University of Alberta

DIALOGUE PATTERNS IN COMPUTER ROLE-PLAYING GAMES

by

s,

'/’Qt
Jeffrey D Siegel {
)

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-30024-4
Our file Notre référence
ISBN: 978-0-494-30024-4
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
qguelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Today’s computer role-playing games (CRPGs) have ever increasing sophisticated and complex
elements, including rich and dynamic character conversations. CRPGs such as Neverwinter Nights
use manual scripting to control the flow of these conversations. These scripts can be confusing
and time consuming to game designers with no programming experience. This dissertation presents
a new dialogue pattern model to construct conversations in the Neverwinter Nights CRPG. This
model uses a more compact and concise representation than the model used by the Neverwinter
Nights Aurora conversation editor. The scripts used to create dynamic conversations in the Aurora
conversation model are replaced with generative design patterns. These design patterns generate
the scripting code automatically, preventing the game designer from making any scripting mistakes.
A case study analyzes the effectiveness of both models by using five metrics which compare the

models against several criteria. The dialogue pattern model is shown to be easier to use.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Introduction and Motivation
1.1 Computer Role-playing Games
1.2 Inmteractive Story-telling L
13 NeverwinterNights
14 AuroraToolset e
14.1 Toolset Interfaceand AreaMaps
142 GameObjects. e
143 ConversationS v vttt e e e e e e e e e e e e
144 Scripts e
1.5 AuroraToolsetDeficiencies.
1.5.1 Conversation UserInterfface
152 Conversation Scripting oo
1.6 Summary e e e e e e e e
ScriptEase :
2.1 DesignPatterns e e e e e e e e e e e e e
2.2 The ScriptBase Tool e e e
2.3 ScriptEase Interface e e e e e e e e e e e e e e e e e
24 SUMMATY e e e e e e e e
Structural Patterns
31 Exchanges e e
32 TOPICS e e e e e
33 LinkTargets o i e e e e e e e e e e e e e
33.1 EndDialogueTargets,
34 TopICGIOUPS e e e e e e e e e e e e
34.1 Exchange Customizationco..oo....
342 Choice Customization,
3.5 Dialogue Generation o it it e e e e e e
36 SUMMATY o i it e
Dialogue Patterns
4.1 DecisionPatterns Lo e
4.1.1 DecisionOptions v v v vttt e e e e e e e e
4,12 CodeGenerationttt
4.1.3 Sample DecisionPatterns
4.14 Adaptations e e e e
4.1.5 Building DecisionPatternso Lo
4.1.6 Composing DecisionPatterns
4.177 Degenerate DecisionPatterns,
42 Optional ChoicePatterns i i i ittt e
421 Choice GIroups v v v v v v v i e e e e e e e
43 SUIMIMATY o ot i e
Pattern Operations
d O Topics .. e e e e e e e e e e
52 TopicGroups v vt e e e e e e e e
53 Exchanges e e
54 Choices e e e
55 Linking e e e e
5.6 DialoguePatterns e e e e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2

6.3 Results

Deletion v e e e e e e e e e e e e e e
Decision Patterns e e e e e e e e e e e e e e
Optional Choice Patterns
SUMmMAary o e e e e e e e e e e e e e e e e e e e

valuation - A Case Study
1

Complexity Metrics e

1.1
12
1.3
14
6.1.5

6.
6.
6.
6.

Component Complexity
Structural Complexity00 L.
Remark Complexity
Indirection Complexity
Operational Complexity

The Conversations v i i i i e e e e e e e e e e e e e e e e e

6.2.1
622
623
6.2.4

Ememick e e e e e e
NUSE e e e e e e e e e e e e e e e e
Helmite e e e e e e e e
Bertrand e e e e e e

6.4 Summary e e e

7 Future Work and Conclusion
7.1 Future Work o e e e e e e e e e e e e e
T2 Conclusion e e e e e e e e e e e e e e e e

Bibliography

A Dialogue Pattern Catalog
A.l DecisionPatterns e e e e e

A2

All:

> PP e
s

ti

)

>0

AbilityDecision oL e e
Basic genderDecision o oo e
DoorlockedDecision e
Near by Decision e e e e e e e e e e e e e e
ProgressDecision 0000,
RecallDecision i
Isthe PCDecision
QuestpointDecision
Skill Decision e

0 HasitemDecision i i i i it e et et et e e
nal Choice Patterns i e

AbilityOptional Choice
Normal Intelligence Optional Choice
Low Intelligence Optional Choice
Has item Optional Choice
Quest point Optional Choice

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1
6.1

6.2
6.3
6.4
6.5
6.6

Cognitive levels of pattern adaptation. 26
Number of operations used to build the “beggarl” conversation using the dialogue

pattemmodel. 85
Node counts for the conversations under the Aurora conversation model. 105
Operation counts for the conversations under the Aurora conversation model. . . . 105
Component counts for the conversations under the dialogue pattern model. 105
Operation counts for the conversations under the dialogue pattern model. 106
Complexity results for the four conversations. 106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

h—u—n—n—-»—u»—:»—-r—!—-i—lb—-
= O 00 I ON BN

ol =

RS RE T, NV W NERY SN

i = 000 YR L

PRA LLULLLLWW WHWWLWLW NNNENNNND
PN~ O

QI D) =

4.

~
n

4.6
4.7
4.8
49
4.10
4.11

4.12

Conversation with an NPC in Knights of the Old Republic
Locked in combat with a hostile NPCin Oblivion
The PCinacitysetting. i i
The PC conversing with alostmerchant.
Conversation file for the NPC Ras Whisperwind.
A script that causes an NPC performactions.
Painting a building into an area with the Auroratoolset.
The three main sections of the Auroratoolset.
A conversation tree for a nurse NPC in Chapter 1 of Neverwinter Nights.
A chest object can have up to 13 scripts attached.
A conversation tree with many linknodes.

Selecting an Encounter pattern in ScriptEase.
Creating anew patterninstance.
Creating anew patterninstance.
The internals of the Conversation When/Whatpattern.
Adding a definition atom that checks the PC’sgender.
Anevent'simplieddefinitions. oL oL,
A positive condition that will return true if Is Specific Genderis true.
Two action atoms that move the NPC towardsobjects.
A custom atom for merchant objects created in the ScriptEase Designer.

Two representations of a simple conversation.
A friendly conversation with topicsadded.
A friendly conversationwith links.,
Contrasting the visual complexity between direct links and link targets.
The redirect GUI operation moves the viewport to the target topic.
The swap GUI operation move the target topic and sub-tree to the viewport.
Converting the farewell conversation from Aurora with PC link nodes to a dialogue
PAMEITL. o i i i i e e e e e e e e e e e e e e e
The farewell conversation with topic groups and only one choice.
Dialogue pattern for answering questions in a conversation.
Three topics with duplicated choices. One topic has an extra choice.
A topic group with a subset of sharedchoices.
A topic group with topics that have a different number of exchanges.
A piece of Bertrand’s conversation. Several topics are in a topic group.
Customizing a choice tosay “Adios.”

An Ability decision pattern based on the PC’s charisma.
An example of a GUI to set decision patternoptions.
Adapting a Abilitydecisionpattern.o,
The condition for the “High” outcome in the Ability decision.
The action attached to conversation node options in the Progress decision.
The first decision of the Ememick NPC in the Aurora conversation editor.
The first decision of the Ememick NPC is composed with 2 decision patterns. . . .
Using combinations of decision pattern to simulate logical operators.
Simplifying decisions that affect only a single NPCremark.
The nurse’s greeting decision in the Aurora conversation editor.
A decision pattern that affects only a single exchange inside a topic with two ex-
changes. e
The condition for an Ability optional choice pattern.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.13 An exchange with 4 Ability optional choice patterns. The simulated pop-up window

shows details of the first optional choice pattern. 59
4.14 Portion of Ememick’s conversation with 10 PC nodes including five normal and five

low intelligence variants. o 60
4.15 Exchange with 10 choices including five normal and five low intelligence variants. 60
4.16 A simplified exchange with 5 choice groups each with a normal and low intelligence

PCremark. 61
5.1 Adding anew topictoaconversation. 64
5.2 Removing a selected topic fromaconversation. 64
5.3 Merging a topic with a topic group. This operation can be reversed by splitting the

topic fromthetopicgroup. L. Lo 65
54 Inserting a third exchange inatopic. 67
5.5 Appending a third exchange totheendofatopic. 67
5.6 Moving two exchangesinatopic. 68
5.7 Addingachoicetoanexchange. 69
5.8 Removing achoiceto create an utterance. uw ... 69
5.9 Instantiating a dialogue pattern into a conversation. 71
5.10 A topic disconnected from the conversation. 71
5.11 Adisconnected topicinatopicgroup. 72
5.12 Sub-trees disconnected from a conversation. L. 73
5.13 Adding an Ability decision pattern in a conversation. 73
5.14 Adding an Ability optional choice patterntoachoice. 74
6.1 Component complexity formula for Aurora conversations. 76
6.2 Component complexity formulas for dialogue patterns. 77
6.3 The “beggarl” conversation in the Aurora conversation editor. 78
6.4 The “beggarl” conversation in the dialogue pattemmodel. 79
6.5 Structural complexity formula for Aurora conversations. 80
6.6 Structural complexity formulas for dialogue patterns. 81
6.7 Remark complexity formula for Aurora conversations. 81
6.8 Remark complexity formulas for dialogue patterns. 82
6.9 Indirection complexity formula for Aurora conversationmodel. 82
6.10 Redirection complexity formula for dialogue patterns. 82
6.11 Operation complexity formulas for Aurora conversations. 83
6.12 Operation complexity formulas for dialogue patterns. 86
6.13 The Ememick conversation in the dialogue pattern model (Part 1). 88
6.14 The Ememick conversation in the dialogue pattern model (Part2). 89
6.15 The Nurse conversation in the dialogue pattern model (Part 1). 92
6.16 The Nurse conversation in the dialogue pattern model (Part2). 93
6.17 The Helmite conversation in the dialogue pattern model (Part1). 96
6.18 The Bertrand conversation in the dialogue pattern model (Part1). 102
6.19 The Bertrand conversation in the dialogue pattern model (Part2). 103
6.20 The Bertrand conversation in the dialogue pattern model (Part3). 104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction and Motivation

1.1 Computer Role-playing Games

Role-playing games are a popular and complex type of computer game. Computer role-playing
games (CRPGs) involves a grand, intricate story, much like a novel. The player controls a player
character (PC), or a group of characters, and using the PC explore a world that involves battling
creatures, solving puzzles, completing quests or objectives, and speaking to computer controlled
non-player characters (NPCs). Unlike a novel, the player can make choices during the game, and
each choice can affect the outcome of the story. The story is revealed in small sections called quests.
Each quest gives the player a specific task to accomplish, and the player may be involved in multiple
quests simultaneously. If the game world is large enough, many quests will have no bearing on the
main story line, but serve to add depth to the world and entertain the player.

With new, powerful gaming consoles, CRPGs can be played on either personal computers or
gaming consoles. On a personal computer, the player controls the PC’s movement and actions by
clicking with the mouse or pressing arrow keys on the keyboard. On consoles, the player uses the
console controller to direct the character’s actions. The PC can interact with objects in the game,
including props such as tables and chairs. For example, clicking on a lever with the mouse may
cause a door to open. If the player clicks on a friendly NPC, it is possible to initiate a conversation
with that NPC and a dialogue will appear, giving the player the choice of what they can say.

Combat is a large aspect of CRPGs. During an adventure, the PC may encounter hostile crea-
tures. Rules exist in the game to determine who can attack first, if a combatant gets hit, and how
much damage they receive — usually represented as a number. Many role-playing games are fantasy-
based, so they include magic and spell-casting systems as well.

Figure 1.1 shows a conversation scene in Knights of the Old Republic, Bioware’s futuristic RPG
based in the Star Wars universe [12]. Here the PC is conversing with an NPC in the game. The
player has a list of responses that the PC can say to the NPC. Figure 1.2 shows a combat scene in
Oblivion, Bethesda’s latest game in the Elder Scrolls Saga [19]. The player is in a first person view

fighting a hostile NPC. The player can attack with an equipped weapon by clicking the mouse.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.1: Conversation with an NPC in Knights of the Old Republic

Figure 1.2: Locked in combat with a hostile NPC in Oblivion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CRPGs use abstraction to represent properties of the world. Characters have integers to repre-
sent ability stats, such as strength, intelligence, or charisma. They have skills that determine how
well they can perform specific tasks. For example, during conversations the PC’s persuasion skill
determines the PC’s effectiveness in convincing the NPC to provide extra information or rewards.
Fighting in battles is abstracted by using either a turn-based or real-time combat system. Formulas
calculate hits and misses, item bonuses, and any damage received during combat. In most games, if
a character’s hit points (health) drop to 0, the character is considered dead.

The majority of the time in the game is spent performing quests. Most quests are assigned,
and later completed, by conversing with NPC characters. Conversations are an important part of
role-playing games. They not only add life to the NPCs, but also impart important information to
allow the player to progress in the game by completing quests and receive directions for new areas to
explore. Unlike traditional stories, interactive stories like CRPGs have no narrative text to advance
the story. Instead, CRPGs rely on conversations and journal entries to give narrative to the players.

The nature of the PC’s conversation with an NPC can change over time as the game state changes.
Conversely, conversations with NPCs can change the game state. For example, an NPC greets the
PC on the first conversation, but if the PC is insulting, the NPC will refuse any further attempts to
converse. If the PC is looking for treasure and does not know the location, the NPC can give the
treasure’s location in a conversation. If the PC already knows the treasure’s location, the NPC won’t
say anything about the location. Similarly, the PC can choose a quest from the NPC, which changes
the game state by opening a new area to explore.

State-of-the-art CRPGs are becoming more sophisticated. The worlds are larger, with more
creatures and objects. Al systems are growing more complex, with an increasing expectation for
characters that have a rich set of behaviours that project a feeling of intelligence. Intelligent charac-
ters require intelligent conversations, and intelligent conversations require an effective construction
tool. This dissertation describes a new method of constructing conversations by using generative

design patterns.

1.2 Interactive Story-telling

CRPGs are a form of interactive story. Like written stories, interactive stories have a plot with
settings, protagonists and antagonists. However, interactive stories differ by allowing the player or
participant to affect the outcome of the story through their actions. It can be as simple as choosing
a page number in the Choose Your Own Adventure books [5] or as complex as helping shape the
story as a player in Pen-and-Paper Role-playing Games [6, 8]. Improv comedy, such as the hit show
Who’s Line is it Anyways, also has the story shaped by the participants. Several types of interactive
storytelling involve a game master (or GM). The game master mediates the storytelling, and can
be responsible for narrative flow, rules, engagement, environment, and the virtual world [21]. In

CRPGs, the game master is normally replaced by a game engine and pre-generated content.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CRPGs are criticized as being finite in size and limiting in choices. The story is pre-defined,
with the player only having a few possible story branches to choose from. The player still has
the option to do extra side quests, but these normally serve to increase the character’s power or
provide an entertaining diversion rather than affecting the main story. For example, in Bioware’s
Jade Empire[9], the player can choose to be either good or evil. However once they make that
choice, they follow a pre-determined story until the game ends. Similarly, conversations with NPCs
are limited to a set number of statements and responses. The conversation is designed and built by
authors before the game is played, and the player only has a few options when replying to what an
NPC says.

Some work has been done to give players more options when interacting with NPCs. Microsoft
Research has looked into applying NLP techniques to NPC dialogue {10, 11]. Each NPC would
have a knowledge base that would change as the game state changes. When a PC initiates a con-
versation, the NPC uses the knowledge base to dynamically generate a conversation, complete with
grammatically correct statements and a list of responses the PC can choose from.

The Fagade project[14] goes one step further by creating a game that provides interactive drama.
Instead of giving the PC only a list of pre-determined responses, the PC can now use the keyboard to
enter any free-form English statement or question to communicate with the NPCs. The NPCs have
sophisticated motivational-based artificial intelligence to determine how to respond to the PC and

what actions to perform in the virtual world.

1.3 Neverwinter Nights

Neverwinter Nights is a role-playing game developed by Bioware Corp [1]. It has won numerous
awards, including many game-of-the-year awards [17]. Based in the Forgotten Realms setting, it
uses a modified version of the pen-and-paper Dungeons and Dragons D20 system for game rules
and mechanics [4]. There are two parts to the game: the engine and modules. The game engine is
responsible for rendering game objects and special effects, moving game objects, playing music and
sound, and dispatching events to scripts, which in turn are executed by a virtual machine. Modules
are files that contain story content, including map data, story objects, scripts, and conversation files.
To play Neverwinter Nights, the player starts the game and selects a module (i.e. story). The player
then selects the PC that will play through the module. The game engine then loads the module’s
scripts and game objects into memory and the game begins. Figure 1.3 shows a screenshot of a
Neverwinter Nights module.

Neverwinter Nights includes an official campaign story comprised of 7 modules. The game’s two
expansions, Shadows of Undrentide and Horde of the Underdark, provide a further six 6 modules.
In addition to the content contained in the 13 official modules, Neverwinter Nights also includes
tools to allow players and designers to create their own content. Consequently, a large community

has formed to share ideas, provide help with scripting, author new modules, and play modules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.3: The PC in a city setting.

created by other players and amateur designers. Bioware’s community website is the nexus of this
community[18].

In Figure 1.3, the PC, Captain Adventure, is in a large city complete with fountains, pillars, and
a fire from unruly residents. The interface includes buttons on the bottom that allow the player to
make the PC perform actions such as casting a spell or quaffing a potion. The top right corer holds
the PC’s portrait, life bar (percentage of hit points), and buttons to access windows that provide
information such as the PC’s statistics, learned spells, and journal entries for quests. In front of the
PC are NPCs that wander the city. The player can initiate conversations with these NPCs by clicking
on them.

Figure 1.4 shows a PC in conversation with an NPC named Ras Whisperwind. The PC has a
chance to persuade Ras to pay extra gold for an escort to the nearest village. If the PC is successful,

Ras will hand over the additional gold and begin following the PC.

1.4 Aurora Toolset

One of Neverwinter Night’s unique features is the Aurora toolset included with the game. The
toolset allows the author to edit module resources, including 1) area maps, 2) game objects, 3) con-
versations, and 4) scripts. A conversation file is an example of a resource in a module. Conversations
are tree structures and can be edited by a conversation editor in the toolset. Each statement made
by a PC or NPC is represented by a conversation node in the tree. Figure 1.5 shows an example
conversation tree in the Aurora toolset conversation editor.

A conversation file controls how a conversation flows. Conversation nodes that represent NPC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.4: The PC conversing with a lost merchant.

B Itlooks ke you're stianded
- [DIWNER] - That would be cotract 1 got separated from s 1est of g caiavan The hoises have e off. ttanding me
2 [l How unfodunate.

=] ' JOWNER] - Plsase heln me. | coudd use an estont te the nearest vilage. 1t shouddat be to fas hom hers. 18 be
= i} <StatCheck>[Persuade]c/Start> You kook ke & wealthy merchant. Surely you have more than that [JEND
S

foatigre] Booe e JERD DoLOGUEY

" Toit Bpowirs When.. Actche Taken | Ot Actione | Comments | ¢ ¢ {21

e e

cript Praview

Daa jnmml Saud\l

Figure 1.5: Conversation file for the NPC Ras Whisperwind.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* ¢ i

S AULBEE S LECE

r3_move - N
1ivecid main() -
2i¢ ActionForcefollowlhiess _d
3 obiect cWaypoint = GetNearestObiectByTag ("Ras Wagypoine | jhoticnForceNoveTolocavion .
Y acticnForceMoveToCbiest
3 RoticnMaveTaChiect (aNaypeint, TRUE, 0.1): ReticnGivelzen
€y i ActicninteraczChlect

Acticnlumpiclocation
ActionJumpTodbiect
ActionlLockObject
AcTionMoveAvayFromiccation
ActionMoveasayFromObs
AzzionMoveTIolecation

o =ct

ActionOpenDocy

ActionPauseCenversation
ActionFickUplitem
B o ¥ iActicnFlayAnimation P
i *ActizaNoveIodbiect failed,® ~
7oid ActicmMaveTaCbjiect (chbiect oMoveTle, int bRun=FALSE, ficat fRange=I.Zf) E
2
L

Figure 1.6: A script that causes an NPC perform actions.

statements are followed by children nodes that represent PC responses to the NPC statement. Like
many of the game objects, scripts can be attached to nodes in the conversation file. During a con-
versation, these scripts can be executed, allowing the game state to change. For example, Figure
1.6 shows a typical script in the Aurora toolset’s script editor. The script is attached to the selected
conversation node in Figure 1.5 at the end of the conversation tree. The script moves the NPC to a
waypoint at another location on the map.

For maps and game objects, Aurora provides a CAD-like interface where the author can paint
terrain and objects using the mouse. A module is composed of several areas, each containing a map.
Maps are divided into a grid of tiles. The author picks a terrain tileset and can paint these terrain tiles
onto the map. Figure 1.7 shows a wooden building being painted into an area with a forest tileset.
After building all the terrain, the author can then choose from a wide selection of game objects to

populate the newly constructed map.

1.4.1 Toolset Interface and Area Maps

The interface is divided into three main sections, shown in Figure 1.8. The left-most section, labeled
1, displays the area information. A module is divided into several areas, each with a separate map.
The areas are the first module resource. Each area can contain game objects, such as creatures and
doors. The center section, labeled 2, displays the current area as it would be rendered in the game.
Below are camera controls to move the camiera around the area. The author can click on visible
objects in this window to move them, orient them, or access their properties. The right-most section,
labeled 3, displays the game object palette. Here the author can select game objects to paint them
into the area. At the top are icons that show the different object categories. Below are two buttons,

one to access the standard palette and the other the custom palette. The standard palette includes all

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

* pioWare Auro

] i i [i f i3 -~ ¢
RNEes @2 ~ o JB:B08 &

Stsam Bridge 2
- Tower
{-WakGate?
- Wal Gate 2
| - Webbed Corner

Loading Tles
Lsackng The
Laading Ties
Loading Thes

[ouste(x:25 v:49) Gridrow:4 coh:2) Te(tfO1_a09. 01} : - ; |

Figure 1.7: Painting a building into an area with the Aurora toolset.

Howms ¥8xwdoselr
: ortor ;
- Injured Man Standeed | Custom | |
it , e _*I
- Ketta i © - Sacophagus Pl
;- Dlgerd .-
- Shade
- Sk
Skelaton
.- Stag Beetle
~Tabiha
Target
--Umber Huk
Zeods
#- Doors
Encounters Pak‘“:ds',"
Ttems enanks & Signs
o Projectile Trap Origin
Merchants
Y Seciet Object
+- Placeables
Z Sounds Trades & Academic & Farm
T Treaswe
- Trigges:
‘ * - Visual Effects
" 'tzr""r";’
9.]2 T~ Show Plot
1 2 3
Pairt

Figure 1.8: The three main sections of the Aurora toolset.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pre-built game objects that are provided by the game. The custom palette holds both newly created
game objects and standard objects customized by the author.

Although most objects are visible while playing the game, such as characters and inanimate
objects, there are also invisible objects. The module, areas in the module, and waypoints are all
examples of invisible objects. In the case of waypoints, these are visible in Aurora, but invisible
when the game is played. For example, Figure 1.8 shows a waypoint object represented as a flag
with an arrow. Waypoints represent an orientation and a location on a map. Waypoints are used as

reference points, such as teleporting a PC to a new location.

1.4.2 Game Objects

The second major module resource contains game objects Neverwinter Nights supports the follow-

ing object categories. The first 6 categories are scriptable, and the last 3 are not.

¢ Creatures - Creatures represent sentient entities. They can move, participate in combat, con-
verse, and can hold item objects in their inventory. NPCs, the PC, and monsters are all crea-

tures.

¢ Doors - Doors can be painted in certain tiles that have a doorway. Doors prevent creatures

from passing through, and can be opened, closed, locked, and bashed down.

¢ Placeables - Placeables are inanimate objects such as chairs, tables or chests. Most are used
for decoration, but some are containers (e.g. chests) that can hold item objects. The author

can customize a placeable to be interactive, such as clicking on a statue to access its inventory.

o Triggers - Triggers are invisible polygons painted on the map. Events are fired when a crea-
ture enters or exits the trigger, allowing the author to change the game state. Examples include
defining a region to have an effect such a teleporting the intruder, spawning a creature, or

springing a trap.

¢ Encounters - Encounters are special triggers that spawn creatures when an intruder enters the
trigger. An encounter automatically scales the level and quantity of spawned creatures, based
on the level and power of the PC. Encounters are used extensively in the Neverwinter official

campaign to create monsters for the PC to fight during the progression through the game.

¢ Merchants - Merchants are invisible objects that represent a store where the PC can purchase
items and equipment. A merchant object can contain item objects much like a container. The
author then connects a merchant object with an NPC character that acts as the merchant. The

PC can then buy from the store by initiating a conversation with the NPC character.

¢ Sounds - Sound objects are invisible with the sole purpose of broadcasting a sound in a par-
ticular part of the module. Each sound object has a broadcasting radius and the sound effect

tapers that off as the PC moves farther away.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ol

1 {OWNER] - Greetings, my <Lord/lady>. How map | be of service?

2 . Could] ask you some questions?

3 . [OWNER] - | reafly should be tending the sick, but for you my <Lord/Lady> | can spare a few morments,
4 ‘What can you tell me about the plague?

5 [OWHNER] - &2 much ac mast, lese than some, | suppose. I've seen my share of the dead and dii
6 -l Have you heard anything about 2 cure for the Wailing Death?

7 8 Did you hear anything about the attack on the Academy?

8 = - [OVWNER] - 1 haard Fentrick ard Dasther whispesing about & orce, but they clanimed up
9 B8 What were they saying?

10 i -l <StatCheck> [Insight]</Start> You don't fike Desther much, do you?

" = -} What them say?

12 : w: i} How did you end up tending the affficted heie?

13 8 | want to ask you something else.

14 a2 W You know stulf bout cure for sick?

15 B What you know ‘bout fight at Academy?

16 : @ Yoube rurse. How you get your job here?

17 : -] Me have other i

18 B Goodope [END (2

19 H . Have you heard any rumors lately?

20 B Can) ask you some directions?

21 . ‘What you know bout plague?

22 B You hear gossip of lumors of stulf?

23 [Neverwinter big place. Me need diections.

24 ¢ . Gosctue {END DIGLOGUE]

25 it [l IDOWNER] -1 ieally sheadd be tending the sick, but] car spar a tew mamerts, <st/madary.

26 . [OWNER] - Make it quick - my tire is beiter spent easing the sufferng of my patients.

27 B Me want ask questions.

28 Goodbye.

29 - . {OWNER] - May whatever Gods you pray to keep you safe from the plague.

30 i~ [IOWNER] - On your way. then. I've got too mary sick and suffering to waste my time on lorg goodbyes.
31 i.. [} [OWNER] - Off with you, then. Pve no time for the ikes of you

2) IDWNER] - s there something | can do for you, <si/madam>?

Figure 1.9: A conversation tree for a nurse NPC in Chapter 1 of Neverwinter Nights.

e Items - Items are non-scriptable objects that exist in creature or placeable inventories, or
found on the ground. Items include weapons, armour, potions, and books. Many items can be
equipped by a PC or NPC, giving a boost to their abilities. Items can be bought from and sold

to merchants.

¢ Waypoints - Waypoints are invisible objects that the author can paint on the map. Waypoints
are used as markers for controlling creature movement. For example, a guard patrolling a

treasure chest follows a set of waypoints clustered around the treasure chest.

1.4.3 Conversations

Conversation files are the third major module resource. A conversation is viewed as a tree, with each
branch representing a possible line of dialogue the player can see when playing the game. Figure
1.9 shows a conversation from an NPC in Chapter 1 of Neverwinter Night’s official campaign story.
A tree of nodes is visible, each on a separate line with the statement text. NPC remark nodes are
coloured in red and PC choice nodes are coloured in blue. NPC nodes always contain PC child
nodes, and similarly PC nodes contain NPC child nodes.

Semantically, NPC nodes differ from PC nodes in that only one can be displayed in a conversa-
tion at any one time. If a PC node contains several NPC nodes, then the game engine must select
only one of the NPC nodes. To do this, the engine evaluates a When script on each NPC node, one

at a time. A When script is evaluated to determine whether the node is to be displayed or hidden.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The first NPC node with a When script that returns TRUE is selected to be displayed. In Figure 1.9,
there are three NPC children under the “Goodbye” PC node (line 28). If the PC selected this choice
during the game, the game engine would evaluate the When script of the first NPC child. In this
case, the script returns TRUE if the PC has a high charisma ability score, FALSE otherwise. If the
script returns TRUE, the NPC remark on line 29 is displayed. If the script returns FALSE, the engine
evaluates the When script for the next NPC child and so on. If all When scripts return FALSE, the
last NPC child is selected by default.

In contrast, if an NPC node contains multiple PC children nodes, any number of children can
be displayed as PC nodes simultaneously. These PC nodes are a list of choices where the PC can
choose the appropriate response. A When script on a PC response node will hide the node from
the list of choices if the script evaluates to FALSE. For example, in Figure 1.9 the PC node on line
10 has an attached When script, which is indicated by green “~” in the node’s blue square icon.
The script only returns TRUE if the PC has a high wisdom' ability score. For players without high
wisdom, this response will be absent when they reach that point in the conversation.

In addition to When scripts, conversation nodes can also have What scripts. These scripts are
executed after a conversation node is displayed in a conversation. In the case of a PC node, the script
is executed when the PC selects that node as a response.

Figure 1.9 also shows nodes that are gray in colour on lines 18 and 24. These are link nodes.
They convert the conversation from a tree to a graph by allowing branches of the conversation to lead
into other branches. For example, the “Goodbye” link on lines 18 and 24 gives the PC the option to
pick the goodbye choice found at line 28 at several points during the conversation. The author does
not have to replicate the goodbye sub-tree in multiple locations of the tree. Links also allow the PC
to ask the NPC to repeat questions or explanations without duplication a sub-tree of conversation
nodes.

Conversations are constructed using a simple set of operations. A author creates the conversation
by adding one conversation node per operation. After a node is created, the author can set the remark
text and properties, as well as attach When and What scripts. Finally, the author can delete a node

and its subtree. The complete list of operations follows:

o Add Nede - Adds a new child node to the selected node.

Remove Node - Deletes a node and all its descendants.

Edit Text - Changes the node’s statement text.

Edit Property - Change a property of a node, including animation and journal entry updates.

Add Link - Involves copying a node, then pasting it as a link node in some other location in

the tree.

!'Wisdom determines a character’s intuition, insight, and overall knowledge.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o Attach Script - Opens a dialog box with a lists of scripts. The user selects one to attach as

either a When script or What script.

1.44 Scripts

Scripts are the fourth major module resource. Each script is written in the Bioware-invented NWScript
code which is a statically typed C-like language. The game engine exposes an API which the author
can use in scripts to control the story. Scripts can also store integer, string, and object variables on
any game object in the module. Figure 1.6 shows a script that is used in a conversation. This script
forces the NPC to walk to a waypoint after talking with the PC.

Scripts are attached to game objects and conversation nodes. Objects respond to certain events
that can be fired during the game. When an event is fired, the game engine looks up the correspond-
ing script on the object responding to the event. The engine then executes the script. Once the script
is completed, the engine continues running the game by processing new events.

The author can use the Aurora toolset to attach scripts to game objects. After selecting the
desired object, the author picks an event that will execute the script. For example, the selected
conversation node in Figure 1.5 responds to two events: When and What. In the figure, these
events are represented by the “Text Appears When” and “Actions Taken” GUI tabs. The script can
be attached by either typing the name of the script in a text field, or selecting the script from a list in
a pop-up window. Figure 1.6 shows a What script that the author attaches to the conversation node.
While conversation nodes only respond to two events, certain game objects respond to many events.
A chest object, for example, responds to 13 events. Figure 1.10 shows the interface where the author
can attach 13 possible scripts — one script for each event — to the chest object. Like attaching scripts
to conversation nodes, a script can be attached to an object by typing the name of the script, or

selecting it from a list by clicking the “...” button.

1.5 Aurora Toolset Deficiencies

While simple at first, the Aurora toolset becomes challenging to use when the author tries to create
more sophisticated game object interactions. Any non-trivial player/object interaction requires the
author to create a script by using the scripting editor [15]. Creatures have simple behaviours since
interesting behaviours are not cost-effective with current tools [3]. Managing quests and the overall
story requires the author to set and check a complicated set of esoterically-named variables spread
across tens or even hundreds of scripts. Conversation trees can quickly become wide and deep,
scattered with many link nodes. For the purpose of this dissertation, this section will focus on the

shortcomings of the Aurora’s conversation editor.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Placeable

.1 Edt
v} .} Ed

v Edt
vi .| Edt
Ed

S
. Ea
<l . E
<] Ed}
- ™
1. E®
vi.. | Ed
<[

SoveScptsal : [

|_ceet |

Figure 1.10: A chest object can have up to 13 scripts attached.

— . What do you krnow about this floor of the prison?
; [OWNER] - It's the Security Layer - Supposed to be a buffer zone between the regular prisoners anc
B8 The Pits? What are thoss?
= J} IDWNER] - That's where you'te headed. There aren't many cells down there except those t
-l Ave the doors locked or urdocked IEHD DIALOGUE]
- B where ate the farmes prisoners holed upZ[END DIALDGUE)
- . I need supplies. Ate there any storercoms END DIALOGUE)
- B Dadoots - dey locked or unlackedMEND DIALOGUE]
[Da prisorers - where dey hidin END DISLOGUE]
* i} Hmph. Der storercoms round here2[END DIALOGUE]
- That's at| nead to know about the prisan [ERD DI2LOGUE]
: e B That 2 me nesd to know 'bout prisan {END DIALOGUE]
= -} Are the doors locked or unlocked?
. =) IOWNER]- The cell doors are locked but the others should al be opan. If pou can get insich
- where are the formmr prisoners holed upFEND DIALOGLIE]
i 1 reed supplies. Are these any storetoorss END DI&LOBUE]
i Da prisonets - where dey Fdin 2JERD DIALOGUE]
i J Hegl Das storeroome ound hereEND DIALOGUE]
:- i} That's a1 need to krow about the prison [END DIALOGUE]
‘- fR That all e need to krow ‘bout prisor JEND DIRLOGH
B] Whe«e are the former prisoners holed up?
. {OWNER] - They've barricaded themsehees in the central guard room. They're sending out £
) Ace the doors lecked o unlocked HEND DISLOGLUE]
) | need supplies. Sre there any storerooms EHD DI2LORUE]
) D& doms - dey locked et unlocked ?[END DAL E}
- M Hmoh, Der storemoms tound hers MERD DISLOGLE]

Figure 1.11: A conversation tree with many link nodes.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.5.1 Conversation User Interface

The Neverwinter Nights official campaign story contains many large and complicated conversations.
Figure 1.11 shows a portion of such a conversation for the Ememick character from Chapter 1 of
the official campaign story. The complete conversation contains 176 nodes. This conversation has a
depth of 10. The depth of the tree is the maximum number of levels needed to reach any leaf node
from the root node. Each level of the conversation tree is indicated by a vertical line that connects
sibling nodes. As the tree view is expanded to reveal lower levels, outer vertical lines become longer,
and the sibling nodes move farther apart.

Once several levels of the tree are in view, it becomes difficult for the author to associate parent
nodes with their children. This hampers the author from getting an overall view of the conversation.
To get a better overview, the conversation needs to be abstracted. That is, hide unnecessary details of
the conversation and only show the important details. The Aurora conversation editor only provides
one mechanism for abstracting the conversation tree: expanding and collapsing conversation nodes.
For example, in Figure 1.11, the conversation node on the first line marked by the arrow has no
siblings NPC nodes visible. Instead, the screen is filled with the node’s descendants, mostly link
nodes. Since the link nodes are terminal, the author can get a more concise view of the tree by
collapsing the link nodes into their parents. Unfortunately, collapsing a conversation node hides its
entire sub-tree, including any important branches of conversation that the author may want to view.
One of the contributions of this dissertation are better abstraction mechanisms presented in Chapters
3 and 4.

In the Aurora conversation editor, a author can create a link node that points to another part of the
conversation tree. This allows the author to create repeatable sections of conversation, such as the PC
asking a set of questions at several different points in the conversation. Many large conversations
consist largely of links and it is common to see several groups of links, as shown in Emernick’s
conversation in Figure 1.11. Unfortunately, the Aurora conversation editor does not provide any
visual indication of a link node’s target node. The author must instead double-click the link to be
redirected to the actual node. For large conversations, this may scroll the screen to the point where
the original source link node is moved off the screen. With so many links in a single conversation,
it is impossible for the author to get an overall view of the conversation. For example, the Emernick

conversation (Figure 1.11), 51% of the entire conversation tree is composed of link nodes.

1.5.2 Conversation Scripting

As Section 1.4.3 describes, conversation nodes can have When and What scripts attached. The
When script is executed just before the conversation node is to be displayed, and decides whether
the node should be visible or hidden from the conversation. The author uses When scripts to decide
at which point in the story the node should appear. The What script is executed just after the

conversation node is displayed. Designers use the What script to execute game actions or change

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

game state at particular points in the conversation.
For large conversations, there may be conversation nodes that require the same script, or a slight

variation on the same script. For each conversation node, the author must:
1. Determine what functionality is needed.
2. Search for existing scripts that provide that functionality.
3. If no such script exists, create a new script.
4. Attach the script to the conversation node.

It is possible that the desired script already exists, but the author needs to change a few param-
eters to accommodate the conversation node. For example, the toolset, as one of its default scripts,
includes an “Intelligence” script that returns TRUE if the PC’s intelligence is greater than 9. The
author may want to change the number to 11 for a specific PC conversation node. Unfortunately the
Aurora toolset does not allow parameters to be passed to a script.”? Consequently, the author must
create a new script to check if the PC’s intelligence is greater than 11.

Even if the same script can be used for several conversation nodes, the author must still attach the
script manually for each node. For example, the Emernick conversation only uses 8 unique When
.scripts (3 default, 5 custom), but those scripts are attached to 43 conversation nodes. The author also
needs to know of the existence of scripts and what nodes where they will be attached. In Aurora
there is no tool or mechanism to manage the intent or purpose of scripts other then their names. For
example, the Ememick conversation uses a When script named “m1q2_emernik2”, which suggests
nothing of the script’s intent other than it is used in the Emernick conversation.

When scripts on NPC conversation nodes can be particularly confusing. As described in Section
1.4.3, When scripts on sibling NPC conversation nodes are evaluated sequentially. This is analogous
to the short-circuit semantics for boolean operators present in programming languages such as C,
C++, and Java. If a script returns TRUE, all subsequent scripts are ignored. The majority of these
When scripts can be complicated, involving many variables that are designated for controlling the
plot and quests. Due to the short-circuit semantics, it can be difficult to determine which of the NPC
sibling nodes will be displayed given certain conditions. For example, the “m1q2_emernik2” script

— which is attached to an NPC node - has the following code:

int StartingConditional ()

{

int bCondition = GetIsPC(GetPCSpeaker()) &&
GetDistanceToObject (GetNearestObjectByTag{ "Emernik_Waypoint"))} < 3.0 &&
GetLocked(GetNearestObjectByTag ("Emernik_Door*)) == FALSE ;

return bCondition;

Neither the script’s name or the code clearly reveals the intent of the script. This script only dis-

plays the NPC node if the NPC is inside a safe-room and the PC has securely locked the door to this

2 At the time of writing, the sequel Neverwinter Nights 2 was released. It improves the toolset by allowing parameters to
be passed to scripts.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

room to prevent hostile creatures from entering. Additionally, the NPC node will not be displayed
if the quest that involves Ememick is completed. However, the above code gives no indication
that this condition is necessary. The reason is that another script, “mlq2_plotdone”, is attached
to an earlier sibling NPC node and consequently is always evaluated before the “mlq2_emernik2”
script. If the Emernick quest is completed, the “mlq2_plotdone” evaluates to TRUE and the second
“mlq2_emernik2” script is not even evaluated. The author now must consider the intent of both
scripts when trying to determine under what conditions the NPC node will be displayed or hidden.
Lastly, many large conversations have 40 or more conversation nodes with scripts attached.
It becomes difficult for the author to keep track of which nodes have scripts, and the intent of
these scripts. Many scripts set local variables on objects so that other scripts on that and other
conversations can check these variables in their When scripts. These script interactions require the
author to mentally manage the structure of conversations, and complicates the process of fixing bugs

when a conversation functions incorrectly.

1.6 Summary

This chapter introduced computer role playing games (CRPGs) and their unique characteristics as
interactive stories from other genres of computer and console games. Neverwinter Nights was intro-
duced as an example of a modern CRPG. The game’s Aurora conversation editor was described as
a powerful tool that allows game designers and players alike to construct their own stories. The edi-
tor allows authors to construct four primary elements, the world terrain, game objects, conversation
trees, and scripts. The world terrain and game objects are constructed with a CAD-like interface.
The conversations are built as a tree of nodes using the Aurora conversation editor. The scripts are
written using NWNScript which has a C-like syntax. The Aurora toolset’s deficiencies were then
identified. The Aurora conversation editor does not abstract complex conversations in a way that
is concise or can be grasped quickly. The manual scripting problem was also identified. Many au-
thors do not have programming experience and scripting functionality by hand is an obstacle and a
bottleneck in time.

This dissertation contributes a new conversation model that addresses these deficiencies through
the use of design patterns. Chapter 2 describes how generative design patterns are used to replace
manual scripting using the ScriptEase tool. Chapter 3 describes the structural components of the
new conversation model. Chapter 4 describes the dialogue patterns that integrate with the ScriptEase
model to replace the manual scripting of conversations. Chapter 5 describes the operations the author
would use to build a conversation using the new model. The model is evaluated in Chapter 6 with a
case study that compares the new model against the model used by the Aurora conversation editor.

Finally, Chapter 7 discusses future work and concludes this dissertation.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

ScriptEase

2.1 Design Patterns

Unfortunately, writing scripts manually is the state-of-the-art in building computer role-playing
games. However, attempts are being made to assist designers and programmers with scripting.
Tools such as Epic’s Kismet for the Unreal3 engine and Lilac Soul’s Script Generator for Never-
winter Nights [13] remove some of the manual scripting burden. Instead of waiting for programmer
assistance to write scripts, the author can use these tools to create scripts for them. Tools can come
in different forms. For example, Kismet has a flowchart-like interface where the author can connect
pieces of functionality together graphically. Lilac Soul’s Script Generator has a wizard-like interface
which interacts with the author through a series of questions, and generating a script at the end.

In general, CRPG scripts tend to repeat the same specific functionality with small changes in
parameters. It is possible to represent these groups of similar scripts by a design pattern. Each
design pattern shares the same overall code with specific components that are customized for each
desired script. Design patterns are used extensively in Software Engineering for representing sets
of design solutions for particular uses [7]. A pattern is a family of solutions that is then adapted to
a specific solution instance by an author or programmer. Patterns are proven, robust solutions with
little chance of the user making an error. Reusing patterns can greatly speed up development time,
and reduces testing and debugging time.

There are two primary types of patterns: descriptive patterns and generative patterns. Descriptive
patterns are the primary type of pattern described in the software engineering literature. A descrip-
tive pattern describes a family of solutions in a neutral format. The programmer or author is then
responsible of implementing a specific solution instance by manually writing code that implements
the pattern description. For instance, Gamma et al. provide many descriptive patterns for program-
ming in Object-Oriented programming languages [7]. They have a specific format to describe each
pattern, including motivation, structure of the pattern, when to use it, and sample code in one or two
programming languages.

Descriptive patterns greatly reduce the chance of the programmer making an error when writing

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a solution by solving the general problem. However, the programmer or author can still introduce
errors when implementing a specific solution instance of the pattern. Generative patterns solve this
problem by not only describing a solution, but also generating code for that solution. The author
adapts the pattern to a specific solution. A tool uses the adapted pattern to generate all the code
necessary to implement that specific solution.

Generative patterns, although promising, may work poorly in general domains. The generated
code may have poor performance. If patterns become too general, they require extensive adapta-
tion before they can be used. However, under restricted domains, generative patterns can be quite
effective. For example, in parallel programing CO;P3S (Correct Object-Oriented Pattern-Based
Programming System) [20] uses generative patterns to help programmers generate a correct frame-
work for parallel programs. The programmer first selects a pattern, which represents a parallel
programming strategy (e.g. mesh, pipeline, etc.). The programmer then selects options to adapt the
pattern to a particular application and then the code is generated for the framework. The programmer
can then make application-specific changes at key points in the framework without having to worry
about program correctness such as synchronization, for example.

Computer role-playing games are another domain suited for generative design patterns. Many
scripts have a simple structure that can be represented as a pattern. For example, the author may
want to spawn a guardian creature when the PC steals some items from a treasure chest. This can be
considered a pattern called Placeable Disturb - Spawn Creature. This pattern can be used with any
placeable objects, normally chests. The author then has to adapt the pattern to the specific treasure
chest and guardian creature. Both the container and creature are considered options of the pattern,
and are the pieces of the pattern that can be adapted. Once the options are specified, the code for the

specific solution can be generated.

2.2 The ScriptEase Tool

ScriptEase is a tool to create and use generative design patterns for computer role-playing games
[15]. Although it currently targets Neverwinter Nights, it is possible to port it to other role-playing
games such as Oblivion. Using ScriptEase, an author can instantiate a new pattern, set some options
to include specific objects in a module, add actions or conditions specific to the story context. The
author can select any number of patterns from a pattern catalog. A pattern has a set of options, or
parameters. Each option has a certain type, such as an integer, text, or game object. The author
customizes a pattern by setting these options, either by providing a literal value for integers and
string, or by using a picker to select objects. Only valid objects of the proper type are available in
the picker. This prevents the author from making mistakes when selecting an object.

For example, the pattern Placeable Disturb - Spawn Creature, described in the previous section,
has 3 options: The Container, Creature Blueprint, and Spawn Effect. Both The Container

(e.g. a chest) and Creature Blueprint (e.g. a dragon) options require a game object, which can

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be selected from the object picker. The third option, Spawn Effect, requires a visual effect to be
displayed when the creature appears. This option can be selected from an enumerated drop-down
list. In addition, the author may also want add an action to the pattern to make the creature speak
some text upon spawning. Finally, the author can add a condition to the pattern to make the creature
spawn if only a specific item is removed from The Container object. Adding actions, conditions
and definitions will be described in Section 2.3.

Four types of patterns have been identified for computer role-playing games: Encounter, Behav-
ior, Plot, and Dialogue patterns.

Encounter patterns support interactions between the PC and game objects, such as placeables,
triggers, and doors. They generalize the encounter object found in the Aurora toolset. A typical
example is the Placeable Disturb - Spawn Creature pattern just described. Encounter patterns were
the first type of pattemn to be implemented in ScriptEase[16].

Behavior patterns give life to NPCs, allowing them to perform actions and move in a believable
fashion. For example, a guard patrolling a treasure chest containing a valuable item is a specific
behavior. The NPC guard will guard the chest regardless of the PC’s presence, but if the PC tries
to intervene, the guard will defend the treasure. The guard example illustrates that most behaviors
are ambient, and will run autonomously. Behavior patterns were the second type of pattern to be
implemented in ScriptEase[3].

Plot patterns describe quests that occur frequently, allowing the author to control the game’s
story through these quests. The patterns include updating the PC’s quest log at key points of the
quest, as well as rewarding the PC with gold or experience when the quest is completed. The quest
also controls whether parts of a story are available at a given point in time. A typical plot pattern
involves an NPC asking the player to retrieve an item. The player must find this item in the game
world and return it to the NPC for a reward. Currently quests are modeled using plot tokens, which
can be assigned to objects to keep track of various states of a quest. There is ongoing work to
promote plot patterns as first class objects in ScriptEase.

Dialogue patterns allow the author to build common structures found in conversations and to
attach scripts to these conversations. For example, an NPC might react differently depending on the
PC’s charisma ability score. The author can include an Ability decision dialogue pattern to adjust
the NPC’s greeting according to the PC’s charisma. Decision patterns are described in Chapter 4.

At the start of this research, ScriptEase had only one dialogue pattern: Conversation When/What.
This general pattern allows the author to select a single conversation node from a conversation
tree and change its When and What functionality. As described in Section 1.4.3, a When script
determines if the conversation node will be displayed in the conversation, while the What script
provides actions when that node is actually displayed in the conversation. Since the When part of
the Conversation When/What pattern only has a condition placeholder, a condition must always be

added. Similarly, the What part includes only an action placeholder and to be useful more specific

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scriptbase Encounter Builder
File Edit Build Tools Help

7 (=] Thesis1.mod” (3)

o J5 Plateabliélisethotie né
o~ §% Loiterer
o §% Exclaimer

Description |

Select the placeable thatis used for the nearest door.
Suggested selection; Painted using Aurora Teolset, but pick one that looks like it
has a switch as part of it {like a floor lever or a pedestal with a switch on if).

"

> Select Placeable § o t

® Module Blueprint | .

Figure 2.1: Selecting an Encounter pattern in ScriptEase.

actions must be added. For example, the author might adapt the When part of the pattern by adding
a condition to check if the PC has high charisma. Next, the author could adapt the What part to
move the NPC to a nearby game object.

Since Conversation When/What patterns are applied to a single conversation node, they do not
identify useful conversation patterns. This research has identified numerous specialized dialogue
patterns and has devised a new model to represent these patterns as well as a new set of building

blocks to support the model. This model is described in Chapters 3 and 4.

2.3 ScriptEase Interface

ScriptEase has two tools: the Builder and the Designer. The Builder allows the user to instantiate
patterns for a specific module. The Designer interface allows an author to create new patterns using
the building blocks provided by the tool. If the author has programming experience, the most basic
of these building blocks (atoms) can also be created with snippets of NWScript code.

To use ScriptEase, the author first loads a module that already contains game objects. Figure 2.1
shows the Builder interface with a module already containing some encounter and behavior patterns.
The Placeable use - toggle nearest door pattern is currently selected, and the associated options are
visible in the bottom half of the interface. The The Placeable parameter is visible, with the Door
Lever placeable selected. In the game, the Door Level will open a nearby door when it is clicked on
by the player.

The author can instantiate a pattern using the available pattern catalog. Figure 2.2 shows the
ScriptEase encounter pattern instantiation interface. To instantiate a pattern, the author selects the
desired pattern from the list on the right-hand side and the object to which the pattern applies from

the list on the left-hand side. In this case the pattern is Conversation When/What and the object is a

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conversation node. The first option of the pattern is the object to which the script is attached after the
code is generated. The author can select the pattern or object in either order. If the object is selected
first, only a subset of patterns that can have the selected object as a valid first option are available.
The Conversation When/What pattermn has only one option: a conversation node. The the middle of
the screen in Figure 2.2 the conversation node picker with a conversation node selected. In this case,
the author is going to make the node appear only if the PC is female, since Earl the bartender will
go out of his way to get drinks for female patrons. When the node is displayed in conversation, Earl
will move twice: once to the cabinet and once to return back to his original location.

Figure 2.3 shows the Builder interface with the instantiated dialogue pattern. The bottom half of
the interface shows the conversation node option that was set during instantiation. At this point, the
pattern is considered complete and code can be generated. However, the Conversation When/What
pattern was constructed to be general, and therefor the generated scripts will do nothing. The pattern
must be further adapted to suit the author’s idea. To do that, the author opens the pattern to view the
internal components as shown in Figure 2.4.

At the top level there are two Situations marked with the stylistic S. A situation responds to a
single event since a pattern can encapsulate code for several events. The Conversation When/What
pattern has two situations: one for the When event, and one for the What event. Situations can
contain definitions, conditions and actions, each of which can have options. During code generation,
each component generates scripting code. The first component of any situation is an Event, marked
with a V. A ScriptEase event represents a specific game engine event that occurs in Neverwinter
Nights. The pattern provides a scope, allowing components to use options specified at the pattern
level.

In Figure 2.5 the author adapts the When situation to add a Definition, marked by a D. A defini-
tion allow the author to add game state into the pattern so that other components can use it. In Figure
2.5, the author adds a boolean definition called “Is Specific Gender” to check if the PC has the fe-
male gender. Additionally, event atoms often contain implied definitions, which provide game state
specific to the event. For example, in Figure 2.6 the When event has an “NPC Speaker” definition
and “PC Speaker” definition. These definitions allow the author to refer to the two conversationalists
throughout the pattern. The author uses the implicit “PC Speaker” definition when constructing the
“Is Specific Gender” definition.

In the context of the pattern the author can specify the condition for the When script that allows
the conversation node to be displayed. In Figure 2.7 the placeholder condition has been replaced with
a Condition marked with a C. A condition takes a binary option, which determines if the condition
is true. In this case the author has used the “Is Specific Gender” definition as the condition’s option.
Now the conversation node will only be displayed in the conversation if the PC is female.

With the “When” situation successfully adapted, the author can now adapt the “What” situation.

Figure 2.8 shows the author adding an Action atom, marked with an A, to the situation. An Action

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+ Pick an Encounter

{23 Encounters

I {OWNER] - Would you ike a drink? $ [Base .CodePak

o Bvesplea &) Triggers (13)
=i s : & Placeables (21)
[] {OWINER] - They're over there. Help yourself. &) Containers (9)

¢ (=3 Conversations (3)

- - 2% Spell request conversatiof
X% Conversation - atack '
&) Doors (15)

&) tems (2)

B3 Transitions ()

S Creatures (3)

<] SIS R 1

[¢f

Figure 2.2: Creating a new pattern instance.

ScriptBase Encounter Builder
= g_g Thesis1.mod* (4)
Placeable use - toggle nearest door

- Loiterer
Exclaimer

Selectthe conversation node that this encounter applies to.
uggested selection: Any conversation node created by the Aurora conversation
ditor.

{> Select Conversation_Node

@ Conversation Node

Figure 2.3: Creating a new pattern instance.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scriptbase Encounter Builder

Fle Edit Buld Tools Help

-

Loiterer
- Exclaimer
Conversation wheniwhat
S Yhen a conversation node is dtsplayed

<99

Always positive (True, Yes, On etc; replace this condition plag; =
S What happens when a canversation node is displayed
X After Conversation Node (earl.dlg:1:2) is reached
Replace this action placeholder by one or more actions

e M e } [»

s

Descnpnon Cmsm

T TR

The comersatlon node that this event applies to

@& Select Conversation - Node lComlersation Node {(earl.dig:-1:2)

() Conversation Node E Pick.. None

Figure 2.4: The internals of the Conversation When/What pattern.

Scriptbase Encounter Builder

4. Loiterer
Exclaimer
. Conversation wheniwhat
9«~ When a conversation node IS displayed
isplay text orC

Alwayspom we(T re‘ es, n tc.) -rep cét is condition p acener ide ‘
What happens when a conversation node is displayed -
V After Conversation Node {earl.dlg:1:2) is reached

|

Select the gender thatis being tested.

> Select Gender

@ Constant

Figure 2.5: Adding a definition atom that checks the PC’s gender.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ScriptEase Encounter Builder

File Edit Build Tools Help

"y

o 15 Loiterer
o 85 Exclaimer
2 Conversation whenfwhat

? f"p When a conversation node is dispiayed

? V Display text for Conversation Node {(earl dig:1:2) if the conditions are all posit

D Define PC Spesaker as the PC speaking in the Conversation Node (earl.d
D Define Object Speaker as the object speaking in the Conversation Node B
D Define NPC Speaker as the NPC speaking in the Canversation Node (e

NI

ﬂL

Description [Creature [

o

Select the. gender that is being tested.

) Select Gender l ;"r }

@ Constant |Female ~ =

Figure 2.6: An event’s implied definitions.

ScriptEase Encounter Builder

4 3 When a conversation node is displayed

¢ V Display text for Conversation Node (earl.dlg:1:2) ifthe conditions are all posit

wa Define PC Speaker as the PC speaking in the Conversation Node (earl.d

B Define Object Speaker as the object speaking in the Conversation Node |
Define NF‘C Speaker as the NPC speaking in the Conversation Node (ea

hether PC S

ker has a gender of Female

? S What happens when a conversation node is displayed
o= V After Conversation Node (earl.dlg:1:2} is reached

{ Description 1

Selecta defnmon whose value must be positive for the condition to succeed Positive means /
Yes instead of No, Trueinstead of False, On instead of Off, etc. Negative means the other value | |

i@ Select Binary -

{+ Constant

Figure 2.7: A positive condition that will return true if Is Specific Gender is true.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ScriptEase Encounter Builder
File Edit Build Tools Help

¢ 3 Thesist.mod* (4)
o Placeable use - toggle nearest door
o= 3% Loiterer
o Exclaimer
¢ &2 Conversation whenfwhat

o When a conversation node is displayerd
? What happens when a conversation node is displayed
& After Conversation Node {(earl.dlg:1:2) is reached

Select the target object that the object moves near.

> Select Object ' j @

@ Module Blueprint

Figure 2.8: Two action atoms that move the NPC towards objects.

atom represents a single logical action that can occur in the game. In Figure 2.8, the added action
forces the NPC to walk to the bar to simulate getting a drink. Next, the NPC walks back to his
original location marked by a waypoint. With these actions, the pattern is now fully adapted, the
code can be generated by the tool, and the author can test the pattern by playing the module.

The above example demonstrates several types of adaptation. Previous work has identified these
adaptations and classified them into levels of cognitive difficulty [2]. The Table 2.1 shows the nine
possible adaptations that can be performed on a pattern. They are ranked in increasing cognitive
difficulty, with setting options as the easiest and only necessary adaption, to adding new situations
which requires selecting the event and adding conditions, definitions, and actions.

The Designer is similar to the Builder, as shown in Figure 2.9. An author can construct new
patterns using the same nine operations that are used to adapt existing patterns. There is a seamless
transition from using patterns to creating patterns. Furthermore, new atoms (actions, definitions, and
conditions) can be created by adding fragments of NWScript code. Figure 2.9 shows a new action
atom, with the NWScript code in the bottom half of the window. The atom’s options are exposed as

function arguments, allowing the NWScript to use those options as variables.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cognitive Level Adaptation
1 Set Pattern Options
Delete a Situation
Delete an action/definition
Delete a condition
Replace an action/definition placeholder
Add an action/definition
Replace a condition placeholder
Add a condition
Add a situation

O 00N W AW

Table 2.1: Cognitive levels of pattern adaptation.

ScriptEase Encounter Designer
File Edit Build Tools Help . .
&[] Generic Encounters (5)
- (2 Action Encounters (0)
o 29 Conditional Actions (0)
o[22 Behaviour Patterns (8)
o 23 Proactive Behaviours (D)
o~ [Reactive Chains (0}
& (2] Reactive Behaviours (0)
o 3 Motivations (0)
2 3 Atoms (9)
o 27 Event Atoms (0)
o= 3 Condition Atoms (0)
¢ 3 Action Atoms)

st purchase adjustment
A Remember buy information
Remember sell information
: A Da price adjustment
Finish price adjustment
A Cancel price adjustment

Notes | Description | Type | Parameters

i

0id SE Ac_OpenMerchantStore{object param 1, object param 2) {
// Remember the store's current gold value to figure out what
// items sold for later.
Setlocallnt(param 1, "GOLD_AMOUNT", GetStoreGold{param l1}):
OpenStore(param 1, param 2Z):?

}
[£] Simple Code Body?

Figure 2.9: A custom atom for merchant objects created in the ScriptEase Designer.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4 Summary

This chapter introduced the concept of generative design patterns as a solution to the manual script-
ing problem found in state-of-the-art CRPGs. The ScriptEase tool was then described as an example
of how generative design patterns can generate scripts for Neverwinter Nights. An author can use a
pattern by setting options and further adapt the pattern by adding or removing actions, definitions,
and conditions. Fully adapted patterns can then generate all the necessary scripting code without
any author intervention. Finally, the ScriptEase tool was described in detail, including descriptions

of the tool’s interface and pattern components.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Structural Patterns

This dissertation presents a new model that provides abstraction mechanisms for constructing and
viewing conversations. The notion of manually creating and attaching NWScript scripts in con-
versation nodes is replaced with generative design patterns. Dialogue design patterns are different
from encounter, behaviour, and plot patterns currently in ScriptEase. Dialogue patterns are more
structure-based than intent-based, and thus cannot be prototyped with current ScriptEase pattern
components. Nevertheless, the model can be integrated with the ScriptEase tool and its existing
patterns. At the time of writing, the model has not been implemented into a functional conversation
editor in ScriptEase, but there is future work to do so.

The presented model addresses the disadvantages of the Aurora conversation editor outlined
in Section 1.5. Note that all figures provided to illustrate the model are symbolic and might not
resemble an actual graphical user interface (GUI). However, a possible implemented GUI may have
similarities in appearance. This chapter presents the model in a bottom up manner by introducing
structural patterns. Chapter 4 expands on the model by describing decision patterns and optional
choice patterns.

Structural patterns represent commonly occurring conversation trees. They encapsulate the
structure of the tree and non-scripting properties of conversation nodes such as remark text, sound
files, and animations. An author can construct a conversation tree by building up the components
directly, or by combining existing structural pattemns together and adapting them using basic com-
ponent operations. Since a structural pattern is a conversation tree, it can be used as a sub-tree in
other patterns. Consequently, structural patterns can be composed with each other to build larger
structural patterns. This is different from the intent-based patterns in ScriptEase. For example, there
is no way to compose two Encounter patterns into a larger Encounter pattern.

Structural patterns contain 4 basic components: exchanges, topics, link and end dialogue targets,

and topic groups. Each will be describe in tumn.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o
= §l) [DWNER] - Hello there!

£ ‘Where am 1?
{OWMER] - This is town squaie in the middle of o fitle village
B [CONTINUE]
8 [OWNER] - The market district it 1o the east actoss the bridge
[CONTINUE]
. {OWNER] - Residences are to the west, through the gate

: [} Thank you and goodbye.[END DIALOGUE]

-} That didn't help me at aifEND DIALOGUE]

= i} Greetings
= {(OWNER] - And how are you this fine day?
= Great!
B B [OWHER] - Most splendid. You should stick around tor the parade. 1t starts just after lunch!
.-} Thanks for the tip.[END DIALDGUE}
B Just awfhd
[OWNER] - How dreadfull If pou ward, pou can stick around for the parade. 1t will start after lunch.
‘i) Thanks, but it probably won't help.{END DIALOGUIE]

=
=]

(a) A friendly conversation in the Aurora conversation editor.

!

and goodbye help me at alif

(b) A friendly conversation represented with exchanges.

Figure 3.1: Two representations of a simple conversation.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.1 Exchanges

One of the problems Section 1.5 identifies with the Aurora conversation editor is how sibling nodes
move spatially further apart as lower levels of the tree are exposed. It quickly becomes impossible
to associate sibling nodes with their parent node without a significant amount of scrolling on the
screen, at which point the author cannot get an overview of the conversation’s structure.

Dialogue patterns tightly couple a parent NPC conversation node with its PC children into a new
construct called an Exchange. In a diagram, such as the ones shown in Figure 3.1(b), an exchange is
a red coloured box which represents an NPC node!. Inside the box are blue circles called choices,
each representing a PC child node. This representation closely approximates what a player would
see as a conversation when playing the game. A conversation window in Neverwinter Nights always
has an NPC remark followed by one or more choices, i.e. a single exchange. An exchange contains
a single NPC remark. A remark has the same properties as a conversation node in the Aurora
conversation editor, such as text (remark text), animation, and a sound file. Similarly, a choice
contains a PC remark. Remarks can be used as options for ScriptEase patterns.

Exchanges can be connected by drawing an arc from a choice to the top of another exchange.
Figure 3.1 illustrates how a conversation — termed the friendly conversation — would look both in
the Aurora toolset and as dialogue patterns. Figure 3.1(a) shows the conversation in the Aurora
conversation editor. Figure 3.1(b) shows the same conversation as exchanges. Notice that exchange
boxes hold the remark text for NPC nodes, and the arcs hold the remark text for PC nodes; this
keeps the nodes compact and visible. The exchange version of the conversation also features End
Dialogue targets. These will be explained in Section 3.3.1.

The conversation in Figure 3.1(b) highlights some of the advantages of exchanges. The first
exchange, labeled “Hello there!” has two choices “Where am [?” and “Greetings”. Both choices
connect to a sub-tree composed of several exchanges. Notice that regardless of the size of the sub-
tree, even if the sub-trees were composed of tens or hundreds of exchanges, the two choices still
remain spatially close together inside the first exchange. In a GUI, the choice labels can be rendered
close enough to the choices that they will not become separated as the conversation tree below grows
in size.

In Neverwinter Nights it is possibie for NPCs to speak one-liners. These are single conversation
remarks that appear above the NPC’s head instead of opening a conversation window. The game
stores these one-liners inside conversation files, just like other conversations. Aurora considers one-
liners special, as they are direct children of the conversation’s featureless Rootr node, and have no
child nodes or end of dialogue indicators. In the Dialogue Pattern model, these one-liners are called
Utterances. Utterances are exchanges that have no choices. Similar to the Aurora conversation

editor, utterances can only be children of the Root node.

!In the Aurora conversation editor, NPC nodes are also coloured red. PC nodes are coloured blue.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Topics

In complex conversations, such as ones in the NWN campaign story, an NPC may have a lengthy
explanation for the PC. Instead of putting all the text into a single NPC node, it is common practice
to split the explanation across multiple NPC nodes. This reduces the amount of text the player has
to read at any one point in the conversation. For example, in Figure 3.1(b) after the “Where am I?”
remark, the NPC’s explanation is spread across three exchanges. For the first two exchanges, the PC
only has one choice: continue. In the third exchange, the NPC finishes the explanation and the PC
has more choices available. These three exchanges are identified as a Topic, where each exchange
holds a piece of explanation for that topic.

Formally, a topic is defined as:

1. One or more exchanges where,

2. All exchanges except for the last exchange must have exactly one choice that connects to the

next exchange in the topic, and,
3. The last exchange in the topic may have one or more choices.

By this definition, all exchanges in a conversation are considered a part of a topic. Any exchange
with two or more choices that has a parent exchange that also has two or more choices must be a
topic of length one. For example, in Figure 3.1(b) the exchange with the “And how are you this fine
day?” remark would be considered a topic of length one.

The complexity of a conversation can be reduced by encompassing exchanges into topics. Figure
3.2 shows the friendly conversation with topics introduced. Each exchange is surrounded by a
second box representing the topic. Notice the three exchanges after the “Where am I?” choice are in
a single topic. The first two exchanges are called inner exchanges. The third exchange is called the
tail exchange. Each topic has exactly one tail exchange and have zero or more inner exchanges that
proceed the tail exchange.

With each exchange now encapsulated into a topic, the conversation can be further abstracted.
Topics can be collapsed by hiding all inner exchanges in the topic with the tail exchange visible.
In a collapsed state, a number is placed above the tail exchange to indicate the total number of
exchanges in the topic. For example, Figure 3.2(b) shows the friendly conversation with a collapsed
topic. The conversation complexity has been reduced without losing important information, such as
the conversation’s branching structure. A GUI could allow the author to expand and collapse a topic
as more or less information is needed.

When a topic is collapsed, information is lost. Specifically, the author can no longer see the
remark text of the hidden exchanges. To counteract this, topics also introduce a new feature: Topic
Intents. The topic intent is text that the author can use to quickly summarize the NPC remarks in the

topic. In the Aurora conversation editor, the author must scan the full remark text to understand what

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

§
>

(a) A friendly conversation with an expanded topic.

Thankyou Thatdidnt
and goodbye help me at ait

(b) A friendly conversation with a collapsed topic.

Figure 3.2: A friendly conversation with topics added.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the NPC is saying. Sometimes, these remarks can be extremely verbose, with the intent found either
in the middle or at the end of the explanation. Including topic intents allows the author to quickly
scan the conversation to find a particular topic. For example, in Figure 3.2(b) all three exchanges in
the collapsed “You're in town” topic discuss the layout of the town. The author can understand the

intent of the topic without having to expand the topic and read the individual exchanges.

3.3 Link Targets

Section 1.4.3 describes how the Aurora conversation editor allows the author to create link nodes
that point to other nodes in the conversation tree, which converts the conversation from a tree into
a graph. Instead of duplicating a sub-tree of nodes under two conversation nodes, the author can
create a link node under the first node that points to the sub-tree found under the second node. For
example, in Figure 3.3(a), the PC can respond to the NPC’s greeting in two ways: “Go Away”
and “Hello” (lines 2 and 8). In either case, the author wants the NPC to impart some common
information at the end of the conversation. The author first creates the common “Farewell” (line
5) conversation sub-tree as part of the sub-tree rooted at “Go Away”. Next, the author creates the
sub-tree rooted at “Hello” and instead of creating a second “Farewell” sub-tree, the author creates
a link node on line 11 that points to the “Farewell” node on line 5. Now regardless of the PC’s
choice in the conversation, the NPC will speak the farewell sub-tree. If a conversation node that is a
destination of a link is deleted, then the link node is deleted as well.

Dialogue patterns also have a mechanism to support conversation sub-tree re-use. This is done
by allowing multiple choices to point to the same topic. For example, Figure 3.3(b) shows the con-
versation in Figure 3.3(a) converted to the dialogue pattern model. Both the “Nothing. Goodbye.”
and “Have a great day” choices point to the “Farewell” topic which contains two exchanges. Both
choices directly link to the “Farewell” topic. Direct links from choices to topics are analogous to
link nodes that link to NPC nodes in the Aurora conversation editor. However there is a difference.
With the Aurora conversation editor, one of the links is special in that the conversation nodes are
textually embedded as a sub-tree under the link where as other links are link nodes. With dialogue
patterns, all direct links have first class status. Note that choices directly link to topics and not
exchanges. Sharing a choice between several exchanges is discussed in Section 3.4. If the author
wants to directly link to an exchange that is in the middle of a topic, the topic can be split into two
topics. Splitting a topic makes sense in this case since an entry point in the middle of a true topic is
problematic.

Direct links are clear and easy to understand. There is only one representation of the destination
topic, unlike linking in the Aurora conversation editor which requires special link nodes to act as
placeholders for the sub-tree to which they are linking. The editor distinguishes between the first
conversation node which holds the shared sub-tree, and the other nodes which have a link node

pointing to the sub-tree. Unfortunately, in a GUI direct links only reduce visual complexity when

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 [OWNER] - Hello there!
E Go away
8 [CWNER] - What g you 50 grumpy?
B Nothing. Goodbye
=1 - [OWNER] - Farewel
- [CONTINUE]
i [[0WNER] -1 almost forgot. Go to the town square later today.

3 [Helo!
B [OWNER] - Such a wonderful day Take carel
= . Have a great day.

= . {WNER] - Fawswed

22O NN WN -

-

(a) A link node in the Aurora conversation editor.

(b) A direct link in the Dialogue Pattern
model.

Figure 3.3: A friendly conversation with links.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Direct links crossing over other model com-
ponents.

(b) Introducing link targets removes the interfering arcs.

Figure 3.4: Contrasting the visual complexity between direct links and link targets.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the choices are spatially close to the target topic. The choices and the target topic can also be far
apart in the conversation tree. Direct links can increase the visual complexity if the arc from the
choice to the topic intersects with other components of the conversation tree. For example, the wine
conversation in Figure 3.4(a) has a “Details (Good)” topic with two choices that directly link to
the “Sweet” and “Full” topics. Since the choices are separated from their destination topics, the
connecting arcs intersect with the “Mouthfeel” topic. A possible solution is to draw the arcs with
angles or curves to go around other components, but that increases the overall length of the arc
making it difficult for the author to determine which choice links to each topic. It also complicates
the GUI implementation since the program would have to compute a good layout to draw the arcs.

In these cases it is necessary to return to the link placeholder mechanism found in the Aurora
conversation editor. A link target is used as a placeholder in the dialogue pattem model in a similar
manner as a link node is used in the Aurora conversation editor. In the wine conversation in Figure
3.4(b), the offending direct links have been replaced with link targets. The link target is labeled by
the same intent of the target topic. A link target remains spatially close to its corresponding choice
which prevents any clutter when drawing conversation components. With link targets, there are now
two representations of a link. A direct link is where a choice directly links to the topic. A secondary
link is where a choice points to a link target representing the topic. For example, in Figure 3.4(b)
the “[Continue]” choice in the “Honey” topic has a direct link to the “Sweet” topic. The “It’s sweet”
choice in the “Details (Good)” topic has a secondary link to the “Sweet” topic. It is possible for
there to be more than one direct link to a topic depending on how a GUI chooses to render the
conversation components. Secondary links also allow a choice to link to an ancestor topic. This
would be difficult to do with direct links without intersecting components or arcs.

There are still advantages of this approach over the Aurora conversation link node approach. To
counter a secondary link’s extra level of indirection, a GUI could allow the author to double-click on
the link target to redirect the screen viewport to the destination topic. This is analogous to the Aurora
conversation editor’s double-click mechanism on link nodes. For example, in Figure 3.5 the viewport
is focused on the “Rush” topic where the “Other questions?” is a secondary link to its target topic,
which is two screen-widths away. Instead of scrolling the screen to find the corresponding topic, the
author can double-click the link target to re-position the viewport onto the topic.

However, an author may find shifting the screen viewport to be visually jarring and disorienting
— as it is in the Aurora conversation editor. Another mechanism is to convert the secondary link
to a direct link by moving the topic to the viewport. For example, Figure 3.6 shows the same
conversation with the “Other Questions?” link target and its topic swapped. The topic is now in
the author’s view and no scrolling is needed. The conversation is still structurally identical to the
conversation in Figure 3.5, only the visual representation has changed. This mechanism allows
the author to view target topics in the context of the conversation. This redirection mechanism is

superior to the double-click moving viewport mechanism in that any secondary link can become a

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.5: The redirect GUI operation moves the viewport to the target topic.

primary link so that its full context can be viewed. In addition, multiple direct links are possible in

many situations and moving target topics to the author’s view makes direct linking more likely.

3.3.1 End Dialogue Targets

An End Dialogue target is a special link target that indicates at which points in the tree the con-
versation will end. A choice that has an arc to an end dialogue target will end the conversation if
selected by the PC. For example, in Figure 3.3(b), the choice in the “Farewell” topic is connected
to an end dialogue target. End dialogue targets help the author to determine which choices end the

conversation.

3.4 Topic Groups

In Section 3.3, direct and secondary links were introduced as mechanisms to link choices to topics.
These links allow a topic to be shared by multiple choices and are analogous to link nodes that point
to NPC nodes in the Aurora conversation editor. However, an author may want to share a choice
across several exchanges. For example, the Aurora conversation in Figure 3.7(a) has several PC
link nodes that point to the PC node “Goodbye” that is the root of a common sub-tree that ends
the conversation. In Figure 3.7(b), the conversation is converted into a dialogue pattern. The same

“Goodbye” choice is duplicated across all exchanges which requires the author to set the properties,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

such as remark text, for each choice. These duplicated choices then link to the topic that ends the
conversation.

Both examples are structurally equivalent, and both share the same disadvantage of duplicating
the PC node or choice that the author wants to share. The Aurora example has terminal PC link nodes
as duplicates whereas the dialogue pattern example has the choice duplicated in several exchanges,
each with a link to the target topic. The duplication in dialogue patterns can be avoided with a more
concise and compact representation by introducing topic groups. Topic groups are created using two

separate mechanisms: exchange customization and choice customization.

34.1 Exchange Customization

Instead of duplicating a choice across several exchanges — each in a different topic — it is more
concise to collapse all involved topics together into a single topic group. For example, in Figure 3.8,
the topics that contained the duplicated “Goodbye.” choice are now co-located as tabs in a single
topic construct. Only the internals of one topic can be visible at any one time, and in Figure 3.8(a)
the “Great” topic is visible with its exchange visible. The author can change the visible topic by
clicking on a topic tab. In Figure 3.8(b) the “Dreadful” topic is now visible.

Since only certain exchanges are visible depending on the visible topic, collecting topics into a
topic group is called exchange customization. The author customizes the exchange view by making
a certain topic visible and making changes to the topic’s exchanges. Exchange customization further
abstracts the conversation tree by hiding more information, i.e. exchanges. The author can use the
topic intents displayed in the tabs to get an overview of the conversation structure. Clicking on a
topic tab makes the topic’s interals visible, allowing the author to view detailed information such as
NPC remark text. For example, in Figure 3.8(b) the “Dreadful” topic is now visible and the NPC
remark text has changed. Choices can link to topics in a topic group by drawing an arc to the topic
tab.

Exchange customization easily accommodates sharing a set of choices across several exchanges.
The question-answer conversation in Figure 3.9(a) has three exchanges that have the same two
choices. In Figure 3.9(b), the three exchanges have been co-located into a topic group with the two
choices shared. In this example the exchanges share the same set of choices. However, exchange
customization can be further generalized by allowing topics that only share a subset of choices to
be grouped together. For example, in Figure 3.10, the “East Side” topic contains an extra choice
not shared by the other topics. These topics can be converted into a topic group by including the
union of all choices from all topics into the topic group. In Figure 3.11(a), the topic group contains
the shared choices as well as the extra “How wide is the river?’ choice. Even though this choice
is not shared by all exchanges, it remains visible regardless of which topic is visible. This makes
the choice’s sub-tree visible at all times, which keeps the conversation tree structure independent of

the visible topic. Otherwise, the author needs to manage visible topics to be able to view the entire

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I'min a rush.

[OWHERY] - How are you?

;&= I IOWNER] - That's geatt
i} Goodoye.
B [OWNER| - Farewelt
8 {CONTINUE}
-l IOWHER] - frd remarmber t5 53 hello to the maye:
B ThanksI[END DIALOGUE]

= I rmsoso
= . {CWANER] - On, too bad
* i Goocbye EN

(a) The conversation with PC link nodes in Aurora. (b) The conversation as a dialogue pattern with du-
plicated choices and direct links.

Figure 3.7: Converting the farewell conversation from Aurora with PC link nodes to a dialogue
pattern.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m
fantastic! so-s0.

(a) Topic group with the (b) Topic group with the
“Great” topic visible. “Dreadful” topic visible.

Figure 3.8: The farewell conversation with topic groups and only one choice.

(a) All three exchanges share the same choices. (b) The three topics merged into tabs. Two ex-
changes are now hidden.

Figure 3.9: Dialogue pattern for answering questions in a conversation.

Figure 3.10: Three topics with duplicated choices. One topic has an extra choice.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lo Lol

(a) Three topics in a topic group. All three choices (b) Three topics in a topic group. One choice is dis-
are enabled for the visible topic. abled for the visible topic.

Figure 3.11: A topic group with a subset of shared choices.

Figure 3.12: A topic group with topics that have a different number of exchanges.

conversation tree. Changing the visible topic should only change the view of the internal exchanges,
not the external topology. Instead, choices can be marked as disabled with a different colouring to
indicate they are not shared by the visible topic. For example, in Figure 3.11(b), the “North Side”
topic is visible and since it does not share the “How wide is the river?” choice, the choice is disabled
and coloured a dark blue. If the “East Side” topic becomes visible, the choice is no longer disabled
and reverts back to the original light blue colour.

It is still possible for a topic in a topic group to have inner exchanges. In fact, different topics
in the same topic group can contain one or more inner exchanges. If the topic is the visible topic,
its inner exchanges can be expanded and collapsed as normal. A topic group with a topic that has
inner exchanges has to indicate the number of exchanges in each topic. For example, in Figure
3.12, the “East Side” topic has two exchanges with the remaining topics each containing only a
tail exchange. The numbers are always visible regardless of the visible topic, allowing the author
to quickly determine the size of each topic. As a short-hand, if all topics in the topic group each
contain only one exchange, then these number will not be shown in further diagrams.

The advantage of topic groups becomes apparent when converting complex conversations in
Chapter 1 of the NWN official campaign into dialogue patterns. For example, the small subset of the
NPC Bertrand’s conversation in Figure 3.13 shows six topics in a topic group with five choices. The

dark blue disabled choices indicate that not all choices are shared. If these topics were not in a group,

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.13: A piece of Bertrand’s conversation. Several topics are in a topic group.

the five choices would have to be duplicated resulting in a total of 20 choices distributed across six
topics. Each of these choices can potentially have a secondary links with an attached link target
for a possible total of 20 link targets. The conversation tree would be cluttered and confusing with
redundant information. Topic groups simplify this conversation sub-tree by removing 15 redundant
choices and 15 potential link targets. In contrast, the same piece of conversation in the Aurora
conversation editor would be composed of 26 conversation nodes with six NPC nodes, five PC

nodes, and 15 link nodes.

3.4.2 Choice Customization

When topics are co-located into a topic group, the shared choices have identical PC remarks across
all topics in the group. Sometimes an author may want to change or customize the PC remark text
of a shared choice for a single topic in the group. For example, for the third topic “Dreadful” in
Figure 3.8, the author may want to change the choice text to “Adios”. To do this, the author could
separate the “Dreadful” topic from the group, duplicate the choice, and then change the remark text.
This is unnecessarily complex since the author has to create two new components, a new topic and a
possible link target, to only change the remark text of a single choice. The Aurora conversation editor
avoids this problem since link nodes can link to PC nodes and therefore no PC node duplication is
necessary.

Instead, the author can use choice customization. The choice is marked as customized by an
upper-case C. Analogous to using disabled choices, the C indicates to the author that the choice has
different text for certain topics in the topic group. The choice’s remark text will change as the visible
topic changes. For example, in Figure 3.14(a), the choice has been customized, and the choice’s
remark text says “Adios” when the third topic “Dreadful” is visible. This compact representation
can be contrasted to the Aurora conversation in Figure 3.14(b) where the author has to replace a link
node that points to a PC node with a full-fledged PC node to change the remark text. The author
then has to add a NPC link node to link to the shared sub-tree. This process increases conversation
tree size by one node. To customize a second PC node, the author would repeat the procedure and
the extra link node would again increase the size of the tree.

A choice customization affects only one topic in the topic group. The original choice properties

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=
BB [0WNER] - How are you?

'm fantasticl
= @ [OWNER] - That's great
Goodbye.
[OWNER] - Farewell
i [CONTINUE]

. [OWMNER] - Ard semember to say hello to the mayar

I'm so-so.

B |OWHER]- Uh, too bad.
I Goodoye.

= V' just awfud

=) [DWNER] - How dreadiul

1 Adios.

- [WHER] - Farmwed

(a) A customized choice in a (b) A customized PC node in the Aurora conversation editor.
topic group.

Figure 3.14: Customizing a choice to say “Adios.”

will remain shared with the remaining topics. The author can perform a second customization
operation on a second topic if necessary. This customization is distinct from the first, and changing
PC remark properties for one customization will not affect the other. The author can at any time

remove a customization to revert the properties of a choice’s PC remark to the original shared values.

3.5 Dialogue Generation

After an author has constructed a conversation using structural patterns, the system needs to convert
the topics, exchanges, choices, and links back to the native conversation format recognized by Nev-
erwinter Nights. This is analogous to encounter and behavior patterns generating NW Script code
and attaching scripts to objects. It is straight-forward to convert exchanges to NPC nodes, choices
to PC nodes, and links to link nodes. If a topic is linked by multiple choices, the first exchange in
the topic is converted to an NPC node and placed as a child under the first PC node. The other links
are converted to link nodes under their respective PC nodes. Generating When and What scripts for

conversation nodes will be described in Section 4.1.

3.6 Summary

This chapter described the structural components of the dialogue pattern model. Topics are com-
posed of zero or more inner exchanges and one tail exchange. An exchange corresponds to a NPC
node in the Aurora conversation editor. Each exchange can have choices, which correspond to PC
nodes in the Aurora conversation editor. Then, the linking of these topics was described and end dia-

logue targets were introduced. Next, topic groups were described as a way of sharing choices among

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

several topics. Finally, this chapter described how to generate these components into a Neverwinter

Nights module by translating the components into nodes in the Aurora conversation editor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Dialogue Patterns

A dialogue pattern is the combination of structural patterns described in Section 3 integrated with
decision patterns and optional choice patterns described in this chapter. A dialogue pattern can be
instantiated as a sub-tree either into a conversation for an NPC or a larger dialogue pattern. The
smallest dialogue pattern can be merely a single topic with one exchange and one choice. Although
the author can pre-build entire dialogue patterns, they are mostly instantiated from the disconnected

bin described in Section 5.7.

4.1 Decision Patterns

Although structural patterns allow the author to set remark text on NPC and PC remarks, they do
not directly support the attachment of When and What scripts. Following the ScriptEase approach,
When and What scripts are generated by patterns. Section 1.4.3 describes that for the Aurora
conversation editor if an NPC node has siblings, then When scripts are used to select one of the
siblings for display. The first When script that evaluates to TRUE is displayed. Essentially the NPC
is making a decision on what remark to speak based on the game state. For example, in Figure
4.1(a), there are three NPC sibling nodes after the “Hello” PC node. The first and second sibling
nodes both have When scripts attached that check to see if the PC’s charisma! ability is above a
certain value. These When scripts are indicated by the green “~” in the node’s blue box icon. If
the PC’s charisma is considered high (above 14), the first NPC sibling will be displayed. If the PC’s
charisma is normal (between 10 and 14 inclusively), the second NPC sibling is displayed. The third
NPC node has no script attached, and is displayed by default, i.e. when all previous sibling scripts
evaluate to false. In this case, it is displayed when the PC’s charisma is considered to be low (below
10).

In the dialogue pattern model, an NPC decision can be encapsulated as a decision pattern. A de-
cision pattern allows an NPC to make a decision based on a single criterion. The decision can have

two or more outcomes, and the author can choose which topics will be selected for each outcome.

ICharisma determines a character’s physical attractiveness and personality. It is commonly used in conversations to decide
how the NPC reacts to the PC.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

=[] (OWNER] - Greetings.
= i} Helo
.- B [OWNER] - You have a noble look, friend.
- [} [WNER] - A plain ook, but st respectable.
B (OWNER]-Eghads. They let anyone in these days

(a) Aurora conversation editor. (b) Dialogue pattern model.

Figure 4.1: An Ability decision pattern based on the PC’s charisma.

(a) Global option window pane. (b) “High” outcome window pane.

Figure 4.2: An example of a GUI to set decision pattern options.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For example, in Figure 4.1(b), the charisma example is represented by an Ability decision pattern
with the ability set to charisma. The pattern is displayed as a labeled green box, with the outcomes
displayed as tabbed boxes. Each outcome tab has a brief label description. For example, the “High”
outcome is selected if the PC’s charisma is greater than 14. Similar to linking to a topic, the “Hello”
choice directly links to the decision. Each outcome tab also has a direct link to a topic. The author
does not see the scripts; they are generated by a decision pattern. Notice that in the Aurora conversa-
tion editor the fact that the NPC decision is based on an ability score (charisma) is also hidden with
the scripts. With decision patterns the scripts are hidden but the decision intent is clearly visible.
Each decision pattern instance and the outcomes inside the instance can also be uniquely labeled for
easy identification. For example, the decision pattern in 4.1(b) is labeled “Charisma”. The labels of

the outcomes can also be changed.

4.1.1 Decision Options

Similar to encounter and behavior patterns, decision patterns have options that can be set to cus-
tomize the pattern to a specific instance solution. A decision pattern can have two types of options:
global options and outcome options. Global options affect the entire pattern instance and can be
any type in the ScriptEase type system. For example, the Ability decision pattern has a single global
option: the Ability option. The author can set it to any of the six ability statistics, such as wisdom,
charisma, etc. In Figure 4.1(b), it has been set to charisma. In general, global options affect how all
of the outcomes generate scripting code. For this example, all generated scripting code will retrieve
the PC’s charisma ability statistic.

An outcome option is specific to a single outcome. It is used to determine whether a specific
outcome evaluates to TRUE or FALSE. For example, the “High” outcome in Figure 4.1(b) has a
single integer option called “Threshold” which is set to 14. The author can set this option to control
how much charisma the PC must have to be considered to have high charisma. Figure 4.2 shows
what an interface could look like to set global options and outcome options. This interface is similar
to the interface used by encounter and behavior patterns in ScriptEase to set their options. However,
the option window has one tab for global options and individual tabs for the outcome options. In
Figure 4.2(a), the author has set the global Ability option to “Charisma”. The “High” outcome tab
is highlighted in Figure 4.2(b), where the author has entered “14” for the Threshold integer option.

While most outcomes can have options, the right-most outcome requires special consideration.
Since it is the default outcome, i.e. it is selected if the conditions for all other outcomes are not
satisfied, it does not need a script. Therefore it does not need any options. This applies to all
decision patterns, regardless of the number of outcomes. For example, a decision pattern with only
two outcomes will have the right-most outcome as defaulr. Consequently, only the first outcome

will have options that the author can set.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.2 Code Generation

Before a decision pattern can generate scripting code, the conversation must first be translated to
Aurora’s native conversation format as described in Section 3.5. For example, when the author
wants to generate code for the charisma conversation in Figure 4.1(a), it is first converted to the
Aurora conversation in Figure 4.1(b). The exchanges in the topics linked by the decision pattern’s
outcomes are converted to sibling NPC nodes. The decision pattern then generates the When scripts
for the “You have a noble look...” (high) and “A plain look...” (medium) NPC nodes. The first When
script is generated by using the global Ability option (Charisma) and the Threshold option for the
“High” outcome (14):

int StartingConditional ()
{
int HIGH_OUTCOME_THRESHOLD = 14;
if (GetAbilityScore{GetPCSpeaker (), ABILITY CHARISMA) > HIGH_OUTCOME_THRESHOLD) {
return TRUE;
}
return FALSE;

A similar script is generated for the second script attached to the “A plain look..” (medium)
NPC node. Since the scripts are generated starting from the left outcome, the right-most outcome

(low) is the default case and produces no script.

4.1.3 Sample Decision Patterns

In addition to the Ability decision pattern, this section introduces several other interesting decision
patterns. These patterns are used to convert Aurora conversations in Chapter 1 of the official cam-
paign into dialogue patterns. A complete set of decision patterns are presented in Appendix A. The

dialogue patterns presented here are repeated in the appendix.

Basic gender Decision

The Basic gender decision decides on the PC’s gender. Although the player can only create male
and female characters, Neverwinter Nights identifies several different genders for NPCs: female,
male, both, and neutral. This decision is useful to differentiate between female and male player
characters. The Basic gender decision has “Female” and “Male” outcomes with “Male” as the
default outcome. Similar to the Ability decision pattern, this pattern is designed to decide specifically
on a PC characteristic, and therefore requires no additional options to function properly. A more
general Gender decision provides outcomes for all possible genders, based on any target creature

provided as a global option.

Door locked Decision

The Door locked decision decides on the locked status of a door. A door can either be “Locked” or

“Unlocked” and the pattern has an outcome for each state with “Unlocked” as the default outcome.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The pattern also has a single global option Deor so that the author can select the target door. Unlike
the Ability and Basic gender decisions, the Door locked decision does not use PC characteristics to

select an outcome.

Near by Decision

The Near by decision decides whether a game object is within a certain distance of another game
object. The “Inside” outcome is the first outcome and is selected when the two objects are within
a certain distance. The “Outside” outcome is the default outcome. The pattern has three global
options. Both the First Object and Second Object options can be any game object. The Distance

option is a float representing the distance in meters.

Progress Decision

The Progress decision decides on an outcome based on which remarks in the conversation have been
previously visited. A NPC remark is considered visited if the remark is displayed in conversation.
A PC remark is visited if the player selects it as a choice in the conversation. For example, a
conversation can make an early decision on whether the NPC greets the PC with either “Hello
stranger!” or “So we meet again!”. The first remark is selected if it is the first time the PC has
conversed with the NPC. The second remark is selected for all subsequent conversations. This
decision selects an outcome based on whether the “Hello stranger” remark was previously visited.
If it has been previously visited then the decision selects the “So we meet again!” outcome.

The Progress decision has two outcomes. The first outcome, labeled “Initial”, has one remark
option called Goal. Similar to other game objects in ScriptEase, the author would select the Goal
remark from a picker. The Goal option specifies which remark needs to be visited in order for the
“Initial” outcome to be not selected. For example, the author can select the the “Hello stranger!”
remark as the Goal option. The second outcome, “Final”, is the default outcome. This outcome is
always selected after the Goal remark has been reached. In this example, the “Initial” outcome links
to the topic with the “Hello Stranger” remark which is same as the Goal option. This allows the
outcome to be selected once and only once, which is useful for first-time greetings in conversations.

In a second example, the author may want the PC to ask the NPC for a favour. Using a Progress
decision, the NPC’s reply can either be “Sure, I’ll help.” for the “Initial” outcome or “You’ve said
enough. Goodbye.” for the “Final” outcome. The “Final” outcome is selected if the PC insults the
NPC in another part of the conversation by visiting the “You have a face only a mother could love.”
remark. This is done by setting the Goal option for the “Initial” outcome to this insulting remark.
Now the NPC would be happy to assist the PC unless the PC decides to insult the NPC.

The adaptations described in Section 4.1.4 give the Progress decision extra flexibility. Each new
outcome includes its own Goal option, allowing the author to create any number of “phases” for

a single decision. Intuitively, the decision “progresses” from the first outcome to the final default

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outcome as more goal remarks in the conversation are visited. The pattern can also be generalized
by changing the Goal option from a remark to a list of remarks. In this case, if any one remark in
the Iist is visited during conversation, then the outcome will no longer be selected.

Section 4.1.2 describes that decision patterns generate When scripts for NPC conversation nodes
that put conditions on whether a remark appears in the conversation. However, for the Progress
decision pattern to function, it needs to associate actions with each remark that is specified as an
Goal option. These actions set a local variable on the NPC to indicate which remarks have been
visited. The Progress decision pattern uses these local variables to determine which outcome to

select.

Recall Decision

The Recall decision makes a decision based on a small piece of game state that was stored at a
certain point in a conversation. The author can use this pattern to make a decision on information
that was relevant at an arbitrary point in an arbitrary conversation. For example, the author wants
the NPC to greet the PC differently depending on whether the PC lied to the NPC about having a
special item earlier in the conversation. The PC has the choice to lie or tell the truth, and that choice
is recorded by the decision. When the PC talks to the NPC a second time, the decision can then
recall the recorded information to decide how the NPC will greet the PC.

The Recall decision has a “First” outcome and “Last” default outcome. The pattern has a remark
global option called Point of Interest which represents the remark in the conversation where the
decision needs to remember a piece of game state. The decision pattern remembers information
in the form of strings. The “First” outcome has a Value string option. This option is compared
against the string stored when the Point of Interest remark was visited. If the strings match, the
outcome is selected. Otherwise the default “Last” outcome is selected. The pattern can be adapted
by adding additional outcomes, where each outcome’s Value string option is compared against the
remembered string.

Similar to the Progress decision, the Recall decision requires actions to be attached to the Point
of Interest remark. These actions store a string as a local variable on the NPC. However, the Recall
decision differs from the Progress decision since the remark option is a global option rather than a
outcome option. Also, the pattern decides on game state stored when the Point of Interest remark
was visited, and not on whether the remark was visited. Consequently, the author needs to specify
the piece of game state that the Recall pattern uses by adapting the actions that are stored on the

Point of Interest remark. This process is described in Section 4.1.5.

4.1.4 Adaptations

Similar to other ScriptEase patterns, an author may want to further adapt a decision pattern in the

context of a particular story. Besides setting options, decision patterns can be adapted by either

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Removing the “Medium” outcome. (b) Adding the “Medium High” outcome.

Figure 4.3: Adapting a Ability decision pattern.

adding or removing outcomes. For example, the author may only want to have the NPC make a
decision based on whether the PC has only high or low charisma. Since the Ability pattern has
3 outcomes, it is unsuitable for this situation without adaptation. Instead, the author can adapt it
by removing the “Medium” outcome and controlling the threshold between high and low charisma
by setting the Threshold option for the “High” outcome. Figure 4.3(a) shows the adapted Ability
decision pattern.

The author can also add a new outcome to the decision pattern, before the right-most default
outcome. In the simplest case it has the same options as the other outcomes. For example, to
construct a more detailed Ability decision pattern, the author could insert a new outcome called
“Medium High” between the “High” and “Medium” outcomes. Figure 4.3(b) shows the adapted
pattern. In the more complex case, the author adapts the condition for the outcome by selecting a
new condition. All of the definitions and conditions available for encounter patterns may be used in

decisions patterns. The author may also need to add additional outcome options.

4.1.5 Building Decision Patterns

Section 2.3 discussed that both encounter and behavior patterns can be created by using the same
operations that are used to adapt existing patterns. Similarly, decision patterns can be constructed
by using the adaptations described in Section 4.1.4. A new design pattern starts with only a single
default outcome. The author can then add new outcomes. A GUI would provide support to set
the name for each outcome as well as the pattern. Next the author can add additional global or
outcome options. These options are then used to set the condition for each outcome. The outcome

condition is composed of ScriptEase definition and condition components, as described in Section

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% 2} Define Ability Score, Is High
‘, Define &hility Score as PC Speaker's Ability (Charisma) ability score
Define is High as whether Threshold (14) is less than Ability Score
(: Ifis High iz Positive (True, Yes, On, atc)

Figure 4.4: The condition for the “High” outcome in the Ability decision.

o D There are no definitions
A Assign 1 to NPC Speakar's variable lahelied Visited Lahel (greetings:1:2)

Figure 4.5: The action attached to conversation node options in the Progress decision.

2.3. For example, in Figure 4.4 the condition for the “High” outcome in the Ability pattern has 2
definitions and 1 condition. The first definition defines the PC’s ability score using the global Ability
option. The second definition defines a binary less-than comparison between the ability score and
the outcome’s Threshold option. Finally, the condition evaluates the comparison, returning TRUE
if the comparison is TRUE.

If an option is a single remark node, then the author can specify a list of actions that will generate
code in the remark’s What script. If the option is a list of remarks, then the code will be generated
in the What script for each remark in the list. Progress decisions use this technique to record
whether the Goal remarks have been visited. For example, Figure 4.5 shows the action associated
with the Goal option for the “Initial” outcome. This action sets the value of a variable on the
NPC speaker object to 1. The variable’s label encodes the identifier of the remark which allows
the decision pattern to identify which remarks have been visited. A second example is the Recall
decision described in Section 4.1.3. It uses an action to store a local string variable on the NPC. The
author must choose the correct action depending on the game state to be stored. Although actions
are the only component needed, the author could also include definitions and conditions before the

actions, similar to an situation in an encounter pattern.

4.1.6 Composing Decision Patterns

Decision patterns are designed to make a decision along a single criterion, such as one of the PC’s
ability scores, whether a door is locked, or progression through a conversation. However, many
complex conversations, including conversations in the official campaign, make decisions involving
multiple criteria. For example, in Chapter 1 of the official campaign, the NPC named Emernick has
three possible opening remarks when the PC initiates conversation. These three outcomes depend
on two criteria: a) is the saferoom door locked and b) is Ememick close to the saferoom waypoint
object (i.e. inside the saferoom). Outcome 1 occurs if the saferoom door is locked, since it is
assumed Ememnick is safely inside and is willing to answer the PC’s questions. Qutcome 2 occurs if
the saferoom door is unlocked AND Ememick is close to the saferoom waypoint object (i.e. inside

the saferoom). In this case Ememick will instruct the PC to lock the door with the lever. Finally,

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i Root

- [0hadMER] - Youtte rob with the prsoners are you?
. {WNER] - Pull that lever. |t locks the doar so we'll be sate.
. [OWNER] - Psstl Indo the lockdown, quick, befors the patrols see us!

Text Appears When ... lActicns Takgn] DlherAdions] Cornmen{si E,f__L!_
Script

[m102_emermik321 ~1 __J Ed

Seript Preview

int StastingCondiional)

{ :

g r:hb.Cobncdbm- Getl.ocked{GetNearestObiectByT ag("Ememik_Door')); .
([n bCondition; -

b

|

& 1y

Figure 4.6: The first decision of the Ememick NPC in the Aurora conversation editor.

Figure 4.7: The first decision of the Ememick NPC is composed with 2 decision patterns.

outcome 3 occurs if the saferoom door is unlocked AND Emernick is far away from the saferoom
waypoint (i.e. outside the room). In this case he will instruct the PC to run with him to the saferoom.
The actual Ememick conversation is more complex, but the extra decision have been remove for
exposition clarity.

In the Aurora conversation editor, these three outcomes are sibling NPC nodes as shown in
Figure 4.6. Outcomes 1 and 2 have When scripts attached with outcome 3 as the default outcome.
The first script simply evaluates to TRUE if the saferoom door is locked. The second script assumes
the saferoom door is unlocked — otherwise the first would be already selected — and returns TRUE if
Ememnick is close (i.e. within 3 meters) to the saferoom waypoint.

If the author wanted to convert this conversation to the dialogue pattern model, it is unlikely
that there exists a pre-built decision pattern that handles this specific combined decision. With some
ScriptEase experience, the author could build a new decision pattern for this specific example by
creating each outcome and setting the conditions manually. Unfortunately this is a tedious process
and increases the likelihood of a cluttered pattern catalog with specialized patterns that are used
infrequently.

Instead, the author can create a composite decision by linking two or more existing decision

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

patterns together. For example, to create Ememick’s three decision outcomes, the author uses two
more general decision patterns. The Door locked decision has two outcomes based on whether a
door (e.g. Saferoom door) is locked or unlocked. The Near by decision also has two outcomes
based on whether an object (e.g. Ememick) is within a certain distance (e.g. 3 meters) of another
object (e.g. Saferoom waypoint). Both are general patterns that can be reused for a variety of
decisions. By linking the “Unlocked” outcome in the Door locked decision to the Near by decision,
as shown in Figure 4.7, the author can convert Emernick’s three outcome decisions to the dialogue
pattern model.

It is possible to convert any outcome that depends on several conditions connected with boolean
operators. The Emernick example illustrates an AND operator. As a canonical example of the AND
case, consider an outcome that is selected only if the PC is female AND the PC has high charisma.
By itself, the PC is female condition is an outcome in the Basic gender decision. As seen previously,
the PC has high charisma condition is an outcome in the Ability decision adapted to charisma. By
linking the “Female” outcome to the Ability decision and the “High” outcome to the topic, as shown
in Figure 4.8(a), the original outcome can be achieved. Alternatively, the “High” outcome can be
linked to the Basic gender decision and the “Female” outcome to the topic for the same result.

As a canonical example of the OR case, consider an outcome that is selected if the PC is female
OR the PC has high charisma. Again the Basic gender and Ability decision patterns are linked
together, but this time the “Male” outcome is linked to the Ability pattern. Also, both the “Female”
and the “High” outcomes now link to the topic, as shown in Figure 4.8(b). The two direct links
indicate that either outcome will select the topic to be displayed. In the AND case, there is only a
single path that goes through both decisions since the topic requires an outcome from both decisions.
In the OR case, there are two paths to the topic. One path which passes through a single decision
and one that passes through both decisions.

Since all complex When scripts are composed of basic conditions connected with AND and OR
boolean operators, any When script attached to an NPC node can be represented with one or more

single-criterion decision patterns.

4.1.7 Degenerate Decision Patterns

Similar to a choice, an outcome of a decision pattern links to a topic. This topic may be the root of
an entire sub-tree. However, there are many cases where the author only wants a decision to affect
a single exchange where each outcome of the decision shares the same choices of the exchange.
For example, the nurse NPC in Chapter 1 of the official campaign has a different greeting (remark)
depending on the PC’s charisma ability score. Regardless of the greeting, the PC has the same set
of choices to respond to the nurse. Figure 4.9(a) shows this piece of conversation in the dialogue
pattern model. An Ability decision has its three outcomes pointing to different topics in a topic

group. The topic group has three topics that share the same set of choices with each topic having a

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Topic is displayed if the PC is female (b) Topic is displayed if the PC is female OR has
AND has high charisma. high charisma.

Figure 4.8: Using combinations of decision pattern to simulate logical operators.

single exchange. The author can set the exchange remark text for each topic based on the outcome
linking to the topic.

Although using a topic group for a decision on a single NPC remark is convenient, this usage of
decision patterns occurs frequently enough that a more compact representation would be useful. For
example, the nurse conversation uses a decision pattern in five different places to decide on only a
single NPC remark. Instead, the decision pattern can be instantiated as a degenerate decision pattern.
In this representation (Figure 4.9(b)), the decision pattern is attached directly to an exchange inside
a topic and indicates that there exists one exchange for each outcome. The decision’s outcome tabs
function similar to the tabs in a topic group by allowing the author to change the visible exchange by
clicking on an outcome tab. For example, in Figure 4.9(b), the Ability decision is now a degenerate
decision pattern connected directly to the exchange. There are still three exchanges with one for each
outcome, but the topic group is no longer necessary. This is a slightly more compact representation
that clearly indicates the author’s intent. If a decision is not a degenerate decision pattern, it is called
a normal decision pattern.

In contrast, the same structure is much more complicated in the Aurora conversation editor. The
author must first create an NPC node for each outcome. Then, the author constructs the remaining
conversation under the first NPC sibling node. Finally, the author creates a link node under each of
the remaining sibling nodes. Figure 4.10 shows the same section of the nurse’s conversation as it
would appear in the Aurora conversation editor. This decision requires three NPC nodes with three
PC nodes under the first NPC node and a total of six link nodes under the other two NPC nodes.
When these single-remark decisions are used frequently, these links can greatly inflate the size of the

Aurora conversation tree. For example, there is one case described in Chapter 6 where the Aurora

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) A normal decision pattern with outcomes (b) The topic group is replaced
linking to topics in a topic group. with a degenerate decision at-
tached to the exchange.

Figure 4.9: Simplifying decisions that affect only a single NPC remark.

o -
E!. [OWNER] - Greetings, my <Lord/Lady>. How may | be of service?
: m. Could | ask you some questions?
-} Me want ask questions.
{ @} Goodbye.
gl B (OWNER] - 15 there something | can do for you, <sir/madam>?

----- . Could | ask you some questions ?[END DIALOGUE]

- . Me want ask questions. [END DIALOGUE]

. i} Goodbye [END DIALOGUE]
=) [OWNER] - what do pou want? And be quick about it - can't you see how busy | am here?

- . Could | ask vou zome questions ?2[END DIALOGUE]

- Me want ask questions [END DIALOGUE]

Figure 4.10: The nurse’s greeting decision in the Aurora conversation editor.

Nurse conversation has a 189 total conversation nodes. Of these 189 nodes, 125 nodes (66%) are
link nodes. Two thirds of the conversation redirects the author back to nodes in the other one third
of the conversation.

There is a second advantage to using degenerate decision that occurs when using large topics.
For example, consider a topic that has an exchange length of two (i.e. two exchanges, one linking to
the other). If the author wanted a regular decision pattern to decide on the remark text in the second
exchange, the topic would have to be split into two separate topics each with a single exchange,
as shown in 4.11(a). The author would then link the first topic to the decision pattern, and the
outcomes of the decision pattern to the second topic which is now a topic group. In addition to the

complexity required when degenerate decision are not available, this structure may lose the intent

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[Continue}
v

Ability decision
(Charisma)

(a) A normal decision pattern requires the (b) A degenerate deci-
topic to be split into two topics. sion allows the topic to
remain intact.

Figure 4.11: A decision pattern that affects only a single exchange inside a topic with two exchanges.

of the conversation. In the example of Figure 4.11, the author intended both exchanges to be part
of the same original conversational topic (“The Bar”) with the second remark customized based on
game state. If degenerate decisions are used (Figure 4.11(b)) both exchanges can remain inside the

same topic, preserving the author’s original intent.

4.2 Optional Choice Patterns

When constructing choices, an author may want certain choices to be available only when certain
conditions are met. For example, the PC might have a insightful response to the NPC that can reveal
extra information. However, this choice is only available if the PC has a high wisdom ability score.
Section 1.4.3 describes how the Aurora conversation editor enforces this condition. The author
attaches a When script to the PC node. The script evaluates to TRUE if the PC’s wisdom is high,
and FALSE otherwise.

In dialogue patterns, the author can make a choice optional by instantiating an optional choice
pattern. Similar to other ScriptEase patterns, an optional choice pattern can have options. These op-
tions are used as parameters for the pattern’s condition. Similar to conditions for outcomes in deci-
sion patterns, the optional choice condition consists of ScriptEase definitions and a single ScriptEase

condition, and generates code for a When script that is attached to the choice. For example, Figure

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

¢~ 1Y Define Ability Score, 1s True
1.2 Define Ability Score as PC Speakers Ability (wisdom) akility score
Define Is True as whether Aility Score Comparison (=) Threshold (14)
C. ifis True is Positive (True, 25, On, elc}

Figure 4.12: The condition for an Ability optional choice pattern.

4.12 shows the condition for an Ability optional choice pattern that is displayed only if the PC has
high wisdom. The pattern has an Ability option set to wisdom, a Threshold option set to 14, and
a Comparison option set to > (greater than). The Comparison option allows the author to choose
how the ability score is compared against the threshold with <, <, =, >, or > boolean comparison
operators. The condition’s first definition defines the PC’s ability using the Ability option (wisdom).
The second definition defines a binary > (greater than) comparison between the ability score and
the Threshold option (14). Finally, the condition evaluates the comparison, returning TRUE if the
comparison is TRUE.

Several optional choice patterns can be instantiated on the same choice. In this case, the condi-
tions for all the attached optional choices patterns must be true before the choice becomes available.
For example, if a second Ability optional choice pattern (intelligence > 9) is attached to the same
choice as the Ability pattern in Figure 4.12, then the PC must have both a wisdom ability score of
more than 14 AND an intelligence ability score of more than 9.

Other useful optional choice patterns include the Has item and Quest point patterns. The Has
item pattern makes a choice available only if a specific item in the PC’s inventory. The author can
set the item with the pattern’s Item option. The Quest point pattern makes a choice available only if
a certain point is reached in a quest. This is useful to make sections of a conversation available only
if the PC is at a certain point in a quest. For example, an NPC might be willing to give the PC some
gold, but only if they completed an Retrieve an item quest first. These optional choice patterns are
described in more detail in Appendix A.

The Aurora conversation editor has two important built-in scripts. The “normal int” script returns
TRUE if the PC has a normal or greater intelligence ability score (i.e. 9 or more). The “low int”
script returns TRUE if the PC has a low intelligence ability score. In all conversations in the official
campaign, the PC’s choices depend on the the PC’s intelligence. If the PC has low intelligence,
most choices will have “dumbed down” remark text to reflect the PC’s lack of sophisticated speech.
To do this, the author creates two choices, one for the “normal” choice with the “normal int” script
attached, and the other for the “dumbed down” choice with the “low int” script attached. Both
scripts are designed to be mutually exclusive, i.e. for any condition one script evaluates to FALSE
and the other to TRUE. Consequently, only one of the two choices will be displayed for any given
conversation.

This frequent pattern can be created easily using two Ability optional choice patterns — one
attached to each choice — with the Ability option set to intelligence. The pattern for the “normal”

choice has a Threshold of 9 with a > Comparison. The pattern for the “dumbed down” choice has

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abiiity: Intelligence
Threshold: 2
Comparison: >

1was Me Jms
senthere gent here

Figure 4.13: An exchange with 4 Ability optional choice patterns. The simulated pop-up window
shows details of the first optional choice pattern.

a Threshold of 9 with a < Comparison. For example, in Figure 4.13 the exchange has 4 choices.
They are marked as optional choices with a “?” symbol. With the current representation of the
model, optional choice patterns cannot be displayed explicitly in diagrams since choices are too
small to contain details such as the pattern’s name. Instead, the author must click on the optional
choice to view the pattern. Similar to When scripts in the Aurora conversation editor, the *“?”
symbol only indicates that a pattern exists, but not the name of the pattem. In Figure 4.13 a mouse-
over pop-up window has been simulated that shows information about the Ability optional choice
pattern attached to the first choice. The first and third choice are considered “normal” choices, and

the second and fourth choices are “dumbed down’ choices.

4.2.1 Choice Groups

For both the Aurora conversation editor and dialogue patterns, the widespread use of intelligence-
based choices creates extra complexity. For example, Figure 4.14 shows a portion of Ememick’s
conversation in Chapter 1 of the official campaign. There are 10 PC nodes, however the first five
nodes require “high int” When scripts. The second five nodes are low intelligence versions of the
first five remarks. Since each intelligence pair links to the same NPC node, the “dumbed down”
PC nodes have link nodes to the NPC node. This adds a total of 10 extra lines or nodes to the
conversation (five for low intelligence PC nodes and five for link nodes). In addition to the extra
lines, the semantic relationship between the pairs of remarks is not explicit. Figure 4.15 shows the
same portion of conversation as a dialogue pattern. Although the direct links eliminate the need for
link targets, 10 choices are still required and there is still no explicit association between intelligence
pairs.

Since the intelligence scripts are used pervasively in all conversations in the official campaign,
the overhead of these conversations is significant. Although converting these conversation to di-
alogue patterns removes some complexity, the author still needs to duplicate each choice using

normal and low intelligence variants, and then link them to topics. However, the majority of these

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

= . What do you know about this floor of the prison?
. [OWHER] - 1t's the Security Layer - Supposed to be a buffer zone between the regular prisor
= [} The Pits? What are those?
: . [OWHER] - That's where you're headed. There arettt many =elfls down thete except
h Are the doors locked or unlocked?
& [DWNER]- The cell doors are locked but the others should all be cpen. If you can g
=:- [} Where are the former prisoners holed up?
- - {OWNER] - They've banicaded themselves in the centeal guard roam. They're sendir
. | need supplies. Are there any storerooms?
® - {OWHNER] - Yeah, youll find them ta the nirth and south.
=[] That's all | need to know about the prison.
. [O'WNER] - Just be careful. This is place is a deathtrap right now.
8 Da Pits? Ooo, what dey be?
: . FeNER]- That's vheens you'ts beaded, There aient many sl
= Da doors - dey locked or unlocked?
o . {OWHER] - The cell doars are ncked but the others shoudd 26 be open B yausan g
= {J} Da prisoners - where dey hidin'?
-} IDWHER] - Thew've batticaded themselves in the central guard wom. They's sendi
= - Hmph. Der storerooms ‘round here?
I IOWNER] - Yaah, veudl find them to the north and sauth
B That ak me need to know bout prison.
. HIWHNER] - dust be careful. This iz place is a deathirap right now

Figure 4.14: Portion of Emernick’s conversation with 10 PC nodes including five normal and five
low intelligence variants.

Figure 4.15: Exchange with 10 choices including five normal and five low intelligence variants.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pve the Where are Fneed That's ait 1
The pits? Iockeddc?o s the former prisoners? Supplies... need to know...

" { \ N

and South

Figure 4.16: A simplified exchange with 5 choice groups each with a normal and low intelligence
PC remark.

normal/low intelligence pairs always link to the same topic. For example, in all of the conversa-
tions described in the case study in Chapter 6, there are 136 total intelligence choice pairs. Of
these 136 pairs, 112 pairs link to the same topic. In this common case, the author only wants to
customize choice text without affecting the structure of the conversation. This case can be visually
simplified by collapsing each normal/low intelligence pair into a choice group that explicitly shows
related choices. For example, Figure 4.16 shows the piece of the Ememick conversation with choice
groups. Each of the five pairs are represented by a single choice group which looks like two choice
singletons stacked together. Only the remark text for the high intelligence choices are visible on the
arcs with the understanding that although all nodes in the group have different text, they have same
intent or meaning. A GUI can allow the author to view or edit individual choices in the group in a
separate window. The exchange now properly represents the author’s original intent. A choice that
is not in a group is now called a choice singleton. Both a choice singleton and a choice group are
considered to be choices.

Although the author could use a choice group with any number of choices, analysis of conver-
sations in the official campaign suggest groups are currently only useful for normal/low intelligence
pairs. All other choice singletons either are not optional, or do not share the same link with other
choice singletons in the same exchange. Therefore, it is convenient to make a single choice group
pattern called the Intelligence choice group pattern. This pattern can be used to create a choice group
of two choice singletons with an Ability optional choice pattern on each singleton, with the Ability
option of these patterns set to intelligence. Additionally, this pattern can also convert an existing
choice singleton into a choice group.

Similar to a choice singleton, the author may want a choice group to be available only when
certain conditions are met. If the conditions are not met, none of the PC remarks in the choice group

are available to the PC. If the conditions are met, the group functions normally by making available

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

only one of the PC remarks. For example, an Intelligence choice group could have an attached
Ability optional choice pattern set to be available only if the PC has high wisdom. If the PC has high
wisdom and normal or better intelligence, the “normal” remark in the group is available. If the PC
has high wisdom and low intelligence, the “dumbed down” remark is available. If the PC does not

high wisdom, neither remark in the group is available.

4.3 Summary

This chapter has presented two types of patterns that can be integrated with structural patterns to
form dialogue patterns. A decision pattern decides on what the NPC will say at a certain point in
the conversation. This decision is made by evaluating conditions using game state and consequently
selecting a particular path of conversation. An optional choice pattern evaluates a condition to decide
on whether a specific choice is available at a certain point in the conversation. If the condition is not
satisfied, the choice is unavailable. Finally, choice groups were introduced to preserve the author’s
intent of providing two different sets of PC remarks based on the PC’s intelligence. Choices that
were not groups were called choice singletons.

Dialogue patterns are not used to generate What scripts on remarks that are used to execute
actions, such as rewarding the PC experience points or moving a character. These What patterns
are already handled by encounter patterns. Specifically, a Conversation What encounter pattern
is used to execute actions when a remark is selected or displayed. The pattern’s first option is a
remark and the author uses a picker to select the remark from a conversation. These encounter
patterns typically contain actions that do not affect a conversation or its flow and consequently are
not dialogue patterns. However, a GUI could mark remarks that are a part of encounter patterns and

provide an operation to allow the author to view the encounter pattern.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Pattern Operations

This chapter describes the set of operations needed to build, change, and delete components of
dialogue patterns. By describing the operations required to build a conversation using dialogue
patterns, it is possible to compare the operational complexity of creating a conversation using the
Aurora conversation editor and the dialogue pattern model. A complexity metric that uses pattern

operations is described in Chapter 6.

5.1 Topics

A topic is created with the Add Tepic operation. The author must first select a precursor that will
link to the new topic. The precursor for a topic is either a choice or decision outcome. For a new
conversation, the precursor of the first topic is the root choice. There is always one root choice for
each conversation and it does not appear in an actual conversation. The topic is created with a single
exchange containing one choice. A direct link is also created from the precursor to the new topic.
A GUI could have extra Add Topic operation variants that add a different number of exchanges and
choices to the new topic. If the precursor already links to a target (i.e topic or decision pattern),
the new topic is inserted between the precursor and target. The choice in the new topic links to the
original target. For example, in Figure 5.1 the author creates a new topic by selecting the first choice
in the “Go Away!” topic and performing the Add Topic operation. The new topic is inserted in front
of the “Sick” topic.

A topic can also be removed with the Remove Topic operation. The author must first select the
topic to be removed. In addition to removing the topic, the operation will remove all disconnected
sub-topics. Section 5.7 describes disconnection in more detail. This operation leaves the precursor
of the removed topic unconnected to any topic. For example, in Figure 5.2 the author uses the

Remove Topic operation to remove the sub-tree rooted at the “Sick” topic.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

What's the matter? I'm outta here.

Figure 5.1: Adding a new topic to a conversation.

Figure 5.2: Removing a selected topic from a conversation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Selected
Topic

What happened what creatures What happened What creatures What is in
here? lurk I;efe? the cave?

here? lurk here?

/

Merge Topic Split Topic
Selected
Topic
What happened What creatures Whatls in

hera? hurk r;em? the cave?

Figure 5.3: Merging a topic with a topic group. This operation can be reversed by splitting the topic
from the topic group.

5.2 Topic Groups

The author can add a topic to a topic group by using the Merge Topic operation. The author must
first select a topic group and a topic that is not in a group. The selected topic is relocated to the topic
group’s position and the choices in the tail exchange of the selected topic are added to the choices in
the topic group. The author can then remove any unnecessary choices. For example, in Figure 5.3
the author merges the “East” topic into the topic group. The topic’s three choices are added to the
right of the topic group’s existing choices. Since two of the three choices are duplicates of the two
choices already in the topic group, they are removed. The process of recognizing duplicates can be
automated by the GUI and can include or exclude author confirmation.

To create a new topic group, the author can select two topics that are not in topic groups and
use the Merge Topic operation. The second topic will moved to the first, creating a topic group.
Additionally, the author can add new topics to a topic group by selecting the topic group and using
the Add Topic operation described in Section 5.1. The new topic is immediately attached to the
topic group but remains disconnected since the author has not yet linked to the new topic from an

existing precursor.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, the author can remove a topic from a topic group with either the Remove Topic or Split
Topic operations. The Remove Topic operation removes the topic from the conversation entirely.
Any choices specific to the removed topic that are not shared by the remaining topics in the group
are also removed. The Split Topic operation separates the topic from the group into a stand-alone
topic. The separated topic is connected by a direct link to one of its precursors. Furthermore, all
choices in the topic group that were shared by the separated topic are duplicated and added to the
separated topic. Similar to the Remove Topic operation, any choices specific to the split topic that
are not shared by other topics are removed from the topic group. For example, in Figure 5.3 the
author splits the “East” topic from the topic group creating a new topic in the conversation. The new
topic has the same choices as the topic group. However, since only the “East” topic has the “What

is in the cave?” choice, the choice is removed from the topic group.

5.3 Exchanges

The majority of exchanges will be created implicitly when a new topic is created. However, the
author can use an Insert Exchange operation to create a new exchanges inside an existing topic. The
author must first select an existing exchange in the topic. The operation creates the new exchange
before the existing exchange. The new exchange contains a choice singleton which is directly linked
to the selected exchange. If the new exchange is inserted between two existing exchanges, the direct
link of the first exchange is redirected to the new exchange. For example, in Figure 5.4, the author
inserts a new exchange in between two exchanges in the “You’re in town” topic.

Recall that the tail exchange is the only exchange in a topic that can have more than one choice.
The author can use the Append Exchange operation to add an exchange after the selected exchange
unless the selected exchange is a tail exchange with more than choice. A direct link is created from
the choice in the selected exchange to the new exchange. For example, in Figure 5.5 the author is
extending the topic by adding a third exchange between the two existing exchanges. This operation
is disallowed with tail exchanges that have two or choices.

The author can change the move an selected exchange inside a topic using the Move Exchange
Up and Move Exchange Down operators. The Move Exchange Up operation moves the exchange
up by swapping the positions of the selected exchange and the exchange above. This operation is
unavailable for the first exchange in a topic. Similarly the Move Exchange Down operation moves
the exchange down by swapping the positions of the selected exchange and the exchange below. This
operation is unavailable for the tail exchange. The direct links are adjusted to maintain consistency.

]

For example, in Figure 5.6, the author moves the “Fine day...” exchange up to the first position in
the topic. A topic’s tail exchange can not be a target of this operation if it has more than one choice.

Finally, the author can remove an exchange using the Remove Exchange operation. However,
the tail exchange cannot be removed. The author must remove the entire topic instead.

The author can set the NPC remark text inside an exchange by using the Set Remark Text.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

You're in town

Selected

[Continue]
Exchange -

insert Exchange

Figure 5.4: Inserting a third exchange in a topic.

Selected
Exchange

Figure 5.5: Appending a third exchange to the end of a topic.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

——
Greatings

Selected
Exchange

MoEJhm&
Ve Excl

Figure 5.6: Moving two exchanges in a topic.

5.4 Choices

An author can add a new choice singleton to an exchange by using the Add Choice Singleton
operation. Since inner exchanges can only have one choice, this operation be only be used inside
the tail exchange of the topic. The author must first select an existing choice in the exchange. The
operation will add a new choice singleton after the selected choice. For example, in Figure 5.7 the
author adds a new choice singleton after the first choice in the exchange. Additionally, a GUI could
have a Insert Choice Singleton that would insert a new choice singleton before the selected choice.

Section 4.2.1 describes the Intelligence choice group. This choice group can be created with
either of two operations. The Add Cheice Group operation functions similar to the Add Choice
Singleton operation by adding a choice group after the selected choice. The Convert Singleton to -
Group operation converts the selected choice singleton into a choice group. This operation is only
available if a choice singleton is selected. The properties of the selected choice are preserved since
the choice becomes the first choice in the group. For both the Add Choice Group and Convert
Singleton to Group operations, the GUI must provide a mechanism to select the type of choice
group to be added. At the time of writing of this dissertation, the Intelligence choice group is the
only type of choice group available. However, it is possible for authors to create more types of
choice groups. The Intelligence choice group group is the only one used in Neverwinter Nights.

The author can use the Convert Group to Singleton to replace a choice group with a choice
singleton. The GUI must provide a mechanism to allow the author to select which choice in the
group will be used as the choice singleton. All other choices in the group are removed.

Similar to moving an exchange inside a topic, the author can move a choice left or right using

the Move Choice Left and Move Choice Right operations. The author must first select a choice

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Add Choice
Singleton

Seiected choice New choice

singleton

Figure 5.7: Adding a choice to an exchange.

Selected
choice

Figure 5.8: Removing a choice to create an utterance.

in a tail exchange. The Move Choice Left operation is only available if the selected choice has an
adjacent choice to the left. Similarly the Move Choice Right is only available if the selected choice
has an adjacent choice to right.

The author can remove a choice using the Remove Choice operation. The author first selects
the choice to be removed. If an exchange only has a single choice, the choice cannot be removed.
The only exception is if a topic has a single exchange with one choice and the topic’s ancestors
consist only of decision patterns and the root node. The choice can then be removed to convert
the exchange into an utterance. For example, in Figure 5.8 the author removes the single choice to
create an utterance. Utterances are described in Section 3.2. The author can convert an utterance
topic back into a normal topic by selecting the exchange and using the Add Choice operation.

When the author removes a choice that links to a topic, the link is also removed. If the topic is
not linked by another precursor, it is considered disconnected. Section 5.7 describes disconnected
topics in detail.

The author can set the PC remark text inside a choice by using the Set Remark Text.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Linking

The author can link a precursor (choice or decision outcome) to a target (topic or decision pattern)
by using the Link operation. The author must first select a precursor and a target. If the precursor
already links to another target, the link is redirected to the selected target. This redirection can
possibly disconnect a sub-tree of topics and decision patterns from the conversation. Section 5.7

describes this case in more detail.

5.6 Dialogue Patterns

Similar to adding a topic, the author can instantiate a dialogue pattern by using the Add Dialogue
Pattern operation. The author first selects a precursor which acts as the root node of the dialogue
pattern. If the precursor already has a link to another target, the target is appended to the end of the
instantiated dialogue pattern. The primary precursor of the dialogue pattern is defined as the first
unlinked-linked precursor in a depth-first traversal of the dialogue pattern. For example, in Figure
5.9 the author instantiates a dialogue pattern with 3 topics after the first choice in the “Faire” topic.
The “South” topic is now linked from primary precursor, which is the choice singleton in the “Topic
2” topic.

Once a dialogue pattern is instantiated into a conversation, the pattern boundary disappears and
the author is free to adapt the components as needed. Consequently, it is not possible for the author

to remove a dialogue pattern after instantiation. The components must be removed separately.

5.7 Deletion

Whenever a component is removed, it is possible for other components to become disconnected from
the conversation tree. A topic or decision pattern is disconnected if it is not linked by any precursor.
For example, in Figure 5.10 the “Groan” topic is disconnected from the conversation. A target that
is only linked by a secondary link, such as a topic in a topic group, is still considered connected to
the conversation. A topic group is disconnected if all topics in the group are disconnected.

If a topic or topic group becomes disconnected then it is removed from the conversation tree. One
exception is if a disconnected topic is part of a topic group that is still connected to the conversation.
In this case, the topic remains part of the topic group, however the GUI may warn the author that
the topic is not part of the conversation. For example, in Figure 5.11, the “East” topic in the topic
group is disconnected and will not appear when the conversation is generated into the module. This
assumes that there is no precursor anywhere in the conversation that connects to the “East” topic.
The “South” topic is not disconnected since there is a secondary link that connects to it in the figure.
The author can connect the topic by linking it with a precursor.

Formally, a topic is considered disconnected if and only if the root node is not an ancestor

of the topic. For example, although the “Threat” and “Didn’t hear” topics in Figure 5.12(a) are

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.9: Instantiating a dialogue pattern into a conversation.

Disconnected
Topic

Figure 5.10: A topic disconnected from the conversation.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 0) W

Topic

What's fo the north? What's to the south?

Figure 5.11: A disconnected topic in a topic group.

connected to the “Come closer” topic, they are still disconnected from the conversation. The “Come
closer” topic is the root of a disconnected sub-tree and consequently all 3 topics are removed from
the conversation. However, if the “Didn’t hear” topic was also linked by the “Suspicious” topic
as shown in Figure 5.12(b), then the “Didn’t hear” topic is not disconnected and only the “Come
closer” and “Threat” topics are removed.

The GUI can decide to delete disconnected sub-trees entirely, but it is advantageous to the author
to store the removed sub-trees into a disconnected bin. The disconnected bin would treat removed
sub-trees as individual dialogue pattern instances. Thus, the author can recover dialogue pattern
instances from the disconnected bin by adding them back into the conversation using the Add Dia-
logue Pattern operation. After instantiation, the pattern instance is removed from the disconnected
bin.

5.8 Decision Patterns

The author can instantiate a decision pattern using the Add Decision Pattern operation. The author
must first select a precursor that will directly link to the new decision pattern. The GUI is responsible
for providing a mechanism to select a specific decision pattern, similar to the encounter pattern
picker window described in Chapter 2. If the outcome already links to an existing target, then the
the link is redirected to the new decision pattern. The first outcome of the new decision pattern then
links to the existing target. For example, in Figure 5.13 the author instantiates an Ability decision
between the “Go away!” and “Sick” topics.

The author can also remove a decision pattern using the Remove Decision Pattern operation.
Similar to removing a topic, any sub-trees linked by the removed decision that become disconnected

are also removed.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1t was way 100 hot.

Suspicious

(a) A disconnected sub-tree of 3 topics. (b) A disconnected sub-tree of 2 topics. The “Didn’t
hear” topic remains connected.

Figure 5.12: Sub-trees disconnected from a conversation.

Figure 5.13: Adding an Abiliry decision pattern in a conversation.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.14: Adding an Ability optional choice pattern to a choice.

5.9 Optional Choice Patterns

The author can instantiate an optional choice pattern using the Add Optional Choice Pattern op-
eration. The author must first select a choice. For example, in Figure 5.14 the author selects the “I
was sent here” choice and uses the Add Optional Choice Pattern operation to instantiate a Ability
optional choice pattern. The author then sets the pattern instance’s options. The author can also
attach several optional choice pattern instances to a single choice. For example, a second Ability
optional choice pattern can be instantiated on the “I was sent here” choice. Now the conditions for
both Ability optional choice pattern instances must be true in order for the choice to be available. To
remove an optional choice pattern instance, the author can use the Remove Optional Choice Pat-
tern. This operation does not remove the choice itself. An optional choice pattern instance can be
attached to both choice singletons and choice groups. If the pattern instance is attached to a choice

group, then the pattern condition applies to all PC remarks in the group.

5.10 Summary

This chapter described the operations used to construct conversations using dialogue patterns. The
operations for topics, topic groups, exchanges, choices, linking, and dialogue patterns were de-
scribed in order. Then, the semantics for removing a sub-tree from the conversation were described.

Finally, the operations for instantiating decision and optional choice patterns were described.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Evaluation - A Case Study

This chapter presents a case study to compare the conversation model supported by the Aurora
conversation editor and the conversation model based on dialogue patterns. This case study uses
four conversations in Chapter 1 of the Neverwinter Nights official campaign. The conversations
vary in size and complexity, and are a good representative sample of all the conversations in Chapter
1 of the official campaign.

This chapter begins by defining five metrics that can be used to evaluate the complexity of
conversations. The chapter then presents the four conversations that will be evaluated using the
metrics. The chapter ends by applying the five metrics to the four conversations as built using the
Aurora conversation model and the dialogue pattern model. The values of these complexity metrics

are compared and these comparisons show that the dialogue pattern model has lower (better) values.

6.1 Complexity Metrics

There are two approaches to evaluate the effectiveness of the dialogue pattern model. In the first ap-
proach a tool is built that implements dialogue patterns. Then, a user study is conducted to measure
the relative effectiveness of the Aurora conversation editor and the dialogue pattern tool. A group
of game authors use both the Aurora conversation editor and the dialogue pattern tool. The authors
then evaluate each tool based on a variety of criteria. Finally, comparisons are made between evalu-
ations. If the dialogue pattern tool is evaluated to be better than the Aurora conversation editor, then
a conclusion can be drawn that the dialogue pattern model is a better model than the model used by
the Aurora conversation editor. The advantage this approach is that real-world experience is used to
measure the effectiveness of the model. Ultimately, the goal of creating a new model is to provide
a better mechanism for authors to create and edit conversations, and this is reflected in the data that
would be produced from such a user study.

However, a tool that implements the dialogue pattern model is not available yet. It is not possible
to compare both models using a user study, and therefore it is difficult to take into account flaws that

are not exposed by users evaluating the program. Instead, the second approach is used. Rather than

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

comparing two specific tools that use the Aurora conversation model (Aurora conversation editor)
and dialogue patterns (no tool yet), the models can be evaluated directly by applying complexity
metrics to several conversations. In this dissertation, the term complexity! is used to describe the
complicatedness of various aspects of a conversation model. The model with the lower overall
complexity metric scores is considered less complex, and therefore is easier to use. The second
approach also has a major advantage ~ the models are compared directly. It is possible that a poorly
designed and implemented tool could disguise a very good model. The results from a user study
ultimately reflect the quality of both the model and the tool implementing the model. A case study
that measures the models directly is the best way to evaluate only the models themselves.

This section presents five metrics to measure conversation complexity: component complex-
ity, structural complexity, remark complexity, indirection complexity, and operational complexity.
The metrics are expressed formally as formulas and are denoted with a subscript 4 for the Aurora
conversation model, and a subscript p for the dialogue patterns. A running example based on the
“beggarl” conversation of chapter 1 of the official campaign is used to help illustrate how metrics
are computed. This conversation has been modified slightly (by adding a single NPC remark) to
better illustrate all the metrics.

6.1.1 Component Complexity

Component complexity measures the number of visible components when a conversation is fully
expanded. In the case of the Aurora conversation model, this includes all NPC nodes, PC nodes,
and link nodes. In the case of dialogue patterns, this includes all topics, choices, inner and tail
exchanges, decision patterns, decision pattern outcomes, secondary links, and end dialogue targets.

For the Aurora conversation model, component complexity is defined in Figure 6.1. Component
complexity is the number of all conversation nodes in the conversation. For example, there are 12
NPC nodes, 12 PC nodes, and 10 link nodes in the “beggarl” Aurora conversation in Figure 6.3.
Therefore component 4(beggarl) = 12 + 12 + 10 = 34. The author views 34 total components

when the conversation is fully expanded.

NPCNodes {NPC nodes in conversation}

PCNodes {PC nodes in conversation}

LNodes </ {link nodes in conversation}

component 4(conversation) =4 |NPCNodes| + |PCNodes| + | LNodes|

Figure 6.1: Component complexity formula for Aurora conversations.

For dialogue patterns, component complexity is defined in Figure 6.2. In this case, compo-
nent complexity is the sum of all topics, exchanges (inner and tail), choices, decision pattemns

(including degenerate), outcomes in decision patterns, secondary links, and end dialogue targets.

'The term complexity is not used here to refer to the space or time complexity of an algorithm, but rather how complicated
an aspect of the model is.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

All of these components, including inner exchanges, are visible when the conversation is fully ex-
panded. For example, there are 9 topics, 10 exchanges, 9 choices, 4 decision patterns, 10 decision
pattern outcomes, 3 secondary links, and 2 end dialogue targets in the “beggarl” dialogue pat-
tern conversation in Figure 6.4. The 9 topics include the 3 topics in the topic group. Therefore
component p(beggarl) = 9 + 10+ 9 + 4 + 10 + 3 + 2 = 47. Comparing the two results shows
that component , (beggarl) is 12 points higher than component 4(beggarl).

This score is higher since topics, decision patterns, outcomes, and end dialogue targets are in-
cluded in component ,(beggarl) score and these components do not exist in the Aurora conver-
sation model. Note that these components incorporate scripting and other information that is not
represented in the Aurora conversation model. For example, the quest point decision in Figure 6.4
explicitly divides the conversation tree based on whether a quest has been completed. In the Aurora
conversation model (in Figure 6.3) the author has no way of knowing that the remark on line 3 (“It’s
over?..””) will only be displayed if the quest has been completed, without looking at the scripts.
These extra visual components provide good added value. Each topic includes text that summarizes
the intent of the topic. This information does not appear in the Aurora conversation model. The
end dialogue markers could be excluded in favour of choices with no links to targets. However, it is
easier for the author to spot these important locations in the conversation tree if explicit markers are
used. If these value-added components are removed from the conversation, the reduced component

complexity of the “beggarl” conversation would only be 10 + 9 + 3 = 22.

Topics def {topics in conversation}

TEzxchanges %! {tail exchanges in conversation}
IEzchanges «f {inner exchanges in conversation}
Exchanges f TFEzxzchanges U I Exchanges

. d
TChoices "< {choices in tail exchanges in conversation}

IChoices {choices in inner exchanges in conversation}
Choices " TChoices U IChoices
Decisions &S {decision pattern instances in conversation}
Outcomes, -4 {outcomes in decision pattern n}
LSec ! {secondary links in conversation}
EDTargets def {end dialogue targets in conversation}
component p(conversation) &f | Topics| + | Exchanges| + | Choices| + | Decisions|
+ Z |Outcomes,| + |LSec} + |EDTargets|
n€ Decisions

reduced_component p(conversation) =4 | Ezchanges| + | Choices| + | LSec|

Figure 6.2: Component complexity formulas for dialogue patterns.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gl 3 Foot

1 - [DWNER]- | never thought I'd be happy t be going back to the Reggar's Nest.

2 B [DWNER]- | just want ta go home, that's all

3 = [OWNER] - It's over? | mean, the plague is ¢till gaing, sure, but at least | can go home. The zombies in the Beg
4 - B [END DIALOGUE]

5§ = W [OWNER]- Hell. your <Lord/Lady>ship. Can you help? | don't know i should dare to ask... probably not. I'm 1
6 - =1 ICONTINUE]

7 & . [OWNER] - Can't go home to the Beggar's Nest because of zombies, can't get out of the city because
8 8 Could! ask you some questions?

9 . =) [OWNER]- Mo, please, | don't want to think about this angmore than | have to.

10 . ; -} Maybe ! could help you outZ[END DIALOBUE]

11 : .} Maybe me help yous somehow, huh MEND DIALOGUE)

12 |} Gondbye [END DIALOGUE)

13 = Me want ask questions.

14 -} [DWNER]- 1'm sony, | don't mean to be rude, but if you think 1'v2 had any time to think about

15 . 2 [CONTINUE]

16) (OWHER] - Mo, pleass, | don't want to tiirk about this anynicee than | have ta,

17 f Maybe ! could help you out?

18 3 . [OWNER] - { don't know how you could. | don't know anyone that can take on an army of zon
19 - Could | ask you some azations HEND DIGLDGLIE]

20 -} Me wart a3k questiors [END DISLOGUE]

21) Greedbe [END DIALDGUE]

22 B Maybe me help yous somehow, huh?

23) IDWNER] - 1 et know biaey pou could, | don't krows anyone that can take o an army of zom
24 =3 . Goodbye.

25 =-fJ) [DWNER] - Farewell, then. 1 just stay here... nowhers else to ga...

26 = [CONTINUE]

27 [[O\WHER] - Hey, if you are going in there, can you let me know if anything has change
28 “~{f] [END DIALOGUE]

29 [OWNER] - Cant help you? No. what am | thinking... | can't even help myseff. | carit even huddls in my own ¥
30 =l [CONTINUE]
31 - fJ} [OWNER]- Can't go home to the Beggar's Nest because of 2ombies. cant get out of the city because
32= . [OWNER] - | don't want any trouble, but | guess what | want doesn't izally matter. It's not ke thare’s anything |
33 = [CONTINUE]
34 . [OWNER] - Can't go home to the Beggar's Mest because of zombies. can't get out of the city because

Figure 6.3: The “beggarl” conversation in the Aurora conversation editor.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Me want ask

Figure 6.4: The “beggarl” conversation in the dialogue pattern model.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.2 Structural Complexity

Structural complexity measures the number of visible components when a conversation has hidden
all components that are unnecessary for the author to understand the intent of the conversation. In
the case of the Aurora conversation model, this metric is the same as component complexity since
it is not possible to collapse any sub-tree without losing important information such as branching
factor or the target of link nodes. The Aurora conversation editor could be modified so that any
linear chains of conversation nodes could be collapsed to show only the first and last node in the
chain. For example, in Figure 6.3 lines 5, 6, 7, 8, and 9 could be collapsed to show only lines 5
and 9. In the case of the dialogue pattern model, this metric assumes that all topics with multiple
exchanges are collapsed to show only the tail exchange. Therefore inner exchanges and the choices
inside these exchanges are not counted.

For the Aurora conversation model, structural complexity is defined in Figure 6.5. Similar to
component complexity, structural complexity is the sum of all conversation nodes in the conversa-
tion. For example, there are 12 NPC nodes, 12 PC nodes, and 10 link nodes in the “beggarl” Aurora
conversation in Figure 6.3. Therefore structural 4(beggarl) = 12 + 12 + 10 = 34. If the Aurora
conversation were modified to collapse linear chains then 10 nodes could be hidden and therefore
a modified structural complexity metric called collapsed chain structural complexity would be 24.
However, since the Aurora conversation editor cannot collapse chains of nodes, the collapsed chain

structural complexity is not included in the results in Section 6.3.

structural 4 (conversation) e INPCNodes| + |PCNodes| + | LNodes|

Figure 6.5: Structural complexity formula for Aurora conversations.

For dialogue patterns, structural complexity is defined in Figure 6.6. In this case, structural
complexity is the total number of components, as defined for component complexity, minus the
inner exchanges and choices inside inner exchanges. For example, there are 9 topics, 9 exchanges,
8 choices, 4 decision patterns, 10 decision pattern outcomes, 3 secondary links, and 2 end dialogue
targets in the “beggarl” dialogue pattern conversation in Figure 6.4. The 9 topics include the 3 topics
in the topic group. Therefore structural p(beggarl) = 9+9+8+4+10+3+-2 = 45. Comparing the
two results shows that structural p(beggar!) is 11 points higher than structural 4 (beggar!). Again
this score is higher since since value-added components such as topics, decision patterns, outcomes,
and end dialogue targets are included in structural p(beggarl) score. Without these value-added

components, the reduced structural complexity score is 3 + 8 4+ 3 = 20.

6.1.3 Remark Complexity

Remark complexity measures the number of remarks for which the author enters text when building
the conversation. This metric is useful since it directly measures the number of lines of conversation

the author must write. This metric can be reduced by reusing the same lines of text in several

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

structural p(conversation) &f | Topics| + | TEzchanges| + | Choices| + | Decisions|
+ Z |Outcomes,| + |LSec| + |EDTargets|
n€ Decisions
reduced_structural p(conversation) wf | TEzchanges| + | TChoices| + |LSec|

Figure 6.6: Structural complexity formulas for dialogue patterns.

contexts of the conversation. In the Aurora conversation model, this is done by creating a link node
to an existing NPC or PC conversation node. In dialogue patterns, text for PC remarks is reused by
sharing choices between topics in a topic group.

For the Aurora conversation model, remark complexity is defined in Figure 6.7. The difference
between structural and remark complexity is that link nodes are not counted since the author does
not need to write text for the link nodes. A link node automatically uses the text of its target. The
remark complexity can be reduced by replacing duplicated NPC or PC nodes with link nodes. In the
“beggar1” Aurora conversation (Figure 6.3) there are 12 NPC nodes and 12 PC nodes. Consequently
remark 4 (beggarl) = 12 + 12 = 24. This means the author has to set the text for 24 remarks.

remark 4 (conversation) def |NPCNodes| + { PCNodes|

Figure 6.7: Remark complexity formula for Aurora conversations.

For dialogue patterns, remark complexity is defined in Figure 6.8. Recall that each exchange has
one NPC remark, each choice singleton has one PC remark, and each choice group has a number of
PC remarks equal to the number of choices in the group. Therefore, remark complexity is the sum
of all exchanges, all choice singletons, and all choices in choice groups in the conversation. The
number of PC remarks in a choice is represented by PCr,. If n is a choice singleton, PCr,, is
1. For example, the “beggarl” conversation in Figure 6.4 has 11 tail exchanges, 1 inner exchange
that includes 1 hidden choice singleton, 7 choice singletons, and 1 choice group that contains 2
PC remarks. The 3 tail exchanges in the “Can you help?” are included in the 11 tail exchanges.
Therefore remark p(beggar!) = 11 +1+1 4 7+ 1 x 2 = 22. Therefore, the author has to set the
text for 22 remarks.

This result differs from the remark complexity score of 24 for the Aurora version of the con-
versation. How can the two conversations be equivalent yet have a difference of two remarks? The
number of remarks the author needs to set depends on the number of duplicated nodes. For exam-
ple, in the Aurora “beggarl” conversation in Figure 6.3 the PC nodes on lines 6, 30, and 33 are
duplicates since they link to the same NPC node and have the same remark text. The author could
have replaced the PC nodes on lines 30 and 33 with link nodes pointing to the PC node on line 6.
In contrast, the “beggarl” dialogue pattern has no duplication in this case since it shares only one
choice for all three exchanges in the “Can you help?” topic.

Note there is no reduced remark complexity for dialogue patterns since none of the value-added

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

components contain any remarks. Similarly, if the Aurora conversation editor had the capability to
collapse linear chains, the collapse would not reduce the number of remarks and therefore there is

no collapsed chain remark complexity metric.

PCr, < {PC remarks in choice n}

. d
remark p(conversation) f | Exchanges| + Z |PCry|
n€ Choices

Figure 6.8: Remark complexity formulas for dialogue patterns.

6.1.4 Indirection Complexity

Indirection complexity measures the number of points in the conversation where the conversation
tree is terminated with a leaf node that acts as a placeholder for another component. In the Aurora
conversation model this is a link node that points to an NPC or PC node. In the dialogue pattem it
is a secondary link which is indicated by a link target. This metric measures the disjointedness of
the tree where the author must follow the link by changing the view to the link target. It is easy to
keep this metric low by replacing existing links with duplicated sub-trees. However, this duplication
forces the author to enter more text for remarks, and therefore causes the remark complexity to
increase. The goal of the dialogue pattern model is to minimize indirection complexity without
greatly increasing remark complexity.

For the Aurora conversation model, indirection complexity is defined in Figure 6.9. In this case,
indirection complexity is the number of link nodes in the conversation. Each link node is a terminal
node and forces the author to change the viewport to find the link’s target node. For example, the
“beggarl” conversation in Figure 6.3 has 10 link nodes and therefore indirection 4 (beggarl) = 10.

There are 10 points in the conversation where the author’s view must be redirected.

indirection 4 (conversation) def |LNodes|

Figure 6.9: Indirection complexity formula for Aurora conversation model.

For dialogue patterns, indirection complexity is defined in Figure 6.10. In this case, indirection
complexity is the number of secondary links in the conversation. Each secondary link has a link
target redirecting the author to another part of the conversation. For example, the “beggarl” dialogue
pattern conversation in Figure 6.4 has 3 secondary links and therefore indirection p(beggarl) = 3.
This conversation has a lower disjointedness than the Aurora counterpart without increasing the

remark complexity.

L .. d
indirection p(conversation) ief | LSec|

Figure 6.10: Redirection complexity formula for dialogue patterns.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.1.5 Operational Complexity

Operational complexity measures how many operations the author must perform to construct the
conversation. For simplicity, all operations have a cost of one unit. This metric only counts the
minimum number of operations needed to construct the conversation. For example, if a conversation
in the dialogue pattern model has five topic groups with three topics per group, the conversation is
built with 15 Add Topic operations and five Merge Topic operations for a total of 20 operations. For
each topic group, the first two topics are created separately. They are then merged with the Merge
Topic operation. The third topic is created directly in the topic group with the Add Topic operation.
It is possible to create the same five topic groups with more operations by creating all 15 topics
separately with 15 Add Topic operations. Then each of the topic groups could be created by using
two Merge Topic operations to merge three topics together. This method would result in a total of
25 operations. Therefore it is more efficient to add extra topics directly in the topic group.

For the Aurora conversation model, operational complexity is defined in Figure 6.11. In this
case, operational complexity includes one Add Node operation for each NPC and PC node, one
Edit Text operation for each NPC and PC node, and one Add Link operation for each link node.
Additionally, the metric includes one Write Script operation for each unique script (When or What)
used by the conversation and one Attach Script operation for each script that is attached to each
node. For example, if a node has both a When and a What script attached then two Attach Script
operations are counted. In this case, the node is said to have two attach points, one for each script.
The “beggarl” Aurora conversation in Figure 6.3 has 12 NPC nodes, 12 PC nodes, 10 link nodes,
and uses 8 unique scripts on 10 attach points. Therefore operation 4(beggar?) = 12 + 12 + 12 +
12 + 10 + 8 + 10 = 76. The author needs to perform 76 operations to construct this conversation.

For simplicity, writing a script is counted as one operation, even though writing a script is much
more complex than writing text for a single node. Similarly, adding an adapted decision or optional
choice pattern in a dialogue pattern conversation is counted as one operation, regardless of the num-
ber of adaptations. This simplifies the metric without having to introduce weights for each operation.
More complex metrics could be constructed by count lines of code in a script and adaptation to a
pattern instance. However, in this case it is not clear how to weight lines of code versus adaptations.

NAdd ! NPCNodes U PCNodes
TEdit *2 NPCNodes U PCNodes
LAdd % {link nodes in conversation}

., d , . , .
SWrite ief {unique scripts in conversation}

SAttach < {attached scripts in conversation}

redirection 4 (conversation) & [NAdd| + | TEdit| + |LAdd| + |SWrite| + | SAttach|

Figure 6.11: Operation complexity formulas for Aurora conversations.

For dialogue patterns, operational complexity is defined in Figure 6.12. In this case, operational

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complexity includes the minimum number of operations described in Chapter 5 to construct the
conversation. The Add Topic operation is counted for each topic in the conversation. One Merge
Topic operator is counted for each topic group.

Operational complexity also counts one Insert Exchange operation for each inner exchange in
the conversation. The Add Decision Pattern and Add Decision Pattern as Degenerate operations
are counted for each decision pattern and degenerate decision pattern, respectively. The Remove
Choice is counted for each utterance topic, since an utterance is created by removing the last choice
in a topic. The Add Choice Singleton is counted for each choice singleton after the first choice in
each topic. The first choice in a topic is created along with the topic, and therefore is not counted.
Similarly, the Add Choice Group operation is counted for each choice group added after the first
choice in each topic. Finally, the Convert Singleton to Group is counted for each topic that has a
choice group as the first choice.

The Link operator is counted once for each secondary link, and each direct link that was not
created implicitly with a Add Topic or Add Decision Pattern operation. Additionally, the Set
Remark Text operation is counted once for each NPC and PC remark in the conversation. This
is simply the value of the conversation’s remark complexity. Finally, the Add Optional Choice
Pattern and Add What Encounter Pattern operations are counted once for each optional choice
pattern and external What encounter pattern, respectively. Although What encounter patterns are
not part of dialogue patterns, they are included for fairness since the operational complexity for
the Aurora conversation model counts attached What scripts. If a decision pattern includes What
actions on a remark, those What actions are not counted as a What encounter pattern since they are
generated by the decision pattern.

For the “beggarl” dialogue pattern conversation in Figure 6.4 the operations are shown in Table
6.1. The 9 Add Topic operations add the four topics on row three in Figure 6.4, the three topics in the
topic group on row four, and the two topics on row five. The one Merge Topic operation creates the
topic group on row four that contains the “Can’t go home.”, “No”, and “How can you?” topics. The
one Insert Exchange operation creates the inner exchange in the “Farewell” topic on row five. The
three Add Decision Pattern operations add the three decision patterns found on rows one and two.
The Add Decision Pattern as Degenerate operation adds the degenerate decision found in the “Can
you help?” topic on row three. The two Add Choice Singleton operations add two choice singletons
to the topic group on row four: the “Could I ask you some questions?” choice singleton (position
2) and the “Goodbye” choice singleton (position 4). The two Remove Choice Singleton operations
remove choices from the “I just want to go home” and “Happy to go back” utterance topics on row
three. The one Add Choice Group - Intelligence operation adds the “Maybe I could help you out?”
choice group (position 3) in the topic group on row four. The three Link operations create the three
secondary links found on rows five and six. The 22 Set Remark Text operations set all the remark

text found in the conversation: 12 exchanges (each with an NPC remark), 8 choice singletons (each

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with one PC remark), and one choice group (two PC remarks). The two Add Optional Cheice
Pattern operations add one optional choice pattemn to both the “Me want ask questions” (position
1) and “Could I ask you some questions?” (position 2) choice singletons in the topic group on row
four. Finally, the one Add What Encounter Pattern operation adds an external encounter pattern
that performs some actions at a point in the conversation.

Summing up the rows results in a operational complexity of operational ,(beggar?) = 49.
Assuming that writing a script and adapting a pattern to be equal in cost, 28 fewer operations are
used to build the conversation with the dialogue pattern model compared to the Aurora conversation

model. In some sense, adapting a pattern is like writing a script in a higher level language.

Operation Count
Add Topic

Merge Topic

Insert Exchange

Add Decision Pattern

Add Decision Pattern as Degenerate
Add Choice Singleton

Remove Choice Singleton

Add Choice Group - Intelligence
Convert Choice to Group - Intelligence
Link

Set Remark Text

Add Optional Choice Pattern

Add What Encounter Pattern

—WNwoO R, NN~ W~ —0

Table 6.1: Number of operations used to build the “beggarl” conversation using the dialogue pattern
mode].

6.2 The Conversations

This sections describes the four conversations selected for the case study. The Emernick, Nurse,
Helmite, and Bertrand conversations are from Chapter 1 of the Neverwinter Nights official cam-
paign. For the Aurora version of each conversation, the When and What scripts are briefly sum-
marized. Then the dialogue pattern version of the conversation is described and the decision and
optional choice pattern instances are identified. This section presents figures for each conversation
under the dialogue pattern model. Unfortunately conversations under the Aurora conversation model
are too large to display in this dissertation and therefore are not included. However, the complexity
metrics for each Aurora conversation are given in Section 6.3.

The majority of optional choice pattern instances are either a Normal intelligence or Low intel-
ligence optional choice pattern. These two patterns are specializations of the Ability optional choice
pattern and are described in Appendix A. All Normal intelligence optional choices are available
when the PC has intelligence greater than 9. All Low intelligence optional choices are available

when the PC has intelligence of 9 or lower. These patter instances are autormatically attached to

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TopAdd & {topics in conversation}

TopMerge def {topic groups in conversation}

Elnsert & {inner exchanges in conversation}

DPAdd < {normal decision patterns in conversation}
DDPAdd {degenerate decision patterns in conversation}

CAdd < {choices in conversation}

def . .
CRem = {utterances in conversation}

GAdd ¥/ {choice groups in conversation}

GConvert < {converted choices in conversation}

Link %! {secondary links in conversation}

TSet “ remark p{conversation)

OCPAdd ! {optional choice patterns in conversation}

WAdd % {ezternal what patterns associated with conversation}

operational ,(conversation) e | TopAdd| + | TopMerge| + | EInsert|+
|DPAdd| + |DDPAdd| + | CAdd|+
| CRem| + |GAdd| + | GConvert|+
|Link| + | TSet| + |OCPAdd| 4+ | WAdd)

Figure 6.12: Operation complexity formulas for dialogue patterns.

choices in a Intelligence choice group.

6.2.1 Emernick

Ememick is an NPC that is trapped in the Neverwinter prison. He speaks a few one-liners to coax
the PC into a saferoom. External scripts trigger these one-liners and require no intervention from
the PC. Once safely inside, he is willing to converse with the PC and answer a few questions. At the
end of the conversation, the PC can order Emernick to follow closely or stay in the saferoom.

Under the Aurora conversation model, the Emernick conversation has 8 unique When scripts
attached to 43 nodes. The conversation has 4 of these scripts attached to 4 NPC nodes and are used
to check if Ememick is safely inside the saferoom. The other 4 When scripts are attached to 38
PC nodes. Of these 38 PC nodes, 18 have the “nw_d2_intl” script attached to check if the PC has a
low intelligence score. Another 18 PC nodes have the “nw_d2_intn” script attached to check if the
PC has a normal or higher intelligence score. The other 2 unique When scripts combine either the
normal or low checks for intelligence with a condition checking whether the PC has a high wisdom
ability score.

Additionally, the Emernick conversation also has 5 unique What scripts attached to 6 nodes. Of
these 5 scripts, 3 scripts control Ememick’s movement by either following the PC, staying still, or
moving towards the saferoom. The other 2 scripts are used if the PC attacks Emernick. One script
engages Emernick in combat with the PC and the other script shifts the PC’s alignment towards evil.

The dialogue pattern version of the Emernick conversation is shown in 2 different parts in Figures

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.13 and 6.14. The red arrow symbol indicates where the parts join to form the entire conversation.

The Emernick conversation (Figures 6.13 and 6.14) has 4 decision pattern instances and | op-
tional choice pattern instance. There is one instance for each of the Quest point, Progress, Door
locked, and Near by decision patterns. The 1 optional choice pattern instance is an Ability optional
choice pattern. These patterns are describe in Appendix A.

The Peninsula quest closed pattern instance (Quest point decision) is used to determine if Emer-
nick will converse with the PC. If the Peninsula quest is unfinished, the PC can start a conversation
with Emernick. If the quest is finished, Emernick will just speak a one-liner. For the “Closed” out-
come, the Quest Point option is set to the closed state of the Peninsula quest and the Point State
option is set to Reached.

The Saferoom door pattern instance (Door locked decision) determines whether Ememick is
securely inside the saferoom. If the door is locked, it is assumed that both the PC and Ememick
are inside. In this case, the PC can start a conversation with Emernick. The pattern instance’s Door
global option is set to the Saferoom Door door object.

If the saferoom door is unlocked, then the Saferoom pattern instance (Near by decision) de-
termines whether Emernick is inside or outside the saferoom by comparing the distance between
Emernick and a waypoint inside the saferoom against a distance threshold. If Emernick is within 3
meters of the waypoint, he is considered to be inside the room. The pattern instance’s First Object
global option is set to Emernick, the Second Object global option is set to Saferoom Waypoint, and
the Distance option is set to 3 meters.

Once secured inside the saferoom, Emernick is willing to speak to the PC. The First time pattern
instance (Progress decision) ensures that Ememick’s question about the PC’s loyalty is only asked
once. The Goal option for the “First” outcome is set to the NPC remark in the “Not with prisoners?”
topic.

The Emernick conversation only has one instance of the Ability optional choice pattern. This
instance is attached to the “[Insight] How many levels?” choice in the topic group that contains
the “Head Gaoler?” topic. This choice is only available if the PC has high wisdom. The pattern
instance’s Ability option is set to wisdom, the Threshold option is set to 14, and the Comparison

option is set to “>” (i.e. greater than).

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

88

Figure 6.13: The Emernick conversation in the dialogue pattern model (Part 1).

‘uoissiwiad noyum pangiyosd uononpoidas Jeyung “Jaumo JybuAdoo ayy Jo uoissiwiad yum paonpolday

68

Part1

What about
Wy washe ywiow neling hm? this floor?
toruring

you?

Figure 6.14: The Emernick conversation in the dialogue pattern model (Part 2).

6.2.2 Nurse

The Nurse conversation is used for several nurse NPCs that are tending wounded civilians when the
PC first starts Chapter 1. These NPCs speak briefly with the PC and answer some basic questions.
The conversation is identical for each nurse NPC.

Under the Aurora conversation model, the Nurse conversation has 8 unique When scripts at-
tached to 38 nodes. Of these 8 scripts, 3 scripts are attached to 5 NPC nodes. The first script is used
for a persuasion skill check to convince the NPC to tell the PC more gossip. The other 2 unique
scripts are used on 4 NPC nodes and check if the PC has a high or normal charisma ability score.
These scripts are used to change how the NPC reacts to the PC’s appearance.

The other 5 When scripts are attached to 33 PC nodes. Of these 33 PC nodes, 15 have the
“nw_d2_intl” script attached to check the PC for a low intelligence ability score. Another 15 PC
nodes have the “nw_d2_intn” script attached to check the PC for a normal intelligence score. Another
2 unique When scripts combine either the normal or low conditions for intelligence with a condition
checking whether the PC has at least a normal charisma ability score. The final 2 unique When script
combine either the normal or low checks for intelligence with a condition checking whether the PC
has a high wisdom ability score. The Nurse conversation does not have any What scripts.

The Nurse conversation built with the dialogue pattern model is shown in 2 different parts in
Figures 6.15 and 6.16. The red arrow symbol indicates where the parts join to form the entire
conversation. This conversation has 4 decision pattern instances and 10 optional choice pattern
instances. The 4 decision pattern instances are instantiated from 2 decision patterns: Ability and
Skill decision patterns. The 10 optional choice pattern instances are instantiated from 3 optional
choice patterns: Low Intelligence, High Intelligence, and Ability optional choice patterns. These
patterns are described in Appendix A.

There is one instance of the Skill decision pattern. The Persuade - Gossip instance makes an
easy persuasion skill check to determine if the NPC is willing to tell the PC more gossip. The SKkill
global option is set to persuasion and the Difficulty global option is set to Easy.

There are 3 identical instances of the Ability decision pattern. The 3 Charisma instances are
degenerate decisions inside the “Greetings”, “Questions”, and “Goodbye” topics. These decision
instances decide on an NPC remark based on whether the PC has low, medium or high charisma.
Regardless of the PC’s charisma, the same set of choices are available to the PC. For each instance,
the global Ability option is set to charisma and the Threshold option for the “High” outcome is set
to 14. The Threshold option for the “Med” outcome is set to 9. The Ability decision instance inside
the ““Questions” is of particular interest since it is inside a topic group. The pattern instance is placed
directly under the “Questions” tab to indicate it is not shared by the other topics in the group.

There are 5 instances of the High Intelligence optional choice pattern and 4 instances of the Low
Intelligence optional choice pattern. These instances are attached to choice singletons. The choice

singletons cannot be grouped into Intelligence choice groups since the NPC responds differently

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

depending on the PC’s intelligence. Consequently a low intelligence choice singleton links to a
different target than the corresponding high intelligence choice singleton. For example, the “Can I
get directions?” and the “Me need directions” choices in the “Questions” topic are an inteHigence
pair. They are not a choice group since the “Can I get direction?” choices links to the “Not a tour
guide” topic and the “Me need directions” choice links to the “Snipe comment” topic. The fifth
High Intelligence pattern instance is attached to the “[Insight] You don’t like Desther?” choice in
the “Attack on Academy” topic. This choice does not have a corresponding low intelligence choice.

There is also one instance of the Ability optional choice pattern. This instance is also attached
to the “[Insight] You don’t like Desther?” choice in the “Attack on Academy” topic. The Ability
option is set to wisdom, the Threshold option is set to /4, and the Comparison option is set to >
(greater than). Therefore, this choice is only available if the PC has normal intelligence AND has
high wisdom.

The Nurse conversation also has special notation in Part 1 (Figure 6.15). There is a topic group
containing the “Plague”, “Any more questions?”, “Cure”, and “I was a midwife” topics. Both the
“Cure” and “T was a midwife” topics have their inner exchange indicator marked with a choice group
symbol labeled “1”. This indicates that an inner exchange has a choice group instead of a choice

singleton. These choice groups are accounted in the Nurse metric calculations in Section 6.3.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uolssiwlad 1noyum paygiyold uononpoisdal Jaypng “Jaumo ybuAdoo ayi Jo uoissiuad yum paonpolday

6

Figure 6.15: The Nurse conversation in the dialogue pattern model (Part 1).

‘uolssiwlad 1noyum paygiyold uononpoisdal saypng “Jaumo ybuAdoo ayi Jo uoissiuad yum paonpolday

€6

Part1

Hear about Aribeth Hear about Goodbye

(N\’ MM‘(\ Hear about Fe%\

Figure 6.16: The Nurse conversation in the dialogue pattern model (Part 2).

6.2.3 Helmite

The Helmite conversation is used for a helmite? cleric NPC. The PC can ask the cleric questions, or
receive a blessing.

Under the Aurora conversation model, the Ememick conversation has 7 unique When scripts
attached to 25 nodes. Of these 7 scripts, 2 scripts are attached to 4 NPC nodes. The first script
is used for the NPC’s greeting and checks whether the PC has already spoken with the NPC. The
greeting is different for the inittal conversation. The second script is used on 3 NPC nodes and
checks if the PC has completed the Beggar’s Nest quest.

The other 5 When scripts are attached to 21 PC nodes. Of these 21 PC nodes, 8 have the
“nw_d2_intl” script attached to check if the PC has a low intelligence ability score and another 8
PC nodes have the “nw_d2_intn” script attached to check if the PC has a normal intelligence ability
score. Another 2 unique When scripts combine either the normal or low checks for intelligence
with a condition checking whether the PC has completed the Beggar’s Nest quest. The final unique
When script checks to see if the PC has a normal intelligence ability score AND a high wisdom
ability score.

Additionally, the Helmite conversation has 3 unique What scripts attached to 5 nodes. The first
unique script records the number of times the PC has conversed with the NPC. This number is used
in a When script to determine if the PC has previously conversed with the NPC. The second unique
script makes the NPC perform a series of actions to cast a blessing on the PC. The final unique script
opens the NPC’s store interface and ends the conversation.

The Helmite conversation built with the dialogue pattern model is shown Figure 6.17. This
conversation has 5 decision pattern instances and 24 optional choice pattern instances. The 5 de-
cision instances are instantiated from the 3 decision patterns: Progress, Quest point, and Ability.
The 24 optional choice pattern instances are instantiated from the 4 optional choice patterns: Low
Intelligence, High Intelligence, Ability and Quest point. These patterns are described in Appendix
A.

There is one instance of the Progress decision pattern. The First Time instance ensures that the
NPC’s introductory greeting remark is only displayed the first time the PC converses with the NPC.
Since this pattern instance only affects the very first NPC remark, the pattern instance is a degenerate
decision inside the “Welcome” topic. The Goal global option is set to the NPC remark under the
“First” outcome.

There is one instance of the Ability decision pattern. The Intelligence instance is a degenerate
decision inside the “Goodbye” topic. This decision instance decides on a goodbye remark based on
whether the PC has a normal or low intelligence score. It has been adapted by removing the middle
outcome. The global Ability option is set to intelligence and the Threshold option for the “High”

outcome is set to 9.

2Helm is a deity in the Neverwinter Nights setting. Worshipers of this deity are called helmites.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are three identical instances of the Quest point decision pattern. Each instance selects an
outcome based on whether the PC completed the Beggar’s Nest quest. For each instance, the Quest
Point option for the the “Closed” outcome is set to the final quest point in the Beggar’s Nest quest.
The Point State option is set to Reached. These pattern instances change the NPC’s conversation
after the PC completes the quest.

There are 8 instances of the High Intelligence optional choice pattern and 7 instances of the Low
Intelligence optional choice pattern. These instances are attached to choice singletons. The choice
singletons cannot be grouped into intelligence choice groups since the NPC responds differently
depending on the PC’s intelligence. Therefore, a Low Intelligence choice singleton links to a differ-
ent target than the corresponding High Intelligence choice singleton. The eighth High Intelligence
pattern instance is attached to the “[Insight] Is this the only haven?” choice in the topic group that
contains the “A yuan-ti”, “I know little”, “Outside is safe”, and “Definitely” topics. This choice does
not have a corresponding low intelligence choice.

There is also one instance of the Ability optional choice pattern. This instance is also attached to
the “[Insight] Is this the only haven?’ choice. The Ability option is set to wisdom, the Threshold
option is set to /4, and the Comparison option is set to > (greater than). Therefore, this choice is
only available if the PC has normal or better intelligence ability score AND has high wisdom ability
score.

Finally, there are 8 identical instances of the Quest point option choice pattern. These pattern
instances make a choice available only if the Beggar’s Nest quest is not completed. Therefore the
Quest Point option for these instances is set to the final quest point in the Beggar’s Nest quest and
the Point State is set to Not Reached.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uolssiwlad 1noyum paygiyold uononpoisdal seypng “Jaumo buAdoo ayi Jo uoissiuuad yum paonpolday

96

-

e vt pecpie Blasaing
m!::?ymw: pgtassn D?_m,? Dlowsiog ha. brog down Whave I e grear D0 YOU KnOW Who

Figure 6.17: The Helmite conversation in the dialogue pattern model (Part 1).

6.2.4 Bertrand

The Bertrand conversation involves a non-trivial quest where the PC must find 2 items, a staff and
a journal, that belong to Bertrand’s missing brother. As an Aurora conversation, the conversation
checks the progress of the quest with several scripts attached to over 40 conversation nodes. The
scripts store local variables on the NPC object (i.e. Bertrand) that remember quest details such as
whether the items have been found, whether the PC has shown the items to Bertrand, and which items
were returned or sold back to Bertrand. Due to the complexity of the quest, Bertrand’s conversation
is one of the largest conversations in the chapter and one of the most complex. It is the largest
conversation in this case study. Therefore, building the Bertrand conversation with dialogue patterns
is a good indication of how dialogue patterns can be use to build the most complex conversations.

The Aurora Bertrand conversation has 30 unique When scripts attached to 97 nodes. Out of
the 30 scripts, 22 of scripts are attached to 23 NPC nodes. These scripts check various conditions
relating to the missing brother quest (A Lost Soul quest), the PC’s charisma, the PC’s persuasion skill,
and whether the PC conversed with Bertrand previously. The other 8 When scripts are attached to
74 PC nodes. Of these 74 PC nodes, 24 have the “nw_d2_intn” script attached to check if the PC has
a normal intelligence ability score. Another 24 PC nodes have the “nw_d2_intl” script attached to
check if the PC has a low intelligence ability score. The other 6 unique When scripts for PC nodes
combine either the normal or low conditions for intelligence with a condition checking whether the
PC has one or both of the quest items.

Additionally, the Bertrand conversation also has 10 unique What scripts attached to 25 nodes.
Of these 10 scripts, 6 are attached to 11 NPC nodes and the remaining 4 scripts are attached to 14 PC
nodes. These scripts store state to remember what actions the PC has done in regards to the quest,
such as retumning an item, selling back an item, revealing an item, and lying about the possession of
the quest items. Some of these scripts also give the PC experience and gold for returning the items.

The Bertrand conversation built with the dialogue pattern model is shown in 3 different parts in
Figures 6.18, 6.19, and 6.20. The red arrow symbols indicate where the parts join to form the entire

conversation.

Part1

Part 1 of the Bertrand conversation (Figure 6.18) has 6 decision pattern instances. Two of them
are degenerate decisions. There are no optional choice pattern instances in Part 1. The 6 decision
pattern instances are instantiated from 4 decision patterns: Recall, Progress, Quest point, and Ability
decision patterns. These 4 decision patterns are described in Appendix A.

There are 2 instances of the Quest point decision pattern. For the Items returned instance, the
Quest Point option for the “Reached” outcome is set to the “Both Items are Given to Bertrand”
quest point in the A Lost Soul quest (Finding Bertrand’s brother). For the Marcus dead instance, the

Quest Point option for the “Reached” outcome is set to the “Convince Bertrand Marcus is dead”

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quest point. For both instances, the “Reached” outcome’s Point State option is set to Reached.

There is one instance of the Progress decision pattern. The First Time instance ensures that
Bertrand introduces himself only once to the PC. The Goal option for the “First” outcome is set
to the 3 NPC remarks in the “Introduction” topic. The option must include 3 remarks since the
“Introduction” topic includes a degenerate decision instance on the first exchange. The degenerate
decision has 3 outcomes, therefore there are 3 NPC remarks.

There is one instance of the Recall decision pattern. The Which item is sold instance recalls
which item was sold: the journal, the staff, or neither. To support these three possibilities, the
instance is adapted to include a third “Book sold” outcome placed just before the default outcome.
The Point of Interest global option for the instances is set to 4 PC remarks. The first and second PC
remarks are from the choice group labeled “That’ll do nicely” in the “No choice - Journal” topic in
Part 2 (Figure 6.19). The third and fourth PC remarks are from the choice group labeled “That’ll do
nicely” in the the “No choice - Staff” topic in Part 2. Although the Recall decision pattern eliminates
the need for manually creating state variables on NPCs or PCs, each pattern instance still needs to
be adapted to recall the appropriate information. The set of ScriptEase actions attached to these 4
remarks is adapted to store “STAFF” if the PC is selling the staff, and “JOURNAL” if the PC is
selling the journal. The Value option for the “Staff sold” outcome is set to “STAFF”, and the Value
option for the “Book sold” outcome is set to “JOURNAL”.

Finally, there are 2 instances of the Ability decision pattern. Both are degenerate decision in-
stances. The first instance is in the “Introduction” topic and the second instance is in the “A welcome
sight” topic. The global Ability option for both instances is set to charisma. The Threshold options

for the “High” and “Medium” outcomes are set to 14 and 9, respectively.

Part 2

Part 2 of the Bertrand conversation (Figure 6.19) has 3 decision pattemn instances and 11 optional
choice pattern instances. The 3 decision pattern instances are instantiated from the Skill decision
pattern. The Skill decision is described in more detail in Appendix A.

In Figure 6.19, the 3 decision pattern instances are labeled Persuade - PC’s Word, Persuade -
Journal, and Persuade - Found Nothing. For each instance, the Skill global option is set to persua-
sion since the PC is attempting to persuade Bertrand to believe certain facts and the decision decides
whether the PC is successful. For the Persuade - PC’s Word instance, the Difficulty global option
is set to medium. In this case, the PC is attempting to persuade Bertrand that his brother is dead
without any proof. For the Persuade - Journal instance, the Difficulty global option is set to easy
since in this case, the PC has some proof that Bertrand’s brother is dead (his journal). Finally, for the
Persuade - Found Nothing instance, the Difficulty global option is set to hard. In this case, the PC
is lying to Bertrand about not finding his brother’s possessions. For all 3 decisions, no adaptations

were made.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There are 4 optional choice instances attached to 2 choices in the “Brother’s name is Marcus”
topic in Figure 6.19. The first choice labeled “Marcus? He was a mage?” has 2 optional choice
pattern instances attached, Has item and Normal intelligence, both of which are described in Ap-
pendix A. For the Has item instance, the Item option is set to the Marcus’ Staff item. The pattern
instance is further adapted by adding a definition that determines whether the PC possesses the Mar-
cus’ Journal item. The ScriptEase condition is modified to be positive if either item is in the PC’s
inventory. Therefore, this choice is available only if the PC has a normal intelligence ability score
AND possesses either Marcus’ staff or journal.

The second choice labeled “Marcus? Was he spell chucker?” has the same adapted Has item
optional choice pattern instance. Additionally, it has a Low intelligence optional choice instance.
Therefore, this choice is available only if the PC has a low intelligence ability score AND possesses
either Marcus’ staff or journal. Since Bertrand replies differently depending on the PC’s intelligence,
these 2 choices link to two different topics and therefore cannot be in a choice group.

The topic group that includes the “Unfortunate (polite)” topic has 3 optional choices. Each
choice has the same adapted Has item optional choice instance as the 2 previous optional choices.
The first choice singleton, “I’m sorry, but he fell to zombies”, also has a Normal intelligence optional
choice instance. Therefore, this choice is available only if the PC has a normal intelligence ability
score AND possesses either Marcus’ staff or journal. The second choice singleton, “Me not want
say this...”, has a Low intelligence optional choice instance and is available only if the PC has a low
intelligence ability score. The third choice is a choice group and consequently only has the adapted
Has item optional choice attached.

The topic group that includes the “Are you sure? (polite)” topic has 2 optional choices. The first
choice, “I found his journal” is a choice group that has a single Has item optional choice instance
with the Item option set to the Marcus’ Journal item. This pattern instance is not adapted. Therefore
this choice is only available if the PC possesses the journal. The second choice, ““I found his staff” is
also a choice group that has a single Has item optional choice instance. In this case, the Item option
is set to the Marcus’ Staff item object. Therefore this choice is only available if the PC possesses

the staff. The pattern instance is not adapted.

Part3

Part 3 of the Bertrand conversation (Figure 6.20) has 10 decision pattern instances and 8 optional
choice pattern instances. The 10 decision pattern instances are instantiated from the 4 decision
patterns: Recall, Has item, Quest point, and Skill. These patterns are described in Appendix A.
There are 6 instances of the Recall decision pattern. The Staff sold instance determines whether
the staff was sold or given when the PC returned the staff to Bertrand. The Point of Interest global
option is set to the 2 PC remarks in the “That’ll do nicely.” choice group in the “No choice - Staff”
topic. These 2 PC remarks are the point where the PC successfully sells the staff to Bertrand. The

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Staff sold instance adapts the set of ScriptEase actions attached to these 2 PC remarks to store a string
labeled “STAFF”. The Value option for the instance’s “Staff sold” outcome is set to “STAFF”.

The Journal sold pattern instance is similar. Instead of recalling whether the staff was sold, this
pattern instance recalls whether the journal was sold. The Point of Interest global option is set to
the 2 PC remarks in the “That’ll do nicely.” choice group in the “No choice - Journal” topic. The
Journal sold pattem instance adapts the set of ScriptEase actions attached to these 2 PC remarks to
store a string labeled “JOURNAL”. The Value option for the instance’s “Book sold” outcome is set
to “JOURNAL”.

The Extortion - Which item was sold and One was sold pattern instances are identical (Recall
decision pattern). Both of these instances recall which item was sold: the journal, the staff, or
neither. To support these three possibilities, both instances are adapted to include a third “Book
sold” outcome that is placed just before the default outcome. The Point of Interest global option
for both instances is set to the 4 PC remarks involved in both the Staff sold and Journal sold Recall
decision instances. The ScriptEase actions for those 4 remarks are adapted to store “STAFF” if the
PC is selling the staff, and “JOURNAL” if the PC is selling the journal. The Value option for the
“Staff sold” outcome is set to “STAFF”, and the Value option for the “Book sold” outcome is set to
“JOURNAL".

The final two Recall decision instances, “1 - Most recent shown™ and “2 - Most recent shown”,
are also identical. Both of these instances recall which items were revealed to Bertrand during the
conversation: the journal, the staff, or neither. To support the three possibilities, both instances
are adapted by adding a third “Journal shown” outcome before the default outcome. The Point
of Interest global option for both instances includes 1 NPC remark and 2 PC remarks. The NPC
remark is from the first exchange in the “I believe you (Yournal)” topic in Part 2 (Figure 6.19). The
2 PC remarks are from the “I found his staff” choice group in the topic group that includes the “Are
you sure? (polite)” topic. The ScriptEase actions for these 3 remarks are adapted to store “STAFF” if
the staff has been shown, and “JOURNAL” if the journal has been shown. The Value option for the
“Staff shown” outcome is set to “STAFF”, and the Value option for the “Journal shown” outcome is
set to “JOURNAL”.

There are 2 identical instances of the Quest point decision pattern. Both the Extortion and Either
item returned pattern instances use the A Lost Soul (Finding Bertrand’s brother) quest to determine
which items have been returned (i.e. either sold or given) to Bertrand. Both instances are adapted to
include a third “Journal returned”” outcome to check if the journal has been returned. The condition
for the “Journal returned” outcome is the same as the “Staff returned” outcome. Both the “Staff
returned” and “Journal returned” outcomes have their Point State options set to Reached. The
Quest point option for the “Staff returned” outcome is set to the “Return Staff to Bertrand” quest
point. The Quest Point option for the “Journal returned” outcome is set to the “Return Journal to

Bertrand” quest point.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There is one instance of the Has item decision pattern. The Staff OR Journal pattern instance is
adapted by adding a third “Has Journal” outcome that determines if the PC possess the journal. The
added outcome shares the same condition and options as the “Has Staff” outcome. The Item option
for the “Has Staff”” outcome is set to Marcus’ Staff. The Item option for the “Has Journal”” outcome
is set to Marcus’ Journal.

Finally, there is one instance of the Skill decision pattern. The Persuade - Nothing Else instance
is used when the PC attempts to lie to Bertrand about finding other items on Marcus’ body. For the
“Success” outcome, the Skill option is set to persuasion and the Difficulty option is set to Hard.

Additionally, part 3 of the Bertrand conversation has 8 instances of the Has item optional choice
pattern. The first 2 instances are attached to the two choice groups in the topic group containing the
“I believe you (Journal)” topic. The Item option for both instances is set to Marcus’ Staff. These
instances are also adapted to include extra definitions that check if the item Marcus’ Journal is in
the PC’s inventory. The ScriptEase condition is adapted to be positive if the PC contains either the
staff or the journal. Therefore these choices are available only if either the staff or the journal are in
the PC’s inventory.

Another 3 Has item pattern instances have the Item option set to the Marcus’ Journal item. One
of these 3 instances is attached to the “He had a journal. Take it”” choice group in the “Cannot
believe...” topic. The other 2 pattern instances are attached to the “I have his journal. I'll give it
to you” and “I demand payment for journal.” choices in the topic group containing the ““Staff sold”
topic.

The final 3 Has item pattern instances have the Item option set to the Marcus’ Staff item. One of
these 3 instances is attached to the “He had a staff. Take it.” choice group in the “Cannot believe...”
topic. The other 2 pattern instances are attached to the “I have his staff. I'll give it to you” and “I

demand payment for staff.” choices in the topic group containing the “Journal sold” topic.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

01

Figure 6.18

|
3

11007 N8 POSSSSEOND. | nave Nie AGS.
100k Ova them 0 YOU. L ars taik price.

: The Bertrand conversation in the dialogue pattern model (Part 1).

‘uoissiwgad 1noypum pauqiyosd uononpolidas Jayung “Jaumo 1ybuAdoo ayy Jo uoissiwiad yum pasonpoldey

£01

Part 1

Figure 6.19: The Bertrand conversation in the dialogue pattern model (Part 2).

0 Do Wy sigil:

‘uolssiwiad jnoyum paugiyoud uononpoidal Jeyung -Jaumo JybuAdoo ayp Jo uoissiwiad ypm paonpoiday

01

Hahad @ joumet. e had s et
Tee b Ty

Figure 6.20: The Bertrand conversation in the dialogue pattern model (Part 3).

Results

used to compute the complexity metrics.

This section will use the metrics presented in Section 6.1 with the conversations presented in Section
6.2 to compute and compare the complexities of the Aurora conversation model and the dialogue
pattern model. For the Aurora conversation model, the number of nodes for each conversation is
shown in Table 6.2 and the operation count for each conversation is shown in Table 6.3. For the
dialogue pattern model, the number of components for each conversation is shown in Table 6.4 and

the operation count for each conversation is shown in Table 6.5. The numbers in these tables are

Node | Emernick | Nurse | Helmite | Bertrand

NPC 25 38 26 77

PC 39 49 31 97

Link 89 125 94 267

Total 176 189 151 441

Table 6.2: Node counts for the conversations under the Aurora conversation model.

Operation Emernick | Nurse | Helmite | Bertrand
Add Node 64 87 57 174
Edit Text 64 87 57 174
Add Link 125 89 94 267
Write Script 13 8 10 40
Attach Script 49 38 30 122
Total 315 309 248 777

Table 6.3: Operation counts for the conversations under the Aurora conversation model.

Component Emernick | Nurse | Helmite | Bertrand
Topics 25 22 17 58
Tail Exchanges 25 28 21 62
Inner Exchanges 0 10 7 12
Inner Choice Singletons 0 8 7 12
Inner Choice Groups 0 2 0 0
Tail Choice Singletons 3 22 21 27
Tail Choice Groups 33 11 17 59
Secondary Links 24 18 19 45
Decision Patterns 4 1 3 17
Degenerate Decision Patterns 0 3 2 2
Optional Choice Patterns 1 10 24 15
External Encounter Patterns 5 0 4 19
Total 120 135 142 328

A metric score is in bold if it is the Iowest score.

105

Table 6.4: Component counts for the conversations under the dialogue pattern model.

The complexity metric results are shown in Table 6.6. Each conversation has two columns, one

for the Aurora conversation model (Aurora) and the other for the dialogue pattern model (D. Patts).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Operation Emernick | Nurse | Helmite | Bertrand
Add Topic 25 22 17 58
Merge Topic 4 5 5 8
Insert Exchange 0 10 7 12
Add Decision Pattern 4 1 3 17
Add Degenerate Decision Pattern 0 3 2 2
Add Choice Singleton 0 13 15 10
Remove Choice Singleton 3 0 0 2
Convert Choice to Group - Intelligence 7 5 3 18
Add Choice Group - Intelligence 26 8 14 4]
Link 24 18 19 50
Set Remark Text 94 98 90 231
Add Optional Choice Pattern 1 1 24 15
Add What Encounter Pattern 5 0 4 19
Total 193 184 203 471

Table 6.5: Operation counts for the conversations under the dialogue pattern model.

Complexity Emernick Nurse Helmite Bertrand
Aurora | D.Patts | Aurora | D.Patts { Aurora | D.Patts | Aurora | D. Patts

Component 176 120 189 135 151 142 441 328
Reduced Component - 85 - 99 - 92 - 217
Structural 176 120 189 115 151 128 441 304
Reduced Structural - 85 - 79 - 78 - 193
Remark 64 94 87 94 57 90 174 231
Indirection 125 24 89 18 94 19 267 45
Operational 309 193 315 184 248 204 777 471

Table 6.6: Complexity results for the four conversations.

The dialogue pattern model scores better than the Aurora conversation model in both the com-
ponent and structural complexity scores for all four conversations. Even though the value-added
components make up 30% of the Emernick conversation, 26% of the Nurse conversation, 35% of
the Helmite conversation, and 34% of the Bertrand conversation, the dialogue pattern model has
a lower overall number of components. This can be attributed to a large reduction in the number
of redirections, the grouping of choices into choice groups, and the sharing of choices inside topic
groups. The small difference in component and structural complexity scores show that these four
conversations do not have many inner exchanges. Even the Bertrand conversation, with 58 topics,
only has 12 inner exchanges. Collapsing topics to hide inner exchanges only has a small effect on
the number of visible components, though it is still helpful.

The reduction of indirections and the introduction of choices groups and topic groups also coun-
teract the extra duplication of choices in the dialogue pattern model. As an example of this extra
duplication, consider the “Goodbye” topic in the Helmite conversation (Figure 6.17). It is directly
linked by a choice grouped labeled “Goodbye”. However, it is also linked via secondary links by
several other “Goodbye” choice groups found in “A yuan-ti”, “I offer hope”, “Great Graveyard”,

and “North - Open” topics. In the Aurora conversation model, these would be represented as link

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes that link to the original “Goodbye” PC node. However, in the dialogue pattern model these
are duplicate choice groups that link to the “Goodbye” topic. In the Aurora conversation model, the
link nodes are counted once each, but in this case each duplicated choice effectively counts as two,
one for the duplicated choice, and one for the secondary link back to the “Goodbye” topic.

For all four conversations, the dialogue pattern model has a much better indirection complexity
score than the Aurora conversation model. In fact the dialogue pattern model complexity score is
80-83% lower than its Aurora conversation model counterpart for all conversations. These vastly
lower scores can be attributed to the sharing of choices inside topic groups. For example, in Part
1 of the Nurse conversation (Figure 6.15) there is a topic group that contains the “Plague”, “Any
more questions?”, “Cure”, and “I was a midwife” topics. There are five choices (four choice groups
and one choice singleton) shared among these four topics. In the Aurora conversation model, these
topics are represented as one or more NPC nodes. The NPC nodes for the “Plague” topic contain 9
PC nodes that represent the five choices. The NPC nodes of the other three topics would each contain
9 link nodes that link to these 9 PC nodes for a total of 27 indirections in the section of conversation.
The dialogue pattern model eliminates these 27 indirections since the choices are shared inside the
topic group. Instead, there are only four indirections which are secondary links to target topics. This
is an 85% reduction in the number of indirections which is close to the reduction percentage for
the overall indirection complexity score. Other topic groups have a similar reduction. This is an
enormous benefit to the author since this makes conversations built with dialogue patterns are much
less disjointed and therefore easier to navigate.

In all four conversations, the operational complexity of the conversation built with dialogue pat-
terns is noticeably lower than the Aurora conversation model counterpart. The dialogue pattern
model uses fewer operations, partially due to the fact that the Add Topic creates a new topic, ex-
change, and choice all at once. The sharing of choices between topics in a topic group also reduces
the number of operations needed. For example, consider in Part 1 of the Nurse conversation (Figure
6.15). There is a topic group mentioned previously that contains the “Plague”, “Any more ques-
tions?”, “Cure”, and “I was a midwife” topics. In the Aurora conversation model, the equivalent
piece of conversation is built with 29 Add Node operations since there are 9 NPC nodes and 20 PC
nodes. There are also 29 Edit Text operations, one for each node. Additionally there are 18 Add
Link operations so that each “topic” of NPC nodes share the same 9 PC nodes described earlier.
Finally there are 12 Attach Secript operations to attach the normal and low intelligence scripts to 12
PC nodes. Thus, the author must perform 88 operations to construct this piece of conversation in the
Aurora conversation model.

Constructing the same topic group in the dialogue pattern model requires four Add Topic and
one Merge Topic operations. Recall that for counting purposes, topic groups are constructed by
adding the first two topics of the group to the conversation with two Add Topic operations, merging

them with one Merge Topic operation, then adding the remaining topics to the topic group with the

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Add Topic operation. The inner exchanges are constructed using 7 Insert Exchange operations.
Of these 7 inner exchanges, two inner exchanges have their choice singleton changed to a choice
group using the Convert Choice to Group - Intelligence operation. At this point, the four topics
only share a single choice singleton. This singleton is converted to a choice group with one Convert
Choice to Group - Intelligence operation. Then the other four choices are added with one Add
Choice Singleton and three Add Choice Group - Intelligence operations. Finally, the remark text
is set for all NPC and PC remarks using 29 Set Remark Text operations. The author does not need to
instantiate any optional choice patterns since these pattern instances are automatically created with
the Convert Choice to Group - Intelligence and Add Choice Group - Intelligence operations.
Thus, the author must perform 48 operations to construct this piece of conversation in the dialogue
pattern model. Therefore 40 fewer operations are used to construct this piece of conversation in the
dialogue pattern model compared the equivalent piece of conversation in the Aurora conversation
model.

The lower operational complexity scores result from using a larger set of operations that con-
struct several components simultaneously rather than a small set of atomic operations that construct
only single components. It could be argued that a larger set of operations is more confusing to the
author. However, in a GUI these operations can be context-sensitive and only be available if the
operation can be performed legally. Therefore the author only sees a small subset of the possible set
of operation at one time.

The duplication of choices in the dialogue pattern model has a significant impact in the remark
complexity scores. For each conversation, the dialogue pattern model scores much worse than its
Aurora conversation model counterpart. For example, in the case of the “Goodbye” choice in the
Helmite conversation (Figure 6.17), the Aurora conversation model has only two PC nodes, one
for normal intelligence and one for low intelligence, with the remaining “Goodbye” nodes as link
nodes. Therefore the author only sets the remark text for two PC nodes. For the dialogue pattern
model, the author must set the text for 8 PC remarks since the “Goodbye” choice is duplicated in four
topics other than the original topic, even though the same two PC remarks are repeated in the other
four pairs. The duplication of choices also affects the Emernick, Bertrand, and to a lesser degree
the Nurse conversations. The difference in remark complexity scores for the Nurse conversation
is small since the conversation only has four duplicated “Goodbye” choice singletons that link to
the “Goodbye” topic and three duplicated “[Continue]” choice singletons that link to the “More
Gossip?” topic.

The remark complexity reveals a disadvantage in the dialogue pattern model. The author must
set the text for more PC remarks than an equivalent conversation in the Aurora conversation model.
Some of the burden can be mitigated by copying and pasting text. However, if the author changes
the remark text for one choice, all duplicate choices that share the same remark text must also be

changed. Fortunately, this problem can be further mitigated by a GUI which assists the author

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

with changing remark text of duplicate choices. The GUI can track which choices have identical
remark text that link to the same target. If the author changes one of these choices, the GUI can

automatically change the text of the other choices with or without author confirmation.

6.4 Summary

This chapter introduced a case study of four conversations from Chapter 1 of the Neverwinter Nights
official campaign. A set of five complexity metrics were introduced to directly measure the effec-
tiveness of the dialogue pattern model against the Aurora conversation model. This comparison was
independent of the quality of tools implementing the models. The Emernick, Nurse, Helmite, and
Bertrand conversations were then described, including the identification of the decision and optional
choice patterns used in each conversation. Finally, the conversations from both models were com-
pared using the five complexity measures. The dialogue pattern model has better component and
structural complexity scores than the Aurora conversation model, despite having extra value-added
components. The dialogue pattern model had a better indirection complexity since topic groups
and choice groups reduced the number of secondary links. This may be the most important com-
plexity measure since changing focus involves a context switch that can be disruptive to the author.
Additionally, the dialogue pattern model had better operational complexity since fewer operations
are required to construct a topic group than the equivalent set of conversation nodes in the Aurora
conversation model. Conversations under the dialogue pattern model has worse remark complexity
since there was duplication of choices between topics not in topic groups. This duplication created
extra PC remarks for the author to populate with text. This drawback can be mostly mitigated by a
good GUI that helps the author manage duplicated PC remarks.

It has been demonstrated that the dialogue pattern model provides an improvement over the Au-
rora conversation model. The new model abstracts conversations so that they can be presented more
compactly. This allows the author to find the sections of conversation that need attention. It also
allows the author to construct more complex conversations in a shorter period of time. Decision and
optional choice patterns save the author from writing scripting code to make the conversations more
dynamic and flexible. Perhaps most importantly, fewer distracting context changes are necessary.
This case study provides enough evidence of the superiority of the dialogue pattern model that is

should be implemented and tested with a user-study.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Future Work and Conclusion

7.1 Future Work

This dissertation presents a new model for building conversations using dialogue patterns. However,
at the time of writing there is no tool that implements this new model. The next logical step is to build
a conversation tool that integrates with the existing ScriptEase application. After this tool is built,
user studies could be performed to measure the ease of use of building conversation with dialogue
patterns. Feedback from these studies could be used to improve both the implemented tool and the
model itself. Additionally, it would be useful to measure the effectiveness of using patterns rather
than scripts by recording how long it would take for a single author to rebuild the conversations in
Chapter 1. A more comprehensive study would combine dialogue patterns with plot, behaviour, and
encounter patterns to replace every single script in the module.

Although this research allows the creation of more detailed conversations in a shorter amount
of time, the author must still create the prose or text for every single remark in each conversation.
It would be useful to find ways of automatically generating some of this conversation using NLP
techniques. For example, the author may want to create a conversation for an NPC that can assign
the PC a Retrieve an item quest. The conversation would have a common structure, such as a
remark that assigns a quest, a PC choice that gives the item to the NPC once the PC has retrieved it,
and decision and optional choice patterns that guard sections of the conversation depending on the
state of the quest. These could be represented as a basic Retrieve an Item Quest dialogue pattern.
However, the author would still need to enter remark text for all remarks. Using NLP techniques,
it would be helpful to automatically enter the text for these remarks using the context of the virtual
world and the options already set in the Retrieve an item quest instance. Ultimately the author could
choose from conversation templates that do much of the dialogue generation automatically. The

author could then focus time on tuning the conversation instead of creating it.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.2 Conclusion

In Chapter I, this dissertation introduced the computer role-playing game genre with Neverwinter
Nights as the primary example. The Aurora toolset was introduced to demonstrate how modern
CRPGs are built. The toolset uses a CAD-like interface combined with hand-written scripts to build
a dynamic world and story. This dissertation focused on the Aurora conversation editor and its
disadvantages. In Chapter 2, the application of design patterns in the form of ScriptEase was shown
to be a better alternative than manual scripting to build interactivity in the domain of CRPGs. The
ScriptEase tool was described with an example of building an encounter pattern.

In Chapter 3, the structural components of the dialogue pattern model were introduced as an
alternative to the model used by the Aurora conversation editor. Exchanges, topics, topic groups,
choices, and primary and secondary links were explained. In Chapter 4, the model was further
expanded with the introduction of decision patterns and optional choice patterns. These patterns
replace the manual scripting used by the Aurora conversation model with basic ScriptEase compo-
nents. The structural components in Chapter 3 were combined with these pattern in Chapter 4 to
form dialogue patterns. In Chapter 5, the operations used to construct the components for dialogue
patterns were described.

Finally, in Chapter 6 the dialogue pattern model was evaluated directly against the Aurora con-
versation model using complexity metrics. The component, structural, remark, indirection, and
operational complexity metrics were computed for four conversations from chapter 1 of the Nev-
erwinter Nights official campaign. The dialogue pattern model was shown to be an improvement
over the Aurora conversation model. However, it was revealed that the drawback of the dialogue
pattern model was having extra duplicated choices and therefore requiring the author to set the text
for more remarks than the equivalent conversation in the Aurora conversation model. It was sug-
gested that this problem can be mitigated with support from the GUI that implements the model.
This dissertation has provided evidence for the efficacy of the dialogue pattern model. A ScriptEase
implementation of this model should do for conversation authoring what encounter patterns have

done for authoring PC-object interactivity.

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] Bioware Corp.
http://www.bioware.com.

[2] M. Cutumisu, C. Onuczko, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy, J. Siegel, and
M. Carbonaro. Evaluating Pattern Catalogs - The Computer Games Experience. In Proceed-
ings of the 28th International Conference on Software Engineering, pages 132—-141, May 2006.

[3] M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy, C. Onuczko, and M. Car-
bonaro. Generating Ambient Behaviors in Computer Role-Playing Games. IEEE Intelligent
Systems, 21(5):88-99, 2006.

{4] The D20 Game Engine.
http://www.wizards.com/default.asp?x=d20/welcome/.

[51 Packard E. Choose Your Own Adventure series, 1979-89.
[6] Ron Edwards. GNS and Other Matters of Role-playing Theory. Adept Press, 2001.

(7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Resuable
Object-Oriented Software. Addison-Wesley Professional, September 1994.

(8] L. Henry. Group Narration: Power, Information, and Play in Role Playing Games.
http://www.darkshire.net/ jhkim/rpg/theory/liz-paper-2003/, May 2003.

[9] Jade Empire.
http://jade.bioware.com.

[10] G. Kacmarcik. Question-Answering in Role-Playing Games. In Papers from the AAAI Work-
shop on Question Answering in Restricted Domains, pages 51-55. AAAI Press, 2005.

[11] G. Kacmarcik. Using Natural Language to Manage NPC Dialog. In Artificial Intelligence and
Interactive Digital Entertainment, pages 115-117, 2006.

(12} Knights of the Old Republic.
http://www.bioware.com/games/knights_old_republic/.

[13] Lilac Soul’s Script Generator.
http://nwvault.ign.com/View.php?view=0ther.Detail&id=625.

(14] M. Mateas and A. Stern. Facade: An Experiment in Building a Fully-Realized Interactive
Drama. In Game Developers Conference, March 2003.

[15] M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford, and D. Parker. ScriptEase:
Generative Design Patterns for Computer Role-Playing Games. In Proceedings of the 19th
IEEE Conference on Automated Software Engineering (ASE 2004), pages 88-99, Linz, Aus-
tria, September 2004.

[16] M. McNaughton, J. Schaeffer, D. Szafron, D. Parker, and J. Redford. Code Generation for Al
Scripting in Computer Role-Playing Games. In Challenges in Game AI Workshop at AAAI-04,
pages 129-133, San Jose, USA, July 2004.

[17] Neverwinter Nights Awards.
http://mwn.bioware.com/about/awards.html.

[18] Neverwinter Nights Community Website.
http://nwn.bioware.com.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.bioware.com
http://www.wizards.com/default.asp?x=d20/welcome/
http://www.darkshire.net/jhkim/rpg/theory/liz-paper-2003/
http://jade.bioware.com
http://www.bioware.com/games/knights_oldjepublic/
http://nwvault.ign.com/View.php?view=Other.Detail&id=625
http://nwn.bioware.com/about/awards.html
http://nwn.bioware.com

[19] Oblivion.
http://www.elderscrolls.com/games/oblivion.overview.htm.

{20] K. Tan, D. Szafron, J. Schaeffer, J. Anvik, and S. MacDonald. Using Generative Design
Patterns to Generate Parallel Code for a Distributed Memory Environment. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 203-215, 2003.

[21] A. Tychsen, M. Hitchens, T. Brolund, and M. Kavakli. The game master. In IE2005: Pro-
ceedings of the second Australasian conference on Interactive entertainment, pages 215-222,
Sydney, Australia, Australia, 2005. Creativity & Cognition Studios Press.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.elderscrolls.com/games/oblivion_overview.htm

Appendix A

Dialogue Pattern Catalog

This appendix describes the individual patterns identified for this dissertation. The majority of these

patterns are used in the case study conversations described in Section 6.2.

A.1 Decision Patterns
The decision patterns identified in this dissertation are described as follows:

A.1.1 Ability Decision

The Ability decision decides on whether one of the PC’s ability scores, such as charisma or wisdom,
is either high, medium, or low. The Ability global option determines the ability in question. Both
the “High” and “Medium” outcomes have a Threshold option. If the PC’s ability score is higher
than the Threshold, then the outcome is selected. The “High” outcome placed before the “Medium”
outcome, otherwise the medium outcome would always be selected first. The “Low” outcome is the

default outcome.

A.1.2 Basic gender Decision

The Basic gender decision decides on the PC’s gender. Although the player can only create male
and female characters, Neverwinter Nights identifies several different genders for NPCs: female,
male, both, and neutral. This decision is useful to differentiate between female and male player
characters. The Basic gender decision applies to PCs and has “Female” and “Male” outcomes with
“Male” as the default outcome. Similar to the Ability decision pattern, this pattern is designed to
decide specifically on a PC characteristic, and therefore requires no additional options to function
properly. A more general Gender decision provides outcomes for all possible genders, based on any

target creature provided as a global option.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.1.3 Door locked Decision

The Door locked decision decides on the locked status of a door. A door can either be “Locked” or
“Unlocked” and the pattern has an outcome for each state with “Unlocked” as the default outcome.
The pattern also has a single global option Door so that the author can select the target door. Unlike
the Ability and Basic gender decisions, the Door locked decision does not use PC characteristics to

select an outcome.

A.1.4 Near by Decision

The Near by decision decides whether a game object is within a certain distance of another game
object. The “Inside” outcome is the first outcome and is selected when the two objects are within a
certain distance. The “Outside” outcome is the default outcome. The pattern as three global options.
Both the First Object and Second Object options can be any game objects. The Distance option is

a float representing the distance in meters.

A.1.5 Progress Decision

The Progress decision decides on an outcome based on which remarks in the conversation have been
previously visited. A NPC remark is considered visited if the remark is displayed in conversation.
A PC remark is visited if the player selects it as a response to the NPC. For example, a conversation
could make an early decision on whether the NPC greets the PC with either “Hello stranger!” or
“So we meet again!”. The first remark would be selected if it was the first time the PC has conversed
with the NPC. The second remark would be selected for all subsequent conversations. This decision
selects an outcome based on whether the “Hello stranger” remark has previously visited. If it has
been previously visited then the decision will select the “So we meet again!” outcome.

The Progress decision has two outcomes. The first outcome labeled “Initial” has one remark
option called Goal. Similar to other game objects in ScriptEase, the author would select the Goal
remark from a picker. The Goal option specifies which remark needs to be visited in order for the
“Initial” outcome to be not selected. For example, the author can select the the “Hello stranger!”
remark as the Goal option. The second outcome “Final” is the default outcome. This outcome is
always selected after the Goal remark has been reached. In this example, the “Initial” outcome links
to the topic with the “Hello Stranger” remark which is same as the Goal option. This allows the
outcome to be selected once and once only which is useful for first-time greetings in conversations.

In a second example, the author may want the PC to ask the NPC for a favour. Using a Progress
decision, the NPC’s reply can either be “Sure, I’ll help.” for the “Initial” outcome or “You’ve said
enough. Goodbye” for the “Final” outcome. The “Final” outcome is selected if the PC insults the
NPC in another part of the conversation by visiting the ““You have a face only a mother could love.”
remark. This is done by setting the Goal option for the “Initial” outcome to this insulting remark.

Now the NPC would be happy to assist the PC unless the PC decides to insult the NPC.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The adaptations described in Section 4.1.4 give the Progress decision extra flexibility. Each new
outcome includes its own Goal option, allowing the author to create any number of “phases” for
a single decision. Intuitively, the decision “progresses” from the first outcome to the final default
outcome as more goal remarks in the conversation are visited. The pattern can also be generalized
by changing the Goal option from a remark to a list of remarks. In this case, if any one remark in
the list is visited during conversation, then the outcome will no longer be selected.

Section 4.1.2 describes that decision patterns generate When scripts for NPC conversation nodes
that put conditions on an appearance of remarks. However, in order for the Progress decision pattern
to function, it needs to associate actions with each remark that is specified as an Goal option. These
actions set a local variable on the NPC to indicate which remarks have been visited. The Progress

decision pattern uses these local variables to determine which outcome to select.

A.1.6 Recall Decision

The Recall decision makes a decision based on a small piece of game state that was stored at a
certain point in a conversation. The author can use this pattern to make a decision on information
that was relevant at an arbitrary point in an arbitrary conversation. For example, the author wants
the NPC to greet the PC differently depending on whether the PC lied to the NPC about having a
special item earlier in the conversation. The PC has the choice to lie or tell the truth, and that choice
is recorded by the decision. When the PC talks to the NPC a second time, the decision can then
recall the recorded information to decide how the NPC will greet the PC.

The Recall decision has a “First” outcome and “Last” default outcome. The pattern has a remark
global option called Point of Interest which represents the remark in the conversation where the
decision needs to remember a piece of game state. The decision pattern remembers information
in the form of strings. The “First” outcome has a Value string option. This option is compared
against the string stored when the Point of Interest remark was visited. If the strings match, the
outcome is selected. Otherwise the default “Last” outcome is selected. The pattern can be adapted
by adding additional outcomes, where each outcome’s Value string option is compared against the
remembered string.

Similar to the Progress decision, the Recall decision requires a actions to be attached to the
Point of Interest remark. These actions stores a string as a local variable on the NPC. However, the
Recall decision differs from the Progress decision since the remark option is a global option rather
than a outcome option. Also, the pattern decides on game state stored when the Point of Interest
remark was visited, and not on whether the remark was visited. Consequently, the author needs to
specify the piece of game state that the Recall pattern uses by adapting the actions that are stored on

the Point of Interest remark. This process is described in 4.1.5.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A.1.7 Is the PC Decision

The Is the PC decision decides whether the PC is currently speaking to the NPC. Scripts can trigger
the conversation to be started without a PC so that the NPC will speak a one-liner. Instead of a
conversation window opening, this one-liner appears above the NPC’s head. This decision has two
outcomes. The “PC” outcome is selected there is a PC involved in the conversation. The default
“Other” outcome is selected if the conversation was started via script without the PC. There are no
options for this decision pattern. In most cases, the author connects an utterance topic to the “Other”

outcome so that the NPC speaks a one-liner.

A.1.8 Quest point Decision

The Quest point decision decides whether a certain quest point has reached a certain state. A quest
in Neverwinter Nights can be represented as a plot pattern. A plot pattern represents significant
events relating to the quest as quest points. For example, a Retrieve an Item quest would have a
quest point representing when the player acquires the quest item. Other patterns, including dialogue
patterns, can query the state of these quest points. A quest point either be reached, or not reached.
A quest point is reached if the its event has already occurred. For example, when the PC has acquire
the item, the quest point is considered reached. A quest point is not reached if the event has not yet
occurred.

This decision has two outcomes. The “Reached” outcome has two options. The Quest Point
option determines the quest point. This option would be selected from a picker that shows the list of
all quests along with their quest points. The Point State determines the state of the quest point and

can be either reached or not reached. The “Otherwise” outcome is the default outcome.

A.1.9 Skill Decision

The Skill decision performs a skill check based on the PC’s proficiency of a specific skill. This
decision has two outcomes. The “Success” outcome is selected if the skill check is successful. The
default “Failure” outcome is selected if the check fails. There are two global options. The Skill
option determines the skill to be checked. The Difficulty option determines the difficulty of the
check and be easy, medium, hard, superior, master, legendary, or epic. Each level is more difficult
than the previous. The difficulty is relative to the PC’s character level and therefore scales as the PC

gains levels.

A.1.10 Has item Decision

The Has item decision decides whether a specific item is in the PC’s inventory. This decision has
two outcomes. The “Has item” outcome has a single Item option that determines the item to check.

This outcome is selected if the Item is in the PC’s inventory. The “Otherwise” outcome is the default

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

outcome. This decision is easily adapted to add additional outcomes. Each outcome checks for a

specific item and the “Otherwise” outcome is selected if the PC possesses none of the items.

A.2 Optional Choice Patterns

The optional choice patterns identified in this dissertation are described as follows:

A.2.1 Ability Optional Choice

The Ability optional choice pattern makes a choice available when one of the PC’s ability scores
meets a certain condition. The Ability option determines the ability score that is compared. The
Comparison option determines the type of comparison used. It can be <, <, =, >, or >. The
Threshold determines the number against which the ability score is compared. For the conversations
in the case study in Chapter 6, this pattern is used frequently to ensure the PC’s wisdom score is a

high value (14 or more).

A.2.2 Normal Intelligence Optional Choice

The Normal Intelligence optional choice pattern is a specialization of the Abiliry decision. It makes
a choice available only if the PC has a “normal” intelligence ability score greater than 9. The Ability
option is automatically set to intelligence, the Comparison option to >, and the Threshold to 9.
This pattern is used in the Choice group - Intelligence pattern. It is also frequently used in the

conversations in the case study presented in Chapter 6.

A.2.3 Low Intelligence Optional Choice

The Low Intelligence optional choice pattern is a specialization of the Ability decision. It makes
a choice available only if the PC has a “low” intelligence ability score of 9 or lower. The Ability
option is automatically set to intelligence, the Comparison option to <, and the Threshold to 9.
This pattern is used in the Choice group - Intelligence pattern. It is also frequently used in the

conversations in the case study presented in Chapter 6.

A.2.4 Has item Optional Choice

The Has item optional choice pattern makes a choice available only if a specified item is in the PC’s

inventory. The Item option specifies the item.

A.2.5 Quest point Optional Choice

The Quest point optional choice pattern makes a choice available only if a specified quest point is in
a specified state. A quest point is described in Section A.1.8. The Quest Point option specified the
quest point. The Point State specifies the desired state of the quest point and can be either reached

or not reached.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

