

resolution metric provides a model with a significantly more distinct class 

separation. 
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Figure 2-7:  Degree of separation vs. number of variables when calculated using a 
Euclidean distance approach as well as the product of degree of 
separation for the three classes. A close up of the region from 0 to 
5000 included variables; B close up of the region from 0 to 100 000 
included variables; C Scores plot from PCA model using optimal 
number of variables found in B. 

However, it should be noted that samples used in this study were 

relatively simple and there was little in-class variation. Also, the CR metric 

was only shown to work with two-dimensional models. Finally, using a 

more complex variable selection strategies compared to using a threshold 

for ranked variables is another point that needed to be addressed. Thus, 

the CR metric was extended to work in three dimensions and a hybrid 

backward elimination (BE) and forward selection (FS) approach was 

adopted. 
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2.3  Cluster resolution metric in three dimensions 

The use of CR in the optimization of variable selection for a three-

component PCA model is demonstrated in this study. To further increase 

the effectiveness of variable selection, a hybrid variable selection strategy 

involving both FS and BE was employed. To provide a greater challenge 

for the metric, the simultaneous optimization of a model that would 

distinguish between six classes of gasoline samples comprising three 

octane ratings from two different vendors was attempted. Furthermore, in-

class variance was introduced into each class by weathering some 

gasoline samples within each class as well as introducing contaminants to 

samples within each class. Performance of the three-dimensional CR 

metric was compared to using three projections of the two-dimensional CR 

metric. 

2.3.1  Changes in CR calculation 

Confidence ellipsoids can, theoretically, be created in any number of 

dimensions. This can be achieved by constructing an n-component PCA 

model around a cluster of points, with resulting loading vectors defining 

the directions of the n ellipsoid axes. Then, the lengths of the axes at a 

given confidence limit can be calculated using equations provided 

previously (Equation 2-4). With the position of the ellipsoid center, as well 

as sizes and directions of the ellipsoid axes, a confidence ellipsoid with 

approximately evenly-spaced points covering its surface is constructed. To 

construct a three-dimensional ellipsoid, first a two-dimensional ellipse is 
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constructed with its major and minor axes being defined by PCs 1 and 2 

respectively. Next, a distance equal to the distance between the points of 

the 2-D ellipse is measured along the circumference of an ellipse which 

has its major and minor axes defined by PCs 1 and 3 respectively (since 

PCs are by definition orthogonal, this ellipse is perpendicular to the first 

one). With that distance measured, this then defines how much smaller an 

ellipse parallel to the PC1/PC2 ellipse but passing through the identified 

point on the PC1/PC3 ellipse must be and how much should it be offset 

from the original on PC 3. This new ellipse will maintain the same distance 

between points while containing fewer of them and will be offset from the 

plane defined by PC 1 and PC 2. The process is repeated until the apex of 

the minor axis is reached and half of the 3-D ellipse is constructed. Since 

the ellipsoid is symmetrical, the second half of the ellipsoid is a mirror 

image of the first half. With an ellipse of the correct size constructed, it is 

then rotated and moved to the cluster of points. A visual representation of 

ellipsoid construction is provided in Appendix 2. 

With two such ellipsoids constructed around two clusters of samples, 

collision detection can be performed as described previously (Section 

2.2.1). If a collision is detected, the confidence limit is reduced for the 

following iteration of collision detection. If a collision is not detected, the 

confidence limit is increased in the following iteration. The highest 

confidence limit at which confidence ellipses are still separated defines the 

CR. In a multi-class model, the calculation must be performed for each 
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possible pairing of classes, and the product of the CRs for all possible 

pairs of classes is the overall quality metric for the model. 

2.3.2  Variable ranking and selection strategy 

In this study, the Selectivity Ratio (SR) was adopted as a variable 

ranking technique. SR has been previously described in the literature 

[14,15]. Briefly, it involves the creation of a PLS-DA model which is then 

used to calculate scores and loadings for the target projected (TP) model. 

Then the ratio of the explained variance versus the residual variance is 

calculated for each variable, providing the SR for that variable [14,15]. 

Once again, the CR was used to guide the variable selection process. 

However, the variable selection strategy employed was different. The 

selection strategy involved a combination of BE and FS. First, the 1000 

top-ranked variables were selected and subjected to BE starting with the 

lowest-ranked variable among those (#1000) and ending with the top-

ranked variable (#1). Subsequently, forward selection was performed 

starting with the highest-ranked unchecked variable (#1001) and ending 

when a set number of variables had been checked (3000 in this case). A 

schematic of the selection process is shown in Figure 2-8. 
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Figure 2-8:  Variable selection techniques used. A Backwards Elimination; B 
Forward Selection. CR metric used in the Evaluate Model step. 

2.3.3  Experimental 

Gasoline samples were obtained from two local gas stations in 

Edmonton, Alberta, Canada. The two stations belonged to different 

vendors and three different octane ratings of gasoline (87, 89 and 91) 

were obtained from each, providing a total of six classes. To introduce 

some challenge to the variable selection process, the datasets were made 
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more complicated by introducing a higher degree of within-class variance. 

To this end, half of the samples within each class were weathered 

approximately 50% by volume using a gentle stream of clean, dry, 

compressed air. To introduce further in-class variance, some samples 

from each class were left uncontaminated, some were contaminated by 

adding either turpentine (~5% by volume), lacquer thinner (~5% by 

volume), kerosene (~5% by volume), or a mixture of turpentine, lacquer 

thinner and kerosene together (~5% by volume each). As a result, a total 

of 120 samples were prepared. Their compositions are shown in Figure 

2-9.  

 

Figure 2-9:  Schematic for sample preparation 

The samples were then diluted 20:1 by volume in pentane and 

analyzed by GC-MS. The GC-MS used for these experiments was a 

7890A GC with a 5975 quadrupole MS (Agilent Technologies, 

Mississauga, ON) equipped with a 30 m × 250 μm; 0.25 μm HP-5 column 

(Agilent). The carrier gas used was helium at constant flow rate of 



 

    71   

1.0 mL⋅min-1. The injector was held constant at 250 °C and a volume of 

0.2 μL was injected using a split ratio of 100:1. The temperature program 

was 50 °C (3.5 min hold) with a 20 °C⋅min-1 ramp to 300 °C. The transfer 

line and source temperatures were 185 and 230 °C, respectively. The total 

run time was 16 min. The initial solvent delay was 2.5 min and mass 

spectra were collected from m/z 30 to m/z 300 at the rate of 9.2 spectra⋅s-

1. 

Four chromatograms were collected from each sample, providing a 

total of 480 chromatograms (80 for each class). Chromatograms were 

then assigned to training, optimization and validation sets. From each 

class, 40 chromatograms were assigned to the training set, 20 were 

assigned to the optimization set and 20 were assigned to the validation 

set. The training set contained a total of 240 chromatograms, optimization 

set contained 120 chromatograms and validation set contained 120 

chromatograms.  

Chromatograms from the training set were used to create the 

alignment target, rank variables and to obtain the loading vectors for the 

PCA model during each variable selection step. Chromatograms from the 

optimization set were used together with chromatograms from the training 

set, to obtain scores during variable selection (the model being generated 

using training data and tested against optimization data). Both training and 

optimization data were combined to create the final PCA model after 
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variable selection was complete. Chromatograms from the validation set 

were only used to evaluate the final model. 

For each analysis, an entire chromatogram was exported as a .csv file, 

which was then imported into MATLAB 7.10.0.499 (The Mathworks, 

Natick, MA) as a 7300×271 (scan number × m/z ratio) matrix using a lab-

written algorithm. Data were then handled using lab-written algorithms. 

Chemometric models were constructed using PLS toolbox 5.8 

(Eigenvector Research Inc., Wenatchee, WA). The calculations were 

performed on a Intel Core i5 750 2.76 GHz processor with 8 GB of RAM 

and 64-bit Microsoft Windows 7 Professional operating system. 

Chromatographic alignment was based upon the piecewise alignment 

algorithm developed by Johnson et al. [25] with an additional mass 

spectral confirmation to match features. First, an alignment target was 

created. The preliminary target was constructed by first randomly 

choosing a single chromatogram from the training set. Then, a second, 

randomly chosen chromatogram from the training set was aligned with the 

target chromatogram, after which the aligned chromatogram was added to 

the preliminary target. Then, the aligned chromatogram was discarded 

and the algorithm proceeded to the next chromatogram in the training set. 

After all chromatograms from the training set had been included in the 

target, the algorithm proceeded with alignment of all chromatograms in all 

sets to the composite target chromatogram. 
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2.3.4  Results and discussion 

CR was used to guide a combined BE/FS variable selection process 

with the goal of constructing a three-component PCA model with the 

greatest possible separation observed between clusters for each class. In 

this example, the data consisted of 80 GC-MS chromatograms for each of 

six types of gasoline (three octane ratings from each of two vendors), to 

the total of 480 chromatograms. The data were split into training, 

optimization and validation sets as described in Section 2.3.3, after which 

chromatographic alignment was performed. 

The aligned matrices were then unfolded along the time axis to yield a 

series of vectors. Each vector consisted of ~2×106 variables. SR variable 

ranking was applied to the set of 240 chromatograms in the training set 

using a lab-written algorithm. This yielded a vector of selectivity ratios that 

was used to rank the features. The optimization and test data sets were 

aligned as well, but were not used during the calculation of selectivity 

ratios. Baseline correction was also not necessary as the variable ranking 

process automatically down-weights background ions which did not vary 

significantly from sample to sample. Computation of the SR ranking vector 

from the aligned data required approximately one minute. 

After variable ranking, the 1000 top-ranked variables were selected 

and a three-component PCA model was created using the training set and 

applied to the optimization set. Prior to construction of the model, each 

vector containing selected variables was normalized to an area of 1. Using 
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the scores from both the training and the optimization sets on the first 3 

PCs, six clusters of points with 60 points per cluster were obtained. 

Overall model quality was calculated as the product of the individually 

determined CR measurements for each of the 15 possible of pairings. BE 

was performed on the 1000 top-ranked variables (Figure 2-8 A). The 

variables retained after BE were then passed to FS where variables 

ranked 1001 through 3000 were considered for inclusion (Figure 2-8 B). 

Variable selection took approximately 36 h to complete and selected a 

total of 644 variables from the 3000 variables checked. 

A: 
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B: 

 
C: 
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D: 

 

Figure 2-10:  Scores plots for the final PCA model. Red, green, and blue represent 
87-, 89-, and 91-octane gasoline from Vendor A, respectively. Black, 
magenta, and orange represent 87-, 89-, and 91-octane gasoline from 
Vendor B, respectively. Shaded regions represent three-dimensional 
confidence ellipsoids (98%) described around clusters of training set 
samples (individual points not shown), solid markers represent 
individual points for validation set samples. B, C, D dotted lines 
represent two-dimensional confidence ellipses at 98% confidence limit 
described around clusters of training set samples (individual points 
not shown) and markers represent individual points for validation set 
samples on projection of three-dimensional model onto components 1 
and 2, 1 and 3, 2 and 3 respectively. 

The training and optimization sets (360 chromatograms) were then 

combined to train the final three-component PCA model using 

normalization to an area of 1 and autoscaling as the only pre-processing 

methods. Subsequent projection of the validation set (120 as yet unused 

chromatograms) permitted evaluation of the final model. Figure 2-10 A 

depicts the resulting model where lightly shaded regions are three-
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dimensional 98% confidence ellipsoids described around clusters of 

training set samples (individual points are not shown) and markers 

represent individual points for validation set samples. Colours and shapes 

of the markers represent different classes. As can be seen from the figure, 

validation set samples projected into the same regions as the training set 

samples, and all classes were separated in the three-dimensional space. 

Overall, the final measured three-dimensional CR for this problem was 

calculated as 0.9997. 

The three-dimensional CR was then compared with the previously 

developed two-dimensional CR metric. The same training, optimization 

and validation sets were used and, just as in the three-dimensional case, 

backwards elimination started with the 1000 top-ranked variables (as 

shown in Figure 2-8 A) and forward selection checked variables ranked 

1001 through 3000 (as shown in Figure 2-8 B). To make the comparison 

fair, a three-component PCA model was constructed at each step and the 

two-dimensional CR metric was calculated for the three possible two-

dimensional projections of the three principal components. For each pair 

of classes, the CR value retained to guide optimization was the highest 

value among the three projections (e.g. for discriminating the 91-octane 

gasolines from Vendor A and Vendor B (blue and orange classes) in 

Figure 2-8 B-D, the CR score on PC1 vs. PC3 was retained). Figure 2-8 

B-D represent two-dimensional projections of the optimized model, 

showing 98% confidence ellipses based on the training set samples 
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(individual points not shown) and individual markers for validation set 

samples. As can be seen, no individual two-dimensional projection was 

able to separate all classes of all samples. However, using the three 

projections together, separation was achieved using a total of 1009 

variables. The final two-dimensional CR, calculated based on the best 

projection for each pairing, was 0.9985. When the three-dimensional CR 

was calculated for a model based on the 1009 variables selected using 

two-dimensional projections, it was found to be 0.9991, an improvement, 

but still not as high as the value obtained when 3-D ellipsoids were used 

during the variable selection. It should also be noted that there is a 

significant difference in sizes between sizes of ellipsoids as 99.91 % and 

99.97 % confidence limit values. The advantage of the two-dimensional 

approach was in the computational time: 12 hours against 36 hours for the 

3-D projection. This is due to the fact that the construction of two-

dimensional ellipses is significantly faster than the construction of three-

dimensional ellipsoids.  

After variables have been selected, they can be traced back to the 

original data and tentative identities of the selected compounds can be 

determined. Here, mass spectral information was used in combination with 

linear retention indices [26] for the purpose of compound identification. 

Figure 2-11 depicts a binary mask where the black dots represent the 644 

variables selected when using the three-dimensional CR-guided approach 

and white space represents excluded variables. As a comparison, three 
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89-octane samples are presented in Figures 2-12 and 2-13, with Figure 

2-12 depicting a region of the raw GC-MS chromatograms and Figure 2-

13 depicting the abundances of the selected variables in each 

chromatogram (Figure 2-13 masked by Figure 2-11).  

 

Figure 2-11:  Variables selected from the original data by the algorithm. Black dots 
represent variables that were selected after BE/FS. 
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B 
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Figure 2-12:  GC-MS chromatograms of selected gasoline samples after alignment 
was performed. Light grey indicates low signal while dark grey 
indicates high signal for a variable. A) Vendor A 89-octane weathered 
uncontaminated gasoline. B) Vendor B 89-octane weathered 
uncontaminated gasoline. C) Vendor B 89-octane unweathered 
gasoline contaminated with kerosene, turpentine and lacquer thinner. 

  



 

    82   

A 

 
B 

 
  



 

    83   

C 

 

Figure 2-13:  Variables selected for GC-MS chromatograms of selected gasoline 
samples after alignment was performed. Light grey indicates low 
signal while dark grey indicates high signal for a variable. Variables 
that were not selected were assigned value of zero. A) Vendor A 89-
octane weathered uncontaminated gasoline. B) Vendor B 89-octane 
weathered uncontaminated gasoline. C) Vendor B 89-octane 
unweathered gasoline contaminated with kerosene, turpentine and 
lacquer thinner. 

As seen from the figures, the gasoline samples from the two vendors 

can be distinguished on the basis of several compounds. First of all, 

Vendor A (Figure 2-13 A) has a relatively high abundance of C5 

alkylbenzenes (eluting between 8 and 9 min) whereas Vendor B (Figure 

2-13 B and 2-13 C) does not have an appreciable amount of these 

compounds. Additionally, Vendor A has a slightly increased abundance of 

a peak at 4.4 min, and a much lower abundance of a compound at 6.3 

min. These two compounds have been tentatively identified as 4-methyl 

octane and 2,2,4,6,6-pentamethylheptane on the basis of their mass 

spectra and their linear retention indices (Table 2-1).  
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Table 2-2:  Information used for identification of selected compounds. Calculated 
linear retention index was obtained from the data, literature linear 
retention index was obtained from reference 26, forward and reverse 
mass spectral matches were obtained by comparing obtained mass 
spectrum with NIST 2005 database spectrum for a given compound. 

Name 4-methyl octane 2,2,4,6,6-pentamethylheptane 

Calculated linear retention index 868 992 

Literature linear retention index 864 997 

Forward mass spectral match 850 876 

Reverse mass spectral match 889 879 

Considering two samples belonging to the same class but containing 

added within-class variance, we see that there is significant difference 

between unweathered contaminated Vendor B 89-octane, and weathered, 

uncontaminated gasoline from the same class (Figures 2-12 B and C, 

respectively). However, considering only the masked data, the two 

samples (which belong to the same class: Vendor B, 89-octane) are 

essentially identical (Figures 2-13 B and C). Upon closer inspection of 

Figure 2-11, it can be seen that between 2 and 3 minutes, some signals 

due to several alkanes were selected. This is consistent with the fact that 

light alkanes are present at very different levels in gasolines of different 

types. Toluene is commonly present in gasoline and, differences in 

toluene abundance have been previously shown to be useful in 

discriminating between different classes of gasoline (Section 2.2). Under 

the conditions of this experiment, toluene eluted at approximately 2.7 min, 

and is shown to be an abundant compound in gasoline. However, as seen 

in Figures 2-11 and 2-13, toluene was not selected as a useful variable. 

This is due to the high concentration of toluene in the lacquer thinner that 

was added as a contaminant. Thus, in this data set, toluene contributes 
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significantly to within-class variation, decreasing its utility for the task of 

class discrimination. The feature selection algorithm was able to discover 

this automatically and correctly discard toluene from the model.  

A final point for this discussion is computation time. It took 

approximately 36 hours to perform variable selection, with cluster 

resolution being the slowest step. However, it should be noted that with n 

classes there are 
௡మ

ଶ
െ ݊ possible pairs of classes; here 15 pairs were 

considered. Thus it only required slightly more than 2 h of computation 

time for each pair of classes. Since the calculation of CR for each pair of 

classes is independent from the calculation for each other pair, this step 

could be distributed and calculated in parallel using multiple processors, 

greatly speeding up computation time. It should also be noted that variable 

selection was completely automated. Once the class assignments were 

made to the data files, the remainder of the process concluded with no 

user intervention or attention required. 

2.4  Conclusions 

CR has been shown to be an effective metric for guiding the variable 

selection process in well-controlled data sets. Both the two- and three-

dimensional versions of the metric were used to optimize models for the 

classification of gasoline samples on the basis of GC-MS data. The metric 

was successful in the simultaneous optimization of feature selection on a 

dataset containing six classes and a significant degree of in-class 
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variance. The metric is a generic “goodness measure” for classification 

models and should be applied in the future to data from other types of 

instruments and in the optimization of other types of classification 

problems. The end goal of this specific research project is to develop tools 

for determining the presence of gasoline in arson debris, which will be the 

subject of the following chapters.  
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3 Chapter Three: Chromatographic alignment based 
on a deuterated alkane ladder3 

Prior to chemometric interpretation of raw chromatographic data, the 

time axes must be precisely aligned so that the signal from each analyte is 

registered in the same column of the data matrix for each and every 

analysed sample [1,2]. A variety of alignment approaches exists in the 

literature and those approaches work well when the samples to be aligned 

have somewhat similar chemical compositions [3]. In cases where the 

samples and/or background matrix are highly variable, chromatographic 

alignment is more challenging. Presented here is an alignment approach 

that relies on a series of deuterated alkanes which act as retention 

anchors for alignment. This approach was then coupled with an 

automated feature selection routine based on the CR metric (Chapter 2) 

and applied to the identification of gasoline in a series of simulated arson 

debris samples analyzed by passive headspace extraction and GC-MS. 

Classification was performed based on partial least squares discriminant 

analysis (PLS-DA). 

3.1  Chromatographic alignment 

As discussed is Chapter 1, many factors can cause misalignment of 

chromatographic signals. The extent of misalignment depends largely on 

the stability of the system over the period of time for which data were 

                                                            
3 This chapter based on N.A. Sinkov, B.M. Johnston, P.M.L. Sandercock, J.J. Harynuk, Anal. Chim. 
Acta 697 (2011) 8‐15; highlighted in SeparationsNOW (May 2, 2011) 



 

    89   

collected. In the case of GC, chromatographic peaks can be very narrow 

(2-3 s base width). In such cases, without correction a 3 s misalignment 

will result in a peak due to the same analyte in two chromatograms being 

considered as two completely different analytes. A number of alignment 

techniques have been proposed. 

3.1.1  Alignment techniques 

Chromatographic alignment relies on comparing a chromatogram with 

a target, which can be a chromatogram in the data set [3], or it can be a 

composite target containing information from most chromatograms in the 

data set [4,5,6]. After the comparison, the chromatogram’s time axis is 

warped such that it is aligned with the target. Alignment approaches 

include piecewise alignment [4], which relies on identification of common 

peaks in the chromatogram and the alignment target. This approach has 

been adapted to include information from the MS dimension of the data 

when a MS detector is used [5,6]. Other approaches include correlation-

optimized warping (COW) [1,7], dynamic time warping (DTW) [7], as well 

as many others [8,9,10,11]. These alignment techniques perform well 

when the chemical make-up of the samples remain similar across the 

series of chromatograms (such as when comparing fuel samples [4,5,6] or 

fungal cultures [1]). However, when the chemical profiles of different 

sample classes (or even samples within a given class) are highly 

dissimilar, these methods will often yield a poor alignment. When the 

background matrix of the samples is also highly variable, alignment is 
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even more challenging since the alignment algorithm may become unable 

to lock onto features that must be aligned. A good example of such a 

system is arson debris, where the debris matrix and the observed 

chromatogram will depend on materials at the scene and conditions of the 

fire itself. To solve this problem, I developed an approach that relies on 

the addition of a deuterated alkane ladder. 

3.1.2  Simulated debris 

Reliable and automated chemometric analysis of arson debris is an 

inherently difficult task, which to date has not been reported in the 

literature for real data, and applications to realistic simulated debris are 

scarce [12]. The goal of the arson investigation is to determine whether 

the fire was intentional or accidental. Arson is one of the more difficult 

crimes to investigate because much of the evidence available at the scene 

is destroyed by fire and firefighting measures [13,14,15]. An important 

aspect of the investigation is the determination of the presence of an 

ignitable liquid (IL) in the fire debris. In most cases involving arson, a 

petroleum-based IL (most often gasoline) [16,17] is used because these 

are inexpensive, readily available, and highly effective [18]. Some 

common ILs, such as gasoline and kerosene, are complex mixtures 

containing hundreds of individual components. Additionally, the fire debris 

matrix is highly variable and complex, containing numerous combustion 

and pyrolysis products that may interfere with the analysis [14,15]. To 

identify traces of an IL in fire debris, techniques based upon the 
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concentration of headspace vapours [19], often passive headspace 

sampling using activated carbon strips [20] is used. Extracted analytes are 

then separated and analyzed using GC-MS.  

3.1.3  Classification tools 

In Chapter 2, CR was used to optimize PCA models for data 

visualization. In the case of fire debris analysis, the goal is classification, 

which PCA alone does not provide [21]. Thus PLS-DA [22], a classification 

technique, was employed instead. It should be noted that despite efforts of 

variable ranking techniques to identify relevant variables, the risk of 

including irrelevant variables is present. The smaller the number of 

samples relative to the number of variables, as is the case with raw GC-

MS data, the more severe the risk [23]. This is especially true if a 

classification technique such as PLS-DA is used where over-fitting of the 

training data is a real possibility. To ensure that a model has not been 

over-fit, validation is always necessary [24]. 

3.2  Application of deuterated alkane ladder alignment 
and CR-guided feature selection to the 
identification of gasoline in simulated fire debris  

Deuterated alkane ladder alignment relies on the addition of small 

amounts of deuterated n-alkane standards to the solvent used for sample 

extraction/preparation prior to analysis by GC-MS. Deuterated alkanes 

provide a unique mass spectral signature that is unlike any other 

compound reasonably expected to be present in an arson sample. As a 
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result, the position of deuterated n-alkanes can be reliably determined 

even in cases of severe co-elution with abundant matrix components. 

Therefore, deuterated alkanes can serve as “anchors” for alignment, even 

in cases of extremely dissimilar samples. Deuterated ladder-based 

alignment was compared to the piecewise alignment discussed in 

Chapter 2. 

3.2.1  Alignment using deuterated n-alkane ladder 

Chromatographic alignment requires a target to which chromatograms 

will be aligned. For deuterated alkane ladder-based alignment, the target 

peaks are present in all chromatograms. Thus, construction of a 

composite target is not necessary. Therefore, any chromatogram in a set 

(typically the first) may be chosen as the target. The target chromatogram 

is loaded and a vector containing the product of the responses for specific 

m/z ratios (deuterated alkane fragments) at each scan is calculated. The 

result is a vector with the alkane ladder peaks being the most intense 

signals, as shown in Figure 3-1. 
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D: 
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Figure 3-1:  A chromatogram containing deuterated alkane ladder. A shows total 
ion current chromatogram, B, C, D and E show extracted ion 
chromatograms for ions common to the deuterated alkane ladder. F 
shows the product of intensities at every time point in figures B, C, D 
and E, calculated by multiplying intensities at each m/z channel for 
each time point in the chromatogram. 
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As shown in Figure 3-1 A, the location of the deuterated alkane ladder 

peaks cannot be determined from the TIC. EICs shown in Figure 3-1 B-E 

show the alkane ladder signal, but every individual EIC also contains 

signals from other components in the sample. However, when the product 

of the characteristic ion abundances is taken (Figure 3-1 F), the alkane 

ladder signal is easily distinguished from the rest of the sample. 

After the product plots are obtained, locations of all deuterated alkanes 

are determined on both the target and sample chromatograms. In the next 

step, the sample chromatogram is aligned to the target by warping the 

signal between the deuterated alkane ladder components, providing 

alignment of a chromatogram between retention times of the ladder 

compounds. The alignment algorithm then proceeds to the next 

chromatogram, aligning it to the same target. This approach provides 

rapid and effective alignment of all chromatograms in the data set 

regardless of relative difference between chromatograms. 

3.2.2 Experimental 

Nine different gasoline samples were obtained from three local gas 

stations belonging to different vendors. These samples represented a 

range of octane ratings (87, 89, and 91) from each vendor. Samples of 

three varieties of perfume were also collected locally to be used as 

negative controls (assigned to non-gasoline class). Samples of fresh 

lumber (pine), painted scrap lumber, plywood, carpet, fabric (50:50 cotton 
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polyester blend and pure cotton), glossy magazine pages, linoleum, vinyl 

siding, asphalt shingles, tar paper, Tyvek® building wrap, and polyethylene 

vapour barrier were all obtained locally and used in the generation of 

simulated debris. Carbon disulfide (Omnisolv; VWR, Mississauga, ON) 

was used as the solvent for extraction of analytes from activated carbon 

strips (8 mm × 20 mm; Albrayco Technologies, Cromwell, CT). The 

solvent was spiked with a deuterated alkane ladder consisting of n-

heptane (d16), n-nonane (d20), n-undecane (d24), n-tridecane (d28), and 

n-pentadecane (d32) (CDN Isotopes, Pointe-Claire, QC) at concentrations 

of 1.3 μL⋅L-1 each.  

 Samples of weathered gasoline were prepared from aliquots of 

each gasoline sample that were evaporated to levels of 50, 75 and 90% 

by weight at room temperature using a jet of clean, dry compressed air. 

Unweathered samples of gasoline were also used. Weathering for each 

step was stopped when the flask reached its target weight for the 

evaporation. A Pasteur pipet containing a 3-cm bed of granular activated 

carbon (Fisher Scientific, Nepean, ON) held in place by plugs of glass 

wool was used as a nozzle for the air jet. The activated carbon prevented 

contamination of samples with any organics that could have been present 

in the air stream. The weathering procedure was repeated for each of the 

nine gasoline samples at the three levels of evaporation, to generate a 

total of 36 different IL samples, both weathered and unweathered. 
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 Seven different combinations of materials for the debris generation, 

shown in Table 3-1, were placed into aluminum roasting pans and set on 

fire inside a fire-resistant fume hood using a propane torch to avoid 

leaving any undesired IL signature. Samples were allowed to burn until the 

contents were well-charred, at which point the fire was extinguished by 

suffocation and the debris was allowed to cool. After the debris had 

cooled, the samples were placed in PTFE-lined 1-gallon paint cans 

(General Paint, Edmonton, AB), and stored for later use.  

Table 3-1:  Compositions of arson debris. HDPE - high density polyethylene. 
MDF - medium density fibreboard 

Debris Contents 
1 Wood, carpet, cotton fabric, 50:50 cotton:polyester fabric, glossy magazine  
2 Wood, polyethylene film, old linoleum, carpet 
3 Wood, siding, shingles, tar paper, Tyvek™ 
4 Wood 
5 Wood, polyethylene film, newpaper 
6 Wood, HDPE food container, new linoleum, MDF 

7 
Wood, carpet, cotton fabric, 50:50 cotton:polyester fabric, glossy magazine, 

linoleum, siding, shingle, tarpaper, Tyvek™ 

 

 For passive sampling, a debris sample was placed in a 1 L mason 

jar and 1 μL of gasoline or perfume was spiked directly onto the debris, 

depending on whether the sample was designed to contain gasoline or be 

a negative control. For debris blanks, the debris was placed into the jar 

without the addition of gasoline or perfume. Jars were then capped with an 

activated carbon strip suspended from a safety pin on the inside of the jar 

lid as shown in Figure 3-2. Safety pins were held in place by magnets 

placed on the outside of the lid. The jars were placed in an oven at 60 °C 

for 16 h to equilibrate. For quality control, one empty jar containing nothing 
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but a suspended activated carbon strip was included in each batch of jars 

placed into the oven. After the equilibration time, the carbon strips were 

removed and each coiled into a 1.8 mL GC vial (Chromatographic 

Specialties, Brockville, ON). 1.0 mL of CS2 containing the deuterated 

alkane ladder was then added to each vial to extract the analytes. 

 
 

Figure 3-2:  Photo of a setup for activated carbon strip extraction of volatile 
components from simulated arson debris. 

 Samples were analyzed using an Agilent Technologies 7890A gas 

chromatograph (GC) with a 5975 quadrupole mass spectrometer (MS) 

and a 7683 auto sampler (Agilent Technologies, Mississauga, ON). Data 

acquisition and automation were accomplished using MS ChemStation 

(Agilent). A 30 m × 250 μm; 0.25 μm HP-5 column (Agilent) was used for 
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the separation. The oven program used was 50 °C (held for 3.5 min) 

followed by a ramp to 280 °C at a rate of 20 °C⋅min-1. Samples were 

injected in split mode into an injector held at 250 °C. The injection volume 

was 1 μL, with a split ratio of 20:1. The transfer line and source 

temperatures were 185 and 230 °C, respectively. Mass spectral searching 

was performed against the 2005 edition of the NIST MS Database (NIST, 

Gaithersburg, MD).   

 Chromatograms obtained for 204 samples containing gasoline and 

84 containing either no gasoline or containing perfume (negative controls) 

were exported from Chemstation as .csv text files and then imported into 

MATLAB 7.10.0 (The Mathworks, Natick, MA). Retention time alignment 

algorithms and chemometric analysis algorithms were performed using 

lab-built routines in MATLAB, using some chemometric analysis functions 

from the PLS Toolbox 5.2 (Eigenvector Research Inc, Wenatchee, WA). 

The calculations were performed on a Intel Core i5 750 2.76 GHz 

processor with 8 GB of RAM and 64-bit Microsoft Windows 7 Professional 

operating system. 

3.2.3 Results and discussion 

Two alignment routines were compared in this study. The first 

alignment technique was based on a piecewise alignment algorithm where 

the features to be aligned were automatically identified based on peak 

apexes [4], with an additional mass spectral comparison performed before 
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peak matches were assigned [5,6]. Application of this method requires a 

composite target chromatogram to which all chromatograms are aligned. 

Application of this method using a single IL-containing chromatogram as 

the alignment target did not yield a data set from which a usable model 

could be generated (data not shown). The composite chromatogram was 

constructed by first selecting one chromatogram at random. A second 

chromatogram was then aligned to the initial target using the piecewise 

alignment algorithm. These two aligned chromatograms were summed, 

forming a new target chromatogram. A third chromatogram was aligned to 

this composite using the same alignment algorithm and then added into 

the composite target. This process was repeated until all 288 

chromatograms were included in the target, at which point the intensities 

of all points on the composite chromatogram were divided by 288 to obtain 

an average value. The aligned chromatograms were discarded at this 

stage since the composite target was still being constructed. As the 

alignment routine does not depend on the absolute intensity of a peak for 

matching, skewing the abundances of peaks at this step does not affect 

the final result. Since all chromatograms must be treated the same way, 

all 288 chromatograms were, once again, aligned with the composite 

target, except this time target was not modified and the aligned 

chromatograms were saved. The resulting 288 aligned chromatograms 

were used further in this study. The deuterated alkane ladder alignment 

routine was used as described in Section 3.2.1. 
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For model construction and testing, the data set was separated into a 

training set containing 240 chromatograms and a test set containing 48 

chromatograms. The training set was used for feature selection and model 

construction while the test set was used only for model validation. 

Assignment of chromatograms to either set was random, though the exact 

same sets were used for both alignment methods. The process of 

assigning the training and test sets and constructing a model was 

repeated ten times. It should be noted that during the piecewise alignment 

algorithm, chromatograms from the validation set were mistakenly used 

during construction of the composite alignment target. We believe that any 

effect that this could have had on the results would have improved the 

performance of the piecewise alignment algorithm, and therefore would 

not have resulted in the deuterated ladder-based alignment gaining an 

unfair advantage.  

Each chromatogram contained 7 300 scans with m/z values from 30 to 

300, providing approximately 2×106 individual variables per 

chromatogram, where a variable is defined by abundance of a given ion in 

a given scan.  Each GC-MS chromatogram was then unfolded along the 

retention time axis, providing a single vector of approximately 2×106 

variables. ANOVA-based feature ranking [25] was subsequently 

performed (details provided in Section 2.2.2). After the variables were 

ranked, variable selection was performed using an automated forward-

selection approach. The endpoint based on maximizing the cluster 
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resolution (CR) [5] observed between the gasoline-containing samples 

and those that did not contain any gasoline on the PLS-DA scores plot. In 

the interest of time, a step size of 10 was used during variable selection, 

resulting in the 10 top-ranked unused variables being added to the model 

in every variable selection step. At the time that this research was 

conducted, the hybrid BE/FS approach had not yet been implemented. 

PLS-DA models with two LVs were constructed for the ten data sets 

using both alignment methods. Two LVs were chosen because the two-

dimensional CR metric was employed (three-dimensional CR had not yet 

been developed), and two LVs should, in principle, be sufficient for 

classifying samples between two groups. The endpoint chosen for the 

feature selection was a minimum number of top-ranked variables which 

would yield a CR value of 0.9999, or in cases where this degree of 

resolution could not be reached, the maximum achievable resolution. The 

results are summarized in Table 3-2. 

This alignment algorithm is contrasted by the models generated with 

the piecewise alignment algorithm. Several of those sets are plagued by 

false positives, false negatives, and generally provide more ambiguous 

results. A careful inspection of the chromatograms after alignment 

revealed that the alignment based on the deuterated alkane ladder was 

often superior to the alignment performed by the peak matching algorithm, 

which exhibited numerous mismatched peaks. A likely reason for these 

mismatches was due to the variability in the matrix background. 
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Table 3-2:  Results of cross-validation of PLS-DA models. Minimum number of variables required to reach a cluster resolution of 99.99%, 
or the maximum achievable resolution in cases where 99.99% was unachievable using the training. False positive indicates 
non-gasoline-containing sample being classified as a gasoline-containing sample. False negative indicates a gasoline-
containing sample classified as non-gasoline containing sample. Minimum probability for true positive indicates the lowest 
probability value calculated for gasoline-containig  sample to be assigned to gasoline-containing class. Maximum probability for 
true negative indicates the highest probability value calculated for non-gasoline-containig  sample to be assigned to gasoline-
containing class 

 

Deuterated alkane ladder‐based alignment 
Set number 1 2 3 4 5 6 7 8 9 10 

Number of variables selected 320 320 300 40 30 260 220 270 220 240 

False positive 0 0 0 0 0 0 0 0 0 0 

False negative 0 0 0 0 0 0 0 0 0 0 

Minimum probability for true positive 1 .9998 1 .9988 1 .9999 .9976 .9991 .9998 .9966

Maximum probability for true negative .0001 0 0 0 0 0 0 0 0 0 

 

Peak matching-based alignment      

Set number 1 2 3 4 5 6 7 8 9 10 

Number of variables selected 460 570 400 390 200 400 430 520 520 500 

False positive 1 1 1 0 1 0 0 1 0 0 

False negative 0 0 0 0 3 0 0 0 0 0 

Minimum probability for true positive .6592 .5782 .9199 .7636 0 .8852 .7468 .9968 .8404 .7509

Maximum probability for true negative 1 1 1 .0355 1 .1737 .1866 .7709 .0759 .0674
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Conversely, the deuterated alkane ladder provided a series of 

unambiguous anchors for alignment, regardless of matrix present in a 

given sample. With the ladder, the alignment of individual peaks was not 

as precise; however, there were no mismatched peaks.  

Consequently the overall alignment of the chromatograms by the 

ladder approach was superior. It should also be noted that ladder-based 

alignment can be followed by an additional alignment step (such as 

feature-based or COW alignment) with a small window size if fine-tuning is 

needed. 

A further comparison of the results for the two alignment approaches is 

presented in Figures 3-3 through 3-5 which depict the scores, y-predicted 

value plots, and probability plots, respectively, for sets 5 and 10. Sets 5 

and 10 were chosen since set 5 shows best performance for the 

deuterated ladder-based alignment against the piecewise alignment while 

set 10 shows best results for the piecewise alignment relative to the 

deuterated ladder-based alignment. For both of these sets, the ladder-

based alignment delivers less ambiguous results.  
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Figure 3-3:  Score plots for PLS-DA models for the worst classification (Set 5) and 
one of the best (Set 10) when considering feature-based alignment 
and ladder-basedalignment. Samples containing an gasoline are 
indicated by blue circles; samples with no gasoline are indicated by 
red triangles. Samples used in the training set are indicated by hollow 
markers while samples used in the test set are indicated by filled 
markers. A Feature-based alignment, Set 5 B Ladder-based 
alignment, Set 5 C Feature-based alignment, Set 10 D Ladder-based 
alignment, Set 10. 
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Figure 3-4:  Predicted Y-value plots for PLS-DA models for Set 5 and Set 10 using 
both feature-based and ladder-based alignment. Samples containing 
an gasoline are indicated by blue circles; samples with no gasoline 
are indicated by red triangles. Samples used in the training set are 
indicated by hollow markers while samples used in the test set are 
indicated by filled markers. A Feature-based alignment, Set 5 B 
Ladder-based alignment, Set 5 C Feature-based alignment, Set 10 D 
Ladder-based alignment, Set 10. 
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Figure 3-5:  Predicted probability plots for identifying gasoline in samples for PLS-
DA models for Set 5 and Set 10 using both feature-based and ladder-
based alignment. Samples containing an gasoline are indicated by 
blue circles; samples with no gasoline are indicated by red triangles. 
Samples used in the training set are indicated by hollow markers 
while samples used in the test set are indicated by filled markers. A 
Feature-based alignment, Set 5 B Ladder-based alignment, Set 5 C 
Feature-based alignment, Set 10 D Ladder-based alignment, Set 10. 

Considering the original size of the data (about 2×106 features) a 

relatively small number of variables (on average less than 300 or 0.015%) 

allow efficient discrimination between the two classes. To verify that the 

features selected by the algorithm were reasonable in a chemical sense, 

the selected features were traced backwards to identify the corresponding 
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components in the gasoline-containing debris samples. Mass spectra of 

compounds corresponding to the identified features were then compared 

to the NIST MS Database and retention indices were estimated based on 

the deuterated alkane ladder signal and compared to literature values 

(Table 3-3).  

Table 3-3:  Tentative identification of compounds from which the features 
responsible for identifying gasoline are derived. *Literature values are 
for 6 °C⋅min-1 taken from [26] 

Compound 
Estimated 

Retention Index 
Literature Retention 

Index* 
Relevant 
Masses 

Ethylbenzene 870 857 51,77,91,106 
Para-xylene 880 866 52,76,98,106 
Ortho-xylene 908 891 105,106 

Propylbenzene 980 952 62,89,91,120 
1-ethyl-3-methyl 

benzene 
989 961 41,65,91,120 

1,2,4-trimethyl 
benzene 

996 967 91,103,105,120 

1,3,5-trimethyl 
benzene 

1022 992 41,89,116,119 

 

It is worth noting that in GC analysis, deuterated alkane retention times 

will be slightly earlier than the corresponding non-deuterated alkanes. This 

will result in a slight over-estimate of the retention indices in this 

experiment. Additionally, it is well documented that retention indices are 

dependent on temperature programming rate, with the observed retention 

index increasing with temperature programming rate [26]. The literature 

values presented were collected at a temperature programming rate of 6 

°C⋅min-1 and the temperature programming rate used in our research was 

20 °C⋅min-1. Thus even though our estimates do not match exactly with 

the literature values, the positive variation of about 25-30 units is easily 
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rationalized and the relative values for each compound are consistent. 

Furthermore, these compounds are consistent with the presence of 

gasoline in a sample. Some of the features included in the model are 

shown in Figure 3-6. 

  



 

    110   

A: 

 

B: 

 

Figure 3-6:  Region of GC-MS data containing features of interest, plotted as a 
contour plot. Blue colour indicates zero intensity. A Raw GC-MS 
chromatogram. B GC-MS chromatogram containing only selected 
variables. 
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3.3  Conclusions 

Deuterated ladder-based alignment has been shown to effectively align 

chromatograms containing highly dissimilar features. Coupled with a CR-

guided variable selection process, the deuterated alkane alignment 

allowed the automated optimization of a superior PLS-DA model for 

identifying gasoline in simulated arson debris than would have been 

possible using a peak-matching algorithm. However, the fire debris 

studied were created in a controlled environment. All samples were 

prepared by the same person and analyzed on the same instrument in a 

relatively short period of time. For real-world application, this approach 

must be able to provide similarly unambiguous results when applied to 

real casework samples. These samples will be much more variable. In 

addition to combustion products from a real fire and real matrix, artifacts 

will be introduced due to firefighting efforts, the individual officers and 

technicians preparing and analyzing the samples over the course of 

months, ideally using the same nominal methods on different instruments. 

This challenge will be the topic of Chapter 4. 

3.4  References. 

                                                            

[1] N-P.V. Nielsen, J. M. Carstensen, J. Smedsgaard J. Chromatogr. A 
805 (1998) 17-35.  

[2] K.M. Åberg, E. Alm, R.J.O. Torgrip, Anal. Bioanal. Chem. 394 
(2009) 151-162.  



 

    112   

                                                                                                                                                                  

[3] N.A. Sinkov, B.M. Johnston, P.M.L. Sandercock, J.J. Harynuk, Anal. 
Chim. Acta 697 (2011) 8-15.  

[4] K. J. Johnson, B. W. Wright, K. H. Jarman, R. E. Synovec, J. 
Chromatogr. A 996 (2003) 141-155.  

[5] N.A. Sinkov, J.J. Harynuk, Talanta 83 (2011) 1079-1087.  

[6] N.A. Sinkov, J.J. Harynuk, Talanta 103 (2013) 252-259.  

[7] G. Tomasi, F. van den Berg, C. Andersson, J. Chemometrics 18 
(2004) 231-241.  

[8] P. H. C. Eilers, Anal. Chem. 76 (2004) 404-411.  

[9] S. Toppo, A. Roveri, M. P. Vitale, M. Zaccarin, E. Serain, E. 
Apostolidis, M. Gion, M. Mariorino, F. Ursini, Proteomics 8 (2008) 
250-253.  

[10] A. M. Van Nederkassel, M. Dazykowski, P. H. C. Eilers, Y. Vander 
Heyden, J. Chromatogr. A 118 (2006) 199-210.  

[11] W. Yao, X. Yin,Y. Hu, J. Chromatogr. A 1160 (2007) 254-262.  

[12] M.R. Williams, M.E. Sigman, J. Lewis, K. M. Pitan, Forensic Sci. Int. 
222 (2012) 373-386.   

[13] P.M.L. Sandercock, Forensic Sci. Int. 176 (2008) 93-110.  

[14] E. Stauffer, J. A. Dolan, R. Newman, Fire Debris Analysis, Elsevier, 
Inc. Amsterdam, 2008.  

[15] E. S. Bodle, J.K. Hardy, Anal. Chim. Acta 589 (2007) 247-254.  

[16] D. C. Mann, J. Forensic Sci. 32 (1987) 606-615.  

[17] P. M. L. Sandercock, E. Du Pasquier, Forensic Sci. Int. 134 (2003) 
1-10.  

[18] B. Tan, J.K. Hardy, R.E. Snavely, Anal. Chim. Acta 422 (2000) 37-
46.  

[19] J. Dolan, Anal. Bioanal. Chem. 376 (2003) 1168-1171.  

[20] K. Cavanagh, E. Du Pasquiera, C. Lennard, Forensic Sci. Int. 125 
(2002) 22–36.  



 

    113   

                                                                                                                                                                  

[21] J.M. Bosque-Sendra, L. Cuadros-Rodriguez,C. Ruiz-Samblas, A.P. 
de la Mata, Anal. Chim. Acta 724 (2012) 1-11.  

[22] M. Barker, W. Rayens, J. Chemometrics 17 (2003) 166-173.  

[23] R. Brereton, Trends Anal. Chem. 25 (2006) 1103-1111.  

[24] K. Kjeldahl, R. Bro, J. Chemometrics 24 (2010) 558-564.  

[25] K. J. Johnson, R. E. Synovec, Chemom. Intell. Lab. Syst. 60 (2002) 
225-237.  

[26] W.C. Lai, C. Song, Fuel 10 (1995) 1436 - 1451.  



 

    114   

4 Chapter Four: Chemometric classification of 
casework arson samples based on gasoline 
content 

The presence of an ignitable liquid (IL) in arson debris is one of the 

critical pieces of evidence in arson investigations. The presence of an 

ignitable liquid is typically ascertained through the use of headspace 

extraction coupled with GC-MS for analysis [1,2]. Interpretation of the 

resultant data sets is a time-consuming step which requires two highly 

trained analysts to manually examine the GC-MS data in order to reach a 

conclusion regarding the presence or absence of an ignitable liquid. If 

these two analysts do not agree on the interpretation, a third analyst will 

independently interpret the data. The three will then discuss and try to 

come to a consensus [3]. Thus, the interpretation of a single sample can 

require two to three person-hours of time and creates a very expensive 

bottleneck in the analytical process. 

The goal of my research has been to develop tools for the automated 

optimization of classification models, particularly for GC-MS data. 

Collaboration with the RCMP Trace Evidence Operations Support arson 

laboratory has provided a highly challenging set of samples upon which to 

apply my tools. In Chapter 3, gasoline was successfully identified in 

simulated arson debris. However, the real challenge lies in the analysis of 

actual casework debris samples, which was the purpose of this study. 

Casework debris samples were analyzed by the RCMP in accordance with 
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their standard methods, though a deuterated n-alkane ladder was added 

to their solvent. The raw data files were transferred to our laboratory and a 

model for the identification of gasoline in the fire debris samples was 

automatically optimized and constructed using a hybrid backward 

elimination (BE) and forward selection (FS) variable selection approach 

guided by the cluster resolution (CR) metric. 

4.1  Fire debris analysis. 

Arson is defined as “the act of wilfully and maliciously setting fire to 

another man's house, ship, forest, or similar property; or to one's own, 

when insured, with intent to defraud the insurers” [4]. Arson damage to 

residences, businesses, vehicles or other property is but one of the 

problems; arson also leads to loss of life, and feelings of insecurity in the 

community. Furthermore, financial costs extend beyond the price of the 

property damaged, leading to increased insurance rates, costs of fire 

protection, law enforcement, etc. [5]. Arson tends to be difficult to 

investigate since much of the evidence is inevitably damaged by the fire 

[6] as well as by the firefighting efforts, despite best efforts taken to 

minimize damage to the scene [5]. Important pieces of evidence during a 

fire investigation include ascertaining the presence of an ignitable liquid 

(IL) at the scene, as well as the determination of its identity [5].  

Due to availability, efficacy, and low cost, petroleum-based 

accelerants, usually gasoline, are most often used by arsonists [7]. These 
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ILs contain hundreds of individual compounds with a specific composition 

that varies over time and depends on the vendor. Adding to the challenge, 

ILs undergo weathering during a fire due to the high temperatures and air 

flows [5,8] and, if debris is not recovered immediately after the fire, can 

also be affected by bacterial degradation [5,9]. All of These will lead to 

changes in the IL composition. 

Further complicating the problem is the fact that debris matrices are 

highly variable, often complex and containing numerous precursor, 

pyrolysis and combustion products that interfere with the analysis [5,10]. 

Consequently, laboratory analysis of arson debris requires the extraction 

of potential IL traces from the debris. Extraction is then followed by 

separation and detection of the potential traces. This is followed by careful 

interpretation and analysis of the obtained data in the hope of identifying 

and classifying any ILs found in the debris. 

4.1.1 Fire debris matrix 

While the contents of the arson debris will vary from one fire scene to 

another, it is up to the investigator to determine which exact part(s) of the 

scene to sample. Investigators will normally select a location that is likely 

to contain an IL based on evidence such as burn patterns at the scene 

[5,11], or as indicated by aids, such as sniffer dogs [12,13,14]. Porous 

materials such as carpet or wood are generally good choices since they 

are more likely to retain traces of ILs [5,15]. Carpets and rugs are 
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especially common, being over half of all debris samples collected [15]. 

This is due to their ability to retain significant quantities of ILs and keep 

retained ILs relatively intact due to flame-resistant coatings [5,15]. 

Additionally, carpets and rugs, being floor coverings, a common substrate 

to which ILs are delivered. Since carpets are made from a variety of 

natural (e.g. wool, cotton) and synthetic (e.g. polyolefin, nylon, 

polypropylene) fibres, there is a significant degree of chemical diversity 

between different types of carpets. Furthermore, carpets contain dyes, 

resins, and flame-resistant coatings, and generally have some form of 

underlay, which collectively add additional components to the debris. 

Other materials such as paper, plastics, paint, wool, cotton, leather 

(natural or synthetic), food [5], and even arsonists [16] which are present 

at the scene will further complicate the chemical make-up of the matrix.  

Matrix components will also undergo chemical changes over the 

course of the fire. Temperature and oxygen levels will vary, meaning that 

a given location in a fire scene may undergo both combustion in the 

presence of oxygen and pyrolysis in the absence of oxygen over the 

course of a single fire [5,17,18]. Pyrolysis products from some materials 

are identical to some components in ILs, examples being ethylbenzene 

and toluene, which are common components in gasoline. Therefore, the 

investigator must be careful not to confuse matrix components with actual 

IL components. 



 

    118   

4.1.2  Ignitable liquids 

The word “accelerant” is properly reserved for ILs placed at the scene 

of a fire with the specific intent of causing the fire. ILs tend to be volatile 

liquids which can be easily delivered to the scene of fire, and which will 

provide enough energy to initiate and sustain the fire when ignited [5]. The 

choice of IL depends on ease of access and suitability of the IL to cause a 

fire. Thus, gasoline tends to be the most common IL used in arson since, 

in most parts of the world, it can be obtained easily and cheaply [5,6,7]. 

Gasoline is a petroleum product, containing alkanes, alkylbenzenes and 

condensed aromatics [1,5].  

While ILs are generally fresh at the moment of delivery to the fire 

scene, the composition of the IL may change significantly over the course 

of the fire. Due to temperature and air flow, components of the IL will 

evaporate. However, due to differences in boiling points of various 

components within an IL, some components will evaporate to a greater 

degree compared to others, resulting in weathering. The extent of 

weathering will vary from one fire scene to the next [5,8]. Furthermore, ILs 

may undergo bacterial degradation if samples are not collected shortly 

after the fire [5,9]. This variability will pose additional challenges for IL 

detection and identification. 
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4.1.3  IL extraction and analysis 

ILs tend to be volatile liquids and to identify their traces they are 

usually extracted from debris by concentration of headspace vapours [19]. 

Typical sampling methods include direct sampling of headspace vapors 

[20], dynamic headspace sampling using activated charcoal beds [21], 

passive headspace sampling using activated carbon strips [22], or 

techniques such as solid phase microextraction (SPME) [23]. Passive 

headspace extraction (other than by SPME) is typically followed by solvent 

extraction of the IL residues from the adsorptive medium using a solvent 

such as CS2 or occasionally Et2O [2]. Extracts are then analyzed by GC-

MS [1,5]. The method favoured by the RCMP Laboratory in Edmonton is a 

passive headspace extraction with activated charcoal strips, using a setup 

similar to that shown in Figure 3-2, followed by CS2 extraction [3]. 

Once collected, chromatographic data are manually interpreted by two 

(or sometimes three) analysts to determine if there are traces of IL present 

in the debris, and if possible the identity of the IL [1]. This final step is 

currently an expensive bottleneck in arson debris analysis that we seek to 

address though the application of chemometric techniques.  
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4.2  Experimental 

4.2.1  Casework Data 

Debris were collected, stored, extracted, and analyzed according to 

RCMP protocols [1,2]. The only deviation from the standard protocol was 

the addition of a deuterated alkane ladder consisting of n-heptane (d16), 

n-nonane (d20), n-undecane (d24), n-tridecane (d28), n-pentadecane 

(d32), n- heptadecane (d36), n-nonadecane (d-40) and n- heneicosane 

(d-44) (CDN Isotopes, Pointe-Claire, QC) at concentrations of 16 μL⋅L-1 

each to the solvent used to elute analytes from the activated carbon strips 

(CS2).  

Samples were analyzed using one of three Agilent Technologies 

7890A gas chromatographs (GC) with 5975 quadrupole mass 

spectrometers (MS) and 7683 auto samplers (Agilent Technologies, 

Mississauga, ON). Data acquisition and automation were accomplished 

using MS ChemStation (Agilent). The GCs were equipped with 30 m × 250 

μm × 0.25 μm HP-1MS columns (Agilent). The oven program used was 

40 °C (held for 3.0 min) followed by a ramp to 250 °C at a rate of 8 

°C⋅min-1, with a final hold of 0.75 min. Samples were injected in split mode 

into an injector held at 250 °C. Hydrogen carrier gas was used with flow 

rate of 1.1 mL/min. The injection volume was 1 μL, with a split ratio of 

20:1. The transfer line and source temperatures were 300 and 230 °C, 

respectively.  
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Casework samples were processed in duplicate at the RCMP 

laboratories according to the ASTM 1618 protocol. The data provided to 

our laboratory was given dummy identifiers and with none of the attached 

identifying metadata that accompanies actual casework samples. This 

was done to ensure that no information that could compromise the 

confidentiality of an investigation was transmitted to our laboratory. 

Overall, 232 casework chromatograms were provided by the RCMP. 

Identification of gasoline was performed by RCMP personnel. 65 samples 

were confirmed to contain gasoline, 155 samples were confirmed to 

contain no IL (but most did contain pyrolysis products) and 12 samples 

provided ambiguous results and could not be positively determined either 

way. Out of 65 gasoline-containing and 12 ambiguous samples, all were 

obtained as casework debris. Out of 155 gasoline-free samples, 79 were 

casework debris samples and 76 were gasoline-free debris samples 

simulated by the RCMP in accordance with a published protocol [24]. 

4.2.2  Chemometric treatment of arson data 

Chromatograms were exported from Chemstation as .csv text files and 

then imported MATLAB 7.10.0 (The Mathworks, Natick, MA). 

Chromatograms were aligned on the basis of the deuterated alkane 

retention ladder (Chapter 3). Variable selection to optimize the 

chemometric models was performed using lab-written CR-guided BE/FS 

approach employing two-dimensional CR (Chapter 2). Final chemometric 
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analysis of the optimized models was performed using lab-written 

MATLAB routines, and some chemometric analysis functions from the 

PLS Toolbox 5.2 (Eigenvector Research Inc, Wenatchee, WA). The 

calculations were performed on a Intel Core i5 750 2.76 GHz processor 

with 8 GB of RAM and 64-bit Microsoft Windows 7 Professional operating 

system. 

4.3 Results and discussion 

A potential solution to the high cost of data interpretation for arson 

investigations lies in the development of chemometric models for rapid, 

objective, and automated identification of ILs in fire debris samples. 

Should a successful chemometric solution be discovered, it would 

essentially remove the bottleneck in the analytical procedure, increasing 

the overall sample throughput for an arson laboratory. This would, by 

extension, permit fire investigators to increase the number of samples that 

are taken from a fire scene, while possibly decreasing the overall analysis 

time. As a result, more thorough, faster investigations of fire scenes would 

be possible. 

Previous work has involved the application of exploratory techniques, 

such as PCA, to the identification of ILs [7,8,25]. SIMCA has also been 

used to classify ILs on a charred carpet sample [7]. In our work, PLS-DA 

was used to classify simulated arson debris based on the presence or 

absence of gasoline (Chapter 3) [26]. To date, there are no reported 
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studies of the successful application of chemometric techniques to the 

interpretation of actual arson casework samples, to the best of our 

knowledge. Due to extreme conditions and variability of fire scenes, actual 

casework studies are crucial. It is likely that simulated debris will not 

accurately reflect debris obtained from real arson scenes.  

Casework samples used in this study were collected over several 

months by a variety of arson investigators from fire scenes located across 

Canada (at the time of the study, the Edmonton Laboratory handled 

samples from all jurisdictions in Canada except for Ontario and Quebec). 

As most arsonists rely on gasoline as the IL, a sufficient number of debris 

samples could only be obtained for gasoline-containing and gasoline-free 

debris. Therefore, this initial test on real data focused on the classification 

of debris based on gasoline content.  

With the use of real arson data, there was no control over the contents 

of the fire scenes, the nature, or amount of ILs being used, and the extent 

of variability in the data was staggering. The amount of gasoline remaining 

in the debris varied due to differences in the amount of IL used in a given 

arson, the substrate for the sample, and different extents of combustion 

and weathering in each fire. Additionally, the composition of gasoline 

varies depending on factors such as refinery, season, and region of the 

country. The matrix at the fire scenes was completely uncontrolled, and 

samples were prepared and analyzed by different analysts on one of three 

GC-MS systems with the same nominal operating conditions. No 
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deviations were made from the standard analytical protocol, with the 

exception of the addition of the deuterated alkane ladder to the desorption 

solvent. 

4.3.1 Chromatographic Alignment 

Prior to the application of chemometric techniques to casework arson 

data, the raw chromatograms were aligned using the deuterated ladder-

based alignment method presented in Chapter 3. The product of ions of 

m/z 34, 50, 66, 80, and 82 was used, with a randomly selected 

chromatogram from the training set as the alignment target. Ion 34 which 

is due to C2D5
+ was required to add selectivity to the generation of the 

alignment target for some samples of real debris. Due to the use of 

multiple GC-MS systems to collect the data, extreme shifts in retention 

times were observed, as shown in Figure 4-1. 
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Figure 4-1:  Segments of two chromatograms in the casework debris dataset 
collected on different instruments. A shows unaligned 
chromatograms. B shows aligned chromatograms. Asterisks indicate 
a pair of peaks that should be aligned.  

As shown in Figure 4-1, extreme misalignment (~40 s) was observed 

for some samples. Additionally, the chromatographic profiles of the two 

debris samples were highly dissimilar with only a few peaks present in 

both chromatograms. Nevertheless, the deuterated alkane ladder 

alignment approach was able to successfully align all of the 

chromatograms.  

4.3.2 Feature Selection 

Once chromatograms were aligned, variables were selected using SR 

variable ranking followed by a hybrid BE/FS approach that relied on two-

dimensional CR as the model evaluation metric (Chapter 2). 
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For model construction and testing, the data set was separated into 

three sets: training, optimization and validation. The 220 chromatograms 

with known class identities, were randomly split into a training set (110 

chromatograms), optimization set (55 chromatograms), and validation set 

(55 chromatograms). All 12 unidentified samples were assigned to the 

validation set, bringing the total number of samples in that set to 67.  

Chromatograms from the training set were used to create the 

alignment target, rank variables and to obtain loading vectors for the PCA 

model during each variable selection step. Chromatograms from the 

optimization set were used together with chromatograms from the training 

set, to obtain scores during variable selection (the model being generated 

using training data and tested against optimization data). Both training and 

optimization data were combined to create the final PCA model after 

variable selection was complete. Chromatograms from the validation set 

were only used to evaluate the final model.  

Each chromatogram consisted of 16 000 scans with m/z values from 

30 to 300, providing a total of 4 336 000 individual variables per 

chromatogram.  As was done in previous chapters, each GC-MS 

chromatogram was unfolded along the retention time axis, providing a 

single vector of 4 336 000 variables. SR-based feature ranking [27,28] 

was subsequently performed. After the variables were ranked, variable 

selection was performed using a hybrid BE/FS approach guided by the 

two-dimensional CR metric [37,29,30] (Chapter 2). The evaluation was 
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performed upon a 2-component PCA model constructed using data from 

the training set and applied to data in the optimization set. The initial 

number of variables used in the BE approach was 10 000 and variables 

up to rank 25 000 were checked with the FS approach. The flowchart for 

variable selection is shown in Figure 2-7. A total of 1597 variables were 

selected. Variables selected are shown in Figure 4-2. 

 

Figure 4-2:  Features from GC-MS chromatograms included in optimized model 
for identification of gasoline in arson debris. Black dots represent 
variables used in model construction. 

As seen from Figure 4-2, C-3, C-4 and C-5 alkylbenzenes were 

selected. As mentioned before, gasoline contains light alkanes, 

alkylbenzenes and condensed aromatics [1,19]. According to standard 

method ASTM E 1618, alkanes present in gasoline samples vary by 

brand, grade and lot. Furthermore, being relatively light molecules, they 

are more likely to evaporate during gasoline weathering. They are also 
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generated by pyrolysis of some materials (e.g. polyethylene) [31]. Thus 

one would expect the alkanes to be of little diagnostic value for the 

purpose of identifying gasoline in arson debris. This explains the exclusion 

of light alkanes by the algorithm.  

ASTM E 1618 also cautions against using BTEX (benzene, toluene, 

ethylbenzene, xylenes) and condensed aromatics such as naphthalene as 

markers for gasoline. These compounds are also natively present even in 

gasoline-free debris matrix as they can be formed by numerous pyrolysis 

processes. It is reassuring that the automated approach to variable 

selection also ignored this group of compounds. ASTM E 1618 

recommends using the C-3, C-4, and C-5 alkylbenzenes as markers for 

gasoline as these compounds are characteristic of gasoline and do not 

generally have other sources in debris. As seen in Figure 4-2, variable 

selection guided by the CR metric selected variables originating from the  

compounds recommended by the standard method for identifying gasoline 

in fire debris. It is important to note that the selection was performed 

automatically without any direction as to which variables to focus on. In 

fact the only information provided was the binary class assignment 

(gasoline/no gasoline) of the chromatograms. 

Following selection of relevant variables, chemometric models for 

classification of arson debris were constructed. All chemometric models 

involved the following pre-processing: the signal for each sample was 

normalized to an area of 1, followed by autoscaling of the combined 
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training and optimization sets used to construct the final model. The 

autoscaling parameters determined in this step were then applied to the 

validation data.  

Initially, a PLS-DA classification model was constructed (Figure 4-3). 

The number of LVs was chosen using venetian blinds cross-validation with 

10 data splits and using number of LVs that provided the lowest 

misclassification rate. 3 LVs were used in the model construction.

 

Figure 4-3:  PLS-DA plot for arson data. Red triangles indicate gasoline-containing 
samples. Green circles indicate gasoline-free samples. Blue squares 
indicate ambiguous samples. Hollow markers indicate training and 
optimization set data. Filled markers indicate validation set data. 

As seen from Figure 4-3, the PLS-DA model correctly classified all 

samples in the gasoline-containing and gasoline-free classes. Some of the 

ambiguous samples have fallen confidently in the gasoline-containing 
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class while many remained near the classification border. However, PLS-

DA is likely not the most appropriate technique for gasoline classification. 

The reason is that PLS-DA assigns value of zero for all samples in the 

gasoline free-class. However, assigning the same y value to all the 

samples in the gasoline-free class is not entirely correct: the only similarity 

between samples in the gasoline-free class is the lack of gasoline. The 

chemical composition of one non-gasoline containing sample can be 

completely alien to the chemical composition of another sample in the 

class.  

To address this issue, SIMCA was tested as a modeling tool. SIMCA 

differs from PLS-DA in that it does not force a yes/no decision on a 

sample. Instead SIMCA creates a PCA model for one or more selected 

classes or groups of classes [32]. The samples are then projected into the 

collection of PCA models and T2 and Q residuals for the samples are 

calculated for each class with each model. Class assignment is made on 

the basis of residual scores: as residual scores for a sample in a class 

model increase, the likelihood of class membership for the sample in the 

particular class decreases. Unlike PLS-DA, SIMCA allows a sample to be 

a member of none, one, or multiple classes. In the case of fire debris, it is 

possible that a mixture of ILs was used; making application of a technique 

that allows multiple class membership more appropriate and classification 

of a sample as IL-free would only result as a lack of fit into any of the 

models for ILs contained in the SIMCA model.  
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A SIMCA model was built for the gasoline-containing debris class. The 

number of PCs was chosen using venetian blinds cross-validation with 10 

data splits and using the number of PCs that provided the lowest error of 

cross-validation. 4 PCs were used in the model construction. 

Classification in SIMCA is made on the basis of residuals. If a sample 

has a pattern in the selected variables that is similar to gasoline, then it 

will have very low values for its Q and T2 residuals. On the other hand, if a 

sample contains no gasoline, it will not fit the gasoline model well and it 

will have high residual values. The Q vs. T2 plot for the gasoline data set is 

presented in Figure 4-4 at several magnifications. Gasoline-containing 

samples should lie in the bottom left corner of this plot, and as samples 

become less gasoline-like, they should drift towards the top right corner of 

the plot, as observed.  

Comparing the results in Figure 4-4, to 4-3, SIMCA was also able to 

reliably classify arson samples based on gasoline content. The results for 

ambiguous samples will probably prove more useful and/or reliable for 

arson investigators. 
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Figure 4-4:  SIMCA plot for arson data. Red triangles indicate gasoline-containing 
samples. Green circles indicate gasoline-free samples. Blue squares 
indicate ambiguous samples. Hollow markers indicate training and 
optimization set data. Dashed lines indicate 95% confidence levels for 
Hotelling T2 and Q residuals Filled markers indicate validation set 
data. A, B and C show different zoom levels for the plot. 

 

4.3  Conclusions 

Deuterated alkane ladder-based alignment and the CR-guided 

automated approach to variable selection have been applied to generate 

PLS-DA and SIMCA models for the classification of casework arson debris 

samples on the basis of gasoline content. The alignment was able to 
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unreliable markers of gasoline. The final PLS-DA and SIMCA models were 

able to reliably classify the samples as being either gasoline-containing or 

gasoline-free, with no false positives or false negatives. 
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5 Conclusions and future work 

5.1  General conclusions and other studies. 

In the course of my research, a novel metric for evaluating 

classification models, termed cluster resolution was invented [1,2]. An 

approach to aligning highly dissimilar GC-MS data that relies on the 

addition of a deuterated alkane ladder to the samples was also developed 

[3].  

Both two- and three-dimensional versions of the CR metric have been 

developed and applied to guide automated variable selection processes 

that optimize chemometric models for the classification of gasoline 

samples by type as well as simulated and real arson debris. The 

deuterated alkane ladder-based alignment was essential for the alignment 

of highly dissimilar data and was successfully applied even in the case of 

arson casework samples that were analyzed by multiple analysts on 

multiple GC-MS instruments over the course of several months.  

Combined, these tools allowed for the first time, the construction of 

effective classification models for casework arson debris samples based 

on gasoline contents with 100 % of studied samples being classified 

correctly. 

Most importantly, it should be noted that the CR-guided approach to 

model optimization is neither limited to arson data, nor to analytical 
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separations data. When variable selection is necessary for other kinds of 

data (e.g. spectroscopic), CR is a powerful tool that can be used to guide 

the variable selection process or any other process that requires the 

evaluation of a classification model. Recently, the CR metric has been 

successfully applied in the classification of edible oils on the basis of ATR-

FTIR spectra [4].  In this study, the CR-guided BE/FS hybrid approach 

was shown to outperform models that had no feature selection, and other 

automated approaches such as iPLS and genetic algorithms (GA) in terms 

of optimization speed, final model quality, and ease of use (Table 5-1). 

Furthermore, it was shown in this application that the CR-guided approach 

successfully avoided regions of the spectrum that obviously contained no 

significant information, and regions of the spectrum that were known to be 

unreliable due to phonon bands of the diamond ATR cell used in the 

study. 

Table 5-1.  Comparison of the performance of variable selection methods 

Method Raw data PCA 
iPLS-DA 

(1variable) 
GA all 

variables ANOVA SR 
Computational time 
for variable selection - < s 628 min 

3434 
min 2.7 min 

2.5 
min 

Sensitivity (CV) for 
olive oil class 0.98 1.00 1.00 1.00 1.00 1.00 
Specificity (CV) for 
olive oil class 0.94 1.00 0.97 1.00 1.00 1.00 
# of samples 
misclassified 1 0 1 0 0 0 

# of LVs 2 2 4 2 6 4 
# of variables 
(details) 

3320 (All 
variables) 9 (PCs) 11 intervals 248 26 30 

  



 

    139   

5.2  Future work.  

Further advancement of the arson debris analysis project is required. 

The development and testing of methods for the simulation of 

chemometrically-realistic arson debris are ongoing. This will allow for the 

generation of training data for the detection of less-common ILs. 

Constructing such a library using only casework data would require great 

patience while waiting for sufficient arsons using these other ILs to be 

committed. 

Another avenue of development lies in the commercialization of the 

tools created. With a classification model developed for the arson debris 

samples, a model can be applied to new data collected for the arson 

debris. The classified debris can then be added to the training set, 

updating the classification model over time. Since model application takes 

seconds, the SIMCA model, presented in Chapter 4, can be utilized as a 

screening tool, where samples that are confidently classified as gasoline-

containing or gasoline-free would require little further analysis, while 

samples which lie close to the border will require manual interpretation, as 

shown in Figure 5-1. Since more than 90 % of the samples should be 

unambiguously classified, this will result in a considerable decrease in 

investigators’ workloads and an increase in the throughput of the 

laboratory. 
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Figure 5-1:  SIMCA plot for arson data. Red triangles indicate gasoline-containing 
samples. Green circles indicate gasoline-free samples. Blue squares 
indicate ambiguous samples. Hollow markers indicate training and 
optimization set data. Dashed lines indicate 95% confidence levels for 
Hotelling T2 and Q residuals Filled markers indicate validation set 
data. A, B and C show different zoom levels for the plot. 

In terms of applying chemometric techniques to raw GC-MS data, 

additional work should be focused towards the variable selection problem. 

While FS/BE variable selection guided by CR metric was able to 

successfully select relevant variables, hundreds or thousands of variables 

have been selected in applications presented in Chapters 2, 3 and 4. 

Many of the selected variables were result of signal from the same 

compounds and, as a result, were highly correlated and redundant. An 

intelligent approach towards selecting unique features for each analyte will 
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further assist analysts with both extent of variable reduction and quality of 

the resulting models. 

The CR metric could benefit from code optimization. Currently, the 

metric is able to evaluate models in a reasonable amount of time, however 

further code optimization, particularly in searching confidence ellipse sizes 

for collision detection, will allow acceleration of the variable selection 

process. The general approach to model optimization should be applied to 

other types of data such as metabolomics data (either raw or processed 

peak tables) and the CR metric should also be tested in other types of 

computational tools, for example as the “goodness metric” in support 

vector machines or neural networks. 

It should also be noted that CR in its current form cannot be directly 

applied to feature selection for regression models. Adapting the approach 

for application in regression models would be a topic for future studies. 
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