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Abstract 

Mathematical models are widely used to describe dynamics in various fields. In practice, 

it is necessary and important to determine model parameters based on existing data. A 

major challenge for parameter estimation under modeling framework lies in non-

identifiability issue: parameter values on a curve or a multidimensional surface in the 

parameter space produce almost the same observable model outputs. A variety of 

techniques and methodologies for resolving non-identifiability have been proposed from 

different disciplines, such as mathematics, statistics and engineering. The existing 

methods can inform us whether there is non-identifiability issue or not, if there is, we are 

suggested to fix some least identifiable parameters such that all remaining parameters can 

be uniquely estimated. However, it is not always possible to fix some least identifiable 

parameters such as transmission coefficients in disease models. In this case it is desirable 

to investigate dependencies among model parameters.  

Dependencies among model parameters are related to linear dependencies among 

the columns of the Jacobian matrix of observable model outputs with respect to model 

parameters. Due to the existence of numerical error, it is not possible to observe exact 

linear dependencies among the columns of the Jacobian matrix. Instead, some nearly 

linear dependencies can be observed. These nearly linear dependencies are the potential 

exact linear dependencies when numerical error is not present. 

In this thesis, a matrix decomposition method was proposed to detect and resolve 

non-identifiability issue by checking nearly linear dependencies among the columns of 
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the Jacobian matrix. Our method can inform us how many nearly linear dependencies 

exist and which columns are involved in each nearly linear dependency.  

Our method for diagnosing non-identifiability was applied to several HIV datasets 

from Chinese Center for Disease Control and Prevention (China CDC) to produce HIV 

assessment for China. We also demonstrated the applicability of our new method for 

diagnosing non-identifiability for a simple one-group model and a complex multi-group 

model.  
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Chapter 1  

Introduction 

In this chapter, I will introduce the challenge in parameter estimation—non-identifiability 

issue, and conduct a literature review for existing methods resolving non-identifiability. 

At the end of the chapter the outline for this thesis will be discussed.   

Ordinary differential equations (ODE) are widely used to describe dynamics in 

various fields [1-6]. Much attention has been paid to the parameter estimation problem: 

using data for observable model outputs to estimate model parameters that characterize 

the system. A major challenge of parameter estimation lies in non-identifiability issue, 

which means that parameter values on a curve or a multidimensional surface in the 

parameter space produce almost the same observable model outputs. Identifiability 

analysis can be found in various fields [7-12], such as mathematics, engineering and 

statistics. A variety of techniques and methodologies are developed in these disciplines. 

1.1 Existing methods for detecting and resolving non-identifiability issue 

In reality, before parameter estimation methods being applied to the system to estimate 

model parameters based on data, a serious obstacle to overcome is how to verify all 

model parameters are uniquely identifiable. If not all model parameters are identifiable, 

how can we resolve the problem?  

In this section, I will introduce the most common methods used in detecting and 

resolving non-identifiability issue.  

Monto Carlo Method  

Monto Carlo method for identifiability analysis requires us to perform parameter 

estimation repeatedly based on simulated data, if the variance for one model parameter is 

larger than some threshold, this parameter is considered as non-identifiable [13,14]. In 

general, a Monte Carlo method for identifiability analysis can be outlined as follows: 
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i. Determine the value for model parameter p0, which will be used to form the 

simulated data. Parameter value for p0 can be obtained from model fitting 

using the data we have, or from literature search.  

ii. Numerically solve the differential equation with parameter value fixed at p0 to 

get the observable model output at the time points we already set. 

iii. Generate N simulated data for the observable model output by adding the 

solution we obtained in step 2 to some noise variable. 

iv. Fit the model to the simulated data we obtained in step 3 and define the best-

fit parameter as pi, i = 1,2, … , N.   

v. Calculate the relative estimation error (ARE) for each parameter using the 

following definition.  

ARE = 100% ∗
1

N
∑

|p0
k  −  pi

k|

|p0
k|

N

i=1

, 

where p0
k is the k-th parameter in p0 and pi

k is the k-th parameter in pi.  

It is definitely true that ARE for each parameter will increase if we raise the level of 

the noise variable. If we vary the noise variable within some reasonable domain, some 

parameters would have a very large ARE while others would not. Commonly, before 

performing the Monte Carlo method, people would define some threshold, if the ARE for 

some parameter is larger than the threshold, the parameter is considered as non-

identifiable, and otherwise the parameter is identifiable. There is no common rule for 

setting the value for the threshold, therefore the final decision is highly dependent on the 

investigator’s experience.  

Graph Method 

The main idea for the graph method is to explore whether the error between observable 

model output and the data flattens out when we change model parameter values. We 

change one parameter’s value within its domain at one time, for each sample value of the 

above parameter, if we can find corresponding values for the remaining parameters such 
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that the error mentioned above flattens out, this parameter is considered as non-

identifiable [15]. The procedure can be summarized as following: 

i. Determine the range for each model parameter pi, i = 1, 2, … , m. 

ii. Assume each parameter following uniform distribution in the corresponding 

range.  

iii. Pick up N samples for each parameter from the corresponding uniform 

distribution pi
k, k = 1, 2, … , N. 

iv. Fix the value of parameter pi at pi
k, k = 1, 2, … , N, i = 1, 2, … , m, fit the model to 

data to obtain best-fits for all remaining parameters and calculate the least 

error. 

v. Draw the graphs for least errors vs parameters. The x-axis is the value for 

parameter pi and the y-axis is the corresponding least error. 

If for parameter pi, with the variation of pi, the least error flattens out, then 

parameter pi is not identifiable. If for parameter pj, with the variation of pj, the least error 

fluctuates in a large range, then parameter pj is identifiable.  

Correlation Method 

The central idea of the correlation method is to investigate the dependency between two 

model parameters by calculating the correlation coefficient of two columns of the 

Jacobian Matrix J of observable model outputs with respect to model parameters at 

discrete time points [16-20]. The correlation coefficient is given by: 

corr(J.i, J.j) =
cov(J.i, J.j)

σ(J.i)σ(J.j)
,  

where J.i, J.j are the i-th and j-th column of J. If the calculated correlation coefficient 

between any two columns is close to one, these two corresponding parameters can not be 

identified together. However, such a conclusion involves two parameters. Is it possible to 

determine which parameter in this pair is more non-identifiable and should be fixed 
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before model fitting? Quaiser and Mönnigmann [21] proposed the concept of total 

correlation to solve this question, 

 ci
tot = ∑ |

m

j=1,j≠i

corr(J.i, J.j)| ∗ I(|corr(J.i, J.j)| ≥ 1 − δ),  

where I denotes the indicator function, and δ ∈ (0,1) is the cut-off value specified by the 

user. The parameter with the highest total correlation is most non-identifiable one and is 

the first candidate to be fixed from the model. At last, we should fix all parameters’ 

values whose total correlation exceeds some threshold.  

Orthogonal Method 

The basic idea of this approach is to examine the dependencies among model parameters 

by calculating the perpendicular distance from one column vector in J to the space 

spanned by other column vectors in J [22-24]. The orthogonal method can be outlined in 

the following algorithm: 

i. JI = ∅, JU = {J.i}, i = 1, 2, … , m, k = 1.  

ii. ∥ J.r1 ∥2
2= maxi∈{1,2,…m}(∥ J.i ∥2

2), JI = {J.r1}, JU = JU\{J.r1}. 

iii. For each vector J.rh ∈ JU, calculate J.rh
⊥ = J.rh − J.rh

proj(JI), where J.rh
proj(JI) is the 

projection for vector J.rh onto the space spanned by all vectors in JI, k=k+1.  

iv. If  J.rk
⊥ = max J.rh

⊥ > δ,  Jh ∈  JU,  JI = {J.r1, . . .  , J.rk},  JU = JU\{J.rk}, return to 

step 3; If J.rk
⊥ = max J.rh

⊥ < δ, stop.  

Before performing the iteration, the cut-off value δ is specified, if the perpendicular 

distance from one vector to the space spanned by all vectors in  JI is less than δ, the 

corresponding parameter is considered as non-identifiable. Instead of using the 

perpendicular distance as a standard to make a decision, we can also employ the angle 

between one vector with a space. If the angle is too small, the corresponding parameter is 

non-identifiable. 

Since there is no common rule for determining the cut-off value δ , the number of 

non-identifiable parameters is highly dependent on the operator’s experience. Therefore, 
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instead of determining the non-identifiable parameters set, Quaiser and Mönnigmann [21] 

proposed to rank all the parameters based on the values of norms or angles. Based on that 

ranking we can choose to fix several least non-identifiable parameters, so that all 

remaining ones are identifiable. 

Eigenvalue Method  

Non-linear least squares or maximum likelihood parameter estimation problem amounts 

to minimize the function: 

ϕ(p) =
1

2
∑ ∑(yj(ti, p) − γj(ti))2

n

i=1

q

j=1

,                                  (1.11) 

where yj(ti, p) is observable model output yjat time ti with parameter value p,      

γj(ti) is the data at time ti corresponding to observable model output yj.  

The Hessian matrix of equation (1.11) can be approximated by 

Hkl = ∑
∂yj(ti, p)

∂pk
i,j

∂yj(ti, p)

∂pl
,  

                              =(JTJ)kl. 

Assume λr and ur are r-th eigenvalue and the corresponding eigenvector of matrix H 

respectively. The eigenvalues are ordered λ1 >   λ2 > ⋯ >   λm, and the eigenvectors are 

normalized with ur
Tur = 1. 

If p∗ is the parameter value that minimizes equation (1.11), we consider the change 

of  ϕ(p) in a direction αur for some real constant α 

ϕ(p∗ + αur) = ϕ(p∗) +
1

2
α2ur

THur 

                                = ϕ(p∗) +
1

2
α2 λr,  

which implies that if some λr is equal to 0, ϕ(p) will not change in direction ur. While 

due to the existence of numerical error, exact 0 eigenvalue is seldom observed, instead 

are some very small eigenvalues.  
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The existence of a small eigenvalue λr implies one direction to which ϕ(p∗) almost 

does not change. The largest entry in ur implies the parameter that is most non-

identifiable, since a huge jump for that parameter has little effect on ϕ(p∗) [25-27].  

Based on the above theoretical analysis, the algorithm proceeds as follows: 

i. Set I={1,…,m}, and U = ∅ . 

ii. If I is empty, stop. All model parameters are non-identifiable. 

iii. Fix the parameters pk, k ∈ U to the searched literature values and consider only 

the pk, k ∈ I to be the variable.  

iv. Using least squares method to obtain the estimate for parameters pk, k ∈ I, and 

set it as p∗. Calculate the eigenvalues λj and eigenvectors uj for the 

corresponding JTJ. Assume the eigenvalues are ordered λ1 ≤ λ2 ≤ ⋯ ≤ λnI
 and 

the eigenvectors are normalized. 

v. If λ1 ≥ ε , stop. All parameters pk for all k ∈ I are identifiable and others are 

non-identifiable. 

vi. If λ1 < ε, select k such that |uk
1| = max(|u1

1|, |u2
1|, … , |unI

1 |). Remove k from the 

set I, add k to the set U, and return to step 2. 

Here ε is the threshold for identifying whether the eigenvalue is small or not, and it 

is commonly determined by the operator.  

The parameters are ordered from least identifiable to most identifiable as the 

sequence they are removed from set I. We can choose to fix all parameters’ values in set 

U, so that all remaining parameters in set I can be uniquely determined.  

For the Monte Carlo and Graph methods, they will inform us whether there is non-

identifiability issue or not, if there is, they can inform us which parameters are non-

identifiable. However, no information is obtained about the dependencies among model 

parameters. Therefore, we have to select different model parameters’ combinations, 

fixing the remaining parameters at some reasonable values, to see if all parameters in the 
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combination are identifiable using these two methods. The computational cost for 

detecting and resolving non-identifiability issue using these two methods is very high.  

For the correlation method, it checks the linear dependency between two columns of 

J, it can not detect the linear dependency among more than three columns of J. In some 

cases, this limitation will prevent us from fully identifying the non-identifiable model 

parameters.  

For the orthogonal and eigenvalue methods, both of them can inform us of the 

ranking of model parameters from least identifiable to most identifiable one. We are 

suggested to fix some of the least identifiable model parameters such that all the 

remaining ones can be uniquely estimated. However, it is not always possible to fix some 

least identifiable parameters such as transmission coefficients in disease models. In this 

case, it is desirable to determine which parameters are involved in each dependency. For 

each dependency, we can choose to fix one parameter’s value which can be searched 

from literature, so that the corresponding dependency disappears, and the remaining 

parameters can be uniquely estimated. 

In my thesis, I will describe a new method for detecting non-identifiability in model 

fitting, the Matrix Decomposition Method, which will avoid the shortcomings of the 

previous methods as described above. The new method will inform us of: 

 The number of parameters that are non-identifiable for a given dataset. 

 Relationships among the non-identifiable parameters.     

1.2 Thesis outline 

In the remainder of the thesis, a new method for resolving non-identifiability issue arising 

from parameter estimation procedure in modeling work will be developed and applied to 

various HIV datasets from China CDC. In chapter 2, we introduced non-identifiability 

issue in modeling work and the general procedure for parameter estimation. In chapter 3, 

our method for resolving non-identifiability issue was discussed. Our method includes 

two steps: singular value decomposition, which will inform us at most how many 
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parameters can be fitted together, and variance decomposition, which will inform us of 

the flexibility we have in fixing model parameters’ values. The singular value 

decomposition and variance decomposition technique was first introduced to deal with 

the co-linearity problem in multiple linear regression. They have not been applied to deal 

with non-identifiability problem before. In chapter 4, our method was applied to a single 

group SIDT model to fit various HIV datasets from China CDC to estimate model 

parameters. In chapter 5, our method was applied to a multi-group SIDT model to fit 

various HIV datasets. Although the model becomes more complicated, our method was 

still effective in resolving non-identifiability issue, and the applicability of our method is 

demonstrated. Finally, chapter 6 contains conclusions as well as future directions for our 

work. 

In this chapter, I talked about the challenge problem in parameter estimation—non-

identifiability issue, and introduced various existing methods for resolving non-

identifiability. Some of the existing methods have high computational cost since we need 

to perform model fitting repeatedly. Others can inform us whether there is non-

identifiability issue or not, if there is, they can output a ranking for model parameters 

from the least identifiable one to the most identifiable one, and we are suggested to fix 

some least identifiable parameters such that all remaining model parameters can be 

estimated uniquely. While it is not always possible to fix some least identifiable 

parameter such as transmission coefficient in disease models. In this case, it is desirable 

to investigate the dependencies among model parameters. At the end of this chapter I 

introduced the outline of my thesis and our method for resolving non-identifiability issue 

briefly. Our method included two steps, the first step can inform us how many 

dependencies existing among model parameters and the second step can inform us which 

parameters are involved in each dependency. In this way, instead of fixing some least 

identifiable parameters, we can choose to fix parameters whose values can be searched 
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from other sources such that all dependencies disappear and all remaining parameters can 

be uniquely fitted. 
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Chapter 2 

General Procedures for Parameter Estimation and Non-identifiability 

In this chapter, I will introduce the general procedure for parameter estimation, and the 

challenge problem in the general procedure—non-identifiability issue. 

An ordinary differential equation model can be expressed as a system of nonlinear 

differential equations:  

                                        
dx

dt
 = f(x(t), u(t), t, θ),                      (2.1)                      

                                                       y(t, θ) = h(x(t), u(t), θ),                      (2.2) 

where t ≥ 0 is the time variable, f ∈ C1(Rd × Rj × R+ × Rm) is the vector field, x ∈ Rd 

represents the state of the system, θ ∈ Rm is an m dimensional vector of parameters, y ∈

Rq is the observable model output vector and u ∈ Rj is the model input vector. For the 

parameter estimation problem, θ is unknown and has to be estimated based on the data 

about y at discrete time points. Parameter estimation is a crucial step in using modeling 

method to perform estimation and prediction.  

2.1 General procedures for parameter estimation 

Step 1: Produce point estimation for model parameters using the Nonlinear Least Squares 

method. Parameter values for which observable model outputs y best fit the data can be 

selected using the least squares routine in MATLAB by minimizing the error between 

observable model outputs y and the data [28].  

Step 2: Produce 95% confidence intervals for model parameters using the Bayesian-

based Markov chain Monte Carlo (MCMC) method [29].  

Posterior distribution of parameter θi , which is the i-th component of parameter 

vector θ was obtained from data γ using formula  

p(θi |γ) =
p(γ|θi )p(θi )

∫ p(γ|θi)p(θi)dθi

,                                                    (2.3) 
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where p(θi) is the prior distribution for the parameter θi, p(γ|θi) is the likelihood function 

for observing data γ given the value of parameter θi.  

Computing the likelihood p(γ|θi) requires some additional assumptions. Commonly 

it is assumed that the errors introduced in collecting data are normally distributed, that is, 

γ = y(θ) + ε,  

where y(θ) is model output given the value of parameter θ , ε is a random variable with 

ϵ~MN(0, Σ), Σ = diag(σ2, σ2, ⋯ , σ2). Values for the remaining parameters were fixed at 

the point estimation obtained from Step 1. It is also customary to assume that σ2 is a 

random variable itself with σ2~Inv Γ(α, β). Based on these assumptions, the likelihood 

function in the posterior can be written as  

p(γ|θi )  = ∫ p(γ|θi, σ2) p(σ2)dσ2 

                           = ∫ (
1

2πσ2
)

N

2
e

− 
SSE(θi)

2σ2
βα

Γ(α)
 σ−2(α−1) e

− 
β

σ2 dσ2 

                           =
βα

Γ(α)
(

1

2π
)

N

2 Γ(
𝑁

2
+α)

(
SSE(θi)+2β

2
)

(
N
2

+α)
 ,              (2.4)                 

where SSE(θi) is the sum of squared errors between data γ and model output y(θ), and N 

is the number of data points. 

If the differential equation model is highly nonlinear, and a close form of 

p(θi|γ) can not be obtained analytically. We resort to numerical solutions, using the 

Metropolis-Hastings algorithm [30] of the Markov chain Monte Carlo (MCMC) 

sampling, to approximate the posterior distribution. 

Metropolis-Hastings algorithm has a starting point θi(0), a new sample point θi(1) is 

selected from a specified proposal distribution. This new sample point is either accepted 

or rejected based on the proposal distribution and the posterior distribution p(θi |γ). 

Subsequent sample points θi(i) are selected using θi(i−1)  as the starting point, for i =

1,2,3 ….  

The ratio used to determine whether the new sample is accepted or rejected is  
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A(θi0, θi1) =
p(θi1|γ)f(θi0|θi1)

p(θi0|γ)f(θi1|θi0)
 ,                                            (2.5) 

where p(θi |γ) is the posterior distribution to be sampled, and f(θi1|θi0) is the proposal 

distribution given the starting point θi0. The point θi1 is accepted with probability  

min(1, A(θi0, θi1)).  

Substituting equation (2.3) into (2.5) results in:  

A(θi0, θi1) =
p(γ|θi1 )p(θi1 )f(θi0|θi1)

p(γ|θi0 )p(θi0 )f(θi1|θi0)
                                 (2.6) 

Proposal distribution determines the size of jump the algorithm will have when 

taking new sample points. If the size of the jump is too small, the new sample will always 

be accepted, but it will take a long time to obtain enough samples covering the posterior 

distribution. If the size of jump is too large, the new sample will always be rejected. We 

need to choose a proposal distribution to balance these two concerns. 

For our studies, we assume both the proposal distribution f(θi(i)|θi(i−1)), i = 1,2,3 … 

and the prior distribution follow Gamma distribution, with its mean fixed at θi(i−1) and the 

point estimation we obtained for θi, respectively [30].  

Step 3: Perform uncertainty analysis for model predictions using Latin Hypercube 

Sampling (LHS) method [31]. Baseline model predictions are computed using the best-fit 

parameter values. To estimate uncertainty in model predictions, prediction intervals with 

high and low estimates are produced by varying parameters within their confidence 

intervals. The LHS method, which partitions the probability density function into N 

regions with equal area and randomly picks one sample in each region, is commonly used 

to produce samples of parameter values. LHS method can cover the distribution that is 

being sampled with relatively few sample points. In our studies, we assumed parameters 

following triangle distributions with peaks fixing at the point estimation we obtained in 

Step 1, lower bound and upper bound fixing at the those bounds we obtained in Step 2. 

Prediction intervals contain 95% of the model outputs using sampled parameter values. 

Step 4: Perform sensitivity analysis. For each of the important model outcomes, local 

sensitivity analysis can be carried out using one-at-a-time method [32, 33] at the best-fit 
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parameter values, which changes one parameter at a time to estimate the effect on the 

model outcome. The analysis identifies model parameters that are highly sensitive and 

that are not sensitive. Based on the analysis, we can design interventions to change the 

value for highly sensitive model parameters, so that model outcomes we are interested in 

can vary a lot. The analysis can also inform us of model parameters that are not sensitive, 

which are the candidates to be fixed before model fitting. 

For each of the important model outcomes, global sensitivity analysis can also be 

carried out by calculating the partial rank correlation coefficient [31, 34] between 

parameters and model outcome. The use of partial correlation discounts the effect of 

other parameters, and rank correlation assesses the strength of monotonicity between two 

variables. Global sensitivity analysis is a supplement to local sensitivity analysis, since it 

can indicate whether the behavior we observed in local sensitivity analysis can be 

extended over a range of parameter values. 

Step 5: Conduct model validation using coefficient of determination and leave-m-out 

cross-validation method. In the Nonlinear Least squares fitting, goodness of the fit is 

measured using the R2 ratio  

 R2=1− 
E(y,ŷ)

E(y,y̅)
 , 

where E(y, ŷ) is the mean squared error between data y and model output ŷ, E(y, y̅) is the 

error between data y and the mean of data y̅ [28]. A high rating R2 implies an excellent fit 

between model output and data. When the leave-m-out cross-validation is applied, m data 

point is randomly selected and set aside, the remaining data points are used for model 

fitting and the data point set aside is used for model validation [35]. The consistency 

between model predictions and the validation point provides a validation for our model.  

2.2 Non-identifiability in parameter estimation 

A major challenge in the above procedure lies in Step 1 and 2, due to the non-

identifiability issue: infinite parameter values giving almost the same observable model 
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outputs. Non-identifiability is common in modeling infectious diseases with an 

asymptomatic state, such as HIV, Hepatitis B, influenza, since no data is usually 

available on asymptomatic infections [36]. This phenomenon often occurs because 

multiple parameters have similar effects on the observable model outputs. But they do not 

necessarily result in the same model behaviors. In fact, the behavior of unobserved parts 

of the model can be very different. 

Although authors differ in their definitions of non-identifiability, all capture the 

same ideas. In this thesis, we will focus on the following definition of non-identifiability 

[37].  

Definition 2.1:  A parameter pi , i=1, 2,…m, of model (2.1-2.2) is called locally 

structurally identifiable at p∗ if, there exists a neighborhood V(p∗), for all model 

admissible input u(t), and all admissible values p′ ∈ V(p∗),  

y(t, p∗) = y(t, p′) 

implies 

pi
∗ = pi

′. 

Parameters pi, i = 1,2, … , m are non-identifiable if they are not identifiable. 

In this chapter, I first talked about the general procedure for parameter estimation. 

The Nonlinear Least squares method was used to obtain the point estimation of model 

parameters, the Bayesian-based Markov chain Monte Carlo (MCMC) method was used to 

obtain the 95% confidence intervals of model parameters, Latin Hypercube Sampling 

(LHS) method was used to perform uncertainty analysis for model predictions, one-at-a-

time method and calculating the partial rank correlation coefficient method were used to 

perform sensitivity analysis for model parameters, and leave-m-out cross validation 

method was used to validate the model. Challenge for the general procedure lies in 

obtaining the point estimation for model parameters due to the existence of non-
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identifiability issue: infinite model parameters’ values have almost the same observable 

model outputs.  
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Chapter 3  

A New Method for Diagnosing Non-identifiability 

In this chapter, I will introduce our method, the Matrix Decomposition Method, for 

detecting and resolving non-identifiability issue.  

Data is typically available at finite time points t1, t2, ⋯ tn. Equation y(t, p) =

 y(t, p∗) in Definition 2.1 at finite time points t1, t2, ⋯ tn is a system of nonlinear 

equations of the form:  

 

y(t1, p) = y(t1, p∗) , 

                         y(t2, p) = y(t2, p∗) ,                    (3.1) 

…… 

 y(tn, p) = y(tn, p∗) . 

The Jacobian matrix J of y(ti, p), i = 1,2, ⋯ , n, with respect to parameter p at p∗ is: 

J = J(t1, t2,…, tn, p∗) = 
∂y

∂p
 (t1, t2,…, tn, p∗) ,   p ∈ Rm , y ∈ Rq.    

By the Implicit Function Theorem, if matrix J has full rank m, then the columns of J 

are linearly independent, and the system (3.1) has a unique solution p in a neighborhood 

of p∗. As a result, parameter p can be uniquely determined and the parameter p is locally 

identifiable at p∗. If rank(J) = r < m, then there are m − r linear dependencies among the 

columns of J, and solutions to (3.1) form a m − r dimensional sub-manifold of the 

parameter space Rm in a neighbourhood of p∗. We need to fix the values of m −

r parameters, to uniquely determine the remaining r parameters. In this case, it is 

desirable to determine which columns are involved in each linear dependency. For each 

linear dependency, we can choose to fix one parameter’s value, so that the corresponding 

linear dependency disappears, and the remaining r parameters can be uniquely estimated. 

Numerical error and noise in data can interfere with detection of exact linear 

dependencies among columns of J. Our method, the Matrix Decomposition Method, are 
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designed to overcome this difficulty. The singular value decomposition of matrix J can 

detect how many nearly linear dependencies exist among the columns of J, and the 

variance decomposition can inform us which columns are involved in each nearly linear 

dependency. These nearly linear dependencies are the potential exact linear dependencies 

in the Jacobian matrix J when numerical errors and noise are not present. 

3.1 Singular value decomposition for the Jacobian matrix J 

Singular value decomposition is the factorization of a matrix. Let A be a real m*n matrix, 

where m ≥ n.  A can be decomposed as:  

A = UΣVT,  

where U is m ∗ n, Σ is n ∗ n, V is n ∗ n, UTU = VTV = VVT = In , and Σ = diag(σ1, … , σn), σ1 ≥

σ2 ≥ ⋯ ≥ σn ≥ 0. The diagonal entries σi, i = 1,2, … , n of Σ are called singular values of 

A, and the decomposition is known as singular value decomposition of A [38].  

Singular value decomposition has various applications, such as computing the 

pseudoinverse, signal processing and determining the rank, range, null space of a matrix.   

The singular value decomposition for Jacobian matrix J, 

J = M ∗ S ∗ NT,  

where J is nd*m, M is nd*m and column orthogonal, N is m*m, both row and column 

orthogonal, and S = diag{μ1, μ2, … , μm} is a diagonal matrix of singular values of  J, with 

μ1 ≥ μ2 ≥ ⋯ ≥ μm.  

It can be shown that JTJ = NSMTMSNT = NS2NT, or postmultiplying by N, that JTJN =

NS2. We recognize that the columns of N are eigenvectors of  JTJ, and the diagonal 

elements in S are the positive square roots of the eigenvalues of  JTJ.  Because the columns 

of N are orthogonal, Ni
T JTJNi = Ni

T μi
2Ni =  μi

2, where Ni is the i-th column of N. 

Therefore, ∥ J ∗ Ni ∥= μ
i
, each small μ

i
 identifies a nearly linear dependency, and the 

elements in Ni inform us of the columns that are involved in this near dependency. By 

convention, μi is considered as small if the corresponding condition index vi =  μ1/μi >

30. . 
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The limitation for using Ni to determine which columns are involved in the nearly 

linear dependency lies in that, it is not possible to have a common convention setting how 

small is small for elements in Ni . Therefore we resort to variance decomposition to solve 

this problem.   

3.2 Variance decomposition for the Jacobian matrix 𝐉 

Variance decomposition involves decomposing a variance into different parts, and for 

each part, it is related to one factor we are interested in. Therefore, the effect for each 

factor on the variance will be quantified. For example, in linear regression, the variation 

for dependent variable can be decomposed into two parts, one part is related to the 

independent variables (the model) and the other part is related to the noise in collecting 

data. From this decomposition, we can explain how much of the variation in the 

dependent variable is caused by the change of the independent variables, and how much 

is caused by the noise.  

We will use variance decomposition method to obtain more information on nearly 

linear dependencies among non-identifiable parameters [39]. Considering a linear 

system Jβ = ϵ , where β ∈ Rm, ϵ~Nnq(0, Σ), Σnq∗nq = diag(σ2, σ2, ⋯ , σ2) , is the noise due to 

computation error or from data. A large variance of certain parameters in the linear 

regression indicates nearly linear dependencies among columns of J. 

The variance-covariance matrix for β̂ , can be written as V(β̂) = σ2(JTJ)−1 =

σ2NS−2NT. Thus the variance of the kth coefficient β̂k is var(β̂k) = 𝜎2 ∑
nkj

2

μj
2j . Since 

these μ
j
2 appear in the denominator, those components associated with nearly linear 

dependencies will be large relative to the other components. 

Consider the variance-decomposition matrix π = (π
jk

), where πjk= 

nkj
2/μj

2

∑ (nkj
2/μj

2)j
 , k, j = 1, … , m. The kth column of matrix (π

jk
) represents the fractions of the 

variance var(β̂k) that are attributed to each of the singular values. The jth row 
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of (π
jk

) represents the fractions of all variances attributed to the jth singular value. The 

sth column in J , where s = 1,2, ⋯ m, is considered as involved in a nearly linear 

dependency, if β̂s, where s = 1,2, ⋯ m, has most of its variance appear in rows of the 

matrix (π
jk

) associated with small singular values. By convention, if a coefficient has 

more than 80% of its variance relating to one small singular value, the corresponding 

column is considered involving in the nearly linear dependency related to this small 

singular value.  

In this chapter, I have discussed our method for detecting and resolving non-

identifiability. Our method is designed to detect dependencies among model parameters. 

Based on implicit function theorem, detecting dependencies among model parameters are 

equal to detecting linear dependencies among the columns in Jacobian matrix of 

observable model outputs with respect to model parameters at discrete time points. Due 

to the existence of numerical error, exact linear dependencies is seldom observed, instead 

are nearly linear dependencies, which are the potential exact linear dependencies when 

there is no numerical error. Our method can overcome this problem, and it has two 

steps—singular value decomposition and variance decomposition. The first step—

singular value decomposition can inform us how many nearly linear dependencies 

existing among the columns of the Jacobian matrix, and the second step—variance 

decomposition can inform us which parameters are involved in each nearly linear 

dependency. Based on the analysis from these two steps, we can choose to fix some 

model parameters’ values such that all remaining ones can be uniquely estimated. 
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Chapter 4  

The Single Group SIDT Model for Assessment of HIV Datasets from 

China CDC 

In this chapter, we will build a single group SIDT model to study HIV datasets from 

China CDC. Our method discussed in Chapter 3 will be applied to detect and resolve 

non-identifiability in the model based on different HIV datasets. At last, based on the 

uniquely estimated model parameters’ values, the HIV epidemic in each region will be 

discussed.  

Estimation of the burden of HIV epidemics is an important annual or biannual task 

for public health agencies. Understanding the past dynamics and predicting future trends 

of the number of new HIV infections (incidence), number of people living with HIV 

(prevalence), and number of HIV/AIDS related deaths is essential for assessment of HIV 

interventions and for allocation of resources. Due to the long and variable incubation 

period of HIV infection, many people infected with the virus are not reported or aware of 

their infection. The undiagnosed HIV infected population is unknown to HIV 

surveillance, and an estimation of the size of undiagnosed HIV population is key to 

estimate the true burden of HIV epidemics. 

Several methods exist for the estimation of yearly number of new HIV infections, 

the number of people living with HIV, and number of HIV related deaths using either 

surveillance data or prevalence data [40-55].  

Back-calculation based methods use HIV diagnosis data and AIDS diagnosis data to 

construct historical HIV incidence curve. HIV and AIDS diagnosis data is routinely 

collected by the public health agency. However, the interpretation for these data needs 

much attention since there is a delay between HIV infection and HIV diagnosis, AIDS 

diagnosis. The newly diagnosed patients might be infected several years ago. The 

diagnosis of HIV positive patients depends on several factors including the exposure to 
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HIV testing and the individual’s personal will for HIV testing. The method was originally 

designed to use AIDS diagnosis data but has been recently developed to use HIV 

diagnosis data [40-45]. The method assumes a distribution for the time from infection to 

diagnosis, which incorporates various motivations for HIV testing such as the 

development of symptoms or exposure to HIV testing. Determination of the distribution 

needs the introduction of other data sources. The methods are in uses of the recent 

infection fraction data from newly diagnosis in specifying the distribution.    

Back-calculation based statistical methods are commonly used by public health 

agencies to estimate HIV incidence in developed countries where HIV epidemics have 

stabilized. However, HIV epidemic transmission in China has not stabilized liked that in 

Canada (Figure 4.1). On the other hand, Back-calculation method only estimates HIV 

incidence in the past and it does not make future predictions.  
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Figure 4.1(a): Yearly number of new HIV reports in Canada 

 

 

 

Figure 4.1(b): Yearly number of new HIV reports in China 

In developing countries, the Workbook method for the estimation of HIV prevalence 

is recommended by UNAIDS/WHO [46-50]. HIV prevalence data and estimated size of 

high-risk groups from the Workbook approach are linked to the Spectrum/ Estimation and 

Projection Package (EPP) package to produce estimations for HIV incidence and 

HIV/AIDS related deaths. Prevalence surveys used in the Workbook Method are prone to 
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sampling biases. If prevalence surveys use a sampling approach targeting in a group with 

the highest levels of risk, then applying this prevalence to the entire subpopulation will 

overestimate HIV prevalence. Dividing a risk subpopulation into high-risk and low-risk 

subgroups and treating them as separate risk groups may reduce this bias, but requires 

accurate estimation of the respective sizes and HIV prevalence of the separate risk 

groups. 

Mathematical models have been used for HIV estimation exercises [51-55]. 

Mathematical models, when fitted to surveillance data, can estimate HIV epidemics in the 

past, predict the epidemics in the future, and evaluate the effectiveness of intervention 

strategies. Findings from the modeling exercise can provide evidence to inform HIV 

policy. 

4.1 Model description  

We developed a SIDT compartmental model using differential equations for the HIV 

transmission dynamics. The compartments S, I, D and T are chosen based on the natural 

history of HIV infection and the available data. Susceptible people (S) become infected 

through contacts with HIV positive people. HIV positive people (I) are diagnosed through 

HIV testing. HIV positive people who are diagnosed (D) are then enrolled into the ART 

treatment programs (T). The transfer diagram for our model is shown in Figure 4.2. 

 

 

 

 

Figure 4.2: Transfer diagram for the single group HIV transmission model 

Based on the transfer diagram in Figure 4.2, the model is described by the following 

system of nonlinear differential equations: 
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  Ṡ(t) = Λ −
S(t)

N(t)
(βII(t) + βDD(t) + βTT(t)) − dSS(t) 

İ(t) =
S(t)

N(t)
(βII(t) + βDD(t) + βTT(t)) − α(t)I(t) − dII(t) 

  Ḋ(t) = α(t)I(t) + ρT(t) − γ(t)D(t) − dDD(t) 

  Ṫ(t) = γ(t)D(t) − ρT(t) − dTT(t). 

At a time t, the number of susceptible people is denoted by S(t), the number of HIV 

positive people who are not diagnosed is denoted by I(t), the number of diagnosed HIV 

positive people who are not under treatment is denoted by D(t), and the number of 

diagnosed HIV positive people that are under treatment is denoted by T(t). The sum 

N(t) = S(t) + I(t) + D(t) + T(t) denotes the total population. The time unit used in the 

model is per year to align with the available data. 

Parameter Λ is the influx of susceptible, dS, dI, dD and dT are death rates specific to 

compartments S, I, D and T. Parameter ρ is the combined rate for treatment failure and 

loss to follow-up, and β
I 
, βD and β

T 
are transmission coefficients for compartment I, D 

and T, respectively. The HIV incidence in the model is expressed as λS(t) N(t)⁄ , with λ =

β
I 

I(t) + β
D 

D(t) + β
T 

T(t). 

Terms α(t)I(t) and γ(t)D(t) in the model are the annual number of new reports for 

HIV and AIDS combined and the number of new treatment enrollments, respectively. 

With the implementation of the “Four Frees and One Care” program in 2003, the Chinese 

government has rapidly scaled up HIV testing and ART treatment. This was reflected by 

an increase in the number of people tested for HIV and in the number of treatment 

centers. To correctly adjust for the increase in new HIV tests and ART treatments, we 

used a time-dependent diagnosis rate α(t) and treatment enrolment rate γ(t).  

4.2 Project 1: The national HIV dataset of China 

Heroin use first emerged as a public problem in China’s border region with Myanmar in 

Yunnan province in the late 1980s [56, 57], because of China’s close to the world’s major 

heroin producing area of the golden triangle. The first HIV outbreak among injection 
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drug users (IDUs) in China was reported in Yunnan in 1989 [58]. By the end of 2002, all 

31 of China’s provinces, municipalities and autonomous regions reported HIV infection 

among this population [59]. Sharing needles and syringes are the predominant mode of 

HIV transmission; with IDUs accounting for 71% of all HIV/AIDS reported cases in 

China [59]. Meanwhile, the role of plasma donation in HIV transmission was found in 

1995. The plasma donors could be infected either through the use of contaminated blood 

collection equipment or the re-infuse of pooled buffy coats. Although the unregulated 

plasma collection was eradicated by the end of 1995, tens of thousands of paid 

commercial blood donors have been infected with HIV in the central provinces of Henan, 

Anhui, Hubei, and Shanxi constitutes a second important endemic in China [60]. Due to 

China adopted an open door policy in 1978, commercial sex activities have flourished 

across the country. The Chinese Public Security Office estimated that there are 4 to 6 

million female sex workers nationwide, an increase of 160-fold in number compared with 

year 1985 [61]. HIV transmission is shifting from injection drug users (IDU) and illegal 

plasma/blood collecting practices to populations at risk through unprotected sex, either 

through heterosexual contacts or unprotected homosexual sex between men, accounting 

for nearly half of all new infections in 2007 [62]. The proportion of reported HIV cases 

among MSM has increased eight-fold from 0.4% in 2005 to 16.1% in 2011 [63]. MSM 

has emerged as a high-risk group in the nation. These new changes pose greater 

challenges than ever before to China’s AIDS control efforts. 

In response to the growing burden of HIV/AIDS, Chinese government has launched 

a four-free and one-care policy, including free HIV screening test and treatment. 

Understanding of epidemic trend patterns of HIV infection and annual new infections is 

important to allocate resource and evaluate efforts. Since China CDC established the 

national HIV epidemiology and antiretroviral treatment databases [64, 65], which 

recorded all HIV/AIDS reported cases, death and treatment data. Data from these web-

based databases is recorded in real time and updated timely. It provides unique insight for 
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understanding the current and future HIV epidemic in China. The aim of our study is to 

apply the method of dynamic mathematic modeling to carry out estimation and projection 

of people living with HIV/AIDS (PLHIV), HIV/AIDS death and annual new HIV 

infections. 

Data sources: Aggregated yearly HIV/AIDS surveillance data was from the National 

HIV/AIDS Surveillance Database of the China Center for Disease Control and 

Prevention. Aggregated yearly data on ART treatment was from the National Treatment 

Database. Surveillance and treatment data was collected from publications of the China 

Center for Disease Control and Prevention from 2005-2012 [66]. Yearly population data 

on national population was from the National Census.  

Parameter estimation and fitting: Demographic parameters Λ and dS are estimated by 

fitting the equation of the total population N′ = Λ − dSN to the national census data of 

China from 2005 to 2012. Values of parameters dD, dT, ρ, and the form of function γ(t) are 

estimated directly from the surveillance and treatment data. Function α(t) was obtained 

from HIV testing data. Values of other parameters, including transmission coefficients β
I
, 

death rate dI, the initial population size I0 for the undiagnosed compartment at the 

beginning of our fitting (end of 2007), and β
D

, β
T

, cannot be estimated directly from the 

data and need to be obtained through model fitting.  

We applied the correlation method, the eigenvalue method we discussed in Chapter 

1 and our Matrix Decomposition method discussed in Chapter 3 to deal with the non-

identifiability issue among these model parameters.  

The threshold δ for the correlation method was set as 0.2. If the correlation 

coefficient of two columns in the Jacobian Matrix was larger than 0.8, these two 

corresponding parameters were considered as highly correlated. Based on this setting, the 

total correlation of each model parameter was calculated: 

cβI

tot = 2.989, cβD

tot = 2.992, cβT

tot = 2.973, cdI

tot = 2.985, cI0

tot = 0. 
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The first model parameter we are suggested to fix is β
D

, which has the largest total 

correlation. Following [69, 70], there is a reduction of transmissibility for people in 

compartments D, due to awareness of their HIV positive status, namely a = β
D

β
I

⁄ < 1. A 

study in the United States [69] showed that high-risk sexual behaviors were reduced by 

53% when people became aware of their HIV positive status, compared to people who 

were unaware. We conservatively assumed a = 0.75.  

We refitted the model to data to estimate the total correlation coefficients for the 

remaining model parameters: cβI

tot = 1.991, cβT

tot = 1.979, cdI

tot = 1.988, cI0

tot = 0. In this step 

we are suggested to the fix the value of model parameter βI. However, it is not possible to 

fix the transmission coefficient βI. We need to resort to other methods to resolve the non-

identifiability issue. 

We next applied the eigenvalue method to diagnose non-identifiability issue in our 

model. The smallest eigenvalue for the matrix JTJ is less than 0.001, and the 

corresponding eigenvector was [0.797 0.556 0 -0.231 -0.0097], which indicated that the 

least identifiable model parameter is βI. We are suggested to fix the value for βI. Since the 

value of βI can not be reasonably fixed, we resort to other method to deal with the non-

identifiability issue. 

We applied our Matrix decomposition method to resolve the non-identifiability 

issue. The singular value decomposition informed us that there are two condition indexes 

that are larger than 30, therefore there are two dependencies among these model 

parameters and we need to fix two parameters’ values before model fitting, and the 

variance decomposition informed us that parameters βI, βD, βT, and dI are involved in 

these two dependencies (table 4.1).  
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Condition Index  Proportions of Variance 

𝐯𝐢 
𝐯𝐚𝐫(𝛃𝐈) 𝐯𝐚𝐫(𝐝𝐈) 𝐯𝐚𝐫(𝐈𝟎) 𝐯𝐚𝐫(𝛃

𝐃
) 𝐯𝐚𝐫(𝛃𝐓) 

1 
0  0  0.0086  0  0  

4  
0  0  0.7122  0  0  

22 
0  0  0.2736  0  0.0293  

268 
0  0 0.0056  0.9996  0.9707  

38937 
1.0000  1.0000  0  0.0004  0  

Table 4.1 Results of Singular value and variance decomposition analysis of the national HIV 

dataset for China 

We estimated the value of dI using survival data in the literature for newly infected 

treatment naive people [67, 68]. We preselected the ratio among β
I
 and β

D
 as we did 

above, βD = 0.75βI. 

After fixing these two parameters’ values, the remaining parameters βI, βT and the 

initial value I0 can be uniquely estimated. The best-fit for βT is much larger than the best-

fit for βI, which is unrealistic since the viral load for people under treatment is much 

lower than the viral load for undiagnosed HIV patients. Even if we set the ratio b =

β
T

β
I

⁄ < 1 and redo the fitting to estimate parameter b, the best-fit for b is 1. Therefore we 

fixed the value for b before model fitting. Studies [71-76] demonstrated that the 

transmissibility for HIV positive people under ART treatment was reduced by 92%, 

compared to HIV positive people not receiving ART treatment due to the reduced viral 

load. We conservatively assumed b = 0.1.  

The Nonlinear Least Squares method [28] was applied to find the point estimates for 

model parameters βI and I0, which minimize the sum of squared error between model 

output and the available surveillance and treatment data. More specifically, the following 

data are used in our modeling fitting: 
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 Annual number of new diagnosis of HIV and AIDS combined from 2005 to 2012;  

 Annual number of death due to HIV and AIDS among diagnosed from 2005 to 

2012;  

 Annual treatment enrollment from 2005 to 2012;  

 Annual number of death among diagnosed people and people in treatment from 

2005 to 2012. 

 Annual number of treatment failure and loss to follow-up from 2005 to 2012 

 The number of total population from 2005 to 2012 

Here model output y is a vector with six components:  

ydiag(t) = ∫ α(τ)I(τ)dτ
t

t−1

, t = 2005, … ,2012 

                                ydiagdeath(t) = ∫ dDD(τ)dτ
t

t−1

+ ∫ dTT(τ)dτ
t

t−1

, t = 2005, … ,2012 

ytreat(t) = ∫ γ(τ)D(τ)dτ
t

t−1

, t = 2005, … ,2012 

     ytreatdeath(t) = ∫ dTT(τ)dτ
t

t−1

, t = 2005, … ,2012 

ytreatfail(t) = ∫ ρT(τ)dτ
t

t−1

, t = 2005, … ,2012 

               ypop(t) = S(t) + I(t) + D(t) + T(t), t = 2005, … ,2012 

Bayesian-based MCMC method [29, 30] was applied to calculate the 95% 

confidence intervals for model parameters βI , dI, dD, dT, ρ and I0. Each time we calculate 

the 95% confidence interval for one parameter fixing all remaining parameters at the 

point estimates we obtained. 

Model validation: Validation of our model was carried out using two independent 

approaches. First, the goodness of fit ratio [28] R2=0.92 indicates an excellent fit 

between our model output and the data. Second, leave-one-out cross-validation method 

[35] was applied to further verify the consistency of the model fit. One data point was 

arbitrarily picked up for validating and the remaining ones were used for model fitting. 
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The model prediction was consistent with the validation point. 

Sensitivity analysis and uncertainty analysis: We carried out local sensitivity analysis 

of our model predictions for new HIV infections of year 2010, using one-at-a-time 

method at the best-fit parameter values [32, 33]. Our analysis showed that the top three 

most sensitive parameters were transmission coefficients βI, βD , and death rate dI for the 

undiagnosed population.                    

For uncertain analysis, we computed our base model prediction using the best-fit 

parameter values from the Nonlinear Least squares fitting. To produce prediction 

intervals with high and low estimates, we allowed all parameters to vary within their 

confidence intervals, and applied Latin Hypercube sampling (LHS) [31] to produce 

20,000 samples of parameter values. Our prediction intervals contained 95% of the 

20,000 model outputs using sampled parameter values.  

Results 

The point estimates for all model parameter together with the corresponding confidence 

intervals are shown in table 4.2.  
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Table 4.2. Model parameter and their best-fit values together with 95% confidence intervals. 

Notes: * The unites for these parameters are 1/person/year 

The model fitting graphs are show in figure 4.3. 

 

 

 

 

 

 

 

 

 

Parameters Description Best-fit value 95% CI Source 

βI Transmission coefficients for I 0.14789 [0.1226, 0.16999] Fitting 

βD Transmission coefficients for D 0.1109 [0.09195, 0.1274925] [69, 70] 

βT Transmission coefficients for T 0.01479 [0.01226, 0.016999] [71-76] 

dS Death rate for S 0.007∗ [0.00592, 0.00812] Fitting 

dI Death rate for I 0.06301∗ [0.05959, 0.06372] [67, 68] 

dD Death rate for D 0.05308∗ [0.05013, 0.05367] Data 

dT Death rate for T 0.04166∗ [0.03973, 0.04248] Data 

ρ Treatment drop-out rate 0.03744∗ [0.03131,0.0436746] Data 

I0 Undiagnosed HIV positive population in 2007 417990 [376864, 456273] Fitting 

α(t) Time-dependent diagnosis rate of undiagnosed              0.017035 t − 34.065∗  Data 

γ(t) Time-dependent treatment enrollment rate 
0.008112 t − 16.204∗, 2005-2009, 

0.034576 t − 69.359∗, 2010-2020. 

Data 

R2 Goodness of fit ratio 0.92  Fitting 
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(a) Annual reported HIV/AIDS cases       (b) Annual ART enrollment 

 

 

(c) Annual deaths among diagnosed      (d) Cumulative deaths among treated 

Figure 4.3 Comparison of model outcomes to the surveillance and treatment data. 

The fitting graphs imply a high goodness of fit ratio, which is equal to 0.92. This 

provides a validation for our model.  

We have estimated three main indicators: annual number of new HIV infections, 

people living with HIV (PLHIV), and HIV/AIDS related death for the national 

population. The trends for HIV/AIDS during 2007 and 2012 were estimated using the 

CDC surveillance data. Estimations for the year 2005 and 2006 were back calculated 
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from fitted model. Projections for the period of 2013 and 2015 were done using the best-

fit parameter values while assuming the diagnosis rate and treatment enrollment rate both 

continue to increase linearly with the same pre-2013 trends. High and low estimates are 

the 95% prediction intervals by sampling parameter values from their 95% confidence 

intervals using Latin Hypercube Sampling, which was conducted under the assumption 

that each parameter follows triangle distribution with peak fixing at the corresponding 

point estimate, two end points fixing at the lower bound and upper bound for the 

corresponding 95% confidence interval. The results are shown in figure 4.4.  

 

 

 

 

 

 

 

 

Annual number of new HIV infections     Number of people living with HIV (PLHIV) 

 

 

 

 

 

 

 

 

 

Number of deaths among PLHIV 

2005 2010 2015
2

4

6

8

10

12

x 10
4

2005 2010 2015
5

6

7

8

9

10

11

12
x 10

5

2005 2010 2015

2

3

4

5

6

x 10
4



 

34 

 

Figure 4.4 Estimations and predictions for annual HIV infections, PLHIV, HIV/AIDS deaths.  

Vertical bars indicate 95% prediction intervals. 

Our model estimations show that the annual new HIV infections has risen from 

70,557 in 2005 to 93842 in 2012 (Figure 4.4 (a)), with the annual percentage increase 

slowing down from 6% in 2006 to 1% in 2012. This is a strong indication that the HIV 

epidemic in China has slowed down significantly in recent years. If the momentum of 

scaling-ups of new HIV diagnosis and of ART treatment is maintained through 2015, our 

models projection shows that the new infections will start to level off and decline from 

2012. Even the high estimates of our prediction interval show a turning point for new 

infections as early as 2014.  

Estimated total number of people living with HIV and AIDS (PLHIV), including 

both diagnosed and undiagnosed, has shown a steady and almost linear increase from 

539,925 in 2005 to 859,452 in 2012. The annual percentage of increase has declined from 

7.7% in 2005 to 5.8% in 2012. The model projection for PLHIV in 2015 is 985,971, with 

a 95% prediction interval (883,725, 1,161,735). The annual percentage of increase will 

continue to decline to 4.1% in 2015. 

Estimated number of death from people living with HIV and AIDS has shown a 

steady linear increase from 31,347 in 2005 to 46,716 in 2012. The annual percentage of 

increase has declined from 7% in 2005 to 4.4% in 2012. The model projection for 

combined HIV and AIDS death in 2015 is 51,229, with a 95% prediction interval 

(45,332, 59,829). The annual percentage of increase will continue to decline to 2.5% in 

2015.  

Based on our estimations, among the HIV positive population, the percentage of 

people who have been diagnosed has risen from 25% in 2005 to 54.4% in 2012, and is 

projected to continue increase to 65.6% in 2015. Percentage of people under treatment 

among the diagnosed population has risen from 16.1% in 2005 to 35.2% in 2012, and is 

projected to continue rise to 53.3% in 2015. 
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Our validated model was used to make projections on potential interventions for the 

period from 2015-2020. We examine the impacts of continuing scale-up in HIV diagnosis 

and treatment enrollment in three different scenarios: 

 Scenario 1:  Scaling up of both HIV diagnosis and treatment enrollment after 

2015 as pre-2015. 

 Scenario 2:  Scaling-up of HIV diagnosis as pre-2015 and HIV treatment 

enrollment is kept at the 2015 level. 

 Scenario 3: Scaling-up of HIV diagnosis as pre-2015 and HIV treatment 

enrollment is kept at the 2013 level. 

 

Model projections for the four scenarios are shown graphically in Figure 4.5.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Projection of new HIV infections under three intervention scenarios.  

 

Under the best scenario (Scenario 1), if we maintain the linearly increasing trend in 

HIV diagnosis and treatment enrollment through 2020, the proportion of people who 
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diagnosed among people living with HIV will rise to 80%, and the proportion of people 

receiving treatment among diagnosed population will reach 75% by the end of 2020. The 

annual new HIV infections by the end of 2020 will be reduced by 22.8% from its 2010 

level, and by 25.7% from its highest level in 2012.  

Our model projections show that to achieve the turning point of the HIV epidemics 

around 2013 and maintain the downward trend in annual new infections, it is important to 

keep the momentum in diagnosis and treatment during the past 5 years well beyond 2015. 

If the diagnosis and treatment efforts are only maintained at the 2013 level without 

further scaling up, the downward trend after 2014 will quickly reverse and the annual 

new infections will level off. 

Our validated model was used to calculate the control reproduction number RC: the 

actual average number of secondary cases per primary case observed in a population for 

an infectious disease in the presence of control measures [77]. Unlike the basic 

reproduction number R0 which is measured at the beginning of an epidemic, the control 

reproduction number takes in the effect of intervention measures and varies as the 

epidemic progresses in time. Since our model parameters are time dependent, the control 

reproduction number is more suitable an indicator of the strength of the transmission 

dynamics than R0. In our model, effects of the national HIV/AIDS programs between 

2005 and 2015 were incorporated into the time dependent diagnosis rate α(t) and ART 

enrolment rate γ(t). The impact of the response programs during the time period 2005-

2015 will be measured by the time-varying control reproduction number  

Rc =
βI

α(t)+dI
 +  

βDα(t)(ρ+dT)

(α(t)+dI)(γ(t)dT+ρdD+dDdT)
 + 

βTα(t)γ

(α(t)+dI)(γ(t)dT+ρdD+dDdT)
, which is 

calculated as the spectral radius of the next generation matrix FV−1,  where  

  F=(
βI βD βT

0 0 0
0 0 0

)  and  V= (

α(t) + dI 0 0
−α γ(t) + dD −ρ
0 −γ(t) ρ + dT

). 
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In Figure 4.6, we have shown plots of distribution of RC at year 2015 (Figure 4.6(a)), 

and at year 2020 for the three intervention scenarios (Figure 4.6 (b)-(d)). The distribution 

was produced by sampling model parameters in their confidence intervals.  

 

Figure 4.6. Distribution of the control reproduction number calculated from our model when  

parameter values are sampled from their confidence intervals.  

 

Figure 4.6(a) shows the mode of RC at 1.1, indicating the epidemic is slowing down. 

Figure 4.6(b) shows the mode of RC in 2020 at 0.9 and the entire distribution lies below 

threshold value 1. This is another indication that continuing the scaling up in diagnosis 

and treatment through 2020 can ensure sustained decline in new HIV infections and bring 

the epidemic under control. In contrast, Figure 4.6 (c) and (d) show modes of RC remain 

above 1 under intervention scenarios 2 and 3, indicating that ceasing the scaling up in 

diagnosis and treatment before 2020 will not achieve control of the epidemic. 
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We also examined the impact of varying α and γ independently on the values of 

reproduction number RC. The results are shown in a contour plot in Figure 4.7.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Dependence of the control reproduction number on parameters 𝛂 and 𝛄. 

 

We can see that increasing both α and γ is an effective approach to reduce RC to 

below 1. In 2012, the values of α and γ were estimated as both at 0.2 and were projected 

to reach 0.26 and 0.31 by 2015, a 30% and 55% increase in three years, respectively. If 

the momentum of increase in diagnosis and treatment is kept until 2020, it is reasonable 

to expect that values of α and γ will both reach beyond 0.4, doubling the level of 2012. At 

such a level, the value of RC will be below 1, indicating control of the epidemic. 

Discussion 

China has drastically scaled up its efforts in HIV testing and treatment since 2005. These 

are reflected by the increases in total number of people tested, number of sentinel testing 

sites, and number of treatment centers. These efforts are partly responsible for the ever-

increasing number of new HIV/AIDS diagnosis and new treatments in the country. To 
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account for the scaling up in testing and treatment, we model the new diagnosis and new 

treatment enrollment by α(t)I(t) and γ(t)D(t), respectively, and allow both parameters 

α and γ to be time dependent. The surveillance and treatment data show that 

function γ(t) is a piece-wise linear function with a higher slope after 2010 (Figure 4.8).  

 

 

Figure 4.8. Annual treatment enrollment rate during the period 2007-2012. 

 

The model informs us that α(t) = annual HIV new diagnosis/I(t). If we assume HIV 

positive patients are uniformly distributed among the total population, annual HIV new 

diagnosis/I(t) can be approximated by HIV test rate. Therefore function α(t) can be 

approximated by annual HIV test rate. The HIV testing data shows that the HIV test rate 

from 2007 to 2012 can be simulated as a linear function (Figure 4.9), and as a result we 

fix the function α(t) as a linear function after 2005. These adjustment for function α(t) 

allowed us to estimate the increase in HIV diagnosis due to the intrinsic HIV 

transmission dynamics and avoided overestimation of the transmission coefficient 

βI (Figure 4.10). 
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Figure 4.9. Annual HIV test rate during the period 2007-2012. 

 

 

Figure 4.10. Model fitting results, the trends for I and annual HIV new infections when 𝛂(𝐭) is a 

linear function 
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If we overestimate the strength for HIV testing, such as assuming α(t) is a quadratic 

function, although model fitting can be as well, we would underestimate the intrinsic HIV 

transmission (Figure 4.11). 

 

 

Figure 4.11. Model fitting results, the trends for I and annual HIV new infections when 𝛂(𝐭) is a 

quadratic function 

If we underestimate the strength for HIV testing, such as assuming α(t) is a constant, 

although model fitting can be as well, we would overestimate the intrinsic HIV 

transmission (Figure 4.12). 

2007 2008 2009 2010 2011 2012
4

6

8

10
x 10

4 New diagnose

2005 2010 2015
0

2

4

6

8
x 10

5

 

 

I

2005 2010 2015
2

3

4

5

6
x 10

4

 

 

new cases



 

42 

 

 

Figure 4.12. Model fitting results, the trends for I and annual HIV new infections when 𝛂(𝐭) is a 

constant 

Therefore the proper selection for the form of α(t) is crucial for our estimation and 

prediction. All the three different forms of α(t) can lead to good model fitting, which 

means that observable model outputs under these three assumptions are almost the same, 

while model unobservable outputs can be totally different. For our single group SIDT 

model, the selection for the form of α(t) depends on the trend for HIV testing rate.  

Unlike the national estimate showing a steady decline of new HIV infections in 

China, the mathematical modeling work showed a steady increase. The model results 

estimate 29,125 and 44,735 more new HIV infections than the national estimate in 2007 

and 2011 respectively. Additionally, the model results estimate 15,759 and 16,732 more 

AIDS deaths than the national estimate in 2007 and 2011 respectively. The differences in 

the total number of PLHIV are mixed, there are 75,330 less and 16,723 more PLHIV 

estimated by the model than the national estimate in 2007 and 2011 respectively (Table 

4.3). These differences show that there may be an underestimation of both the new HIV 

infections and HIV/AIDS deaths by the National HIV Epidemic Estimation Working 

Group. Further evidence for a possible underestimation can be seen in the irregularity in 
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the trends of China’s HIV/AIDS surveillance reporting data and estimate data, compared 

with the same set of data of Myanmar, Thailand and the United States (Figure 4.13). 

Firstly, all the datasets of the other countries show the same increasing or decreasing 

trend in both reporting data and estimation data of new HIV infections. Secondly, their 

estimated numbers are always larger than the reported numbers. The ratio of estimated 

verses reported is 1.1 for the USA, 1.6 for Thailand and above 2 for Myanmar. It is 

understood that a country with more resources and skills should have a smaller ratio than 

a country with less resources and skills. The Chinese such dataset showed an unusual 

reversed ratio of less than one, with 0.7 in 2009 and 0.52 in 2011 (Figure 4.13).  

 

Year 2007+ 2007* Difference 2009+ 2009* Difference 2011+ 2011* Difference 

New 

infections 
79,125 50,000 29,125 86,912 48,000 38,912 92,860 48,000 44,860 

PLHIV 624,670 700,000 -75,330 716,414 740,000 -23,586 812,326 780,000 32,326 

HIV/AIDS 

death 
35,759 20,000 15,759 40,294 26,000 14,294 44,749 28,000 16,749 

Notes: + model estimates; * NCAIDS national HIV/AIDS estimates. 

Table 4.3: Comparisions of the HIV/AIDS estimation results of both national HIV/AIDS 

estimation and our model estimation 

 

  

 

Myanmar 
HIV/AIDS 

reporting data 

Estimated new 

infections data 
Ratio* 

2002 5567 26000 4.67 

2005 4601 18000 3.91 

2007 5179 14000 2.70 

2009 1735 11000 6.34 

2010 2144 9700 4.52 0
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* Ratio= new infections estimated data/ HIV/AIDS reporting data 

Source：UNAIDS. (2012) AIDS info 1.1 

Figure 4.13: Relationship between HIV/AIDS reporting data and estimated new infections data 

Thailand 
HIV/AIDS 

reporting data 

Estimated new 

infections data 
Ratio* 

2002 25854 32000 1.24 

2005 23401 30000 1.28 

2007 17351 19000 1.09 

2009 10301 13000 1.26 

2010 6443 11000 1.70 

United 

States 

HIV/AIDS 

reporting data 

Estimated new 

infections data 
Ratio* 

2008 49226 50501 1.03 

2009 45470 47408 1.04 

2010 43051 46268 1.07 

2011 42181 49273 1.17 

China 
HIV/AIDS 

reporting data 

New infections 

estimated data 
Ratio* 

2005 40711 70000 1.72 

2007 48161 50000 1.04 

2009 61470 48000 0.70 

2011 74517 48000 0.52 
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An adapted Workbook method was used in the national HIV/AIDS estimation 

exercises in China in 2005, 2007, 2009, and 2011, by the National HIV Epidemic 

Estimation Working Group. Results of the estimation exercises from the Ministry of 

Health (MOH) reports are plotted in Figure 4.14. National estimation of HIV prevalence 

and population sizes of risk groups were obtained from estimations at the prefecture level 

in 2005, and from estimations at the county level since 2007. Data on HIV prevalence 

rates came from sentinel surveillance data, special epidemiological surveys, mass 

screenings of target populations, and literature searches in scientific journals [78, 79]. 

Data from the 12 months prior to the estimation exercise were used. When recent data 

were not available, adjustments were made to previous data as considered necessary by 

local CDC officials [79]. Missing HIV prevalence and risk-group population size data for 

specific geographic areas were imputed using data from areas with similar geographic 

and socio-economic characteristics. EPP was used to generate a national HIV prevalence 

curve based on prevalence curves from lower level regions and different subpopulations. 

EPP output was entered into Spectrum to calculate the annual number of new HIV 

infections and HIV/AIDS [79]. The quality of the national estimation results can be 

greatly influenced by the quality of data collection at the regional level. Data collection 

from the county level required mobilization and training of large number of survey 

workers, and enormous amount of time and resources. When survey data were tallied at 

each of the county, prefecture, and provincial level, approval from local government was 

required before the data was submitted to the next level. The process is time consuming 

and costly, and political interferences could influence the quality of data at the local level. 

With China’s great expanse and heterogeneity of geographical regions, estimations 

applied to unsurveyed local regions can lead to variability in the quality of local data. 
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(a) Annual new HIV infections               (b) People living with HIV/AIDS (PLHIV).                                    

   

 

 

 

 

 

 

 

 

 

(c) Deaths among PLHIV 

Figure 4.14: Model estimates from 2005 to 2015. Lines are baseline model estimates, crosses are 

estimates in the MOH reports in year 2005, 2007, 2009 and 2011, and vertical bars indicte 95% 

confidence intervals. 
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Laboratory-based algorithms are another approach to the estimation of HIV 

incidence. Recent advancement in laboratory diagnostic of HIV allowed development of 

immunological assays for the classification of recent HIV infections (within 4 to 12 

months prior to diagnosis) among the newly diagnosed HIV cases. Statistical methods 

such as stratified extrapolation method can be applied to new infections data to produce 

estimation of HIV incidence. The BED HIV capture enzyme immunoassay was used in 

the estimation of HIV incidence in the United States since 2008 [80, 81]. A CD4-staged 

back-calculation model using the new HIV diagnosis and CD4 count information was 

used to estimate HIV incidence and prevalence in the UK [82]. In China, diagnostic 

techniques have been developed and implemented for BED and CD4 analysis on serum 

specimen of newly diagnosed cases. It is possible to adopt the laboratory-based methods 

for HIV estimations in conjunction with the Workbook Method.  

Mathematical model has been used to estimate HIV incidence and prevalence. 

Mathematical models are developed to reconstruct the processes of transmission of HIV, 

diagnosis, treatment and occurrence of AIDS and death for populations under a study. 

Models are validated through fitting to multiple data sources. A validated model can 

produce estimations for HIV epidemics in the past, project incidence and prevalence of 

the epidemic into the future, and to provide quantitative evaluations and cost-benefits 

analysis of potential prevention and intervention measures. Another advantage of the 

model-based estimation is that models can be fitted to a variety of data sources. In our 

model study, only the HIV/AIDS surveillance and treatment data from the national 

direct-reporting surveillance database and treatment database are used in model fitting. 

The independence of our study from the prevalence surveys and national estimation from 

Workbook Method allowed us to avoid any inaccuracy in data collection associated with 

the Workbook Method. Our model accounted for the increasing rates of HIV testing and 

treatment in recent years in China, in order to produce more accurate estimation on the 

size and mean transmission rate of undiagnosed population. We only present our 
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estimations for the national population in this report. Estimations for high-risk groups at 

the national level are underway, and the results will be presented in a separate report. 

Model-based approaches are also applicable to high-risk subpopulations and populations 

and at the local level.  

The objectives for the control of HIV/AIDS in the 12th FiveYear Plan period (2011-

15) are to keep the total number of people living with HIV/AIDS (PLHIV) within 1.2 

million, reduce the number of newly infected people by 25 percent and the number of 

HIV/AIDS deaths by 30 percent. Our model analysis showed that the control target for 

PLHIV can be realistically achieved, but it is difficult to achieve the reduction targets in 

new HIV infections and HIV/AIDS deaths by 2015. Based on our model projections, if 

China continues to increase HIV testing and treatment and continues to improve 

treatment effectiveness to reduce mortality among people receiving treatment, a turning 

point for the HIV incidence can be achieved by the end of 2013, and the reduction targets 

in new infections and deaths can be achieved by 2020. If the efforts in HIV testing and 

treatment work hand in hand with well-implemented public awareness campaigns, 

targeted education programs and other preventive measures to reduce HIV transmission, 

it is highly likely that these reduction targets can be reached during the next Five-Year 

Plan period (2016-2020).  

4.3 Project 2: The HIV dataset for two remote townships in Sichuan Province, 

China.  

A major challenge to the effective control of the HIV epidemics in China is the 

heterogeneity of populations, economic conditions, social structures and local HIV 

transmission dynamics across its vast and diverse geographic regions. At the national 

level, it was estimated that about 740,000 people are living with HIV (PLHIV) in 2009, 

and additional 105,000 people are surviving AIDS (CD4 count < 200 /mm3) [83]. While 

all of the country’s 31 provinces and autonomous regions have reported HIV cases, the 

top six high-prevalence provinces (Yunnan, Guangxi, Henan, Sichuan, Xinjiang, and 
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Guangdong) in 2009 have accounted for 77.1% of the cumulative HIV reports in the 

country, and for over 60% of the national number of people living with HIV (PLHIV) 

[83]. In certain remote rural townships, the HIV prevalence among adults can be 200 

times higher than the national average [84].  

Liangshan Yi Autonomous Prefecture in the Sichuan Province is among the regions 

with the highest HIV prevalence rate, accounting for 56.4% of cumulative reported cases 

of HIV/AIDS in the province at the end of 2010. The severe HIV epidemic in Liangshan 

was attributed to the prefecture’s location along one of the major drug trafficking routes 

to northwest and central China from the “Golden Triangle,” one of the world’s largest 

illicit heroin production and distribution centers, and to the large number of injection 

drug users from the remote areas in the northeastern part of the prefecture. A large 

migrant population of farmers, who go to other regions and provinces to seek work and 

travel between home and their work places, accounts for 15% of the prefecture’s 4.73 

million population in 2011. National HIV surveillance data has shown that migrant 

workers from Liangshan have contributed to the spread of HIV to 30 other provinces. To 

effectively control the HIV epidemics in Liangshan, the local government has partnered 

with the Chinese Center for Disease Control and Prevention, and Sichuan Center for 

Disease Control and Prevention to start in 2005 comprehensive HIV intervention and 

control programs in two remote rural townships, Jiudu and Muer, with a combined 

population of about 10,000. The interventions included expanded methadone clinics to 

help people off injection drugs, and expanded HIV testing and ART treatment coverage. 

Experiences and lessons learned from these localized programs will help to improve the 

HIV control programs in larger high-prevalence regions.  

Among the intervention measures carried out in the Jiudu and Muer townships were 

two population-wide HIV screening programs in 2008 and 2010, aimed to understand the 

baseline for the HIV epidemic. The 2008 screening program tested close to 50% of the 

population in both townships for HIV. Test data showed a HIV prevalence rate of 18.32% 
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among adults aged between 15 and 49 [84]. In 2010, with the support from the National 

11-5 Major Research Project on the Prevention and Control of HIV, Viral Hepatitis and 

Other Major Infectious Diseases, a population-wide physical examination was conducted 

in Jiudu and Muer. Baseline individual health records, including HIV status, were 

established for over 99% of the population in the two townships. Concurrent with the 

increase of HIV screening, enrollment into ART treatment programs was also greatly 

expanded. In 2005, there was only one HIV patient receiving ART treatment in Jiudu and 

Muer, and the number has risen to 166 by the end of 2010. HIV data collected in the 

Jiudu and Muer townships were categorized and analyzed by Dr. Ping Li in her doctoral 

dissertation [84]. 

The objective of our mathematical modeling study is to assess the impact of HIV 

interventions implemented at the Jiudu and Muer townships between 2005 and 2010, 

with specific emphasis on the two population-wide screening programs in 2008 and 2010, 

on the temporal trend of the HIV epidemic in the two townships. Our mathematical 

model for the HIV transmission dynamics was calibrated and validated using the 

surveillance and treatment data for the period 2005-2010 collected in the two townships 

[84]. The validated model produces estimations on the number of new HIV infections, 

people living with HIV (PLHIV), and HIV/AIDS related death for 2005-2010. The 

impacts of two screening programs were evaluated in terms of HIV cases averted and life 

years saved. Our results can inform policy on the control of HIV epidemic in Liangshan 

and other high prevalence regions in China.  

Data source: Aggregated yearly HIV/AIDS surveillance data from 2005 to 2010 was 

obtained from the Surveillance Database of the China Center for Disease Control and 

Prevention. Aggregated data on ART treatment for the same period was obtained from 

the Treatment Database of the China Center for Disease Control and Prevention. 

Population data for the two townships was obtained from the demographic database for 

the Liangshan prefecture.  
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Parameter estimation and fitting: Same as the whole nation, Demographic parameters 

Λ and dS are estimated by fitting the equation of the total population N′ = Λ − dSN to the 

population data for the two townships from 2005 to 2009. Values of parameters dD, dT, 

ρ, and the form of function γ(t) are estimated directly from the surveillance and treatment 

data. Since the HIV testing data is not available for these two townships, we assume that 

function α(t) has the same form as that for the whole nation when there is no screening 

interventions. From 2005 to 2007, α(t) is assumed to be a linearly increasing function. 

The two screening interventions in 2008 and 2010, which tested around half and 99% of 

the total population in these two townships, make us to fix α(t) at 0.5 in 2008 and 0.99 in 

2010. Values of other parameters, including transmission coefficients β
I
, β

D
, β

T
, death 

rate dI and the initial population size I0 for the undiagnosed compartment at the beginning 

of our fitting (end of 2005), cannot be estimated directly from surveillance data and need 

to be obtained through model fitting.  

Our Matrix Decomposition method was applied to detect and resolve non-

identifiability issue in the model when fitted to the two townships data. Same as dealing 

with the HIV dataset for the whole nation, there are two dependencies among model 

parameters β
I
, β

D
, β

T
, dI, I(2005). We fixed the value of dI using survival data in the 

literature for newly infected treatment naive people [67, 68], β
D

β
I

⁄ = 0.75 [69, 70], 

and βT βI⁄ = 0.1 [71-76]. 

The Nonlinear Least Squares method was applied to find the point estimates for 

model parameters βI, I0, and the coefficients for α(t), which minimize the sum of squared 

error between model output and the available surveillance and treatment data. More 

specifically, the following data are used in our modeling fitting: 

 Annual number of new diagnosis of HIV and AIDS combined from 2005 to 2009;  

 Annual number of death due to HIV and AIDS among diagnosed from 2005 to 

2009;  

 Annual treatment enrollment from 2005 to 2009;  
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 Annual number of death among diagnosed people and people in treatment from 

2005 to 2009. 

 Annual number of treatment failure and loss to follow-up from 2005 to 2009 

 The number of total population from 2005 to 2009. 

The model output has the same form as we discussed in the whole nation project. 

Bayesian-based MCMC method [29, 30] was applied to calculate the 95% 

confidence intervals for model parameters βI , dI, dD, dT, ρ and I0. Each time we calculate 

the 95% confidence interval for one parameter fixing all remaining parameters at the 

point estimates we obtained.  

Model Validation: Validation of our model was carried out using three independent 

approaches. First, the goodness of fit ratio R2=0.97 indicates an excellent fit between our 

model output and the data. Second, leave-one-out cross-validation method was applied to 

further verify the consistency of the model fit [35]. The population-wide physical 

examination at the two townships in 2010 provided the HIV prevalence data for over 

99% of the population. The availability of such good prevalence data is rare and provides 

a “gold standard” for model validation. The prevalence data in 2010 was not used in our 

model fitting and reserved for model validation. As shown in Figure 4.15, this prevalence 

data point is within the 95% prediction interval of our model for the total number of 

people living with HIV (PLHIV) in 2010.  

 

 

 

 

 

 

 

 



 

53 

 

Table 4.4. Model parameters and their best-fit values together with 95% confidence intervals 

Notes: * The unites for these parameters are 1/person/year 

 

Results  

The point estimates for all model parameter together with the corresponding confidence 

intervals are shown in table 4.4.  

Three key assessment indicators for the HIV/AIDS dynamics: annual number of 

new HIV infections, annual number of HIV/AIDS related deaths, and the total number of 

people living with HIV (both diagnosed and undiagnosed), were estimated from 2005 to 

2010 using the validated model. 

Parameter Description Best-fit value1 95% CI2 Source 

βI Transmission rate for compartment I 0.214 [0.184, 0.237] Fitting 

βD Ratio of transmission rates for D and I 0.1605 [0.138, 0.17775] [69,70] 

βT Ratio of transmission rates for T and I 0.0214 [0.0184, 0.0237] [71-76] 

dS Death rate for compartment S 0.007∗ [0.00503, 0.0089] Fitting 

dI Death rate for compartment I 0.063∗ [0.045, 0.083] [67-68] 

dD Death rate for compartment D 0.0427∗ [0.032, 0.055] Data 

dT Death rate for compartment T 0.0652∗ [0.051, 0.077] Data 

ρ Treatment drop-out rate 0.0169∗ [0.0108, 0.025] Data 

I0 Undiagnosed HIV positive population in 2005 813 [651, 934] Fitting 

Λ Influx of susceptible  276 [199, 354] Fitting 

α(t) Time-dependent diagnosis rate  0.0602𝑡 − 120.585∗,   2005 < 𝑡 ≤ 2007      

0.5,               2007 < 𝑡 ≤ 2008 

0.0602𝑡 − 120.585, 2008 < 𝑡 ≤ 2009           

1,                                    2009 < 𝑡 ≤ 2010 

0.0602𝑡 − 120.585,                  𝑡 > 2010 

 

 

 

 

Fitting 

γ(t) Time-dependent treatment enrollment rate  0.01886t-37.807∗,          

         

Data 

𝑅2 Goodness of Fitting 0.97 Fitting 
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The estimated annual number of new HIV infections rose from 166 in 2005 to 219 

in 2010. In the meantime, the year-over-year rate of increase declined from 10.84% in 

2006 to 0.92% in 2010, indicating that the momentum of rise of the HIV epidemics in the 

two townships has slowed down significantly during the 5-year period. 

The estimated total number of people living with HIV and AIDS, including both 

diagnosed and undiagnosed people, increased from 931 in 2005 to 1615 in 2010. The 

year-over-year rate of increase declined from in 13.43% 2006 to 9.57% in 2010. The 

estimated HIV prevalence rate among the whole population at the end of 2010 was 

14.57%. 

The estimated total number of deaths among people living with HIV and AIDS 

increased from 53 in 2005 to 78 in 2010. The year-over-year rate of increase declined 

from 11.32% in 2006 to 5.4% in 2010.  

Our model was used to further predict the three key indicators for the period 2011-

2015, under the assumption that the treatment enrollment rate would continue to increase 

linearly following its pre-2010 trend, and that the diagnosis rate would maintain the same 

trend during the period from 2005 to 2007 before the population-wide screening. 

Our model predicted that continuous scale-up of HIV testing and ART treatment 

will reverse the temporal trend of the HIV epidemics in the Jiudu and Muer townships; 

the predicted annual number of new HIV infections would decline starting from 2013 

(Figure 4.15). The predicted number of new HIV infections in 2015 is 212, lower than its 

2010 level. The predicted value for PLHIV in 2015 is 2208, with a HIV prevalence rate at 

18.98%. The model prediction for the number of combined HIV and AIDS deaths in 

2015 is 116. These predicted values would be updated using more recent HIV data 

between 2011-15.  
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Figure 4.15 Model estimations from 2005 to 2015. Lines are baseline model estimations and  

vertical bars indicate 95% confidence intervals 

We used our model to estimate that the two population-wide screening programs in 

2008 and 2010 alone have saved 134 life years, and averted 123 new HIV infections from 

the beginning of 2008 to the end of 2015. The number of averted new HIV infections 

account for 6.6% of the new HIV infections that would have occurred without the two 

screening interventions. Figure 4.16 shows the cumulative number and percentage of 

HIV new infections averted from 2008 to 2015.  
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Figure 4.16 Accumulative HIV new infections averted number (left) and percentage (right) due 

to the screening interventions 

Discussion 

Mathematical models are becoming a useful tool for estimating HIV/AIDS incidence and 

prevalence and for predicting their temporal trends. Mathematical models can be 

constructed to describe HIV epidemic in a population, incorporating dynamic processes 

of HIV transmission, testing, treatment, as well as deaths. Mathematical models can be 

calibrated to a specific population by fitting them to epidemiological and surveillance 

data of the population. Model validation is of paramount importance for model 

predictions to be reliable. Validated mathematical models can be used to assess 

retrospectively the impacts of past intervention programs, predict temporal trends of HIV 

incidence and prevalence in the future, to project the effects of potential interventions, 

and to provide evidence to inform policies on HIV control and prevention. 

In our study, we constructed and calibrated a mathematical model for the HIV 

epidemic among the populations in the two remote and rural townships, Jiudu and Muer, 

in the Liangshan Prefecture of the Sichuan Province during 2005-2010. The model was 
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validated by a good agreement of its predicted value of the 2010 HIV prevalence with the 

true prevalence data based on a HIV screening of 99% of the population in 2010. Our 

model estimations have shown that, while the HIV epidemic in Jiudu and Muer were 

rising during the period of 2005-2010, the intervention programs have significantly 

slowed down the rising momentum. Our model further predicted that continuing the 

scale-up of HIV intervention programs, especially HIV testing and ART treatment as 

prevention of HIV transmission, would revert the temporal trend of the HIV epidemic in 

the two townships, and the annual new HIV infections would decline starting as early as 

2013. These predictions will be updated when more recent data becomes available.  

For the period from 2008 to 2015, our model projected that the two population-wide 

screening programs in 2008 and 2010 have averted 123 HIV new infections and saved 

134 life-years from the prevented HIV deaths. Considering the majority of people who 

live with HIV and AIDS in the two townships were male farmers of age from 25 to 49, 

and most of them were the only laborer and bread maker for their families, the social and 

economic impact of the screening programs are significant on the local population.  

There are several limitations in our study due to the limited number of data points. 

The heterogeneity among the people living with HIV and AIDS was not considered in 

our model. The transmission coefficients βI, βD and βT in our model were averaged 

among people in different high-risk groups. Incorporating risk groups will make our 

model more realistic, while calibration of a more complex model will require a larger 

number of time points in the data than what were available to us. In our parameter 

estimation, the death rate dT for the population under treatment was larger than the death 

rate dD of people who were diagnosed of the HIV but not in treatment programs. This was 

likely because most patients receiving treatment in 2005 were in the late stage of HIV 

infection and suffered a higher fatality rate. As the HIV testing and treatment being 

continuously scaled up, we expect that a larger proportion of the people receiving 

treatment will be in the early stage of infection, and the fatality rate will drop. It will be 
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more reasonable to assume that the death rate dT is time-dependent and decreases in time. 

This would be possible when a longer time series of data become available. 

Our study demonstrated that mathematical models could be an effective research 

tool for HIV epidemiology. When integrated with epidemiological and surveillance data, 

models can produce estimations that are not readily available from standard 

epidemiological studies, including but not limited to the number of new HIV infections, 

the size of the hidden (undiagnosed) HIV positive populations, and death among the 

hidden HIV positive populations. These estimations can provide health authorities with 

reliable assessments for the true burden of the HIV epidemic and evidence for planning 

of HIV control and interventions.   

4.4 Project 3: The HIV dataset for Guangxi province, China 

Since China adopted an open-door economic policy in 1978, with its fast economic 

developments and profound social changes, the country has witnessed a rapid 

reemergence of drug trafficking and abuse, commercial sex, and sexually transmitted 

diseases (STDs), as well as the emergence of an HIV epidemic [85]. The first reported 

case of an HIV-infected injecting drug user (IDU) in China was reported in 1989 in the 

southwestern province of Yunnan, along the border with Myanmar. By 2002, HIV 

infections among IDUs had been reported in all 31 mainland provinces, and 71% of the 

infections in China were attributed to injection drug use by government estimation [86]. 

The high HIV prevalence among drug users in Southwest China is largely due to its close 

proximity to the world’s major heroin producing area, known as the Golden Triangle. The 

majority of heroin in China’s market is brought from Myanmar into Yunnan or from 

Vietnam into Guangxi, then transported to the southwestern and western provinces of 

Sichuan, Guizhou, and Xinjiang [87-90]. China is no exception to the evolution of the 

HIV epidemic occurring in other Asian countries, which began as a drug-driven epidemic 

and is shifting to one driven predominantly by sexual contacts [85]. Since sexual contacts 

are the key mode of transmission of HIV from high-risk groups to the general population, 
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the HIV epidemic in China has entered a new phase. The government has shown strong 

leadership responding to HIV/AIDS. Under the national comprehensive HIV and AIDS 

response policy, the central government implemented the “Four Frees and One Care” 

program in 2003, which provides free voluntary counseling and testing, free antiretroviral 

therapy, free prevention of mother to child transmission (PMTCT), free education to 

AIDS orphans, and financial assistance and social support to HIV and AIDS patients 

[91]. Furthermore, harm reduction programs such as knowledge education, HIV testing 

and counseling, promotion of condom use, methadone maintenance therapy and needle 

exchange have been rapidly scaled-up and implemented at the national and local levels 

since 2004 [92-96].  

Guangxi Zhuang Autonomous Region is located in southern China bordering 

Vietnam and has a population close to 50 million. It is located along the major heroin 

trafficking route linking Guangxi with Yunnan bordering Myanmar and eastern-ward to 

Guangdong and Hong Kong. Its HIV epidemic was fueled primarily by injection drug use 

at the beginning of the epidemic [95-99]. According to the Guangxi Center for Disease 

Control and Prevention (Guangxi CDC), HIV prevalence among the IDU population 

ranged between 11% and 60% in 2003, based on data collected from sentinel sites [100]. 

Guangxi has been among the top three provinces that reported the highest number of HIV 

and AIDS cases in China since 2005 [100]. While the HIV infection amongst injecting 

drug users accounted for 69% of reported HIV cases in 2003, there has been a constant 

increase of HIV infections through sexual contacts since then, and sexual contacts have 

accounted for 66% of the reported HIV cases by 2009 in Guangxi [100]. In response to 

this severe HIV epidemic, the government of Guangxi launched a 5-year Guangxi AIDS 

Conquering Project (GACP) in 2010. The GACP has doubled the investment in financial 

and human resources that were required for implementing the national “Four Frees and 

One Care” program, and further expanded HIV testing and antiretroviral therapies. At the 

completion of the 5-year program, assessment of its impact on Guangxi’s HIV 
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transmission and epidemic is important for informing evidence-based decision making 

and future HIV control policies.  

The HIV epidemiology and treatment data are collected, tabulated and reported 

vertically by hospitals and the CDC networks in each province, autonomous region and 

municipality of China. The provincial CDC provides coordination and quality control for 

the data collection. Data from all provinces, autonomous regions and municipalities are 

reported to the Chinese Center for Disease Control and Prevention (China CDC) to form 

the national HIV epidemiology and antiretroviral treatment databases, which are analyzed 

at the national level for China’s HIV epidemic trends and for formulating the national 

control policy [101, 102]. The aim of our study is to understand the Guangxi HIV trends 

in reference to the national context, by analyzing Guangxi CDC datasets from 2005 to 

2014 using epidemic surveillance and mathematical modelling tools. Results of our study 

provided an assessment of the performance and impacts of GACP. The study results 

further provided scientific evidences to inform future provincial AIDS control policies for 

Guangxi Zhuang Autonomous Region. 

Data source: HIV epidemic reports, surveillance data and ART treatment data were 

collected by the Guangxi Center for Disease Control and Prevention from 2005 to 2013. 

The datasets included the provincial HIV/AIDs case reports, HIV testing, HIV sentinel 

surveillance, HIV testing for marriage, pregnancy and child delivery, antiretroviral 

treatment, etc. Population data was collected from the Guangxi Zhuang Autonomous 

Region Bureau of Statistics. 

Parameter estimation and fitting: Same as the whole nation, Demographic parameters 

Λ and dS are estimated by fitting the equation of the total population N′ = Λ − dSN to the 

population data for the two townships from 2005 to 2013. Values of parameters dD, dT, 

ρ, and the form of function γ(t) are estimated directly from the surveillance and treatment 

data. α(t) was estimated from HIV testing data of Guangxi. Values of other parameters, 

including transmission coefficients β
I
, β

D
, β

T
, death rate dI and the initial population size 
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I0 for the undiagnosed compartment at the beginning of our fitting (end of 2005), cannot 

be estimated directly from surveillance data and need to be obtained through model 

fitting.  

Our Matrix Decomposition method was applied to detect and resolve non-

identifiability issue in the model when fitted to the two townships data. Same as dealing 

with the HIV dataset for the whole nation, there are two dependencies among model 

parameters β
I
, β

D
, β

T
, dI, I(2005). We fixed the value of dI using survival data in the 

literature for newly infected treatment naive people [67, 68], β
D

β
I

⁄ = 0.75 [69, 70], 

and βT βI⁄ = 0.1 [71-76]. 

The Nonlinear Least Squares method was applied to find the point estimates for 

model parameters βI and I0, which minimize the sum of squared error between model 

output and the available surveillance and treatment data. More specifically, the following 

data are used in our modeling fitting: 

 Annual number of new diagnosis of HIV and AIDS combined from 2005 to 2013;  

 Annual number of death due to HIV and AIDS among diagnosed from 2005 to 

2013;  

 Annual treatment enrollment from 2005 to 2013;  

 Annual number of death among diagnosed people and people in treatment from 

2005 to 2013. 

 Annual number of treatment failure and loss to follow-up from 2005 to 2013 

 The number of total population from 2005 to 2013. 

The model output has the same form as we discussed in the whole nation project. 

Bayesian-based MCMC method [29, 30] was applied to calculate the 95% 

confidence intervals for model parameters βI , dI, dD, dT, ρ and I0. Each time we calculate 

the 95% confidence interval for one parameter fixing all remaining parameters at the 

point estimates we obtained.  

Model Validation: First, the goodness of fit ratio R2=0.97 indicates an excellent fit 
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between our model output and the data. Second, leave-one-out cross-validation method 

was applied to further verify the consistency of the model fit.  

Results 

The point estimates for all model parameter together with the corresponding confidence 

intervals are shown in table 4.5.  

Table 4.5. Model parameters and their best-fit values together with 95% confidence intervals. 

Notes: * The unites for these parameters are 1/person/year 

 

HIV testing, ART and case reporting 

Under GACP and national Four Free One Care policy, the AIDS surveillance, 

intervention and ART activities have been vigorously scaled up. The person-time for HIV 

testing in Guangxi has jumped from 3.6 million in 2009 before the GACP to 7.8 million 

in 2011, and further to more than 9.5 million in 2013 (Figure 4.17a, and Table 4.6a). The 

Parameter Description Best-fit value1 95% CI2 Source 

βI Transmission rate for I 0.1733 [0.1512, 0.1921] Fitting 

βD Ratio of transmission rate in D and that in I 0.13 [0.1186 0.1431] [69,70] 

βT Ratio of transmission rate in T and that in I 0.01733 [0.01534, 0.01912] [71-76] 

dS Death rate for S 0.007∗ [0.0059 0.00805] Fitting 

dI Death rate for I 0.063∗ [0.04501, 0.0803] [67, 68] 

dD Death rate for D 0.115∗ [0.09873, 0.1597] Data 

dT Death rate for T 0.0321∗ [0.02318, 0.0407] Data 

ρ Treatment drop-out rate 0.0769∗ [0.05898, 0.09576] Data 

I0 Undiagnosed HIV positive population in 2006 47940  [44401, 50905] Fitting 

Λ Influx of susceptible 820738  [750143 882361] Fitting 

α(t) Time-dependent diagnosis rate  0.03345 ∗ (t − 2006) + 0.155∗,    t ≤ 2009               

0.0543 ∗ (t − 2009) + 0.25,         t > 2009 

Data 

γ(t) Time-dependent treatment enrollment 

rate 

0.004195 ∗ t − 8.2738∗,              t ≤ 2009 

0.059966 ∗ t − 120.3177,         t > 2009     

Data 

R2 Goodness of Fitting 0.96 Fitting 
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ART treatment for PLWHA has increased from 10035 persons in 2009 before the GACP 

to 41859 persons in 2014 at the end of the GACP (Figure 4.17b, and Table 4.6b). As the 

result of the scaling up of HIV testing and expanded ART treatment as well as other 

intensified intervention measures during the GACP campaign, Guangxi’s HIV/AIDS case 

reports peaked in 2011 and then started to decline since 2012 for 3 consecutive years, 

even as its HIV testing numbers continuously to rise to its peak in 2013, almost tripling 

the testing numbers before the GACP campaign in 2009 (Figure 4.17c, and Table 4.6c).   
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(c) 

 

 

 

 

 

 

 

 

Figure 4.17：The HIV testing, ART and HIV/AIDS reports in Guangxi and China 

 

a) The HIV testing rate in Guangxi and China. 
 

HIV Tests Population (millions) testing Rate (%) 

Year China Average Guangxi China Average Guangxi China Guangxi 

2009 61626000 3602517 1334.5 48.56 4.6 7.4  

2010 64338000 4924400 1340.91 46.1 4.8 10.7  

2011 74517000 7798630 1347.35 46.45 5.5 16.8  

2012 82434000 8471933 1354.04 46.82 6.1 18.1  

2013 90119000 9540710 1360.72 47.19 6.6 20.2  

2014 127560180 8976867 1367.82 47.54 8.7 18.9  

Average rate (10-14)     5.3 14.1  
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b）ART coverage rate in Guangxi and China. 

  Current ART Number Accumulated PLWHA ART Rate (%) 

Year China   Guangxi  China  Guangxi China Guangxi 

2009 65481 10035 271871 43568 24.1 23.0 

2010 86122 14830 306732 49528 28.1 29.9 

2011 126448 20874 351709 57019 36.0 36.6 

2012 170655 27893 385871 59240 44.2 47.1 

2013 227489 34496 436817 60687 52.1 56.8 

2014 292538 41859 500679 64792 34.8 36.8 

Average rate (10-14)         45.7 48.0 

 

c) HIV/AIDS reported cases in Guangxi and China 

Reported 

HIV/AIDS cases 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Guangxi 5652 5450 7685 8715 9894 11007 14250 12229 10877 9460 

China total 40711 44070 48161 60081 61470 64108 74517 82434 90119 103501 

Guangxi/China(%) 13.9  12.4  16.0  14.5  16.1  17.2  19.1  14.8  12.1  9.1  

Table 4.6 The HIV testing, ART and HIV/AIDS reports in Guangxi and China 

The control reproduction number 𝑅𝑐 

The control reproduction number Rc measures the expected number of secondary cases 

produced from a single infection source in a susceptible population in the presence of 

control measures [77, 103]. Unlike the basic reproduction number R0, which is typically 

calculated at the beginning of an epidemic and will not vary with time, Rc takes into 

account the effects of control measures and may vary as the epidemic progresses. In our 

model, effects of the national “Four Frees and One Care” program between 2005 and 

2009 and the Guangxi 5-year GACP after 2010 were incorporated into the time 

dependent diagnosis rate α(t) and ART enrolment rate γ(t). The impact of the response 
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programs during the two time periods 2005-2009 and 2010-2014 will be measured by the 

time-varying control reproduction number Rc.  

Sensitivity analysis for 𝑅𝑐 

Sensitivity of Rc to variations of model parameters was measured by local sensitivity 

analysis using the one-at-a-time method [32, 33]. Results of the sensitivity analysis at the 

years 2005, 2010 and 2014 are shown in Figure 4.18b, c and d. In 2005, the most 

sensitive parameters for Rc are the transmission coefficient β
I
 and death rate dI of the 

undiagnosed population in compartment I. With the scale-up in HIV testing and ART 

coverage, more HIV positive people were diagnosed. Accordingly, in 2010, the most 

sensitive parameters for Rc are the transmission coefficient β
D

 and death rate dD of the 

diagnosed population in compartment D. In 2014, as the result of further scale-up of ART 

treatment under the 5-year GACP, the death rate dT of the population under ART becomes 

highly sensitive for Rc (Figure 4.18).   
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Figure 4.18: Estimated annual value of 𝐑𝐜 and its sensitivity analysis 
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Uncertainty analysis for 𝑅𝑐 

We used the Latin Hypercube Sampling (LHS) method [31] to compute the 95% 

confidence intervals for Rc from 2005 to 2014, when all parameters are sampled from 

their 95% confidence intervals given in Table 4.5 We generated 20,000 samples using 

LHS, and results of the uncertainty analysis are given in Figure 4.18. 

Comparative study of alternative intervention scenarios.  

Our calibrated and validated model was used to carry out comparative studies of several 

hypothetical options under which the 5-year GACP could have been implemented. The 

baseline case was the actual implementation of the 5-year GACP from 2010 to 2014, in 

combination with the national HIV/AIDS response program in Guangxi. In this case, the 

scale-up in the levels of HIV testing and ART treatment was modeled by the time 

dependent diagnosis rate α(t) and ART enrollment rate γ(t). Note that the slopes 

of α(t) and γ(t) are greater during the 5 years of GACP than those during the period 

2005-2009 when only the national response program was implemented. For comparisons, 

we have modified assumptions on α(t) and γ(t) during the period 2010-2014 according to 

the following three alternative scenarios:  

 Scenario 1: The trend of HIV testing and ART treatment continues that of the 

national program of 2005-2009; 

 Scenario 2: The trend of HIV testing continues that of the national program, and 

the trend of ART treatment follows the baseline; 

 Scenario 3: The trend of HIV testing follows the baseline, and the trend of ART 

treatment continues that of the national program. 

Control production numbers Rc for the three alternative scenarios were calculated 

and compared to that of the baseline case.  
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Figure 4.19: The estimations of the AIDS control effectiveness under various situations 

(blue:baseline, red:Scenario 1, pink:Scenario 2, Blue:Scenario 3) 

 

Figure 4.19 shows that combining the national control program with GACP has 

produced the most reduction in Rc, from 1.526 in 2005 to 1.174 in 2014. In the alternative 

Scenario 1, Rc has a gradual decline from 2005 to 2014, since the scale-ups in testing and 

ART coverage were assumed to be at the national level throughout the period. It is 

interesting to compare Scenarios 2 and 3: while both have resulted in a substantial 

reduction in Rc either by scaling up to the GACP level of the ART (Scenario 2) or the 

HIV testing (Scenario 4), a greater reduction is achieved by scaling up the ART than 

scaling up the HIV testing. This is in part because people under ART treatment have 

much smaller transmission coefficients than those who are not.  

HIV transmission is mainly through sexual contacts in the world, and in China since 

2009. The HIV epidemic in Guangxi has been driven by sexual transmission since 2007. 

As shown in Figure 4.20 and Table 4.7, after the implementation of GACP, report on 

sexually transmitted diseases in Guangxi has shown a continuous and significant drop. 
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The gonorrhea case reports in Guangxi showed a two-digit annual decline (10.5 - 15.8%) 

from 7822 cases in 2010 to 4477 cases in 2014. The syphilis case reports in Guangxi first 

experienced an increase and then a continuous sharp decrease (25.5 - 50%) from 41673 

cases in 2010 to 11416 cases in 2014. The STD reports are generally expected to be in 

line with the HIV/AIDS reports in the same population, and case reports for both HIV 

and STD have shown a significant decline in Guangxi (Figures 4.20). 

 

a) Guangxi and China syphilis report 
 

2010 2011 2012 2013 2014 

Guangxi 41673 46699 34742 15330 11416 

China 399565 447525 465713 464292 471312 

 

b) Guangxi and China gonorrhea report 
 

2010 2011 2012 2013 2014 

Guangxi  7822 6997 5891 5273 4477 

China  109299 103728 96890 104245 99482 

 

c) Year on year comparison on syphilis and gonorrhea report for Guangxi and China. 
 

2010 2011 2012 2013 2014 

Guangxi Syphilis  24.1 12.1 -25.6 -55.9 -25.5 

Guangxi Gonorrhea  -12.9 -10.5 -15.8 -10.5 -15.1 

China Syphilis  17.7 12 4.1 -0.3 1.5 

China Gonorrhea  -11.6 -5.1 -6.6 7.6 -4.6 

Table 4.7. Syphilis and Gonorrhea Reports in Guangxi and China 
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(c)  

 

 

 

 

 

 

 

 

 

Figure 4.20: Syphilis and Gonorrhea Reports in Guangxi and China 

 

Discussion  

Facing the challenge of a rapidly expanding AIDS epidemic, the Guangxi government 

put AIDS control as a top priority of the government agenda. They formulated and 

implemented a five-year Guangxi AIDS Conquering Project (GACP) in 2009 with 

unprecedented efforts. Governments at all levels in Guangxi invested a total of more than 

2.25 billion Yuan (RMB) to AIDS control programs and opened 1482 permanent 

government positions for AIDS control offices and public health agencies. With these 

efforts, Guangxi ranked number one in local governmental financial commitment and 

human resources investments to AIDS control programs, among China’s 31 provinces, 

autonomous regions and municipalities. Guangxi is also among the few provinces in 

China that passed provincial AIDS control legislation to ensure governmental and 

societal commitment, as well as to safeguard local AIDS control programs by law.   

Such efforts have resulted in the most rapid scaling-up of HIV testing and antiviral 

treatment campaigns in Guangxi during the past 5 years in comparison to other provinces 

in China and the national average (Figure 4.17and Table 4.6). Guangxi’s average HIV 
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testing strength during the implementation of GACP was 14.1 per 100 population, 2.67 

fold higher than that of the national average. The Guangxi ART coverage rate has also 

caught up rapidly and was kept at a higher than national average throughout the GACP 

period. The unprecedented scale-up in testing and treatment in Guangxi has resulted in a 

significant decrease in the reported HIV/AIDS cases from 14250 in 2011 to 9460 in 

2014, while the reported cases in China increased from 74517 to 103501 during the same 

period (Figure 4.17c, and 4.6c ). The significant drop of the reported HIV/AIDS cases in 

Guangxi in three consecutive years, concurrent with the continuous scale-up in the 

number of HIV tests, suggests that the local HIV incidence may be declining. 

We used a mathematical model to assess quantitatively the impact of the GACP on 

the HIV transmission dynamics in Guangxi. Based on our analysis of Guangxi’s HIV 

surveillance and treatment data from 2005 to 2009, the control reproduction number Rc 

was reduced annually by 1.92% from 2005 to 2009. Our results demonstrate the efficacy 

of China’s national comprehensive AIDS response policy and the “Four Frees and One 

Care” program in Guangxi during the period. Meanwhile, a greater annual reduction of 

3.34% in Rc was estimated for the period from 2010 to 2014, which provides strong 

evidence in support of the Guangxi government’s decision to implement the 5-year 

GACP. The overall reduction of 16.7% in the value of Rc during Guangxi’s 5-year GACP 

demonstrates the effectiveness of the campaign.  

Our mathematical model describes the HIV transmission in Guangxi by following 

the flow of the HIV positive population, from being infected, to being tested and 

diagnosed, and to being enrolled into ART treatment. The model was set up differently 

from the standard SIR formulation for ease of comparison to the diagnosis and treatment 

data. The model was calibrated and validated using the HIV surveillance and ART 

treatment data from the Guangxi CDC. To reflect China’s efforts in scaling up HIV 

testing and treatment since 2005 [104], we have used time-dependent rates for HIV 

diagnosis and ART enrollment from 2005 to 2014. By comparing the differences in 
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diagnosis rates and ART enrollment rates during the two periods 2005-2009 and 2010-

2014, we were able to compare the impacts of the national HIV and AIDS response 

program implemented in Guangxi during 2005-2009 to that of Guangxi’s 5-year GACP 

during 2010-2014, in terms of the control reproduction number. 

The control reproduction number Rc is an important measure for assessing the 

burden of HIV transmission in a population and evaluating the effectiveness of the 

implemented AIDS control program. A value of Rc below 1 is an indication that the 

epidemic is under control, as long as the current control and prevention efforts are 

maintained. If the value of Rc is above 1, then further scaling-up of the testing and ART 

coverage will be needed, or other prevention programs need to be further expanded to 

complement the test-and-treat programs. Based on our study, the value of Rc for the 

Guangxi population showed a moderate annual decline of 1.92% from 2005 to 2009 

under the national HIV and AIDS response program. A sharp annual decline of 3.34% in 

the value of Rc is achieved from 2010 to 2014 under the Guangxi GACP implementation. 

The impact of reducing the value of Rc from 1.409 at the end of 2009 to 1.174 in 2014 by 

the GACP indicated that the expanded HIV testing and ART coverage have significantly 

slowed down the HIV transmission in Guangxi. While the program in Guangxi is shown 

to be successful, the value of Rc is still above 1 at the end of 2014. Further scaling-up of 

HIV testing and ART, complemented by an expansion of harm reduction preventions - 

increasing the rate of condom use, reducing high-risk behaviors among IDUs and 

unprotected sex with clients among FSWs - as part of the “Four Frees and One Care” 

national policy [105, 106] will be necessary beyond 2014 to bring the epidemic fully 

under control.  

Results of sensitivity analysis on our model results show that, with more HIV 

patients being diagnosed and treated, the most sensitive parameters for the value 

of Rc will gradually shift from β
I
 to β

D
. This implies that reducing the transmission 

among people who are diagnosed with HIV but not in ART programs by enhancing the 
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harm reduction measures and HIV education campaigns can be highly effective in 

reducing the overall transmissibility of HIV, as the HIV testing and ART treatment are 

further scaled up.  

Several alternative scenarios for the scaling-up of HIV testing and ART coverage 

were studied retrospectively using our calibrated model. The results show that, if the 5-

year GACP only scaled up the ART coverage after 2009 while maintained level of HIV 

testing at that of the national response program, the value of Rc would be reduced to 1.2 

in 2014. If the HIV testing was scaled up while the ART coverage was maintained at the 

national program level, the value of Rc would only be reduced to 1.31 in 2014. This 

suggests that scaling-up of ART coverage will be more effective in controlling the HIV 

epidemic, as people under ART treatment have a greatly reduced transmissibility.  

Our study has limitations. Heterogeneity among the HIV positive population is not 

considered in our model. Transmission rates β
I
, β

D
, and β

T
 are estimated as the average 

over all high-risk groups and all age groups. Further studies with improved models that 

take the heterogeneity into account are needed to produce more accurate assessments of 

the HIV epidemic. Expanded ART treatment is expected to improve the survival of 

people living with HIV and AIDS. The overall fatality rates among people under 

treatment are expected to decline with the scale-up of ART. Due to limitations of the 

available data, we have used a constant death rate for the population under ART 

throughout the 10-year study period, which may result in a slight over-estimation of the 

value of Rc towards the end of the study period. 

Heterosexual transmission accounted for over 80% and 90% of reported HIV/AIDS 

cases in Guangxi in 2011 and 2013, respectively. This indicates that the HIV epidemic in 

Guangxi was predominantly driven by heterosexual transmissions. For this reason, the 

Guangxi STD database can be a good reference in the evaluation of the local HIV 

epidemic. The national STD reports showed a rise of syphilis from 399,565 cases in 2010 

to 471,312 cases in 2014, while the gonorrhea reports experienced a modest decline from 
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109,299 in 2010 to 99,482 in 2014 (Figure 4.20, and Table 4.7). This is in contrast to the 

rapid decline in both syphilis and gonorrhea reports observed in Guangxi (Figure 4.20, 

and Table 4.7). The STD epidemic reports are in good agreement with the HIV/AIDS 

reports; both showing an increasing trend nationally, and both showing a decline in 

Guangxi (Figures 4.17 and 4.20). This again indicates that the HIV incidence in Guangxi 

may be declining.   

Effectiveness of testing and ART treatment as a HIV prevention strategy has not 

previously been assessed retrospectively in a real-world setting of developing countries 

[106-108]. Our study is the first to use mathematical models to analyze and assess 

retrospectively the impact of HIV testing and treatment as prevention strategies in a 

major Chinese HIV epidemic province with a population of 50 million. This study can 

provide real-time data and evidence in support of the test-and-treat HIV prevention 

strategy in the setting of a developing country with a concentrated HIV epidemic.  

Results of our modelling study and HIV and STD surveillance data analysis strongly 

support the public health policy of expanded HIV testing and ART as a mean to prevent 

HIV transmission in the setting of developing countries. Our results also show that, to 

achieve full control of the HIV epidemic, it is necessary to combine national strategy and 

local AIDS control programs. The national strategy can provide a political framework 

and policy environment for the local AIDS control programs. Local initiatives such as the 

GACP in Guangxi can provide targeted interventions tailored to the local situation with 

needed resources. Our study further shows that the control reproduction number Rc needs 

to be further reduced to stop the HIV transmission in Guangxi. To achieve this ultimate 

goal, the test and treat strategy needs to be complemented by social behavior 

interventions, such as various harm reduction programs for the traditional high-risk 

groups, as well as the education programs for the general population. This again requires 

combining a national strategy with local initiatives to fight AIDS. It is very encouraging 

to see that the Guangxi government is initiating the Phase II of GACP (2015-2019) and 
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the Chinese government is making the nation’s Thirteenth Five-Year Plan (2016-2020) to 

fight AIDS.  

In this chapter, we built a single group SIDT model to study different HIV datasets 

from China CDC. The single group SIDT model describes the HIV process of 

susceptible-infected-diagnosed-treated. For each dataset, it consists of HIV diagnosis 

related data and HIV treatment related data. Non-identifiability existed when we fitted 

the model to different HIV datasets, which were detected and resolved using the method 

we discussed in Chapter 3. After that, model parameters were uniquely estimated based 

on different HIV datasets. 

In the first project, we studied the HIV dataset for China. After model parameters 

were uniquely estimated based on this dataset, the HIV epidemic in China was estimated 

and predicted. The results were compared to the estimates published by the National HIV 

Epidemic Estimation Working Group 

In the second project, we studied HIV datasets for two remote townships in Sichuan 

province of China. Same as the first project, the HIV epidemic in these two townships 

was estimated and predicted based on uniquely estimated model parameters. This project 

provided a validation for our model, since a population-wide HIV screening being 

conducted in the two remote townships in 2010, about 99% of the residents and mobile 

population being tested for HIV, which provides a rare data for the true HIV prevalence, 

and a gold standard for model validation. 

In the third project, we studied HIV dataset for Guangxi province in China. After 

model parameters were uniquely estimated based on the dataset, the effect of Guangxi 

AIDS Conquering Project (GACP) were estimated and predicted based on the calculation 

of control reproduction number Rc.  
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Chapter 5  

The Multi-group SIDT Model for Assessment of HIV Datasets from 

China CDC 

In this chapter, we will construct a multi-group SIDT model to analyze HIV datasets. The 

multi-group SIDT model will consider HIV/AIDS process susceptible-infected-

diagnosed-treated in general population and high risk groups. Our method discussed in 

Chapter 3 will be applied to the model to detect and resolve non-identifiability. After 

model parameters are uniquely estimated, HIV epidemics in general population and each 

high risk group will be estimated and predicted.  

Compared to the single group SIDT model, the multi-group model will enable us to 

understand the true burden of HIV epidemic in each high-risk group, to design more 

effective HIV interventions, and to investigate HIV testing intensity in each high risk 

group.  

The challenge for the analysis of multi-group model lies in the non-identifiability 

issue, since we have more parameters. We applied our Matrix Decomposition Method for 

resolving non-identifiability to the multi-group SIDT model, the method clearly informed 

us how many parameters we need to fix before the model fitting process and what options 

we have for the fixing procedure. Our Matrix Decomposition method was proved to be 

useful for analyzing more complicated models. 

5.1 Project 1: The HIV dataset for the two remote townships in Sichuan province, 

China 

As we discussed above, these two townships are among the regions in China where HIV 

transmission is very severe. In 2008, the Chinese government tested close to half of the 

total population in these two townships for HIV, 409 HIV cases were reported, and 

48.17% of them were injection drug users (IDU). In 2010, the population-wide physical 

examination established baseline individual health records, including HIV status, for over 
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99% of the population in the two townships, 449 HIV cases were reported, and 29.62% of 

them were injection drug users (IDU). Injection drug users play an import role in HIV 

transmission in these two townships. We aim to investigate HIV transmission among 

injection drug users, HIV cross-transmission between IDU and general population in 

these two townships, and to identify targeting effective interventions, which will bring 

HIV transmission in these two townships fully under control. Based on the above 

motivation, we built the following two-group SIDT model. The diagram for the two-

group SIDT model:  

 

 

  

 

 

 

 

 

 

 

Figure 5.1: Transfer diagram for the two-group HIV transmission model 

Based on the transfer diagram in Figure 5.1, the model is described by the following 

system of nonlinear differential equations 
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  Ṡ1(t) = Λ −
S1(t)

N1(t)
(β

11
I1(t) + β

1D1
D1(t) + β

1T1
T1(t) + β

12
I2(t) + β

1D2
D2 + β

1T2
T2(t))

− dS1
S1(t) 

İ1(t) =
S1(t)

N1(t)
(β11I1(t) + β1D1D1(t) + β1T1T1(t) + β12I2(t) + β1D2D2 + β1T2T2(t))

− α1(t)I1(t) − dI1
I1(t) 

  Ḋ1(t) = α1(t)I1(t) + ρ1T1(t) − γ1(t)D1(t) − dD1
D1(t) 

  Ṫ1(t) = γ1(t)D1(t) − ρ1T1(t) − dT1
T1(t) 

 Ṡ2(t) = λS1 −
S2(t)

N2(t)
(β21I1(t) + β2D1D1(t) + β2T1T1(t) + β22I2(t) + β2D2D2 + β2T2T2(t))

− dS2
S2(t) 

İ2(t) =
S2(t)

N2(t)
(β21I1(t) + β2D1D1(t) + β2T1T1(t) + β22I2(t) + β2D2D2 + β2T2T2(t))

− α2(t)I2(t) − dI2
I2(t) 

  Ḋ2(t) = α2(t)I2(t) + ρ2T2(t) − γ2(t)D2(t) − dD2
D2(t) 

  Ṫ2(t) = γ2(t)D2(t) − ρ2T2(t) − dT2
T2(t). 

We split the whole population into two groups, the general population and IDU, 

denoting them as group 1 and group 2 respectively. At a time t, the number of susceptible 

people in each group is denoted by Si(t), i = 1,2, the number of HIV positive people who 

are not diagnosed in each group is denoted by Ii(t), i = 1,2, the number of diagnosed HIV 

positive people who are not under treatment in each group is denoted by Di(t), i = 1,2, 

and the number of diagnosed HIV positive people that are under treatment in each group 

is denoted by Ti(t), i = 1,2. The sum Ni(t) = Si(t) + Ii(t) + Di(t) + Ti(t), i = 1,2 denotes 

the total population for each group. The time unit used in the model is per year to align 

with the available data. 

Parameter Λ is the influx of susceptibles into the general group, λ is the transfer rate 

from general population to IDU. dSi
, dIi

, dDi
 and dTi

, i = 1,2, are death rates specific to 

compartments Si, Ii, Di, Ti, i = 1,2. Parameter ρ
i
, i = 1,2 is the combined rate for treatment 

failure and loss to follow-up, β
ii

, β
iDi

, β
iTi

, i = 1,2 are the within-group transmission 

coefficients for compartment Ii, Di, Ti, i = 1,2, β
12

, β
1D2

, β
1T2

 are the cross-group 
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transmission coefficients for compartment I2, D2, T2, β
21

, β
2D1

, β
2T1

 are the cross-group 

transmission coefficients for compartment I1, D1, T1.  

Terms αi(t)Ii(t) and γ
i
(t)Di(t), i = 1,2 in the model are the annual number of new 

reports for HIV and AIDS combined and the number of new treatment enrollments in 

each group, respectively. With the implementation of the “Four Frees and One Care” 

program in 2003, the Chinese government has rapidly scaled up HIV testing and ART 

treatment. This was reflected by an increase in the number of people tested for HIV and 

in the number of treatment centers. To correctly adjust for the increase in new HIV tests 

and ART treatments, we used a time-dependent diagnosis rate αi(t)and treatment 

enrolment rate γi(t), i = 1,2 .  

Data source: Aggregated yearly HIV/AIDS surveillance data for general population and 

IDU from 2005 to 2010 was obtained from the Surveillance Database of the China Center 

for Disease Control and Prevention. Aggregated yearly data on ART treatment for the 

same period for the two groups was obtained from the Treatment Database of the China 

Center for Disease Control and Prevention. Yearly population data for the two townships 

was obtained from the demographic database for the Liangshan prefecture.  

Parameter estimation and fitting: Same as the whole nation, Demographic parameters 

Λ and dS1
 are estimated by fitting the equation of the total population N′ = Λ − dSN to the 

population data for the two townships from 2005 to 2010. Values of parameters dDi
, 

dTi
,  ρi, i = 1,2 and the form of function γi(t), i = 1,2 are estimated directly from the 

surveillance and treatment data for these two groups. Since the HIV testing data is not 

available for these two townships, αi(t), i = 1,2 is assumed to be a linearly increasing 

function when there is no screening interventions, which is consistent with single group 

study. The two screening interventions in 2008 and 2010, which tested around half and 

99% of the total population in these two townships, make us fix αi(t), i = 1,2 at value 0.5 

in 2008 and 0.99 in 2010. Values of other parameters, including within-group 

transmission coefficients and cross-group transmission coefficients, the transfer rate λ, 
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death rate dI1
, dI2

, dS2
 and the initial population size I01, I02 for the undiagnosed 

compartment I1 and I2 at the beginning of our fitting (end of 2005), cannot be estimated 

directly from surveillance data and need to be obtained through model fitting.  

We applied our method to the two-group SIDT model to resolve non-identifiability 

issue [37]. We prefixed the relationships among βii, βiDi, βiTi, i = 1,2, as we did for the 

single group SIDT model β
iDi

= 0.75β
ii

, β
iTi

= 0.1β
ii

, i = 1,2, and perform non-

identifiability analysis for the remaining parameters [69-76]. The singular value 

decomposition informed us that among model parameters β12,  β21,  β11,  β22, I01, I02, S02, 

dI1, dI2, dS2, λ, and the coefficients for αi(t), i = 1,2 there are five dependencies, and the 

variance decomposition informed us that all the above parameters were involved in the 

five dependencies. Therefore we need to fix five parameters’ values before model fitting 

so that the remaining ones can be uniquely estimated. We fix dI1 = 0.063, the same as dI  

we fixed for the single group SIDT model. By referring to the survival data from a cohort 

study for IDU [109], we fixed the value for dI2, dS2. The estimation for the number 

I(2005) from the single group SIDT model study inform us of the value of I01 + I02. We 

also reasonably assumed β21, the cross-group transmission coefficient from general 

population to IDU, to be 0. 

The Nonlinear Least Squares method [28] was applied to find the point estimates for 

model parameters β12,  β11,  β22, I02, S02, λ, and the coefficients for αi(t), i = 1,2, which 

minimize the sum of squared error between model output and the available surveillance 

and treatment data. More specifically, the following data are used in our modeling fitting: 

 Annual number of new diagnosis of HIV and AIDS combined from 2005 to 2010;  

 Annual number of death due to HIV and AIDS among diagnosed from 2005 to 

2010;  

 Annual treatment enrollment from 2005 to 2010;  

 Annual number of death among diagnosed people and people in treatment from 

2005 to 2010. 
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 Annual number of treatment failure and loss to follow-up from 2005 to 2010 

 The number of total population from 2005 to 2010. 

Results 

The point estimates for model parameters are shown in table 5.1. 

Parameters Description Best-fit value  Source 

β11 Within-group transmission coefficients for I1 0.2446  Fitting 

β1D1 Within-group transmission coefficients for D1 0.1835  [69,70] 

β1T1 Within-group transmission coefficients for T1 0.02446  [71,76] 

β12 Cross-group transmission coefficients for I2 0.0266  Fitting 

β1D2 Cross-group transmission coefficients for D2 0.02  [69,70] 

β1T2 Cross-group transmission coefficients for T2 0.00266  [71,76] 

β22 Within-group transmission coefficients for I2 0.0681  Fitting 

β2D2 Within-group transmission coefficients for D2 0.051  [69,70] 

β2T2 Within-group transmission coefficients for T2 0.0068  [71,76] 

β21 Cross-group transmission coefficients for I1 0  Assumption 

β2D1 Cross-group transmission coefficients for D1 0  Assumption 

β2T1 Cross-group transmission coefficients for T1 0  Assumption 

dS1 Death rate for S1 0.007∗  Fitting 

dI1 Death rate for I1 0.063∗  [67, 68] 

dD1 Death rate for D1  0.0411∗  Data 

dT1 Death rate for T1 0.04∗  Data 

dS2 Death rate for S2 0.0237∗  [109] 

dI2 Death rate for I2 0.117∗  [109] 

dD2 Death rate for D2  0.0554∗  Data 

dT2 Death rate for T2  0.0427∗  Data 

ρ1 Treatment drop-out rate for general Population 0∗  Data 

ρ2 Treatment drop-out rate for IDU     0∗  Data 

I01 Undiagnosed HIV positive population in 2005 for general population 334  Fitting 

I02 Undiagnosed HIV positive population in 2005 for IDU 785  Fitting 
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Table 5.1. Model parameters and their best-fit values 

Notes: * The unites for these parameters are 1/person/year 

 

 

α1(t) Time-dependent diagnosis rate of undiagnosed for general population 

0.05𝑡 − 100.225∗, 2005 ≤ 𝑡 ≤ 2007      

0.5, 2007 ≤ 𝑡 ≤ 2008                               

0.275, 2008 < 𝑡 ≤ 2009 

1, 2009 < 𝑡 ≤ 2010 

 

Fitting 

     α2(t) Time-dependent diagnosis rate of undiagnosed for IDU 

0.0895𝑡 − 178.869∗, 2005 ≤ 𝑡 ≤ 2007      

0.5, 2007 ≤ 𝑡 ≤ 2008                               

0.24, 2008 < 𝑡 ≤ 2009 

1, 2009 < 𝑡 ≤ 2010 

 

Fitting 

γ1(t) Time-dependent treatment enrollment rate for general population 
0.0039524363𝑡2 − 15.8637.∗

𝑡 + 15917.8679∗, 2005-2010 
Data 

γ2(t) Time-dependent treatment enrollment rate for IDU 
 0.007888105𝑡2 − 31.6311996.∗

𝑡 + 31710.1918∗, 2005-2010 
Data 

Λ The influx of susceptible into the general group 295 Fitting 

λ Transfer proportion from general population to IDU 0.008∗ Fitting 

R2 Goodness of fit ratio        

0.97 

 Fitting 
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Figure 5.2 Model Fitting Results 

The high goodness of fit ratio provided a validation for our two-group SIDT model.  

Three key assessment indicators for the HIV/AIDS dynamics: annual number of 

new HIV infections, annual number of HIV/AIDS related deaths, and the total number of 

people living with HIV (both diagnosed and undiagnosed), were estimated from 2005 to 

2010 for each group using the two-group SIDT model. 

The estimated annual number of new HIV infections of general population rose from 

98 in 2005 to 162 in 2010. In the meantime, the year-over-year rate of increase declined 

from 15.31% in 2006 to 5.88% in 2010, indicating that the momentum of rise of the HIV 

epidemics in general population has slowed down significantly during the 6-year period. 

The estimated annual number of new HIV infections of IDU declined from 35 in 2005 to 

21 in 2010. The estimated total number of people living with HIV and AIDS of general 

population, including both diagnosed and undiagnosed people, increased from 366 in 

2005 to 896 in 2010. The year-over-year rate of increase declined from 24.04% in 2006 

to 15.46% in 2010. The estimated total number of people living with HIV and AIDS of 

IDU, including both diagnosed and undiagnosed people, declined from 866 in 2005 to 
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670 in 2010. The estimated HIV prevalence rate among the whole population at the end 

of 2010 was 14.57%. 

The estimated total number of deaths among people living with HIV and AIDS of 

general population increased from 20 in 2005 to 41 in 2010. The year-over-year rate of 

increase declined from 25.00% in 2006 to 7.89% in 2010. The estimated total number of 

deaths among people living with HIV and AIDS of IDU declined from 101 in 2005 to 45 

in 2010. 

Estimations for the three key indicators informed us that HIV transmission in these 

two township has transferred from high risk group IDU to general population. The HIV 

interventions implemented from 2005 to 2010, has brought all three indicators down in 

IDU group and has slowed down the HIV transmission in general population.  

Our model was used to further predict the three key indicators for the period 2011-

2015, under the assumption that the treatment enrollment rate would continue to increase 

linearly following its pre-2010 trend, and that the diagnosis rate would maintain the same 

trend as the period from 2005 to 2007 before the population-wide screening. 

Our model predicted that continuous scale-up of HIV testing and ART treatment 

will reverse the temporal trend of the HIV epidemics in general population, the predicted 

annual number of new HIV infections would decline starting from 2014. The predicted 

annual number of new HIV infections in IDU will decline to 5 in 2015. The predicted 

value for PLHIV of general population, IDU in 2015 is 1512, 567 respectively, with a 

HIV prevalence rate at 16.11% and 29.06%. The model prediction for the number of 

combined HIV and AIDS deaths of general population, IDU in 2015 is 65 and 26 

respectively (table 5.2). 
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Table 5.2(a) Estimations of the three indicators for the General Population 

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

HIV new infections 35 34 31 28 25 21 18 14 11 8 5 

PLHIV 866 809 761 724 695 670 650 628 607 586 567 

HIV/AIDS deaths 101 91 79 65 55 45 39 35 32 29 26 

Table 5.2(b) Estimations of the three indicators for IDU 

Compared to single group SIDT model, besides the estimations for three indicators, 

the two-group SIDT model enables us to estimate the total population for high risk group 

IDU (table 5.3). The estimation showed that IDU accounted for around 20% of the total 

population in these two townships, which is one of the reasons why HIV transmission is 

severe in this region.  

 

Year 2005 2006 2007 2008 2009 2010 

Population(IDU) 2118 2060 2014 1983 1962 1951 

Total Population 10347 10523 10648 10806 10836 10902 

                    Table 5.3 The Estimation for IDU Population  

We used our model to estimate that the two population-wide screening programs in 

2008 and 2010 have saved 114 life years, and averted 101 new HIV infections from the 

beginning of 2008 to the end of 2015 for general population, and 76 life years, 6 new 

HIV infections for IDU. The number of averted new HIV infections account for 6.97%, 

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

HIV new infections 98 114 130 142 155 162 172 182 186 185 178 

PLHIV 366 453 552 659 774 896 1019 1150 1276 1400 1512 

HIV/AIDS deaths 20 25 31 34 38 41 46 52 57 62 65 
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4.55% of the new HIV infections that would have occurred without the two screening 

interventions for general population and IDU respectively. Figure 5.3 shows the 

cumulative number and percentage of HIV new infections averted from 2008 to 2015 for 

general population and IDU (Figure 5.3). 

 

Figure 5.3 (a): Cumulative number and percentage of HIV new infections averted from 2008 to 

2015 for the general population due to the screening interventions 
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Figure 5.3 (b): Cumulative number and percentage of HIV new infections averted from 2008 to 

2015 for IDU due to the screening interventions 

 

Discussion 

At first, we assume αi(t), i = 1,2 are identical functions, linearly increasing from 2005 to 

2007, fixed at 0.5, 1 at 2008 and 2010 respectively. Under this assumption, the model 

fitting is as following:  

 

Figure 5.4 Model fitting under the assumption that 𝛂𝐢(𝐭), 𝐢 = 𝟏, 𝟐 are identical 
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Since αi(t)Ii(t), i = 1,2 account for the annual HIV new diagnosis in general 

population and IDU, if we assume αi(t), i = 1,2 are the same, all the difference of increase 

in HIV new diagnosis for these two groups is distributed to the difference of increase 

of Ii(t), i = 1,2. Therefore, the faster increase of annual HIV new diagnosis for IDU 

indicates a faster rise for I2(t) than I1(t), resulting in overestimated transmission 

coefficients, and further an overestimated number of annual HIV new reports in 2010. 

Flat increase for annual HIV new diagnosis in general population leads to underestimated 

transmission coefficients, and further an underestimated annual HIV new diagnosis in 

2010. The fitting graphs inform us that it is more reasonable to assume that both α1(t) 

and α2(t) are linear increasing functions, but with different coefficients.  

The estimation and prediction for these two townships from two-group SIDT model 

were consistent with that from single group SIDT model except the estimates of 

HIV/AIDS related deaths. The estimated HIV/AIDS related deaths from single group 

model were 53 at 2005, 78 at 2010, while those from two-group model were 121 at 2005, 

and 78 at 2010. In the analysis for single group model, we fix the value for parameter 

dI at 0.063, which was obtained from the survival data for HIV patients not receiving 

treatment, combining all HIV high risk groups and the general population. Therefore, we 

will underestimate the death rate dI in a region where IDU dominates the HIV 

transmission, since IDU HIV patients have the shortest survival length among all HIV 

high risk groups and the general population. The analysis for two-group SIDT model 

informed us that at 2005 IDU dominated in HIV transmission in these two townships, and 

at 2010 general population accounted for most HIV new infections. Therefore, in the two 

townships, HIV transmission has transferred from high risk group IDU to the general 

population. The dominance of IDU in HIV transmission at 2005 explains why estimated 

HIV/AIDS deaths from the two-group model much higher than that from the single group 

model. 
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Due to the existence of two screening interventions, there is no non-identifiability 

issue among the within-group and cross-group transmission coefficients. While in other 

situations when there is no special HIV interventions, it might be possible for some of the 

transmission coefficients being non-identifiable.  

The estimation and prediction inform us that HIV transmission in IDU for these two 

townships was under control since all three indicators were declining. Even if we 

maintain the level of HIV testing and treatment starting from 2009 for IDU, HIV new 

infections still declined from 35 in 2005 to 21 in 2010 and further to 12 in 2015. 

However, if the level of HIV testing and treatment for general population was maintained 

from 2009, HIV new infections would be rising from 2005. Therefore more efforts could 

be devoted to general population so that HIV transmission in these two townships can be 

fully under control.  

5.2 Project 2: The HIV dataset for China 

The surveillance data for high risk groups IDU, men who have sex with men (MSM) and 

general population showed us various stories about HIV transmission in each group 

(figure 5.5). The number of annual new HIV reports from MSM has increased by around 

30 times from 2005 to 2010, while for IDU that number has been decreasing in the same 

period. To further understand HIV epidemic transmission situation in each high risk 

group and the general population, to identify efficient HIV interventions for each group, 

and to estimate HIV testing intensity in each group, we built the three-group SIDT model. 
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Figure 5.5 Annual number of new HIV reports for the general population, IDU and MSM 
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Figure 5.6: Transfer diagram for the three-group HIV transmission model 

Based on the transfer diagram in Figure 5.6, the model is described by the following 

system of nonlinear differential equations 

  Ṡ1(t) = Λ −
S1(t)

N1(t)
(β

11
I1(t) + β

1D1
D1(t) + β

1T1
T1(t) + β

12
I2(t) + β

1D2
D2 + β

1T2
T2(t)

+ β
13

I3(t) + β
1D3

D3 + β
1T3

T3(t)) − dS1
S1(t) 

İ1(t) =
S1(t)

N1(t)
(β11I1(t) + β1D1D1(t) + β1T1T1(t) + β12I2(t) + β1D2D2 + β1T2T2(t) + β13I3(t)

+ β1D3D3 + β1T3T3(t)) − α1(t)I1(t) − dI1
I1(t) 

  Ḋ1(t) = α1(t)I1(t) + ρ1T1(t) − γ1(t)D1(t) − dD1
D1(t) 

  Ṫ1(t) = γ1(t)D1(t) − ρ1T1(t) − dT1
T1(t) 

 Ṡ2(t) = λ1S1 −
S2(t)

N2(t)
(β21I1(t) + β2D1D1(t) + β2T1T1(t) + β22I2(t) + β2D2D2 + β2T2T2(t)

+ β23I3(t) + β2D3D3(t) + β2T3T3(t)) − dS2
S2(t) 

İ2(t) =
S2(t)

N2(t)
(β21I1(t) + β2D1D1(t) + β2T1T1(t) + β22I2(t) + β2D2D2 + β2T2T2(t)

+ β23I3(t) + β2D3D3(t) + β2T3T3(t)) − α2(t)I2(t) − dI2
I2(t) 

  Ḋ2(t) = α2(t)I2(t) + ρ
2

T2(t) − γ
2
(t)D2(t) − dD2

D2(t) 

Λ 

dT3 
T3 
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  Ṫ2(t) = γ2(t)D2(t) − ρ2T2(t) − dT2
T2(t) 

 Ṡ3(t) = λ2S1 −
S3(t)

N3(t)
(β31I1(t) + β3D1D1(t) + β3T1T1(t) + β32I2(t) + β3D2D2 + β3T2T2(t)

+ β33I3(t) + β3D3D3(t) + β3T3T3(t)) − dS3
S3(t) 

İ3(t) =
S3(t)

N3(t)
(β31I1(t) + β3D1D1(t) + β3T1T1(t) + β32I2(t) + β3D2D2 + β3T2T2(t) + β33I3(t)

+ β3D3D3(t) + β3T3T3(t)) − α3(t)I3(t) − dI3
I3(t) 

  Ḋ3(t) = α3(t)I3(t) + ρ3T3(t) − γ3(t)D3(t) − dD3
D3(t) 

  Ṫ3(t) = γ3(t)D3(t) − ρ3T3(t) − dT3
T3(t). 

 

We split the whole population into three groups, general population, IDU and MSM, 

denoting them as group 1, group 2 and group 3 respectively. At a time t, the number of 

susceptible people in each group is denoted by Si(t), i = 1,2,3, the number of HIV positive 

people who are not diagnosed in each group is denoted by Ii(t), i = 1,2,3, the number of 

diagnosed HIV positive people who are not under treatment in each group is denoted 

by Di(t), i = 1,2,3, and the number of diagnosed HIV positive people that are under 

treatment in each group is denoted by Ti(t), i = 1,2,3. The sum Ni(t) = Si(t) + Ii(t) +

Di(t) + Ti(t) denotes the total population for each group. The time unit used in the model 

is per year to align with the available data. 

Parameter Λ is the influx of susceptibles into the general group, λ1 is the transfer rate 

from general population to IDU, and λ2 is the transfer rate from general population to 

MSM, dSI
, dII

, dDI
 and dTI

, i = 1,2,3, are death rates specific to compartments SI, II, DI, TI, i =

1,2,3. Parameter ρI, i = 1,2 is the combined rate for treatment failure and loss to follow-

up, βii, βiDi, βiTi, i = 1,2 are the within-group transmission coefficients for 

compartment II, DI, TI, i = 1,2,3, β12, β1D2, β1T2, β13, β1D3, β1T3 are the cross-group 

transmission coefficients from compartment I2, D2, T2, I3, D3, T3, to compartment I1, β21, 

β2D1, β2T1, β23, β2D3, β2T3 are the cross-group transmission coefficients from compartment 
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I1, D1, T1, I3, D3, T3, to compartment I2, β31, β3D1, β3T1, β32, β3D2, β3T2 are the cross-group 

transmission coefficients from compartment I1, D1, T1, I2, D2, T2, to compartment I3.  

Terms αi(t)Ii(t) and γ
i
(t)Di(t), i = 1,2,3 in the model are the annual number of new 

reports for HIV and AIDS combined and the number of new treatment enrollments in 

each group, respectively. With the implementation of the “Four Frees and One Care” 

program in 2003, the Chinese government has rapidly scaled up HIV testing and ART 

treatment. This was reflected by an increase in the number of people tested for HIV and 

in the number of treatment centers. To correctly adjust for the increase in new HIV tests 

and ART treatments, we used a time-dependent diagnosis rate αi(t)and treatment 

enrolment rate γi(t), i = 1,2,3 .  

Data source: Aggregated yearly HIV/AIDS surveillance data for general population, 

IDU and MSM from 2006 to 2010 was obtained from the Surveillance Database of the 

China Center for Disease Control and Prevention. Aggregated yearly data on ART 

treatment for the same period for the three groups was obtained from the Treatment 

Database of the China Center for Disease Control and Prevention. Yearly population data 

in the same period on national population was from the National Census. Predictions for 

annual HIV new infections, PLHIV and annual HIV/AIDS related deaths of the whole 

nation from 2011 to 2015 were obtained from single group study.  

Parameter estimation and non-identifiability analysis: Demographic parameters Λ 

and dS1
are estimated by fitting the equation of the total population N′ = Λ − dSN to the 

population data for China from 2006 to 2010. Values of parameters dDi
, dTi

, ρi, i =

1,2,3 and the form of function γi(t), i = 1,2,3 are estimated directly from the surveillance 

and treatment data for these three groups. Since HIV testing data is not available for each 

group, and HIV test rate for the whole nation was linearly increasing from 2006 to 2010, 

we assumed αi(t), i = 1,2,3 being linearly increasing functions. Values of other 

parameters, including within-group transmission coefficients and cross-group 
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transmission coefficients, the transfer rate λ1 and λ2, death rate dI1
, dI2

, dI3
, dS2

, dS3
 and the 

initial population size I01, I02, I03, S02, S03for the undiagnosed compartment I1, I2 ,I3 and S2 

S3 at the beginning of our fitting (end of 2006), cannot be estimated directly from 

surveillance data and need to be obtained through model fitting. 

We applied our Matrix Decomposition method to the three-group SIDT model to 

resolve non-identifiability issue [37]. We prefixed the relationships among βii, βiDi, 

βiTi, i = 1,2, as we did for the single group SIDT model β
iDi

= 0.75β
ii

, β
iTi

= 0.1β
ii

, i =

1,2, and perform non-identifiability analysis for the remaining parameters [69-76]. The 

singular value decomposition informed us that among model parameters to be estimated, 

there are 11 dependencies, and the variance decomposition informed us that all the 

parameters were involved in the 11 dependencies. We fixed dI1
= 0.063, dI3

= 0.063, dS3
=

0.007 under the assumption that MSM have same death rate as general population, 

fixed dI2
= 0.117, dS2

= 0.0237 as we did in Liangshan two-group SIDT model. For the 

remaining parameters, we have to fix at least 6 parameters’ value so that all other 

parameters can be uniquely determined. 

In each group, there are three transmission coefficients to be estimated, one within-

group transmission coefficient and two cross-group transmission coefficient. Non-

identifiability analysis revealed that with the available data: 

 Annual number of death due to HIV and AIDS among diagnosed from 2006 to 

2010;  

 Annual number of new diagnosis of HIV and AIDS combined from 2006 to    

  2010;  

 Annual treatment enrollment from 2006 to 2010;  

 Annual number of death among diagnosed people and people in treatment from 

2006 to 2010. 

 Annual number of treatment failure and loss to follow-up from 2006 to 2010 

 The number of total population from 2006 to 2010 
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 The number of annual HIV new infections from 2011 to 2015 obtained from 

single group study 

 The number of PLHIV from 2011 to 2015 obtained from single group study 

 The number of HIV/AIDS Deaths from 2011 to 2015 obtained from single group 

study,  

only seven transmission coefficients can be estimated together. We fixed the two cross-

group transmission coefficients between IDU and MSM as 0. Among parameters S02, S03 

 λ1 and λ2, which determine the size of high risk group IDU and MSM, none of them can 

be estimated together with the above seven transmission coefficients. Therefore, if we 

want to estimate transmission coefficients, we have to fix parameters determining the size 

of high risk groups IDU and MSM. We fixed parameter S03, λ2, S02, λ1 by referring to the 

information that usually MSM accounts for 2%-4% of male population in a region [110], 

and IDU population in China is around 74,000 during the period from 2006 to 2010 

[111]. At last parameters β11,  β12,  β13,  β21,  β22,  β31,  β33,  I1(2006),  I2(2006),  I3(2006) 

and the coefficients for αi(t), i = 1,2,3 were estimated together by fitting the multi-group 

SIDT model to data. 

Results 

The point estimates for model parameters are shown in table 5.4. 

Parameters Description Best-fit value  Source 

β11 Within-group transmission coefficients for I1 0.1342  Fitting 

β1D1 Within-group transmission coefficients for D1 0.1007  [69,70] 

β1T1 Within-group transmission coefficients for T1  0.01342  [71-76] 

β12 Cross-group transmission coefficients from I2 to I1 0.0217  Fitting 

β1D2 Cross-group transmission coefficients from D2 to I1 0.0163  [69,70] 

β1T2 Cross-group transmission coefficients from T2 to I1 0.00217  [71-76] 

β13 Cross-group transmission coefficients from I3 to I1 0.000336  Fitting 

β1D3 Cross-group transmission coefficients from D3 to I1 0.000252  [69,70] 

β1T3 Cross-group transmission coefficients from T3 to I1 0.0000336  [71-76] 

β21 Cross-group transmission coefficients from I1 to I2 0.0000455  Fitting 
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β2D1 Cross-group transmission coefficients for D1 to I2 0.0000341  [69,70] 

β2T1 Cross-group transmission coefficients for T1 to I2 0.00000455  [71-76] 

β22 Within-group transmission coefficients for I2 0.073  Fitting 

β2D2 Within-group transmission coefficients for D2 0.055  [69,70] 

β2T2 Within-group transmission coefficients for T2 0.0073  [71-76] 

β23 Cross-group transmission coefficients from I3 to I2 0  Assumption 

β2D3 Cross-group transmission coefficients for D3 to I2 0  Assumption 

β2T3 Cross-group transmission coefficients for T3 to I2 0  Assumption 

β31 Cross-group transmission coefficients from I1 to I3 0.000041  Fitting 

β3D1 Cross-group transmission coefficients for D1 to I3 0.000031  [69,70] 

β3T1 Cross-group transmission coefficients for T1 to I3 0.0000041  [71-76] 

β32 Cross-group transmission coefficients from I2 to I3 0  Assumption 

β3D2 Cross-group transmission coefficients for D2 to I3 0  Assumption 

β3T2 Cross-group transmission coefficients for T2 to I3 0  Assumption 

β33 Within-group transmission coefficients for I3 0.227  Fitting 

β3D3 Within-group transmission coefficients for D3 0.17  [69,70] 

β3T3 Within-group transmission coefficients for T3 0.0227  [71-76] 

dS1 Death rate for S1 0.007∗  Fitting 

dI1 Death rate for I1 0.063∗  [67,68] 

dD1 Death rate for D1 0.05∗  Data 

dT1         Death rate for T1 

0.01285714287.*t.*t-

51.66682862.*t+51906.2185∗ 

𝑡 ≤ 2010       

0.036                             t > 2010                                

 Data 

dS2 Death rate for S2 0.0237∗  [109] 

dI2 Death rate for I2 0.117∗  [109] 

dD2 Death rate for D2 0.05∗  Data 

 

 

 

dT2  Death rate for T2 

-0.061𝑡+122.69∗,               𝑡 ≤ 2007 

-0.07.*T+140.7, 2007 ≤ 𝑡 ≤ 2010 

0.035                 t>2010 

 

 Data 

dS3  Death rate for S3 0.007∗  Fitting 

dI3        Death rate for I3                0.063∗  [67, 68] 

dD3         Death rate for D3                 0.015∗  Data 
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Table 5.4. Model parameters and their best-fit values 

Notes: * The unites for these parameters are 1/person/year 

 

dT3         Death rate for T3 

0.0485∗,                      𝑡 ≤ 2007 

0.051,                2007 ≤ 𝑡 ≤ 2009 

0.025            t>2009 

 

 Data 

ρ1 Treatment drop-out rate for general Population                   0.03227∗  Data 

ρ2 Treatment drop-out rate for IDU -0.0472844t+95.087∗ 

 

 Data 

ρ3            Treatment drop-out rate for MSM 0.0274∗  Data 

I01 Undiagnosed HIV positive population in 2006 for general 

population 

 301710  Fitting 

I02 Undiagnosed HIV positive population in 2006 for IDU          147208  Fitting 

I03 Undiagnosed HIV positive population in 2006 for MSM 43628  Fitting 

S02 Susceptible population in 2006 for IDU 740000  [111] 

S03 Susceptible population in 2006 for MSM 19722237  [110] 

α1(t) Time-dependent diagnosis rate of undiagnosed for general population 0.0172898644t−34.5978∗ 

 

 

 Fitting 

α2(t) Time-dependent diagnosis rate of undiagnosed for IDU 

0.01623t − 32.4415∗, 𝑡 ≤ 2009      

0.11, 2009 ≤ 𝑡 ≤ 2010                               

0.01623t − 32.4415, t > 2010 

 

 

Fitting 

       α3(t) Time-dependent diagnosis rate of undiagnosed for MSM     0.02596 t − 52.0479∗ 

 

Fitting 

       γ1(t) Time-dependent treatment enrollment rate for general population 0.0117367t−23.43∗ 

  

Data 

  γ2(t) Time-dependent treatment enrollment rate for IDU 
  0.011t -22.03∗,       𝑡 ≤ 2007, 

    0.057,               𝑡 > 2007 

Data 

    γ3(t) Time-dependent treatment enrollment rate for MSM 
0.12∗,                          𝑡 ≤ 2007, 

0.04t -80.18,                  𝑡 > 2007 
Data 

     Λ The influx of susceptible into the general group 15702110 

 

Fitting 

    λ1 Transfer from general population to IDU 17539 [111] 

λ2 Transfer from general population to MSM 235332 [110] 

R2 Goodness of fit ratio         0.96 Fitting 
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Figure 5.7 Model fitting results 

We estimated and predicted HIV new infections in each group based on the 

assumption that HIV testing and treatment are enhancing from 2011 to 2015 as pre-2010 

(table 5.5). Our estimation and prediction showed that annual HIV new infections in 

MSM kept rising, while annual HIV new infections in general population started to turn 

down in 2014, and annual HIV new infections in IDU kept declining. Annual HIV new 

infections for the total population started to decline in 2015, which is consistent with the 

conclusion of single group SIDT model for China.  

Since HIV epidemic in IDU is under control, and the turning point of annual HIV 

new infections in MSM did not appear, we would like to investigate the effects of the 

intervention, which maintained the level of HIV testing and treatment in IDU, enhanced 

that level in MSM and general population, together with harm reduction strategy in MSM 

(table 5.6). If the harm reduction strategy made MSM within-group transmission 

coefficient declining by 10%, the turning point of annual HIV new infections in MSM 

would appear in 2015. 
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Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

General Population 51263 53483 55458 57147 58519 59521 60125 60331 60147 59588 

IDU 11154 10502 9858 9240 8679 8151 7645 7187 6776 6407 

MSM 8963 10241 11615 13055 14508 15911 17200 18309 19189 19801 

Table 5.5 Annual HIV new infections for the general population, IDU and MSM 

 

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

General Population 51263 53483 55458 57147 58519 59523 60132 60347 60175 59630 

IDU 11154 10502 9858 9240 8679 8155 7663 7228 6841 6495 

MSM 8963 10241 11615 13055 14508 14553 15480 16213 16714 16966 

Table 5.6 Annual HIV new infections for the general population, IDU and MSM  

under a special intervention 

Discussion 

We started our model fitting based only on surveillance and treatment data for each group 

from 2006 to 2010. Since we have no HIV testing data for each group, we first assumed 

that HIV testing rate in each group is the same as that for the whole nation. Model fitting 

graphs showed that the assumption could be true for general population and MSM , while 

for IDU other assumption should be tested (Figure 5.8).  
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Figure 5.8 Modeling fitting results under the assumption that 𝛂𝐢(𝐭), 𝐢 = 𝟏, 𝟐, 𝟑 are identical  

We first tried the assumption that HIV testing rate in IDU followed a quadratic 

function, which made model fitting worse. We observed that when HIV testing rate in 

IDU was assumed to be the same as that for the whole nation, the annual new HIV report 

data of IDU can be fitted well from 2006 to 2009, while the data in 2010 was badly fitted 

due to the sharp decline in the number of annual HIV new reports from IDU in 2010. 

There might be some interventions targeting on IDU in 2010, resulting in the sharp 
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decline in annual HIV reported cases from IDU. We further tried the assumption that 

from 2006 to 2009, IDU followed the same HIV testing trend as MSM and the general 

population, while in 2010, it followed different HIV testing rate trend from MSM and the 

general population. Following this assumption, model fitting becomes better (figure 5.9). 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Modeling fitting results under the assumption that 𝛂𝒊(𝐭) in IDU is different from that 

in the other two groups 
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Based on the above assumption about HIV testing rate in each group, model fitting 

is well, while model prediction from 2011 to 2015 is not consistent with that from single 

group SIDT model. Our multi-group model predicted that annual HIV new infections in 

MSM would increase from 4627 in 2005, to 42897 in 2010 and further to 489654 in 

2015. In this case, from 2010 to 2015 annual HIV new infections in MSM would increase 

by more than 10 times, and in 2015 annual HIV new infections from MSM would 

account for 70% of the total annual HIV new infections in China. 

In single group model study of China, we considered the effect of different forms 

of α(t) on the trend of HIV new infections. At last, we fixed the form of α(t) by referring 

to HIV testing rate for the whole nation, which would avoid underestimation or 

overestimation of annual HIV new infections. While in multi-group model study, we have 

no information about the HIV testing rate for each group. If we assume HIV testing rate 

in MSM is the same as the whole nation, the fast increase in the annual number of HIV 

new diagnosis from MSM would lead to a fast increase in the total number of 

undiagnosed HIV positive patients, which would further lead to a sharp increase in HIV 

new infections in MSM. In this case, our prediction for the three indicators would be 

inconsistent with those from single group study. If we assume HIV testing rate in MSM 

has the same form as that for the whole nation, a linear function, but with a higher slope, 

then the fast increase in annual HIV new diagnosis from MSM would be partially 

attributed to the increase in HIV testing rate, leading to a moderate increase in the 

number of undiagnosed HIV patients in MSM. In this case, multi-group model 

predictions for the three indicators were consistent with the predictions from single group 

study. At last, we used the predictions from the single group model study as data to 

uniquely fit α(t) in each group. 

Fitting results for αi(t), i = 1,2,3 informed us that HIV testing intensity in general 

population is almost the same as that for the whole nation. HIV testing intensity in IDU 

increased a little slower than that for the whole nation from 2006 to 2009, which is 
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consistent with the moderate increase in annual HIV new diagnosis in IDU. HIV testing 

intensity in MSM in 2006 is lower than that for the whole nation, but it increased faster 

than that for the whole nation from 2007 to 2010. This estimation would allow us to 

attribute the sharp increase of annual HIV new diagnosis in MSM partially to the fast 

increase of HIV testing intensity, which would result in a moderate increase of HIV new 

infections in MSM.  

5.3 Project 3: The HIV dataset for Beijing, China 

In 2005, 282 new HIV cases were reported in Beijing, and 19.5% of them came from the 

high risk group MSM. In 2010, 1138 new HIV cases were reported in Beijing, and 60.2% 

of them came from MSM. In 2015, 3263 new HIV cases were reported in Beijing, and 

75.2% of them came from MSM (Figure 5.10, Table 5.7). With time going, MSM 

dominated in annual HIV new reports in Beijing.  

We built the two-group SIDT model based on HIV surveillance and treatment data 

from Beijing, which considered the interaction between MSM and the general population. 

This model will enable us to find out HIV transmission dynamics of MSM and the 

general population, and effective targeting interventions to control HIV transmission in 

Beijing. 

 

 

Figure 5.10 Annual HIV new reports in Beijing 
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Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Percentage 0.13 0.23 0.06 0.16 0.19 0.2 0.29 0.34 0.44 0.54 0.60 0.64 0.73 0.72 0.75 

Table 5.7 The percentage of HIV new reports from MSM in Beijing 
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Figure 5.11: Transfer diagram for the two-group HIV transmission model 
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Based on the transfer diagram in Figure 5.11, the model is described by the following 

system of nonlinear differential equations. 

Ṡ1(t) = Λ1 −
S1(t)

N1(t)
(βI111

I11(t) + βI112
I12(t) + β1D1D1(t) + β1T1T1(t) + βI121

I21(t)

+ βI122
I22(t) + β1D2D2(t) + β1T2T2(t)) − dS1

S1(t) 

İ11(t) =
S1(t)

N1(t)
(βI11

I11(t) + βI12
I12(t) + β1D1D1(t) + β1T1T1(t) + βI121

I21(t) + βI122
I22(t)

+ β1D2D2(t) + β1T2T2(t)) − α1(t)I11(t) − τI11(t) − dI11
I11(t) 

İ12(t) = τI11(t) − α1(t)I12(t) − dI12
I12(t) 

Ḋ1(t) = α(t)I11(t) + α(t)I12(t) + ρ1T1(t) − γ1(t)D1(t) − dD1
D1(t) 

Ṫ1(t) = γ1(t)D1(t) − ρ1T1(t) − dT1
T1(t). 

Ṡ2(t) = Λ2S1(t)

−
S2(t)

N2(t)
(βI211

I11(t) + βI212
I12(t) + β2D1D1(t) + β2T1T1(t) + βI221

I21(t)

+ βI222
I22(t) + β2D2D2(t) + β2T2T2(t)) − dS2

S2(t) 

İ21(t) =
S2(t)

N2(t)
(βI211

I11(t) + βI212
I12(t) + β2D1D1(t) + β2T1T1(t) + βI221

I21(t) + βI222
I22(t)

+ β2D2D2(t) + β2T2T2(t)) − α2(t)I21(t) − τI21(t) − dI21
I21(t) 

İ22(t) = τI21(t) − α2(t)I22(t) − dI22
I22(t) 

  Ḋ2(t) = α(t)I21(t) + α(t)I22(t) + ρ2T2(t) − γ2(t)D2(t) − dD2
D2(t) 

  Ṫ2(t) = γ2(t)D2(t) − ρ2T2(t) − dT2
T2(t). 

We split the whole population into two groups, the general population and MSM, 

denoting them as group 1 and group 2 respectively. At a time t, the number of 

susceptible people in each group is denoted by Si(t), i = 1,2, the number of HIV positive 

people who are not diagnosed, infected less than three years and more than three years in 

each group is denoted by I1i(t), I2i(t), i = 1,2, the number of diagnosed HIV positive 

people who are not under treatment in each group is denoted by Di(t), i = 1,2, and the 

number of diagnosed HIV positive people that are under treatment in each group is 
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denoted by Ti(t), i = 1,2. The sum Ni(t) = Si(t) + Ii(t) + Di(t) + Ti(t) denotes the total 

population for each group. The time unit used in the model is per year to align with the 

available data. 

Parameter Λ1 is the influx of susceptibles into the general group, Λ2 is the transfer 

rate from general population to MSM. dSi
, dI1i

, dI2i
 dDi

 and dTi
, i = 1,2, are death rates 

specific to compartments Si, I1i, I2i, Di, Ti, i = 1,2. Parameter ρ
i
, i = 1,2 is the combined 

rate for treatment failure and loss to follow-up, β
I11i

, β
I22i

, β
iDi

, β
iTi

, i = 1,2 are the within-

group transmission coefficients for compartment I1i, I2i, D
i
, Ti, i = 1,2, β

I12i
, β

1D2
, β

1T2
 , i =

1,2 are the cross-group transmission coefficients for compartment I21 I22, D2, T2, β
I21i

, β
2D1

, 

β2T1 are the cross-group transmission coefficients for compartment I11, I12, D1, T1.  

Terms αi(t)Ii(t) and γ
i
(t)Di(t), i = 1,2 in the model are the annual number of new 

reports for HIV and AIDS combined and the number of new treatment enrollments in 

each group, respectively. With the implementation of the “Four Frees and One Care” 

program in 2003, the Chinese government has rapidly scaled up HIV testing and ART 

treatment. This was reflected by an increase in the number of people tested for HIV and 

in the number of treatment centers. To correctly adjust for the increase in new HIV tests 

and ART treatments, we used a time-dependent diagnosis rate αi(t)and treatment 

enrolment rate γi(t), i = 1,2 .  

Data source: Aggregated yearly HIV/AIDS surveillance data for general population and 

IDU from 2000 to 2014 was obtained from the Surveillance Database of the China Center 

for Disease Control and Prevention. Aggregated yearly data on ART treatment for the 

same period for the two groups was obtained from the Treatment Database of the China 

Center for Disease Control and Prevention. Yearly population data was obtained from the 

demographic database for Beijing. Predictions for annual HIV new infections, PLHIV 

and annual HIV/AIDS related deaths from 2015 to 2020 were obtained from single group 

study 
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Parameter estimation and fitting: Same as the whole nation, Demographic parameters 

Λ1 and dS1
 are estimated by fitting the equation N′ = Λ − dSN to the population data for 

Beijing from 2000 to 2014. Values of parameters dDi
, dTi

, ρi, i = 1,2 and the form of 

function γi(t), i = 1,2 are estimated directly from the surveillance and treatment data for 

Beijing. Since the HIV testing data is not available for these two groups, αi(t), i = 1,2 is 

assumed to have the same form as that in the single group model, a piece-wise linear 

function. Values of other parameters, including within-group transmission coefficients 

and cross-group transmission coefficients, the transfer rate Λ2, death rate dI11
, dI12

, dI21
, 

dI22
, dS2

 and the initial population size I011, I012, I021, I022, S02 for the undiagnosed 

compartment I11, I12, I21, I22 and S2 at the beginning of our fitting (end of 2000), cannot be 

estimated directly from surveillance data and need to be obtained through model fitting.  

We applied our Matrix Decomposition method to the two-group SIDT model to 

resolve non-identifiability issue [37]. We prefixed the relationships among transmission 

coefficients by β1D1 = 0.75 ∗ βI111
∗ I11/(I11 + I12) + 0.75 ∗ βI112

∗ I12/(I11 + I12), β1T1 =

0.1 ∗ βI111
∗ I11/(I11 + I12) + 0.1 ∗ βI112

∗ I12/(I11 + I12)), β2D2 = 0.75 ∗ βI221
∗ I21/(I21 +

I22) + 0.75 ∗ βI222
∗ I22/(I21 + I22), β2T2 = 0.1 ∗ βI221

∗ I21/(I21 + I22) + 0.1 ∗ βI222
∗

I22/(I21 + I22), β1D2 = 0.75 ∗ βI121
∗ I21/(I21 + I22) + 0.75 ∗ βI122

∗ I22/(I21 + I22), β1T2 =

0.1 ∗ βI121
∗ I21/(I21 + I22) + 0.1 ∗ βI122

∗ I22/(I21 + I22), β2D1 = 0.75 ∗ βI211
∗ I11/(I11 +

I12) + 0.75 ∗ βI212
∗ I12/(I11 + I12), β2T1 = 0.1 ∗ βI211

∗ I11/(I11 + I12) + 0.1 ∗ βI212
∗

I12/(I11 + I12) and performed non-identifiability analysis for the remaining parameters 

[69-76]. The singular value decomposition informed us that among model parameters 

βI111
, βI112

 , βI121
, βI122

, βI221
, βI222

, βI211
, βI212

, I011, I012, I021, I022, S02, dI11, dI12, dI21, dI22, dS2, Λ2, 

and the coefficients of αi(t), t = 1,2 there are 13 dependencies, and the variance 

decomposition informed us that all the above parameters were involved in the 13 

dependencies. Therefore we need to fix 13 parameters’ values before model fitting so that 

the remaining ones can be uniquely estimated. We fixed dI11 = 0.0048, which is the death 

rate for general population, dI12 = 0.0811 by referring to the survival data for HIV 
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positive people not receiving treatment from a cohort study [68],dI21 = 0.0048 (𝑡 <

2010), dI21 = 0.0015 (𝑡 > 2010) which is equal to death rate for MSM HIV patients under 

treatment, dI22 = 0.0811, dS2 = 0.0048. we further assumed that βI112
= 0.67βI111

, βI122
=

0.67βI121
, βI222

= 0.67βI221
, βI212

= 0.67βI211
 since people that are infected for more than 

three years have lower viral load than people that are infected less than three years [112].  

We also fixed the value for I011 +  I021, I012 + I022 by fitting the single group SIDT model 

to Beijing surveillance data. Parameters Λ2 and S02 were estimated by fitting the population 

equation N′ = Λ − dSN to the MSM population data in Beijing, which accounted for 2%-

4% of the total male population [85].  

The Nonlinear Least Squares method was applied to find the point estimates for 

model parameters βI111
, βI121,βI221

, βI211
, I021, I022, λ and the coefficients for αi(t), i =

1,2, where λ is an arbitrary number between 2% and 4% and used to obtain estimates 

for S02and Λ2, which minimize the sum of squared error between model output and the 

available surveillance and treatment data: 

 Annual number of new diagnosis of HIV and AIDS combined from 2000 to 2014;  

 Annual number of death due to HIV and AIDS among diagnosed for general 

population from 2000 to 2014; 

 Annual treatment enrollment for general population from 2000 to 2014; 

 Annual number of death among diagnosed people and people in treatment for 

general population from 2000 to 2014; 

 Annual number of treatment failure and loss to follow-up for general population 

from 2000 to 2014; 

 The number of total population from 2000 to 2014; 

 The number of total male population from 2000 to 2014; 

 The number of annual HIV new infections from 2015 to 2020 obtained from 

single group model study 
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 The number of PLHIV from 2015 to 2020 obtained from single group model 

study 

 The number of HIV/AIDS deaths from 2015 to 2020 obtained from single group 

model study 

 

Results 

Parameters Description Best-fit value  Source 

β111 Within-group transmission coefficients for I11 0.154  Fitting 

β112 Within-group transmission coefficients for I12 0.105  [112] 

β1D1 Within-group transmission coefficients for D1 0.116I11/(I11 + I12) + 0.079I12/(I11 + I12)  [69, 70] 

β1T1 Within-group transmission coefficients for T1 0.015I11/(I11 + I12) + 0.01I12/(I11 + I12)   [71-76] 

β121 Cross-group transmission coefficients for I21 0.0409  Fitting 

β122 Cross-group transmission coefficients for I22 0.0274  [112] 

β1D2 Cross-group transmission coefficients for D2 0.031I21/(I21 + I22) + 0.021I22/(I21 + I22)  [69, 70] 

β1T2 Cross-group transmission coefficients for T2 0.004I21/(I21 + I22) + 0.003I22/(I21 + I22)  [71-76] 

β221 Within-group transmission coefficients for I21 0.432  Fitting 

β222 Within-group transmission coefficients for I22 0.289  [112] 

β2D2 Within-group transmission coefficients for D2     0.324I21/(I21 + I22) + 0.217I22/(I21 + I22)  [69, 70] 

β2T2 Within-group transmission coefficients for T2 0.0432I21/(I21 + I22) + 0.0289I22/(I21 + I22)   [71-76] 

β211 Cross-group transmission coefficients for I11 0.0237  Fitting 

β212 Cross-group transmission coefficients for I12 0.0159  [112] 

β2D1 Cross-group transmission coefficients for D1 0.0178I11/(I11 + I12) + 0.0119I12/(I11 + I12)      [69, 70] 

β2T1 Cross-group transmission coefficients for T1 0.00237I11/(I11 + I12) + 0.00159I12/(I11 + I12)    [71-76] 

dS1 Death rate for S1 0.0048∗  Fitting 

dI11 Death rate for I11 0.0048∗  Fitting 

dI12 Death rate for I12 0.0081∗  [68] 

dD1 Death rate for D1 

                                         0.033∗, t ≤ 2008 

                       0.021, 2008 ≤ 𝑡 ≤ 2013 

                                             0.0106, t > 2013 

 Data 
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dT1 Death rate for T1 

                   0.267∗, t ≤ 2005 

0.0316, 2005 ≤ 𝑡 ≤ 2010 

               0.0008, t > 2010 

 Data 

dS2 Death rate for S2 0.0048∗  Fitting 

dI21 Death rate for I21 
0.0048∗  t<2010 

0.0015   t>2010 

 Fitting 

dI22 Death rate for I22  0.0081∗  [68] 

dD2 Death rate for D2 

                                                 0.2∗, t ≤ 2007 

−0.008227t + 16.55, 2007 ≤ 𝑡 ≤ 2011 

                            0.013, 2011 ≤ 𝑡 ≤ 2013 

                                         0.0078, t > 2013 

 

 
Data 

dT2 Death rate for T2 

                  0.011∗, t ≤ 2010 

0.0062, 2010 ≤ 𝑡 ≤ 2012 

                0.0015, t > 2012 

 Data 

ρ1 Treatment drop-out rate for general Population 

                                                          0∗, t ≤ 2004 

−0.0010936t + 2.1948, 2004 ≤ 𝑡 ≤ 2007 

                                   0.06, 2007 ≤ 𝑡 ≤ 2009 

                               0.031, 2009 ≤ 𝑡 ≤ 2011 

       −0.0202t + 40.72, 2011 ≤ 𝑡 ≤ 2014 

                                                        0, t > 2014 

 

 

 Data 

ρ2 Treatment drop-out rate for IDU 

                                         0∗, t ≤ 2004 

        −0.0064t + 12.85, 2004 ≤ 𝑡 ≤ 2008 

           0.0078t − 15.67, 2008 ≤ 𝑡 ≤ 2010 

                                                  0.01, t > 2010 

0.0078, t > 2013 

 Data 

I011 
Undiagnosed HIV positive population in 2000 being infected less than three 

years for general population 
55  Fitting 

I012 
Undiagnosed HIV positive population in 2000 being infected more than three 

years for general population 

1389  Fitting 
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Table 5.8. Model parameters and their best-fit values 

Notes: * The unites for these parameters are 1/person/year 

 

 

 

 

 

 

I021 
Undiagnosed HIV positive population in 2000 being infected less than three 

years for MSM 

20  Fitting 

I022 
Undiagnosed HIV positive population in 2000 being infected more than three 

years for MSM 

80  Fitting 

S02 Susceptible MSM in 2000 260866  Fitting 

α1(t) Time-dependent diagnosis rate of undiagnosed for general population 

0.009t-17.9938∗ , 2000 ≤ 𝑡 ≤ 2005                               

0.0623t-124.846,   𝑡 > 2005  

 

1, 2009 < 𝑡 ≤ 2010 

 

Fitting 

α2(t) Time-dependent diagnosis rate of undiagnosed for MSM 
 0.0089t-17.7935∗, 2000 ≤ 𝑡 ≤ 2005                               

0.06235t-124.946,   𝑡 > 2005  

 

Fitting 

γ1(t) Time-dependent treatment enrollment rate for general population 

                             0∗, t<2004, 

           0.13, 2004 ≤ 𝑡 ≤ 2005 

0.0091637t -18.33, 𝑡 > 2005 

   Data 

γ2(t) Time-dependent treatment enrollment rate for MSM 

                                    0∗, 

t<2004, 

                                       1, 2004 ≤ 𝑡 ≤ 2005 

               0.02t − 39.89, 2005 ≤ 𝑡 ≤ 2008 

−0.04733t + 95.294, 2008 ≤ 𝑡 ≤ 2010 

                          0.11t − 222.608, t > 2010 

 

Data 

Λ1 The influx of susceptible into the general group 716991 Fitting 

Λ2 Transfer proportion from general population to MSM 14626 Fitting 

R2 Goodness of fit ratio 0.94  Fitting 
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Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

General 179 198 219 241 265 291 319 351 388 432 485 548 612 676 737 

MSM 49 75 111 161 229 318 437 590 783 1022 1319 1670 1989 2270 2495 

 

 

 Year 2015 2016 2017 2018 2019 2020 

 

Scenario 1 

General 788 832 868 896 918 935 

MSM 2635 2721 2747 2731 2695 2656 

 

Scenario 2 

General 788 837 881 922 960 998 

MSM 2636 2722 2750 2737 2705 2671 

 

Scenario 3 

General 784 830 881 938 1000 1068 

MSM 2338 2398 2491 2614 2765 2943 

 

Scenario 4 

General 777 810 847 888 934 984 

MSM 2018 1989 1988 2015 2069 2144 

 

Scenario 5 

General 782 818 849 877 904 933 

MSM 2321 2295 2232 2152 2075 2014 

Table 5.9 Annual HIV new infections under various scenarios 

We predicted annual HIV new infections in each group based on various assumed 

scenarios (Table 5.9). Scenario 1 assumed that HIV testing and treatment are enhancing 

after 2014 as pre-2014 trend. Our prediction showed that annual HIV new infections in 

the general population kept rising, while annual HIV new infections in MSM started to 

turn down in 2019. And annual HIV new infections for the total population started to 

decline in 2019, which is consistent with the conclusion of the single group SIDT model 

study for Beijing.  

Table 5.9 showed that enhancing HIV testing and treatment can not turn HIV new 

infections down in the general population. Considering the high cost of enhancing HIV 

testing and HIV treatment in the general population, we would like to investigate the 

effect of maintaining the level of HIV testing and treatment in the general population and 
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enhancing that in MSM (Scenario 2). Comparisons of the effects of Scenario 1 and 

Scenario 2 informed us that the effect of enhancing HIV testing and HIV treatment in the 

general population is not so obvious, since only 139, 39 new HIV infections can be 

averted for the general population and MSM during the period 2015-2020.. 

Since the effect of enhancing HIV testing and HIV treatment in the general 

population is not obvious, we would like to investigate the effect of maintaining the level 

of HIV testing and treatment in the general population, implementing various targeting 

interventions in MSM. In Scenario 3 and Scenario 4, we assumed that the HIV 

transmission coefficient in MSM was reduced by 10% and 20% due to the 

implementation of the harm reduction intervention (knowledge education, promotion of 

condom use) or the WHO recommended intervention (treating all MSM), while the level 

of HIV testing and treatment was maintained on the 2014 level in the general population 

and MSM. In this case, we could avert 547 (Scenario 3) and 3604 (Scenario 4) new HIV 

infections respectively during 2015-2020 comparing to the effect of enhancing HIV 

testing and HIV treatment in MSM. 

At last we would like to investigate the effect of implementing the harm reduction 

intervention or the WHO recommended intervention, together with enhancing HIV 

testing and treatment in MSM (Scenario 5). If the harm reduction intervention or the 

WHO recommended intervention can reduce the HIV transmission coefficient in MSM 

by 10% and the HIV testing and treatment in MSM can be enhanced as pre-2014 trend, 

3320 new HIV infections can be averted during 2015-2020 comparing to merely 

enhancing HIV testing and HIV treatment in MSM. 

Discussion  

HIV surveillance data of Beijing informed us that MSM dominate in HIV transmission in 

Beijing, and our model estimation revealed that most of HIV transmissions in Beijing 

come from MSM within-group transmission. Therefore it would be effective of 

controlling HIV epidemic in Beijing by implementing targeting interventions on MSM. 
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Our simulations showed that both enhancing HIV testing, treatment and implementing 

harm reduction interventions or treating susceptible MSM are effective in controlling 

HIV transmission. Further investigation on the cost of the above two interventions is 

necessary before advising public health agency for the future decisions. 

In this chapter, we studied the multi-group SIDT model, which considered HIV 

process susceptible-infected-diagnosed-treated in the general population and high risk 

groups such as IDU, MSM. Our method discussed in Chapter 3 was applied to resolve 

non-identifiability problem in this model. Although model became more complicated, 

more model parameters appeared, our method was effective in resolving non-

identifiability problem.  

In project one, we built a two-group SIDT model, which considered the interaction 

between IDU and the general population, to study the HIV dataset from two remote 

townships in Sichuan province of China. After model parameters were uniquely 

estimated, HIV epidemic in the general population and IDU was estimated and predicted. 

The estimation and prediction was consistent with the results we obtained in the single 

group model study. The consistency between our model estimation and the rare 

prevalence data in 2010 provided a validation for our multi-group SIDT model. 

In project two, we built a three-group SIDT model, which considered the interaction 

among IDU, MSM and the general population, to study HIV dataset for China. To keep 

multi-group model predictions consistent with that from the single group study, we added 

model predictions for annual HIV new infections, PLHIV, and HIV/AIDS related deaths 

during the period 2011-2015 from the single group model study to our dataset. Based on 

this new dataset, model parameters were uniquely estimated, and HIV epidemic in the 

general population, IDU and MSM were estimated and predicted. The results were 

consistent with that from single group study. 

In project three, we built a two-group SIDT model, which considered the interaction 

between MSM and the general population, to study HIV dataset for Beijing. In this model 
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we split the I group into two parts: I1, HIV patients that are infected less than three years 

and I2, HIV patients that are infected more than three years. To keep model predictions 

consistent with that from the single group study, we also added model predictions of 

annual HIV new infections, PLHIV, HIV/AIDS related deaths during the period 2015-

2020 from the single group study for Beijing to our dataset. Based on this new dataset, 

HIV epidemic in MSM and general population in Beijing was estimated and predicted, 

and the results were consistent with that from the single group study. 

In the single group study, there was a dependency between transmission coefficients 

and the coefficients for α(t), we can fix the coefficients for α(t) to estimate transmission 

coefficients by referring to HIV testing data. In the multi-group model study, the above 

dependency existed in each group, while we have no information about HIV testing data 

for each group, we have to assume αi(t) to be the same as the whole region. Although 

model fitting was well, model predictions can be very different from that obtained from 

the single group study, because the above assumption might result in overestimation or 

underestimation of HIV epidemic in each group. To keep prediction results consistent 

with each other, we added new data to our dataset when we performed multi-group model 

fittings. The new dataset enables αi(t) in each group being identifiable, therefore we 

could obtain the information of HIV testing intensity in each group. 

 

 

 

 

 

 

 

 

 



 

120 

 

Chapter 6  

Conclusion  

6.1 Summary of results 

Parameter estimation is a crucial step for using modeling methods to perform estimation 

and prediction. The challenge for parameter estimation under modeling framework lies in 

the existence of non-identifiability, which means that infinite parameter values will have 

almost the same observable model outputs. Existing methods for resolving non-

identifiability will inform us whether there is non-identifiability issue or not, if there is, a 

ranking for model parameters from the least identifiable one to the most identifiable one 

is obtained, and we are suggested to fix some least identifiable parameters such that all 

the remaining ones can be uniquely estimated. It is not always possible to fix some least 

identifiable parameters, such as transmission coefficients in disease models. In this case, 

it is necessary for us to study linear dependencies among model parameters, such that we 

can have more flexibility in fixing model parameters’ values. 

Our method, the Matrix Decomposition Method has two steps, the singular value 

decomposition and the variance decomposition. Singular value decomposition will 

inform us how many dependencies existing among model parameters, which are equal to 

the number of model parameters we need to fix before model fitting. Variance 

decomposition will inform us which parameters are involved in each dependency. 

Therefore, for each dependency, we can choose to fix the value of one parameter which is 

involved in the dependency, and is possible to be fixed such that the dependency 

disappears.  

All applications in Chapter 4 and Chapter 5 demonstrated the applicability of our 

method. Our method was first applied to a simple SIDT model which describes the 

process of HIV patients’ infection-diagnosis-treatment to resolve non-identifiability issue. 

After that, model parameters can be uniquely determined based on various HIV datasets 

from China. Secondly our method was applied to a multi-group SIDT model, which 
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considers interactions between HIV high risk groups and the general population. 

Although the model becomes more complicated with the appearing of more model 

parameters and more dependencies among parameters, our method is effective in 

determining the dependencies among model parameters.  

Our method is a general approach for resolving non-identifiability issue, and it can 

be applied to any model to determine dependencies among model parameters. 

6.2 Future possibilities  

Economic analysis is necessary to be incorporated into our modeling work, since we need 

to find the most effective intervention to control HIV transmission in each region. This 

analysis would allow the benefits of various interventions to be qualified, and enable us 

to directly compare the benefits of different strategies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

122 

 

Bibliography 

[1] S. Aluru. Haendbook of Computational Molecular Biology (Chapman & All/Crc 

Computer and Information Science Series). Chapman & Hall/CRC; Boca Raton, FL: 

2005. 

[2] C. Castillo-Chavez, S. Blower, P. van de Driessche, D. Kirschner, A. Yakubu. 

Mathematical approaches for emerging and reemerging infectious diseases: models, 

methods, and theory. Springer; New York: 2002. 

[3] D. A. Lauffenburger, J. L. Linderman. Receptors: models for binding, trafficking, and 

signaling. Oxford University Press; Oxford: 1993. 

[4] J. D. Murray. Mathematical biology I: An introduction. Springer; New York: 2002. 

[5] J. D. Murray. Mathematical biology II: Spatial models and biomedical applications. 

Springer; New York: 2003. 

[6] M. A. Nowak, R. M. May. Virus dynamics: mathematical principles of immunology 

and virology. Oxford University Press; Oxford: 2000. 

[7] C. Eisenberg, L. Robertson, H. Tien. Identifiability and estimation of multiple 

transmission pathways in cholera and waterborne disease. Journal of Theoretical 

Biology. 2013;324:84-102. 

[8] D. Pauw, K. Steppe, B. Baets. Identifiability analysis and improvement of a tree water 

flow and storage model. Mathematical Biosciences. 2008;211:314-332. 

[9] F. Canova, L. Sala. Back to square one: identification issues in DSGE models. 

Journal of Monetary Economics. 2009;56:431-449. 

[10] R. Jayasankar, A. Ben-Zvi, B. Huang. Identifiability and estimability study for a 

dynamic solid oxide fuel cell model. Computers & Chemical Engineering. 

2009;33:484-492. 

[11] S. Srinath, R. Gunawan. Parameter identifiability of power-law biochemical system 

models. Journal of Biotechnology. 2010;149:132-140. 



 

123 

 

[12] H. Wu, H. Zhu, H. Miao, A. S. Perelson. Parameter identifiability and estimation of 

HIV/AIDS dynamic models. Bulletin of Mathematical Biology. 2008;70:785-799. 

[13] N. Metropolis, S. Ulam. The Monte Carlo Method. J. Amer. Stat. Assoc. 1949; 

44:335–341. 

[14] H. Miao, C. Dykes, L. M. Demeter, A. S. Perelson, H. Wu. Modeling and estimation 

of kinetic parameters and replication fitness of HIV-1 from Flow-Cytometry-based 

growth competition experiments. Bull. Math. Biol. 2008;70:1749–1771.  

[15] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, et al. 

Structural and practical identifiability analysis of partially observed dynamical 

models by exploiting the profile likelihood. Bioinformatics. 2009;25 (15):1923–

1929. 

[16] J. A. Jacquez. Compartmental analysis in biology and medicine. The University of 

Michigan Press; Michigan: 1985. 

[17] J. Guedj, R. Thiebaut, D. Commenges. Practical identifiability of HIV dynamics 

models. Bull. Math. Biol. 2007;69:2493–2513. 

[18] M. Rodriguez-Fernandez, J. A. Egea, J. R. Banga. Novel metaheuristic for 

parameter estimation in nonlinear dynamic biological systems. BMC 

Bioinformatics. 2006a;7:483–500.  

[19] M. Rodriguez-Fernandez, P. Mendes, J. R. Banga. A hybrid approach for efficient 

and robust parameter estimation in biochemical pathways. Biosystems. 2006b; 

83:248–265. 

[20] D. E. Zak, G. E. Gonye, J. S. Schwaber, F. J. Doyle. Importance of input 

perturbations and stochastic gene expression in the reverse engineering of genetic 

regulatory networks: insights from an identifiability analysis of an in silico network. 

Genome. Res. 2003;13:2396–2405. 



 

124 

 

[21] T. Quaiser, M. Mönnigmann. Systematic identifiability testing for unambiguous 

mechanistic modeling - application to JAK-STAT, MAP kinase, and NF-κB signaling 

pathway models. BMC Syst. Biol. 2009;3:50–71. 

[22] K. Z. Yao, B. M. Shaw, B. Kou, K. B. McAuley, D. W. Bacon. Modeling 

ethylene/butane copolymerization with multi-site catalysts: Parameter estimability 

and experimental design. Polym. React. Eng. 2003;11:563–588. 

[23] K. G. Gadkar, R. Gunawan, F. J. Doyle. Iterative approach to model identification of 

biological networks. BMC Bioinformatics. 2005;6:155–175. 

[24] H. Yue, M. Brown, J. Knowles, H. Wang, D. S. Broomhead, D. B. Kell. Insights into 

the behaviour of systems biology models from dynamic sensitivity and identifiablity 

analysis: a case study of an NF-kappaB signalling pathway. Mol. BioSyst. 

2006;2:640–649. 

[25] T. Quaiser, W. Marquardt, M. Mönnigmann. Local identifiability analysis of large 

signaling pathway models. 2nd Conference Foundation of Systems Biology in 

Engineering, Proceedings Plenary and Contributed Papers. Fraunhofer IRB Verlag; 

Stuttgart, Germany. 2007;465-470. 

[26] K. Schittkowski. Experimental design tools for ordinary and algebraic differential 

equations. Ind. Eng. Chem. Res. 2007;46:9137–9147. 

[27] S. Vajda, H. Rabitz, E. Walter, Y. Lecourtier. Qualitative and quantitative 

identifiability analysis of nonlinear chemical kinetiv-models. Chem. Eng. Commun. 

1989;83:191–219. 

[28] D. M. Glover, W. J. Jenkins, S. C. Doney. Least Squares and regression techniques, 

goodness of fit and tests, non-linear least squares techniques. Woods Hole 

Oceanographic Institute; 2008. 

[29] W. R. Gilks, S. Richardson, D. J. Spiegelhalter. Markov Chain Monte Carlo in 

Practice. Chapman & Hall/CRC; 1996. 



 

125 

 

[30] O. Ghasemi, M. Lindsey, T. Yang, N. Nguyen, Y. Huang, Y. Jin. Bayesian 

parameter estimation for nonlinear modelling of biological pathways. BMC Syst. 

Biol. 2011;5(Suppl 3):S9. 

[31] S. Blower, H. Dowlatabadi. Sensitivity and uncertainty analysis of complex models 

of disease transmission: an HIV model as an example. Int. Stat. Rev. 1994;62:229-

43. 

[32] D. M. Hamby. A review of techniques for parameter sensitivity analysis of 

environmental models. Environ. Monit. Assess. 1994;32(2):135-154. 

[33] C. Daniel. One-at-a-time plans. J. Amer. Stat. Assoc. 1973;68:353-360. 

[34] S. Marino, I. Bogue, C. Ray, D. Kirschner. A methodology for performing global 

uncertainty and sensitivity analysis in systems biology. Journal of Theoretical 

Biology. 2008;254:178-196. 

[35] R. R. Picard and R. D. Cook. Cross-validation of regression models. Journal of the 

American Statistical Association. 1984;79(387):575-583.  

[36] M. C. Eisenberg, S. L. Robertson, J. H. Tien. Identifiability and estimation of 

multiple transmission pathways in cholera and waterborne disease. J. Theo. Bio. 

2013;324(7):84-102. 

[37] H. Miao, X. Xia, A. S. Perelson, H. Wu. On identifiability of Nonlinear ODE models 

and applications in viral dynamics. SIAM REVIEW. 2011;53(1):3-39. 

[38] G. H. Golub, C. Reinsch. Singular value decomposition and least squares solutions. 

Numerische Mathematik. 1970;14(5):403-420. 

[39] D. A. Belsley, E. Kuh, R. E. Welsch. Regression diagnostics: Identifying influential 

data and sources of collinearity. John Wiley & Sons; 2005. 

[40] P. Yan, F. Zhang, H. Wand. Using HIV diagnostic data to estimate HIV incidence: 

method and simulation. Stat. Comm. Infect. Dis. 2011;3(1):1-28.  

[41] N. G. Becker, C. Lewis, Z. Li, A. Mcdonald. Age-specific Back-projection of HIV 

diagnosis data. Statistics in Medicine. 2003;22:2177-2190. 



 

126 

 

[42] M. J. Sweeting, D. Angelis, O. Aalen. Bayesian back-calculation using a multi-state 

model with application to HIV. Statistics in Medicine. 2005;24:3991-4007 

[43] H. I. Hall, R. Song, P. Phodes, J. Prejean, Q. An, L. M. Lee, J. Karon, R. 

Brookmeyer, E. H. Kaplan, M. T. Mckenna. Estimation of HIV in the United States. 

Journal of the American Medical Association. 2008;300:520-529. 

[44] H. Wand, P. Yan, D. Wilson, A. Mcdonald, M. Middleton, J. Kaldor, M. Law. 

Increasing HIV transmission through male homosexual and heterosexual contact in 

Australia: results from an extended back-projection approach. HIV medicine. 

2010;11:395-403. 

[45] Q. Yang, D. Boulos, F. Zhang, R. S. Remis, D. Schanzer, C. P. Archibald. Estimates 

of the number of prevalent and incident human immunodeficiency virus (HIV) 

infections in Canada, 2008. Canadian Journal of Public Health. 2010;101:486-490. 

[46] J. Stover, T. Brown, M. Marston. Updates to the Spectrum/Estimation and 

Projection Package (EPP) model to estimate HIV trends for adults and children. 

Sex. Transm. Infect. 2012;88:i11-i16.  

[47] L. Bao, J. A. Salomon, T. Brown, A. E. Raftery, D. R. Hogan. Modeling national 

HIV/AIDS epidemics: revised approach in the UNAIDS Estimation and Projection 

Package 2011. Sexually Transmitted Infections. 2012;88:i3-i10. 

[48] T. Brown, A. E. Raftery, J. A. Salomon, R. F. Baggaley, J. Stover, P. Gerland. 

Modeling HIV epidemics in the antiretroviral era: the UNAIDS Estimation and 

Projection Package 2009. Sexually Transmitted Infections. 2010;86:ii3-ii10. 

[49] J. Stover, P. Johnson, T. Hallett, M. Marston, R. Becquet, I. M. Timaeus. The 

spectrum projection package: improvements to estimating incidence by age and sex, 

mother-to-child transmission, HIV progression in Child and double orphans. 

Sexually Transmitted Infections. 2010;86:ii6-ii21. 

[50] UNAIDS Reference Group on Estimates, Modeling and Projections. Improved 

methods and assumptions for estimation of the HIV/AIDS epidemic and its impact: 



 

127 

 

recommendations of the UNAIDS Reference Group on Estimates, Modeling and 

Projections. AIDS. 2002;16:w1-w14. 

[51] A. M. Presanis, D. De Angelis, A. Goubar, O. N. Gill, A. E. Ades. Bayesian 

evidence synthesis for a transmission dynamic model for HIV among men who have 

sex with men. Biostat. 2011;12: 666–81. 

[52] E. Bendvid, M. L. Brandeau, R. Wood, D. K. Owens. Comparative effectiveness of 

HIV testing and treatment in highly endemic regions. Archives of Internal Medicine. 

2010;170:1347-1354. 

[53] D. Bezemer, F. Wolf, M. C. Boerlijst, A. V. Sighem, Hollingsworth TD, Prins M, 

Geskus RB, Coutinho RA, Fraser C. A resurgent HIV-1 epidemic among men who 

have sex with men in the era of potent antiretroviral therapy. AIDS. 2008;22:1071-

1077. 

[54] S. Blower, H. Dowlatabadi. Sensitivity and uncertainty analysis of complex models 

of disease transmission: an HIV model, as example. International Statistical Review. 

1994;62:229-243. 

[55] W. EL-Sadr, B. Coburn, S. Blower. Modeling the impact on the HIV epidemic of 

treating discordant couples with antiretroviral to prevent transmission. AIDS. 

2011;25:2295-2299. 

[56] K. L. Zhang, S. J. Ma. Epidemiology of HIV in China. BMJ. 2002;324:803-4.  

[57] UNAIDS Asia Pacific Intercountry Team. UNAIDS Task Force on Drug Use and 

HIV: Drug Use and HIV Vulnerability: Policy Research Study in Asia. Bangkok: 

2000.  

[58] Y. Ma, Z. Li, K. X. Zhang, W. Yang, X. Ren, Y. Yang, et al. Identification of HIV 

infection among drug users in China [in Chinese]. Chinese J. Epidemiol. 1990;11: 

184-5.  

[59] Chinese Center for Disease Control and Prevention: Analysis of HIV/STD epidemic 

in 2002. Beijing, China. 



 

128 

 

[60] Chinese Center for Disease Control and Prevention: Analysis of HIV/STD epidemic 

in 2005. Beijing, China. 

[61] H. Qian, S. H. Vermund, N. Wang. Risk of HIV/AIDS in China: subpopulations of 

special importance. Sex. Transm. Infect. 2005;81(6):442-447. 

[62] Chinese Center for Disease Control and Prevention: Analysis of HIV/STD epidemic 

in 2007. Beijing, China. 

[63] Chinese Center for Disease Control and Prevention: Analysis of HIV/STD epidemic 

in 2011. Beijing, China. 

[64] Z. Jia, L. Wang, R. Chen, D. Li, L. Wang, et al. Tracking the evolution of HIV/AIDS 

in China from 1989–2009 to inform future prevention and control efforts. PLoS 

ONE. 2011;6:e25671.  

[65] Y. Ma, F. Zhang, Y. Zhao, C. Zang, D. Zhao, A. Dou, et al. Cohort Profile: The 

Chinese national free antiretroviral treatment cohort. Int. J. Epidemiol. 

2010;39(4):973-9. 

[66] Chinese Center for Disease Control and Prevention: Analysis of HIV/STD epidemic 

in 2007-2012. Beijing, China. 

[67] J. Todd, J. R. Glynn, M. Marston, T. Lutalo, et al. Time from HIV seroconversion to 

death: a collaborative analysis of eight studies in six low and middle-income 

countries before highly active antiretroviral therapy. AIDS. 2007;Suppl 6:S55-63.  

[68] Collaborative Group on AIDS Incubation and HIV Survival including the 

CASCADE EU Concerted Action. Time from HIV-1 seroconversion to AIDS and 

death before widespread use of highly-active antiretroviral therapy: a collaborative 

re-analysis. Lancet. 2000;355(9210):1131-7. 

[69] G. Marks, N. Crepaz, R. S. Janssen. Estimating sexual transmission of HIV from 

persons aware and unaware that they are infected with the virus in the USA. AIDS 

2006;20:1447-1450. 



 

129 

 

[70] J. Fox, P. J. White, N. Macdonald, et al. Reductions in HIV transmission risk 

behaviour following diagnosis of primary HIV infection: a cohort of high-risk men 

who have sex with men. HIV Medicine. 2009;10:432-438. 

[71] D. Donnell, J. M. Baeten, J. Kiarie, et al. Heterosexual HIV-1 transmission after 

initiation of antiretroviral therapy: a prospective cohort analysis. Lancet. 

2010;375(9731):2092-2098.  

[72] R. Granich, R. Crowley, M. Vitoria, C. Smyth, et al. Highly active antiretroviral 

treatment as prevention of HIV transmission: Review of scientific evidence and 

update. Curr. Opin. HIV. AIDS. 2010;5(4):298-304.  

[73] D. Donnell. ART and Risk of Heterosexual HIV-1 Transmission in HIV-1 

Serodiscordant African Couples: A Multinational Prospective Study. at 17th 

Conference on Retroviruses and Opportunistic Infections (CROI). San Francisco, 

USA: 2010. 

[74] J. Castilla, J. Del Romero, V. Hernando, B. Marincovich, S. Garcia, C. Rodriguez. 

Effectiveness of highly active antiretroviral therapy in reducing heterosexual 

transmission of HIV. J. Acquir. Immune. Defic. Syndr. 2005;40:96–101.  

[75] R. Bunnell, J. P. Ekwaru, P. Solberg, N. Wamai, W. Bikaako-Kajura, W. Were, A. 

Coutinho, C. Liechty, E. Madraa, G. Rutherford, et al. Changes in sexual behavior 

and risk of HIV transmission after antiretroviral therapy and prevention 

interventions in rural Uganda. AIDS. 2006;20:85–92. 

[76] T. C. Quinn, M. J. Wawer, N. Sewankambo, et al. Viral load and heterosexual 

transmission of human immunodeficiency virus type 1. N. Engl. J. Med. 2000;342: 

921–29. 

[77] J. Arino, F. Brauer, P. van den Driessche, J. Watmough, J. Wu. Simple model for 

containment of a pandemic. J. R. Soc. Interface. 2006;3:453-457. 



 

130 

 

[78] J. Stover, P. Johnson, B. Zaba, M. Zwahlen, F. Dabis, R. E. Ekpini. The Spectrum 

projection package: improvements in estimating mortality, ART needs, PMTCT 

impact and uncertainty bounds. Sex Transm. Infect. 2010;84 (Suppl I):i24–i30. 

[79] N. Wang, L. Wang, Z. Wu, W. Guo, X. Sun, K. Poundstone, Y. Wang, National 

Expert Group on HIV/AIDS Estimation. Estimating the number of people living with 

HIV/AIDS in China: 2003-09. Int. J. Epidemiol. 2010;39 Suppl 2:ii21-8.  

[80] H. I. Hall, R. Song, P. Rhodes, et al. Estimation of HIV Incidence in the United 

States. JAMA. 2008;300(5):520-529.  

[81] J. Prejean, R. Song, A. Hernandez, et al. Estimated HIV incidence in the United 

States, 2006-2009. PLoS One. 2011;6(8):e17502.  

[82] P. J. Birrell, O. N. Gill, V. C. Delpech, et al. HIV incidence in men who have sex 

with men in England and Wales 2001-10: a nationwide population study. Lancet 

Infect. Dis. 2013;13(4):313-8.  

[83] Ministry of Health, China. 2011 Estimates for the HIV/AIDS Epidemic in China. 

2011. http://www.docin.com/p-399429297.html&key. Accessed Nov 2011. 

[84] P. Li. The establishment of several epidemiological analysis methods and their 

application in a 11.5th comprehensive prevention and control of HIV/AIDS 

demonstration area with high HIV/AIDS prevalence - a major infectious diseases 

special investigation in Butuo County. PhD Dissertation, Guangxi Medical University 

and Chinese Center for Disease Control and Prevention. 2013.  

[85] H. Qian, S. H. Vermund, N. Wang. Risk of HIV/AIDS in China: subpopulations of 

special importance. Sex. Transm. Infect. 2005;81(6):442-447. 

[86] China CDC. Analysis of HIV/STD epidemic in 2002. Beijing, China: 2002. 

[87] L. Wei, J. Chen, M. Rodolph, et al. HIV incidence, retention, and changes of high-

risk behaviors among rural injection drug users in Guangxi, China. Subst. Abus. 

2006;27(4):53-61. 

http://www.docin.com/p-399429297.html&key


 

131 

 

[88] Y. Ruan, G. Qin, S. Liu, et al. HIV incidence and factors contributed to retention in 

a 12-month follow-up study of injection drug users in Sichuan Province, China. J. 

Acquir. Immune. Defic. Syndr. 2005;39(4):459-463. 

[89] Y. Zhang, H. Shan, J. Trizzino, et al. HIV incidence, retention rate, and baseline 

predictors of HIV incidence and retention in a prospective cohort study of injection 

drug users in Xinjiang, China. Int. J. Infect. Dis. 2007;11(4):318-323. 

[90] L. Yin, G. Qin, H. Z. Qian, et al. Continued spread of HIV among injecting drug 

users in southern Sichuan Province, China. Harm Reduct. J. 2007;4:6. 

[91] M. G. Han, Q. F. Chen, Y. Han, et al. Design and implementation of a China 

comprehensive AIDS response program (China CARES), 2003–08. Int. J. 

Epidemiology. 2010;39:ii47–ii55. 

[92] B. Liu, S. G. Sullivan, Z. Wu. An evaluation of needle exchange programs in China. 

AIDS. 2007;21 (suppl 8):S123–S128. 

[93] W. Z. Yin, Y. Hao, X. H. Sun, et al. Scaling up the national methadone maintenance 

treatment program in China: achievements and challenges. Int. J. Epidemiology. 

2010;39:ii29–ii37. 

[94] K. M. Rou, S. G. Sullivan, P. Liu, et al. Scaling up prevention programs to reduce 

the sexual transmission of HIV in China. Int. J. Epidemiology. 2010;39:ii38–ii46. 

[95] S. Lai, W. Liu, J. Chen, et al. Changes in HIV-1 incidence in heroin users in 

Guangxi Province, China. J. Acquir. Immune. Defic. Syndr. 2001;26(4):365-70.  

[96] X. Yu, J. Chen, Y. Shao, et al. Emerging HIV infections with distinct subtypes of 

HIV-1 infection among injection drug users from geographically separate locations 

in Guangxi Province, China. J. Acquir. Immune Defic. Syndr. 1999;22(2):180-8.  

[97] C. Beyrer, M. H. Razak, K. Lisam, et al. Overland heroin trafficking routes and 

HIV-1 spread in south and southeast Asia. AIDS. 2000;14(1):75-83.  



 

132 

 

[98] X. Yu, J. Chen, Y. Shao, et al. Two subtypes of HIV-1 among injection-drug users in 

southern China. Lancet. 1998;351(9111):1250.  

[99] L. Wei, J. Chen, M. Rodolph, et al. HIV incidence, retention, and changes of high-

risk behaviors among rural injection drug users in Guangxi, China. Subst. Abus. 

2006;27(4):53-61.  

[100] Guangxi Public Health Department. Annual Report on Provincial AIDS/STD 

Surveillance, 2003 -2010. Guangxi: 2004 – 2011. 

[101] Z. Jia, L. Wang, R. Chen, D. Li, L. Wang, et al. Tracking the evolution of 

HIV/AIDS in China from 1989-2009 to inform future prevention and control 

efforts. PLoS ONE. 2011;6:e25671.  

[102] Y. Ma, F. Zhang, Y. Zhao, C. Zang, et al. Cohort Profile: The Chinese national 

free antiretroviral treatment cohort. Int. J. Epidemiol. 2010;39:973-9. 

[103] R. Smith, J. Okano, J. Kahn, E. Bodine, S. Blower. Evolutionary dynamics of 

complex networks of HIV drug-resistant strains: the case of San Francisco. Science. 

2010;327:697-701. 

[104] A. E. Kurth, C. Celum, J. M. Baeten, S. H. Vermund, J. H. Wasserheit. 

Combination HIV prevention: significance, challenges, and opportunities. Curr. 

HIV/AIDS Rep. 2011;8(1):62-72. 

[105] Y. Ruan, S. Liang, J. Zhu, X. Li, S. Pan, Q. Liu , B. Song, Q. Wang, H. Xing, Y. 

Shao. Evaluation of harm reduction programs on seroincidence of HIV, hepatitis B 

and C, and syphilis among intravenous drug users in southwest China. Sex. 

Transm. Dis. 2013;40(4):323-8. 

[106] L. Zhang, S. Liang, W. Lu, S. Pan, B. Song, Q. Liu, Y. Xu, H. Dong, H. Xing, Y. 

Shao, Y. Ruan. HIV, syphilis, and behavioral risk factors among female sex workers 



 

133 

 

before and after implementation of harm reduction programs in a high drug-using 

area of China. PLoS One. 2014;9(1):e84950 

 [107] J. D. Shelton. HIV/AIDS. ARVs as HIV prevention: a tough road to wide impact. 

Science. 2011;334(6063):1645-6. 

[108] R. Hayes, K. Sabapathy, S. Fidler. Universal testing and treatment as an HIV 

prevention strategy: research questions and methods. Curr. HIV Res. 

2011;9(6):429-45. 

[109] M. W. Tyndall, K. J. Craib, S. Currie, K. Li, M. V. O’Shaughnessy, M. T. 

Schechter. Impact of HIV infection on mortality in a cohort of injection drug 

users. J. Acquir. Immune Defic. Syndr. 2001;28:351-357. 

[110] Chinese Ministry. White paper about homosexuality in China. Beijing: 2004. 

[111] Chinese Ministry. Drug Control Report in China. Beijing: 2006-2010. 

[112] M. J. Chesebro, W. D. Everett. Understanding the guidelines for treating HIV 

disease. Am. Fam. Physician. 1998;57(2):315-322.  

.  

 

 

 

 

 


