
University of Alberta

D i a l o g u e P a t t e r n s i n C o m p u t e r R o l e - P l a y i n g G a m e s

by

Jeffrey D Siegel

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the
requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2007

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-30024-4
Our file Notre reference
ISBN: 978-0-494-30024-4

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Abstract

Today’s computer role-playing games (CRPGs) have ever increasing sophisticated and complex

elements, including rich and dynamic character conversations. CRPGs such as Neverwinter Nights

use manual scripting to control the flow of these conversations. These scripts can be confusing

and time consuming to game designers with no programming experience. This dissertation presents

a new dialogue pattern model to construct conversations in the Neverwinter Nights CRPG. This

model uses a more compact and concise representation than the model used by the Neverwinter

Nights Aurora conversation editor. The scripts used to create dynamic conversations in the Aurora

conversation model are replaced with generative design patterns. These design patterns generate

the scripting code automatically, preventing the game designer from making any scripting mistakes.

A case study analyzes the effectiveness of both models by using five metrics which compare the

models against several criteria. The dialogue pattern model is shown to be easier to use.

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Table of Contents

1 Introduction and Motivation 1
1.1 Computer Role-playing G am es.. 1
1.2 Interactive Story-telling.. 3
1.3 Neverwinter N ig h ts .. 4
1.4 Aurora Toolset ... 5

1.4.1 Toolset Interface and Area M aps.. 7
1.4.2 Game Objects... 9
1.4.3 Conversations... 10
1.4.4 Scripts .. 12

1.5 Aurora Toolset Deficiencies... 12
1.5.1 Conversation User In terface ... 14
1.5.2 Conversation Scripting.. 14

1.6 S um m ary ... 16

2 ScriptEase 17
2.1 Design P atterns 17
2.2 The ScriptEase Tool............................ 18
2.3 ScriptEase Interface • • 20
2.4 S um m ary ... 27

3 Structural Patterns 28
3.1 Exchanges... 30
3.2 T opics... 31
3.3 Link Targets.. 33

3.3.1 End Dialogue Targets... 37
3.4 Topic G ro u p s ... 37

3.4.1 Exchange Customization... 38
3.4.2 Choice Custom ization.. 42

3.5 Dialogue G eneration ... 43
3.6 S um m ary ... 43

4 Dialogue Patterns 45
4.1 Decision P atte rn s ... 45

4.1.1 Decision O ptions... 47
4.1.2 Code G eneration... 48
4.1.3 Sample Decision Patterns .. 48
4.1.4 Adaptations.. 50
4.1.5 Building Decision Patterns.. 51
4.1.6 Composing Decision Patterns ... 52
4.1.7 Degenerate Decision Patterns ... 54

4.2 Optional Choice P atterns ... 57
4.2.1 Choice G ro u p s .. 59

4.3 S um m ary ... 62

5 Pattern Operations 63
5.1 T opics... 63
5.2 Topic G ro u p s ... 65
5.3 Exchanges... 66
5.4 C h o ices .. 68
5.5 L in k in g .. 70
5.6 Dialogue P atterns... 70

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

5.7 D eletion... 70
5.8 Decision P atte rn s .. 72
5.9 Optional Choice P atterns.. 74
5.10 S um m ary .. 74

6 Evaluation - A Case Study 75
6.1 Complexity M etrics... 75

6.1.1 Component C om plexity.. 76
6.1.2 Structural C om plexity ... 80
6.1.3 Remark C om plexity .. 80
6.1.4 Indirection Complexity... 82
6.1.5 Operational Com plexity.. 83

6.2 The Conversations ... 85
6.2.1 E m em ick.. 86
6.2.2 N u rse .. 90
6.2.3 H elm ite... 94
6.2.4 Bertrand... 97

6.3 Results.. 105
6.4 S um m ary .. 109

7 Future Work and Conclusion 110
7.1 Future W ork... 110
7.2 Conclusion ... I l l

Bibliography 112

A Dialogue Pattern Catalog 114
A.l Decision P atte rn s.. 114

A. 1.1 Ability Decision.. 114
A. 1.2 Basic gender D ecision ... 114
A. 1.3 Door locked Decision ... 115
A. 1.4 Near by D ecision..................... ; ... 115
A. 1.5 Progress Decision ... 115
A. 1.6 Recall Decision... 116
A. 1.7 Is the PC D ecision ... 117
A. 1.8 guest point D ecision.. 117
A. 1.9 Skill Decision.. 117
A .I.10 Has item D ec is io n ... 117

A.2 Optional Choice P atterns.. 118
A.2.1 Ability Optional Choice ... 118
A.2.2 Normal Intelligence Optional C h o ic e .. 118
A.2.3 Low Intelligence Optional C h o ic e .. 118
A.2.4 Has item Optional C h o ic e .. 118
A.2.5 Quest point Optional C hoice... 118

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

List of Tables

2.1 Cognitive levels of pattern adaptation.. 26

6.1 Number of operations used to build the “beggarl” conversation using the dialogue
pattern model.. 85

6.2 Node counts for the conversations under the Aurora conversation model.............. 105
6.3 Operation counts for the conversations under the Aurora conversation model. . . . 105
6.4 Component counts for the conversations under the dialogue pattern model........... 105
6.5 Operation counts for the conversations under the dialogue pattern model............. 106
6.6 Complexity results for the four conversations.. 106

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

List of Figures

1.1 Conversation with an NPC in Knights of the Old R ep u b lic 2
1.2 Locked in combat with a hostile NPC in O blivion.. 2
1.3 The PC in a city setting... 5
1.4 The PC conversing with a lost merchant.. 6
1.5 Conversation file for the NPC Ras Whisperwind... 6
1.6 A script that causes an NPC perform actions... 7
1.7 Painting a building into an area with the Aurora toolset.. 8
1.8 The three main sections of the Aurora toolset.. 8
1.9 A conversation tree for a nurse NPC in Chapter 1 of Neverwinter Nights................. 10
1.10 A chest object can have up to 13 scripts attached.. 13
1.11 A conversation tree with many link nodes... 13

2.1 Selecting an Encounter pattern in ScriptEase.. 20
2.2 Creating a new pattern instance.. 22
2.3 Creating a new pattern instance.. 22
2.4 The internals of the Conversation When/What pattern.. 23
2.5 Adding a definition atom that checks the PC’s gender... 23
2.6 An event’s implied definitions.. 24
2.7 A positive condition that will return true if Is Specific Gender is true........................ 24
2.8 Two action atoms that move the NPC towards objects.. 25
2.9 A custom atom for merchant objects created in the ScriptEase D esigner................ 26

3.1 Two representations of a simple conversation.. 29
3.2 A friendly conversation with topics added... 32
3.3 A friendly conversation with links.. 34
3.4 Contrasting the visual complexity between direct links and link targets.................... 35
3.5 The redirect GUI operation moves the viewport to the target topic............................ 37
3.6 The swap GUI operation move the target topic and sub-tree to the viewport............. 39
3.7 Converting the farewell conversation from Aurora with PC link nodes to a dialogue

pattern... 39
3.8 The farewell conversation with topic groups and only one choice.............................. 40
3.9 Dialogue pattern for answering questions in a conversation....................................... 40
3.10 Three topics with duplicated choices. One topic has an extra choice......................... 40
3.11 A topic group with a subset of shared choices... 41
3.12 A topic group with topics that have a different number of exchanges........................ 41
3.13 A piece of Bertrand’s conversation. Several topics are in a topic group..................... 42
3.14 Customizing a choice to say “Adios.” ... 43

4.1 An Ability decision pattern based on the PC’s charisma.. 46
4.2 An example of a GUI to set decision pattern options.. 46
4.3 Adapting a Ability decision pattern... 51
4.4 The condition for the “High” outcome in the Ability decision.................................... 52
4.5 The action attached to conversation node options in the Progress decision............... 52
4.6 The first decision of the Ememick NPC in the Aurora conversation e d ito r 53
4.7 The first decision of the Ememick NPC is composed with 2 decision patterns. . . . 53
4.8 Using combinations of decision pattern to simulate logical operators........................ 55
4.9 Simplifying decisions that affect only a single NPC remark....................................... 56
4.10 The nurse’s greeting decision in the Aurora conversation editor................................. 56
4.11 A decision pattern that affects only a single exchange inside a topic with two ex

changes... 57
4.12 The condition for an Ability optional choice pattern.. 58

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

4.13 An exchange with 4 Ability optional choice patterns. The simulated pop-up window
shows details of the first optional choice pattern.. 59

4.14 Portion of Ememick’s conversation with 10 PC nodes including five normal and five
low intelligence variants.. 60

4.15 Exchange with 10 choices including five normal and five low intelligence variants. 60
4.16 A simplified exchange with 5 choice groups each with a normal and low intelligence

PC remark.. 61

5.1 Adding a new topic to a conversation... 64
5.2 Removing a selected topic from a conversation... 64
5.3 Merging a topic with a topic group. This operation can be reversed by splitting the

topic from the topic group... 65
5.4 Inserting a third exchange in a topic... 67
5.5 Appending a third exchange to the end of a topic.. 67
5.6 Moving two exchanges in a topic.. 68
5.7 Adding a choice to an exchange.. 69
5.8 Removing a choice to create an utterance... 69
5.9 Instantiating a dialogue pattern into a conversation... 71
5.10 A topic disconnected from the conversation... 71
5.11 A disconnected topic in a topic group... 72
5.12 Sub-trees disconnected from a conversation... 73
5.13 Adding an Ability decision pattern in a conversation.. 73
5.14 Adding an Ability optional choice pattern to a choice... 74

6.1 Component complexity formula for Aurora conversations.. 76
6.2 Component complexity formulas for dialogue patterns... 77
6.3 The “beggarl” conversation in the Aurora conversation editor.................................. 78
6.4 The “beggarl” conversation in the dialogue pattern model.. 79
6.5 Structural complexity formula for Aurora conversations... 80
6.6 Structural complexity formulas for dialogue patterns.. 81
6.7 Remark complexity formula for Aurora conversations.. 81
6.8 Remark complexity formulas for dialogue patterns... 82
6.9 Indirection complexity formula for Aurora conversation model................................. 82
6.10 Redirection complexity formula for dialogue patterns... 82
6.11 Operation complexity formulas for Aurora conversations... 83
6.12 Operation complexity formulas for dialogue patterns.. 86
6.13 The Ememick conversation in the dialogue pattern model (Part 1)............................ 88
6.14 The Ememick conversation in the dialogue pattern model (Part 2)............................ 89
6.15 The Nurse conversation in the dialogue pattern model (Part 1)................................... 92
6.16 The Nurse conversation in the dialogue pattern model (Part 2)................................... 93
6.17 The Helmite conversation in the dialogue pattern model (Part 1)................................ 96
6.18 The Bertrand conversation in the dialogue pattern model (Part 1).......................... 102
6.19 The Bertrand conversation in the dialogue pattern model (Part 2).......................... 103
6.20 The Bertrand conversation in the dialogue pattern model (Part 3).......................... 104

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter 1

Introduction and Motivation

1.1 Computer Role-playing Games

Role-playing games are a popular and complex type of computer game. Computer role-playing

games (CRPGs) involves a grand, intricate story, much like a novel. The player controls a player

character (PC), or a group of characters, and using the PC explore a world that involves battling

creatures, solving puzzles, completing quests or objectives, and speaking to computer controlled

non-player characters (NPCs). Unlike a novel, the player can make choices during the game, and

each choice can affect the outcome of the story. The story is revealed in small sections called quests.

Each quest gives the player a specific task to accomplish, and the player may be involved in multiple

quests simultaneously. If the game world is large enough, many quests will have no bearing on the

main story line, but serve to add depth to the world and entertain the player.

With new, powerful gaming consoles, CRPGs can be played on either personal computers or

gaming consoles. On a personal computer, the player controls the PC’s movement and actions by

clicking with the mouse or pressing arrow keys on the keyboard. On consoles, the player uses the

console controller to direct the character’s actions. The PC can interact with objects in the game,

including props such as tables and chairs. For example, clicking on a lever with the mouse may

cause a door to open. If the player clicks on a friendly NPC, it is possible to initiate a conversation

with that NPC and a dialogue will appear, giving the player the choice of what they can say.

Combat is a large aspect of CRPGs. During an adventure, the PC may encounter hostile crea

tures. Rules exist in the game to determine who can attack first, if a combatant gets hit, and how

much damage they receive - usually represented as a number. Many role-playing games are fantasy-

based, so they include magic and spell-casting systems as well.

Figure 1.1 shows a conversation scene in Knights of the Old Republic, Bioware’s futuristic RPG

based in the Star Wars universe [12]. Here the PC is conversing with an NPC in the game. The

player has a list of responses that the PC can say to the NPC. Figure 1.2 shows a combat scene in

Oblivion, Bethesda’s latest game in the Elder Scrolls Saga [19]. The player is in a first person view

fighting a hostile NPC. The player can attack with an equipped weapon by clicking the mouse.

1

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 1.1: Conversation with an NPC in Knights of the Old Republic

Figure 1.2: Locked in combat with a hostile NPC in Oblivion

2

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

CRPGs use abstraction to represent properties of the world. Characters have integers to repre

sent ability stats, such as strength, intelligence, or charisma. They have skills that determine how

well they can perform specific tasks. For example, during conversations the PC’s persuasion skill

determines the PC’s effectiveness in convincing the NPC to provide extra information or rewards.

Fighting in battles is abstracted by using either a turn-based or real-time combat system. Formulas

calculate hits and misses, item bonuses, and any damage received during combat. In most games, if

a character’s hit points (health) drop to 0, the character is considered dead.

The majority of the time in the game is spent performing quests. Most quests are assigned,

and later completed, by conversing with NPC characters. Conversations are an important part of

role-playing games. They not only add life to the NPCs, but also impart important information to

allow the player to progress in the game by completing quests and receive directions for new areas to

explore. Unlike traditional stories, interactive stories like CRPGs have no narrative text to advance

the story. Instead, CRPGs rely on conversations and journal entries to give narrative to the players.

The nature of the PC’s conversation with an NPC can change over time as the game state changes.

Conversely, conversations with NPCs can change the game state. For example, an NPC greets the

PC on the first conversation, but if the PC is insulting, the NPC will refuse any further attempts to

converse. If the PC is looking for treasure and does not know the location, the NPC can give the

treasure’s location in a conversation. If the PC already knows the treasure’s location, the NPC won’t

say anything about the location. Similarly, the PC can choose a quest from the NPC, which changes

the game state by opening a new area to explore.

State-of-the-art CRPGs are becoming more sophisticated. The worlds are larger, with more

creatures and objects. AI systems are growing more complex, with an increasing expectation for

characters that have a rich set of behaviours that project a feeling of intelligence. Intelligent charac

ters require intelligent conversations, and intelligent conversations require an effective construction

tool. This dissertation describes a new method of constructing conversations by using generative

design patterns.

1.2 Interactive Story-telling

CRPGs are a form of interactive story. Like written stories, interactive stories have a plot with

settings, protagonists and antagonists. However, interactive stories differ by allowing the player or

participant to affect the outcome of the story through their actions. It can be as simple as choosing

a page number in the Choose Your Own Adventure books [5] or as complex as helping shape the

story as a player in Pen-and-Paper Role-playing Games [6,8]. Improv comedy, such as the hit show

Who’s Line is it Anyways, also has the story shaped by the participants. Several types of interactive

storytelling involve a game master (or GM). The game master mediates the storytelling, and can

be responsible for narrative flow, rules, engagement, environment, and the virtual world [21]. In

CRPGs, the game master is normally replaced by a game engine and pre-generated content.

3

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

CRPGs are criticized as being finite in size and limiting in choices. The story is pre-defined,

with the player only having a few possible story branches to choose from. The player still has

the option to do extra side quests, but these normally serve to increase the character’s power or

provide an entertaining diversion rather than affecting the main story. For example, in Bioware’s

Jade Empire[9], the player can choose to be either good or evil. However once they make that

choice, they follow a pre-determined story until the game ends. Similarly, conversations with NPCs

are limited to a set number of statements and responses. The conversation is designed and built by

authors before the game is played, and the player only has a few options when replying to what an

NPC says.

Some work has been done to give players more options when interacting with NPCs. Microsoft

Research has looked into applying NLP techniques to NPC dialogue [10, 11]. Each NPC would

have a knowledge base that would change as the game state changes. When a PC initiates a con

versation, the NPC uses the knowledge base to dynamically generate a conversation, complete with

grammatically correct statements and a list of responses the PC can choose from.

The Fa9ade project[14] goes one step further by creating a game that provides interactive drama.

Instead of giving the PC only a list of pre-determined responses, the PC can now use the keyboard to

enter any ffee-form English statement or question to communicate with the NPCs. The NPCs have

sophisticated motivational-based artificial intelligence to determine how to respond to the PC and

what actions to perform in the virtual world.

1.3 Neverwinter Nights

Neverwinter Nights is a role-playing game developed by Bioware Corp [1]. It has won numerous

awards, including many game-of-the-year awards [17]. Based in the Forgotten Realms setting, it

uses a modified version of the pen-and-paper Dungeons and Dragons D20 system for game rules

and mechanics [4]. There are two parts to the game: the engine and modules. The game engine is

responsible for rendering game objects and special effects, moving game objects, playing music and

sound, and dispatching events to scripts, which in turn are executed by a virtual machine. Modules

are files that contain story content, including map data, story objects, scripts, and conversation files.

To play Neverwinter Nights, the player starts the game and selects a module (i.e. story). The player

then selects the PC that will play through the module. The game engine then loads the module’s

scripts and game objects into memory and the game begins. Figure 1.3 shows a screenshot of a

Neverwinter Nights module.

Neverwinter Nights includes an official campaign story comprised of 7 modules. The game’s two

expansions, Shadows of Undrentide and Horde of the Underdark, provide a further six 6 modules.

In addition to the content contained in the 13 official modules, Neverwinter Nights also includes

tools to allow players and designers to create their own content. Consequently, a large community

has formed to share ideas, provide help with scripting, author new modules, and play modules

4

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 1.3: The PC in a city setting.

created by other players and amateur designers. Bioware’s community website is the nexus of this

community [18].

In Figure 1.3, the PC, Captain Adventure, is in a large city complete with fountains, pillars, and

a fire from unruly residents. The interface includes buttons on the bottom that allow the player to

make the PC perform actions such as casting a spell or quaffing a potion. The top right comer holds

the PC’s portrait, life bar (percentage of hit points), and buttons to access windows that provide

information such as the PC’s statistics, learned spells, and journal entries for quests. In front of the

PC are NPCs that wander the city. The player can initiate conversations with these NPCs by clicking

on them.

Figure 1.4 shows a PC in conversation with an NPC named Ras Whisperwind. The PC has a

chance to persuade Ras to pay extra gold for an escort to the nearest village. If the PC is successful,

Ras will hand over the additional gold and begin following the PC.

1.4 Aurora Toolset

One of Neverwinter Night’s unique features is the Aurora toolset included with the game. The

toolset allows the author to edit module resources, including 1) area maps, 2) game objects, 3) con

versations, and 4) scripts. A conversation file is an example of a resource in a module. Conversations

are tree structures and can be edited by a conversation editor in the toolset. Each statement made

by a PC or NPC is represented by a conversation node in the tree. Figure 1.5 shows an example

conversation tree in the Aurora toolset conversation editor.

A conversation file controls how a conversation flows. Conversation nodes that represent NPC

5

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Figure 1.4: The PC conversing with a lost merchant.

f c l f i i W W l B l % l l l » l »

Scrap

| [OWNER] - FnaJy someone else! I thought I've been lost lot goocF
It looks ike you're sfcanded

E: B [CTW'NER j - That wotid be correct 1 got separated from the test cd my ateven The Itttses have tt^i oil. iltan-jng me
E B How unfortunate.

B B [OWNER]' Please help me. I could use an escort to the nearest vlage. It shotddn'l be too let horn ta e . II b<
- B <StartCheck>fPersuadei</Start> You bok f te a wealthy merchant. Sure^youhavem orethanlhetfENO!

Lne le tter Count t X jlfre Word Count : 6 f f c WwriCmr t : W Module Wert Court: 116

I
 Specter Tag Tedt Appear* When._ Aden* Taken | Odrer Actions) Comments J M i H i

Tent
S u e thrg. nfci friend Folow me. <

Scrip!

rScriptPro view—

■■■ IEi* I al

w]

Data fioofanatka | Search I

Figure 1.5: Conversation file for the NPC Ras Whisperwind.

6

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

vfiagf- ! ' sixxadiit be tv .'!* ir-'iT: rib*
I B <Sl3rtCheck>[Pertu3de|<‘'‘Start> You look ft© a wealthy merchant Sueiy you have mote than ihaljEND t

Figure 1.6: A script that causes an NPC perform actions.

statements are followed by children nodes that represent PC responses to the NPC statement. Like

many of the game objects, scripts can be attached to nodes in the conversation file. During a con

versation, these scripts can be executed, allowing the game state to change. For example, Figure

1.6 shows a typical script in the Aurora toolset’s script editor. The script is attached to the selected

conversation node in Figure 1.5 at the end of the conversation tree. The script moves the NPC to a

waypoint at another location on the map.

For maps and game objects, Aurora provides a CAD-like interface where the author can paint

terrain and objects using the mouse. A module is composed of several areas, each containing a map.

Maps are divided into a grid of tiles. The author picks a terrain tileset and can paint these terrain tiles

onto the map. Figure 1.7 shows a wooden building being painted into an area with a forest tileset.

After building all the terrain, the author can then choose from a wide selection of game objects to

populate the newly constructed map.

1.4.1 Toolset Interface and Area Maps

The interface is divided into three main sections, shown in Figure 1.8. The left-most section, labeled

1, displays the area information. A module is divided into several areas, each with a separate map.

The areas are the first module resource. Each area can contain game objects, such as creatures and

doors. The center section, labeled 2, displays the current area as it would be rendered in the game.

Below are camera controls to move the camera around the area. The author can click on visible

objects in this window to move them, orient them, or access their properties. The right-most section,

labeled 3, displays the game object palette. Here the author can select game objects to paint them

into the area. At the top are icons that show the different object categories. Below are two buttons,

one to access the standard palette and the other the custom palette. The standard palette includes all

7

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

B io W are A u r o ra N e v e rw in te r N ig h ts lo o ls e t*

Fie Edt View Environment Buld ioois Wrzards Hdp

Areas

• ’ The Scene
Creatures

i Doors

Encounters

Items

i Merchants

Placeables

: Sounds

T riggers

W aypoints

Conversations
Scripts

>\<\ a1y(.a1«U o k

¥ 1 * % £ A '
| Standard !

r Show Plot

♦ 1

F ea tu es A
Big Tree

Bridge Door 1
| Camp

Chessboard jilfl
Exit M \

i Graveyard
Portal
Ruin M

j Stream Bridge 1
Stream Bridge 2

: Tower
I W a lG a te l

W a l G ate 2
: W eb b ed Corner
i W eb b ed Forest

r> Groups
Camp 1 2x2 y

L o a d n g T ies
L o a d n g T ies
Loading T ie s
L o a d h g T les

MoLa^x:2Sy;^Grtd0fow:4 coi;2) T8eQtftl_a69_01) Pent

Figure 1.7: Painting a building into an area with the Aurora toolset.

> io W are A u r o ra N °v e rw in tf? r N ig h ts T o o ls e t - P r e lu d e J e f f . i

Fie Erit View Bivronraent B«Jd Tools Wizards Help

I % 8 ■! «■ ■»i|H«i x l f̂ »~ q> »11S ̂ ■ » b q a i #1
■BEST—

Her ban

Hew w et

H ook Horror

Injured H an
Jar oo

Ketta
Olgerd

S h ad e

Sii
Skeleton

Stag B eetle

Tabftha

Target
Umber H uk
Z ed s

SB - Doors
SI Encounters

Items

ffi Merchants

dr] P laceab les

Er Sounds

i Triggers
S) W aypoints

Conversations

h SErm
L o a d n g T ie s
L oadhg T ie s

Custom

Sarcophagus

Sarcophagus
Sarcophagus

S& bophague

S tone Door
T rea su e

• T rea su e

T rea su e

EE- Mitary
3s- M iscelaneous

EB- M iscelaneous Interior

SE Parks & N a tu e

Ei Penants & Signs

EE Ptojectle Trap Origin

EB- Secret Object

E Trades & A cadem ic & Farm

i+; T reasu e

Visual Effects

P Show Plot

Paint

Figure 1.8: The three main sections of the Aurora toolset.

8

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

pre-built game objects that are provided by the game. The custom palette holds both newly created

game objects and standard objects customized by the author.

Although most objects are visible while playing the game, such as characters and inanimate

objects, there are also invisible objects. The module, areas in the module, and waypoints are all

examples of invisible objects. In the case of waypoints, these are visible in Aurora, but invisible

when the game is played. For example, Figure 1.8 shows a waypoint object represented as a flag

with an arrow. Waypoints represent an orientation and a location on a map. Waypoints are used as

reference points, such as teleporting a PC to a new location.

1.4.2 Game Objects

The second major module resource contains game objects Neverwinter Nights supports the follow

ing object categories. The first 6 categories are scriptable, and the last 3 are not.

• Creatures - Creatures represent sentient entities. They can move, participate in combat, con

verse, and can hold item objects in their inventory. NPCs, the PC, and monsters are all crea

tures.

• Doors - Doors can be painted in certain tiles that have a doorway. Doors prevent creatures

from passing through, and can be opened, closed, locked, and bashed down.

• Placeables - Placeables are inanimate objects such as chairs, tables or chests. Most are used

for decoration, but some are containers (e.g. chests) that can hold item objects. The author

can customize a placeable to be interactive, such as clicking on a statue to access its inventory.

• Triggers - Triggers are invisible polygons painted on the map. Events are fired when a crea

ture enters or exits the trigger, allowing the author to change the game state. Examples include

defining a region to have an effect such a teleporting the intruder, spawning a creature, or

springing a trap.

• Encounters - Encounters are special triggers that spawn creatures when an intruder enters the

trigger. An encounter automatically scales the level and quantity of spawned creatures, based

on the level and power of the PC. Encounters are used extensively in the Neverwinter official

campaign to create monsters for the PC to fight during the progression through the game.

• Merchants - Merchants are invisible objects that represent a store where the PC can purchase

items and equipment. A merchant object can contain item objects much like a container. The

author then connects a merchant object with an NPC character that acts as the merchant. The

PC can then buy from the store by initiating a conversation with the NPC character.

• Sounds - Sound objects are invisible with the sole purpose of broadcasting a sound in a par

ticular part of the module. Each sound object has a broadcasting radius and the sound effect

tapers that off as the PC moves farther away.

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1 R B {OWNER] - G reetings, my < L o rd /ta d y > . How may i b e of se rv ice?

2 E) • B Could i ask you some questions?
3 E! B [OWNER] • I really should be tending the sick, but for you my ' Lotd/Lady> ! can spare a few moments.
4 Ei B What can you tel me about the plague?
5 B B [OWNER] • As much a? most less than some, I suppose. I've seen my ii'iare of the dead and dyi
6 R B Have you h ead arching about a cure for the Wating Death?
7 B B 0>d you hear anything about the attack on the Academy?
8 B - B [OWNER]-I Sward Fenthiek arid Oesther whispering about it orice. but they clammed up
9 :+'■ B What were they saying?
10 i ± B <StartCheck>[lnsight]</Start> You don’t tike Desther much, do you?
11 : :+; B What them say?
12 f+l B How did you end intending the afflicted here?
13 S i B I Wdnt to ask you something else.
14 ;±i B You know stuff *bout cure for sick?
15 E; B What you know 'bout fight at Academy?
16 El B ^ ou he rturse. How you get your job here?
17 [fj B have other question.
18 - B Goodbye.fEND DIALOGUE]
19 i+i B Have you heard any rumors lately?
20 i+] B Can I ask you some directions?
21 ; E B What you know bout plague?
22 | r±i B hear gossip or rumors or stuff?
23 I •ET B Neverwinter big place. Me need directions.
24 ; ■ Goodbye |EHD DIALOGUE]
25 ; a - ■ [OWNER] - 1 really should be tenduig the sick, but I can spare a tew moments, <sff/rnadam>.
26 & ■ [OWNER] - Make if quick - my time is befter spent easing the suffering of my patients.
2 7 + B Me want ask questions.
28 ; ;_]. g Goodbye.

29 ■ [OWNER] • May whatever Gods you pray to keep you safe from the plague.
3 0 j - B [OWNER] • On your way. then I've got too many sick and suffersig to waste my time on brig gooctoyes.
31 L ■ [OWNER] - Off with you, then. IVe no time for the likes of you.
3 2 B B [OWNER] • Is there something I can do for you, <sk/madam>?

Figure 1.9: A conversation tree for a nurse NPC in Chapter 1 of Neverwinter Nights.

• Items - Items are non-scriptable objects that exist in creature or placeable inventories, or

found on the ground. Items include weapons, armour, potions, and books. Many items can be

equipped by a PC or NPC, giving a boost to their abilities. Items can be bought from and sold

to merchants.

• Waypoints - Waypoints are invisible objects that the author can paint on the map. Waypoints

are used as markers for controlling creature movement. For example, a guard patrolling a

treasure chest follows a set of waypoints clustered around the treasure chest.

1.4.3 Conversations

Conversation files are the third major module resource. A conversation is viewed as a tree, with each

branch representing a possible line of dialogue the player can see when playing the game. Figure

1.9 shows a conversation from an NPC in Chapter 1 of Neverwinter Night’s official campaign story.

A tree of nodes is visible, each on a separate line with the statement text. NPC remark nodes are

coloured in red and PC choice nodes are coloured in blue. NPC nodes always contain PC child

nodes, and similarly PC nodes contain NPC child nodes.

Semantically, NPC nodes differ from PC nodes in that only one can be displayed in a conversa

tion at any one time. If a PC node contains several NPC nodes, then the game engine must select

only one of the NPC nodes. To do this, the engine evaluates a When script on each NPC node, one

at a time. A When script is evaluated to determine whether the node is to be displayed or hidden.

10

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

The first NPC node with a When script that returns TRUE is selected to be displayed. In Figure 1.9,

there are three NPC children under the “Goodbye” PC node (line 28). If the PC selected this choice

during the game, the game engine would evaluate the When script of the first NPC child. In this

case, the script returns TRUE if the PC has a high charisma ability score, FALSE otherwise. If the

script returns TRUE, the NPC remark on line 29 is displayed. If the script returns FALSE, the engine

evaluates the When script for the next NPC child and so on. If all When scripts return FALSE, the

last NPC child is selected by default.

In contrast, if an NPC node contains multiple PC children nodes, any number of children can

be displayed as PC nodes simultaneously. These PC nodes are a list of choices where the PC can

choose the appropriate response. A When script on a PC response node will hide the node from

the list of choices if the script evaluates to FALSE. For example, in Figure 1.9 the PC node on line

10 has an attached When script, which is indicated by green in the node’s blue square icon.

The script only returns TRUE if the PC has a high wisdom1 ability score. For players without high

wisdom, this response will be absent when they reach that point in the conversation.

In addition to When scripts, conversation nodes can also have What scripts. These scripts are

executed after a conversation node is displayed in a conversation. In the case of a PC node, the script

is executed when the PC selects that node as a response.

Figure 1.9 also shows nodes that are gray in colour on lines 18 and 24. These are link nodes.

They convert the conversation from a tree to a graph by allowing branches of the conversation to lead

into other branches. For example, the “Goodbye” link on lines 18 and 24 gives the PC the option to

pick the goodbye choice found at line 28 at several points during the conversation. The author does

not have to replicate the goodbye sub-tree in multiple locations of the tree. Links also allow the PC

to ask the NPC to repeat questions or explanations without duplication a sub-tree of conversation

nodes.

Conversations are constructed using a simple set of operations. A author creates the conversation

by adding one conversation node per operation. After a node is created, the author can set the remark

text and properties, as well as attach When and What scripts. Finally, the author can delete a node

and its subtree. The complete list of operations follows:

• Add Node - Adds a new child node to the selected node.

• Remove Node - Deletes a node and all its descendants.

• Edit Text - Changes the node’s statement text.

• Edit Property - Change a property of a node, including animation and journal entry updates.

• Add Link - Involves copying a node, then pasting it as a link node in some other location in

the tree.
'W isdom determines a character’s intuition, insight, and overall knowledge.

11

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

• Attach Script - Opens a dialog box with a lists of scripts. The user selects one to attach as

either a When script or What script.

1.4.4 Scripts

Scripts are the fourth major module resource. Each script is written in the Bioware-invented NWScript

code which is a statically typed C-like language. The game engine exposes an API which the author

can use in scripts to control the story. Scripts can also store integer, string, and object variables on

any game object in the module. Figure 1.6 shows a script that is used in a conversation. This script

forces the NPC to walk to a waypoint after talking with the PC.

Scripts are attached to game objects and conversation nodes. Objects respond to certain events

that can be fired during the game. When an event is fired, the game engine looks up the correspond

ing script on the object responding to the event. The engine then executes the script. Once the script

is completed, the engine continues running the game by processing new events.

The author can use the Aurora toolset to attach scripts to game objects. After selecting the

desired object, the author picks an event that will execute the script. For example, the selected

conversation node in Figure 1.5 responds to two events: When and What. In the figure, these

events are represented by the “Text Appears When” and “Actions Taken” GUI tabs. The script can

be attached by either typing the name of the script in a text field, or selecting the script from a list in

a pop-up window. Figure 1.6 shows a What script that the author attaches to the conversation node.

While conversation nodes only respond to two events, certain game objects respond to many events.

A chest object, for example, responds to 13 events. Figure 1.10 shows the interface where the author

can attach 13 possible scripts - one script for each event - to the chest object. Like attaching scripts

to conversation nodes, a script can be attached to an object by typing the name of the script, or

selecting it from a list by clicking the “...” button.

1.5 Aurora Toolset Deficiencies

While simple at first, the Aurora toolset becomes challenging to use when the author tries to create

more sophisticated game object interactions. Any non-trivial player/object interaction requires the

author to create a script by using the scripting editor [15]. Creatures have simple behaviours since

interesting behaviours are not cost-effective with current tools [3]. Managing quests and the overall

story requires the author to set and check a complicated set of esoterically-named variables spread

across tens or even hundreds of scripts. Conversation trees can quickly become wide and deep,

scattered with many link nodes. For the purpose of this dissertation, this section will focus on the

shortcomings of the Aurora’s conversation editor.

12

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

P laceab le O b jec t P ro p e rtie s

jOnCick
j d - Ed*

jOnCbse
z A Edit

jOibamaged U - Ed*
[OnDeath nw o2 classmed ▼ j ... Etfit

jOnHeartbeat ,rJ - Edit

pnbisturbed
z T - Ed*

jBNLbck---'-'-:;' ' ...3 - Edit

jOnPtvsicafettacked .. J - Edit

P fb p e n rm o2 classmed ▼ | ... Edit
jOnSpeCretAt

3 - Ed*
pnUnLock z T Edit
jOnUsed j r] . . . Ed*
jOnUserDefined

3 - Ecfit

In ven tory ... j Save Script Set j Load Script Set

OK C an cel

Figure 1.10: A chest object can have up to 13 scripts attached.

E H What do you know about this floor of the prison?
E l ' l [OWNERJ • it's the Security Layer - Supposed to be a buffer zone between the regular prisoners anc

E l B The Pits? What are those?
B B [OWNER] - That's where you're headed There aren’t many cells down there except those t!

• B Are the doors locked or un!ocked?[EHD DIALOGUE]
B Where are the former prisoners holed up?[END DIALOGUE]
B i n**d supplies. Are there any storerooms?(END DiALOGUE]

;■ B Da doors-dey locked or unlocked?[END DIALOGUE]
- ■ B prboriers - where dey hidin'?[END DIALOGUE]
B Hmph. Der storerooms ‘round here?[END DIALOGUE]
B That's all I need to know about the prison [END DIALOGUE]

1 B th a t si me need to know ‘bout prison.[END DIALOGUE]
E B Are the doors locked or unlocked?

E B [OWNER] - The ceB doors are locked but the others should aB be open, if you can get instd*
L ' H Where are the former prisoners holed up?[END DIALOGUE]

B I freed supplies. Are there any storerooms ?[END DIALOGUE]
B prisoners - where dey Ndin'?[END DIALOGUE]
B Hmph. Der storerooms 'round here?[END DIALOGUE]

i " B That's all i need to know about the prlson.[END DIALOGUE]
:" B That a im s need to know'bout pri.son.[END DIALOGUE]

6 B W here are the former prisoners holed up?
® f l (OWNER] • They've barricaded themselves in the central guard room. They're sending out p

r B Are the. doors locked or unlocked?fEND DIALOGLIE]
i ' B I r^eed supplies. Are there any storerooms'^END DIALOGUE]
: B Da doors - dey locked or unlocked?[END DIALOGUE]
. H Hmoh. Der storerooms ‘round here?f£ND DIALOGUE!

Figure 1.11: A conversation tree with many link nodes.

13

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1.5.1 Conversation User Interface

The Neverwinter Nights official campaign story contains many large and complicated conversations.

Figure 1.11 shows a portion of such a conversation for the Ememick character from Chapter 1 of

the official campaign story. The complete conversation contains 176 nodes. This conversation has a

depth of 10. The depth of the tree is the maximum number of levels needed to reach any leaf node

from the root node. Each level of the conversation tree is indicated by a vertical line that connects

sibling nodes. As the tree view is expanded to reveal lower levels, outer vertical lines become longer,

and the sibling nodes move farther apart.

Once several levels of the tree are in view, it becomes difficult for the author to associate parent

nodes with their children. This hampers the author from getting an overall view of the conversation.

To get a better overview, the conversation needs to be abstracted. That is, hide unnecessary details of

the conversation and only show the important details. The Aurora conversation editor only provides

one mechanism for abstracting the conversation tree: expanding and collapsing conversation nodes.

For example, in Figure 1.11, the conversation node on the first line marked by the arrow has no

siblings NPC nodes visible. Instead, the screen is filled with the node’s descendants, mostly link

nodes. Since the link nodes are terminal, the author can get a more concise view of the tree by

collapsing the link nodes into their parents. Unfortunately, collapsing a conversation node hides its

entire sub-tree, including any important branches of conversation that the author may want to view.

One of the contributions of this dissertation are better abstraction mechanisms presented in Chapters

3 and 4.

In the Aurora conversation editor, a author can create a link node that points to another part of the

conversation tree. This allows the author to create repeatable sections of conversation, such as the PC

asking a set of questions at several different points in the conversation. Many large conversations

consist largely of links and it is common to see several groups of links, as shown in Ememick’s

conversation in Figure 1.11. Unfortunately, the Aurora conversation editor does not provide any

visual indication of a link node’s target node. The author must instead double-click the link to be

redirected to the actual node. For large conversations, this may scroll the screen to the point where

the original source link node is moved off the screen. With so many links in a single conversation,

it is impossible for the author to get an overall view of the conversation. For example, the Ememick

conversation (Figure 1.11), 51% of the entire conversation tree is composed of link nodes.

1.5.2 Conversation Scripting

As Section 1.4.3 describes, conversation nodes can have When and What scripts attached. The

When script is executed just before the conversation node is to be displayed, and decides whether

the node should be visible or hidden from the conversation. The author uses When scripts to decide

at which point in the story the node should appear. The What script is executed just after the

conversation node is displayed. Designers use the What script to execute game actions or change

14

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

game state at particular points in the conversation.

For large conversations, there may be conversation nodes that require the same script, or a slight

variation on the same script. For each conversation node, the author must:

1. Determine what functionality is needed.

2. Search for existing scripts that provide that functionality.

3. If no such script exists, create a new script.

4. Attach the script to the conversation node.

It is possible that the desired script already exists, but the author needs to change a few param

eters to accommodate the conversation node. For example, the toolset, as one of its default scripts,

includes an “Intelligence” script that returns TRUE if the PC’s intelligence is greater than 9. The

author may want to change the number to 11 for a specific PC conversation node. Unfortunately the

Aurora toolset does not allow parameters to be passed to a script.2 Consequently, the author must

create a new script to check if the PC’s intelligence is greater than 11.

Even if the same script can be used for several conversation nodes, the author must still attach the

script manually for each node. For example, the Ememick conversation only uses 8 unique When

scripts (3 default, 5 custom), but those scripts are attached to 43 conversation nodes. The author also

needs to know of the existence of scripts and what nodes where they will be attached. In Aurora

there is no tool or mechanism to manage the intent or purpose of scripts other then their names. For

example, the Ememick conversation uses a When script named “mlq2_ememik2”, which suggests

nothing of the script’s intent other than it is used in the Ememick conversation.

When scripts on NPC conversation nodes can be particularly confusing. As described in Section

1.4.3, When scripts on sibling NPC conversation nodes are evaluated sequentially. This is analogous

to the short-circuit semantics for boolean operators present in programming languages such as C,

C++, and Java. If a script returns TRUE, all subsequent scripts are ignored. The majority of these

When scripts can be complicated, involving many variables that are designated for controlling the

plot and quests. Due to the short-circuit semantics, it can be difficult to determine which of the NPC

sibling nodes will be displayed given certain conditions. For example, the “mlq2-ememik2” script

- which is attached to an NPC node - has the following code:
int StartingConditional()
{

int bCondition = GetlsPC(GetPCSpeaker()) &&
GetDistanceToObject(GetNearestObjectByTag<"Ememik_Waypoint")) < 3.0 &&
GetLocked(GetNearestObjectByTag("Emernik_Door")) == FALSE ;

return bCondition;
}

Neither the script’s name or the code clearly reveals the intent of the script. This script only dis

plays the NPC node if the NPC is inside a safe-room and the PC has securely locked the door to this

2 At the time of writing, the sequel Neverwinter Nights 2 was released. It improves the toolset by allowing parameters to
be passed to scripts.

15

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

room to prevent hostile creatures from entering. Additionally, the NPC node will not be displayed

if the quest that involves Ememick is completed. However, the above code gives no indication

that this condition is necessary. The reason is that another script, “mlq2_plotdone”, is attached

to an earlier sibling NPC node and consequently is always evaluated before the “mlq2_ememik2”

script. If the Ememick quest is completed, the “mlq2_plotdone” evaluates to TRUE and the second

“mlq2_ememik2” script is not even evaluated. The author now must consider the intent of both

scripts when trying to determine under what conditions the NPC node will be displayed or hidden.

Lastly, many large conversations have 40 or more conversation nodes with scripts attached.

It becomes difficult for the author to keep track of which nodes have scripts, and the intent of

these scripts. Many scripts set local variables on objects so that other scripts on that and other

conversations can check these variables in their When scripts. These script interactions require the

author to mentally manage the structure of conversations, and complicates the process of fixing bugs

when a conversation functions incorrectly.

1.6 Summary

This chapter introduced computer role playing games (CRPGs) and their unique characteristics as

interactive stories from other genres of computer and console games. Neverwinter Nights was intro

duced as an example of a modem CRPG. The game’s Aurora conversation editor was described as

a powerful tool that allows game designers and players alike to construct their own stories. The edi

tor allows authors to construct four primary elements, the world terrain, game objects, conversation

trees, and scripts. The world terrain and game objects are constructed with a CAD-like interface.

The conversations are built as a tree of nodes using the Aurora conversation editor. The scripts are

written using NWNScript which has a C-like syntax. The Aurora toolset’s deficiencies were then

identified. The Aurora conversation editor does not abstract complex conversations in a way that

is concise or can be grasped quickly. The manual scripting problem was also identified. Many au

thors do not have programming experience and scripting functionality by hand is an obstacle and a

bottleneck in time.

This dissertation contributes a new conversation model that addresses these deficiencies through

the use of design patterns. Chapter 2 describes how generative design patterns are used to replace

manual scripting using the ScriptEase tool. Chapter 3 describes the structural components of the

new conversation model. Chapter 4 describes the dialogue patterns that integrate with the ScriptEase

model to replace the manual scripting of conversations. Chapter 5 describes the operations the author

would use to build a conversation using the new model. The model is evaluated in Chapter 6 with a

case study that compares the new model against the model used by the Aurora conversation editor.

Finally, Chapter 7 discusses future work and concludes this dissertation.

16

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter 2

ScriptEase

2.1 Design Patterns

Unfortunately, writing scripts manually is the state-of-the-art in building computer role-playing

games. However, attempts are being made to assist designers and programmers with scripting.

Tools such as Epic’s Kismet for the Unreal3 engine and Lilac Soul’s Script Generator for Never

winter Nights [13] remove some of the manual scripting burden. Instead of waiting for programmer

assistance to write scripts, the author can use these tools to create scripts for them. Tools can come

in different forms. For example, Kismet has a flowchart-like interface where the author can connect

pieces of functionality together graphically. Lilac Soul’s Script Generator has a wizard-like interface

which interacts with the author through a series of questions, and generating a script at the end.

In general, CRPG scripts tend to repeat the same specific functionality with small changes in

parameters. It is possible to represent these groups of similar scripts by a design pattern. Each

design pattern shares the same overall code with specific components that are customized for each

desired script. Design patterns are used extensively in Software Engineering for representing sets

of design solutions for particular uses [7]. A pattern is a family of solutions that is then adapted to

a specific solution instance by an author or programmer. Patterns are proven, robust solutions with

little chance of the user making an error. Reusing patterns can greatly speed up development time,

and reduces testing and debugging time.

There are two primary types of patterns: descriptive patterns and generative patterns. Descriptive

patterns are the primary type of pattern described in the software engineering literature. A descrip

tive pattern describes a family of solutions in a neutral format. The programmer or author is then

responsible of implementing a specific solution instance by manually writing code that implements

the pattern description. For instance, Gamma et al. provide many descriptive patterns for program

ming in Object-Oriented programming languages [7]. They have a specific format to describe each

pattern, including motivation, structure of the pattern, when to use it, and sample code in one or two

programming languages.

Descriptive patterns greatly reduce the chance of the programmer making an error when writing

17

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

a solution by solving the general problem. However, the programmer or author can still introduce

errors when implementing a specific solution instance of the pattern. Generative patterns solve this

problem by not only describing a solution, but also generating code for that solution. The author

adapts the pattern to a specific solution. A tool uses the adapted pattern to generate all the code

necessary to implement that specific solution.

Generative patterns, although promising, may work poorly in general domains. The generated

code may have poor performance. If patterns become too general, they require extensive adapta

tion before they can be used. However, under restricted domains, generative patterns can be quite

effective. For example, in parallel programing CO 2 P3 S (Correct Object-Oriented Pattern-Based

Programming System) [20] uses generative patterns to help programmers generate a correct frame

work for parallel programs. The programmer first selects a pattern, which represents a parallel

programming strategy (e.g. mesh, pipeline, etc.). The programmer then selects options to adapt the

pattern to a particular application and then the code is generated for the framework. The programmer

can then make application-specific changes at key points in the framework without having to worry

about program correctness such as synchronization, for example.

Computer role-playing games are another domain suited for generative design patterns. Many

scripts have a simple structure that can be represented as a pattern. For example, the author may

want to spawn a guardian creature when the PC steals some items from a treasure chest. This can be

considered a pattern called Placeable Disturb - Spawn Creature. This pattern can be used with any

placeable objects, normally chests. The author then has to adapt the pattern to the specific treasure

chest and guardian creature. Both the container and creature are considered options of the pattern,

and are the pieces of the pattern that can be adapted. Once the options are specified, the code for the

specific solution can be generated.

2.2 The ScriptEase Tool

ScriptEase is a tool to create and use generative design patterns for computer role-playing games

[15]. Although it currently targets Neverwinter Nights, it is possible to port it to other role-playing

games such as Oblivion. Using ScriptEase, an author can instantiate a new pattern, set some options

to include specific objects in a module, add actions or conditions specific to the story context. The

author can select any number of patterns from a pattern catalog. A pattern has a set of options, or

parameters. Each option has a certain type, such as an integer, text, or game object. The author

customizes a pattern by setting these options, either by providing a literal value for integers and

string, or by using a picker to select objects. Only valid objects of the proper type are available in

the picker. This prevents the author from making mistakes when selecting an object.

For example, the pattern Placeable Disturb - Spawn Creature, described in the previous section,

has 3 options: The Container, Creature Blueprint, and Spawn Effect. Both The Container

(e.g. a chest) and Creature Blueprint (e.g. a dragon) options require a game object, which can

18

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

be selected from the object picker. The third option, Spawn Effect, requires a visual effect to be

displayed when the creature appears. This option can be selected from an enumerated drop-down

list. In addition, the author may also want add an action to the pattern to make the creature speak

some text upon spawning. Finally, the author can add a condition to the pattern to make the creature

spawn if only a specific item is removed from The Container object. Adding actions, conditions

and definitions will be described in Section 2.3.

Four types of patterns have been identified for computer role-playing games: Encounter, Behav

ior, Plot, and Dialogue patterns.

Encounter patterns support interactions between the PC and game objects, such as placeables,

triggers, and doors. They generalize the encounter object found in the Aurora toolset. A typical

example is the Placeable Disturb - Spawn Creature pattern just described. Encounter patterns were

the first type of pattern to be implemented in ScriptEase[16].

Behavior patterns give life to NPCs, allowing them to perform actions and move in a believable

fashion. For example, a guard patrolling a treasure chest containing a valuable item is a specific

behavior. The NPC guard will guard the chest regardless of the PC’s presence, but if the PC tries

to intervene, the guard will defend the treasure. The guard example illustrates that most behaviors

are ambient, and will run autonomously. Behavior patterns were the second type of pattern to be

implemented in ScriptEase[3].

Plot patterns describe quests that occur frequently, allowing the author to control the game’s

story through these quests. The patterns include updating the PC’s quest log at key points of the

quest, as well as rewarding the PC with gold or experience when the quest is completed. The quest

also controls whether parts of a story are available at a given point in time. A typical plot pattern

involves an NPC asking the player to retrieve an item. The player must find this item in the game

world and return it to the NPC for a reward. Currently quests are modeled using plot tokens, which

can be assigned to objects to keep track of various states of a quest. There is ongoing work to

promote plot patterns as first class objects in ScriptEase.

Dialogue patterns allow the author to build common structures found in conversations and to

attach scripts to these conversations. For example, an NPC might react differently depending on the

PC’s charisma ability score. The author can include an Ability decision dialogue pattern to adjust

the NPC’s greeting according to the PC’s charisma. Decision patterns are described in Chapter 4.

At the start of this research, ScriptEase had only one dialogue pattern: Conversation When/What.

This general pattern allows the author to select a single conversation node from a conversation

tree and change its When and What functionality. As described in Section 1.4.3, a When script

determines if the conversation node will be displayed in the conversation, while the What script

provides actions when that node is actually displayed in the conversation. Since the When part of

the Conversation When/What pattern only has a condition placeholder, a condition must always be

added. Similarly, the What part includes only an action placeholder and to be useful more specific

19

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

ScriptEase Encounter Builder

File Edit Build loo ls Help

? [3 Thesis'!.mod*(3)
£ Placeable use - toggle neatest door

o - If Loiterer
o- K Exclaimer

{ Description pThePlaceable |__

Select the placeable that is used for the nearest door.
Suggested selection: Painted using Aurora Toolset, but pick one that looks like it
has a switch as part of it (like a floor lever or a pedestal with a switch on it).

O Select Placeable

Module Blueprint Pick... Door Lever

Figure 2.1: Selecting an Encounter pattern in ScriptEase.

actions must be added. For example, the author might adapt the When part of the pattern by adding

a condition to check if the PC has high charisma. Next, the author could adapt the What part to

move the NPC to a nearby game object.

Since Conversation When/What patterns are applied to a single conversation node, they do not

identify useful conversation patterns. This research has identified numerous specialized dialogue

patterns and has devised a new model to represent these patterns as well as a new set of building

blocks to support the model. This model is described in Chapters 3 and 4.

2.3 ScriptEase Interface

ScriptEase has two tools: the Builder and the Designer. The Builder allows the user to instantiate

patterns for a specific module. The Designer interface allows an author to create new patterns using

the building blocks provided by the tool. If the author has programming experience, the most basic

of these building blocks (atoms) can also be created with snippets of NWScript code.

To use ScriptEase, the author first loads a module that already contains game objects. Figure 2.1

shows the Builder interface with a module already containing some encounter and behavior patterns.

The Placeable use - toggle nearest door pattern is currently selected, and the associated options are

visible in the bottom half of the interface. The The Placeable parameter is visible, with the Door

Lever placeable selected. In the game, the Door Level will open a nearby door when it is clicked on

by the player.

The author can instantiate a pattern using the available pattern catalog. Figure 2.2 shows the

ScriptEase encounter pattern instantiation interface. To instantiate a pattern, the author selects the

desired pattern from the list on the right-hand side and the object to which the pattern applies from

the list on the left-hand side. In this case the pattern is Conversation When/What and the object is a

20

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

conversation node. The first option of the pattern is the object to which the script is attached after the

code is generated. The author can select the pattern or object in either order. If the object is selected

first, only a subset of patterns that can have the selected object as a valid first option are available.

The Conversation When/What pattern has only one option: a conversation node. The the middle of

the screen in Figure 2.2 the conversation node picker with a conversation node selected. In this case,

the author is going to make the node appear only if the PC is female, since Earl the bartender will

go out of his way to get drinks for female patrons. When the node is displayed in conversation, Earl

will move twice: once to the cabinet and once to return back to his original location.

Figure 2.3 shows the Builder interface with the instantiated dialogue pattern. The bottom half of

the interface shows the conversation node option that was set during instantiation. At this point, the

pattern is considered complete and code can be generated. However, the Conversation When/What

pattern was constructed to be general, and therefor the generated scripts will do nothing. The pattern

must be further adapted to suit the author’s idea. To do that, the author opens the pattern to view the

internal components as shown in Figure 2.4.

At the top level there are two Situations marked with the stylistic S. A situation responds to a

single event since a pattern can encapsulate code for several events. The Conversation When/What

pattern has two situations: one for the When event, and one for the What event. Situations can

contain definitions, conditions and actions, each of which can have options. During code generation,

each component generates scripting code. The first component of any situation is an Event, marked

with a V. A ScriptEase event represents a specific game engine event that occurs in Neverwinter

Nights. The pattern provides a scope, allowing components to use options specified at the pattern

level.

In Figure 2.5 the author adapts the When situation to add a Definition, marked by a D. A defini

tion allow the author to add game state into the pattern so that other components can use it. In Figure

2.5, the author adds a boolean definition called “Is Specific Gender” to check if the PC has the fe

male gender. Additionally, event atoms often contain implied definitions, which provide game state

specific to the event. For example, in Figure 2.6 the When event has an “NPC Speaker” definition

and “PC Speaker” definition. These definitions allow the author to refer to the two conversationalists

throughout the pattern. The author uses the implicit “PC Speaker” definition when constructing the

“Is Specific Gender” definition.

In the context of the pattern the author can specify the condition for the When script that allows

the conversation node to be displayed. In Figure 2.7 the placeholder condition has been replaced with

a Condition marked with a C. A condition takes a binary option, which determines if the condition

is true. In this case the author has used the “Is Specific Gender” definition as the condition’s option.

Now the conversation node will only be displayed in the conversation if the PC is female.

With the “When” situation successfully adapted, the author can now adapt the “What” situation.

Figure 2.8 shows the author adding an Action atom, marked with an A, to the situation. An Action

21

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Pick an Encounter

Palette Conversations

"loot
99(01[OWNER] - Would you like a drink?
H B v e s please

B [OWNER] - They’re over there. Help yourself.

Q Encounters
I ? G3 Base CodePak

2 3 Triggers (13)
SO Placeables (21)

: m Containers (9)
? fl3 Conversations (3)

: K Spell request conversatioi
K Conversation - attack

S 9 Doors (15)
2 1 Items (2)
S3 Transitions (2)
2 } Creatures (3)

OK Cancel

Figure 2.2: Creating a new pattern instance.

| File Edit guild Iools Help

?- Q Thesisl .mod* (4)
JR Placeable u s b - toggle nearest door

o- Hr Loiterer
<>- H r Exclalmer

f Description ■; Conversation Node'

Select the conversation node that this encounter applies to.
Suggested selection: Any conversation node created by the Aurora conversation
editor.

© Select Conversation_Node

(§> Conversation Node Pick... aarl.dlg:1:2

Figure 2.3: Creating a new pattern instance.

22

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

ScriptEase Encounter Builder

File Edit Build Tools Help

■ Loiterer
: Excla im er
‘ C onversa tion w hen /w hat

J j§ W hen a conversation node is d isp layed
V Display text tor Conversation Node (earl.dlg 1.2) if the conditions
O Always positive (True, Yes, On, etc.) - replace th is condition plac

S W ha t happens w hen a conversation node is d isp layed
o- V After C onversa tion Node (earl.d lg :1:2) is reached

R eplace th is action p laceho lde r by one or m ore actions

(Description \ Conversation Node

The conversation node tha t th is event app lies to.

® Select Conversation_Node Conversation Node (earUllg:1:2)

O Conversation Node Pick... None

Figure 2.4: The internals of the Conversation When/What pattern.

1 File Edit gudd Jools Help

£■* K Loiterer
P~ T j Exclaimer
? J E Conversation when/what

5S W hen a conversation node is displayed
f - V Display text for Conversation Node (earl.dlg:1:2) if the conditions are all posit

; C Always positive (True, Yes, On, etc.) - replace this condition placeholder if de:
i W hat h ap p en s w hen a conversation node is displayed
• V After Conversation Node (earl.dlg:1:2) is reached__________________ _ _ _ _ _

JL

Description Creature

Select the gender that is being tested .

O S elect Gender

® Constant

Figure 2.5: Adding a definition atom that checks the PC’s gender.

23

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

Scr ip tE ase E n c o u n te r B uilder

File Edit Build lo o ls Help

: Loiterer
■ Exclaimer
] Conversation whenfwhat

S 3 W hen a conversation node is displayed
f V Display text for Conversation Node (earl dig:1:2) if the conditions are all posit

D Define PC Speaker a s the PC speaking in the Conversation Node (earl.dl
D Define Object Speaker a s the object speaking in the Conversation Node |
JO Define NPC Speaker a s the NPC speaking in the Conversation Node (ea

f Description Creature Gender Type

Select the gender that is being tested.

O Select Gender

<§> Constant Female

Figure 2.6: An event’s implied definitions.

| File Edit Build lools H elp

? £ 5 W hen a conversation node is displayed
^ V Display text for Conversation Node (earl.dlg:1:2) if the conditions are all posit

. J D Define PC Speaker a s the PC speaking in the Conversation Node (earl.d|
| j - Define Object Speaker a s the object speaking in the Conversation Node

I Define NPC Speaker a s the NPC speaking in the Conversation Node (ea
i Define Is Specific G ender a s w hether PC Speaker h a s a gender of Fem ale8!

? W hat h ap p en s w hen a conversation node is displayed
fr- V After Conversation Node (earl dlg'1 2) is reached

Description Definition

Select a definition w hose value m ust be positive for the condition to succeed. Positive m ean s
iYes instead of No, True instead of False, On instead of Off, etc. Negative m ea n s the other value

S elect Binary

O Constant

Figure 2.7: A positive condition that will return true if Is Specific Gender is true.

24

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Scr ip tE ase E n c o u n te r Builder

File Edit Build lo o ls Help

? r* lT h e s is '! .m o d * (41
®- J E Placeable u se - toggle nearest door

R Loiterer
o- T j Exclaimer
? E Conversation when/what

o- S W hen a conversation node is displayed
? S W>at h ap p en s w hen a conversation node is displayed

<*- Y Afler Conversation Node (earl.dlg:1:2) is reached
NPC Speaker* walks near Bar

f Description Mover Target ' Move [

Select the target object that the object m oves near.

O Select Object

Module Blueprint Bar Waypoint

Figure 2.8: Two action atoms that move the NPC towards objects.

atom represents a single logical action that can occur in the game. In Figure 2.8, the added action

forces the NPC to walk to the bar to simulate getting a drink. Next, the NPC walks back to his

original location marked by a waypoint. With these actions, the pattern is now fully adapted, the

code can be generated by the tool, and the author can test the pattern by playing the module.

The above example demonstrates several types of adaptation. Previous work has identified these

adaptations and classified them into levels of cognitive difficulty [2]. The Table 2.1 shows the nine

possible adaptations that can be performed on a pattern. They are ranked in increasing cognitive

difficulty, with setting options as the easiest and only necessary adaption, to adding new situations

which requires selecting the event and adding conditions, definitions, and actions.

The Designer is similar to the Builder, as shown in Figure 2.9. An author can construct new

patterns using the same nine operations that are used to adapt existing patterns. There is a seamless

transition from using patterns to creating patterns. Furthermore, new atoms (actions, definitions, and

conditions) can be created by adding fragments of NWScript code. Figure 2.9 shows a new action

atom, with the NWScript code in the bottom half of the window. The atom’s options are exposed as

function arguments, allowing the NWScript to use those options as variables.

25

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Cognitive Level Adaptation
1 Set Pattern Options
2 Delete a Situation
3 Delete an action/definition
4 Delete a condition
5 Replace an action/definition placeholder
6 Add an action/definition
7 Replace a condition placeholder
8 Add a condition
9 Add a situation

Table 2.1: Cognitive levels of pattern adaptation.

i n n
FHe Edit guild lools Help |

d- L 3 Generic Encounters (5) a
(3 Action Encounters (0)

»• (3 Conditional Actions (0)
9- 3 Behaviour Patterns (0)

*- 3 Proactive Behaviours (0) i
3 Reactive Chains (0) •■I

®- 3 Reactive Behaviours (0) 1
o- 3 Motivations (0)

f 3 Atoms (9)

®- 3 Event Atoms (0) J
3 Condition Atoms (0)

? 3 Action Atoms (7)
A Open Merchant Store ir A Set custom tokens for purchase adjustm ent i
A Rem em ber buy information
A Rem em ber se ll information .
A Do price adjustm ent M i

A Finish price adjustm ent
A Cancel price adjustm ent

| Notes | Description i1 Type f Parameters ' Code (Include Files |

v o id SE_A c_O penH erchantStore(object param _ l, o b je c t paraa_2) (
/ / Remember th e s t o r e 1s c u r r e n t g o ld v a lu e to f ig u re o u t what
/ / item s so ld fo r l a t e r .
S e tL o c a lIn t(p a ra m _ l, "&01D_AM0UHT", G etS to reG old (param _l)) ;
O penS tore(param _l, param _2);

)
□ Simple Code Body?

Figure 2.9: A custom atom for merchant objects created in the ScriptEase Designer.

26

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

2.4 Summary

This chapter introduced the concept of generative design patterns as a solution to the manual script

ing problem found in state-of-the-art CRPGs. The ScriptEase tool was then described as an example

of how generative design patterns can generate scripts for Neverwinter Nights. An author can use a

pattern by setting options and further adapt the pattern by adding or removing actions, definitions,

and conditions. Fully adapted patterns can then generate all the necessary scripting code without

any author intervention. Finally, the ScriptEase tool was described in detail, including descriptions

of the tool’s interface and pattern components.

27

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter 3

Structural Patterns

This dissertation presents a new model that provides abstraction mechanisms for constructing and

viewing conversations. The notion of manually creating and attaching NWScript scripts in con

versation nodes is replaced with generative design patterns. Dialogue design patterns are different

from encounter, behaviour, and plot patterns currently in ScriptEase. Dialogue patterns are more

structure-based than intent-based, and thus cannot be prototyped with current ScriptEase pattern

components. Nevertheless, the model can be integrated with the ScriptEase tool and its existing

patterns. At the time of writing, the model has not been implemented into a functional conversation

editor in ScriptEase, but there is future work to do so.

The presented model addresses the disadvantages of the Aurora conversation editor outlined

in Section 1.5. Note that all figures provided to illustrate the model are symbolic and might not

resemble an actual graphical user interface (GUI). However, a possible implemented GUI may have

similarities in appearance. This chapter presents the model in a bottom up manner by introducing

structural patterns. Chapter 4 expands on the model by describing decision patterns and optional

choice patterns.

Structural patterns represent commonly occurring conversation trees. They encapsulate the

structure of the tree and non-scripting properties of conversation nodes such as remark text, sound

files, and animations. An author can construct a conversation tree by building up the components

directly, or by combining existing structural patterns together and adapting them using basic com

ponent operations. Since a structural pattern is a conversation tree, it can be used as a sub-tree in

other patterns. Consequently, structural patterns can be composed with each other to build larger

structural patterns. This is different from the intent-based patterns in ScriptEase. For example, there

is no way to compose two Encounter patterns into a larger Encounter pattern.

Structural patterns contain 4 basic components: exchanges, topics, link and end dialogue targets,

and topic groups. Each will be describe in turn.

28

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

{OWNER] -Hello there!
B Where am !?
El- H [OWNER] - This is town square in the middle of our little village

ES | [CONTINUE]
R B [OWNER] • The market district is to the east across the bridge.

E ■ [CONTINUE]
& IH [OWNER] * Residences are to the west, through the gate.

; (I Thank you and goodbye.[END DIALOGUE]
■ That didn't help me at ailfEND DIALOGUE]

■ Greetings
S ■ [OWNER] - And how are you this fine day?

8 " | Great!
B B [OWNER] - Most splendid. You should stick afound for the parade. It starts just after lunch1

 ̂ ■ Thanks for the tip.[END DIALOGUE]
B B awful.

B • B [OWNER] - How deacfful! If you want, you can stick around for life parade. It will start after lunch.
; B Thanks, but it probably wont hefc>.(END DIALOGUE]

(a) A friendly conversation in the Aurora conversation editor.

a m I? G ree tin g s

[Continue]
Great! Just awful.

[Continue]

Thanks, but It
probably wont help

Thank you T ha tddn t
and goodbye help me at aB!

(b) A friendly conversation represented with exchanges.

Figure 3.1: Two representations of a simple conversation.

29

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

3.1 Exchanges

One of the problems Section 1.5 identifies with the Aurora conversation editor is how sibling nodes

move spatially further apart as lower levels of the tree are exposed. It quickly becomes impossible

to associate sibling nodes with their parent node without a significant amount of scrolling on the

screen, at which point the author cannot get an overview of the conversation’s structure.

Dialogue patterns tightly couple a parent NPC conversation node with its PC children into a new

construct called an Exchange. In a diagram, such as the ones shown in Figure 3.1(b), an exchange is

a red coloured box which represents an NPC node1. Inside the box are blue circles called choices,

each representing a PC child node. This representation closely approximates what a player would

see as a conversation when playing the game. A conversation window in Neverwinter Nights always

has an NPC remark followed by one or more choices, i.e. a single exchange. An exchange contains

a single NPC remark. A remark has the same properties as a conversation node in the Aurora

conversation editor, such as text (remark text), animation, and a sound file. Similarly, a choice

contains a PC remark. Remarks can be used as options for ScriptEase patterns.

Exchanges can be connected by drawing an arc from a choice to the top of another exchange.

Figure 3.1 illustrates how a conversation - termed the friendly conversation - would look both in

the Aurora toolset and as dialogue patterns. Figure 3.1(a) shows the conversation in the Aurora

conversation editor. Figure 3.1(b) shows the same conversation as exchanges. Notice that exchange

boxes hold the remark text for NPC nodes, and the arcs hold the remark text for PC nodes; this

keeps the nodes compact and visible. The exchange version of the conversation also features End

Dialogue targets. These will be explained in Section 3.3.1.

The conversation in Figure 3.1(b) highlights some of the advantages of exchanges. The first

exchange, labeled “Hello there!” has two choices “Where am I?” and “Greetings”. Both choices

connect to a sub-tree composed of several exchanges. Notice that regardless of the size of the sub

tree, even if the sub-trees were composed of tens or hundreds of exchanges, the two choices still

remain spatially close together inside the first exchange. In a GUI, the choice labels can be rendered

close enough to the choices that they will not become separated as the conversation tree below grows

in size.

In Neverwinter Nights it is possible for NPCs to speak one-liners. These are single conversation

remarks that appear above the NPC’s head instead of opening a conversation window. The game

stores these one-liners inside conversation files, just like other conversations. Aurora considers one-

liners special, as they are direct children of the conversation’s featureless Root node, and have no

child nodes or end of dialogue indicators. In the Dialogue Pattern model, these one-liners are called

Utterances. Utterances are exchanges that have no choices. Similar to the Aurora conversation

editor, utterances can only be children of the Root node.

'In the Aurora conversation editor, NPC nodes are also coloured red. PC nodes are coloured blue.

30

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

3.2 Topics

In complex conversations, such as ones in the NWN campaign story, an NPC may have a lengthy

explanation for the PC. Instead of putting all the text into a single NPC node, it is common practice

to split the explanation across multiple NPC nodes. This reduces the amount of text the player has

to read at any one point in the conversation. For example, in Figure 3.1(b) after the “Where am I?”

remark, the NPC’s explanation is spread across three exchanges. For the first two exchanges, the PC

only has one choice: continue. In the third exchange, the NPC finishes the explanation and the PC

has more choices available. These three exchanges are identified as a Topic, where each exchange

holds a piece of explanation for that topic.

Formally, a topic is defined as:

1. One or more exchanges where,

2. All exchanges except for the last exchange must have exactly one choice that connects to the

next exchange in the topic, and,

3. The last exchange in the topic may have one or more choices.

By this definition, all exchanges in a conversation are considered a part of a topic. Any exchange

with two or more choices that has a parent exchange that also has two or more choices must be a

topic of length one. For example, in Figure 3.1(b) the exchange with the “And how are you this fine

day?” remark would be considered a topic of length one.

The complexity of a conversation can be reduced by encompassing exchanges into topics. Figure

3.2 shows the friendly conversation with topics introduced. Each exchange is surrounded by a

second box representing the topic. Notice the three exchanges after the “Where am I?” choice are in

a single topic. The first two exchanges are called inner exchanges. The third exchange is called the

tail exchange. Each topic has exactly one tail exchange and have zero or more inner exchanges that

proceed the tail exchange.

With each exchange now encapsulated into a topic, the conversation can be further abstracted.

Topics can be collapsed by hiding all inner exchanges in the topic with the tail exchange visible.

In a collapsed state, a number is placed above the tail exchange to indicate the total number of

exchanges in the topic. For example, Figure 3.2(b) shows the friendly conversation with a collapsed

topic. The conversation complexity has been reduced without losing important information, such as

the conversation’s branching structure. A GUI could allow the author to expand and collapse a topic

as more or less information is needed.

When a topic is collapsed, information is lost. Specifically, the author can no longer see the

remark text of the hidden exchanges. To counteract this, topics also introduce a new feature: Topic

Intents. The topic intent is text that the author can use to quickly summarize the NPC remarks in the

topic. In the Aurora conversation editor, the author must scan the full remark text to understand what

31

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Greetinft

Where am I?

You're In town How a rt you?

[Continue]
Great! JustawfuL

/ \

[ContinueJ

Thanks lor
the tip

Thanks, out it
probably won't help

Thank you That didn't
and goodbye help me at aM

(a) A friendly conversation with an expanded topic.

Where am I?

How are you? >

Greet! Just awfuL

/ \

Thanks tor Thanks, but n
probably wont help

Thank you That didn't
and gooiftye help me at a8!

(b) A friendly conversation with a collapsed topic.

Figure 3.2: A friendly conversation with topics added.

32

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

the NPC is saying. Sometimes, these remarks can be extremely verbose, with the intent found either

in the middle or at the end of the explanation. Including topic intents allows the author to quickly

scan the conversation to find a particular topic. For example, in Figure 3.2(b) all three exchanges in

the collapsed “You’re in town” topic discuss the layout of the town. The author can understand the

intent of the topic without having to expand the topic and read the individual exchanges.

3.3 Link Targets

Section 1.4.3 describes how the Aurora conversation editor allows the author to create link nodes

that point to other nodes in the conversation tree, which converts the conversation from a tree into

a graph. Instead of duplicating a sub-tree of nodes under two conversation nodes, the author can

create a link node under the first node that points to the sub-tree found under the second node. For

example, in Figure 3.3(a), the PC can respond to the NPC’s greeting in two ways: “Go Away”

and “Hello” (lines 2 and 8). In either case, the author wants the NPC to impart some common

information at the end of the conversation. The author first creates the common “Farewell” (line

5) conversation sub-tree as part of the sub-tree rooted at “Go Away”. Next, the author creates the

sub-tree rooted at “Hello” and instead of creating a second “Farewell” sub-tree, the author creates

a link node on line 11 that points to the “Farewell” node on line 5. Now regardless of the PC’s

choice in the conversation, the NPC will speak the farewell sub-tree. If a conversation node that is a

destination of a link is deleted, then the link node is deleted as well.

Dialogue patterns also have a mechanism to support conversation sub-tree re-use. This is done

by allowing multiple choices to point to the same topic. For example, Figure 3.3(b) shows the con

versation in Figure 3.3(a) converted to the dialogue pattern model. Both the “Nothing. Goodbye.”

and “Have a great day” choices point to the “Farewell” topic which contains two exchanges. Both

choices directly link to the “Farewell” topic. Direct links from choices to topics are analogous to

link nodes that link to NPC nodes in the Aurora conversation editor. However there is a difference.

With the Aurora conversation editor, one of the links is special in that the conversation nodes are

textually embedded as a sub-tree under the link where as other links are link nodes. With dialogue

patterns, all direct links have first class status. Note that choices directly link to topics and not

exchanges. Sharing a choice between several exchanges is discussed in Section 3.4. If the author

wants to directly link to an exchange that is in the middle of a topic, the topic can be split into two

topics. Splitting a topic makes sense in this case since an entry point in the middle of a true topic is

problematic.

Direct links are clear and easy to understand. There is only one representation of the destination

topic, unlike linking in the Aurora conversation editor which requires special link nodes to act as

placeholders for the sub-tree to which they are linking. The editor distinguishes between the first

conversation node which holds the shared sub-tree, and the other nodes which have a link node

pointing to the sub-tree. Unfortunately, in a GUI direct links only reduce visual complexity when

33

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1 ■§ [OWNER] - Heiio therê
2 h l ' 8 Go away
3 E " | [OWNER] -What go you io grumpy?
4 B1 B Nothing Goodbye
5 B p [OWNER]-Farewell
6 E B [CONTiNUE]
7 B [OWNER] • I almost forgot. Go to the town square later today.
8 B B HeSo!
9 B B [OWNER] ■ Such a wonderful day Take card
10 B B Have a (peat day.
1 1 ■ [OWNER] ■ Faew el

(a) A link node in the Aurora conversation editor.

Go Away

Grumpy?

Notfttrig. Goodbye. Have a great day.

\ /

(b) A direct link in the Dialogue Pattern
model.

Figure 3.3: A friendly conversation with links.

34

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Opinion

Absolutely fabulous! It* pretty good.
y ' __

Thehim<*hon«y. Exc? ! ? i irssweei. UtasMsluJ. / moutmeei. ' *

[Continue] [Continue]

(a) Direct links crossing over other model com
ponents.

It* sw eet K t a s m u

It* pretty

The hint c* honey

[Continue] [Continue]

(b) Introducing link targets removes the interfering arcs.

Figure 3.4: Contrasting the visual complexity between direct links and link targets.

35

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

the choices are spatially close to the target topic. The choices and the target topic can also be far

apart in the conversation tree. Direct links can increase the visual complexity if the arc from the

choice to the topic intersects with other components of the conversation tree. For example, the wine

conversation in Figure 3.4(a) has a “Details (Good)” topic with two choices that directly link to

the “Sweet” and “Full” topics. Since the choices are separated from their destination topics, the

connecting arcs intersect with the “Mouthfeel” topic. A possible solution is to draw the arcs with

angles or curves to go around other components, but that increases the overall length of the arc

making it difficult for the author to determine which choice links to each topic. It also complicates

the GUI implementation since the program would have to compute a good layout to draw the arcs.

In these cases it is necessary to return to the link placeholder mechanism found in the Aurora

conversation editor. A link target is used as a placeholder in the dialogue pattern model in a similar

manner as a link node is used in the Aurora conversation editor. In the wine conversation in Figure

3.4(b), the offending direct links have been replaced with link targets. The link target is labeled by

the same intent of the target topic. A link target remains spatially close to its corresponding choice

which prevents any clutter when drawing conversation components. With link targets, there are now

two representations of a link. A direct link is where a choice directly links to the topic. A secondary

link is where a choice points to a link target representing the topic. For example, in Figure 3.4(b)

the “[Continue]” choice in the “Honey” topic has a direct link to the “Sweet” topic. The “It’s sweet”

choice in the “Details (Good)” topic has a secondary link to the “Sweet” topic. It is possible for

there to be more than one direct link to a topic depending on how a GUI chooses to render the

conversation components. Secondary links also allow a choice to link to an ancestor topic. This

would be difficult to do with direct links without intersecting components or arcs.

There are still advantages of this approach over the Aurora conversation link node approach. To

counter a secondary link’s extra level of indirection, a GUI could allow the author to double-click on

the link target to redirect the screen viewport to the destination topic. This is analogous to the Aurora

conversation editor’s double-click mechanism on link nodes. For example, in Figure 3.5 the viewport

is focused on the “Rush” topic where the “Other questions?” is a secondary link to its target topic,

which is two screen-widths away. Instead of scrolling the screen to find the corresponding topic, the

author can double-click the link target to re-position the viewport onto the topic.

However, an author may find shifting the screen viewport to be visually jarring and disorienting

- as it is in the Aurora conversation editor. Another mechanism is to convert the secondary link

to a direct link by moving the topic to the viewport. For example, Figure 3.6 shows the same

conversation with the “Other Questions?” link target and its topic swapped. The topic is now in

the author’s view and no scrolling is needed. The conversation is still structurally identical to the

conversation in Figure 3.5, only the visual representation has changed. This mechanism allows

the author to view target topics in the context of the conversation. This redirection mechanism is

superior to the double-click moving viewport mechanism in that any secondary link can become a

36

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Greetings

Viewport b efore (
redirect I

Figure 3.5: The redirect GUI operation moves the viewport to the target topic.

primary link so that its full context can be viewed. In addition, multiple direct links are possible in

many situations and moving target topics to the author’s view makes direct linking more likely.

3.3.1 End Dialogue Targets

An End Dialogue target is a special link target that indicates at which points in the tree the con

versation will end. A choice that has an arc to an end dialogue target will end the conversation if

selected by the PC. For example, in Figure 3.3(b), the choice in the “Farewell” topic is connected

to an end dialogue target. End dialogue targets help the author to determine which choices end the

conversation.

3.4 Topic Groups

In Section 3.3, direct and secondary links were introduced as mechanisms to link choices to topics.

These links allow a topic to be shared by multiple choices and are analogous to link nodes that point

to NPC nodes in the Aurora conversation editor. However, an author may want to share a choice

across several exchanges. For example, the Aurora conversation in Figure 3.7(a) has several PC

link nodes that point to the PC node “Goodbye” that is the root of a common sub-tree that ends

the conversation. In Figure 3.7(b), the conversation is converted into a dialogue pattern. The same

“Goodbye” choice is duplicated across all exchanges which requires the author to set the properties,

37

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

such as remark text, for each choice. These duplicated choices then link to the topic that ends the

conversation.

Both examples are structurally equivalent, and both share the same disadvantage of duplicating

the PC node or choice that the author wants to share. The Aurora example has terminal PC link nodes

as duplicates whereas the dialogue pattern example has the choice duplicated in several exchanges,

each with a link to the target topic. The duplication in dialogue patterns can be avoided with a more

concise and compact representation by introducing topic groups. Topic groups are created using two

separate mechanisms: exchange customization and choice customization.

3.4.1 Exchange Customization

Instead of duplicating a choice across several exchanges - each in a different topic - it is more

concise to collapse all involved topics together into a single topic group. For example, in Figure 3.8,

the topics that contained the duplicated “Goodbye.” choice are now co-located as tabs in a single

topic construct. Only the internals of one topic can be visible at any one time, and in Figure 3.8(a)

the “Great” topic is visible with its exchange visible. The author can change the visible topic by

clicking on a topic tab. In Figure 3.8(b) the “Dreadful” topic is now visible.

Since only certain exchanges are visible depending on the visible topic, collecting topics into a

topic group is called exchange customization. The author customizes the exchange view by making

a certain topic visible and making changes to the topic’s exchanges. Exchange customization further

abstracts the conversation tree by hiding more information, i.e. exchanges. The author can use the

topic intents displayed in the tabs to get an overview of the conversation structure. Clicking on a

topic tab makes the topic’s interals visible, allowing the author to view detailed information such as

NPC remark text. For example, in Figure 3.8(b) the “Dreadful” topic is now visible and the NPC

remark text has changed. Choices can link to topics in a topic group by drawing an arc to the topic

tab.

Exchange customization easily accommodates sharing a set of choices across several exchanges.

The question-answer conversation in Figure 3.9(a) has three exchanges that have the same two

choices. In Figure 3.9(b), the three exchanges have been co-located into a topic group with the two

choices shared. In this example the exchanges share the same set of choices. However, exchange

customization can be further generalized by allowing topics that only share a subset of choices to

be grouped together. For example, in Figure 3.10, the “East Side” topic contains an extra choice

not shared by the other topics. These topics can be converted into a topic group by including the

union of all choices from all topics into the topic group. In Figure 3.11(a), the topic group contains

the shared choices as well as the extra “How wide is the river?” choice. Even though this choice

is not shared by all exchanges, it remains visible regardless of which topic is visible. This makes

the choice’s sub-tree visible at all times, which keeps the conversation tree structure independent of

the visible topic. Otherwise, the author needs to manage visible topics to be able to view the entire

38

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Irn m a rush

viewport

[ConemieJ
i

Distance
2 screens

Where's the inn? Where* me
market?

A

Figure 3.6: The swap GUI operation move the target topic and sub-tree to the viewport.

How am you?

rm fantastic! I*m so-so. I’m just awfui.

i= i-B [OWNER)-How are you?
3 B I'm fantastic!
| B | (OWNER] • That's peat!

c -J -B Goodbye
B-M [OWNER)-Farewell

3 ■ {CONTINUE]
R ~ B [OWNER] •Ardremembei to say h e lo to theroayoi.

■ Thanks![END DIALOGUE]
3 B I’m so-so
: P ~ B (OWNER)-Oh, too bad

" ~ B G iM !± 5 'e (e n d d i a l o g u e
3 - B a w f u l .

R B [OWNER] - How d rea^ tl
B [END DIALOU'JEj

(a) The conversation with PC link nodes in Aurora. (b) The conversation as a dialogue pattern with du
plicated choices and direct links.

Figure 3.7: Converting the farewell conversation from Aurora with PC link nodes to a dialogue
pattern.

39

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

How are you?

I'm rm ivn just
fantastic? so -so . awful

1 I k

How are you?

I'm lYn I'm just
fantased so -so . awfuf,

/_ \
O rel] Too bad j Dreadful Great | Too had jPreadtui

(a) Topic group with the (b) Topic group with the
“Great” topic visible. “Dreadful” topic visible.

Figure 3.8: The farewell conversation with topic groups and only one choice.

X
Question 2

1 Question 2 Q u w w n l Uuduoo Z

Question 1 Question 2

(a) All three exchanges share the same choices. (b) The three topics merged into tabs. Two ex
changes are now hidden.

Figure 3.9: Dialogue pattern for answering questions in a conversation.

can I go? GOMbya
f \

Goodbyecan loo tna river? W hef* * to* Gobi* mcan I go? uooaoye

. J

Figure 3.10: Three topics with duplicated choices. One topic has an extra choice.

40

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

■ 7 ■
W here e ls e
can 1 g o ?

t
G oodbye

 __
J f a r r ^ J l h i

—A—l
I-tow w toe rS

the rtver^ *
W here e ls e How w ide is

can I g o ? the nver?

(a) Three topics in a topic group. All three choices (b) Three topics in a topic group. One choice is dis-
are enabled for the visible topic. abled for the visible topic.

Figure 3.11: A topic group with a subset of shared choices.

Figure 3.12: A topic group with topics that have a different number of exchanges.

conversation tree. Changing the visible topic should only change the view of the internal exchanges,

not the external topology. Instead, choices can be marked as disabled with a different colouring to

indicate they are not shared by the visible topic. For example, in Figure 3.11(b), the “North Side”

topic is visible and since it does not share the “How wide is the river?” choice, the choice is disabled

and coloured a dark blue. If the “East Side” topic becomes visible, the choice is no longer disabled

and reverts back to the original light blue colour.

It is still possible for a topic in a topic group to have inner exchanges. In fact, different topics

in the same topic group can contain one or more inner exchanges. If the topic is the visible topic,

its inner exchanges can be expanded and collapsed as normal. A topic group with a topic that has

inner exchanges has to indicate the number of exchanges in each topic. For example, in Figure

3.12, the “East Side” topic has two exchanges with the remaining topics each containing only a

tail exchange. The numbers are always visible regardless of the visible topic, allowing the author

to quickly determine the size of each topic. As a short-hand, if all topics in the topic group each

contain only one exchange, then these number will not be shown in further diagrams.

The advantage of topic groups becomes apparent when converting complex conversations in

Chapter 1 of the NWN official campaign into dialogue patterns. For example, the small subset of the

NPC Bertrand’s conversation in Figure 3.13 shows six topics in a topic group with five choices. The

dark blue disabled choices indicate that not all choices are shared. If these topics were not in a group,

41

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

J _ I
SUR f Journal Y S alt Journal Prtca? Filthy «o*ti I

1 1
•otd returned returned

~ r' t i i
Figure 3.13: A piece of Bertrand’s conversation. Several topics are in a topic group.

the five choices would have to be duplicated resulting in a total of 20 choices distributed across six

topics. Each of these choices can potentially have a secondary links with an attached link target

for a possible total of 20 link targets. The conversation tree would be cluttered and confusing with

redundant information. Topic groups simplify this conversation sub-tree by removing 15 redundant

choices and 15 potential link targets. In contrast, the same piece of conversation in the Aurora

conversation editor would be composed of 26 conversation nodes with six NPC nodes, five PC

nodes, and 15 link nodes.

3.4.2 Choice Customization

When topics are co-located into a topic group, the shared choices have identical PC remarks across

all topics in the group. Sometimes an author may want to change or customize the PC remark text

of a shared choice for a single topic in the group. For example, for the third topic “Dreadful” in

Figure 3.8, the author may want to change the choice text to “Adios”. To do this, the author could

separate the “Dreadful” topic from the group, duplicate the choice, and then change the remark text.

This is unnecessarily complex since the author has to create two new components, a new topic and a

possible link target, to only change the remark text of a single choice. The Aurora conversation editor

avoids this problem since link nodes can link to PC nodes and therefore no PC node duplication is

necessary.

Instead, the author can use choice customization. The choice is marked as customized by an

upper-case C. Analogous to using disabled choices, the C indicates to the author that the choice has

different text for certain topics in the topic group. The choice’s remark text will change as the visible

topic changes. For example, in Figure 3.14(a), the choice has been customized, and the choice’s

remark text says “Adios” when the third topic “Dreadful” is visible. This compact representation

can be contrasted to the Aurora conversation in Figure 3.14(b) where the author has to replace a link

node that points to a PC node with a full-fledged PC node to change the remark text. The author

then has to add a NPC link node to link to the shared sub-tree. This process increases conversation

tree size by one node. To customize a second PC node, the author would repeat the procedure and

the extra link node would again increase the size of the tree.

A choice customization affects only one topic in the topic group. The original choice properties

42

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

A dios
♦

B- ■ [OWNER]-That's great!
- B Goodbye.

B B [OWNER]-Farewell!
Ei B [CONTINUE]

B [OWNER] - And remember to say hello to the mayor

- B [OWNER] Oh®>D*i
1 ^ Goodbye.

- B [’m Nst awful
B [OWNER] - How dteadful.

L-j B Ad»$.B [O W N ER]-Farew ell

(a) A customized choice in a (b) A customized PC node in the Aurora conversation editor,
topic group.

Figure 3.14: Customizing a choice to say “Adios.’

will remain shared with the remaining topics. The author can perform a second customization

operation on a second topic if necessary. This customization is distinct from the first, and changing

PC remark properties for one customization will not affect the other. The author can at any time

remove a customization to revert the properties of a choice’s PC remark to the original shared values.

3.5 Dialogue Generation

After an author has constructed a conversation using structural patterns, the system needs to convert

the topics, exchanges, choices, and links back to the native conversation format recognized by Nev-

erwinter Nights. This is analogous to encounter and behavior patterns generating NWScript code

and attaching scripts to objects. It is straight-forward to convert exchanges to NPC nodes, choices

to PC nodes, and links to link nodes. If a topic is linked by multiple choices, the first exchange in

the topic is converted to an NPC node and placed as a child under the first PC node. The other links

are converted to link nodes under their respective PC nodes. Generating When and What scripts for

conversation nodes will be described in Section 4.1.

This chapter described the structural components of the dialogue pattern model. Topics are com

posed of zero or more inner exchanges and one tail exchange. An exchange corresponds to a NPC

node in the Aurora conversation editor. Each exchange can have choices, which correspond to PC

nodes in the Aurora conversation editor. Then, the linking of these topics was described and end dia

logue targets were introduced. Next, topic groups were described as a way of sharing choices among

3.6 Summary

43

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

several topics. Finally, this chapter described how to generate these components into a Neverwinter

Nights module by translating the components into nodes in the Aurora conversation editor.

44

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter 4

Dialogue Patterns

A dialogue pattern is the combination of structural patterns described in Section 3 integrated with

decision patterns and optional choice patterns described in this chapter. A dialogue pattern can be

instantiated as a sub-tree either into a conversation for an NPC or a larger dialogue pattern. The

smallest dialogue pattern can be merely a single topic with one exchange and one choice. Although

the author can pre-build entire dialogue patterns, they are mostly instantiated from the disconnected

bin described in Section 5.7.

4.1 Decision Patterns

Although structural patterns allow the author to set remark text on NPC and PC remarks, they do

not directly support the attachment of When and What scripts. Following the ScriptEase approach,

When and What scripts are generated by patterns. Section 1.4.3 describes that for the Aurora

conversation editor if an NPC node has siblings, then When scripts are used to select one of the

siblings for display. The first When script that evaluates to TRUE is displayed. Essentially the NPC

is making a decision on what remark to speak based on the game state. For example, in Figure

4.1(a), there are three NPC sibling nodes after the “Hello” PC node. The first and second sibling

nodes both have When scripts attached that check to see if the PC’s charisma1 ability is above a

certain value. These When scripts are indicated by the green in the node’s blue box icon. If

the PC’s charisma is considered high (above 14), the first NPC sibling will be displayed. If the PC’s

charisma is normal (between 10 and 14 inclusively), the second NPC sibling is displayed. The third

NPC node has no script attached, and is displayed by default, i.e. when all previous sibling scripts

evaluate to false. In this case, it is displayed when the PC’s charisma is considered to be low (below

10).

In the dialogue pattern model, an NPC decision can be encapsulated as a decision pattern. A de

cision pattern allows an NPC to make a decision based on a single criterion. The decision can have

two or more outcomes, and the author can choose which topics will be selected for each outcome.

'Charisma determines a character’s physical attractiveness and personality. It is commonly used in conversations to decide
how the NPC reacts to the PC.

45

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

b ^ BBE B (OWNER] - Greetings.
E ■ Hello

i B [OWNER] - You have a noble look, fiiend
- B [OWNER] - A plain look, h i $61 tespecfable.
B (OWNER] - Eghads. They let anyone in these days

I

(a) Aurora conversation editor. (b) Dialogue pattern model.

Figure 4.1: An Ability decision pattern based on the PC’s charisma.

Parameters: Parameters:

JUMHy: ^ B H H Threshold: | |

(a) Global option window pane. (b) “High” outcome window pane.

Figure 4.2: An example of a GUI to set decision pattern options.

46

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

For example, in Figure 4.1(b), the charisma example is represented by an Ability decision pattern

with the ability set to charisma. The pattern is displayed as a labeled green box, with the outcomes

displayed as tabbed boxes. Each outcome tab has a brief label description. For example, the “High”

outcome is selected if the PC’s charisma is greater than 14. Similar to linking to a topic, the “Hello”

choice directly links to the decision. Each outcome tab also has a direct link to a topic. The author

does not see the scripts; they are generated by a decision pattern. Notice that in the Aurora conversa

tion editor the fact that the NPC decision is based on an ability score (charisma) is also hidden with

the scripts. With decision patterns the scripts are hidden but the decision intent is clearly visible.

Each decision pattern instance and the outcomes inside the instance can also be uniquely labeled for

easy identification. For example, the decision pattern in 4.1(b) is labeled “Charisma”. The labels of

the outcomes can also be changed.

4.1.1 Decision Options

Similar to encounter and behavior patterns, decision patterns have options that can be set to cus

tomize the pattern to a specific instance solution. A decision pattern can have two types of options:

global options and outcome options. Global options affect the entire pattern instance and can be

any type in the ScriptEase type system. For example, the Ability decision pattern has a single global

option: the Ability option. The author can set it to any of the six ability statistics, such as wisdom,

charisma, etc. In Figure 4.1(b), it has been set to charisma. In general, global options affect how all

of the outcomes generate scripting code. For this example, all generated scripting code will retrieve

the PC’s charisma ability statistic.

An outcome option is specific to a single outcome. It is used to determine whether a specific

outcome evaluates to TRUE or FALSE. For example, the “High” outcome in Figure 4.1(b) has a

single integer option called “Threshold” which is set to 14. The author can set this option to control

how much charisma the PC must have to be considered to have high charisma. Figure 4.2 shows

what an interface could look like to set global options and outcome options. This interface is similar

to the interface used by encounter and behavior patterns in ScriptEase to set their options. However,

the option window has one tab for global options and individual tabs for the outcome options. In

Figure 4.2(a), the author has set the global Ability option to “Charisma”. The “High” outcome tab

is highlighted in Figure 4.2(b), where the author has entered “14” for the Threshold integer option.

While most outcomes can have options, the right-most outcome requires special consideration.

Since it is the default outcome, i.e. it is selected if the conditions for all other outcomes are not

satisfied, it does not need a script. Therefore it does not need any options. This applies to all

decision patterns, regardless of the number of outcomes. For example, a decision pattern with only

two outcomes will have the right-most outcome as default. Consequently, only the first outcome

will have options that the author can set.

47

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

4.1.2 Code Generation

Before a decision pattern can generate scripting code, the conversation must first be translated to

Aurora’s native conversation format as described in Section 3.5. For example, when the author

wants to generate code for the charisma conversation in Figure 4.1(a), it is first converted to the

Aurora conversation in Figure 4.1(b). The exchanges in the topics linked by the decision pattern’s

outcomes are converted to sibling NPC nodes. The decision pattern then generates the When scripts

for the “You have a noble look...” (high) and “A plain look...” (medium) NPC nodes. The first When

script is generated by using the global Ability option (Charisma) and the Threshold option for the

“High” outcome (14):

int StartingConditional()
{

int HIGH_OUTCOME_THRESHOLD = 14;
if (GetAbilityScore{GetPCSpeaker(), ABILITY_CHARISMA) > HIGH__OUTCOME_THRESHOLD) {

return TRUE;
}
return FALSE;

}

A similar script is generated for the second script attached to the “A plain look...” (medium)

NPC node. Since the scripts are generated starting from the left outcome, the right-most outcome

(low) is the default case and produces no script.

4.1.3 Sample Decision Patterns

In addition to the Ability decision pattern, this section introduces several other interesting decision

patterns. These patterns are used to convert Aurora conversations in Chapter 1 of the official cam

paign into dialogue patterns. A complete set of decision patterns are presented in Appendix A. The

dialogue patterns presented here are repeated in the appendix.

Basic gender Decision

The Basic gender decision decides on the PC’s gender. Although the player can only create male

and female characters, Neverwinter Nights identifies several different genders for NPCs: female,

male, both, and neutral. This decision is useful to differentiate between female and male player

characters. The Basic gender decision has “Female” and “Male” outcomes with “Male” as the

default outcome. Similar to the Ability decision pattern, this pattern is designed to decide specifically

on a PC characteristic, and therefore requires no additional options to function properly. A more

general Gender decision provides outcomes for all possible genders, based on any target creature

provided as a global option.

Door locked Decision

The Door locked decision decides on the locked status of a door. A door can either be “Locked” or

“Unlocked” and the pattern has an outcome for each state with “Unlocked” as the default outcome.

48

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

The pattern also has a single global option Door so that the author can select the target door. Unlike

the Ability and Basic gender decisions, the Door locked decision does not use PC characteristics to

select an outcome.

Near by Decision

The Near by decision decides whether a game object is within a certain distance of another game

object. The “Inside” outcome is the first outcome and is selected when the two objects are within

a certain distance. The “Outside” outcome is the default outcome. The pattern has three global

options. Both the First Object and Second Object options can be any game object. The Distance

option is a float representing the distance in meters.

Progress Decision

The Progress decision decides on an outcome based on which remarks in the conversation have been

previously visited. A NPC remark is considered visited if the remark is displayed in conversation.

A PC remark is visited if the player selects it as a choice in the conversation. For example, a

conversation can make an early decision on whether the NPC greets the PC with either “Hello

stranger!” or “So we meet again!”. The first remark is selected if it is the first time the PC has

conversed with the NPC. The second remark is selected for all subsequent conversations. This

decision selects an outcome based on whether the “Hello stranger” remark was previously visited.

If it has been previously visited then the decision selects the “So we meet again!” outcome.

The Progress decision has two outcomes. The first outcome, labeled “Initial”, has one remark

option called Goal. Similar to other game objects in ScriptEase, the author would select the Goal

remark from a picker. The Goal option specifies which remark needs to be visited in order for the

“Initial” outcome to be not selected. For example, the author can select the the “Hello stranger!”

remark as the Goal option. The second outcome, “Final”, is the default outcome. This outcome is

always selected after the Goal remark has been reached. In this example, the “Initial” outcome links

to the topic with the “Hello Stranger” remark which is same as the Goal option. This allows the

outcome to be selected once and only once, which is useful for first-time greetings in conversations.

In a second example, the author may want the PC to ask the NPC for a favour. Using a Progress

decision, the NPC’s reply can either be “Sure, I’ll help.” for the “Initial” outcome or “You’ve said

enough. Goodbye.” for the “Final” outcome. The “Final” outcome is selected if the PC insults the

NPC in another part of the conversation by visiting the “You have a face only a mother could love.”

remark. This is done by setting the Goal option for the “Initial” outcome to this insulting remark.

Now the NPC would be happy to assist the PC unless the PC decides to insult the NPC.

The adaptations described in Section 4.1.4 give the Progress decision extra flexibility. Each new

outcome includes its own Goal option, allowing the author to create any number of “phases” for

a single decision. Intuitively, the decision “progresses” from the first outcome to the final default

49

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

outcome as more goal remarks in the conversation are visited. The pattern can also be generalized

by changing the Goal option from a remark to a list of remarks. In this case, if any one remark in

the list is visited during conversation, then the outcome will no longer be selected.

Section 4.1.2 describes that decision patterns generate When scripts for NPC conversation nodes

that put conditions on whether a remark appears in the conversation. However, for the Progress

decision pattern to function, it needs to associate actions with each remark that is specified as an

Goal option. These actions set a local variable on the NPC to indicate which remarks have been

visited. The Progress decision pattern uses these local variables to determine which outcome to

select.

Recall Decision

The Recall decision makes a decision based on a small piece of game state that was stored at a

certain point in a conversation. The author can use this pattern to make a decision on information

that was relevant at an arbitrary point in an arbitrary conversation. For example, the author wants

the NPC to greet the PC differently depending on whether the PC lied to the NPC about having a

special item earlier in the conversation. The PC has the choice to lie or tell the truth, and that choice

is recorded by the decision. When the PC talks to the NPC a second time, the decision can then

recall the recorded information to decide how the NPC will greet the PC.

The Recall decision has a “First” outcome and “Last” default outcome. The pattern has a remark

global option called Point of Interest which represents the remark in the conversation where the

decision needs to remember a piece of game state. The decision pattern remembers information

in the form of strings. The “First” outcome has a Value string option. This option is compared

against the string stored when the Point of Interest remark was visited. If the strings match, the

outcome is selected. Otherwise the default “Last” outcome is selected. The pattern can be adapted

by adding additional outcomes, where each outcome’s Value string option is compared against the

remembered string.

Similar to the Progress decision, the Recall decision requires actions to be attached to the Point

of Interest remark. These actions store a string as a local variable on the NPC. However, the Recall

decision differs from the Progress decision since the remark option is a global option rather than a

outcome option. Also, the pattern decides on game state stored when the Point of Interest remark

was visited, and not on whether the remark was visited. Consequently, the author needs to specify

the piece of game state that the Recall pattern uses by adapting the actions that are stored on the

Point of Interest remark. This process is described in Section 4.1.5.

4.1.4 Adaptations

Similar to other ScriptEase patterns, an author may want to further adapt a decision pattern in the

context of a particular story. Besides setting options, decision patterns can be adapted by either

50

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

(a) Removing the “Medium” outcome. (b) Adding the “Medium High” outcome.

Figure 4.3: Adapting a Ability decision pattern.

adding or removing outcomes. For example, the author may only want to have the NPC make a

decision based on whether the PC has only high or low charisma. Since the Ability pattern has

3 outcomes, it is unsuitable for this situation without adaptation. Instead, the author can adapt it

by removing the “Medium” outcome and controlling the threshold between high and low charisma

by setting the Threshold option for the “High” outcome. Figure 4.3(a) shows the adapted Ability

decision pattern.

The author can also add a new outcome to the decision pattern, before the right-most default

outcome. In the simplest case it has the same options as the other outcomes. For example, to

construct a more detailed Ability decision pattern, the author could insert a new outcome called

“Medium High” between the “High” and “Medium” outcomes. Figure 4.3(b) shows the adapted

pattern. In the more complex case, the author adapts the condition for the outcome by selecting a

new condition. All of the definitions and conditions available for encounter patterns may be used in

decisions patterns. The author may also need to add additional outcome options.

4.1.5 Building Decision Patterns

Section 2.3 discussed that both encounter and behavior patterns can be created by using the same

operations that are used to adapt existing patterns. Similarly, decision patterns can be constructed

by using the adaptations described in Section 4.1.4. A new design pattern starts with only a single

default outcome. The author can then add new outcomes. A GUI would provide support to set

the name for each outcome as well as the pattern. Next the author can add additional global or

outcome options. These options are then used to set the condition for each outcome. The outcome

condition is composed of ScriptEase definition and condition components, as described in Section

51

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

<? D Define Ability Score, Is High

B Define Ability Score a s PC Speaker's Ability (Charism a) ability score
Define Is High a s w hether Threshold (14) is le s s than Ability Score

; (3 If Is High is Positive (True, Yes, On, etc.)

Figure 4.4: The condition for the “High” outcome in the Ability decision.

There are no definitions
A Assign 1 to NPC Speaker's variable labelled Visited Label (greetings:1:2)

Figure 4.5: The action attached to conversation node options in the Progress decision.

2.3. For example, in Figure 4.4 the condition for the “High” outcome in the Ability pattern has 2

definitions and 1 condition. The first definition defines the PC’s ability score using the global Ability

option. The second definition defines a binary less-than comparison between the ability score and

the outcome’s Threshold option. Finally, the condition evaluates the comparison, returning TRUE

if the comparison is TRUE.

If an option is a single remark node, then the author can specify a list of actions that will generate

code in the remark’s What script. If the option is a list of remarks, then the code will be generated

in the What script for each remark in the list. Progress decisions use this technique to record

whether the Goal remarks have been visited. For example, Figure 4.5 shows the action associated

with the Goal option for the “Initial” outcome. This action sets the value of a variable on the

NPC speaker object to 1. The variable’s label encodes the identifier of the remark which allows

the decision pattern to identify which remarks have been visited. A second example is the Recall

decision described in Section 4.1.3. It uses an action to store a local string variable on the NPC. The

author must choose the correct action depending on the game state to be stored. Although actions

are the only component needed, the author could also include definitions and conditions before the

actions, similar to an situation in an encounter pattern.

4.1.6 Composing Decision Patterns

Decision patterns are designed to make a decision along a single criterion, such as one of the PC’s

ability scores, whether a door is locked, or progression through a conversation. However, many

complex conversations, including conversations in the official campaign, make decisions involving

multiple criteria. For example, in Chapter 1 of the official campaign, the NPC named Ememick has

three possible opening remarks when the PC initiates conversation. These three outcomes depend

on two criteria: a) is the saferoom door locked and b) is Ememick close to the saferoom waypoint

object (i.e. inside the saferoom). Outcome 1 occurs if the saferoom door is locked, since it is

assumed Ememick is safely inside and is willing to answer the PC’s questions. Outcome 2 occurs if

the saferoom door is unlocked AND Ememick is close to the saferoom waypoint object (i.e. inside

the saferoom). In this case Ememick will instruct the PC to lock the door with the lever. Finally,

52

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

B (OWNER) ■ Pull that lever. It locks the door so we'll be safe.
B (OWNER) • Psst! Into the lockdown, quick, before the patrols see us!

T ext Appears W hen... | Actions T aken | Other Actions j Comments j CJLLL

Script ________ ______ _____
|m1q2_emernik321 j r] ... ||i£d j|ti|

-Script Preview-

int StartingConrftiortalQ

intbCondjtion - GetLocked(GetNeaie$tObjectByTdg(,tEmern^.DoorM]);
return bCondition; -

Figure 4.6: The first decision of the Ememick NPC in the Aurora conversation editor.

Not with priNMnT

Figure 4.7: The first decision of the Ememick NPC is composed with 2 decision patterns.

outcome 3 occurs if the saferoom door is unlocked AND Ememick is far away from the saferoom

waypoint (i.e. outside the room). In this case he will instruct the PC to run with him to the saferoom.

The actual Ememick conversation is more complex, but the extra decision have been remove for

exposition clarity.

In the Aurora conversation editor, these three outcomes are sibling NPC nodes as shown in

Figure 4.6. Outcomes 1 and 2 have When scripts attached with outcome 3 as the default outcome.

The first script simply evaluates to TRUE if the saferoom door is locked. The second script assumes

the saferoom door is unlocked - otherwise the first would be already selected - and returns TRUE if

Ememick is close (i.e. within 3 meters) to the saferoom waypoint.

If the author wanted to convert this conversation to the dialogue pattern model, it is unlikely

that there exists a pre-built decision pattern that handles this specific combined decision. With some

ScriptEase experience, the author could build a new decision pattern for this specific example by

creating each outcome and setting the conditions manually. Unfortunately this is a tedious process

and increases the likelihood of a cluttered pattern catalog with specialized patterns that are used

infrequently.

Instead, the author can create a composite decision by linking two or more existing decision

53

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

patterns together. For example, to create Ememick’s three decision outcomes, the author uses two

more general decision patterns. The Door locked decision has two outcomes based on whether a

door (e.g. Saferoom door) is locked or unlocked. The Near by decision also has two outcomes

based on whether an object (e.g. Ememick) is within a certain distance (e.g. 3 meters) of another

object (e.g. Saferoom waypoint). Both are general patterns that can be reused for a variety of

decisions. By linking the “Unlocked” outcome in the Door locked decision to the Near by decision,

as shown in Figure 4.7, the author can convert Ememick’s three outcome decisions to the dialogue

pattern model.

It is possible to convert any outcome that depends on several conditions connected with boolean

operators. The Ememick example illustrates an AND operator. As a canonical example of the AND

case, consider an outcome that is selected only if the PC is female AND the PC has high charisma.

By itself, the PC is female condition is an outcome in the Basic gender decision. As seen previously,

the PC has high charisma condition is an outcome in the Ability decision adapted to charisma. By

linking the “Female” outcome to the Ability decision and the “High” outcome to the topic, as shown

in Figure 4.8(a), the original outcome can be achieved. Alternatively, the “High” outcome can be

linked to the Basic gender decision and the “Female” outcome to the topic for the same result.

As a canonical example of the OR case, consider an outcome that is selected if the PC is female

OR the PC has high charisma. Again the Basic gender and Ability decision patterns are linked

together, but this time the “Male” outcome is linked to the Ability pattern. Also, both the “Female”

and the “High” outcomes now link to the topic, as shown in Figure 4.8(b). The two direct links

indicate that either outcome will select the topic to be displayed. In the AND case, there is only a

single path that goes through both decisions since the topic requires an outcome from both decisions.

In the OR case, there are two paths to the topic. One path which passes through a single decision

and one that passes through both decisions.

Since all complex When scripts are composed of basic conditions connected with AND and OR

boolean operators, any When script attached to an NPC node can be represented with one or more

single-criterion decision patterns.

4.1.7 Degenerate Decision Patterns

Similar to a choice, an outcome of a decision pattern links to a topic. This topic may be the root of

an entire sub-tree. However, there are many cases where the author only wants a decision to affect

a single exchange where each outcome of the decision shares the same choices of the exchange.

For example, the nurse NPC in Chapter 1 of the official campaign has a different greeting (remark)

depending on the PC’s charisma ability score. Regardless of the greeting, the PC has the same set

of choices to respond to the nurse. Figure 4.9(a) shows this piece of conversation in the dialogue

pattern model. An Ability decision has its three outcomes pointing to different topics in a topic

group. The topic group has three topics that share the same set of choices with each topic having a

54

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Basle gender decision
Basic gender decision

(OR cms)

Ability decision
(Charisma)

No riff-raff

__ I

(a) Topic is displayed if the PC is female (b) Topic is displayed if the PC is female OR has
AND has high charisma. high charisma.

Figure 4.8: Using combinations of decision pattern to simulate logical operators.

single exchange. The author can set the exchange remark text for each topic based on the outcome

linking to the topic.

Although using a topic group for a decision on a single NPC remark is convenient, this usage of

decision patterns occurs frequently enough that a more compact representation would be useful. For

example, the nurse conversation uses a decision pattern in five different places to decide on only a

single NPC remark. Instead, the decision pattern can be instantiated as a degenerate decision pattern.

In this representation (Figure 4.9(b)), the decision pattern is attached directly to an exchange inside

a topic and indicates that there exists one exchange for each outcome. The decision’s outcome tabs

function similar to the tabs in a topic group by allowing the author to change the visible exchange by

clicking on an outcome tab. For example, in Figure 4.9(b), the Ability decision is now a degenerate

decision pattern connected directly to the exchange. There are still three exchanges with one for each

outcome, but the topic group is no longer necessary. This is a slightly more compact representation

that clearly indicates the author’s intent. If a decision is not a degenerate decision pattern, it is called

a normal decision pattern.

In contrast, the same structure is much more complicated in the Aurora conversation editor. The

author must first create an NPC node for each outcome. Then, the author constructs the remaining

conversation under the first NPC sibling node. Finally, the author creates a link node under each of

the remaining sibling nodes. Figure 4.10 shows the same section of the nurse’s conversation as it

would appear in the Aurora conversation editor. This decision requires three NPC nodes with three

PC nodes under the first NPC node and a total of six link nodes under the other two NPC nodes.

When these single-remark decisions are used frequently, these links can greatly inflate the size of the

Aurora conversation tree. For example, there is one case described in Chapter 6 where the Aurora

55

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Ability decision
(Charisma)

Greetings
Ability dadston

(Charisma)

(a) A normal decision pattern with outcomes (b) The topic group is replaced
linking to topics in a topic group. with a degenerate decision at

tached to the exchange.

Figure 4.9: Simplifying decisions that affect only a single NPC remark.

B [OWNER] - Greetings, my <Lord/Lady>. How may I be of service?

(jl d Could I ask you som e questions?
:±i d Me want ask questions.
E& d Goodbye.
d [OWNER] - Is there something I can do for you, <sir/madam>?

■■d Could I ask you som e questions?[END DIALOGUE]
d Me w ant ask questions.[END DIALOGUE]

- d Goodbye.[END DIALOGUE]
g d [OWNER] - W hat do you want? And be quick about it - can't you se e how busy I am here?

- d Could I ask you som e questions?[END DIALOGUE]
d Me w ant ask questions.[END DIALOGUE]

d Goodbye.[END DIALOGUE]

Figure 4.10: The nurse’s greeting decision in the Aurora conversation editor.

Nurse conversation has a 189 total conversation nodes. Of these 189 nodes, 125 nodes (66%) are

link nodes. Two thirds of the conversation redirects the author back to nodes in the other one third

of the conversation.

There is a second advantage to using degenerate decision that occurs when using large topics.

For example, consider a topic that has an exchange length of two (i.e. two exchanges, one linking to

the other). If the author wanted a regular decision pattern to decide on the remark text in the second

exchange, the topic would have to be split into two separate topics each with a single exchange,

as shown in 4.11(a). The author would then link the first topic to the decision pattern, and the

outcomes of the decision pattern to the second topic which is now a topic group. In addition to the

complexity required when degenerate decision are not available, this structure may lose the intent

56

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

[Continue]

Ability decision
(Charisma)

PIN
f 1

Friendly Neutral Aloof

The bar

[Continue]

(a) A normal decision pattern requires the (b) A degenerate deci-
topic to be split into two topics. sion allows the topic to

remain intact.

Figure 4.11: A decision pattern that affects only a single exchange inside a topic with two exchanges.

of the conversation. In the example of Figure 4.11, the author intended both exchanges to be part

of the same original conversational topic (“The Bar”) with the second remark customized based on

game state. If degenerate decisions are used (Figure 4.11(b)) both exchanges can remain inside the

same topic, preserving the author’s original intent.

4.2 Optional Choice Patterns

When constructing choices, an author may want certain choices to be available only when certain

conditions are met. For example, the PC might have a insightful response to the NPC that can reveal

extra information. However, this choice is only available if the PC has a high wisdom ability score.

Section 1.4.3 describes how the Aurora conversation editor enforces this condition. The author

attaches a When script to the PC node. The script evaluates to TRUE if the PC’s wisdom is high,

and FALSE otherwise.

In dialogue patterns, the author can make a choice optional by instantiating an optional choice

pattern. Similar to other ScriptEase patterns, an optional choice pattern can have options. These op

tions are used as parameters for the pattern’s condition. Similar to conditions for outcomes in deci

sion patterns, the optional choice condition consists of ScriptEase definitions and a single ScriptEase

condition, and generates code for a When script that is attached to the choice. For example, Figure

57

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

? D D efine Ability S core , Is T rue

B D efine Ability S co re a s PC S p e a k e r 's Ability (W isdom) ability sco re
D efine is T rue a s w h e th e r Ability S co re C o m p a riso n (>) T h re sh o ld (14)

: (Z If is T rue is P ositive OTue, Y es, On, etc.)

Figure 4.12: The condition for an Ability optional choice pattern.

4.12 shows the condition for an Ability optional choice pattern that is displayed only if the PC has

high wisdom. The pattern has an Ability option set to wisdom, a Threshold option set to 14, and

a Comparison option set to > (greater than). The Comparison option allows the author to choose

how the ability score is compared against the threshold with < , < , = , > , or > boolean comparison

operators. The condition’s first definition defines the PC’s ability using the Ability option (wisdom).

The second definition defines a binary > (greater than) comparison between the ability score and

the Threshold option (14). Finally, the condition evaluates the comparison, returning TRUE if the

comparison is TRUE.

Several optional choice patterns can be instantiated on the same choice. In this case, the condi

tions for all the attached optional choices patterns must be true before the choice becomes available.

For example, if a second Ability optional choice pattern (intelligence > 9) is attached to the same

choice as the Ability pattern in Figure 4.12, then the PC must have both a wisdom ability score of

more than 14 AND an intelligence ability score of more than 9.

Other useful optional choice patterns include the Has item and Quest point patterns. The Has

item pattern makes a choice available only if a specific item in the PC’s inventory. The author can

set the item with the pattern’s Item option. The Quest point pattern makes a choice available only if

a certain point is reached in a quest. This is useful to make sections of a conversation available only

if the PC is at a certain point in a quest. For example, an NPC might be willing to give the PC some

gold, but only if they completed an Retrieve an item quest first. These optional choice patterns are

described in more detail in Appendix A.

The Aurora conversation editor has two important built-in scripts. The “normal int” script returns

TRUE if the PC has a normal or greater intelligence ability score (i.e. 9 or more). The “low int”

script returns TRUE if the PC has a low intelligence ability score. In all conversations in the official

campaign, the PC’s choices depend on the the PC’s intelligence. If the PC has low intelligence,

most choices will have “dumbed down” remark text to reflect the PC’s lack of sophisticated speech.

To do this, the author creates two choices, one for the “normal” choice with the “normal int” script

attached, and the other for the “dumbed down” choice with the “low int” script attached. Both

scripts are designed to be mutually exclusive, i.e. for any condition one script evaluates to FALSE

and the other to TRUE. Consequently, only one of the two choices will be displayed for any given

conversation.

This frequent pattern can be created easily using two Ability optional choice patterns - one

attached to each choice - with the Ability option set to intelligence. The pattern for the “normal”

choice has a Threshold of 9 with a > Comparison. The pattern for the “dumbed down” choice has

58

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

I was Me wus
sent here sent here

I i

Figure 4.13: An exchange with 4 Ability optional choice patterns. The simulated pop-up window
shows details of the first optional choice pattern.

a Threshold of 9 with a < Comparison. For example, in Figure 4.13 the exchange has 4 choices.

They are marked as optional choices with a “?” symbol. With the current representation of the

model, optional choice patterns cannot be displayed explicitly in diagrams since choices are too

small to contain details such as the pattern’s name. Instead, the author must click on the optional

choice to view the pattern. Similar to When scripts in the Aurora conversation editor, the “?”

symbol only indicates that a pattern exists, but not the name of the pattern. In Figure 4.13 a mouse-

over pop-up window has been simulated that shows information about the Ability optional choice

pattern attached to the first choice. The first and third choice are considered “normal” choices, and

the second and fourth choices are “dumbed down” choices.

4.2.1 Choice Groups

For both the Aurora conversation editor and dialogue patterns, the widespread use of intelligence-

based choices creates extra complexity. For example, Figure 4.14 shows a portion of Ememick’s

conversation in Chapter 1 of the official campaign. There are 10 PC nodes, however the first five

nodes require “high int” When scripts. The second five nodes are low intelligence versions of the

first five remarks. Since each intelligence pair links to the same NPC node, the “dumbed down”

PC nodes have link nodes to the NPC node. This adds a total of 10 extra lines or nodes to the

conversation (five for low intelligence PC nodes and five for link nodes). In addition to the extra

lines, the semantic relationship between the pairs of remarks is not explicit. Figure 4.15 shows the

same portion of conversation as a dialogue pattern. Although the direct links eliminate the need for

link targets, 10 choices are still required and there is still no explicit association between intelligence

pairs.

Since the intelligence scripts are used pervasively in all conversations in the official campaign,

the overhead of these conversations is significant. Although converting these conversation to di

alogue patterns removes some complexity, the author still needs to duplicate each choice using

normal and low intelligence variants, and then link them to topics. However, the majority of these

59

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

B Whaf do you know about this floor of the prison?
El B [OWNER] - It's the Security Layer - Supposed to be a buffer zone between the regular prisor

B The Pits? What are those?
i+; B [OWNER] - That’s where you’re headed- There aren't many cells down there except

- B Are the doors locked or unlocked?
i+: 0 [OWNER] * The cell doors are locked but the others should all be open. If you can g

- ■ W here are the former prisoners holed up?
B [OWNER] * They've barricaded themselves in the central guard room. They're sendir

:”r fli 1 n eed supplies. Are there any storerooms?

!*-■ [OWNER] - Yeah,you! find them to the north and south.
“ B i That's all I need to know about the prison.

i+i H [OWNER]-Just be careful. This is place is a deathtrap right now.
S B Da Pits? Ooo, what dey be?

;...B [OWNER] • That's where you're headed. There aren't many cell: down ‘hers except
- ■ Da doors • dey locked or unlocked?

- - B [OWNER] - The cell doors are locked but the others should all be open. If you can g
5 " | Da prisoners * where dey hidn'?

• | [OWNER] - They've barricaded themselves in the central guard room. They’re sendir
[fj B Hmph. Der storerooms 'round here?

- B [OWNER]-Yeah you’ll find them to the north and south.

B B That aR me n eed to know *bout prison.
B [OWNER] - Just be careful. This is place is a deathtrap right now.

Figure 4.14: Portion of Ememick’s conversation with 10 PC nodes including five normal and five
low intelligence variants.

llw Security Layer

That aH me
need to know..

Da doors j Da prisoners
deylocfced? f where dey...

7 Where are \
th e former... \ £

Da pits?

The pits? Are the doors
locked?

That's aB I
need to know.,

Figure 4.15: Exchange with 10 choices including five normal and five low intelligence variants.

60

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Where you're

The pits? A/e the doors Where are
> locked? the former prisoners?

^ / _________ i____

I need
supplies...

That's all I
need to know...

Ceit doors ere In the central
guard room

North and South Be Careful

Figure 4.16: A simplified exchange with 5 choice groups each with a normal and low intelligence
PC remark.

normal/low intelligence pairs always link to the same topic. For example, in all of the conversa

tions described in the case study in Chapter 6, there are 136 total intelligence choice pairs. Of

these 136 pairs, 112 pairs link to the same topic. In this common case, the author only wants to

customize choice text without affecting the structure of the conversation. This case can be visually

simplified by collapsing each normal/low intelligence pair into a choice group that explicitly shows

related choices. For example, Figure 4.16 shows the piece of the Ememick conversation with choice

groups. Each of the five pairs are represented by a single choice group which looks like two choice

singletons stacked together. Only the remark text for the high intelligence choices are visible on the

arcs with the understanding that although all nodes in the group have different text, they have same

intent or meaning. A GUI can allow the author to view or edit individual choices in the group in a

separate window. The exchange now properly represents the author’s original intent. A choice that

is not in a group is now called a choice singleton. Both a choice singleton and a choice group are

considered to be choices.

Although the author could use a choice group with any number of choices, analysis of conver

sations in the official campaign suggest groups are currently only useful for normal/low intelligence

pairs. All other choice singletons either are not optional, or do not share the same link with other

choice singletons in the same exchange. Therefore, it is convenient to make a single choice group

pattern called the Intelligence choice group pattern. This pattern can be used to create a choice group

of two choice singletons with an Ability optional choice pattern on each singleton, with the Ability

option of these patterns set to intelligence. Additionally, this pattern can also convert an existing

choice singleton into a choice group.

Similar to a choice singleton, the author may want a choice group to be available only when

certain conditions are met. If the conditions are not met, none of the PC remarks in the choice group

are available to the PC. If the conditions are met, the group functions normally by making available

61

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

only one of the PC remarks. For example, an Intelligence choice group could have an attached

Ability optional choice pattern set to be available only if the PC has high wisdom. If the PC has high

wisdom and normal or better intelligence, the “normal” remark in the group is available. If the PC

has high wisdom and low intelligence, the “dumbed down” remark is available. If the PC does not

high wisdom, neither remark in the group is available.

4.3 Summary

This chapter has presented two types of patterns that can be integrated with structural patterns to

form dialogue patterns. A decision pattern decides on what the NPC will say at a certain point in

the conversation. This decision is made by evaluating conditions using game state and consequently

selecting a particular path of conversation. An optional choice pattern evaluates a condition to decide

on whether a specific choice is available at a certain point in the conversation. If the condition is not

satisfied, the choice is unavailable. Finally, choice groups were introduced to preserve the author’s

intent of providing two different sets of PC remarks based on the PC’s intelligence. Choices that

were not groups were called choice singletons.

Dialogue patterns are not used to generate What scripts on remarks that are used to execute

actions, such as rewarding the PC experience points or moving a character. These What patterns

are already handled by encounter patterns. Specifically, a Conversation What encounter pattern

is used to execute actions when a remark is selected or displayed. The pattern’s first option is a

remark and the author uses a picker to select the remark from a conversation. These encounter

patterns typically contain actions that do not affect a conversation or its flow and consequently are

not dialogue patterns. However, a GUI could mark remarks that are a part of encounter patterns and

provide an operation to allow the author to view the encounter pattern.

62

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter 5

Pattern Operations

This chapter describes the set of operations needed to build, change, and delete components of

dialogue patterns. By describing the operations required to build a conversation using dialogue

patterns, it is possible to compare the operational complexity of creating a conversation using the

Aurora conversation editor and the dialogue pattern model. A complexity metric that uses pattern

operations is described in Chapter 6.

5.1 Topics

A topic is created with the Add Topic operation. The author must first select a precursor that will

link to the new topic. The precursor for a topic is either a choice or decision outcome. For a new

conversation, the precursor of the first topic is the root choice. There is always one root choice for

each conversation and it does not appear in an actual conversation. The topic is created with a single

exchange containing one choice. A direct link is also created from the precursor to the new topic.

A GUI could have extra Add Topic operation variants that add a different number of exchanges and

choices to the new topic. If the precursor already links to a target (i.e topic or decision pattern),

the new topic is inserted between the precursor and target. The choice in the new topic links to the

original target. For example, in Figure 5.1 the author creates a new topic by selecting the first choice

in the “Go Away!” topic and performing the Add Topic operation. The new topic is inserted in front

of the “Sick” topic.

A topic can also be removed with the Remove Topic operation. The author must first select the

topic to be removed. In addition to removing the topic, the operation will remove all disconnected

sub-topics. Section 5.7 describes disconnection in more detail. This operation leaves the precursor

of the removed topic unconnected to any topic. For example, in Figure 5.2 the author uses the

Remove Topic operation to remove the sub-tree rooted at the “Sick” topic.

63

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

T
Go away!

'T 'T -
Whars me matter? I'm outta here.

A „__________

Add

T
Topic

- / V
What's the matter? i'm outta here.

/ \

Figure 5.1: Adding a new topic to a conversation.

Go away!

What's the matter? I'm outta here.

Let me help you.

Figure 5.2: Removing a selected topic from a conversation.

64

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

What happened
here?

. . i
A ttack 3 Hi;

What creatures
lurk here?

it
Threat Attack

What happened What creatures What is in
here? lurk here? the cave?

^ ____ + X
ThreatI J

MergeTopic_________Split Topic

North Y South y East V""

What happened
here?

What creatures
lurk here?

Selected
T°l*!

Threat
'A
.J

What is In
the cave?

Cava D
Figure 5.3: Merging a topic with a topic group. This operation can be reversed by splitting the topic
from the topic group.

5.2 Topic Groups

The author can add a topic to a topic group by using the Merge Topic operation. The author must

first select a topic group and a topic that is not in a group. The selected topic is relocated to the topic

group’s position and the choices in the tail exchange of the selected topic are added to the choices in

the topic group. The author can then remove any unnecessary choices. For example, in Figure 5.3

the author merges the “East” topic into the topic group. The topic’s three choices are added to the

right of the topic group’s existing choices. Since two of the three choices are duplicates of the two

choices already in the topic group, they are removed. The process of recognizing duplicates can be

automated by the GUI and can include or exclude author confirmation.

To create a new topic group, the author can select two topics that are not in topic groups and

use the Merge Topic operation. The second topic will moved to the first, creating a topic group.

Additionally, the author can add new topics to a topic group by selecting the topic group and using

the Add Topic operation described in Section 5.1. The new topic is immediately attached to the

topic group but remains disconnected since the author has not yet linked to the new topic from an

existing precursor.

65

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

Finally, the author can remove a topic from a topic group with either the Remove Topic or Split

Topic operations. The Remove Topic operation removes the topic from the conversation entirely.

Any choices specific to the removed topic that are not shared by the remaining topics in the group

are also removed. The Split Topic operation separates the topic from the group into a stand-alone

topic. The separated topic is connected by a direct link to one of its precursors. Furthermore, all

choices in the topic group that were shared by the separated topic are duplicated and added to the

separated topic. Similar to the Remove Topic operation, any choices specific to the split topic that

are not shared by other topics are removed from the topic group. For example, in Figure 5.3 the

author splits the “East” topic from the topic group creating a new topic in the conversation. The new

topic has the same choices as the topic group. However, since only the “East” topic has the “What

is in the cave?” choice, the choice is removed from the topic group.

5.3 Exchanges

The majority of exchanges will be created implicitly when a new topic is created. However, the

author can use an Insert Exchange operation to create a new exchanges inside an existing topic. The

author must first select an existing exchange in the topic. The operation creates the new exchange

before the existing exchange. The new exchange contains a choice singleton which is directly linked

to the selected exchange. If the new exchange is inserted between two existing exchanges, the direct

link of the first exchange is redirected to the new exchange. For example, in Figure 5.4, the author

inserts a new exchange in between two exchanges in the “You’re in town” topic.

Recall that the tail exchange is the only exchange in a topic that can have more than one choice.

The author can use the Append Exchange operation to add an exchange after the selected exchange

unless the selected exchange is a tail exchange with more than choice. A direct link is created from

the choice in the selected exchange to the new exchange. For example, in Figure 5.5 the author is

extending the topic by adding a third exchange between the two existing exchanges. This operation

is disallowed with tail exchanges that have two or choices.

The author can change the move an selected exchange inside a topic using the Move Exchange

Up and Move Exchange Down operators. The Move Exchange Up operation moves the exchange

up by swapping the positions of the selected exchange and the exchange above. This operation is

unavailable for the first exchange in a topic. Similarly the Move Exchange Down operation moves

the exchange down by swapping the positions of the selected exchange and the exchange below. This

operation is unavailable for the tail exchange. The direct links are adjusted to maintain consistency.

For example, in Figure 5.6, the author moves the “Fine day...” exchange up to the first position in

the topic. A topic’s tail exchange can not be a target of this operation if it has more than one choice.

Finally, the author can remove an exchange using the Remove Exchange operation. However,

the tail exchange cannot be removed. The author must remove the entire topic instead.

The author can set the NPC remark text inside an exchange by using the Set Remark Text.

66

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

[Continue][Continue]Selected
Exchange

Insert E :change

[Continue]

Figure 5.4: Inserting a third exchange in a topic.

You're In town

Selected
Exchange

[Continue] Append I xchange

T
You're in town

[Continue]

[Continue]

Figure 5.5: Appending a third exchange to the end of a topic.

67

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion

Greetings Greetings

[Continue] [Continue]Move E chanpe(

[Continue] [Continue]

Figure 5.6: Moving two exchanges in a topic.

5.4 Choices

An author can add a new choice singleton to an exchange by using the Add Choice Singleton

operation. Since inner exchanges can only have one choice, this operation be only be used inside

the tail exchange of the topic. The author must first select an existing choice in the exchange. The

operation will add a new choice singleton after the selected choice. For example, in Figure 5.7 the

author adds a new choice singleton after the first choice in the exchange. Additionally, a GUI could

have a Insert Choice Singleton that would insert a new choice singleton before the selected choice.

Section 4.2.1 describes the Intelligence choice group. This choice group can be created with

either of two operations. The Add Choice Group operation functions similar to the Add Choice

Singleton operation by adding a choice group after the selected choice. The Convert Singleton to

Group operation converts the selected choice singleton into a choice group. This operation is only

available if a choice singleton is selected. The properties of the selected choice are preserved since

the choice becomes the first choice in the group. For both the Add Choice Group and Convert

Singleton to Group operations, the GUI must provide a mechanism to select the type of choice

group to be added. At the time of writing of this dissertation, the Intelligence choice group is the

only type of choice group available. However, it is possible for authors to create more types of

choice groups. The Intelligence choice group group is the only one used in Neverwinter Nights.

The author can use the Convert Group to Singleton to replace a choice group with a choice

singleton. The GUI must provide a mechanism to allow the author to select which choice in the

group will be used as the choice singleton. All other choices in the group are removed.

Similar to moving an exchange inside a topic, the author can move a choice left or right using

the Move Choice Left and Move Choice Right operations. The author must first select a choice

68

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

A d d I w ZT O o <D

CO
_

.._
...

I

l e t o n '

Selected choice New choice
singleton

Figure 5.7: Adding a choice to an exchange.

/
Selected
choice

Figure 5.8: Removing a choice to create an utterance.

in a tail exchange. The Move Choice Left operation is only available if the selected choice has an

adjacent choice to the left. Similarly the Move Choice Right is only available if the selected choice

has an adjacent choice to right.

The author can remove a choice using the Remove Choice operation. The author first selects

the choice to be removed. If an exchange only has a single choice, the choice cannot be removed.

The only exception is if a topic has a single exchange with one choice and the topic’s ancestors

consist only of decision patterns and the root node. The choice can then be removed to convert

the exchange into an utterance. For example, in Figure 5.8 the author removes the single choice to

create an utterance. Utterances are described in Section 3.2. The author can convert an utterance

topic back into a normal topic by selecting the exchange and using the Add Choice operation.

When the author removes a choice that links to a topic, the link is also removed. If the topic is

not linked by another precursor, it is considered disconnected. Section 5.7 describes disconnected

topics in detail.

The author can set the PC remark text inside a choice by using the Set Remark Text.

69

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

5.5 Linking

The author can link a precursor (choice or decision outcome) to a target (topic or decision pattern)

by using the Link operation. The author must first select a precursor and a target. If the precursor

already links to another target, the link is redirected to the selected target. This redirection can

possibly disconnect a sub-tree of topics and decision patterns from the conversation. Section 5.7

describes this case in more detail.

5.6 Dialogue Patterns

Similar to adding a topic, the author can instantiate a dialogue pattern by using the Add Dialogue

Pattern operation. The author first selects a precursor which acts as the root node of the dialogue

pattern. If the precursor already has a link to another target, the target is appended to the end of the

instantiated dialogue pattern. The primary precursor of the dialogue pattern is defined as the first

unlinked-linked precursor in a depth-first traversal of the dialogue pattern. For example, in Figure

5.9 the author instantiates a dialogue pattern with 3 topics after the first choice in the “Faire” topic.

The “South” topic is now linked from primary precursor, which is the choice singleton in the ‘Topic

2” topic.

Once a dialogue pattern is instantiated into a conversation, the pattern boundary disappears and

the author is free to adapt the components as needed. Consequently, it is not possible for the author

to remove a dialogue pattern after instantiation. The components must be removed separately.

5.7 Deletion

Whenever a component is removed, it is possible for other components to become disconnected from

the conversation tree. A topic or decision pattern is disconnected if it is not linked by any precursor.

For example, in Figure 5.10 the “Groan” topic is disconnected from the conversation. A target that

is only linked by a secondary link, such as a topic in a topic group, is still considered connected to

the conversation. A topic group is disconnected if all topics in the group are disconnected.

If a topic or topic group becomes disconnected then it is removed from the conversation tree. One

exception is if a disconnected topic is part of a topic group that is still connected to the conversation.

In this case, the topic remains part of the topic group, however the GUI may warn the author that

the topic is not part of the conversation. For example, in Figure 5.11, the “East” topic in the topic

group is disconnected and will not appear when the conversation is generated into the module. This

assumes that there is no precursor anywhere in the conversation that connects to the “East” topic.

The “South” topic is not disconnected since there is a secondary link that connects to it in the figure.

The author can connect the topic by linking it with a precursor.

Formally, a topic is considered disconnected if and only if the root node is not an ancestor

of the topic. For example, although the ‘Threat” and “Didn’t hear” topics in Figure 5.12(a) are

70

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Add D alogiffSelected
PH tern

[Continue] [Confeiue]
— i

Topic 1

PC Remark 1 PC Remark 2
- u L \
Topic 2 Topic 3

□ Instantiated
Dialogue
Pattern

Figure 5.9: Instantiating a dialogue pattern into a conversation.

What's the matter?

Sick ^ Gran '

V J

Disconnected
Topic

Figure 5.10: A topic disconnected from the conversation.

71

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

T
North Y South East \

 \ Disconnected
 . Topic

t \
What’s to the north? What's to the south?

North J

Figure 5.11: A disconnected topic in a topic group.

connected to the “Come closer” topic, they are still disconnected from the conversation. The “Come

closer” topic is the root of a disconnected sub-tree and consequently all 3 topics are removed from

the conversation. However, if the “Didn’t hear” topic was also linked by the “Suspicious” topic

as shown in Figure 5.12(b), then the “Didn’t hear” topic is not disconnected and only the “Come

closer” and “Threat” topics are removed.

The GUI can decide to delete disconnected sub-trees entirely, but it is advantageous to the author

to store the removed sub-trees into a disconnected bin. The disconnected bin would treat removed

sub-trees as individual dialogue pattern instances. Thus, the author can recover dialogue pattern

instances from the disconnected bin by adding them back into the conversation using the Add Dia

logue Pattern operation. After instantiation, the pattern instance is removed from the disconnected

bin.

The author can instantiate a decision pattern using the Add Decision Pattern operation. The author

must first select a precursor that will direcdy link to the new decision pattern. The GUI is responsible

picker window described in Chapter 2. If the outcome already links to an existing target, then the

the link is redirected to the new decision pattern. The first outcome of the new decision pattern then

links to the existing target. For example, in Figure 5.13 the author instantiates an Ability decision

between the “Go away!” and “Sick” topics.

The author can also remove a decision pattern using the Remove Decision Pattern operation.

Similar to removing a topic, any sub-trees linked by the removed decision that become disconnected

are also removed.

5.8 Decision Patterns

for providing a mechanism to select a specific decision pattern, similar to the encounter pattern

72

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

Disconnected
sub-tree

Disconnected
sub-tree

Thai stuff?
it was way too h otThat stuff?

tt was way too hot

Al least idonlI think you isMwtm
got the wrong those chompers. JI# * * you Notwith

got the wrong those chompers
story. y story V huge chompers.

i /TT..... S £
ENdnthaarDkfcithaar

(a) A disconnected sub-tree o f 3 topics. (b) A disconnected sub-tree of 2 topics. The “Didn’t
hear” topic remains connected.

Figure 5.12: Sub-trees disconnected from a conversation.

choice

What's the matter?
A

Add Decision

T
Go away!

Whafs the matter?
+

Ability decision

Figure 5.13: Adding an Ability decision pattern in a conversation.

73

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Selected ^
Choice M ew us

sen t here

Figure 5.14: Adding an Ability optional choice pattern to a choice.

5.9 Optional Choice Patterns

The author can instantiate an optional choice pattern using the Add Optional Choice Pattern op

eration. The author must first select a choice. For example, in Figure 5.14 the author selects the “I

was sent here” choice and uses the Add Optional Choice Pattern operation to instantiate a Ability

optional choice pattern. The author then sets the pattern instance’s options. The author can also

attach several optional choice pattern instances to a single choice. For example, a second Ability

optional choice pattern can be instantiated on the “I was sent here” choice. Now the conditions for

both Ability optional choice pattern instances must be true in order for the choice to be available. To

remove an optional choice pattern instance, the author can use the Remove Optional Choice Pat

tern. This operation does not remove the choice itself. An optional choice pattern instance can be

attached to both choice singletons and choice groups. If the pattern instance is attached to a choice

group, then the pattern condition applies to all PC remarks in the group.

5.10 Summary

This chapter described the operations used to construct conversations using dialogue patterns. The

operations for topics, topic groups, exchanges, choices, linking, and dialogue patterns were de

scribed in order. Then, the semantics for removing a sub-tree from the conversation were described.

Finally, the operations for instantiating decision and optional choice patterns were described.

74

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter 6

Evaluation - A Case Study

This chapter presents a case study to compare the conversation model supported by the Aurora

conversation editor and the conversation model based on dialogue patterns. This case study uses

four conversations in Chapter 1 of the Neverwinter Nights official campaign. The conversations

vary in size and complexity, and are a good representative sample of all the conversations in Chapter

1 of the official campaign.

This chapter begins by defining five metrics that can be used to evaluate the complexity of

conversations. The chapter then presents the four conversations that will be evaluated using the

metrics. The chapter ends by applying the five metrics to the four conversations as built using the

Aurora conversation model and the dialogue pattern model. The values of these complexity metrics

are compared and these comparisons show that the dialogue pattern model has lower (better) values.

6.1 Complexity Metrics

There are two approaches to evaluate the effectiveness of the dialogue pattern model. In the first ap

proach a tool is built that implements dialogue patterns. Then, a user study is conducted to measure

the relative effectiveness of the Aurora conversation editor and the dialogue pattern tool. A group

of game authors use both the Aurora conversation editor and the dialogue pattern tool. The authors

then evaluate each tool based on a variety of criteria. Finally, comparisons are made between evalu

ations. If the dialogue pattern tool is evaluated to be better than the Aurora conversation editor, then

a conclusion can be drawn that the dialogue pattern model is a better model than the model used by

the Aurora conversation editor. The advantage this approach is that real-world experience is used to

measure the effectiveness of the model. Ultimately, the goal of creating a new model is to provide

a better mechanism for authors to create and edit conversations, and this is reflected in the data that

would be produced from such a user study.

However, a tool that implements the dialogue pattern model is not available yet. It is not possible

to compare both models using a user study, and therefore it is difficult to take into account flaws that

are not exposed by users evaluating the program. Instead, the second approach is used. Rather than

75

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

comparing two specific tools that use the Aurora conversation model (Aurora conversation editor)

and dialogue patterns (no tool yet), the models can be evaluated directly by applying complexity

metrics to several conversations. In this dissertation, the term complexity1 is used to describe the

complicatedness of various aspects of a conversation model. The model with the lower overall

complexity metric scores is considered less complex, and therefore is easier to use. The second

approach also has a major advantage - the models are compared directly. It is possible that a poorly

designed and implemented tool could disguise a very good model. The results from a user study

ultimately reflect the quality of both the model and the tool implementing the model. A case study

that measures the models directly is the best way to evaluate only the models themselves.

This section presents five metrics to measure conversation complexity: component complex

ity, structural complexity, remark complexity, indirection complexity, and operational complexity.

The metrics are expressed formally as formulas and are denoted with a subscript A for the Aurora

conversation model, and a subscript d for the dialogue patterns. A running example based on the

“beggarl” conversation of chapter 1 of the official campaign is used to help illustrate how metrics

are computed. This conversation has been modified slightly (by adding a single NPC remark) to

better illustrate all the metrics.

6.1.1 Component Complexity

Component complexity measures the number of visible components when a conversation is fully

expanded. In the case of the Aurora conversation model, this includes all NPC nodes, PC nodes,

and link nodes. In the case of dialogue patterns, this includes all topics, choices, inner and tail

exchanges, decision patterns, decision pattern outcomes, secondary links, and end dialogue targets.

For the Aurora conversation model, component complexity is defined in Figure 6.1. Component

complexity is the number of all conversation nodes in the conversation. For example, there are 12

NPC nodes, 12 PC nodes, and 10 link nodes in the “beggarl” Aurora conversation in Figure 6.3.

Therefore componentA(beggarl) = 12 + 12 + 10 = 34. The author views 34 total components

when the conversation is fully expanded.

d e fNPCNodes = {NPC nodes in conversation}
d e fPCNodes = {PC nodes in conversation}

LNodes d= {link nodes in conversation}
d e fcomponent A(conversation) = \NPCNodes\ + \PCNodes\ + \LNodes\

Figure 6.1: Component complexity formula for Aurora conversations.

For dialogue patterns, component complexity is defined in Figure 6.2. In this case, compo

nent complexity is the sum of all topics, exchanges (inner and tail), choices, decision patterns

(including degenerate), outcomes in decision patterns, secondary links, and end dialogue targets.

'T he term complexity is not used here to refer to the space or time complexity of an algorithm, but rather how complicated
an aspect of the model is.

76

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

All of these components, including inner exchanges, are visible when the conversation is fully ex

panded. For example, there are 9 topics, 10 exchanges, 9 choices, 4 decision patterns, 10 decision

pattern outcomes, 3 secondary links, and 2 end dialogue targets in the “beggarl” dialogue pat

tern conversation in Figure 6.4. The 9 topics include the 3 topics in the topic group. Therefore

component D(beggarl) = 9 + 1 0 + 9 + 4-1-10+ 3 + 2 = 47. Comparing the two results shows

that componentD(beggarl) is 12 points higher than componentA{beggar 1).

This score is higher since topics, decision patterns, outcomes, and end dialogue targets are in

cluded in componentD(beggarl) score and these components do not exist in the Aurora conver

sation model. Note that these components incorporate scripting and other information that is not

represented in the Aurora conversation model. For example, the quest point decision in Figure 6.4

explicitly divides the conversation tree based on whether a quest has been completed. In the Aurora

conversation model (in Figure 6.3) the author has no way of knowing that the remark on line 3 (“It’s

over?...”) will only be displayed if the quest has been completed, without looking at the scripts.

These extra visual components provide good added value. Each topic includes text that summarizes

the intent of the topic. This information does not appear in the Aurora conversation model. The

end dialogue markers could be excluded in favour of choices with no links to targets. However, it is

easier for the author to spot these important locations in the conversation tree if explicit markers are

used. If these value-added components are removed from the conversation, the reduced component

complexity of the “beggarl” conversation would only b e l 0 + 9 + 3 = 22.

Topics d= { topics in conversation}
d e fTExchanges = {tail exchanges in conversation}

d e fIExchanges = {inner exchanges in conversation}
d e f _Exchanges = TExchanges U IExchanges

TChoices d= {choices in tail exchanges in conversation}
I Choices d= {choices in inner exchanges in conversation}

d e fChoices = TChoices U IChoices
d e fDecisions = {decision pattern instances in conversation}

Outcomesn d= { outcomes in decision pattern n}
d e fLSec = {secondary links in conversation}

d e fEDTargets = {end dialogue targets in conversation}
d e fcomponent D{conversation) = \Topics\ + | Exchanges | + | Choices | + \Decisions\

+ \Outcomesn \+ \LSec\ + \EDTargets\
n€ D e c i s i o n s

d e freduced.componentD{conversation) = \Exchanges\ + \Choices\ + \LSec\

Figure 6.2: Component complexity formulas for dialogue patterns.

77

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

1 B [OWNER] -1 never thought I'd be happy to be going back to the Beggar's Nest.
2 B [OWNER] -1 just want to go home, that's all.
3 Ei B [OWNER] - It’s over? I mean, the plague is still going, sure, but at least I can go home. The zombies in the Bee
4 ̂ : B [END DIALOGUE]

5 EJ B [OWNER] ■ Hell, your <Lotd?Lady>ship. Can you help? I don't know if I should dare to ask... probably not. I'm r
6 - B [CONTINUE]

7 El B [OWNER] - Can't go home to the Beggar's Nest because of zombies, can't get out of the city because
8 3 B Could I a sk y o u so m e qu estion s?

9 : E! I [OWNER] ■ No, please, I don't want to think about this anymore than I have to.
10 l B Maybe I could help you out?[END DIALOGUE]
11 B Maybe me helpyous somehow, huh?[END DIALOGUE]
12 B Goodbye.[EN0 DIALOGUE]
1 3 E] B M e w ant a sk questions.

14 : B B [OWNER] - I-I‘m sorry, I don’t mean to be rude, but if you think i've had any time to think about
15 B | [CONTINUE]

16 ! B [OWNER] - No, please, I don’t want to think about this anymore than I have to.
1 7 B B M aybe I cou ld help y o u out?

18; i B B [OWNER]-I don't know how you could. I don't know anyone that can take on an army of zonr
19 r B Could I ask you some qu*stions?[END DIALOGUE)
20 I..B Me want ask questions.[END DIALOGUE]
21 ; :..B Goodbye.[END DIALOGUE]
22 S B M aybe m e h e lp y o u s so m eh o w , huh?

23................. ’’..B [OWNER] -1 don't know how you could. I don't know anyone that can take on an army of zorr
24 S B G oodbye.
25 S B [OWNER] - Farewell, then. I'll just stay here... nowhere else to go...
26 i 3 B [CONTINUE]

27 0~B [OWNER] - Hey, if you are going in there, can you let me know if anything has change
28 : j B [END DIALOGUE]

29S B [OWNER] ■ Can I help you? No, what am I thinking... I can't even help myself. I can't even huddle in my own h
30 S f [CONTINUE]

31 : ; B [OWNER] - Can't go home to the Beggar’s Nest because of zombies, can’t get out of the city because
32- B [OWNER] -1 don't want any trouble, but I guess what I want doesn't really matter. It's not like there’s anything I
33 S B [CONTINUE]

34 : B [OWNER] ■ Can't go home to the Beggar's Nest because of zombies, can't get out of the city because

Figure 6.3: The “beggarl” conversation in the Aurora conversation editor.

78

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

la the PC dedal on
Hi mat

Can you help?

[Continue]

— <------------

M™ ^ T C o u “ i ! 2 L » , ^ d ' t o o d b y equest tons, you some questions? help you out?

X I V
You aren't bright

[Continue]

Figure 6.4: The “beggarl” conversation in the dialogue pattern model.

79

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

6.1.2 Structural Complexity

Structural complexity measures the number of visible components when a conversation has hidden

all components that are unnecessary for the author to understand the intent of the conversation. In

the case of the Aurora conversation model, this metric is the same as component complexity since

it is not possible to collapse any sub-tree without losing important information such as branching

factor or the target of link nodes. The Aurora conversation editor could be modified so that any

linear chains of conversation nodes could be collapsed to show only the first and last node in the

chain. For example, in Figure 6.3 lines 5, 6, 7, 8, and 9 could be collapsed to show only lines 5

and 9. In the case of the dialogue pattern model, this metric assumes that all topics with multiple

exchanges are collapsed to show only the tail exchange. Therefore inner exchanges and the choices

inside these exchanges are not counted.

For the Aurora conversation model, structural complexity is defined in Figure 6.5. Similar to

component complexity, structural complexity is the sum of all conversation nodes in the conversa

tion. For example, there are 12 NPC nodes, 12 PC nodes, and 10 link nodes in the “beggarl” Aurora

conversation in Figure 6.3. Therefore structural ̂ (beggarl) = 12 + 12 + 10 = 34. If the Aurora

conversation were modified to collapse linear chains then 10 nodes could be hidden and therefore

a modified structural complexity metric called collapsed chain structural complexity would be 24.

However, since the Aurora conversation editor cannot collapse chains of nodes, the collapsed chain

structural complexity is not included in the results in Section 6.3.

d e fstructural A{conversation) = \NPCNodes\ + \PCNodes\ + \LNodes\

Figure 6.5: Structural complexity formula for Aurora conversations.

For dialogue patterns, structural complexity is defined in Figure 6.6. In this case, structural

complexity is the total number of components, as defined for component complexity, minus the

inner exchanges and choices inside inner exchanges. For example, there are 9 topics, 9 exchanges,

8 choices, 4 decision patterns, 10 decision pattern outcomes, 3 secondary links, and 2 end dialogue

targets in the “beggarl” dialogue pattern conversation in Figure 6.4. The 9 topics include the 3 topics

in the topic group. Therefore structural o (b eg g a rl) = 9+9+8+4-1-10-1-3+2 = 45. Comparing the

two results shows that structuralp (beggarl) is 11 points higher than structural A (beggarl). Again

this score is higher since since value-added components such as topics, decision patterns, outcomes,

and end dialogue targets are included in structural o (beggarl) score. Without these value-added

components, the reduced structural complexity score is 9 + 8 + 3 = 20.

6.1.3 Remark Complexity

Remark complexity measures the number of remarks for which the author enters text when building

the conversation. This metric is useful since it directly measures the number of lines of conversation

the author must write. This metric can be reduced by reusing the same lines of text in several

80

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

d e fstructural D(conversation) = \ Topics \ + \ TExchanges\ + \ Choiccs\ + | Decisions \
+ \Outcomesn \ + \LSec\ + \EDTargets\

n€ D e c i s i o n s
d e freduced structural D^conversation) = \TExchanges\ + \ TChoices\ + \LSec\

Figure 6.6: Structural complexity formulas for dialogue patterns.

contexts of the conversation. In the Aurora conversation model, this is done by creating a link node

to an existing NPC or PC conversation node. In dialogue patterns, text for PC remarks is reused by

sharing choices between topics in a topic group.

For the Aurora conversation model, remark complexity is defined in Figure 6.7. The difference

between structural and remark complexity is that link nodes are not counted since the author does

not need to write text for the link nodes. A link node automatically uses the text of its target. The

remark complexity can be reduced by replacing duplicated NPC or PC nodes with link nodes. In the

“beggarl” Aurora conversation (Figure 6.3) there are 12 NPC nodes and 12 PC nodes. Consequently

remark a (beggarl) = 12 + 12 = 24. This means the author has to set the text for 24 remarks.

d e f
remark A(conversation) = \NPCNodes\ + | PCNodes \

Figure 6.7: Remark complexity formula for Aurora conversations.

For dialogue patterns, remark complexity is defined in Figure 6.8. Recall that each exchange has

one NPC remark, each choice singleton has one PC remark, and each choice group has a number of

PC remarks equal to the number of choices in the group. Therefore, remark complexity is the sum

of all exchanges, all choice singletons, and all choices in choice groups in the conversation. The

number of PC remarks in a choice is represented by P C rn. If n is a choice singleton, P C rn is

1. For example, the “beggarl” conversation in Figure 6.4 has 11 tail exchanges, 1 inner exchange

that includes 1 hidden choice singleton, 7 choice singletons, and 1 choice group that contains 2

PC remarks. The 3 tail exchanges in the “Can you help?” are included in the 11 tail exchanges.

Therefore remark d (beggarl) = l l + l + l + 7 + l x 2 = 22. Therefore, the author has to set the

text for 22 remarks.

This result differs from the remark complexity score of 24 for the Aurora version of the con

versation. How can the two conversations be equivalent yet have a difference of two remarks? The

number of remarks the author needs to set depends on the number of duplicated nodes. For exam

ple, in the Aurora “beggarl” conversation in Figure 6.3 the PC nodes on lines 6, 30, and 33 are

duplicates since they link to the same NPC node and have the same remark text. The author could

have replaced the PC nodes on lines 30 and 33 with link nodes pointing to the PC node on line 6.

In contrast, the “beggarl” dialogue pattern has no duplication in this case since it shares only one

choice for all three exchanges in the “Can you help?” topic.

Note there is no reduced remark complexity for dialogue patterns since none of the value-added

81

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

components contain any remarks. Similarly, if the Aurora conversation editor had the capability to

collapse linear chains, the collapse would not reduce the number of remarks and therefore there is

no collapsed chain remark complexity metric.

d e fP C rn = {PC remarks in choice n}
remarkoiconversation) d= \Exchanges\+ \PCrn \

nG Choices

Figure 6.8: Remark complexity formulas for dialogue patterns.

6.1.4 Indirection Complexity

Indirection complexity measures the number of points in the conversation where the conversation

tree is terminated with a leaf node that acts as a placeholder for another component. In the Aurora

conversation model this is a link node that points to an NPC or PC node. In the dialogue pattern it

is a secondary link which is indicated by a link target. This metric measures the disjointedness of

the tree where the author must follow the link by changing the view to the link target. It is easy to

keep this metric low by replacing existing links with duplicated sub-trees. However, this duplication

forces the author to enter more text for remarks, and therefore causes the remark complexity to

increase. The goal of the dialogue pattern model is to minimize indirection complexity without

greatly increasing remark complexity.

For the Aurora conversation model, indirection complexity is defined in Figure 6.9. In this case,

indirection complexity is the number of link nodes in the conversation. Each link node is a terminal

node and forces the author to change the viewport to find the link’s target node. For example, the

“beggarl” conversation in Figure 6.3 has 10 link nodes and therefore indirection a (beggarl) = 10.

There are 10 points in the conversation where the author’s view must be redirected.

d e f
indirection A{conversation) = \LNodes\

Figure 6.9: Indirection complexity formula for Aurora conversation model.

For dialogue patterns, indirection complexity is defined in Figure 6.10. In this case, indirection

complexity is the number of secondary links in the conversation. Each secondary link has a link

target redirecting the author to another part of the conversation. For example, the “beggarl” dialogue

pattern conversation in Figure 6.4 has 3 secondary links and therefore indirectiono(beggarl) = 3.

This conversation has a lower disjointedness than the Aurora counterpart without increasing the

remark complexity.

indirection ̂ (conversation) \LSec\

Figure 6.10: Redirection complexity formula for dialogue patterns.

82

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

6.1.5 Operational Complexity

Operational complexity measures how many operations the author must perform to construct the

conversation. For simplicity, all operations have a cost of one unit. This metric only counts the

minimum number of operations needed to construct the conversation. For example, if a conversation

in the dialogue pattern model has five topic groups with three topics per group, the conversation is

built with 15 Add Topic operations and five Merge Topic operations for a total of 20 operations. For

each topic group, the first two topics are created separately. They are then merged with the Merge

Topic operation. The third topic is created directly in the topic group with the Add Topic operation.

It is possible to create the same five topic groups with more operations by creating all 15 topics

separately with 15 Add Topic operations. Then each of the topic groups could be created by using

two Merge Topic operations to merge three topics together. This method would result in a total of

25 operations. Therefore it is more efficient to add extra topics directly in the topic group.

For the Aurora conversation model, operational complexity is defined in Figure 6.11. In this

case, operational complexity includes one Add Node operation for each NPC and PC node, one

Edit Text operation for each NPC and PC node, and one Add Link operation for each link node.

Additionally, the metric includes one Write Script operation for each unique script (When or What)

used by the conversation and one Attach Script operation for each script that is attached to each

node. For example, if a node has both a When and a What script attached then two Attach Script

operations are counted. In this case, the node is said to have two attach points, one for each script.

The “beggarl” Aurora conversation in Figure 6.3 has 12 NPC nodes, 12 PC nodes, 10 link nodes,

and uses 8 unique scripts on 10 attach points. Therefore operationA(beggarl) = 12 + 12 + 12 +

12 + 10 + 8 + 10 = 76. The author needs to perform 76 operations to construct this conversation.

For simplicity, writing a script is counted as one operation, even though writing a script is much

more complex than writing text for a single node. Similarly, adding an adapted decision or optional

choice pattern in a dialogue pattern conversation is counted as one operation, regardless of the num

ber of adaptations. This simplifies the metric without having to introduce weights for each operation.

More complex metrics could be constructed by count lines of code in a script and adaptation to a

pattern instance. However, in this case it is not clear how to weight lines of code versus adaptations.

NAdd d= NPCNodes U PCNodes
TEdit d= NPCNodes U PCNodes
LAdd d= {link nodes in conversation}

d e fSWrite = {unique scripts in conversation}
d e fSAttach = {attached scripts in conversation}

d e fredirection A{conversation) = \NAdd\ + \ TEdit\ + \LAdd\ + \SWrite\ + \SAttach\

Figure 6.11: Operation complexity formulas for Aurora conversations.

For dialogue patterns, operational complexity is defined in Figure 6.12. In this case, operational

83

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

complexity includes the minimum number of operations described in Chapter 5 to construct the

conversation. The Add Topic operation is counted for each topic in the conversation. One Merge

Topic operator is counted for each topic group.

Operational complexity also counts one Insert Exchange operation for each inner exchange in

the conversation. The Add Decision Pattern and Add Decision Pattern as Degenerate operations

are counted for each decision pattern and degenerate decision pattern, respectively. The Remove

Choice is counted for each utterance topic, since an utterance is created by removing the last choice

in a topic. The Add Choice Singleton is counted for each choice singleton after the first choice in

each topic. The first choice in a topic is created along with the topic, and therefore is not counted.

Similarly, the Add Choice Group operation is counted for each choice group added after the first

choice in each topic. Finally, the Convert Singleton to Group is counted for each topic that has a

choice group as the first choice.

The Link operator is counted once for each secondary link, and each direct link that was not

created implicitly with a Add Topic or Add Decision Pattern operation. Additionally, the Set

Remark Text operation is counted once for each NPC and PC remark in the conversation. This

is simply the value of the conversation’s remark complexity. Finally, the Add Optional Choice

Pattern and Add What Encounter Pattern operations are counted once for each optional choice

pattern and external What encounter pattern, respectively. Although What encounter patterns are

not part of dialogue patterns, they are included for fairness since the operational complexity for

the Aurora conversation model counts attached What scripts. If a decision pattern includes What

actions on a remark, those What actions are not counted as a What encounter pattern since they are

generated by the decision pattern.

For the “beggarl” dialogue pattern conversation in Figure 6.4 the operations are shown in Table

6.1. The 9 Add Topic operations add the four topics on row three in Figure 6.4, the three topics in the

topic group on row four, and the two topics on row five. The one Merge Topic operation creates the

topic group on row four that contains the “Can’t go home.”, “No”, and “How can you?” topics. The

one Insert Exchange operation creates the inner exchange in the “Farewell” topic on row five. The

three Add Decision Pattern operations add the three decision patterns found on rows one and two.

The Add Decision Pattern as Degenerate operation adds the degenerate decision found in the “Can

you help?” topic on row three. The two Add Choice Singleton operations add two choice singletons

to the topic group on row four: the “Could I ask you some questions?” choice singleton (position

2) and the “Goodbye” choice singleton (position 4). The two Remove Choice Singleton operations

remove choices from the “I just want to go home” and “Happy to go back” utterance topics on row

three. The one Add Choice Group - Intelligence operation adds the “Maybe I could help you out?”

choice group (position 3) in the topic group on row four. The three Link operations create the three

secondary links found on rows five and six. The 22 Set Remark Text operations set all the remark

text found in the conversation: 12 exchanges (each with an NPC remark), 8 choice singletons (each

84

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

with one PC remark), and one choice group (two PC remarks). The two Add Optional Choice

Pattern operations add one optional choice pattern to both the “Me want ask questions” (position

1) and “Could I ask you some questions?” (position 2) choice singletons in the topic group on row

four. Finally, the one Add What Encounter Pattern operation adds an external encounter pattern

that performs some actions at a point in the conversation.

Summing up the rows results in a operational complexity of operationalD(beggarl) = 49.

Assuming that writing a script and adapting a pattern to be equal in cost, 28 fewer operations are

used to build the conversation with the dialogue pattern model compared to the Aurora conversation

model. In some sense, adapting a pattern is like writing a script in a higher level language.

Operation Count
Add Topic 9
Merge Topic 1
Insert Exchange 1
Add Decision Pattern 3
Add Decision Pattern as Degenerate 1
Add Choice Singleton 2
Remove Choice Singleton 2
Add Choice Group - Intelligence 1
Convert Choice to Group - Intelligence 0
Link 3
Set Remark Text 22
Add Optional Choice Pattern 3
Add What Encounter Pattern 1

Table 6.1: Number of operations used to build the “beggarl” conversation using the dialogue pattern
model.

6.2 The Conversations

This sections describes the four conversations selected for the case study. The Ememick, Nurse,

Helmite, and Bertrand conversations are from Chapter 1 of the Neverwinter Nights official cam

paign. For the Aurora version of each conversation, the When and What scripts are briefly sum

marized. Then the dialogue pattern version of the conversation is described and the decision and

optional choice pattern instances are identified. This section presents figures for each conversation

under the dialogue pattern model. Unfortunately conversations under the Aurora conversation model

are too large to display in this dissertation and therefore are not included. However, the complexity

metrics for each Aurora conversation are given in Section 6.3.

The majority of optional choice pattern instances are either a Normal intelligence or Low intel

ligence optional choice pattern. These two patterns are specializations of the Ability optional choice

pattern and are described in Appendix A. All Normal intelligence optional choices are available

when the PC has intelligence greater than 9. All Low intelligence optional choices are available

when the PC has intelligence of 9 or lower. These patter instances are automatically attached to

85

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

de f
Top A dd — {topics in conversation}

d e f
TopMerge = {top ic groups in conversation}

d e f
E ln sert = { in n er exchanges in conversation}

d e f
D PAdd = {norm al decision pa tterns in conversation}

de f
D D PAdd = {degenerate decision pa tterns in conversation}

C Add d= {choices in conversation}
d e f

C Rem = {utterances in conversation}

GAdd d= {choice groups in conversation}
d e f

G Convert = {converted choices in conversation}

L in k d= {secondary links in conversation}

T S et d= rem arkp(conversa tion)
d e f

OCPAdd = { optional choice pa tterns in conversation}
d e f

W Add = {external what pa tterns associated with conversation}
d e foperational D (conversation) = \TopAdd\ + \TopMerge\ + \E Insert\+

\DPAdd\ + \DDPAdd\ + \C Add\+
\C Rem \ + | GAdd\ + \ G C onvert\+
\L ink\ + | TSet | + \OCPAdd\ + | WAdd\

Figure 6.12: Operation complexity formulas for dialogue patterns,

choices in a Intelligence choice group.

6.2.1 Ememick

Ememick is an NPC that is trapped in the Neverwinter prison. He speaks a few one-liners to coax

the PC into a saferoom. External scripts trigger these one-liners and require no intervention from

the PC. Once safely inside, he is willing to converse with the PC and answer a few questions. At the

end of the conversation, the PC can order Ememick to follow closely or stay in the saferoom.

Under the Aurora conversation model, the Ememick conversation has 8 unique When scripts

attached to 43 nodes. The conversation has 4 of these scripts attached to 4 NPC nodes and are used

to check if Ememick is safely inside the saferoom. The other 4 When scripts are attached to 38

PC nodes. Of these 38 PC nodes, 18 have the “nw_d2 Jntl” script attached to check if the PC has a

low intelligence score. Another 18 PC nodes have the “nw_d2_intn” script attached to check if the

PC has a normal or higher intelligence score. The other 2 unique When scripts combine either the

normal or low checks for intelligence with a condition checking whether the PC has a high wisdom

ability score.

Additionally, the Ememick conversation also has 5 unique What scripts attached to 6 nodes. Of

these 5 scripts, 3 scripts control Ememick’s movement by either following the PC, staying still, or

moving towards the saferoom. The other 2 scripts are used if the PC attacks Ememick. One script

engages Ememick in combat with the PC and the other script shifts the PC’s alignment towards evil.

The dialogue pattern version of the Ememick conversation is shown in 2 different parts in Figures

86

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

6.13 and 6.14. The red arrow symbol indicates where the parts join to form the entire conversation.

The Ememick conversation (Figures 6.13 and 6.14) has 4 decision pattern instances and 1 op

tional choice pattern instance. There is one instance for each of the Quest point, Progress, Door

locked, and Near by decision patterns. The 1 optional choice pattern instance is an Ability optional

choice pattern. These patterns are describe in Appendix A.

The Peninsula quest closed pattern instance (Quest point decision) is used to determine if Emer-

nick will converse with the PC. If the Peninsula quest is unfinished, the PC can start a conversation

with Ememick. If the quest is finished, Ememick will just speak a one-liner. For the “Closed” out

come, the Quest Point option is set to the closed state of the Peninsula quest and the Point State

option is set to Reached.

The Saferoom door pattern instance (Door locked decision) determines whether Ememick is

securely inside the saferoom. If the door is locked, it is assumed that both the PC and Ememick

are inside. In this case, the PC can start a conversation with Ememick. The pattern instance’s Door

global option is set to the Saferoom Door door object.

If the saferoom door is unlocked, then the Saferoom pattern instance (Near by decision) de

termines whether Ememick is inside or outside the saferoom by comparing the distance between

Ememick and a waypoint inside the saferoom against a distance threshold. If Ememick is within 3

meters of the waypoint, he is considered to be inside the room. The pattern instance’s First Object

global option is set to Ememick, the Second Object global option is set to Saferoom Waypoint, and

the Distance option is set to 3 meters.

Once secured inside the saferoom, Ememick is willing to speak to the PC. The First time pattern

instance (Progress decision) ensures that Ememick’s question about the PC’s loyalty is only asked

once. The Goal option for the “First” outcome is set to the NPC remark in the “Not with prisoners?”

topic.

The Ememick conversation only has one instance of the Ability optional choice pattern. This

instance is attached to the “[Insight] How many levels?” choice in the topic group that contains

the “Head Gaoler?” topic. This choice is only available if the PC has high wisdom. The pattern

instance’s Ability option is set to wisdom, the Threshold option is set to 14, and the Comparison

option is set to “> ” (i.e. greater than).

87

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

00
00

Pdfpf decision
(Saleroom door)

wall aurvtve?

N o Why?

jr jr
 ""“ “"""V" ’PH taka you down

W ho are you N ottnceK ?

at a guard. c

(set out

W ho are ^ou? <!•<«■" q o w h o h s io rn v ,? ^ l o w m e W s* h ,re

Figure 6.13: The Ememick conversation in the dialogue pattern model (Part 1).

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

wtwrsMHMd
Gwterupto?

many levels?torturing you?

Figure 6.14: The Ememick conversation in the dialogue pattern model (Part 2).

6.2.2 Nurse

The Nurse conversation is used for several nurse NPCs that are tending wounded civilians when the

PC first starts Chapter 1. These NPCs speak briefly with the PC and answer some basic questions.

The conversation is identical for each nurse NPC.

Under the Aurora conversation model, the Nurse conversation has 8 unique When scripts at

tached to 38 nodes. Of these 8 scripts, 3 scripts are attached to 5 NPC nodes. The first script is used

for a persuasion skill check to convince the NPC to tell the PC more gossip. The other 2 unique

scripts are used on 4 NPC nodes and check if the PC has a high or normal charisma ability score.

These scripts are used to change how the NPC reacts to the PC’s appearance.

The other 5 When scripts are attached to 33 PC nodes. Of these 33 PC nodes, 15 have the

“nw.d2.intl” script attached to check the PC for a low intelligence ability score. Another 15 PC

nodes have the “nw_d2_intn” script attached to check the PC for a normal intelligence score. Another

2 unique When scripts combine either the normal or low conditions for intelligence with a condition

checking whether the PC has at least a normal charisma ability score. The final 2 unique When script

combine either the normal or low checks for intelligence with a condition checking whether the PC

has a high wisdom ability score. The Nurse conversation does not have any What scripts.

The Nurse conversation built with the dialogue pattern model is shown in 2 different parts in

Figures 6.15 and 6.16. The red arrow symbol indicates where the parts join to form the entire

conversation. This conversation has 4 decision pattern instances and 10 optional choice pattern

instances. The 4 decision pattern instances are instantiated from 2 decision patterns: Ability and

Skill decision patterns. The 10 optional choice pattern instances are instantiated from 3 optional

choice patterns: Low Intelligence, High Intelligence, and Ability optional choice patterns. These

patterns are described in Appendix A.

There is one instance of the Skill decision pattern. The Persuade - Gossip instance makes an

easy persuasion skill check to determine if the NPC is willing to tell the PC more gossip. The Skill

global option is set to persuasion and the Difficulty global option is set to Easy.

There are 3 identical instances of the Ability decision pattern. The 3 Charisma instances are

degenerate decisions inside the “Greetings”, “Questions”, and “Goodbye” topics. These decision

instances decide on an NPC remark based on whether the PC has low, medium or high charisma.

Regardless of the PC’s charisma, the same set of choices are available to the PC. For each instance,

the global Ability option is set to charisma and the Threshold option for the “High” outcome is set

to 14. The Threshold option for the “Med” outcome is set to 9. The Ability decision instance inside

the “Questions” is of particular interest since it is inside a topic group. The pattern instance is placed

directly under the “Questions” tab to indicate it is not shared by the other topics in the group.

There are 5 instances of the High Intelligence optional choice pattern and 4 instances of the Low

Intelligence optional choice pattern. These instances are attached to choice singletons. The choice

singletons cannot be grouped into Intelligence choice groups since the NPC responds diiferently

90

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

depending on the PC’s intelligence. Consequently a low intelligence choice singleton links to a

different target than the corresponding high intelligence choice singleton. For example, the “Can I

get directions?” and the “Me need directions” choices in the “Questions” topic are an intelligence

pair. They are not a choice group since the “Can I get direction?” choices links to the “Not a tour

guide” topic and the “Me need directions” choice links to the “Snipe comment” topic. The fifth

High Intelligence pattern instance is attached to the “[Insight] You don’t like Desther?” choice in

the “Attack on Academy” topic. This choice does not have a corresponding low intelligence choice.

There is also one instance of the Ability optional choice pattern. This instance is also attached

to the “[Insight] You don’t like Desther?” choice in the “Attack on Academy” topic. The Ability

option is set to wisdom, the Threshold option is set to 14, and the Comparison option is set to >

(greater than). Therefore, this choice is only available if the PC has normal intelligence AND has

high wisdom.

The Nurse conversation also has special notation in Part 1 (Figure 6.15). There is a topic group

containing the “Plague”, “Any more questions?”, “Cure”, and “I was a midwife” topics. Both the

“Cure” and “I was a midwife” topics have their inner exchange indicator marked with a choice group

symbol labeled “1”. This indicates that an inner exchange has a choice group instead of a choice

singleton. These choice groups are accounted in the Nurse metric calculations in Section 6.3.

91

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

VOK)

yooioma

 ̂ QmMIOBi : tta ta to u ro u M a 1

Goodbye

Hear any rumours? Can I get dlreettona? n il natct Mrtnicra

H earabouf* Hear about M ack Howdidyou AakaonwMngaX*? onyadawyT endup**?

|uM » J

[tnatghl] '•bu
thayaeytng? dontIkeD eatrw ?

Figure 6.15: The Nurse conversation in the dialogue pattern model (Part 1).

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

VO

Hear about Destner Hear about Aribetn Hear about
(N) Aribeth (L)

Goodbye
Hear about Fenthfc*

Aribeth • Insult

[Continue!
Hear about Hear about

wwrthurt Artbetft(N) MbethfL)

[Contmue]

[Continue]

[Continue]

I . .

Goodbye

Figure 6.16: The Nurse conversation in the dialogue pattern model (Part 2).

6.2.3 Helmite

The Helmite conversation is used for a helmite2 cleric NPC. The PC can ask the cleric questions, or

receive a blessing.

Under the Aurora conversation model, the Ememick conversation has 7 unique When scripts

attached to 25 nodes. Of these 7 scripts, 2 scripts are attached to 4 NPC nodes. The first script

is used for the NPC’s greeting and checks whether the PC has already spoken with the NPC. The

greeting is different for the initial conversation. The second script is used on 3 NPC nodes and

checks if the PC has completed the Beggar’s Nest quest.

The other 5 When scripts are attached to 21 PC nodes. Of these 21 PC nodes, 8 have the

“nw.d2 Jntl” script attached to check if the PC has a low intelligence ability score and another 8

PC nodes have the “nw_d2_intn” script attached to check if the PC has a normal intelligence ability

score. Another 2 unique When scripts combine either the normal or low checks for intelligence

with a condition checking whether the PC has completed the Beggar’s Nest quest. The final unique

When script checks to see if the PC has a normal intelligence ability score AND a high wisdom

ability score.

Additionally, the Helmite conversation has 3 unique What scripts attached to 5 nodes. The first

unique script records the number of times the PC has conversed with the NPC. This number is used

in a When script to determine if the PC has previously conversed with the NPC. The second unique

script makes the NPC perform a series of actions to cast a blessing on the PC. The final unique script

opens the NPC’s store interface and ends the conversation.

The Helmite conversation built with the dialogue pattern model is shown Figure 6.17. This

conversation has 5 decision pattern instances and 24 optional choice pattern instances. The 5 de

cision instances are instantiated from the 3 decision patterns: Progress, Quest point, and Ability.

The 24 optional choice pattern instances are instantiated from the 4 optional choice patterns: Low

Intelligence, High Intelligence, Ability and Quest point. These patterns are described in Appendix

A.

There is one instance of the Progress decision pattern. The First Time instance ensures that the

NPC’s introductory greeting remark is only displayed the first time the PC converses with the NPC.

Since this pattern instance only affects the very first NPC remark, the pattern instance is a degenerate

decision inside the “Welcome” topic. The Goal global option is set to the NPC remark under the

“First” outcome.

There is one instance of the Ability decision pattern. The Intelligence instance is a degenerate

decision inside the “Goodbye” topic. This decision instance decides on a goodbye remark based on

whether the PC has a normal or low intelligence score. It has been adapted by removing the middle

outcome. The global Ability option is set to intelligence and the Threshold option for the “High”

outcome is set to 9.
2Helm is a deity in the Neverwinter Nights setting. Worshipers of this deity are called helmites.

94

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

There are three identical instances of the Quest point decision pattern. Each instance selects an

outcome based on whether the PC completed the Beggar’s Nest quest. For each instance, the Quest

Point option for the the “Closed” outcome is set to the final quest point in the Beggar’s Nest quest.

The Point State option is set to Reached. These pattern instances change the NPC’s conversation

after the PC completes the quest.

There are 8 instances of the High Intelligence optional choice pattern and 7 instances of the Low

Intelligence optional choice pattern. These instances are attached to choice singletons. The choice

singletons cannot be grouped into intelligence choice groups since the NPC responds differently

depending on the PC’s intelligence. Therefore, a Low Intelligence choice singleton links to a differ

ent target than the corresponding High Intelligence choice singleton. The eighth High Intelligence

pattern instance is attached to the “[Insight] Is this the only haven?” choice in the topic group that

contains the “A yuan-ti”, “I know little”, “Outside is safe”, and “Definitely” topics. This choice does

not have a corresponding low intelligence choice.

There is also one instance of the Ability optional choice pattern. This instance is also attached to

the “[Insight] Is this the only haven?” choice. The Ability option is set to wisdom, the Threshold

option is set to 14, and the Comparison option is set to > (greater than). Therefore, this choice is

only available if the PC has normal or better intelligence ability score AND has high wisdom ability

score.

Finally, there are 8 identical instances of the Quest point option choice pattern. These pattern

instances make a choice available only if the Beggar’s Nest quest is not completed. Therefore the

Quest Point option for these instances is set to the final quest point in the Beggar’s Nest quest and

the Point State is set to Not Reached.

95

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

N o ta r* no«w *
you (I)

OoanMd. I QoahMd. i
dcu ttW oo oouttitldB
any good (N) *tygoed(L)

Ooyouknowwno M lpacpta
laoaalingM baaafaifl

nnittos? Gone M m hart?

vw m tttnaauM ! Do you knew who lifMimiM

Oo you know
bo m a i l

bring M m ha*o?

Figure 6.17: The Helmite conversation in the dialogue pattern model (Part 1).

6.2.4 Bertrand

The Bertrand conversation involves a non-trivial quest where the PC must find 2 items, a staff and

a journal, that belong to Bertrand’s missing brother. As an Aurora conversation, the conversation

checks the progress of the quest with several scripts attached to over 40 conversation nodes. The

scripts store local variables on the NPC object (i.e. Bertrand) that remember quest details such as

whether the items have been found, whether the PC has shown the items to Bertrand, and which items

were returned or sold back to Bertrand. Due to the complexity of the quest, Bertrand’s conversation

is one of the largest conversations in the chapter and one of the most complex. It is the largest

conversation in this case study. Therefore, building the Bertrand conversation with dialogue patterns

is a good indication of how dialogue patterns can be use to build the most complex conversations.

The Aurora Bertrand conversation has 30 unique When scripts attached to 97 nodes. Out of

the 30 scripts, 22 of scripts are attached to 23 NPC nodes. These scripts check various conditions

relating to the missing brother quest (A Lost Soul quest), the PC’s charisma, the PC’s persuasion skill,

and whether the PC conversed with Bertrand previously. The other 8 When scripts are attached to

74 PC nodes. Of these 74 PC nodes, 24 have the “nw_d2 jn tn” script attached to check if the PC has

a normal intelligence ability score. Another 24 PC nodes have the “nw_d2 Jntl” script attached to

check if the PC has a low intelligence ability score. The other 6 unique When scripts for PC nodes

combine either the normal or low conditions for intelligence with a condition checking whether the

PC has one or both of the quest items.

Additionally, the Bertrand conversation also has 10 unique What scripts attached to 25 nodes.

Of these 10 scripts, 6 are attached to 11 NPC nodes and the remaining 4 scripts are attached to 14 PC

nodes. These scripts store state to remember what actions the PC has done in regards to the quest,

such as returning an item, selling back an item, revealing an item, and lying about the possession of

the quest items. Some of these scripts also give the PC experience and gold for returning the items.

The Bertrand conversation built with the dialogue pattern model is shown in 3 different parts in

Figures 6.18,6.19, and 6.20. The red arrow symbols indicate where the parts join to form the entire

conversation.

P a r t i

Part 1 of the Bertrand conversation (Figure 6.18) has 6 decision pattern instances. Two of them

are degenerate decisions. There are no optional choice pattern instances in Part 1. The 6 decision

pattern instances are instantiated from 4 decision patterns: Recall, Progress, Quest point, and Ability

decision patterns. These 4 decision patterns are described in Appendix A.

There are 2 instances of the Quest point decision pattern. For the Items returned instance, the

Quest Point option for the “Reached” outcome is set to the “Both Items are Given to Bertrand”

quest point in the A Lost Soul quest (Finding Bertrand’s brother). For the Marcus dead instance, the

Quest Point option for the “Reached” outcome is set to the “Convince Bertrand Marcus is dead”

97

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

quest point. For both instances, the “Reached” outcome’s Point State option is set to Reached.

There is one instance of the Progress decision pattern. The First Time instance ensures that

Bertrand introduces himself only once to the PC. The Goal option for the “First” outcome is set

to the 3 NPC remarks in the “Introduction” topic. The option must include 3 remarks since the

“Introduction” topic includes a degenerate decision instance on the first exchange. The degenerate

decision has 3 outcomes, therefore there are 3 NPC remarks.

There is one instance of the Recall decision pattern. The Which item is sold instance recalls

which item was sold: the journal, the staff, or neither. To support these three possibilities, the

instance is adapted to include a third “Book sold” outcome placed just before the default outcome.

The Point of Interest global option for the instances is set to 4 PC remarks. The first and second PC

remarks are from the choice group labeled ‘That’ll do nicely” in the “No choice - Journal” topic in

Part 2 (Figure 6.19). The third and fourth PC remarks are from the choice group labeled “That’ll do

nicely” in the the “No choice - Staff” topic in Part 2. Although the Recall decision pattern eliminates

the need for manually creating state variables on NPCs or PCs, each pattern instance still needs to

be adapted to recall the appropriate information. The set of ScriptEase actions attached to these 4

remarks is adapted to store “STAFF’ if the PC is selling the staff, and “JOURNAL” if the PC is

selling the journal. The Value option for the “Staff sold” outcome is set to “STAFF’, and the Value

option for the “Book sold” outcome is set to “JOURNAL”.

Finally, there are 2 instances of the Ability decision pattern. Both are degenerate decision in

stances. The first instance is in the “Introduction” topic and the second instance is in the “A welcome

sight” topic. The global Ability option for both instances is set to charisma. The Threshold options

for the “High” and “Medium” outcomes are set to 14 and 9, respectively.

Part 2

Part 2 of the Bertrand conversation (Figure 6.19) has 3 decision pattern instances and 11 optional

choice pattern instances. The 3 decision pattern instances are instantiated from the Skill decision

pattern. The Skill decision is described in more detail in Appendix A.

In Figure 6.19, the 3 decision pattern instances are labeled Persuade - PC’s Word, Persuade -

Journal, and Persuade - Found Nothing. For each instance, the Skill global option is set to persua

sion since the PC is attempting to persuade Bertrand to believe certain facts and the decision decides

whether the PC is successful. For the Persuade - PC’s Word instance, the Difficulty global option

is set to medium. In this case, the PC is attempting to persuade Bertrand that his brother is dead

without any proof. For the Persuade - Journal instance, the Difficulty global option is set to easy

since in this case, the PC has some proof that Bertrand’s brother is dead (his journal). Finally, for the

Persuade - Found Nothing instance, the Difficulty global option is set to hard. In this case, the PC

is lying to Bertrand about not finding his brother’s possessions. For all 3 decisions, no adaptations

were made.

98

R e p ro d u c e d with pe rm iss ion of th e copyright ow ner . F u r the r reproduction prohibited w ithout perm iss ion .

There are 4 optional choice instances attached to 2 choices in the “Brother’s name is Marcus”

topic in Figure 6.19. The first choice labeled “Marcus? He was a mage?” has 2 optional choice

pattern instances attached, Has item and Normal intelligence, both of which are described in Ap

pendix A. For the Has item instance, the Item option is set to the Marcus’ Staff item. The pattern

instance is further adapted by adding a definition that determines whether the PC possesses the Mar

cus’ Journal item. The ScriptEase condition is modified to be positive if either item is in the PC’s

inventory. Therefore, this choice is available only if the PC has a normal intelligence ability score

AND possesses either Marcus’ staff or journal.

The second choice labeled “Marcus? Was he spell chucker?” has the same adapted Has item

optional choice pattern instance. Additionally, it has a Low intelligence optional choice instance.

Therefore, this choice is available only if the PC has a low intelligence ability score AND possesses

either Marcus’ staff or journal. Since Bertrand replies differently depending on the PC’s intelligence,

these 2 choices link to two different topics and therefore cannot be in a choice group.

The topic group that includes the “Unfortunate (polite)” topic has 3 optional choices. Each

choice has the same adapted Has item optional choice instance as the 2 previous optional choices.

The first choice singleton, “I’m sorry, but he fell to zombies”, also has a Normal intelligence optional

choice instance. Therefore, this choice is available only if the PC has a normal intelligence ability

score AND possesses either Marcus’ staff or journal. The second choice singleton, “Me not want

say this...”, has a Low intelligence optional choice instance and is available only if the PC has a low

intelligence ability score. The third choice is a choice group and consequently only has the adapted

Has item optional choice attached.

The topic group that includes the “Are you sure? (polite)” topic has 2 optional choices. The first

choice, “I found his journal” is a choice group that has a single Has item optional choice instance

with the Item option set to the Marcus’ Journal item. This pattern instance is not adapted. Therefore

this choice is only available if the PC possesses the journal. The second choice, “I found his staff” is

also a choice group that has a single Has item optional choice instance. In this case, the Item option

is set to the Marcus’ Staff item object. Therefore this choice is only available if the PC possesses

the staff. The pattern instance is not adapted.

Part 3

Part 3 of the Bertrand conversation (Figure 6.20) has 10 decision pattern instances and 8 optional

choice pattern instances. The 10 decision pattern instances are instantiated from the 4 decision

patterns: Recall, Has item, Quest point, and Skill. These patterns are described in Appendix A.

There are 6 instances of the Recall decision pattern. The Staff sold instance determines whether

the staff was sold or given when the PC returned the staff to Bertrand. The Point of Interest global

option is set to the 2 PC remarks in the ‘That’ll do nicely.” choice group in the “No choice - Staff”

topic. These 2 PC remarks are the point where the PC successfully sells the staff to Bertrand. The

99

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

Staff sold instance adapts the set of ScriptEase actions attached to these 2 PC remarks to store a string

labeled “STAFF’. The Value option for the instance’s “Staff sold” outcome is set to “STAFF’.

The Journal sold pattern instance is similar. Instead of recalling whether the stalf was sold, this

pattern instance recalls whether the journal was sold. The Point of Interest global option is set to

the 2 PC remarks in the “That’ll do nicely.” choice group in the “No choice - Journal” topic. The

Journal sold pattern instance adapts the set of ScriptEase actions attached to these 2 PC remarks to

store a string labeled “JOURNAL”. The Value option for the instance’s “Book sold” outcome is set

to “JOURNAL”.

The Extortion - Which item was sold and One was sold pattern instances are identical (Recall

decision pattern). Both of these instances recall which item was sold: the journal, the staff, or

neither. To support these three possibilities, both instances are adapted to include a third “Book

sold” outcome that is placed just before the default outcome. The Point of Interest global option

for both instances is set to the 4 PC remarks involved in both the Staff sold and Journal sold Recall

decision instances. The ScriptEase actions for those 4 remarks are adapted to store “STAFF’ if the

PC is selling the staff, and “JOURNAL” if the PC is selling the journal. The Value option for the

“Staff sold” outcome is set to “STAFF’, and the Value option for the “Book sold” outcome is set to

“JOURNAL”.

The final two Recall decision instances, “1 - Most recent shown” and “2 - Most recent shown”,

are also identical. Both of these instances recall which items were revealed to Bertrand during the

conversation: the journal, the staff, or neither. To support the three possibilities, both instances

are adapted by adding a third “Journal shown” outcome before the default outcome. The Point

of Interest global option for both instances includes 1 NPC remark and 2 PC remarks. The NPC

remark is from the first exchange in the “I believe you (Journal)” topic in Part 2 (Figure 6.19). The

2 PC remarks are from the “I found his staff” choice group in the topic group that includes the “Are

you sure? (polite)” topic. The ScriptEase actions for these 3 remarks are adapted to store “STAFF’ if

the staff has been shown, and “JOURNAL” if the journal has been shown. The Value option for the

“Staff shown” outcome is set to “STAFF”, and the Value option for the “Journal shown” outcome is

set to “JOURNAL”.

There are 2 identical instances of the Quest point decision pattern. Both the Extortion and Either

item returned pattern instances use the A Lost Soul (Finding Bertrand’s brother) quest to determine

which items have been returned (i.e. either sold or given) to Bertrand. Both instances are adapted to

include a third “Journal returned” outcome to check if the journal has been returned. The condition

for the “Journal returned” outcome is the same as the “Staff returned” outcome. Both the “Staff

returned” and “Journal returned” outcomes have their Point State options set to Reached. The

Quest point option for the “Staff returned” outcome is set to the “Return Staff to Bertrand” quest

point. The Quest Point option for the “Journal returned” outcome is set to the “Return Journal to

Bertrand” quest point.

100

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

There is one instance of the Has item decision pattern. The Staff OR Journal pattern instance is

adapted by adding a third “Has Journal” outcome that determines if the PC possess the journal. The

added outcome shares the same condition and options as the “Has Staff’ outcome. The Item option

for the “Has Staff’ outcome is set to Marcus’ Staff. The Item option for the “Has Journal” outcome

is set to Marcus’ Journal.

Finally, there is one instance of the Skill decision pattern. The Persuade - Nothing Else instance

is used when the PC attempts to lie to Bertrand about finding other items on Marcus’ body. For the

“Success” outcome, the Skill option is set to persuasion and the Difficulty option is set to Hard.

Additionally, part 3 of the Bertrand conversation has 8 instances of the Has item optional choice

pattern. The first 2 instances are attached to the two choice groups in the topic group containing the

“I believe you (Journal)” topic. The Item option for both instances is set to Marcus’ Staff. These

instances are also adapted to include extra definitions that check if the item Marcus’ Journal is in

the PC’s inventory. The ScriptEase condition is adapted to be positive if the PC contains either the

staff or the journal. Therefore these choices are available only if either the staff or the journal are in

the PC’s inventory.

Another 3 Has item pattern instances have the Item option set to the Marcus’ Journal item. One

of these 3 instances is attached to the “He had a journal. Take it.” choice group in the “Cannot

believe...” topic. The other 2 pattern instances are attached to the “I have his journal. I’ll give it

to you” and “I demand payment for journal.” choices in the topic group containing the “Staff sold”

topic.

The final 3 Has item pattern instances have the Item option set to the Marcus’ Staff item. One of

these 3 instances is attached to the “He had a staff. Take it.” choice group in the “Cannot believe...”

topic. The other 2 pattern instances are attached to the “I have his staff. I’ll give it to you” and “I

demand payment for staff.” choices in the topic group containing the “Journal sold” topic.

101

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

O
ts> TYou jk>« tfd. Fw m I

■
found no poooocooni. inov*n»to*« . F#*w*i
oogfdflW tomloyou. Larsnfcpno*. \i \ X

Toll nt» ol H M youM tn i* w * t o w * to *
yourorathr nary *i*vtwf*? p*co h* mightv* gono?

i

Ho foil to Ho 1*1 id H tiH rsdM d! FveweP
MiPbloa (S) umbioa (ui \ \

I \

V
tort a

Figure 6.18: The Bertrand conversation in the dialogue pattern model (Part 1).

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

mm, *** «•»“ * M«VM Faw rat

Ou>

m iB n w ■ w»

I'm tony, ta tiony
but ha lea but ho M

lozombieetSl toK*rMM<D}

tnrwMit | «N|W«M*t If YtaawckM Y Bring me toff
- w m _____I___ ism I___________I________

No proof other
than my word

l found ha
loumal

wtsn i couu n«p

iwMNKMamft] wnatdoyoukimrt

Caniaaeagt

bM M D O tM M K ni. — i neve h it tNnga. [ual There wei ive get nomng more
I can » g them to you. Lentekpnee.

Figure 6.19: The Bertrand conversation in the dialogue pattern model (Part 2).

R
eproduced

with
perm

ission
of the

copyright
ow

ner.
Further

reproduction
prohibited

w
ithout

perm
ission.

MMmyw 1mm, .

MftfMMinttyau

W-~“

ST*****) W**

Figure 6.20: The Bertrand conversation in the dialogue pattern model (Part 3).

6.3 Results

This section will use the metrics presented in Section 6.1 with the conversations presented in Section

6.2 to compute and compare the complexities of the Aurora conversation model and the dialogue

pattern model. For the Aurora conversation model, the number of nodes for each conversation is

shown in Table 6.2 and the operation count for each conversation is shown in Table 6.3. For the

dialogue pattern model, the number of components for each conversation is shown in Table 6.4 and

the operation count for each conversation is shown in Table 6.5. The numbers in these tables are

used to compute the complexity metrics.

Node Ememick Nurse Helmite Bertrand
NPC 25 38 26 77
PC 39 49 31 97
Link 89 125 94 267
Total 176 189 151 441

Table 6.2: Node counts for the conversations under the Aurora conversation model.

Operation Ememick Nurse Helmite Bertrand
Add Node 64 87 57 174
Edit Text 64 87 57 174
Add Link 125 89 94 267
Write Script 13 8 10 40
Attach Script 49 38 30 122
Total 315 309 248 777

Table 6.3: Operation counts for the conversations under the Aurora conversation model.

Component Ememick Nurse Helmite Bertrand
Topics 25 22 17 58
Tail Exchanges 25 28 21 62
Inner Exchanges 0 10 7 12
Inner Choice Singletons 0 8 7 12
Inner Choice Groups 0 2 0 0
Tail Choice Singletons 3 22 21 27
Tail Choice Groups 33 11 17 59
Secondary Links 24 18 19 45
Decision Patterns 4 1 3 17
Degenerate Decision Patterns 0 3 2 2
Optional Choice Patterns 1 10 24 15
External Encounter Patterns 5 0 4 19
Total 120 135 142 328

Table 6.4: Component counts for the conversations under the dialogue pattern model.

The complexity metric results are shown in Table 6.6. Each conversation has two columns, one

for the Aurora conversation model (Aurora) and the other for the dialogue pattern model (D. Patts).

A metric score is in bold if it is the lowest score.

105

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Operation Ememick Nurse Helmite Bertrand
Add Topic 25 22 17 58
Merge Topic 4 5 5 8
Insert Exchange 0 10 7 12
Add Decision Pattern 4 1 3 17
Add Degenerate Decision Pattern 0 3 2 2
Add Choice Singleton 0 13 15 10
Remove Choice Singleton 3 0 0 2
Convert Choice to Group - Intelligence 7 5 3 18
Add Choice Group - Intelligence 26 8 14 41
Link 24 18 19 50
Set Remark Text 94 98 90 231
Add Optional Choice Pattern 1 1 24 15
Add What Encounter Pattern 5 0 4 19
Total 193 184 203 471

Table 6.5: Operation counts for the conversations under the dialogue pattern model.

Complexity Ememick Nurse Helmite Bertrand
Aurora D. Patts Aurora D. Patts Aurora D. Patts Aurora D. Patts

Component 176 120 189 135 151 142 441 328
Reduced Component - 85 - 99 - 92 - 217
Structural 176 120 189 115 151 128 441 304
Reduced Structural - 85 - 79 - 78 - 193
Remark 64 94 87 94 57 90 174 231
Indirection 125 24 89 18 94 19 267 45
Operational 309 193 315 184 248 204 111 471

Table 6.6: Complexity results for the four conversations.

The dialogue pattern model scores better than the Aurora conversation model in both the com

ponent and structural complexity scores for all four conversations. Even though the value-added

components make up 30% of the Ememick conversation, 26% of the Nurse conversation, 35% of

the Helmite conversation, and 34% of the Bertrand conversation, the dialogue pattern model has

a lower overall number of components. This can be attributed to a large reduction in the number

of redirections, the grouping of choices into choice groups, and the sharing of choices inside topic

groups. The small difference in component and structural complexity scores show that these four

conversations do not have many inner exchanges. Even the Bertrand conversation, with 58 topics,

only has 12 inner exchanges. Collapsing topics to hide inner exchanges only has a small effect on

the number of visible components, though it is still helpful.

The reduction of indirections and the introduction of choices groups and topic groups also coun

teract the extra duplication of choices in the dialogue pattern model. As an example of this extra

duplication, consider the “Goodbye” topic in the Helmite conversation (Figure 6.17). It is directly

linked by a choice grouped labeled “Goodbye”. However, it is also linked via secondary links by

several other “Goodbye” choice groups found in “A yuan-ti”, “I offer hope”, “Great Graveyard”,

and “North - Open” topics. In the Aurora conversation model, these would be represented as link

106

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

nodes that link to the original “Goodbye” PC node. However, in the dialogue pattern model these

are duplicate choice groups that link to the “Goodbye” topic. In the Aurora conversation model, the

link nodes are counted once each, but in this case each duplicated choice effectively counts as two,

one for the duplicated choice, and one for the secondary link back to the “Goodbye” topic.

For all four conversations, the dialogue pattern model has a much better indirection complexity

score than the Aurora conversation model. In fact the dialogue pattern model complexity score is

80-83% lower than its Aurora conversation model counterpart for all conversations. These vastly

lower scores can be attributed to the sharing of choices inside topic groups. For example, in Part

1 of the Nurse conversation (Figure 6.15) there is a topic group that contains the “Plague”, “Any

more questions?”, “Cure”, and “I was a midwife” topics. There are five choices (four choice groups

and one choice singleton) shared among these four topics. In the Aurora conversation model, these

topics are represented as one or more NPC nodes. The NPC nodes for the “Plague” topic contain 9

PC nodes that represent the five choices. The NPC nodes of the other three topics would each contain

9 link nodes that link to these 9 PC nodes for a total of 27 indirections in the section of conversation.

The dialogue pattern model eliminates these 27 indirections since the choices are shared inside the

topic group. Instead, there are only four indirections which are secondary links to target topics. This

is an 85% reduction in the number of indirections which is close to the reduction percentage for

the overall indirection complexity score. Other topic groups have a similar reduction. This is an

enormous benefit to the author since this makes conversations built with dialogue patterns are much

less disjointed and therefore easier to navigate.

In all four conversations, the operational complexity of the conversation built with dialogue pat

terns is noticeably lower than the Aurora conversation model counterpart. The dialogue pattern

model uses fewer operations, partially due to the fact that the Add Topic creates a new topic, ex

change, and choice all at once. The sharing of choices between topics in a topic group also reduces

the number of operations needed. For example, consider in Part 1 of the Nurse conversation (Figure

6.15). There is a topic group mentioned previously that contains the “Plague”, “Any more ques

tions?”, “Cure”, and “I was a midwife” topics. In the Aurora conversation model, the equivalent

piece of conversation is built with 29 Add Node operations since there are 9 NPC nodes and 20 PC

nodes. There are also 29 Edit Text operations, one for each node. Additionally there are 18 Add

Link operations so that each “topic” of NPC nodes share the same 9 PC nodes described earlier.

Finally there are 12 Attach Script operations to attach the normal and low intelligence scripts to 12

PC nodes. Thus, the author must perform 88 operations to construct this piece of conversation in the

Aurora conversation model.

Constructing the same topic group in the dialogue pattern model requires four Add Topic and

one Merge Topic operations. Recall that for counting purposes, topic groups are constructed by

adding the first two topics of the group to the conversation with two Add Topic operations, merging

them with one Merge Topic operation, then adding the remaining topics to the topic group with the

107

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Add Topic operation. The inner exchanges are constructed using 7 Insert Exchange operations.

Of these 7 inner exchanges, two inner exchanges have their choice singleton changed to a choice

group using the Convert Choice to Group - Intelligence operation. At this point, the four topics

only share a single choice singleton. This singleton is converted to a choice group with one Convert

Choice to Group - Intelligence operation. Then the other four choices are added with one Add

Choice Singleton and three Add Choice Group - Intelligence operations. Finally, the remark text

is set for all NPC and PC remarks using 29 Set Remark Text operations. The author does not need to

instantiate any optional choice patterns since these pattern instances are automatically created with

the Convert Choice to Group - Intelligence and Add Choice Group - Intelligence operations.

Thus, the author must perform 48 operations to construct this piece of conversation in the dialogue

pattern model. Therefore 40 fewer operations are used to construct this piece of conversation in the

dialogue pattern model compared the equivalent piece of conversation in the Aurora conversation

model.

The lower operational complexity scores result from using a larger set of operations that con

struct several components simultaneously rather than a small set of atomic operations that construct

only single components. It could be argued that a larger set of operations is more confusing to the

author. However, in a GUI these operations can be context-sensitive and only be available if the

operation can be performed legally. Therefore the author only sees a small subset of the possible set

of operation at one time.

The duplication of choices in the dialogue pattern model has a significant impact in the remark

complexity scores. For each conversation, the dialogue pattern model scores much worse than its

Aurora conversation model counterpart. For example, in the case of the “Goodbye” choice in the

Helmite conversation (Figure 6.17), the Aurora conversation model has only two PC nodes, one

for normal intelligence and one for low intelligence, with the remaining “Goodbye” nodes as link

nodes. Therefore the author only sets the remark text for two PC nodes. For the dialogue pattern

model, the author must set the text for 8 PC remarks since the “Goodbye” choice is duplicated in four

topics other than the original topic, even though the same two PC remarks are repeated in the other

four pairs. The duplication of choices also affects the Ememick, Bertrand, and to a lesser degree

the Nurse conversations. The difference in remark complexity scores for the Nurse conversation

is small since the conversation only has four duplicated “Goodbye” choice singletons that link to

the “Goodbye” topic and three duplicated “[Continue]” choice singletons that link to the “More

Gossip?” topic.

The remark complexity reveals a disadvantage in the dialogue pattern model. The author must

set the text for more PC remarks than an equivalent conversation in the Aurora conversation model.

Some of the burden can be mitigated by copying and pasting text. However, if the author changes

the remark text for one choice, all duplicate choices that share the same remark text must also be

changed. Fortunately, this problem can be further mitigated by a GUI which assists the author

108

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

with changing remark text of duplicate choices. The GUI can track which choices have identical

remark text that link to the same target. If the author changes one of these choices, the GUI can

automatically change the text of the other choices with or without author confirmation.

6.4 Summary

This chapter introduced a case study of four conversations from Chapter 1 of the Neverwinter Nights

official campaign. A set of five complexity metrics were introduced to directly measure the effec

tiveness of the dialogue pattern model against the Aurora conversation model. This comparison was

independent of the quality of tools implementing the models. The Ememick, Nurse, Helmite, and

Bertrand conversations were then described, including the identification of the decision and optional

choice patterns used in each conversation. Finally, the conversations from both models were com

pared using the five complexity measures. The dialogue pattern model has better component and

structural complexity scores than the Aurora conversation model, despite having extra value-added

components. The dialogue pattern model had a better indirection complexity since topic groups

and choice groups reduced the number of secondary links. This may be the most important com

plexity measure since changing focus involves a context switch that can be disruptive to the author.

Additionally, the dialogue pattern model had better operational complexity since fewer operations

are required to construct a topic group than the equivalent set of conversation nodes in the Aurora

conversation model. Conversations under the dialogue pattern model has worse remark complexity

since there was duplication of choices between topics not in topic groups. This duplication created

extra PC remarks for the author to populate with text. This drawback can be mostly mitigated by a

good GUI that helps the author manage duplicated PC remarks.

It has been demonstrated that the dialogue pattern model provides an improvement over the Au

rora conversation model. The new model abstracts conversations so that they can be presented more

compactly. This allows the author to find the sections of conversation that need attention. It also

allows the author to construct more complex conversations in a shorter period of time. Decision and

optional choice patterns save the author from writing scripting code to make the conversations more

dynamic and flexible. Perhaps most importantly, fewer distracting context changes are necessary.

This case study provides enough evidence of the superiority of the dialogue pattern model that is

should be implemented and tested with a user-study.

109

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Chapter 7

Future Work and Conclusion

7.1 Future Work

This dissertation presents a new model for building conversations using dialogue patterns. However,

at the time of writing there is no tool that implements this new model. The next logical step is to build

a conversation tool that integrates with the existing ScriptEase application. After this tool is built,

user studies could be performed to measure the ease of use of building conversation with dialogue

patterns. Feedback from these studies could be used to improve both the implemented tool and the

model itself. Additionally, it would be useful to measure the effectiveness of using patterns rather

than scripts by recording how long it would take for a single author to rebuild the conversations in

Chapter 1. A more comprehensive study would combine dialogue patterns with plot, behaviour, and

encounter patterns to replace every single script in the module.

Although this research allows the creation of more detailed conversations in a shorter amount

of time, the author must still create the prose or text for every single remark in each conversation.

It would be useful to find ways of automatically generating some of this conversation using NLP

techniques. For example, the author may want to create a conversation for an NPC that can assign

the PC a Retrieve an item quest. The conversation would have a common structure, such as a

remark that assigns a quest, a PC choice that gives the item to the NPC once the PC has retrieved it,

and decision and optional choice patterns that guard sections of the conversation depending on the

state of the quest. These could be represented as a basic Retrieve an hem Quest dialogue pattern.

However, the author would still need to enter remark text for all remarks. Using NLP techniques,

it would be helpful to automatically enter the text for these remarks using the context of the virtual

world and the options already set in the Retrieve an item quest instance. Ultimately the author could

choose from conversation templates that do much of the dialogue generation automatically. The

author could then focus time on tuning the conversation instead of creating it.

110

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

7.2 Conclusion

In Chapter 1, this dissertation introduced the computer role-playing game genre with Neverwinter

Nights as the primary example. The Aurora toolset was introduced to demonstrate how modem

CRPGs are built. The toolset uses a CAD-like interface combined with hand-written scripts to build

a dynamic world and story. This dissertation focused on the Aurora conversation editor and its

disadvantages. In Chapter 2, the application of design patterns in the form of ScriptEase was shown

to be a better alternative than manual scripting to build interactivity in the domain of CRPGs. The

ScriptEase tool was described with an example of building an encounter pattern.

In Chapter 3, the structural components of the dialogue pattern model were introduced as an

alternative to the model used by the Aurora conversation editor. Exchanges, topics, topic groups,

choices, and primary and secondary links were explained. In Chapter 4, the model was further

expanded with the introduction of decision patterns and optional choice patterns. These patterns

replace the manual scripting used by the Aurora conversation model with basic ScriptEase compo

nents. The structural components in Chapter 3 were combined with these pattern in Chapter 4 to

form dialogue patterns. In Chapter 5, the operations used to construct the components for dialogue

patterns were described.

Finally, in Chapter 6 the dialogue pattern model was evaluated directly against the Aurora con

versation model using complexity metrics. The component, structural, remark, indirection, and

operational complexity metrics were computed for four conversations from chapter 1 of the Nev

erwinter Nights official campaign. The dialogue pattern model was shown to be an improvement

over the Aurora conversation model. However, it was revealed that the drawback of the dialogue

pattern model was having extra duplicated choices and therefore requiring the author to set the text

for more remarks than the equivalent conversation in the Aurora conversation model. It was sug

gested that this problem can be mitigated with support from the GUI that implements the model.

This dissertation has provided evidence for the efficacy of the dialogue pattern model. A ScriptEase

implementation of this model should do for conversation authoring what encounter patterns have

done for authoring PC-object interactivity.

Ill

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

Bibliography

[1] Bioware Corp.
http://www.bioware.com.

[2] M. Cutumisu, C. Onuczko, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy, J. Siegel, and
M. Carbonaro. Evaluating Pattern Catalogs - The Computer Games Experience. In Proceed
ings o f the 28th International Conference on Software Engineering, pages 132-141, May 2006.

[3] M. Cutumisu, D. Szafron, J. Schaeffer, M. McNaughton, T. Roy, C. Onuczko, and M. Car
bonaro. Generating Ambient Behaviors in Computer Role-Playing Games. IEEE Intelligent
Systems, 21(5):88-99, 2006.

[4] The D20 Game Engine.
http://www.wizards.com/default.asp?x=d20/welcome/.

[5] Packard E. Choose Your Own Adventure series, 1979-89.

[6] Ron Edwards. GNS and Other Matters o f Role-playing Theory. Adept Press, 2001.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements o f Resuable
Object-Oriented Software. Addison-Wesley Professional, September 1994.

[8] L. Henry. Group Narration: Power, Information, and Play in Role Playing Games.
http://www.darkshire.net/jhkim/rpg/theory/liz-paper-2003/, May 2003.

[9] Jade Empire.
http://jade.bioware.com.

[10] G. Kacmarcik. Question-Answering in Role-Playing Games. In Papers from the AAAI Work
shop on Question Answering in Restricted Domains, pages 51-55. AAAI Press, 2005.

[11] G. Kacmarcik. Using Natural Language to Manage NPC Dialog. In Artificial Intelligence and
Interactive Digital Entertainment, pages 115-117, 2006.

[12] Knights of the Old Republic.
http://www.bioware.com/games/knights_oldjepublic/.

[13] Lilac Soul’s Script Generator.
http://nwvault.ign.com/View.php?view=Other.Detail&id=625.

[14] M. Mateas and A. Stem. Facade: An Experiment in Building a Fully-Realized Interactive
Drama. In Game Developers Conference, March 2003.

[15] M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer, J. Redford, and D. Parker. ScriptEase:
Generative Design Patterns for Computer Role-Playing Games. In Proceedings o f the 19th
IEEE Conference on Automated Software Engineering (ASE 2004), pages 88-99, Linz, Aus
tria, September 2004.

[16] M. McNaughton, J. Schaeffer, D. Szafron, D. Parker, and J. Redford. Code Generation for AI
Scripting in Computer Role-Playing Games. In Challenges in Game AI Workshop at AAAI-04,
pages 129-133, San Jose, USA, July 2004.

[17] Neverwinter Nights Awards.
http://nwn.bioware.com/about/awards.html.

[18] Neverwinter Nights Community Website.
http://nwn.bioware.com.

112

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited w ithout perm iss ion .

http://www.bioware.com
http://www.wizards.com/default.asp?x=d20/welcome/
http://www.darkshire.net/jhkim/rpg/theory/liz-paper-2003/
http://jade.bioware.com
http://www.bioware.com/games/knights_oldjepublic/
http://nwvault.ign.com/View.php?view=Other.Detail&id=625
http://nwn.bioware.com/about/awards.html
http://nwn.bioware.com

[19] Oblivion.
http://www.elderscrolls.com/games/oblivion_overview.htm.

[20] K. Tan, D. Szafron, J. Schaeffer, J. Anvik, and S. MacDonald. Using Generative Design
Patterns to Generate Parallel Code for a Distributed Memory Environment. In ACM SIGPLAN
Symposium on Principles and Practice o f Parallel Programming, pages 203-215,2003.

[21] A. Tychsen, M. Hitchens, T. Brolund, and M. Kavakli. The game master. In IE2005: Pro
ceedings o f the second Australasian conference on Interactive entertainment, pages 215-222,
Sydney, Australia, Australia, 2005. Creativity & Cognition Studios Press.

113

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

http://www.elderscrolls.com/games/oblivion_overview.htm

Appendix A

Dialogue Pattern Catalog

This appendix describes the individual patterns identified for this dissertation. The majority of these

patterns are used in the case study conversations described in Section 6.2.

A.l Decision Patterns

The decision patterns identified in this dissertation are described as follows:

A.1.1 Ability Decision

The Ability decision decides on whether one of the PC’s ability scores, such as charisma or wisdom,

is either high, medium, or low. The Ability global option determines the ability in question. Both

the “High” and “Medium” outcomes have a Threshold option. If the PC’s ability score is higher

than the Threshold, then the outcome is selected. The “High” outcome placed before the “Medium”

outcome, otherwise the medium outcome would always be selected first. The “Low” outcome is the

default outcome.

A.1.2 Basic gender Decision

The Basic gender decision decides on the PC’s gender. Although the player can only create male

and female characters, Neverwinter Nights identifies several different genders for NPCs: female,

male, both, and neutral. This decision is useful to differentiate between female and male player

characters. The Basic gender decision applies to PCs and has “Female” and “Male” outcomes with

“Male” as the default outcome. Similar to the Ability decision pattern, this pattern is designed to

decide specifically on a PC characteristic, and therefore requires no additional options to function

properly. A more general Gender decision provides outcomes for all possible genders, based on any

target creature provided as a global option.

114

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

A.1.3 Door locked Decision

The Door locked decision decides on the locked status of a door. A door can either be “Locked” or

“Unlocked” and the pattern has an outcome for each state with “Unlocked” as the default outcome.

The pattern also has a single global option Door so that the author can select the target door. Unlike

the Ability and Basic gender decisions, the Door locked decision does not use PC characteristics to

select an outcome.

A.1.4 Near by Decision

The Near by decision decides whether a game object is within a certain distance of another game

object. The “Inside” outcome is the first outcome and is selected when the two objects are within a

certain distance. The “Outside” outcome is the default outcome. The pattern as three global options.

Both the First Object and Second Object options can be any game objects. The Distance option is

a float representing the distance in meters.

A. 1.5 Progress Decision

The Progress decision decides on an outcome based on which remarks in the conversation have been

previously visited. A NPC remark is considered visited if the remark is displayed in conversation.

A PC remark is visited if the player selects it as a response to the NPC. For example, a conversation

could make an early decision on whether the NPC greets the PC with either “Hello stranger!” or

“So we meet again!”. The first remark would be selected if it was the first time the PC has conversed

with the NPC. The second remark would be selected for all subsequent conversations. This decision

selects an outcome based on whether the “Hello stranger” remark has previously visited. If it has

been previously visited then the decision will select the “So we meet again!” outcome.

The Progress decision has two outcomes. The first outcome labeled “Initial” has one remark

option called Goal. Similar to other game objects in ScriptEase, the author would select the Goal

remark from a picker. The Goal option specifies which remark needs to be visited in order for the

“Initial” outcome to be not selected. For example, the author can select the the “Hello stranger!”

remark as the Goal option. The second outcome “Final” is the default outcome. This outcome is

always selected after the Goal remark has been reached. In this example, the “Initial” outcome links

to the topic with the “Hello Stranger” remark which is same as the Goal option. This allows the

outcome to be selected once and once only which is useful for first-time greetings in conversations.

In a second example, the author may want the PC to ask the NPC for a favour. Using a Progress

decision, the NPC’s reply can either be “Sure, I’ll help.” for the “Initial” outcome or “You’ve said

enough. Goodbye” for the “Final” outcome. The “Final” outcome is selected if the PC insults the

NPC in another part of the conversation by visiting the “You have a face only a mother could love.”

remark. This is done by setting the Goal option for the “Initial” outcome to this insulting remark.

Now the NPC would be happy to assist the PC unless the PC decides to insult the NPC.

115

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

The adaptations described in Section 4.1.4 give the Progress decision extra flexibility. Each new

outcome includes its own Goal option, allowing the author to create any number of “phases” for

a single decision. Intuitively, the decision “progresses” from the first outcome to the final default

outcome as more goal remarks in the conversation are visited. The pattern can also be generalized

by changing the Goal option from a remark to a list of remarks. In this case, if any one remark in

the list is visited during conversation, then the outcome will no longer be selected.

Section 4.1.2 describes that decision patterns generate When scripts for NPC conversation nodes

that put conditions on an appearance of remarks. However, in order for the Progress decision pattern

to function, it needs to associate actions with each remark that is specified as an Goal option. These

actions set a local variable on the NPC to indicate which remarks have been visited. The Progress

decision pattern uses these local variables to determine which outcome to select.

A.1.6 Recall Decision

The Recall decision makes a decision based on a small piece of game state that was stored at a

certain point in a conversation. The author can use this pattern to make a decision on information

that was relevant at an arbitrary point in an arbitrary conversation. For example, the author wants

the NPC to greet the PC differently depending on whether the PC lied to the NPC about having a

special item earlier in the conversation. The PC has the choice to lie or tell the truth, and that choice

is recorded by the decision. When the PC talks to the NPC a second time, the decision can then

recall the recorded information to decide how the NPC will greet the PC.

The Recall decision has a “First” outcome and “Last” default outcome. The pattern has a remark

global option called Point of Interest which represents the remark in the conversation where the

decision needs to remember a piece of game state. The decision pattern remembers information

in the form of strings. The “First” outcome has a Value string option. This option is compared

against the string stored when the Point of Interest remark was visited. If the strings match, the

outcome is selected. Otherwise the default “Last” outcome is selected. The pattern can be adapted

by adding additional outcomes, where each outcome’s Value string option is compared against the

remembered string.

Similar to the Progress decision, the Recall decision requires a actions to be attached to the

Point of Interest remark. These actions stores a string as a local variable on the NPC. However, the

Recall decision differs from the Progress decision since the remark option is a global option rather

than a outcome option. Also, the pattern decides on game state stored when the Point of Interest

remark was visited, and not on whether the remark was visited. Consequently, the author needs to

specify the piece of game state that the Recall pattern uses by adapting the actions that are stored on

the Point of Interest remark. This process is described in 4.1.5.

116

R e p ro d u c e d with p erm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

A.1.7 Is the PC Decision

The Is the PC decision decides whether the PC is currently speaking to the NPC. Scripts can trigger

the conversation to be started without a PC so that the NPC will speak a one-liner. Instead of a

conversation window opening, this one-liner appears above the NPC’s head. This decision has two

outcomes. The “PC” outcome is selected there is a PC involved in the conversation. The default

“Other” outcome is selected if the conversation was started via script without the PC. There are no

options for this decision pattern. In most cases, the author connects an utterance topic to the “Other”

outcome so that the NPC speaks a one-liner.

A.1.8 Quest point Decision

The Quest point decision decides whether a certain quest point has reached a certain state. A quest

in Neverwinter Nights can be represented as a plot pattern. A plot pattern represents significant

events relating to the quest as quest points. For example, a Retrieve an Item quest would have a

quest point representing when the player acquires the quest item. Other patterns, including dialogue

patterns, can query the state of these quest points. A quest point either be reached, or not reached.

A quest point is reached if the its event has already occurred. For example, when the PC has acquire

the item, the quest point is considered reached. A quest point is not reached if the event has not yet

occurred.

This decision has two outcomes. The “Reached” outcome has two options. The Quest Point

option determines the quest point. This option would be selected from a picker that shows the list of

all quests along with their quest points. The Point State determines the state of the quest point and

can be either reached or not reached. The “Otherwise” outcome is the default outcome.

A.1.9 Skill Decision

The Skill decision performs a skill check based on the PC’s proficiency of a specific skill. This

decision has two outcomes. The “Success” outcome is selected if the skill check is successful. The

default “Failure” outcome is selected if the check fails. There are two global options. The Skill

option determines the skill to be checked. The Difficulty option determines the difficulty of the

check and be easy, medium, hard, superior, master, legendary, or epic. Each level is more difficult

than the previous. The difficulty is relative to the PC’s character level and therefore scales as the PC

gains levels.

A.1.10 Has item Decision

The Has item decision decides whether a specific item is in the PC’s inventory. This decision has

two outcomes. The “Has item” outcome has a single Item option that determines the item to check.

This outcome is selected if the Item is in the PC’s inventory. The “Otherwise” outcome is the default

117

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

outcome. This decision is easily adapted to add additional outcomes. Each outcome checks for a

specific item and the “Otherwise” outcome is selected if the PC possesses none of the items.

A.2 Optional Choice Patterns

The optional choice patterns identified in this dissertation are described as follows:

A.2.1 Ability Optional Choice

The Ability optional choice pattern makes a choice available when one of the PC’s ability scores

meets a certain condition. The Ability option determines the ability score that is compared. The

Comparison option determines the type of comparison used. It can be <, <, = , >, or >. The

Threshold determines the number against which the ability score is compared. For the conversations

in the case study in Chapter 6, this pattern is used frequently to ensure the PC’s wisdom score is a

high value (14 or more).

A.2.2 Normal Intelligence Optional Choice

The Normal Intelligence optional choice pattern is a specialization of the Ability decision. It makes

a choice available only if the PC has a “normal” intelligence ability score greater than 9. The Ability

option is automatically set to intelligence, the Comparison option to >, and the Threshold to 9.

This pattern is used in the Choice group - Intelligence pattern. It is also frequently used in the

conversations in the case study presented in Chapter 6.

A.2.3 Low Intelligence Optional Choice

The Low Intelligence optional choice pattern is a specialization of the Ability decision. It makes

a choice available only if the PC has a “low” intelligence ability score of 9 or lower. The Ability

option is automatically set to intelligence, the Comparison option to <, and the Threshold to 9.

This pattern is used in the Choice group - Intelligence pattern. It is also frequendy used in the

conversations in the case study presented in Chapter 6.

A.2.4 Has item Optional Choice

The Has item optional choice pattern makes a choice available only if a specified item is in the PC’s

inventory. The Item option specifies the item.

A.2.5 Quest point Optional Choice

The Quest point optional choice pattern makes a choice available only if a specified quest point is in

a specified state. A quest point is described in Section A. 1.8. The Quest Point option specified the

quest point. The Point State specifies the desired state of the quest point and can be either reached

or not reached.

118

R e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r the r reproduction prohibited without perm iss ion .

