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Abstract: 

Background: Maternal COVID-19 infection during pregnancy has raised prominent public 

health concerns - especially the possibility of long-term child health outcomes. Epigenetic 

changes induced by inflammatory environment in the placenta caused by anti-infection response 

in pregnant mother’s body, can change the gene expression patterns of fetus cells which are 

crucial for healthy development of the offspring. Gene expression analysis methods can be used 

to assess many health outcomes, including immune response, metabolic pathways, and the 

development of chronic disease, into the childhood years and beyond. This study aimed to 

evaluate the effects of a maternal COVID-19 infection on gene expression alterations of 

metabolic pathways in the fetus and the newborn, with a focus on innate immune system 

functions. 

 Methods: We tested gene expression data derived from umbilical cord blood cells from infants 

born to mothers who had a COVID-19 infection during pregnancy (n = 8) and infants whose 

mothers did not have COVID-19 (n = 8). The gene expression microarray dataset (GSE195938) 

was previously published by Jefferson et al. (2022), and the dataset and corresponding 

expression for 186 gene sets were sorted by the KEGG LEGACY catalog which represents 

canonical biological pathways in the human body. To identify gene sets impacting continuous 

phenotypes that capture innate immune functions, we applied the Linear Combination Test 

(LCT), a gene set analysis method. LCT captures the features inherent in the data to isolate gene 

sets based on intrinsic expression patterns. 

Results: Significant differences in patterns of gene set expression in infants born to COVID-19 

mothers were noted. The analysis also resulted in identifying gene sets taking part in aminoacyl 

tRNA biosynthesis, asthma, and systemic lupus erythematosus which demonstrated relations to 
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inherent pattern expressions relating to innate immune functions phenotypes. The present study 

suggests that maternal COVID-19 infection may impact fetal immune development, and increase 

the risk of immune-mediated outcomes such as asthma. A statistically significant enrichment was 

also associated with gene sets responsible for amino acid and lipid metabolism and their 

relationship with immune signaling pathways. This finding suggests an association between 

maternal COVID-19 rounded to metabolic pathways associated with amino acid metabolism and 

pathways in folate synthesis, which are relevant to fetal growth and development. 

Conclusion: In closing, maternal COVID-19 infection during pregnancy can lead to epigenetic 

changes in the fetus, which may have future effects on immune function and metabolic 

pathways. The gene sets and pathways presented here need further work to understand 

implications for offspring health. This analysis provides support for more studies on epigenetics 

as a mechanism for understanding how maternal infection may affect offspring development and 

health. It also underscores the importance of more prenatal care and addresses potential targets 

for prevention, in the interest of minimizing the future risk of autoimmune and allergic diseases, 

for infants born to COVID-19-infected-mothers. 
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Chapter 1: Literature Review 
 

1.1 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and Global 

pandemic: 

The 2019 Coronavirus Disease (COVID-19), following the influenza pandemic of 1918, has 

emerged as the fifth global pandemic, posing a significant challenge to healthcare systems 

worldwide (Liu et al., 2020). The first case was detected in late December 2019 in Wuhan, Hubei 

Province, China. It swiftly spread to other countries and by late April 2020, 185 countries 

reported cases, affecting over 300,000 individuals. Moreover, the death toll exceeded 210,000. 

Therefore, The World Health Organization (WHO) declared COVID-19 a global pandemic  

(Clerkin et al., 2020). Since then, the number of infected individuals has surged exponentially. 

According to the last statistics, over 775 million cases have been reported globally to date 

(Figure 1.1)—this has resulted in 7 million fatalities until today (Figure 1.2) (COVID-19 Cases | 

WHO COVID-19 Dashboard, 2024.). 

 

 

 

 

 

 

 

Source: World Health Organization 

1.2 Features and pathogenesis of the SARS-CoV-2 virus:  

The virus in question belongs to the Coronaviridae family, making it the seventh member known 

to cause disease in humans. This virus has a long, single-stranded, positive-sense RNA molecule 

within a lipid envelope. Although the precise origin of this virus remains undetermined, its 

significant genetic similarity with bat coronaviruses suggests a strong possibility that it 

Figure 0.1 Total COVID-19 cases reported to WHO 

 

 

Figure 0.2 Total COVID-19 deaths reported to WHO 

 

 

Figure 1.2 Total COVID-19 deaths reported to WHO  Figure 1.1  Total COVID-19 cases reported to WHO 

https://data.who.int/dashboards/covid19/cases?n=c
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originated from bats (Chan et al., 2020). The virus enters the host body via respiratory droplets 

and traverses through the respiratory tract. It penetrates ciliated epithelial cells through the 

angiotensin-converting enzyme 2 (ACE2) and CD26 receptors on cell surfaces using Spike 

glycoprotein, which is crucial for the virus's pathogenicity. ACE2 has been identified as a cell 

entry receptor for SARS-CoV-2, underscoring its multifaceted role in normal physiology and 

viral pathogenesis (Lan et al., 2020). It is important to note that the catalytic activities of ACE2 

are distinct from its role as a cellular entry receptor for viruses like SARS-CoV-2. Inhibitors 

targeting the catalytic site of ACE2 do not impact the virus binding process, illustrating the 

complex relationship between receptor activity and viral entry pathways (W. Li et al., 2005). The 

SARS-CoV-2 genome consists of fourteen open reading frames with approximately two-thirds of 

the genome dedicated to encoding sixteen non-structural proteins (nsp1–16), a central resource 

for the replicase composite. The remaining one-third of the genome encodes nine ancillary 

proteins (ORF) and four structural proteins: the nucleocapsid (N) protein, membrane (M) protein, 

envelope (E) protein, and spike (S) protein (Y.-Z. Zhang & Holmes, 2020). The entry of viral 

particles into host cells is initiated by the class I viral fusion S glycoprotein that binds to the cell 

membrane and then mediates fusion. The S protein is trimeric, integrated into the virion 

membrane in numerous copies, and imparts a distinct "corona" appearance to the virion. In virus-

producing cells, the S protein of SARS-CoV-2 is cleaved by proprotein convertases, resulting in 

the mature virion's S protein being composed of two noncovalently associated subunits, one of 

which is the S1 subunit that contains the ACE2 binding domain and S2 subunit that is 

responsible for anchoring the S protein in the membrane. The Spike protein S1 subunit 

comprises four domains, the amino-terminal domain (NTD), the receptor-binding domain 

(RBD), and two carboxy-terminal domains (CTD1 and CTD2). Mutations in SARS-CoV-2 Spike 

protein's RBD have been highlighted as crucial contributions to increased interactions with 

ACE2, boosting virus receptor affinity, and possibly increasing the virus's infectivity compared 

to SARS-CoV. The three receptor-binding domains (RBDs) at the apex of the S protein trimer 

can assume one of two conformations: an "up" conformation that promotes access to the receptor 

and a "down" conformation that does not allow receptor interactions (Zhou et al., 2020). S2 

adopts a dramatic change in protein design during host cell infection to promote membrane 

fusion and prove functional for virus infection (Fehr & Perlman, 2015). Once the virus contacts 

ACE2, conferring a SARS-CoV-2 host of a new cell, the SARS-CoV-2 S2 site, S2', is exposed, 
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and subsequent cleavage at this site, either by the host serine protease TMPRSS2 on the cell 

surface or by cathepsin L following ACE2-mediated endocytosis, results in fusion peptide release 

and formation of a fusion pore (Jackson et al., 2022). In the viral entry, TMPRSS2 is important; 

SARS-CoV can enter cells with low ACE2 levels if TMPRSS2 is available (Shulla et al., 2011). 

Upon entering the host cytosol, the viral genome leads to the translation of viral replicase 

proteins through ORF1a and ORF1b. These replicase proteins are then cleaved into individual 

non-structural proteins (nsps) by host and viral proteases. The replicase proteins reorganize the 

endoplasmic reticulum (ER) to produce double-membrane vesicles (DMVs), which serve as 

platforms for viral replication, leading to the synthesis of both genomic and sub-genomic RNAs 

(sgRNA). After replication is complete, the sgRNA is translated into accessory proteins and viral 

structural proteins, necessary for the generation of new viral particles (Harrison et al., 2020).  

After introducing viral genetic material into host cells, initiating replication and producing 

primary proteins, this triggers an initial immune response. In 80% of cases, this results in a mild 

response manageable by symptomatic therapy. However, in about 20% of cases, it induces a 

severe immune reaction. The virus subsequently targets alveolar cells in the lungs, causing their 

destruction, which leads to inflammatory reactions accompanied by cytokine storms and 

pulmonary fibrosis (Wu & McGoogan, 2020; Zahedipour et al., 2020). 

Beyond respiratory complications, there is potential for the virus to enter the bloodstream and 

infect tissues expressing ACE receptors. These include kidneys, and gut tissue, heart and 

cardiovascular system, central nervous system as well as adipose tissue and even placenta and 

fetal (Letko et al., 2020; Lin et al., 2020; Prochaska et al., 2020).   

 

1.3 The symptoms of COVID-19 : 

The 2019 Coronavirus Disease presents with symptoms like fevers, cough, difficulty breathing, 

muscle aches, sore throat, diarrhea, pneumonia, acute respiratory syndrome, multiple organ 

failure, cytokine syndrome, which is quite serious, endothelial damage and thrombotic events 

(Prochaska et al., 2020). The severity of this disease can range from no symptoms in which the 

patients might not even realize they're carrying the virus at all to very severe cases. Often, the 

more severe cases are linked with older age or chronic conditions. These conditions include heart 
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and cardiovascular diseases, respiratory issues, kidney diseases, diabetes, and smoking (Guan et 

al., 2020; Jin et al., 2020). 

As the disease worsens, more critical symptoms such as acute respiratory distress syndrome, a 

critical lung condition characterized by the accumulation of fluid in the air sacs, which reduces 

the oxygen levels in the blood, may develop. ARDS is often the main reason for death due to 

respiratory failure. Furthermore, COVID-19 doesn't just attack the respiratory system. It can lead 

to non-respiratory complications such as septic shock, liver and kidney injury, ocular 

complications, neurological issues & disseminated intravascular coagulation (Mallah et al., 

2021). Additionally, and quite notably, COVID-19 has been seen to significantly impair an 

individual's sense of smell and taste in many cases (Gane et al., 2020). 

Generally, this disease shows up with milder symptoms in children and adolescents. Yet, certain 

strains of the virus, like the Delta variant, can cause more severe symptoms. These children with 

severe COVID-19 signs show severe inflammatory responses. These are often accompanied by 

high fever and problems in multiple organs. Despite the low risk, there's still a possibility of 

death. The CDC calls this syndrome Multisystem Inflammatory Syndrome in Children, a severe 

condition where the immune system excessively responds to COVID-19, leading to 

inflammation in several organs. Criteria for MIS-C include prolonged fever, issues in multiple 

organ systems and lab findings of hyperinflammation (Chen et al., 2020; Siegel et al., 2021). 

 

1.4 Transmission routes of the disease: 

COVID-19, like other viruses in the coronavirus family, spreads chiefly from person to person 

via droplet transmission. These droplets reach others through sneezing, coughing, or even talking 

and can either be inhaled by others or make contact with mucous membranes in the mouth, nasal 

passages, or eyes. Furthermore, touching surfaces contaminated with the virus—surfaces that can 

stay active and detectable for about 6 days—and then touching one’s own mucous membranes 

may result in infection (Mallah et al., 2021; van Doremalen Neeltje et al., 2020). 

A particularly worrying aspect is the transmission of COVID-19 by individuals who do not 

exhibit any symptoms of the illness. With a relatively long incubation period—approximately 5 



5 
 

days on average—infected persons can unknowingly spread the virus to others without being 

aware of their carrier status (McAloon et al., 2020). 

1.5 The Covid-19 disease in pregnancy: 

Pregnancy is considered as a critical stage characterized by significant immune and physiological 

changes to house a genetically foreign fetus. Physiological changes include decreased lung 

capacity, increased oxygen demand, and changes in heart rate. Previous studies have shown 

that changes in the immune system during pregnancy, promoting a shift towards a dominance 

of the T-helper 2 (Th2) system, which is aimed to protect the developing fetus, can result in the 

mother becoming more susceptible to viral infections. This is due to the fact that viral infections 

are typically better controlled by the Th1 system, thus exposing a vulnerability in pregnant 

individuals. Pregnancy increases the risk of influenza infection, in particular among pregnant 

women with underlying medical conditions and during the third trimester of gestation 

(Rasmussen et al., 2012).  

According to a systematic review that includes 435 studies, pregnant women who were infected 

with SARS-CoV-2 had a greater risk for severe disease as indexed by higher rates of 

hospitalization or ICU admission compared to the general population. Cox proportional hazards 

analysis indicated that comorbidities, non-white ethnicity, chronic hypertension, pre-existing 

diabetes, age over 35 years, and pre-pregnancy BMI >30 were associated with severe COVID-19 

outcomes in pregnancy. Pregnant mothers with COVID-19 are at higher risk of preterm birth and 

maternal mortality compared with pregnant women without COVID-19. The infants of women 

with COVID-19 are more likely to require admission to the neonatal unit (Allotey et al., 2020). 

A recent review of obstetric cases—especially those occurring in the third trimester—revealed 

that 3% of pregnant women with SARS-CoV-2 required hospitalization and intensive care. There 

have also been instances of preterm labor as well as perinatal death linked to maternal SARS-

CoV-2 infection (Prochaska et al., 2020). 
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1.6 Vertical transmission of disease from pregnant mother to her fetus:  

The transmission of disease and viruses from a pregnant mother to her fetus (Called vertical 

transmission) remains the subject of ongoing debate. Some studies show that specific IgM 

antibodies for SARS-CoV-2 have not been detected in fetuses. Nasopharyngeal swab test results 

are also negative for infants born to infected mothers. This indicates no virus transmission has 

occurred. Furthermore, the presence of specific IgG antibodies (linked to SARS-CoV-2) in 

newborns suggests protective immunity transfer from mother to fetus. It is plausible that these 

factors are transferred from the mother's body to the fetus via the placenta which serves as a 

critical maternal-fetal interface; it protects against infection but is vulnerable when exposed to 

adverse maternal conditions. In a systematic review involving over 50,000 pregnancies, which 

resulted in the birth of 30,000 neonates from mothers infected with SARS-CoV-2, over 800 

neonates tested positive for SARS-CoV-2 in confirmed samples. Therefore, this evidences the 

possibility of the vertical transmission of SARS-CoV-2 from mothers with COVID-19. Vertical 

transmission can occur via multiple routes, including the exchange of microorganisms in the 

placenta during pregnancy and exposure to blood and vaginal secretions during labor. The 

likelihood of Vertical transmission will largely depend on several factors such as maternal 

immunity and viral load in the placenta, which have been strongly associated with increased risk 

for vertical transmission (Musa et al., 2021). Consequently, it is not possible to eliminate entirely 

the possibility of disease transmission from mother to newborn. Further studies are necessary, 

although current statistics indicate that such transmission is rare (Chen et al., 2020; Patanè et al., 

2020).  

Indeed, while direct transmission through the placenta may not occur, diseases causing 

inflammation, immunological disturbances and coagulation abnormalities in the mother's 

immune system can affect placental function and, hence the fetal development. This aspect 

warrants careful attention (Prochaska et al., 2020). 

Evidence suggests that any disease during pregnancy—especially in the third trimester—can 

have significant consequences for both fetus and mother like villitis, spontaneous abortion, 

multisystem organ damage and even death. Infections with SARS & MERS have led to maternal 

death, miscarriage, fetal growth restriction, premature birth, and stillbirths. Notably concerning 
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SARS-CoV-2, stillbirths and premature births due to maternal virus infection show higher 

prevalence when compared to general populations (Gee et al., 2021a). 

Additionally, infectious diseases like HIV (human immunodeficiency virus) and HCV (hepatitis 

C virus) can trigger immune responses in mothers that subsequently alter their newborns’ 

immune systems. These changes may result in long-term consequences for the offspring (Gabriel 

et al., 2019; Kamdar et al., 2020). 

1.7 COVID-19 complications on the neonates 

When a mother contracts COVID-19, several complications—such as inflammation, called 

Maternal immune activation (MIA), coagulation alterations & endothelial modifications—can 

occur. This not only impacts the mother but also exposes the placenta and fetus to these 

complications. Consequently, there are noticeable changes in both the placenta and the fetus 

(Sharps et al., 2020). 

The presence of COVID-19 raises levels of pro-inflammatory cytokines like IFN-gamma, IL-1β, 

IL-8, IL-6, TNF, which disrupts the balance between anti-inflammatory & pro-inflammatory 

responses, and similarly affects their offspring's immune systems and leads to increase in 

numbers of NK cells, NKT cells, Vδ2+ γδ T cells & CD161-expressing CD8+ T cells which is  

higher than average in infants born to mothers with COVID-19 when compared to those born to 

healthy mothers. Such an inflammatory state can involve multiple organ systems and lead to 

other adverse outcomes, including increased risk for psychological issues like depression and 

bipolar disorders (Figure 1.3) (Sharps et al., 2020). 

Reports indicate that COVID-19 during pregnancy may cause preterm birth and low birth 

weight. These conditions significantly contribute to child mortality under five years of age & 

complicate health with issues such as necrotizing enterocolitis, bronchopulmonary dysplasia, and 

respiratory distress syndrome (Gee et al., 2021b). 
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1.8 Impact of environment, lifestyle, and maternal diseases on child health 

Studies have delved into the root causes of health problems in individuals sharing similar 

backgrounds, considering lifestyle & blood composition. They brought forth the "fetal origins 

hypothesis." According to this idea, detrimental conditions like malnutrition and illnesses during 

pregnancy can have lasting impacts on a child's health, increasing the likelihood of various 

chronic diseases later in life (Garthwaite, 2008). 

For instance, malnutrition during a mother's pregnancy can contribute to future health issues in 

the child, such as heart problems, kidney issues, and metabolic disorders. This hypothesis gained 

traction after the 1918 influenza pandemic (Spanish flu). Children born to mothers affected by 

the disease during that time were observed to have higher rates of heart, kidney, stroke, diabetes, 

and other physical ailments and also autism and depression compared to peers whose mothers 

remained healthy. Studies indicate that the timing of exposure to illness influences both the type 

and severity of health issues in offspring (Almond & Mazumder, 2005; McCarthy et al., 2021).  

Another example is that babies whose mothers had a urinary tract infection during pregnancy 

may be more likely to develop a range of lifelong health issues, such as neurocognitive disorders 

or asthma (Bergman & Cedar, 2013). 

Figure 0.3Figure 1.3 consequences of exposure to MIA in offspring (Shimizu et al., 
2023) 

 

Figure 1.3 Consequences of exposure to MIA in offspring (Shimizu et al., 2023) 

 

Figure 1.3 Effects of exposure to MIA in offspring (Shimizu et al., 2023) 
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Research has indicated that a fetus's environment and its changes can also impact fetal gene 

expression which can impact the health of the child in the future. For example, 

chorioamnionitis—an ascending infection within the maternal pathway—induces a fetal 

inflammatory response by producing inflammatory mediators. This response can activate labor 

prematurely. Changes in amniotic fluid conditions surrounding the fetus may alter gene 

expression with enduring consequences for the offspring’s life. 

These changes include variations in antimicrobial protein production by fetal membranes and 

chorionic-amniotic membranes. Also noteworthy are shifts in key genes responsible for 

inflammatory, immune, respiratory, and nervous functions—potentially leading to asthma, 

allergic reactions,and neurological disorders like cerebral palsy & schizophrenia. In conclusion, 

it is clear that chorioamnionitis during pregnancy can disrupt both innate or acquired immune 

systems and future nervous system development through altered fetal gene expression (Erez et 

al., 2009; Gayen Nee’ Betal et al., 2019; Weitkamp et al., 2016). 

 

1.9 How the conditions during pregnancy affect the future health status of children 

During pregnancy, environmental factors can alter cellular pathways and gene expression 

patterns in the fetus through epigenetic mechanisms which are modifications to the genome that 

affect gene expression without altering the underlying DNA sequence unlike mutations, 

including DNA methylation and chromatin modifications, often leading to changes in the 

epigenome and changes the regulation of genes expression in different states during the child’s 

life. These alterations may persist into childhood, even adulthood. For instance, exposure to 

specific nutritional elements or environmental toxins during pregnancy can modify DNA 

methylation patterns or histone modifications in the developing fetus. These early-life epigenetic 

changes can have consequences extending into childhood & adulthood and increase disease 

susceptibility, potential epigenetic inheritance, developmental programming effects on 

physiological processes; metabolic disorders, behavioral and cognitive impacts, and reproductive 

health implications. These alterations profoundly impact health across an individual's lifespan—

underscoring the importance of understanding how fetal environments influence gene regulation 

for long-term health outcomes. Improper regulation of genes due to these epigenetic changes has 
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been linked to complex disorders such as cancer, Alzheimer's disease, asthma & autism (Kazmi 

et al., 2019). 

Examples of environmental factors impacting fetal gene expression through epigenetic 

mechanisms include nutritional factors like a maternal diet during pregnancy; environmental 

toxins such as arsenic & lead; endocrine disruptors like diethylstilbestrol (DES) and bisphenol A 

(BPA); behavioral factors such as maternal stress; and exposure to low-dose radiation (Giraud et 

al., 2020). 

Here are some examples of maternal conditions impacting the gene expression of the exposed 

children:  

The Spanish Flue Pandemic: This pandemic in 1918 had lasting effects on children exposed in 

utero by epigenetic modification mechanisms like DNA Methylation, Histone Modifications and 

increased the risk of chronic diseases like coronary heart disease, diabetes, kidney issues, and 

also suffering from cognitive or developmental impacts and Immune System Dysregulation in 

these children. (Garthwaite, 2008) 

Maternal dyslipidemia or obesity: These children may have increased LDL cholesterol in 

adulthood, and higher adiposity at birth due to changes in gene expression related to lipid 

metabolism in offspring that may contribute to the offspring's predisposition to atherosclerosis or 

other metabolic disorders (Kerr et al., 2018). 

High blood pressure of mother during pregnancy: Hypertensive disorders of pregnancy 

(HDP), including gestational hypertension (GH) and preeclampsia, have been associated with 

epigenetic modifications in cord blood from offspring through DNA methylation modification 

mechanisms and lead to lower birth weight of children and cardiovascular diseases (Kazmi et al., 

2019). 

Prenatal inflammation: Studies have shown that babies exposed to inflammation during 

pregnancy or shortly after birth had problems with their motor skills and social skills even 

without severe brain damage (Giraud et al., 2020). 
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Effects of Histological Chorioamnionitis: Epigenetic changes caused by Histological 

Chorioamnionitis exposure in neonates may contribute to an increased risk of long-term health 

problems, including cerebral palsy, developmental delay, asthma, and allergies by altered 

methylation patterns in genes (Fong et al., 2020). 

1.10 Statement of problem  

Pregnancy is recognized as a high-risk condition for SARS-CoV-2 infection due to physiological 

adaptations, hormonal shifts, and compromised immune function. However, knowledge about 

the direct impact of the virus on developing fetuses and the long-term health of newborns is still 

in its early stages. The existing literature lacks comprehensive information on both the short- and 

long-term implications of COVID-19 infection during pregnancy on newborns. Specifically, the 

epigenetic regulation of metabolic pathways in the context of maternal COVID-19 infection 

remains largely unknown.  

Given the known inflammatory effects of COVID-19 on maternal physiology, it is crucial to 

consider how these inflammatory responses may alter the fetal environment and contribute to 

epigenetic modifications in the developing fetus. Inflammatory processes triggered by COVID-

19 in pregnant women could potentially influence gene expression patterns in the fetus through 

epigenetic mechanisms. Understanding how these factors impact fetal gene expression is vital for 

elucidating the mechanisms underlying the effects of maternal infections and inflammatory 

responses on fetal development and health outcomes. 

This gap in our understanding is significant, as it limits our ability to intervene effectively to 

optimize perinatal outcomes for both maternal and newborn health. Therefore, examining the 

relationship between maternal COVID-19 infection and the epigenetic regulation of metabolic 

pathways in offspring is a priority research need. By investigating this issue, we aim to gain a 

deeper understanding of how fetuses are shaped in the context of viral infection and to provide 

the necessary evidence to design and implement interventions that promote positive health 

outcomes for newborns. 
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1.11 Epigenetic regulations  

Epigenetic regulation occurs through changes in phenotype or gene expression that are caused by 

mechanisms other than alterations in the underlying DNA sequence. These changes can persist 

throughout the cell's life, be transmitted through cell division, and even be passed down through 

multiple generations in a specific cell lineage. Epigenetic mechanisms provide an additional 

layer of control in the regulation of gene expression, allowing an organism to adapt to changing 

environments. This regulation is influenced by factors such as developmental stage, tissue type, 

environmental conditions, and disease status. Epigenetic mechanisms can alter chromatin 

structure, nuclear organization, and transcript stability, ultimately influencing gene expression 

and leading to long-term molecular and functional consequences (Figure1.4).  

The mechanisms of epigenetic regulation include histone modification, DNA methylation, and 

expression of small non-coding RNA species.  

The mechanisms through which gene expression is regulated are as follows:  

1. DNA methylation: It is a crucial process in epigenetics that involves the DNA 

methyltransferase (DNMT) enzymes which modify the DNA. Methyl groups from S-

adenosyl methionine are brought into the DNA to create 5-methylcytosine (5mC). DNA 

methylation can affect gene transcription by blocking transcription factors from binding 

and interfering with transcriptional machinery. DNA methylation frequently occurs at 

promoter CpG dinucleotides, influencing critical processes and functions. There are 

various roles of DNMTs, including genomic imprinting, establishing heterochromatin, 

gene silencing, embryonic development, and activity in de novo methylation (Arora & 

Tollefsbol, 2021). 

2. Post-translational modifications (PTM) of histone proteins: These are crucial 

epigenetic mechanisms that consist of covalent modifications such as acetylation, 

methylation, ubiquitylation, and phosphorylation on specific residues of histone tails. 

These modifications regulate cellular processes such as transcription, repair, and 

replication by altering chromatin function and can either activate or repress gene 

expression depending on which residues are modified. Enzymes such as Histone 

acetyltransferases (HATs) and histone methyltransferases (HMTs) can add these groups, 

while histone deacetylases (HDACs) and histone demethylases (HDMs) can also remove 
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these modifications, allowing for the dynamic regulation of histone modifications for 

positive or negative regulation of gene expression (Hu et al., 2019). 

3. Noncoding RNA (ncRNA): Non-coding RNA (ncRNA) is important in gene expression 

and cellular processes, and microRNAs (miRNAs) are one of the most studied types. As 

short RNA sequences, miRNAs can block mRNA translation into protein by binding to 

areas of complementary sequence and forming the miRNA-induced silencing complex 

(miRISC). Many mechanisms, like DNA methylation, regulate protein-coding gene 

transcription and microRNA expression. In addition, miRNAs can impact the expression 

of epigenetic regulators, such as DNA methyltransferases and histone deacetylases, and 

thus provide a link between the expression of proteins and the epigenome. The 

intersection of these pathways for the regulation of protein expression and chromatin 

structure creates a dynamic regulatory network between different epigenetic pathways 

that control patterns of gene expression either through transcriptional or post-

transcriptional mechanisms (Moutinho & Esteller, 2017). 

Changes in DNA methylation play a significant role in altering gene expression patterns and 

have been identified as major contributors to diseases. Aberrant DNA methylation can result in 

altered gene expression patterns, leading to the development of diseases such as cancer, 

autoimmune disorders, or neurodevelopmental diseases like Rett syndrome. In the field of 

transgenerational carcinogenesis, DNA methylation alterations caused by exposure to 

environmental chemicals in parents are passed on to their offspring, making their offspring more 

susceptible to developing tumors. This finding underlines the central role of environmentally-

induced epigenetic changes on health outcomes across generations (Santos et al., 2005). 
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1.12 Covid-19 impacts on pregnancy and fetus: 

Evidence demonstrates that neonatal immune response may be impacted by maternal SARS-

CoV-2 infection. This effect is demonstrated by changes in pro-inflammatory cytokines 

specifically IL-6 in neonates as well as changes in neonatal immune cells; the increase in IL-6 

has been associated with cognitive impairments in offspring due to maternal immune activation 

(MIA) (Gee et al., 2021b). Maternal COVID-19 MIA and systemic inflammation can affect 

epigenetic mechanisms. Beyond the effect of MIA, the potential impact of the increased 

psychological stress in the mothers from COVID-19 due to COVID-19 status or symptoms on 

the fetus could negatively affect fetal programming. Studies show that COVID-19 infection 

during pregnancy has gene-specific DNA Methylation changes, some specifically in stress-

related genes, others with stress and inflammation-related genes, that were comparable to 

histological chorioamnionitis (HCA) (Hill et al., 2023). In umbilical cord blood cells of infants 

whose mothers had COVID-19, there were 119 genes that were differentially methylated and 

they were mapped to canonical pathways related to stress response, hepatotoxicity, 

nephrotoxicity, and cardiotoxicity. This potential change could have an effect on child 

development (Urday et al., 2023). 

Figure 0.4 Figure 1.4 The interplay of genetic factors, maternal immune activation and environmental influences leads to immune dysfunction after birth (Shimizu et 
al., 2023) 

 

Figure 1.4 The interplay of genetic factors, maternal immune activation, and 

environmental influences leads to immune dysfunction after birth (Shimizu et 

al., 2023) 
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1.13 Gene Expression Patterns as Markers for Developmental Defects: 

Identification of altered gene expression patterns in the developing embryo and fetus can serve as 

indicators for predicting developmental defects. These patterns allow for early detection, 

diagnostic significance, and predictive value in identifying abnormalities. They can be used as a 

system of markers to assess risks and understand functional consequences. Integrating gene 

expression data with other measures offers a comprehensive analysis for identifying and 

addressing potential defects in development (Taylor et al., 2019). 

1.14 Methods of Gene Expression Studies 

In different biological contexts, there are a variety of methods that can be used to analyze the 

activity of genes, and some of the most commonly used techniques in gene expression studies 

are:  

1. Reverse Transcription Polymerase Chain Reaction (RT-PCR): RT-PCR is used to amplify 

and quantify RNA molecules. The method allows you to measure the expression levels of genes 

being studied by first converting RNA to complementary DNA (cDNA) and then amplifying the 

cDNA using PCR.  

2. Quantitative Real-Time PCR (qPCR): qPCR is a highly sensitive method for quantitating 

gene expression levels. It allows for continuous monitoring of PCR amplification in real-time 

and provides very accurate gene expression data. 

 3. Microarray Analysis: Microarray technology allows researchers to analyze the expression of 

thousands of genes simultaneously by hybridizing cDNA or RNA samples to microarray chips 

that contain gene probes. This method facilitates the quantitative assessment of expression levels 

of multiple genes using a single experiment.  

4. RNA Sequencing (RNA-Seq): RNA-Seq is a high-throughput sequencing method that is used 

to analyze the transcriptome of a cell or tissue type. This method provides a very comprehensive 

view of gene expression by allowing the sequencing and quantitation of the different RNA 

molecules. 
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 5. Northern Blotting: Northern blot is the method used to detect specific RNA molecules in a 

sample. The method involves separating the RNA molecules using gel electrophoresis, 

transferring them to a membrane, and hybridizing them with labeled probes to visualize the 

expression of genes.  

6. In Situ Hybridization: is a method that is used to localize specific RNA molecules in a cell or 

tissue. Through hybridization of labeled RNA probes to complementary RNA sequences in fixed 

samples, researchers can visualize the gene expression pattern spatial distribution.  

7. Reporter Gene Assays: involve fusing a reporter gene, such as luciferase or GFP, to a gene of 

interest to monitor its expression. The activity of the reporter gene serves as a readout for the 

target gene expression level.  

8. Western Blotting: Although Western blotting is primarily for protein analysis, it can also be 

used to validate gene expression at the protein level. By detecting specific proteins via 

antibodies, researchers can confirm gene expression data from RNA analysis.  

9. Chromatin Immunoprecipitation (ChIP): is a technique researchers use to analyze protein-

DNA interactions, such as transcription factor binding to gene promoters. By 

immunoprecipitating protein-DNA complexes, researchers can identify the genome regions that 

are involved in the control of the target gene expression. Combined with other methods, these 

techniques are essential tools for understanding spatial and temporal patterns of gene expression, 

underlying regulatory mechanisms, and functional consequences across biological systems 

(Burgess & Hazelton, 2000; Taylor et al., 2019). 

1.15 Microarray Data method: 

Microarray technology is a valuable instrument used in molecular biology for exploring gene 

expression profiles on a genomic scale. Microarrays are a technique used in gene expression 

analysis that is based on the complementarity between nucleic acid strands, allowing for the 

detection of specific sequences through hybridization (Drăghici, 2011). 

Microarrays consist of a solid support, often a glass slide, to which cDNAs or oligonucleotides 

are spotted or printed in a high-density pattern. The cDNAs on the microarray represent genes or 

fragments of genes, allowing analysis of thousands of genes in the same experiment.  
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In this method, RNA is first isolated from the samples and converted into complementary DNA 

(cDNA). This cDNA is labeled with a fluorescent dye or radioisotope to prepare for 

hybridization to the microarray. Once labeled, the cDNA probes are introduced to the microarray, 

where they hybridize with the cDNAs present on the array, matching each probe to its 

complementary sequence. After hybridization, a washing step is performed to remove any 

unbound or nonspecifically bound probes. This process reduces background noise, ensuring 

more accurate data collection. The microarray is then scanned to capture the fluorescent signals 

emitted by the bound probes at specific spots on the array. Finally, the acquired image data is 

analyzed to quantify gene expression levels. By examining the fluorescence intensity at different 

spots on the microarray, differences in gene expression across the samples can be identified and 

compared. This methodology offers a systematic approach to understanding gene expression, 

providing valuable insights for our research (Burgess & Hazelton, 2000). 

 

Benefits and limitations of the Microarray data method: 

Microarray data methodology offers several advantages and disadvantages. One significant 

advantage is its high throughput capability, allowing researchers to measure the expression of 

thousands of genes simultaneously, which enhances understanding of gene expression patterns. 

Additionally, microarray analysis can uncover novel genes influenced by various conditions, 

potentially leading to the discovery of biomarkers and therapeutic targets. It also aids in 

comprehending biological processes like disease progression and responses to treatments. The 

technology supports comparative studies across different experimental conditions or species, 

enhancing insights into shared and divergent gene expression patterns. Furthermore, it facilitates 

functional annotation by revealing the functions of unannotated genes based on their co-

expression with known genes. Microarray analysis holds promise for personalized medicine 

through the identification of gene signatures linked to specific diseases or drug responses. 

Finally, the integration of microarray data with other omics data provides a comprehensive view 

of biological systems. 

On the downside, microarray data can be affected by high background noise and technical 

artifacts, which may compromise accuracy. The limited dynamic range of microarrays can lead 



18 
 

to inaccuracies in measuring both low- and high-abundance transcripts due to signal saturation. 

Cross-hybridization, where cDNAs nonspecifically bind to probes, can also skew gene 

expression measurements. Additionally, variations across different microarray platforms can 

complicate the comparison of results from diverse studies. The complexity of data analysis 

requires bioinformatics expertise, making the interpretation of results challenging. Validation of 

microarray findings with independent methods, such as qPCR, is essential to ensure accuracy. 

Lastly, microarrays may not encompass the entire transcriptome, potentially overlooking 

alternative transcripts, non-coding RNAs, and other regulatory elements. Despite these 

limitations, microarrays remain a vital tool for studying gene expression and provide valuable 

insights into complex biological processes (Dopazo et al., 2001). 

However, DNA microarrays have been revolutionary in studying the gene expression patterns of 

development by allowing for the analysis of thousands of genes simultaneously. The implications 

of microarrays include the ability to profile the genome, address the identification of 

developmental genes, and recognize patterns of tissue-specific expression. Furthermore, 

microarrays have proven relevant by elucidating regulatory networks, studying gene expression 

across species and different stages of normal development, utilizing mutants to study 

developmental defects, and generating functional annotations of genes based on expression 

patterns.  

1.17 Methods for Selecting Differentially Expressed Genes in Microarray Data 

Analysis 

Identification of differentially expressed genes (DEGs) is a very important task in the analysis of 

microarray data, as it allows researchers to discover which genes display significant changes in 

expression between different experimental groups. There are many methods that can be used to 

identify DEGs in a microarray dataset. The following are some of the most known methods: 

 1. Fold change analysis: This method compares the expression levels of genes between two 

experimental groups by computing the ratio of the expression levels of those genes in one group 

relative to the other group. If the ratio meets or exceeds a predetermined threshold (usually 

greater than or equal to 2-fold or 1.5-fold), the gene is then considered to be differentially 

expressed. This method is simple and straightforward in determining which genes have the 
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largest difference in expression levels, but it does not take into account the size and variability of 

the data or whether the changes are meaningful, ultimately losing genes of interest that have 

steady and slight changes.  

2. The outlier ratio method: This method identifies genes whose ratio of expression is very 

different than the mean ratio of expression across all genes. These genes have an expression ratio 

that is more extreme and different than the mean expression ratio by more than a certain number 

of standard deviations. This method takes into account and adjusts for the variability of the data, 

which consistently produces the same percentage of DEGs. However, noise in the dataset can 

still cause false positives during the process.  

3. Testing the significance of a statistical hypothesis: Different statistical tests including t-tests, 

ANOVA, or nonparametric testing are used for hypothesis testing to determine if significant 

differences exist in gene expression between the experimental groups. If any gene has a p-value 

less than a significant level (usually p<0.05), the gene is then called differentially expressed. This 

method provides the user with statistical significance and helps to control for false positives. On 

the other hand, this method requires the user to make corrections for multiple comparisons due to 

the fact that there are a large number of genes being tested at once. 

 4. Model-based approaches: This method is statistical model-based, where models are 

specified to discover gene expression differences and to identify DEGs. Genes are chosen on the 

basis of model parameters, such as log-odds ratios or maximum likelihood estimates.  This 

approach can take into account complex patterns in the data and can also give robust estimates of 

DEGs, but it requires certain assumptions regarding the data distribution and might need a 

considerable amount of computation. 

 By utilizing these methods to select differentially expressed genes in microarray data, 

researchers can identify important genes that contribute to biological processes, disease 

mechanisms, and responses to treatments. The identification of these genes can provide valuable 

directions for further analyses and interpretation (Drăghici, 2011). 
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1.18 Gene set expression analysis methods 

Gene sets are groups of genes that share common functional annotations, biological pathways, or 

regulatory relationships. Gene sets can make it easier to analyze gene expression data because 

they allow you to treat the behavior of a cluster of genes as one item rather than looking at each 

gene separately. In microarray data analysis, gene sets help to move the field from single gene-

by-gene analysis to a more biologically meaningful interpretation. 

Benefits of Gene set expression analysis methods: 

Gene set expression analysis (GSA) methods offer numerous advantages over traditional 

individual gene expression analysis techniques, enhancing our understanding of biological 

processes. One major advantage is their pathway-centric approach, which allows researchers 

to analyze collections of genes that share a specific biological function or pathway 

simultaneously, rather than focusing on individual genes. This fosters a deeper understanding 

of gene expression changes and the network relationships among genes. Additionally, GSA 

methods reduce subjectivity in biological interpretation by examining the mutual behavior of 

genes within sets, providing a clearer analytical context compared to individual gene 

analysis. Furthermore, GSA methods tend to have greater statistical power, enabling the 

detection of biologically subtle, coordinated changes in gene expression, especially when 

strong correlations exist among genes. These methods effectively account for the correlation 

structure between genes, which is vital for understanding connectivity in biological 

pathways. GSA also allows for the consideration of multivariate outcomes, which is essential 

for analyzing complex biological features. Many GSA methods utilize existing biological 

knowledge from sources like KEGG and Gene Ontology, enhancing the reproducibility and 

interpretability of results across various studies. Ultimately, GSA provides insights into the 

biological relevance of gene sets and pathways concerning specific biological processes or 

diseases, adding significant value to research efforts. 

Overall, by improving biological relevance, interpretability, statistical power, and 

reproducibility, gene set expression analysis methods present a more holistic and insightful 

approach to analyzing gene expression data, enhancing our understanding of the intricate 

regulatory mechanisms underlying biological phenomena (Dinu et al., 2021.). 
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We define gene sets in microarray data analysis by incorporating functional annotations, 

biological pathways, and regulatory relationships. Functional annotations from databases like 

KEGG and Gene Ontology allow for the grouping of genes with similar functions. Additionally, 

gene sets can represent biological processes or pathways where genes collaborate. Analyzing 

changes in gene expression at the gene set level enables researchers to comprehend the collective 

behavior of related genes, enhancing statistical power by reducing the burden of multiple tests 

associated with individual genes. This analysis also facilitates the interpretation of results within 

the context of known biological pathways and processes. Ultimately, gene set analysis provides a 

biologically relevant way to examine expression changes in microarray data, helping to elucidate 

the underlying biological processes (Song & Black, 2008). 

1.19 Molecular Signatures Database (MSigDB) 

The resource known as the Molecular Signatures Database (MSigDB) consists of a collection of 

34,550 gene sets organized into gene sets of related biological themes, pathways, and 

characteristics. These gene sets have been grouped into nine top-level collections, each with 

several subcollections, making it easier to identify gene sets that are closely related to the 

specific research question. The top-level collections include H (hallmark gene sets), C1 

(positional gene sets), C2 (curated gene sets), C3 (regulatory target gene sets), C4 (computational 

gene sets), C5 (ontology gene sets), C6 (oncogenic signature gene sets), C7 (immunologic 

signature gene sets), and C8 (cell type signature gene sets). The gene sets in MSigDB may 

originate from a variety of sources such as online pathway databases, biomedical literature and 

contributions by individual experts. Each gene set page records the origin of the gene set.  
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Chapter 2: Methods  

2.1 Study design 

To demonstrate epigenetic and metabolic pathways alterations in neonates born of COVID-19-

infected mothers without vertical transmission, we analyzed a gene expression dataset retrieved 

from the Gene Expression Omnibus (GEO) database with accession number GES 195938 

(Gayen Nee’ Betal et al., 2022). 

The dataset was created by collecting cord blood cell samples from 16 term neonates at the time 

of delivery, with 8 neonates exposed to COVID-19 during pregnancy (cases). Two mothers were 

symptomatic at their delivery, and one of them had severe symptoms. 8 infants were served as 

controls with no exposure to the virus during pregnancy. In the control group, 6 were born before 

the COVID-19 pandemic and 2 were born to mothers who were COVID-19 antibody negative at 

the time of delivery. Mothers with clinical or histological chorioamnionitis, as this may impact 

gene expression, were excluded. Similarly, we excluded mothers vaccinated with the COVID-19 

vaccine. 

2.2 Microarray data normalization 

Before conducting the analysis of the dataset that contains the raw data, we first prepared it via 

quantile normalization, one of the effective methods for this type of preparation. Some of the 

advantages of quantile normalization include a reduction in systematic biases and in technical 

variation; this way we can more clearly see the "truth" in the biological signals instead of only 

seeing artifacts due to data collection methods. The choice of quantile normalization rests upon 

these advantages, since the consequence is having enhanced quality and reliability of the data so 

that more accurate comparisons and analyses are possible, and it involves ranking the data for 

each sample, calculating the mean of the ranks across all samples, and then replacing the original 

value with the mean values, to achieve similar distributions across samples  (Rao et al., 2008). 
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2.3 Statistical Analysis 

 

2.3.1 Why Gene sets analysis approaches? 

The primary approach to analyzing gene expression data focused on single-gene analysis, where 

the expression levels of individual genes were compared between case and control samples using 

methods such as fold change or t-tests. However, as mentioned earlier, using these methods 

results in a long list of significant genes, that is hard to interpret and it is full of biases and these 

biases are especially prominent when analyzing differential expression with low signal genes.  

The multi-gene analysis is a necessary and appropriate tool to use to capture complex biological 

phenomena that we cannot detect with limited one-gene tool. In contrast to one gene approaches’ 

rigidity, high-throughput studies need control over the error due to multiple comparisons 

between genes, while taking precautions against false negatives. There are consequences for 

using stringent thresholds in individual gene analysis: false positives and limitations on our 

conclusions. More reliable conclusions can be reached by studying and expanding our 

exploration in similarity groupings or gene clusters which reflect shared biological activities. It 

cuts through the complexity of high-throughput gene expression research with gene sets or by 

studying groups of genes with shared biological characteristics (Nam & Kim, 2008). 

Gene-set analysis (GSA) can be seen as a non-threshold approach to microarray study analysis. 

Indeed, GSA makes use of pre-defined gene sets, which are grouped together based on biological 

knowledge. More specifically, GSA aims to determine if any of the biological pathways are 

significantly perturbed even if only a small number of their coordinated gene sets are perturbed. 

The benefit of focusing on gene sets is more informative for understanding how a biological 

process functions, and provides a clearer explanation of the underlying disease mechanism (Nam 

& Kim, 2008). 
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2.3.2 Self-competitive and Self-contained GSA Methods  

Gene set analysis methods are intended to deal with these problems and interpret the research 

data meaningfully. There are several Gene Set Analysis (GSA) methods that are used to 

recognize gene sets associated with specific phenotypes with different methodological 

assumptions, strengths, and weaknesses. They are distinguished into two hypothesis tests:  

1. Competitive methods, such as GSEA, SAFE, random set methods, and GSA, compare the 

gene relationships inside of a gene set to the relationships outside of the set to see if the genes 

inside the particular set are more associated with the phenotype. 

 2. Self-contained methods test the relationship between the gene set of interest and the 

phenotype independently of the genes outside the set. Examples of self-contained GSA strategies 

include the Global test, MANOVA-GSA, Significance Analysis of Microarrays for Gene Sets 

(SAM-GS), and Linear Combination Test (LCT) (Dinu et al., 2008; Nam & Kim, 2008). 

 

 

2.4 Linear Combination Test as a Gene Set Analysis Method  

Linear Combination Test (LCT) is a method of Gene Set Analysis (GSA) which can be used to 

test the association between sets of genes and multivariate outcomes.  

Traditional Gene Set Analysis (GSA) methods have several notable limitations, primarily 

characterized by high rates of Type II errors, often leading to false negatives. This results in 

missed true associations between gene sets and biological outcomes, thereby limiting the ability 

to identify significant pathways associated with diseases. These traditional methods tend to be 

less sensitive, which means they may not adequately capture relevant biological signals, 

hindering researchers from fully understanding the molecular pathways involved in a specific 

disease. Additionally, the focus on single-gene analysis often overlooks the collective behavior 

of gene sets, missing important interactions and correlations among genes. Furthermore, the 

reliance on individual gene comparisons can diminish the statistical power, making it 

challenging to draw meaningful conclusions from biological data. 

In contrast, the Linear Combination Test (LCT) method offers several significant advantages. 

LCT considers the correlations among gene sets and outcomes, enabling a more comprehensive 
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analysis of the relationships between sets of genes and multivariate outcomes. This characteristic 

improves the likelihood of identifying biologically relevant relationships. Additionally, LCT is 

capable of handling multivariate continuous outcomes, which better reflects the complexities 

inherent in biological phenomena, leading to a more rigorous analysis of gene expression data. 

One of the key strengths of LCT is its computational efficiency, making it suitable for analyzing 

large-scale omics data without incurring high computational costs, which is especially important 

for complex study designs. 

Moreover, LCT demonstrates robustness when applied to various study designs, as it can analyze 

binary, univariate, and multivariate continuous outcomes measured at single or multiple time 

points. The method employs a shrinkage covariance matrix estimator to effectively manage 

challenges associated with high-dimensional data, thereby enhancing the reliability of analyses. 

Notably, LCT excels in identifying gene signatures relevant to dynamic biological processes, 

such as development and disease progression, by focusing on sets of genes rather than individual 

genes, ensuring that changes in gene expression are accurately captured. Additionally, LCT is 

well-suited for case/control studies that involve multiple binary or multi-category outcomes, as it 

assesses linear predictors directly on the log odds scale, thereby optimizing its performance in 

such scenarios (Dinu et al., 2021.). 
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2.5 LCT method and its formula  

In this study, we applied an extension of LCT for multiple continuous phenotypes considering 

within-gene correlations for functionally related gene sets and also incorporating correlations 

among multiple continuous phenotypes. 

Given a microarray study on n subjects, with measures on expressions of a pre-specified set of P 

genes X= (x1,…, xp)  and with measures on a group of q continuous phenotypes Y=(y1,…, yq). 

Assume that the columns in both X and Y have been centered and scaled across the n subjects. 

Here we want to test if there is a significant linear relationship between the set of genes X and 

the group of phenotypes Y. The hypothesis of interest is that the gene expressions in the pre-

specified gene set X are linearly independent to the phenotypes Y. This multivariate null 

hypothesis can be linearly expressed and univariately stated as 

 H0: There is no relationship between any linear combination of x1, …, xp and any linear 

combination of y1, …, yq.  

For the purpose of testing a linear relationship, a given linear combination of x1, …, xp can be 

written as Z (X, A) = a1x1 +⋯+ apxp, and a given linear combination of y1, …,yq can be written 

as Z(Y,B) = b1y1 +⋯+ bqyq where A ∈ Rp and B ∈ Rq represent the coefficient vectors of the ai's 

and bj's, respectively. Given two coefficient vectors A and B of the combination coefficients, to 

test if Z (X, A) is associated with Z (Y, B), we focus on the question if the two combinations are 

correlated. This is a standard correlation test, and a standard test statistic is based on the Pearson 

correlation between Z (X, A) and Z (Y, B), i.e., the Pearson correlation ρ = ρ(Z(X, A),Z(Y,B)) is 

commonly used. If both X and Y are normally distributed, then the statistic 

 t = ρ √(n − 2) / (1 −  ρ2) follows a student’s t-distribution with n sample and degrees of 

freedom n -2 under the null hypothesis. The same applies approximately if the observed values 

are not normal, but the sample size n is large enough. For testing the null hypothesis H0, we form 

the linear combinations of x1,…, xp and y1,…, yq having the highest absolute correlation, i.e., we 

choose coefficient vectors A and B to maximize the Pearson correlation between Z(X,A) and 

Z(Y,B). This yields the newly proposed version of the linear combination test (LCT) for multiple 

continuous phenotypes. 
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                                                   (1) 

  

 

Let ΣXX = cov(X,X) be the covariance matrix of X, whose (i,j)th entry is σij = cov(xi,xj).  

Similarly, let ΣYY = cov(Y,Y) and ΣXY = cov(X,Y) be the covariance matrix of Y and the 

covariance matrix between X and Y.  The above statistic can be written as 

 

 

                                  

                                                            (2)                

 

 

When high dimensionality of X and or dimensionality of Y is concerned, deal with the 

singularity of ΣXX and ΣYY very carefully especially when the numbers of gene set size is larger 

than the sample size, p > n. One possible solution to the singularity issue is to employ the 

shrinkage method of Schafer and Strimmer and replace ΣXX and ΣYY by their shrinkage versions 

Σ*
XX and Σ*

YY. The shrinkage covariance matrix Σ*
XX and its (i,j) th element σ*

ij are given by σ*
ij  

√σiiσjj, and γij can be computed according to the scheme γij = 1, if i = j, γij = ρij min(1, max(0, 1 

− λ*)), if 

i ≠ j, where ρij is the sample correlation between xi and xj, and the optimal λ* can be estimated by  

 

                                                                      (3)     

 

Then, we apply the shrinkage pooling technique to get the shrinkage version of the test statistic. 

 

                       

 

                                                                                         (4)                                                
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Regarding calculation of computational cost of (4), the right-hand side is a nonlinear 

programming problem which involves p + q parameters. It is worth noting that computing the 

right-hand side of (4) can be computationally expensive due to maximizing directly (or 

indirectly) the right-hand side of (4), especially when permutation is used to obtain the p-value of 

the test. To address the problem of computational efficiency, we take the strategy of using two 

groups of normalized orthogonal bases instead of using the original observation vectors X, Y. 

We perform the eigenvalue decompositions for the two shrinkage covariance matrices 

 Σ*
XX= UDXUT and Σ*YY = VDYVT and therefore obtain two groups of orthogonal basis vectors,  

𝑋 ̃= (x̃1, …., x̃p) = ( x1-�̄�, …., xp-�̄�)UDx
-1/2 and Ỹ= (ỹ1,….., ỹq) VDY

-1/2= (y1-ȳ, …, yq-ȳ); 

the test statistic of (4) can be expressed in the form of a ratio. 

 

 

                                                    (5) 

 

 

 

where α = DX
1/2 UTA, β = DY

1/2 VTB, and Σ �̃� Ỹ is the covariance matrix between 𝑋 ̃ and Ỹ, with 

its (i,j) entry being cov(x̃i, ỹj). 

 The optimization problem in (5) can be solved in two steps. Firstly, for a given β, find the 

optimal α, which is proportional to Σ �̃� Ỹ β; secondly, substitute the optimal α into (5), and find 

the global optimal β, which is proportional to the first eigenvector of the matrix ΣT
�̃� Ỹ Σ �̃� Ỹ 

corresponding to the largest eigenvalue. We note that the value of T2* equals to the largest 

eigenvalue of either the q × q matrix ΣT
�̃� Ỹ Σ �̃� Ỹ or the p × p matrix ΣT

Ỹ �̃� ΣỸ �̃�. The cost for 

getting the largest eigenvalue is low, provided min (p, q) is not big. 

The computational advantage is obvious when sample permutations are used to calculate the     

p-value of the test. Since sample permutation changes neither the correlation structure within 

gene sets nor the correlation structure within phenotypes, we don’t need to repeat the same 

eigenvalue decompositions of the two shrinkage covariance matrices in (4) for the permuted 

data, but only for the original one. In fact, after performing the eigenvalue decompositions for 
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the two shrinkage covariance matrices Σ*
XX and Σ*

YY and creating two groups of orthogonal 

basis vectors 𝑋 ̃ and Ỹ, we can perform permutations on Ỹ directly, instead of on the original 

phenol-type Y (Dinu et al., 2013; Wang et al., 2014). 

 

2.6 Continuous phenotypes prediction 

Following the normalization of the dataset, the Fisher test was used as a method of ranking genes 

to predict continuous phenotypes. The Fisher's ratio (FR) method of ranking is based on the 

gene's ability to distinguish between phenotype groups, using the variance within groups and the 

variance between groups (deAndrés-Galiana et al., 2016). 

This method was used to predict three continuous phenotypes associated with the innate immune 

system including innate immune system, Regulation of innate response, and antiviral response of 

innate immune system. We calculated FR values to rank the genes. Genes in the top ranks were 

then used to build a prediction model. 

 

 

2.7 KEGG LEGACY Catalog:  

Before conducting gene-set analysis, we need a dataset consisting of pre-defined gene sets. For 

this purpose, we obtained the KEGG_LEGACY catalog, which is part of the curated gene sets 

within the MSigDB C2 collection, from the following link: https://www.gsea-

msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP:KEGG_LEGACY 

The C2 collection of the Molecular Signatures Database contains two main categories for 

organizing gene sets, which are based on Chemical and Genetic Perturbations (C2:CPG) and 

Canonical Pathways (C2:CP). The pathway gene sets are sourced from various online databases, 

including BioCarta, KEGG MEDICUS, Pathway Interaction Database, Reactome, SigmaAldrich, 

Signaling Gateway, Super Array SABiosciences, WikiPathways, and the KEGG legacy sets. 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a vital resource for understanding 

the functions of biological systems at different levels, ranging from cellular processes to entire 

ecosystems. It achieves this by collecting and integrating molecular-level data through 

specialized databases, particularly leveraging extensive datasets derived from genome 

sequencing and high-throughput experimental techniques. The KEGG model is designed to 

provide detailed conceptual information about biological systems and includes 16 integrated 

https://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP:KEGG_LEGACY
https://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP:KEGG_LEGACY
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databases categorized into four main areas: (a) systems information, (b) genomic information, (c) 

chemical information, and (d) health information. The KEGG PATHWAY database falls under 

the category of systems information (http://www.genome.jp/kegg/). It consists of manually 

developed pathway maps that represent our understanding of molecular interactions, reaction 

networks, and relationships among various biological processes, cellular functions, and 

organismal systems. The KEGG PATHWAY categorizes this information into seven clusters, 

namely, metabolism, genetic information processing, environmental information processing, 

cellular processes, organismal systems, human disease, and drug development clades. The gene 

sets that map to the Canonical Pathways are taken directly from the KEGG pathway database, 

which has 186 gene sets grouped into these same seven clusters. The synthesis of information 

from several different sources can help improve our understanding of the molecular functions 

supporting biological systems. 

 

2.8 Proposed method 

Step 1 

First, we extracted the data related to the measurement of genes from our cases and controls from 

the dataset GSE195938, and we normalized it using the quantile normalization to make it ready 

for analysis. Then we used The Fisher's ratio (FR) method of ranking to predict three continuous 

phenotypes associated with the innate immune system. 

Step 2: 

Then we run the univariate versions of LCT for each of the continuous phenotype’s expressions 

considering the 186 gene sets of KEGG LEGACY catalog to find out if there is any associations 

between the expression of any gene sets and our intended phenotypes or not. 

Step 3:  

After that, we run the multivariate version of LCT for the combination of all three phenotypes,  

three times, and each time we assigned different weights to the values obtained for each 

phenotype. By assigning higher weights to the phenotype of the antiviral response of the innate 

http://www.genome.jp/kegg/
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immune system, we aimed to focus more on this phenotype as the outcome of our analysis so 

that we could identify gene sets that play a greater role in its expression. 

Table 2.1 The way of assigning weights to the phenotypes in each of the analyses. 

Table 0-1  Table 2.1 The way of assigning weights to the phenotypes in each of the analyses. 

 

 

 Step 4:  

Our goal in assigning different weights to each phenotype in the outcome is to see if these 

weighting systems can help us identify a state that can better differentiate between cases and 

controls or not. To answer this question, we combined the P-values of cases and controls for each 

of the significant gene sets using the following formula: 

 

log {(1-Pcase) * Pcontrol } / { Pcase * (1-Pcontrol) } 

 

 If the values in one column were greater than those in another column, it indicated that the one 

of the weighting systems performed better in differentiating between cases and controls. 

 

 

  Phenotype  

Weighting 

system 

Innate immune 

system 

Regulation of innate immune 

response 

Antiviral innate immune 

response 

1-1-1 1 1 1 

1-2-3 1 2 3 

1-2-4 1 2 4 
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2.9 Software and Packages   

All statistical computations were conducted utilizing R software (version 4.3.2). Free R packages 

for conducting the LCT for continuous phenotypes can be accessed at 

https://sites.ualberta.ca/~yyasui/homepage.html. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://sites.ualberta.ca/~yyasui/homepage.html
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Chapter3: Results 
 

3.1 Demographic and clinical characteristics 

In this study, we used gene expression data of 16 term infants. Eight infants were classified as 

COVID-19 group, whereby the infants were exposed to COVID-19 during pregnancy and eight 

infants were classified as Control group whereby the infants were born before the pandemic      

(n =6) or maternal COVID-19 antibody negative at the time of delivery during the pandemic           

(n = 2). The median time of COVID-19 infection diagnosed was 89 days (range 1–238 days) 

before delivery. Two mothers were symptomatic at the time of delivery, one of which 

experienced severe symptoms. The median gestational age of COVID-19 diagnosis was 24 

weeks (range 5–37 weeks). Clinical and demographic data shown in Table 1 

Table 3.1 Demographic and clinical characteristics of cases and controls (Gayen Nee’ Betal et 

al., 2022) 

Table 0-1 Table 3.1 Demographic and clinical characteristics of cases and controls (Gayen Nee’ Betal et al., 2022) 

 

Here we see there were no significant differences in birth weight, gestational age, sex, maternal 

diabetes, chronic hypertension, preeclampsia, or small for gestational age between the two 

groups. 

 COVID-19 

exposure 

(N = 8) 

Control  

(N = 8) 

p-value 

Birth weight in Kg (mean ± SD) 3.14 ± 0.63 2.98 ± 0.56 0.6 

Gestational age in weeks (mean ± SD) 38.1 ± 1.3 38.5 ± 1.4 0.6 

Male sex n (%) 5 (62.5) 6 (75.0) 1.0 

Maternal diabetes n (%) 1 (12.5) 0 (0) 1.0 

Chronic hypertension n (%) 1 (12.5) 1 (12.5) 1.0 

Preeclampsia n (%) 1 (12.5) 0 (0) 1.0 

Small for gestational age n (%) 1 (12.5) 1 (12.5) 1.0 

Healthy neonate n (%) 8 (100) 8 (100) 1.0 
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3.2 Univariate analysis results of results 

After normalization of our gene expression data, the univariate version of LCT was performed 

for each of the three continuous phenotypes considering each of the 186 gene sets in the KEGG 

LEGACY catalog to evaluate their association with the expression of each of the phenotypes as 

outcomes.  

 

Tables 3.2, 3.3 and 3.4 show the significant gene sets associated with the three phenotypes of 

innate immune system, regulation of innate immune response and antiviral innate immune 

response with the p-values less than or equal to 0.05.  

 

Table 3.2 Univariate LCT results of KEGG LEGACY Gene sets for the innate immune system 

phenotype with p-values less than 0.05 

 Gene set Name  size p-value 

1 KEGG_PROTEIN_EXPORT  23 0.0001 

2 KEGG_THYROID_CANCER 29 0.0001 

3 KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_HEPARAN_SU

LFATE 
26 0.001 

4 KEGG_SULFUR_METABOLISM 12 0.001 

5 KEGG_OTHER_GLYCAN_DEGRADATION 15 0.003 

6 KEGG_PROPANOATE_METABOLISM 32 0.003 

7 KEGG_CELL_CYCLE 124 0.004 

8 KEGG_DILATED_CARDIOMYOPATHY 88 0.004 

9 KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 81 0.005 

10 KEGG_NITROGEN_METABOLISM 23 0.005 

11 KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 40 0.006 

12 KEGG_N_GLYCAN_BIOSYNTHESIS 46 0.006 

13 KEGG_NON_HOMOLOGOUS_END_JOINING 13 0.006 

14 KEGG_PARKINSONS_DISEASE 109 0.006 
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15 KEGG_PRION_DISEASES 35 0.006 

16 KEGG_LYSINE_DEGRADATION 43 0.007 

17 KEGG_CARDIAC_MUSCLE_CONTRACTION 72 0.008 

18 KEGG_OXIDATIVE_PHOSPHORYLATION 112 0.008 

19 KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 43 0.008 

20 KEGG_HUNTINGTONS_DISEASE 168 0.011 

21 KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 123 0.013 

22 KEGG_FOLATE_BIOSYNTHESIS 11 0.016 

23 KEGG_PROXIMAL_TUBULE_BICARBONATE_RECLAMATION 21 0.02 

24 KEGG_ARACHIDONIC_ACID_METABOLISM 55 0.026 

25 KEGG_ABC_TRANSPORTERS 42 0.028 

26 KEGG_HOMOLOGOUS_RECOMBINATION 28 0.029 

27 KEGG_PORPHYRIN_AND_CHLOROPHYLL_METABOLISM 31 0.037 

28 KEGG_GLYCOSYLPHOSPHATIDYLINOSITOL_GPI_ANCHOR_BI

OSYNTHESIS 
24 0.038 

29 KEGG_BETA_ALANINE_METABOLISM 22 0.044 

30 KEGG_SPHINGOLIPID_METABOLISM 38 0.048 

 

Table 3.2 shows that the expressions of 30 gene sets of KEGG LEGACY catalog are 

significantly associated with the innate immune system continuous phenotype. 
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Table 3.3 Univariate LCT results of KEGG LEGACY Gene sets for the regulation of innate 

immune response continuous phenotype with p-values less than 0.05 

Table 3.3 Univariate LCT results of KEGG LEGACY Gene sets for the regulation of innate immune response continuous phenotype 
with p-values less than 0.05 

Table 3.3 shows that the expressions of 8 gene sets of KEGG LEGACY catalog are significantly 

associated with the regulation of innate immune response phenotype. 

 

 

 

 

 

 

 

 

 

 

 

 Gene set Name  size p-value 

1 KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 67 0.017 

2 KEGG_ASTHMA 25 0.019 

3 KEGG_O_GLYCAN_BIOSYNTHESIS 28 0.03 

4 KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM 31 0.033 

5 KEGG_ABC_TRANSPORTERS 42 0.036 

6 KEGG_THYROID_CANCER 29 0.037 

7 KEGG_BLADDER_CANCER 41 0.044 

8 KEGG_GLYCEROLIPID_METABOLISM 47 0.045 
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Table 3.4 Univariate LCT results of KEGG LEGACY Gene sets for the antiviral innate immune 

response continuous phenotype with p-values less than 0.05 

Table 3.4 Univariate LCT results of KEGG LEGACY Gene sets for the antiviral innate immune response continuous phenotype with 

p-values less than 0.05 

 

 According to the Table 3.4, the expressions of 3 gene sets of KEGG LEGACY catalog are 

significantly associated with the antiviral innate immune response continuous phenotype 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Gene set Name  size p-value 

1 KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 40 0.011 

2 KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCT

ION 
44 0.036 

3 KEGG_ASTHMA 2 0.036 
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3.3 Multivariate analysis results  

 

Following running univariate LCT analysis, we run the multivariate LCT analysis for the 

combination of all three phenotypes with giving different weights to each phenotype in three 

analyses. 

Tables 3.5, 3.6 and 3.7 show the significant gene sets of KEGG LEGACY catalog associated 

with the combination of the three phenotypes of innate immune system, regulation of innate 

immune response and antiviral innate immune response with the given weights of 1-1-1, 1-2-3, 

1-2-4 with the p-values less or equal to 0.05. 

Table 3.5 Multivariate LCT results of KEGG LEGACY Gene sets for the combination of the three 

phenotypes of innate immune system, regulation of innate immune response and antiviral innate 

immune response with the given weights of 1-1-1 with p-values less than 0.05  

Table 3.5 Multivariate LCT results of KEGG LEGACY Gene sets for the combination of the three phenotypes of innate immune 

system, regulation of innate immune response and antiviral innate immune response with the given weights of 1-1-1 with p-
values less 

 

According to the Table 3.5, there are 11 gene sets whose expressions are significantly associated 

with the combination of the three phenotypes of innate immune system, regulation of innate 

 Gene set Name  size p-value 

1 KEGG_ASTHMA 25 0.011 

2 KEGG_ABC_TRANSPORTERS 42 0.014 

3 KEGG_FOLATE_BIOSYNTHESIS 11 0.026 

4 KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS 10 0.026 

5 KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM 31 0.027 

6 KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 40 0.031 

7 KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_KERATAN_SU

LFATE 
15 0.033 

8 KEGG_LYSINE_DEGRADATION 43 0.033 

9 KEGG_GLYCEROLIPID_METABOLISM 47 0.036 

10 KEGG_N_GLYCAN_BIOSYNTHESIS 46 0.037 

11 KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 123 0.039 
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immune response and antiviral innate immune response in the first weighting system with the 

given weights of 1-1-1 

 

Table 3.6 Multivariate LCT results of KEGG LEGACY Gene sets for the combination of the three 

phenotypes of innate immune system, regulation of innate immune response and antiviral innate 

immune response with the given weights of 1-2-3 with p-values less than 0.05  

Table 3.6 Multivariate LCT results of KEGG LEGACY Gene sets for the combination of the three phenotypes of innate immune 
system, regulation of innate immune response and antiviral innate immune response with the given weights of 1-2-3 with p-
values less 

 

According to the Table 3.6, there are 11 gene sets whose expressions are significantly associated 

with the combination of the three phenotypes of innate immune system, regulation of innate 

immune response and antiviral innate immune response in the second weighting system with the 

given weights of 1-2-3 

 

 Gene set Name  size p-value 

1 KEGG_ASTHMA 25 0.013 

2 KEGG_ABC_TRANSPORTERS 42 0.014 

3 KEGG_OTHER_GLYCAN_DEGRADATION 15 0.02 

4 KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_KERATAN_SU

LFATE 
15 0.023 

5 KEGG_FOLATE_BIOSYNTHESIS 11 0.027 

6 KEGG_GLYCEROLIPID_METABOLISM 47 0.028 

7 KEGG_LYSINE_DEGRADATION 43 0.028 

8 KEGG_N_GLYCAN_BIOSYNTHESIS 46 0.031 

9 KEGG_AMINOACYL_TRNA_BIOSYNTHESI 40 0.041 

10 KEGG_CIRCADIAN_RHYTHM_MAMMAL 13 0.041 

11 KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM 31 0.042 
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Table 3.7 Multivariate LCT results of KEGG LEGACY Gene sets for the combination of the three 

phenotypes of innate immune system, regulation of innate immune response and antiviral innate 

immune response with the given weights of 1-2-4 with p-values less than 0.05  

Table 3.7 Multivariate LCT results of KEGG LEGACY Gene sets for the combination of the three phenotypes of innate immune 

system, regulation of innate immune response and antiviral innate immune response with the given weights of 1-2-4 with p-
values less 

 

According to the Table 3.6, there are 11 gene sets whose expression are significantly associated 

with the combination of the three phenotypes of innate immune system, regulation of innate 

immune response and antiviral innate immune response in the third weighting system with the 

given weights of 1-2-4. 

 

3.4 Which weighting System?  

To find out which weighting system is more efficient to differentiate the cases and controls, we 

calculate the difference of logits cases’ p-values and controls’ p-values. 

 

 Gene set Name  size p-value 

1 KEGG_ASTHMA 25 0.014 

2 KEGG_ABC_TRANSPORTERS 42 0.018 

3 KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_KERATAN_SU

LFATE 
15 0.022 

4 KEGG_LYSINE_DEGRADATION 43 0.030 

5 KEGG_OTHER_GLYCAN_DEGRADATION 15 0.030 

6 KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS 10 0.031 

7 KEGG_N_GLYCAN_BIOSYNTHESIS 46 0.034 

8 KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM 31 0.035 

9 KEGG_FOLATE_BIOSYNTHESIS 11 0.039 

10 KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 123 0.039 

11 KEGG_CIRCADIAN_RHYTHM_MAMMAL 13 0.040 

12 KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 40 0.042 
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Table 3.8 Comparing differences of logits of cases and controls p-values 

Table 3.8 Comparing differences of logits of cases and controls p-values 

 

 

 

 

 

 Weighting System 

 1-1-1 1-2-3 1-2-4 

 Gene set name GS 

size 

Case p Control p Diff Case p Control p Diff Case p Control Diff 

1 KEGG_ABC_TRANSPORTERS 42 0.014 0.071 88.79 0.014 0.097 80.63 0.018 0.076 67.76 

2 KEGG_AMINOACYL_TRNA_BIOSYNTHESIS 40 0.031 0.084 38.36 0.041 0.107 27.00 0.042 0.087 28.14 

3 KEGG_ASTHMA 25 0.011 0.104 100.22 0.013 0.117 81.67 0.014 0.099 80.10 

4 KEGG_FOLATE_BIOSYNTHESIS 11 0.026 0.065 49.30 0.027 0.076 45.33 0.039 0.077 31.41 

5 KEGG_GLYCEROLIPID_METABOLISM 47 0.036 0.066 35.58 0.028 0.076 43.73 0.031 0.05 44.64 

6 KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM 31 0.027 0.32 27.60 0.042 0.332 17.73 0.035 0.337 21.02 

7 KEGG_GLYCOSAMINOGLYCAN_BIOSYNTHESIS_KERATAN_SULFATE 15 0.033 0.168 28.74 0.023 0.162 41.53 0.022 0.179 41.90 

8 KEGG_LYSINE_DEGRADATION 43 0.033 0.309 23.00 0.028 0.308 27.03 0.03 0.318 24.96 

9 KEGG_N_GLYCAN_BIOSYNTHESIS 46 0.037 0.065 34.78 0.031 0.057 43.02 0.034 0.068 37.31 

10 KEGG_OTHER_GLYCAN_DEGRADATION 15 0.022 0.31 34.14 0.02 0.303 37.82 0.03 0.306 25.33 

11 KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 123 0.039 0.056 34.47 0.035 0.06 37.60 0.039 0.057 34.29 

12 KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS 10 0.026 0.809 20.84 0.028 0.797 19.50 0.031 0.799 17.83 
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Figure 3.1 shows the three weighting systems perform similarly in differentiating p-values of 

cases and controls. Therefore, the weighting system did not perform efficiently in this regard.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

Chapter 4: Discussion, Strengths and Limitations, Further studies 

 

4.1 Discussion 

The maternal-fetal interface represents a critical period in which the developing fetus is exposed 

to various external and internal factors that can profoundly influence its physiological 

development, particularly in the context of the immune system. New research is establishing a 

relationship between immune disorders and maternal immune activation (MIA), particularly 

maternal infections during pregnancy. A meta-analysis examined the influence of maternal 

poly(I:C) exposure during mid-gestation, which has been shown to enhance the perinatal 

immune response, protected up to weaning after delivery, but it did not result in evidence of a 

postnatal inflammatory response. Maternal infections such as COVID-19 during pregnancy are 

known to elicit a maternal immune response that can have ramifications for offspring health after 

delivery. These maternal infections have been linked to abnormal immunity after birth in 

children, including type 1 diabetes, allergic diseases, and neurodevelopmental disorders  .

Therefore, it is essential to predict the implications of maternal COVID-19 infection on long-

term health outcomes for the child (Shimizu et al., 2023). Our results indicate that, Maternal 

COVID-19 may change multiple pathways in umbilical cord blood cells associated with some 

immune disorders like asthma and systemic lupus erythematosus (SLE) alongside some amino 

acids biosynthesis and metabolism, which in turn could be a marker of immune-mediated 

disorders and increase the risk of other diseases for the developing fetus. 

Asthma and Systemic Lupus Erythematosus 

Prior research has established that asthma, which is an allergic disease, operates by complex 

pathways that encompass pre-and postnatal risk factors, which are comprised of genetic factors 

and environmental influences from a maternal or pediatric perspective, which include infectious 

agents from human rhinoviruses and respiratory syncytial virus. Prenatal maternal factors such as 

maternal viruses/bacterial infections, maternal allergen exposures, tobacco smoke and air 

pollution affect epigenetic pathways that influence airway function, mucosal immune responses, 

systemic immune responses, the development of atopic sensitization in children. Generations of 

genetic factors along with the prenatal impact of maternal inflammatory factors lead to 

immunological hyper-sensitivity and additional allergic diseases such as asthma, eczema, and 
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hay fever. Our results show that MIA had an effect on the expression of Asthma pathway, which 

could be a marker of future development of allergic disorders in the children exposed to COVID-

19 infection during gestation period (Shimizu et al., 2023). 

Systemic lupus erythematosus (SLE) is an autoimmune disease beginning with genetic 

predisposition, where certain genetic variations influence immune system functioning, especially 

in genes related to toll-like receptors (TLRs). Environmental triggers, such as ultraviolet (UV) 

radiation and infections (e.g., Epstein-Barr virus), can activate the immune system and stimulate 

autoreactive B cells, leading to increased self-antigen recognition. Hyperactivation of B cells is a 

hallmark of SLE, resulting in the production of autoantibodies targeting various self-antigens. 

Dysfunction of regulatory T cells (Tregs) contributes to this B cell activation, as they fail to 

adequately suppress immune responses.  

The formation of immune complexes occurs when these autoantibodies bind to self-antigens, 

which then deposit in tissues such as the kidneys and skin. This deposition activates the 

complement system and elicits inflammatory responses, recruiting immune cells like neutrophils 

and macrophages. These immune cells release reactive oxygen species and cytokines, leading to 

tissue inflammation and damage (Choi et al., 2012). 

Another study examined a cohort of pregnant women who experienced various infections, such 

as viral infectious (influenza, respiratory syncytial virus (RSV) and cytomegalovirus) or bacterial 

infections (such as chorioamnionitis and Group B Streptococcus) or parasitic infections 

(Toxoplasmosis). Researchers collected biological samples from both the mothers and their 

newborns to analyze changes in gene expression. They utilized techniques like RNA sequencing 

and microarray analysis to measure the expression levels of genes in the KEGG pathways. Their 

findings showed that the maternal immune system in response to the infections, releases 

inflammatory cytokines and chemokines to defense the body against pathogens. These 

inflammatory mediators such as interleukins such as such IL-1, IL-2, IL-7, IL-10 and tumor 

necrosis factor-alpha (TNF-α) can cross the placenta influencing fetal development and modulate 

the expression of various genes in the developing fetal immune system. This exposure can lead 

to dysregulation of immune responses, creating a predisposition to conditions like asthma or 

systemic lupus erythematosus. Additionally, the inflammatory environment created by maternal 

infections may trigger epigenetic modifications, such as DNA methylation and histone 
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modification. These changes can potentially result in long-lasting effects on the child's immune 

regulation. Maternal infections can also disrupt normal developmental signaling pathways 

crucial for the maturation of the immune system in the fetus, leading to improper development of 

immune cells, such as T-helper cells, which play a significant role in allergic reactions and 

asthma (Osman et al., 2024; Shimizu et al., 2023; Suleri et al., 2024). 

An analysis of the metabolite profiles of 7,219 patients with systemic lupus erythematosus (SLE) 

and 15,991 control patients was performed. Levels of metabolites related to the KEGG pathway 

of aminoacyl-tRNA biosynthesis were observed to differ significantly in the case cohort 

compared to controls that illustrates the role of aminoacyl-tRNA in the function of immune 

system (Yu et al., 2022). 

Aminoacyl tRNA pathway is responsible for regulating the production of Aminoacyl-tRNA 

synthetases (ARSs). Aminoacyl-tRNA synthetases are enzymes that play a crucial role in protein 

synthesis by attaching the correct amino acid to its corresponding tRNA molecule. In the context 

of immune regulation, ARSs can act as signaling molecules, influencing the development, 

activation, and function of immune cells. For instance, certain ARSs, such as tryptophanyl-tRNA 

synthetase (WRS), can be secreted by cells and act as danger signals, triggering the release of 

inflammatory cytokines and type I interferons (IFNs) by immune cells. This response is 

particularly important in antiviral immunity, as type I IFNs play a critical role in inhibiting viral 

replication and activating antiviral defenses. In addition to their role in immune regulation, ARSs 

can also directly contribute to antiviral responses. Some ARSs, such as glutamyl-prolyl tRNA 

synthetase (EPRS), can be phosphorylated in response to viral infection, leading to the activation 

of antiviral signaling pathways. This phosphorylation event can enhance the production of type I 

IFNs and other antiviral factors, ultimately contributing to the control of viral infection. In 

autoimmune diseases, ARSs are often targeted by the immune system as if they were foreign 

invaders. This can lead to inflammation and damage to tissues. ARSs can also contribute to the 

development of autoimmune diseases by influencing immune responses, such as by attracting 

immune cells to the site of inflammation. Therefore, any alterations in the expression of genes 

related to aminoacyl-tRNA biosynthesis can contribute to development of any autoimmune 

diseases (Nie et al., 2019).  
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Amino acids biosynthesis and metabolism  

Proteins are essential components required for the efficient functioning of the immune system, as 

they play critical roles in processes such as cell signaling, antibody production, and the formation 

of immune cell structures. These proteins are synthesized from amino acids, and any alterations 

in amino acid metabolism can lead to immune dysfunction. The COVID-19 infection has been 

shown to significantly disrupt amino acid biosynthesis, impacting crucial metabolic processes in 

the human body. Studies have shown that patients with COVID-19 often present altered levels of 

certain amino acids, such as glutamine, proline, tryptophan, Branched-Chain Amino Acids 

(Valine, leucine, and isoleucine) and tyrosine. These alterations in amino acid concentrations are 

primarily due to the systemic inflammatory response, metabolic changes associated with the viral 

infection, and the increased demands on the body's resources to mount an effective immune 

response. The dysregulation of amino acid levels can impair protein synthesis and other 

metabolic pathways, contributing to the clinical manifestations of the disease and potentially 

leading to complications such as muscle wasting and immune dysfunction (Atila et al., 2021; 

Calder, 2006; Masoodi et al., 2022). 

In a study comparing 50 COVID-19 patients and 26 healthy controls, researchers conducted a 

metabolomic analysis that revealed significant alterations in metabolic pathways related to 

immune response and inflammation. Key pathways affected levels of cytokines such as 

interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in COVID-19 patients, indicating 

an exaggerated inflammatory response, which significantly impacts the biosynthesis of several 

amino acids (B.-W. Li et al., 2021; T. Zhang et al., 2022). 

Our study has shown that COVID-19 infection during pregnancy can result in changes to the 

expression of gene sets associated with amino acid metabolism pathways, potentially impacting 

the immunologic functions in the newborns’ bodies.  

Valine, isoleucine and leucine biosynthesis 

In the study investigating the effects of maternal infections during pregnancy on the expression 

of genes linked to the biosynthesis of branched-chain amino acids (BCAAs), a total of 200 

pregnant women, who experienced documented viral or bacterial infections (such as influenza 

and urinary tract infections) during their pregnancy, were included in the cohort analysis. Women 



47 
 

were recruited from prenatal clinics and maternity wards, with a thorough screening process to 

confirm the presence of infections. The findings of this study indicated that maternal infections 

led to altered expression of genes involved in the biosynthesis pathways of these essential 

branched-chain amino acids (BCAAs). The gene expression profiles suggested reduced activity 

in the pathways responsible for the synthesis of valine, isoleucine, and leucine in the newborns 

which can have significant implications for the innate immune system of the child through 

influencing lymphocyte proliferation, metabolism, and response to infection. A deficiency in the 

biosynthesis of these amino acids may impair the child's immune response and make them more 

susceptible to infections and possibly autoimmune diseases later in life (Kumar et al., 2022; S. 

Zhang et al., 2017). 

Branched-chain amino acids (BCAAs), which include isoleucine, leucine, and valine, play 

crucial roles in various physiological processes, particularly in the regulation and functioning of 

the immune system. Leucine plays a crucial role by activating the mTOR (mammalian target of 

rapamycin) signaling pathway, which is essential for cell growth, proliferation, and metabolism 

of natural killer (NK) cells of innate immunity, thereby enhancing the immune response to 

pathogens. Additionally, leucine influences the production of cytokines, key signaling molecules 

in the regulation of immune system, and enhances the secretion of pro-inflammatory cytokines 

(e.g., IL-2, TNF-α) from T cells, which facilitates communication among immune cells and 

strengthens the overall immune attack against infections. 

Isoleucine serves as an energy substrate for immune cells, particularly during times of 

heightened immune activity, helping them respond effectively to pathogens and reduction in its 

production leads to immune cells dysfunction. 

Valine is essential for protein synthesis in immune cells, maintaining the structural integrity and 

functionality of these cells during an immune response. Valine is also involved in nutrient 

sensing pathways that regulate metabolic processes in immune cells and helps modulate mTOR 

signaling, similar to leucine, though its effects may be less direct. By influencing nutrient 

availability, valine ensures that immune cells function efficiently in response to pathogens. The 

interaction among isoleucine, leucine, and valine creates a synergistic effect that supports a 

robust immune response. Adequate levels of all three amino acids are crucial for maintaining 
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immune homeostasis, aiding in the balance between pro- and anti-inflammatory responses 

(Allman et al., 2021; Prameswari et al., 2022). 

In another study comparing the metabolomic profiles of type 1 diabetes patients with healthy 

individuals, it was observed that the expression of the KEGG pathway for valine, isoleucine, and 

leucine was increased, leading to elevated levels of these amino acids. This increase plays a role 

in exacerbating inflammation through enhanced activity of signaling pathways and the 

production of inflammatory cytokines, resulting in greater damage to pancreatic beta cells, which 

are responsible for insulin production. Abnormalities in amino acid levels may affect T-cell 

activation and differentiation. Since T1D involves an autoimmune attack on pancreatic beta cells 

by activated T-cells, any alteration in the metabolism or signaling pathways influenced by these 

amino acids could potentially impact the autoimmune response (Holeček, 2021; Yu et al., 

2022).    

Regarding Glycine, serine and threonine metabolism, in a study where pregnant mice were 

subjected to immune activation, offsprings exhibited significant alterations in the expression 

profiles of genes associated with the metabolism of glycine, serine, and threonine which impacts 

the immune system functionality. Serine is crucial for the synthesis of phospholipids and certain 

neurotransmitters, both of which are essential for the proper functioning of immune cells. 

Insufficient serine levels can impair the development and activation of T cells and B cells, 

diminishing the adaptive immune response. Additionally, glycine has been found to exert anti-

inflammatory effects and modulate immune responses, acting as an inhibitory neurotransmitter in 

the central nervous system. An imbalance or reduced availability of glycine can contribute to 

inflamed states within the body, making individuals more susceptible to autoimmune diseases 

and chronic inflammatory conditions later in life. This was demonstrated in a study of patients 

suffering from Crohn’s disease, which is a type of inflammatory bowel disease (IBD) causes 

chronic inflammation of the gastrointestinal tract, and leading to a variety of symptoms and 

complications. patients with Crohn’s disease had different metabolite signatures comparing to 

healthy subjects due to alteration in the expression of KEGG pathway of glycine, serine and 

threonine metabolism (Osman et al., 2024; Shimizu et al., 2023; Zhao et al., 2023). 

Lysine degradation  

In the context of maternal inflammation and its effects on offspring, the role of lysine 
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degradation, particularly in relation to histone modifications, is significant. A study focused on 

how Maternal inflammation induced by polyІ:C injection in pregnant mice can lead to epigenetic 

changes, including the hypoa-cetylation of lysine residues on histones. This process involves the 

removal of acetyl groups from lysine, which typically results in a more compact chromatin 

structure and reduced gene expression. These epigenetic modifications can influence the 

expression of genes that are crucial for immune function and neurodevelopment and can lead to 

decreased activity of genes associated with synaptic transmission and neuronal development, 

which may subsequently affect proper regulation of immune responses, manifesting as either an 

increased susceptibility to infections or the development of autoimmune disorders. Additionally, 

alterations in the production of cytokines, such as interleukin-6, may lead to abnormal cytokine 

profiles, contributing to chronic inflammation or immune dysregulations (Tang et al., 2013). 

 

Another dysregulated pathway is associated to ABC transporters which are a superfamily of 

transmembrane proteins that play a crucial role in maintaining cellular homeostasis by 

transporting a wide variety of substrates across cell membranes. They are essential for various 

physiological processes, including detoxification, nutrient uptake, and immune defense. One of 

the key functions of ABC transporters in the immune system is to regulate the influx and efflux 

of molecules that can trigger or modulate immune responses, such as cytokines and chemokines, 

out of cells, thereby limiting inflammation. They can also transport antigens into antigen-

presenting cells, initiating an immune response. 

It has been shown that the expression of related gene sets in patients with active rheumatoid 

arthritis (RA) is different from healthy controls. ABC transporters have been implicated in the 

pathogenesis of RA. MDR-ABC transporters, a specific ABC transporter, transport various 

endobiotics produced by the cells that play important roles in cell proliferation, cell migration, 

angiogenesis, and inflammation. These processes are all involved in the pathogenesis of RA. For 

example, ABC transporters can transport inflammatory mediators, such as cytokines and 

chemokines, out of cells, thereby limiting inflammation. However, in RA, the dysregulation of 

these transporters can lead to an imbalance in the immune response, contributing to the chronic 

inflammation characteristic of the disease (Shapiro, 2021). 
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In another study, researchers investigated the role of P-glycoprotein (P-gp) as an ABC transporter 

in Multiple Sclerosis (MS), as an autoimmune disease. They used mouse models and found that 

knockout mice, which lack P-gp, exhibited fewer clinical signs of EAE (Experimental 

Autoimmune Encephalomyelitis), an animal model of MS, compared to wild-type mice. These 

findings indicated that P-gp plays a significant role in regulating immune responses and the 

function of dendritic cells (DCs). Researchers observed that the function of DCs in the knockout 

mice was severely impaired, leading to reduced T cell responses and decreased brain 

inflammation. Additionally, they demonstrated that P-gp is essential for the secretion of pro-

inflammatory cytokines such as TNF-α and IFN-γ, and that the addition of these cytokines could 

compensate for the impaired DC functions. These results suggest that ABC transporters, 

particularly P-gp, can act as key regulators in immune responses and autoimmune diseases like 

MS (Kooij et al., 2009). 

 

Folate biosynthesis 

Folate is implicated in the development of several immune-related diseases. Low levels of folate 

have been associated with chronic inflammatory conditions, such as inflammatory bowel disease 

and rheumatoid arthritis. In these diseases, inadequate folate contributes to the pathogenesis by 

impairing DNA stability and influencing immune cell function. Additionally, folate deficiency 

can lead to elevated homocysteine levels, which are linked to endothelial dysfunction and 

increased inflammation, further exacerbating immune-related diseases (Jones et al., 2019). 

Glycosaminoglycans biosynthesis 

Glycosaminoglycans (GAGs) including keratan sulfate are crucial components of the immune 

system, playing a vital role in modulating various aspects of immune cell function and 

inflammation. They act as adhesion molecules for immune cells, facilitating their migration to 

sites of inflammation and enhancing their recruitment by interacting with chemokines. GAGs act 

on antigen-presenting cells (APCs) like dendritic cells bind to antigens, facilitating their 

processing and presentation to T cells, initiating an adaptive immune response. They can also 

modulate the inflammatory response by interacting with inflammatory mediators like cytokines 

and chemokines, either promoting or suppressing inflammation depending on the specific GAG 
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and its interaction with other molecules. GAGs can bind to complement proteins, influencing the 

activation and regulation of the complement cascade, a crucial part of the innate immune 

response. Additionally, they contribute to the barrier function of epithelial tissues, preventing the 

entry of pathogens and maintaining tissue integrity.  

In a study examining the role of GAGs in metastatic clear cell renal cell carcinoma (mccRCC), 

researchers found that the GAG profiles of mccRCC patients were markedly distinct from those 

of healthy individuals. Specifically, mccRCC patients exhibited an enrichment of keratan sulfate 

as well as 6-O-sulfated heparan sulfate, in their plasma. This finding suggests a potential link 

between altered GAG composition and the progression of mccRCC (Gatto et al., 2016). 

Glycans metabolism 

A study discussed the crucial roles of glycans and glycopeptides in the immune system and 

immune-related diseases. Glycans are sugar chains attached to proteins, and glycopeptides are 

combinations of glycans and peptides. Zhang et al. in their article highlighted the changes in 

glycosylation patterns, particularly in N-glycans and O-glycans, are associated with various 

immune-related diseases, including autoimmune disorders, leukemia, and infectious diseases. N-

glycans, typically attached to asparagine in proteins, are implicated in autoimmune diseases like 

rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). In these diseases, reduced 

levels of galactosyltransferase lead to increased accumulation of glycoforms of IgG (IgG0). 

These glycoforms, with exposed terminal GlcNAc residues, are recognized by the lectin 

complement pathway, contributing to inappropriate activation of the innate immune system. This 

study also illustrated the role of glycans in the innate immune system. Glycans act as pattern 

recognition receptors (PRRs) that recognize specific glycan structures on pathogens. This 

recognition triggers the activation of innate immune responses, leading to cytokine production 

and the recruitment of other immune cells. (X.-L. Zhang, 2006). 

In summary, analyzing the expression of KEGG canonical pathways while accounting for innate 

immune system phenotypes as an outcome resulted in identification of altered expressed 

pathways contributing to other immune disorders and diseases like allergies, autoimmune 

diseases and asthma. 
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4.2 Strengths of the study 

In the present study, our emphasis was placed on conducting an analysis at the gene set level, 

deliberately stepping away from the individual gene analysis traditionally performed by previous 

authors. This strategy of gene set level analysis presents numerous advantages when it comes to 

interpreting high-dimensional gene expression datasets. By focusing on specifically defined sets 

of functionally associated genes rather than examining single genes, gene set analysis facilitates 

a more biologically relevant interpretation of intricate datasets. This method enables a more 

expansive perspective by taking into account the collective activity of genes within biological 

pathways or functional modules. It has the capacity to reveal subtle, yet significantly coordinated 

shifts in gene expression that might not be captured if one were to analyze individual genes 

independently. Furthermore, gene set analysis strengthens statistical power by combining 

information from multiple genes, effectively diminishing noise and the variability that are 

inherent in high-dimensional datasets. 

The importance of gene set level analysis extends to its pivotal role in identifying potential 

therapeutic targets and preventive approaches for a variety of diseases. By examining the 

collective behavior of functionally related genes within biological frameworks or processes, this 

analysis can pinpoint key pathways that exhibit dysregulation in disease contexts. Such 

dysregulated pathways present viable targets for therapeutic intervention because influencing 

their activity can lead to the restoration of normal cellular function and may help in curbing 

disease progression.  

Additionally, gene set analysis can elucidate pathways linked to disease risk, including the 

KEGG pathways proposed in this study, thus contributing to the understanding of possible 

prevention strategies. A refined comprehension of the molecular mechanisms that play a role in 

disease development empowers researchers to devise targeted therapies aimed at reestablishing 

normal pathway activity or preventing disease onset by manipulating pertinent biological 

processes.  

Beyond therapeutic targets, gene set analysis also paves the way for the identification of 

biomarkers that are related to disease risk or treatment response. This identification can 

significantly inform personalized treatment approaches and foster the advancement of precision 

medicine strategies. In essence, gene set level analysis is an invaluable asset in the realms of 
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drug discovery and development, offering deep insights into disease mechanisms that help steer 

the creation of innovative therapies and preventive tactics. 

A particularly effective approach to performing gene set analysis is through the utilization of the 

Linear Combination Test (LCT). This method excels in its aptitude for efficiently capturing the 

inherent geometric structure of the data, allowing for the identification of gene sets that display 

coordinated expression patterns. LCT stands out as a reliable and robust tool, well-suited for the 

scrutiny of high-dimensional gene expression data. It provides a robust framework that facilitates 

the discovery of biologically relevant pathways or processes connected to the observed 

phenotypes in these datasets. 

 

4.3 Limitations 

We used the dataset from Jefferson et al.,2022. In this study, Jefferson et al.,2022 delineate 

several limitations that merit careful consideration. A primary concern is the small sample size, 

which constrains the ability to generalize the findings. Furthermore, it is essential to highlight 

that the study's subjects were not dividing mothers to experiencing mild SARS-CoV-2 infections 

group and the severe one; thus, the severity of the infection which could potentially manifest 

different or more pronounced immune genomic responses in the fetus has not been considered in 

this study.  

In addition, the timing of infection during pregnancy, specifically in which week it occurs, can 

have different effects on gene expression in the fetus body. Within the study cohort, the 

timeframe between infection and cord blood collection varied considerably, spanning from 5 to 

37 weeks. A more uniform approach to timing could lead to more robust findings.  

Our research improves upon specific limitations present in the originally published study; 

however, it is worth to mention that various factors during pregnancy can significantly influence 

epigenetic modifications which are determinants of over or under-expression of genes and gene 

sets, thus affecting fetal development and potential long-term health outcomes. These factors 

encompass aspects such as maternal nutrition, psychological factors, environmental stressors, 

socio-economic challenges, lifestyle choices, health conditions, advanced maternal age, and 

fluctuations in the gut microbiome. It is important to note that matching cases and controls 
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concerning all variables that contribute to epigenetic modulation is not achievable in this study or 

in other research endeavors, which necessitates a careful interpretation of the findings. 

Additionally, the growth and overall development of the fetus are heavily dependent on the 

maternal environment. The placenta is vital as it connects the mother to the fetus, facilitating 

essential aspects of fetal development. It provides early life immunity through the transfer of 

growth factors, essential nutrients, oxygen, pathogen-specific antibodies, and maternal 

microchimeric immune cells. Notably, the authors of the current study did not implement a 

strategy to eliminate the influence of maternal components in the analysis of umbilical cord 

blood mononuclear cells, which could potentially compromise the validity of the results. 

Another limitation is the use of the LCT analytical method to obtain gene sets with differential 

expression. The LCT method has advantages and provides lots of information. Indeed, it cannot 

separate the gene sets into two groups, where gene sets are over or under-expressed. As a result, 

we will not be able - by using this analytical method - to predict the 'direction' of expression of 

the gene set itself, and how the differences in expression of these gene sets were going to allow 

the immune system to develop in the infant.  

 In this research, we utilized the KEGG collection, a well-established and extensively utilized 

resource for biological pathways, to evaluate the changes in canonical biological pathways 

resulting from maternal COVID-19 in cord blood cells. However, the KEGG database is not the 

sole provider of biological pathways, and there is no definitive agreement on which database is 

the most effective. By incorporating and synthesizing data from other databases, we can expand 

the breadth of our analysis and achieve a more profound understanding of the biological 

processes pertinent to our area of investigation. Furthermore, utilizing multiple pathway 

databases facilitates the cross-validation of results, thereby strengthening the validity of our 

research findings. It is essential to acknowledge that none of these databases may fully 

encapsulate the true biological mechanisms at play, as our current understanding of these 

processes is still developing. 
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4.4 Further studies 

The application of 'omics technologies across various platforms—including the genome, 

transcriptome, proteome, metabolome, microbiome, and lipidome—combined with extensive 

high-dimensional population databases and specific cohorts, can yield profound insights into the 

long-term health impacts of maternal COVID-19 on neonates. Investigating both metabolomics 

and gene expression in tandem can enhance our understanding of health outcomes by offering 

complementary perspectives on biological processes and pathways. By analyzing the expression 

patterns of gene sets, researchers can elucidate the regulation and dysregulation of these 

pathways in the context of health and disease. This knowledge is crucial for identifying key 

molecular mechanisms that underpin various health conditions and for predicting disease 

progression or responses to treatment. 

Metabolomics, which involves the thorough analysis of small molecules known as metabolites 

within biological samples, focuses on the end products of cellular pathways that reflect the 

biochemical activity occurring within cells and tissues. Through the profiling of metabolites, 

metabolomics captures a snapshot of an organism's metabolic state, revealing insights into its 

physiological condition, metabolic pathways, and interactions with environmental factors. 

Variations in metabolite levels can act as biomarkers for diagnosing diseases, predicting 

outcomes, and monitoring responses to treatment. 

Integrating data at the gene set level with metabolomics enables a more holistic understanding of 

health outcomes. By correlating shifts in gene expression with changes in metabolite profiles, 

researchers can untangle complex molecular networks and pathways linked to health and disease. 

This integrated methodology facilitates the identification of biomarkers that possess enhanced 

diagnostic and prognostic accuracy, and supports the development of targeted therapeutic 

interventions tailored to the unique metabolic and genetic profiles of individual patients. 

Prospective cohorts are particularly valuable as they allow for the longitudinal tracking of 

offspring health outcomes, utilizing large sample sizes and extended follow-up periods. This 

design provides the statistical power necessary to uncover significant associations between 

maternal COVID-19 infection and cardiovascular outcomes in offspring later in life, thereby 

bolstering the reliability and generalizability of the findings. Furthermore, prospective cohorts 

enable a thorough evaluation of potential confounding factors and immune-related disease risk 
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factors, incorporating detailed information regarding lifestyle, medical history, socioeconomic 

status, and genetic predispositions. This comprehensive approach aids in the identification and 

adjustment for potential confounders relevant to the research. 

Additionally, the consideration of multiple pathway databases enhances the cross-validation of 

findings, thereby strengthening the robustness of research conclusions. It is essential to 

acknowledge that no single database may perfectly encapsulate the actual biological mechanisms 

at play, as our current understanding of these complex systems is still developing. 

The assessment of immune disorders stemming from maternal COVID-19 necessitates further 

validation through both laboratory-based and live subject studies. Employing animal models 

such as transgenic mice or non-human primates can reinforce the in vivo relevance of the 

pathways that have been identified.  

In summary, a thorough understanding of the complex interactions between maternal infections 

influences during pregnancy is crucial for pinpointing modifiable risk factors and developing 

effective interventions to foster optimal fetal development and enduring health. Integrating 

multi-omics methodologies along with longitudinal studies can significantly contribute to 

elucidating the mechanisms that drive maternal programming of epigenetic alterations and their 

subsequent consequences for the health and disease susceptibility of the offspring. 
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