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Abstract  

Modeling productivity entails establishing the relationship between various factors that impact 

construction productivity, connecting input factors with output productivity. While prefabrication 

facilities may limit the influence of external project factors on productivity, complexity, and 

variability in product design, productivity-influencing factors from the internal project 

environment regulate the production flow and still causes productivity to vary broadly. Such 

factors are numerous, and it is impossible to account for every relevant detail in the model. In 

addition, the developed model needs to be logically driven, transparent, easy to use, and practical 

to secure the trust of the practitioners. Data collection efforts for maintaining the data-driven 

model must be practically optimized to reduce the overall overhead cost. Therefore, a systematic, 

transparent, logic-driven, and quantitative approach for modeling productivity would sufficiently 

transform a particular set of significant input parameters into the output of corresponding 

productivity. Furthermore, considering those input parameters that describe the fabrication of 

certain products, productivity variation in connection with each input parameter of the model is 

attributed to customization of the fabricated product of the same type, which needs to be 

accounted for to estimate the likely range of the predicted productivity. In other words, besides 

the point value prediction of productivity, the model should also provide the variance estimate of 

the prediction to gauge the associated variations.  

Regression methods like multiple linear regression (MLR) and the model tree (MT) have been 

mainstream methods for quantitatively modeling labor productivity. Both of these techniques are 

instrumental in generating productivity prediction models that are transparent and 
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understandable; hence, model predictions can be trusted by decision-makers. It is important to 

note that even though model tree algorithms are considered as the nonlinear regression model, 

which combines decision trees and MLR analysis to establish complex-nonlinear relationships 

between variables. Such regression models are generally established based on analyzing the error 

terms between the predicted output and the target output without addressing the variance of the 

predicted output and the impact of individual input parameters on the variance. A model with 

high accuracy (the mean of the prediction close to the target value) but low precision (too high 

the variance of the prediction) would be deemed inadequate in the context of cost-estimating 

applications. An analytical method to account for the impact of the variability associated with 

each input parameter on the variation of the final output has yet to be formalized.  

This research critically reviews established methods for variance analysis on commonly applied 

regression methods, namely MLR and model tree in cost estimating and productivity prediction 

for fabricated construction, as well as the impact of productivity variance on project cost 

budgeting. This research first proposes a novel method that integrates the error propagation 

theory with MLR modeling in an attempt to quantify the variance of the MLR predicted output. 

A metric based on the resulting variance analysis (i.e., the ratio of standard deviation over mean) 

for gauging the precision of the MLR model has also been proposed. Next, the variance analysis 

technique is used to enhance the model tree algorithm to extend its capacity to make predictions 

along with estimating the variance of the predicted output. A productivity modeling framework, 

therefore, has been formalized using the enhanced model tree algorithm to connect the unique 

design features of fabricated products (e.g., structural steel, prestressed concrete elements) as 

input with productivity as output. The productivity model’s performance has been cross-checked 
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against the models prepared using MLR and artificial neural network (ANN) models. The 

enhanced model tree outperforms MLR in prediction accuracy and is preferred to ANN because 

(1) the variance is analytically predicted alongside the point-value output, and (2) the productivity 

model is explainable in terms of the reasoning logic for productivity prediction. In addition, two 

additional questions in connection with the variance in productivity prediction are addressed in 

this research, namely: (1) how the variability encoded in the fabrication productivity at work 

packages propagates from the work package level to the entire project level through the project 

network schedule and (2) how variations in project-level labor-hour are accumulated over the 

course of the project duration. The proposed methodology has been verified using Monte Carlo 

simulation and validated by conducting case studies based on fabrication projects in the real 

world. By bridging the gap in knowledge on variance analysis of nonlinear machine learning 

algorithms, this research advances computing in explainable artificial intelligence (XAI) with 

broad application potential to tackle a wide range of civil engineering problems beyond 

productivity modeling and analysis. A specific application has also been shown to generate a 

concrete strength prediction model as a generic Civil Engineering application case.  

. 
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Chapter 1 

Introduction 

 

1.1 General 

Industrial construction employs various trades in large-scale prefabrication operations to produce 

modules and structural components at an offsite facility, which are shipped to the field for rapid 

installation. Like any other construction project, the success of offsite construction projects 

depends on adequate planning, including estimating, scheduling, and budgeting. Construction 

planning starts with estimating the work content for individual work packages, followed by the 

generation of a production schedule considering the resource and technological constraints of the 

fabrication shop. While preparing the production schedule, it is also vital for the shop manager to 

know the margin of contingency in the project cost budget at different time points of the project 

production schedule for the purpose of project control. The production process in the indoor 

construction system of fabrication remains labor intensive due to the "made-to-order" nature of 

fabrication engineering. This means given the fabricated products of the same type, and there are 

variations in design parameters to cater to different clients' requirements and various project 

needs. Therefore, these unique design features of the bespoke construction products demand 

adjustments to the workflows of predefined production processes form job to job from time to 

time. The variability inherent in the production time is still significant in the indoor construction 

environment of fabrication on individual activity levels and the entire project level. Labor 
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productivity is the widely accepted determinant of performance among practitioners, and it is 

used as a piece of information crucial to estimating, scheduling, and budgeting on any construction 

project. Developing an analytical methodology for characterizing the effect of variability in 

productivity upon labor cost budgeting and production schedule is warranted and critical to 

managing prefabrication projects in construction. 

1.2 Construction Productivity  

The fact that productivity in the construction industry has remained stagnant during the last few 

decades has garnered wide attention from society (Barbosa et al. 2017). Despite the advancement 

of technology and mechanization of construction methods, the construction industry remains labor 

intensive, and labor costs make up from a quarter to half of the total project cost (Liu et al. 2011). 

Hence, labor productivity has subsequently served as a key performance indicator (KPI) for the 

construction sector and has been assessed at several levels with varying degrees of precision (Song 

and AbouRizk 2008). Labor productivity is used to measure industry trends and establish 

benchmarks against other industries (Vereen et al. 2016). Company-level or project-level 

productivity measurement provides internal and external benchmarks for comparing company or 

project trends/performances (Ellis and Lee 2006). Activity-level labor productivity estimates have 

a significant impact on project budgeting, scheduling, and control (El-Gohary et al. 2017). Among 

different levels, measuring activity level productivity –also called the detailed productivity 

estimate– is the most critical one; beyond a performance indicator, activity level productivity 

essentially provides inputs to many construction management applications. Moreover, industry 

and company levels of labor productivity can be measured by averaging and aggregating the 

detailed level productivity estimates. Given the importance of forecasting activity level 
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productivity, this study focuses on measuring and predicting labor productivity for project 

planning consisting of detailed estimating, scheduling, and project control. The term productivity 

refers to labor hours per unit of work used interchangeably with construction productivity and 

labor productivity in this research. 

Estimating determines the work scope and predicts the financial resources needed to deliver a 

project from initiation to completion. An accurate cost estimate and a realistic contingency 

estimate based on assessing the risky elements that could potentially increase project cost are vital 

to delivering a project within the committed budget (Creedy et al. 2010). In general, uncertainties 

inherent in internal and external project environments present distinctive challenges in setting the 

contingency margin of an estimate in competitive tendering (Enshassi et al. 2013). Labor 

productivity is the basic piece of information essential to the project cost estimate in labor hours 

(LH) and the generation of project schedules and cost budgets. As shown in Eq. 1.1, the labor 

hour estimate 𝐿𝐻 for a particular work package is derived from the productivity 𝑃 and total work 

unit 𝑊 (quantity takeoff by a certain unit of measure) that needs to be done to complete the work 

in a given work package. Note the labor hour 𝐿𝐻 and work unit 𝑊 express a linear relationship 

defined by the productivity 𝑃 as the slope of the equation. Any variation in 𝑃 must translate to 

𝐿𝐻 as the estimated uncertainty. As illustrated in Fig. 1.1, when the productivity of work unit 𝑊 

varies within the range [PL, PU], the corresponding estimate for labor hours (LH) also varies within 

the bounds of LHU and LHL. Therefore, 𝐿𝐻 will not have just one point value; rather will have a 

mean and estimated variance of the mean in order to reflect the uncertainty associated with the 

prediction. In a practical setting, a project consists of many work packages, and each of them is 

complicated by the variations of the different product types. Analytical methods for explaining 
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how associated variances in productivity estimates are aggregated from work package levels and 

exert an impact on the risk in the overall labor hour budget are absent from the literature in the 

construction domain.   

𝐿𝐻 = 𝑃 × 𝑊       (1.1) 
L

a
b
o

r 
H

o
u
r 

(L
H

)

Work Unit

LH = P X W

W

LH

LHU = PU X W

LHU 

LHL = PL X WLHL 

 

Figure 1.1: Labor hour (LH) estimate from work unit (W) and productivity (P) information. 

Estimating productivity is considered a complex decision-making process. To obtain productivity 

data, the current practice mainly relies on sources such as the estimator's judgments, published 

data sources, and historical project data (Motwani et al. 1995; Song and AbouRizk 2008). The 

practice generally starts with the estimator deciding the activity level labor productivity (labor 

hour rate) for a given work package for a project based on a "base productivity." The "base 

productivity" is adjusted or modified to reflect the specific conditions expected to be encountered 

in the project. It is noteworthy that the base rate is often determined statistically from past 

historical data or industry benchmarks. Many companies and trade organizations publish 
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construction productivity data. For example, RSMeans Company (Gordian 2023) publishes 

quarterly construction cost and productivity data compiled from information sourced from 

consultants, contractors, and trade organizations. However, published productivity data only 

represent the industry average productivity rates without addressing the wide variation inherent 

in the performances of specific contractors on particular projects. Gauging the "level of difficulty" 

multiplier to adjust the base productivity rate up or down to reflect the complexity of work 

packages specific to a project demands the experience of estimators in a specific organizational 

and operational environment. Following such a procedure, a selection of relevant elements is 

identified that impacts labor productivity and taken into account (Lu et al. 2001) to prepare a 

point value estimate of productivity (Fig 1.2). 

 

Productivity Model 
Input 

(X1, X2, X3,   

Labor 

Productivity (P)

 

 

Figure 1.2 Productivity model input output relationship. 

Thanks to a large quantity of influential factors in the project environment underlying the high 

variability of productivity, it becomes challenging to develop a mathematical model in an attempt 

to accommodate the impacts of various elements (known and unknown) by relying on a 

predetermined number of inputs correlated with target productivity output (Tsehayae and Fayek 

2016). Also, using a limited selection of data sampled from a large productivity database at a 
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particular time to establish the productivity model potentially adds to the variance of the 

predicted productivity. For instance, given the identical input factors, at a different time, the 

dataset available for addressing the same productivity problem by MLR could change in size and 

content, resulting in differences in calibrated parameters and prediction results. As a result, the 

accuracy of the estimating model can be subject to question. Note that the precision of a 

productivity prediction model is defined with a certain confidence interval around the predicted 

point value. With the variance of the predicted productivity value known, a range of the required 

labor hours can be determined with definitive boundaries (Fig. 1.3). If the width of the range 

exceeds an acceptable threshold, i.e., the precision is too low; the model prediction should be 

rejected regardless of the high accuracy of the point value prediction.  
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Here,

P = Mean Labor Productivity  

PL = Lower bound of Labor Productivity  
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 PL

 PU

 P

 

Figure 1.3 Productivity model input output relationship with estimated variance of the 

prediction. 

When a productivity prediction model does not provide variance in connection with the predicted 

value, the decision on whether the precision is sufficient is left to be made by humans, and the 
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outcomes can be inconsistent and unreliable, reflecting the estimator's experience and 

temperament. As such, the insufficiency in the existing productivity prediction model could lead 

to confusion and mistrust, which would have a negative effect on the ensuing critical functions of 

project management such as estimating the labor cost to complete a scope of work for an activity 

or budgeting total cost for the whole project. It is apparent that appropriate analytical methods 

for modeling how input variables impact the productivity estimate with respect to variance 

analysis are necessary but absent in both knowledge and practice. In order to investigate the cause 

and impact of the input variables on productivity estimate, such variance analysis needs to 

establish the linkages between all the system model variables (both input and output) while 

sufficiently accounting for the specific application context as defined by the available data. In 

addition, existing models for estimating labor productivity place emphasis on the accuracy of point 

value prediction without accounting for the confidence of the predicted productivity value or 

implying the risk associated with the prediction. Therefore, this could have caused the lack of an 

estimator's confidence in predictive analytics, preventing the estimator from taking advantage of 

the predicted productivity value in preparing project estimates and cost budgets. This research 

contributes to the existing body of knowledge by generalizing a complete framework to account 

for the inevitable variations in connection with construction productivity and generate sufficient 

productivity prediction models based on regression method. The productivity in prefabricated 

structural components production provides the application context.  

Prefabrication has been chosen since it offers a controlled factory-like environment compared with 

traditional construction methods. The indoor setting of prefabrication construction (structural 

steel, precast concrete) makes it less susceptible to external factors such as weather events, 
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allowing for better quality control, safety, and resource flow (Li et al. 2022; Zhou and Ren 2020). 

Despite the benefits afforded by the prefabrication and off-site construction facility, the production 

process in the indoor construction system of prefabrication remains labor intensive due to the 

"made-to-order" nature of prefabrication engineering. As a result, variance in productivity at 

individual work items (work packages) is still significant due largely to one-of-a-kind design 

features of the engineered products (Thomas et al. 2002; Hamzeh et al. 2019), thus making the 

problem of prefabrication in construction a class of its own (Assad et al. 2022). In preparing the 

future bid and making construction plans, there is a need to develop a methodology to check the 

sufficiency of the productivity prediction model by ensuring that the productivity model accounts 

for variabilities inherent in productivity due mainly to different design features and the internal 

environment (e.g., the multi-project concurrent processing). A systematic methodology to identify 

the most critical elements influencing the variation of productivity of a construction work package 

considering the variabilities in product design and other internal factors is also vital. Researchers 

have yet to pay much attention to this issue. 

In summary, this research aims to improve the variance estimation technique of regression-based 

prediction models namely multiple linear regression (MLR) and model tree in construction 

productivity modeling. Unlike artificial neural network (ANN), MLR and model tree are logic 

driven machine learning model which ensures transparency in model development in explaining 

linear and nonlinear input-output relationships respectively. Such transparency in model structure 

is essential for gaining trust from practitioners. It is noteworthy that the model tree combines a 

decision tree with regression analysis by breaking down the big data set into small subsets, so that 

the nonlinear input-output relationship can be represented into a series of linear multi-variate 
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data models (Quinlan 1992). In the nutshell, Model Tree represents a tree structure made of a 

series of MLR models; each MLR represents a sub-model calibrated with a subset of the training 

data (Wang and Witten 1997; Solomatine and Xue 2004). 

To materialize this vision, the research develops an analytical framework and uses it to create a 

labor productivity prediction model that relates product features as inputs to the target 

productivity as output, along with an estimate of the variance of the output in a quantitative 

fashion. The variance of the productivity estimate resulting from the system environment of a 

current application problem will be characterized in terms of a variance contribution ratio of each 

input factor; in the case of MLR or model tree, the variance contribution ratio is determined based 

on the standard deviation of the input slope parameter (namely, the productivity ratio on detailed 

activity). The research will also provide a method for analyzing the variance in productivity on 

steps at the fabrication project level; the proposed model will fix the variance of the total labor 

cost budget at a given control time in the scheduled project duration. An S stripe can be created 

as a visual aid for project planning by plotting the lower and upper bounds of the interval for 

cumulative labor hours budgeted at different points in the project timeline. This visually 

represents the risk to the labor cost budget due to variability in labor productivity, similar to how 

the S-Curve plots progress over time, as shown in Fig. 1.3. In Fig. 1.4(a), a traditional S-curve 

gives the cumulative LH estimate at a given time in the project duration, which does not portray 

the associated risk of the point estimate. In contrast, the proposed S stripe gives the upper and 

lower bounds of the cumulative LH estimate at a given time as a derived confidence level, as 

shown in Fig. 1.4(b). 
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Figure 1.4 Cumulative LH required by a project at a given time: (a) S-curve; and (b) proposed S 

stripe. 

In collaboration with industry partners in Alberta, the proposed research is illustrated and 

validated through an application case involving the estimation of labor costs for prefabrication 

construction projects. With technology, environment, labor, material, and management being held 

relatively constant in a controlled environment, prefabricated structural components and the 

industrialized construction setting of the construction process have given rise to a broad scope of 

data collection in a structured manner.      

1.3 Background  

This section presents recent advancements in construction productivity modeling, and regression 

applications in general in engineering, and application of error propagation theory in engineering 

problem solving and highlights the difference between my contribution from others.  
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1.3.1 Productivity Models  

The literature has abundant evidence in terms of applying data analytics to improve productivity 

prediction (Minato and Ashley 1998). Various techniques have been utilized in productivity-

related research to model the intricate empirical relationships between different factors (both 

internal and external to the project) and productivity rates (Hamza et al., 2019). Work-study 

techniques were adopted in several productivity models, in which only a few factors related to the 

work method were included (Thomas and Daily 1983). Such work-study models have limitations 

in relating the external project environment and management factors with the model output. The 

expectancy and action-response models are alternative techniques to explain construction 

productivity variations. The effort that an individual exerts on a job accounts for variations in 

job performance or productivity is captured in the expectancy model (Maloney and McFillen 

1985). The action-response model visually displays the interaction of several factors that 

contribute to productivity loss (Halligan et al. 1994). Both models contributed to understanding 

productivity variances; nevertheless, they were limited in their ability to quantify the effects of 

many factors on construction productivity (Sommez and Rowings 1998). Statistical techniques in 

combination with linear regression models (Smith 1999; Mohsenijam and Lu 2019), and nonlinear 

regression models like artificial neural networks (ANNs) (Sonmez and Rowings 1998; Lu et al. 

2001; El-Gohary et al. 2017), are two popular methods for productivity modeling. Linear regression 

and statistical analyses are generally limited by the number of influencing factors that can be 

included and their capability to measure the combined, nonlinear effect of the influencing factors 

(Yi and Chan 2014). On the other side, ANN models have shown good potential for quantitatively 

evaluating the effects of multiple factors on productivity, especially when a large quantity of 
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factors with complicated inter-factor nonlinear relationships are present (Tam et al. 2002; El-

Gohary et al. 2017). ANN model acts like a black box without providing much explanation on the 

input-output relationship, which sometimes leads to mistrust among the practitioners and limits 

their application in the new project context. Another significant challenge for measuring and 

documenting the parameters influencing construction productivity arises from the subjective 

concepts involved in defining most parameters (Guo et al. 2017). An expert system is a technique 

used in estimating labor productivity for different construction activities for its adaptability in 

different project contexts described with limited data (Christian and Hachey 1995). Combining 

the fuzzy set theory with a rule-based system enhances the capability of an expert system by 

enabling the realistic constraints of subjective assessments of multiple contributing factors and 

has been used in productivity modeling for many construction projects (Fayek and Oduba 2005). 

However, expert systems generally have limited capabilities in identifying a mapping function to 

produce a generalized solution. Besides, rules obtained from domain experts to formulate the 

expert system can be affected by personal prejudices and attitudes because of the complex nature 

of productivity estimation (Yi and Chan 2014).  

Besides the mainstream methodologies discussed, recent literature introduced the hybridization of 

data classification techniques combined with a regression model to improve the accuracy of labor 

productivity predictions (Elmousalami 2020; Mohsenijam et al. 2021). Neural-Network-Driven 

Fuzzy Reasoning (NNDFR), a hybrid intelligent structure, showed potential for modeling datasets 

with clear clusters (Mirahadi and Zayed 2016). Hybrid feature selection (HFS), which combines 

filter and wrapper methods with principal component analysis (PCA), has been used to identify 

relevant factors for developing labor productivity models (Ebrahimi et al. 2022). In addition, 
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combinations of methods such as the Decision-making trial and evaluation laboratory 

(DEMATEL) method, the Analytic Network Process (ANP) method, and the Technique for Order 

of Preference by Similarity to the Ideal Solution (TOPSIS) method was proposed for comparing 

the productivity of different construction methods in a single model (Shahpari et al. 2019). 

Although there has been good progress in developing productivity estimation models, much of the 

focus has been on increasing prediction accuracy. While the importance of accuracy and precision 

is well-documented in the literature, there is less discussion of the importance of taking into 

account the risks associated with relying on a single prediction value. Portas and AbouRizk (1997) 

used an artificial neural network (ANN) model to predict productivity in different zones, providing 

a range estimate instead of a point estimate. Recognizing that estimators might not accept a single 

predicted value from a labor productivity model without information about the risks associated 

with its accuracy, Lu et al. (2000) presented the output of an ANN model as a distribution over 

a range of values. An expert system combined with fuzzy logic is being used to find productivity 

with a degree of association with linguistic output variables by Fayek and Oduba (2005). In the 

literature, ample range estimations are introduced to predict construction budget contingency 

where Monte Carlo simulation has been applied (Shaheen et al. 2007; Sonmez 2011). The model-

predicted output in terms of the variance has yet to be investigated but is of vital importance and 

immediate relevance to estimating applications in practice. The precision of a model’s prediction 

has been largely overlooked in validating productivity models in the literature. Specifically, model 

validation and input selection are largely based on evaluating error terms between the predicted 

output and the target output without addressing the variance of the predicted output and the 

impact on the variance due to individual input parameters. For any model, performance is 
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evaluated based on a fixed dataset. Whether this model is accepted or sufficient to serve the 

purpose has seldom been discussed in the literature. Formulating analytical solutions to tackle the 

identified fundamental limitation of labor productivity prediction models motivates me to conduct 

this research. 

1.3.2 Regression Applications 

MLR was used to predict the peak and average traffic volume (Lingras and Adamo 1996). Liu et 

al. (2010) applied MLR to determine the deterioration of the underground metallic pipe subject 

to different soil properties. Cao et al. (2018) tested the MLR model to predict the unit bid price 

and evaluated the prediction performance by mean absolute error (MAE), the mean absolute error 

percentage (MAPE), and mean square error (MSE). However, the precision of model prediction 

had been largely overlooked and model validation had not factored in the variance of the predicted 

output and its relationship with the input parameters. Choi et al. (2015) applied the data 

clustering technique combined with MLR model to determine the future maintenance cost of 

highways. To prove the robustness of the model, the predicted error sum of square (PRESS) 

statistics was used to determine the quality of prediction by comparing each observed response 

from a model calibrated with a new subset against that from the fitted model. Nonetheless, the 

variance in the model output resulting from using a different subset of the data in MLR was not 

investigated. In addition, MLR (linear regression) and artificial neural network (ANN) models 

were contrasted for risk assessment of the bridge maintenance performance projects (Elhag and 

Wang 2007). Both MLR and ANN were calibrated to model risk scores and risk categories. 

Pearson's correlation coefficient (r), and the root mean square error (RMSE), and MAPE were 

used to evaluate the accuracy performance of the proposed models. When the MLR model was 
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presented separately with the testing data set (a subset of the modeling data), significant changes 

in model accuracy (RSME, MAPE, and r values) were observed. Yet, the precision performance 

in terms of the model prediction variance was not assessed. Another relevant endeavor was to 

evaluate the performances of different data mining techniques in predicting the compressive 

strength of high-performance concrete by Chou et al. (2011). Nonlinear regressions (such as ANN 

and support vector machines) and MLR models were calibrated using manyfold cross-validation 

techniques, while model’s prediction performance was evaluated based on r, RMSE, and MAPE 

(Chou et al., 2011).  

In construction estimating applications, researchers used factor analysis techniques for MLR 

models to enhance the accuracy of the estimated project costs by selecting the more significant 

factors that contributed to the estimation (Trost and Oberlender 2003, Zayed and Halpin 2005; 

Lowe et al. 2006). Model accuracy was reported in most cases as the standard error or variance 

of the final output based on the estimated residuals. Portas and Abourizk (1997) maintained that 

a range of productivity estimates is always preferable to the estimator instead of having a point 

value estimate. Therefore, providing a confidence range around the predicted point value is highly 

desirable. Marchionni et al. (2016) applied one quantitative equation to estimate the interval of 

the predicted output of the MLR model developed to assess the water supply infrastructure cost. 

However, this interval prediction equation was constructed assuming that the residual mean is 

zero and has a constant variance. The parametric prediction intervals made under this assumption 

may not perform well when the dataset is relatively small and/or has outliers with rather large 

residuals (Olive 2007). Mohsenijam and Lu (2019) demonstrated a modified version of the above 

equation to quantify the prediction interval for an MLR model in modeling labor hours for 
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structural steel fabrication projects. It is noteworthy such established MLR variance estimation 

methods fall short in accounting for the impact of the uncertainty associated with each input 

parameter of the model on the uncertainty of the final output.  

The model tree is generally categorized as a non-linear regression model (Chang and Kim 2011; 

Vanli et al. 2019) which applies binary rules to identify data classes suitable for creating MLR 

model for each class. The final model is expressed as a set of MLR models constrained by a set of 

rules delimiting each class. The Model Tree based approach was applied to various civil 

engineering problems such as predicting labor cost, workability of concrete (Mohsenijam et al. 

2021), forecasting river flow (Taghi Sattari et al. 2013), sediment transport in pipes (Najafzadeh 

et al. 2017), predicting compressive strength of high-performance concrete mix (Deepa et al. 2010). 

In the construction application domain, decision tree was used in estimating productivity loss due 

to project change orders (Lee et al. 2004). Desai and Joshi (2010) applied decision trees with 

constant branch nodes to analyze and predict labor productivity. Despite its simplicity and 

explainability, model tree algorithm still lacks the variance estimate of the predicted output for a 

given set of inputs. 

The literature review conducted for this research reveals a gap in the existing knowledge regarding 

measurements that quantify the contribution of each input variable of a regression-based model, 

such as MLR, to the overall uncertainty or variance of the predicted output. Currently, the only 

available approach to obtain such measurements is through experimental design and sensitivity 

analysis, which involves altering the input variables and observing the resulting changes in the 

output. This holds true not only for MLR models but also for model tree models, as the final 

expression of an MT model consists of a collection of MLR equations constrained by a set of rules. 
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Furthermore, it is common practice in civil construction estimation to develop the total estimate 

by aggregating the estimate for distinctly scoped work packages. Therefore, there is a practical 

need for calibrating a set of MLR equations –each denoting a model for one work package– in 

order to generate the final estimate. Variances in the MLR equations need to be aggregated in 

quantifying the uncertainty of the estimate, resulting in the variance of the final estimate. MLR 

based methods for the analysis of the variance in the final estimate by aggregating a collection of 

work package estimates are yet to be formalized. 

1.3.3 Error Propagation Theory  

The law of error propagation generalizes the relationship between random variable errors and the 

corresponding function (Koch 1999); and provides the fundamental formula for the evaluation of 

precision in adjustment theory (Amiri-Simkooei et al. 2016). Given a linear function, the variance 

or covariance of the error propagation model can be derived analytically. The error of any system 

output can be obtainable through functional substitution with truncated Taylor Series 

(considering up to first order derivative). A nonlinear function can be preprocessed with 

linearization by Taylor series expansion prior to applying error propagation, while it is 

theoretically possible to extend Taylor series expansion to any existing order in order to improve 

computing accuracy (Xue et al. 2015). Nonetheless, research and application of the error 

propagation theory in civil or construction engineering have remained scarce. Most of the related 

applications were found to fall in the field of automation control and sensor technology (Cho et 

al. 2004, Cantoni et al. 2007, Hasan and Lu 2017, Wai-Lok Lai et al. 2018). The error propagation 

theory has been a less applied alternative in construction research to substitute for “what-if” 
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scenario simulation experiments or Monte Carlo (MC) sampling techniques applied on a sufficient 

system model. 

This research integrates the error propagation theory with MLR modeling to quantify the output 

variance in connection with labor cost estimating in prefabrication. Applying first-order 

derivatives to approximate the propagation of random errors in the MLR model makes the solution 

algorithm straightforward, practical, and sufficient and eliminates the need for additional 

professional computer software, sensitivity analysis, or MC simulation analysis. The MC 

simulation is used in the case study to cross-validate the results against the proposed model. 

1.4 Problem Statement  

A predominant approach in risk analysis pertaining to system output (such as labor productivity), 

and its susceptibility to fluctuations in input variables (factors that influence productivity), 

typically involves a two-step procedure. Firstly, Step 1 entails the establishment of a system model 

that delineates the interrelationship between input variables and the system's output. 

Subsequently, Step 2 involves sensitivity analysis, wherein an input variable is perturbed across 

its practical range of variation, giving rise to the observation of responses in the corresponding 

system output. In this way, the risks associated with the system output are inferred from the 

empirical data of observed system outputs, often through the execution of "what-if" scenario 

analyses or simulation analyses on the computer.  

In Step 1, researchers often employ various modeling techniques such as multiple linear regression, 

fuzzy expert systems, or artificial neural networks (ANN) when the physical or logical processes 

of the system lack clarity, but historical data of the real-life system allow for direct input-to-
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output mapping (Kisi et al., 2017). Alternatively, in cases where the underlying processes of the 

system can be distinctly and logically represented within a computer simulation platform, such as 

discrete event simulation or critical path network scheduling, operational simulation models can 

be established in Step 1 by mapping processes over time and space in the problem domain (Halpin 

and Riggs, 1992; Mulholland and Christian, 1999). 

Analysis in Step 2 entails designing a significant number of plausible scenarios that represent 

variability and uncertainty in input variables, achieved through either design or random sampling. 

Subsequently, experiments are conducted by assessing each scenario using the established model 

on the computer. Examples of such analyses include what-if scenario analysis on an operational 

simulation model (Chan and Lu, 2008) or Monte Carlo simulation experiments wherein variability 

in input variables is described using statistical distributions (Lu et al., 2001). In general, successful 

implementation of this research approach necessitates expertise in modeling methods, computer 

tools, coding, and statistical analysis. 

Regression serves as a valuable and practical analytical method for modeling complicated input-

output relationships in real-world systems and facilitating the prediction of system behaviors 

through mathematical equations (Barrett and Gray, 1994). Various regression models have gained 

widespread acceptance as quantitative techniques applicable to a diverse range of problem domains 

(El-Abbasy et al., 2014). Notably, multiple linear regression (MLR) has emerged as the most 

commonly utilized method for estimation tasks, owing to its simplicity, flexibility, and ease of 

interpretation (Lowe et al., 2006). Besides, basic regression technique also serves as the foundation 

of the construction of the nonlinear regression models (e.g., Model Tree). The evaluation of an 



20 

MLR model's accuracy extensively relies on the analysis of relative and absolute errors and the 

statistical correlation between model outputs and target values (Olive, 2017). 

The significance of each input factor is explicitly encoded in the first-order slope parameter, 

reflecting its directional and magnitudinal impact on the predicted output. Thus, input factors 

with slopes close to zero are regarded as less influential for the prediction and can be omitted 

without significant detriment to the overall model accuracy (Chan and Park, 2005; Mohsenijam 

et al., 2017). However, it is worth noting that an MLR model exhibiting high accuracy, i.e., the 

mean of the prediction closely aligns with the target value, but low precision, i.e., high variance 

of the prediction, may prove inadequate in the context of cost estimating applications. Despite its 

importance, the precision of the MLR predicted output, characterized by its variance, has been 

relatively underexplored in the literature and holds immediate relevance to practical estimating 

applications. 

Conventional model validation techniques typically focus on evaluating error terms between the 

predicted output and the target output, overlooking the variance of the predicted output and its 

sensitivity to individual input parameters. Addressing this fundamental limitation of MLR models 

through the formulation of analytical solutions is the primary motivation driving this research 

endeavor.  

In this research, productivity for fabricating a product has been defined by disaggregating the 

labor hours according to the major feature attributes of the product being produced (Eq. 1.2), as 

in Step 1. For example, the productivity of the formwork preparation for reinforced concrete 

columns can be derived from the three feature attributes: height of the formwork, area of the 
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plywood, and lumber weight (Peurifoy and Oberlender 2001). As shown in Eq. 1.2, P is established 

by combining respective productivity contributions based on three product feature attributes (P1, 

P2, and P3). Productivity based on each feature attribute can be divided by the productivity of 

the standard product (or base product) of each feature attribute (Eq. 1.3). Say, for productivity 

in connection with feature 1 is Pa (given in Eq. 1.3), and dimension of the standard product is a0; 

therefore, for a product dimension, productivity contribution would be  𝑃1 = (
𝑃𝑎

𝑎0
) 𝑎.  

𝑃 =  𝑃1 + 𝑃2 + 𝑃3          (1.2) 

or,  

𝑃 =  (
𝑃𝑎

𝑎0
) 𝑎 + (

𝑃𝑏

𝑏0
) 𝑏 + (

𝑃𝑐

𝑐0
) 𝑐        (1.3) 

Following the same formwork preparation example, a 3 m height (𝑎0 = 3) column is the standard 

height of a column and it contributes to 1.5 LH/m (𝑃𝑎 = 1.5) in the final activity level 

productivity, 𝑃 due to the height as product attribute; so, for the 2.5 m (𝑎) height of the column, 

the contribution (𝑃1) would be, 
1.5

3
× 2.5 = 1.25. Similarly, if 12 square meters (𝑏) of plywood and 

150 kg (𝑐) lumber weight are two other attributes of the standard’s column and their contributions 

to the activity level productivity are 2.5 LH/m (𝑃𝑏 = 2.5)  and 1.8 LH/m (𝑃𝑐 = 1.8) respectively. 

So, for 2.5 m height column, with 10 sq. m. plywood and 110 kg lumber weight, the activity 

productivity would be as per Eq. 1.3, the final activity level productivity would be 4.4 LH/m (𝑃 =

4.4). According to the carpenter's handbook quoted in Peurifoy and Oberlender (2001), the final 

labor productivity for such formwork erection work package should vary from 3 to 5.0 LH/m.  

𝑃 =  (
1.5

3
)2.5 + (

2.5

12
)10 + (

1.8

150
)110 = 4.4        (1.4) 
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As shown in Eq. 1.4, the productivity model equation resembles the basic form of MLR equation, 

where a, b, and c are the inputs and 𝛽𝑎, 𝛽𝑏 , 𝑎𝑛𝑑 𝛽𝑐 are the slopes of the MLR equation. This 

productivity model definition is different from the existing models published in the literature.  

𝑃 = 𝛽𝑎𝑎 + 𝛽𝑏𝑏 + 𝛽𝑎𝑐 = 𝑓(𝑎, 𝑏, 𝑐)         (1.5) 

The rapid advancement of information technology has significantly alleviated the constraints on 

data availability for constructing quantitative decision support systems in construction estimating 

(Mohsenijam and Lu, 2019). Notably, the industry's adoption of building information modeling 

(BIM) systems has facilitated capturing historical data on design features for building components, 

including prefabricated products. Furthermore, job cost data, encompassing actual labor hours 

spent in fabrication, is consistently recorded in payroll and project cost control systems. As a 

result, substantial and high-quality datasets encompassing design features and labor cost 

information have become more accessible and cost-effective, with a continuous influx of data from 

recently completed projects (Lee et al., 2017). Leveraging such datasets, analytical methods based 

on MLR hold promise for analyzing model parameter variability in response to dynamic data 

changes. Furthermore, in the context of estimating applications, it is imperative to unveil the 

variability in predicted productivity estimates arising from the inherent variability of model 

parameters.  

The primary intention of this research is to develop analytical methods based on the error 

propagation theory to address specific application requirements. Firstly, the focus is on 

establishing an MLR model with pertinent and independent input factors and verifying its point-

value prediction accuracy. Subsequently, the research centers on addressing the variance of the 
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MLR's predicted output, which is synonymous with assessing the precision of the prediction. The 

quantification of the MLR output variance at specific input points within the problem domain's 

input space will be achieved through a derived analytical solution, which will be cross-checked 

using Monte Carlo (MC) simulation on a demonstration case. Furthermore, an MLR-based 

productivity model will be formulated to establish a variance estimate of the productivity 

prediction concerning the point value productivity. The research explores the feasibility of utilizing 

a metric based on the resulting variance, specifically the ratio of standard deviation to mean, as 

a means to assess the precision of the MLR model. A precision threshold, for instance, 10%, can 

be utilized to determine whether the MLR model meets the precision criteria. In cases where the 

precision falls below the threshold, the model will be deemed acceptable; otherwise, the model will 

be rejected, prompting a reexamination and refinement of input definitions and modeling data 

before considering model updates or alternative nonlinear regression models. Additionally, 

acknowledging the limitations of the MLR model in capturing non-linearity within productivity 

modeling for prefabricated products, this research introduces a nonlinear regression model named 

"model tree" and enhances its capabilities by integrating the variance analysis technique based on 

the variance analysis model formulated for MLR equations. Lastly, for project budget preparation, 

the research aims to develop a formalized methodology to address variance in the total labor hour 

budget by consolidating variance estimates of labor productivity at the work package level.  

1.5 Research Questions  

The research aims to answer the following research questions:  
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Research Question 1: Can the variance of an MLR mode’s prediction be adequately explained 

using error propagation theory if the coefficients of the input parameters are described in statistical 

terms, such as mean and standard deviation (square root of the variance) instead of a constant? 

Research Question 2: For activity level productivity estimates in construction projects, can the 

mean and variance of the productivity estimate be derived from the quantity takeoff of important 

feature attributes and their productivity contributions? 

Research Question 3: In the context of labor hour estimation for construction projects, can the 

total variance of labor hour estimates at different control points throughout the project lifecycle 

be determined analytically, given the known variance of labor productivity estimates for different 

work packages, without resorting to a Monte Carlo simulation approach? 

1.6 Objectives  

The main objective of this research is to advance the knowledge and practices of labor budgeting 

for prefabrication projects in industrial construction, particularly addressing the inherent 

variations in labor productivity. The study aims to make significant academic contributions to 

the existing knowledge in the field by achieving the following objectives: 

Objective 1: Develop a variance analysis technique for MLR-based prediction models by 

integrating error propagation theory by generalizing a methodology for: 

• Quantifying input parameter variability through statistical measures like mean and 

variance. 
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• Calculating the variance of the predicted output from the MLR model by considering 

known variances of its parameters. 

• Defining a metric to assess model sufficiency. 

Objective 2: Quantify the influence of individual input variance on the ultimate prediction 

variance in a quantitative manner by: 

• Identifying critical input parameters contributing the most to the final output variance. 

Objective 3: Propose a labor productivity model linking product engineering design features as 

inputs to targeted productivity as output so as to make it appropriate for regression-based 

modeling by: 

• Determining the contribution ratio of product features to the final productivity definition. 

• Estimating the variance of the productivity prediction. 

• Identifying crucial input product features based on their contribution to the total output 

variance. 

Objective 4: Explore the capacity of the nonlinear regression method for the established model 

tree AI technique to quantify variance for the predicted output resulting from random sampling 

of training data by: 

• Integrating proposed variance analysis technique for MLR equations with existing model 

tree algorithm. 

• Introducing the Coefficient of variation as a metric to evaluate application soundness of 

the enhanced model tree. 
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Objective 5: Develop a framework for productivity modeling using the enhanced model tree 

method: 

• Account for nonlinear relationships between product design features and labor productivity 

of a work package. 

• Apply non-linear classifier algorithm from established model tree algorithm to decompose 

nonlinear productivity problem into data classes suitable for MLR applications. 

• Use enhanced model tree method to predict point-value output and associated variance. 

• Utilize ‘coefficient of covariance’ of enhanced model tree algorithm to test model 

applicability. 

Objective 6: Introduce a methodology to address variance in total labor hour budget by 

consolidating variance estimates of labor productivity at the work package level: 

• Determine lower and upper boundaries for cumulative labor hours budgeted at various 

control points throughout project lifecycle. 

• Introduce a novel project control tool named the S stripe curve, visually representing 

estimated variance of total labor hours at specific time points of the project. 

• Establish a confidence interval around the average value, providing insights into risk of 

labor cost budgeting due to inherent variations in labor productivity. 

Overall, this research seeks to enhance the accuracy, transparency, and applicability of labor cost 

budgeting in industrial construction by incorporating innovative methodologies and techniques. 

By achieving these objectives, the study aims to contribute significantly to the field of engineering 
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applications, particularly in the context of explainable artificial intelligence and construction 

productivity modeling. 

1.7 Research Methods 

The research framework proposed in this study comprises three distinct modules, each tailored to 

address specific research objectives and corresponding research questions. As illustrated in Fig.1.5, 

Module 1 achieves Objective 1 and Objective 2 outlined in the thesis introduction, thereby 

providing answers to Research Question 1. Module 2 aims to solve Research Question 2 by fulfilling 

Objectives 3, 4, and 5. Finally, Module 3 accomplishes Objective 6 in order to answer Research 

Question 3. Details pertaining to each module are presented in discrete individual chapters, as 

shown in Fig. 1.6.  

Module 1

Module 2

Module 3

Research Question 1

Research Question 2

Research Question 3

Research Objective 1

Research Objective 3

Research Objective 6

Research Objective 2

Research Objective 4

Research Objective 5

Chapter 2

Chapter 3

Chapter 5

 

Figure 1.5: Relationship among modules, research questions and research objectives. 

The schematic of the research framework is shown in Fig. 1.6.  
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Module 1: 

Variance analysis model for 

MLR equations  

Model 2:

Productivity estimation model  

Model 3:

S curve model for labor hour 

budgeting     
 

Figure 1.6: Research Framework. 

As illustrated in the following figure (Fig. 1.6), Module 1 defines an analytical technique to 

establish the statistical depiction of the MLR model coefficients due to the variability of the input 

parameters in terms of mean and standard deviation. These variances of the input coefficients are 

responsible for the ultimate output variance. Final output variance can now be estimated by 

applying the error propagation theory in connection with the initial MLR equation.  

Module 2 first defines the basic structure of the productivity model that relates the input design 

features of the fabricated products with the output productivity. The output productivity is 

expressed in the summation of the productivity contribution of the different product feature 

attributes compared with the base product's productivity contribution, as explained in the 

problem statement. Since the basic structure of the productivity model resembles the form of an 

MLR equation, the variance analysis techniques are then readily applied to find the output 

variance of the predictions. The presence of a higher degree of nonlinearity among input 
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parameters and target output may result in higher variance in predicted output, which makes the 

basic MLR model insufficient for practical use. Module 2 of the research also looks into integrating 

the data classification technique from the model tree algorithm to find data classes suitable for 

MLR applications. Then the model tree is enhanced in such a way that the MLR equation on 

each tree branch can predict the point-value output as well as the associated variance.   

In Module 2, the defined work package productivity can be effectively utilized to derive the labor 

hour estimate with its associated variance for each specific work package. This procedure can be 

iterated for all work packages to obtain labor hour estimates along with their corresponding 

variances. To determine the overall budgeted labor hour variance for the entire project, Module 3 

introduces an error propagation-based model that aggregates the labor hour variances of all work 

packages, thereby computing the total variance associated with the project's total labor hour 

requirement. By integrating current practices of estimating, scheduling, and budgeting in 

industrial construction, this research describes an error propagation model for calculating the 

varraince of the cumulative labor hours at particular time points of the project duration and 

establishing a confidence interval around the average value. Analogous to plotting the S-Curve, 

the lower bound and upper bound of the interval for cumulative labor hours budgeted at control 

points along the project duration can be articulated to form the S stripe, which visually portrays 

the risk of labor cost budget due to risks inherent in labor productivity. The application and 

verification of the proposed analytical methodology are illustrated with a steel fabrication project 

case. MC simulation is applied to the same project data to study the correlation between the two 

sets of results. 
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1.7.1 Module 1: Variance Analysis Model for MLR Equations 

The generic form of the MLR equation is given in Eq. 1.6, where output 𝑌 is derived from 

independent input parameter 𝑋𝑖. Here, 𝛽𝑖 is the slope of the MLR equation that corelate inputs 

with output and 𝛽0 is the intercept.  

𝑌 = 𝑓(𝑋) = 𝛽0 + ∑𝛽𝑖𝑋𝑖

𝑖

           (1.6) 

Now, randomized sampling of the learning dataset such as n-fold strategies (taking a subset of the 

dataset in n times) in preparing the regression relationship between 𝑌 and 𝑋𝑖 can be used to 

estimate the mean 𝜇 and variance 𝜎2of the slope parameter 𝛽:  

𝛽 = (𝜇, 𝜎2)              (1.7) 

Note Eq. 1.6 follows the generic format of the MLR equation and can be calibrated using the 

least-square optimization method (Lowe et al. 2006). To facilitate feature selection by identifying 

the most relevant features, applying a stepwise regression technique such as the one proposed by 

Mohsenijam et al. (2017) is also deemed appropriate and effective.   

Now, the propagation of random error in the system follows the law of propagation of variance 

and covariance (POV), which can be expressed by Eq. 1.8.  

       𝐶𝑦 = 𝐽𝑥𝑦 𝐶𝑥 𝐽𝑦𝑥
𝑇                  (1.8) 

Here, 𝐶𝑦 is the covariance matrix of random output y, and 𝐶𝑥  is the covariance matrix of random 

input 𝑥. 
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Applying Eq. 1.8 in relation to Eq. 1.6, where coefficients of the MLR equation have been 

represented with statistical description, can derive the final variance estimation model for Eq. 1.6. 

The schematic of the method to establish the MLR with the capacity to estimate the associated 

variance of the prediction is shown in Fig. 1.6. 

 

Figure 1.7: Conceptual model for variance analysis of an MLR equation. 

1.7.2 Model 2: Productivity Estimating Model with Capacity to Derive Associated 

Variance of the Prediction  

Labor productivity 𝑃𝑢 of a particular project work package 𝑢, related with the product design 

feature 𝑙𝑛 can be expressed with the following basic MLR equation:  

 𝑃𝑢 = 𝑓(𝑙𝑛) = 𝛽0 + ∑𝛽𝑛𝑙𝑛
𝑛

=   𝛽0 + ∑
𝑃𝑛

0 

𝑙𝑛
0  

× 𝑙𝑛
𝑛

            (1.9) 

Here,𝛽𝑖 = 
𝑃𝑛

0 

𝑙𝑛
0  

;  𝑙𝑛
0 is the value base product’s feature attribute 𝑛. 𝑃𝑛

0 is the productivity 

contribution of the feature attribute  𝑛 of the base product. Details of the formulation of this 

equation are elaborated in Chapter 3. This equation resembles the basic form of an MLR equation; 

therefore, variance analysis technique developed in Module 1 can be applied directly. However, 



32 

when the input-output relationships are highly nonlinear, and the estimated variance of the linear 

model is too high, the basic model needs enhancement. Module 3 proposes a technique to enhance 

the model tree algorithm to represent nonlinear input and output relationships and make 

prediction of associated variance (Fig. 1.8).   

 

Figure 1.8: Conceptual model for preparing enhanced model tree model. 

1.7.3 Model 3: S-Curve Model for Labor Hour Budgeting  

In the context of industrial construction, direct labor costs are generally compiled from a 

comprehensive list of work items to be performed (Thomas and Sakarcan, 1994). It is noteworthy 

that in the current practice, the list of work items represents the estimator’s interpretation of 

work performed by skilled trades. 

The generic model of labor hour estimating for a particular work package of any project in the 

prefabrication application context can be expressed by Eq. 1.10 (taken from Eq. 1.1):  

𝐿𝐻𝑇 = ∑ (𝑃𝑢 × 𝑊𝑢,)
𝑢

               (1.10) 

Here, 

∑𝐿𝐻 = Total man hour required to complete a job; 

𝑃𝑢 = Labor productivity (LH/Unit) for particular work package 𝑢; 
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𝑊𝑢 = Total work unit performed (quantity takeoff) for work package 𝑢.  

In Module 3, a novel approach has been introduced, leveraging the error propagation theory to 

consolidate the labor hour variances from the work package level and calculate the overall labor 

hour variance for the entire project. The resulting estimated variance has been utilized to create 

the S stripes around the project curve (Labor Hours vs. project duration) with a given confidence 

level, representing the most optimistic and pessimistic scenarios of the labor hour requirements 

throughout the project's duration. Conceptual method to find the project S-Stipe is given in Fig. 

1.9. 

Enhanced Model Tree for 

Productivity Prediction

Productivity for WP1 

with variance
...Productivity for WP2 

with variance 

Productivity for WPn 

with variance 

LH for WP1 with 

variance

LH for WP2 with 

variance

LH for WPn with 

variance

Error Propagation Model

Project LH budget with variance 

Estimate 

Project S-Stipe derived from 

variances for a given confidence 

level  

Figure 1.9: Conceptual model for preparing project S stripe curve. 
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1.8 Organization of the Thesis 

This thesis is organized following a paper-based format that is consistent with the research 

framework shown in Fig. 1.6. It has a total of six chapters with Chapter 1 as the Introduction 

chapter and Chapter 6 as the conclusion chapter. Detailed contents of each chapter are listed as 

follows. 

Chapter 1: This chapter introduces the productivity modeling problem for prefabrication 

industry, highlights the limitations of existing labor productivity prediction models in the 

construction industry, particularly in considering precision and variance analysis. The problem 

statement and research objectives are later delineated in this chapter, followed by proposed 

methods to address them. 

Chapter 2: This chapter presents an analytical method to quantify the variance of MLR 

predicted outputs and elaborates its application potential in cost estimating applications. This 

chapter underscores the importance of precision within MLR models and the impact of individual 

input parameters on the variance of the prediction, thereby advancing regression modeling 

approaches concerning MLR variance analysis in general. 

Chapter 3: The focus of this chapter is on enhancing the nonlinear regression method called 

model tree algorithm, a commonly applied machine learning algorithm and AI technique, to derive 

the variance in predicted productivity arising from sampling different datasets in productivity 

modeling application. The methodology decomposes the productivity problem into branches and 

takes advantage of the variance analysis technique introduced in the previous chapter to predict 

both point-value output and associated variance. The enhanced Model Tree outperforms MLR in 
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prediction accuracy; and is preferred to ANN because (1) the variance was analytically predicted 

alongside the point-value output and (2) the productivity model was explainable in terms of the 

reasoning logic for productivity prediction. 

Chapter 4: This chapter presents a case study of developing a prediction model for the 

compressive strength of high-performance concrete using the enhanced model tree algorithm 

developed in Chapter 3. The model demonstrates high prediction accuracy and explainability with 

a reported variance estimate of the prediction. This application case study demonstrates the 

generalized application potential of the enhanced model tree algorithm in solving many civil 

engineering problems.  

Chapter 5: The chapter explores labor budgeting in industrial construction, particularly in the 

context of prefabrication projects. An error propagation model is developed to calculate the 

standard deviation of cumulative labor hours at different project time points, enabling the 

establishment of confidence intervals around average values. The "S stripe" curve visually depicts 

the risk associated with labor cost budgeting due to labor productivity uncertainties. 

Chapter 6: This chapter restates the research contributions and conclusions of this research.  It 

also emphasizes the underlying assumptions and limitations of the presented research while 

suggesting potential avenues for future research. These include further advancing productivity 

modeling techniques and exploring the application potential of the developed algorithms in solving 

problems from other domains beyond the horizon of productivity modeling. 

Overall, this research contributes original knowledge, innovative methods and valuable insights to 

regression modeling, variance analysis, and productivity modeling for prefabricated product 
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construction projects. It provides analytical solutions for handling precision and variance in 

prediction models and opens up promising directions for further research in civil engineering using 

machine learning techniques, with applications in explainable artificial intelligence (XAI). 
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Chapter 2 

Variance Analysis on Regression Models for Estimating Labor 

Costs of Prefabricated Components 

 

2.1 Introduction  

Estimating determines the work scope and predicts financial resources needed to deliver a project 

from initiation to completion. An accurate cost estimate supplemented with a realistic contingency 

estimate, which is an assessment of risky elements that could potentially increase project cost, is 

vital to deliver a project within the committed budget (Creedy et al. 2010). In general, 

uncertainties inherent in both internal and external project environments present distinctive 

challenges in setting the contingency margin of an estimate in competitive tendering (Enshassi et 

al. 2013). Compared with the conventional stick-built practice, prefabrication mitigates uncertain 

factors that arise from the external project environment (e.g., the influence of the weather event, 

the availability of proper equipment, and competent trades) (Blismas et al. 2006). Nonetheless, 

the current labor-intensive work practice, along with custom-designed features of engineering 

products, still makes it challenging to eliminate all the uncertain factors leading to variations in 

productivity (Hasan and Lu 2021). In general, a crew of specialist trades performs interdependent 

tasks to fabricate a large number of made-to-order products based on bespoke specifications in an 

offsite facility. Estimating labor cost demands the prediction of crew work time. However, both 
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size and logic complexities inherent in prefabrication practice would impede establishing a project 

network model or a systematic process model to account for sufficient details (tasks, resource use, 

and logical relationships.) For instance, in the context of steel girder fabrication for bridge 

construction, the project network model would become too large and complex, making it 

practically unscalable for planning, communication, and scheduling analysis (Hasan and Lu 2019). 

Hence, instead of resorting to a process mapping and simulation approach, the practice of 

estimating for prefabricated components commonly relies on an analysis of historical project data: 

generalizing hidden patterns and implicit relationships between input factors (e.g., product 

features) and the output (e.g., working hours). In this context, regression models (including linear 

regression, nonlinear regression, and artificial neural network models) provide the appropriate 

quantitative methods to facilitate the process of “learning from data”, resulting in cost-effective 

decision support to estimators (Mohsenijam and Lu 2019). 

Regression offers an analytical yet practical method for modeling input-output relationships in 

complicated real-world systems and predicting system behaviors with mathematical equations 

(Barrett and Gray 1994). Various regression models have been widely accepted as the quantitative 

technique in modeling a wide range of application problems (El-Abbasy et al. 2014). In particular, 

multiple linear regression (MLR) has been the most commonly applied in support of estimating 

thanks to its simplicity, flexibility, and ease to communicate (Lowe et al. 2006). The accuracy of 

an MLR model is thoroughly evaluated based on the modeling data in terms of relative and 

absolute errors and statistical correlation between model outputs and target values (Olive 2017). 

The significance of each input factor is explicitly encoded in the first-order slope parameter, 

indicating its impact in direction and magnitude upon changing the predicted output. Hence, 
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input factors having close to zero slopes are considered less relevant to the prediction and can be 

removed without significantly compromising the overall model accuracy (Chan and Park 2005; 

Mohsenijam et al. 2017). It is noteworthy that an MLR model with high accuracy (the mean of 

the prediction is close to the target value) but low precision (too high the variance of the 

prediction) would be deemed insufficient in the context of cost estimating application. Nonetheless, 

precision of the MLR predicted output in terms of the variance has been rarely investigated but 

is of vital importance and immediate relevance to estimating applications in practice. The precision 

of model prediction had been largely overlooked in validating MLR models in the literature. 

Specifically, model validation is largely based on evaluating error terms between the predicted 

output and the target output without addressing the variance of the predicted output and the 

impact on the variance due to individual input parameters. Formulating analytical solutions to 

tackling the identified fundamental limitation of MLR models provides us research motivation.  

With information technology advancing, the barrier of data availability in developing quantitative 

decision support solutions to construction estimating has been gradually removed (Mohsenijam 

and Lu 2019). Historical data on design features for building components (such as prefabricated 

products) are captured in the industry database underlying building information model (BIM) 

systems. Job cost data in terms of labor hours actually spent in fabrication are consistently 

recorded in payroll and project cost control systems. In practice, large datasets containing high-

quality design features and labor cost data become inexpensively available and readily accessible, 

while such datasets continue to grow in size as more recently completed projects are appended 

(Lee et al. 2017). This extends an opportunity to develop analytical methods based on MLR aimed 

at analyzing the variability of model parameters in response to dynamic changes in the data 
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available for modeling. Additionally, the variability of the predicted cost estimate due to the 

variability inherent in model parameters needs to be revealed in estimating applications. The 

following research inquiries have arisen from practical needs in the construction industry and will 

be addressed in the present research.  

1. Given a sufficient problem definition with relevant input features and consistent project 

data, a MLR model is established for predicting the labor cost based on input factors 

describing features of prefabricated jobs. What would be the impact of using randomly 

selected subsets of the whole dataset upon the fitted parameters of a MLR model? With a 

relatively large dataset, a subset can be randomly sampled to establish the MLR model, 

thereby making it possible to model the variability of the MLR model’s parameters with 

statistical descriptors (i.e., mean and variance) instead of setting them as constants. 

2. With the established MLR model, the point-value prediction based on constant values of 

model parameters at each particular input instance is first made. Given the mean and 

variance derived for parameters of the MLR model, normal distributions can be defined to 

denote parametric variability, thus opening up a new window of inquiry: how to 

analytically project the variance of the predicted output from MLR subject to the known 

variances on its model parameters? This variance of predicted output implies the 

instability of the prediction in the cost estimating application, which is commonly referred 

to as uncertainty, risk or contingency associated with the estimated cost. 

3. Further, at each particular input instance, how to attribute the variance of the predicted 

output to each individual input factor of the MLR model? In other words, what is the 

contribution of an input factor given the variance in its associated MLR model parameter? 
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Analogous to applying the first-order slope in MLR to account for the sensitivity of each 

input factor to the predicted mean as a point-value, deriving exact solutions to address 

this question entails higher-order mathematics and presents a unique opportunity for 

computing research in civil engineering. Despite the fact that Monte Carlo simulation is 

frequently used in the literature for this purpose, an explicit, analytical solution has yet to 

be formalized. 

The present research is intended to derive analytical methods based on the classic error 

propagation theory in order to cater to identified application needs. First, an MLR model is 

established with relevant and independent input factors with its accuracy verified for cost 

estimating. The research focus is then set on how to account for the variance of the MLR’s 

predicted output, namely, the precision of its prediction. The variance of MLR output is quantified 

at a particular input point in the input space of the problem domain. The derived analytical 

solution is cross-checked by performing Monte Carlo (MC) simulation on the demonstration case. 

A metric based on the resulting variance (i.e., the ratio of standard deviation over mean) is found 

effective to gauge the precision of the MLR model. As long as the precision is below a certain 

threshold (say, 10%), one can conclude the MLR model passes the precision test. Otherwise, the 

model is rejected; input definition and modeling data need to be reexamined and refined prior to 

updating the MLR model or resorting to alternative nonlinear regression models. 

For illustration of the proposed research, an application case in estimating labor cost for precast 

solid wall panels is presented. Wall panels are prefabricated in a precast plant with technology, 

environment, labor, material, and management being held relatively constant in a controlled 

environment. Hence, relevant input factors affecting labor hours in the fabrication of solid wall 
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panels are mainly design features that vary in different client orders, such as the length, width, 

thickness, reinforcement weight, and measurement of the openings. The base panel design is 

identified as the most commonly seen panel from the partner’s historical data and the product 

features of this particular wall panel provide baselines to gauge the complexity in fabrication of 

possible variations of the wall panel. The average labor hours taken to precast the base panel 

serves as the common denominator in calculating a “labor cost multiplier” for each wall panel in 

the database. The whole data set contains 1000 records. Hence, the MLR model simply relates all 

the input factors– each denoting a ratio in regard to a specific product feature– with the output 

variable being the “labor cost multiplier”. A process piping spool fabrication case was described 

for further demonstration of practical applicability, in which three sample spools were analyzed 

to verify the proposed method in estimating labor hours for various welding work items.  

In the ensuing section, a critical review of literature and practice in regards to MLR applications, 

prefabrication estimating, and error propagation theory is described. 

2.2 Review of Literature and Practice 

2.2.1 Prefabrication Estimating  

Industrial construction delivers projects essential to our utilities and basic industries, featuring 

large amounts of the highly complex process of piping, mechanical, electrical, and instrumentation 

work (Barrie and Paulson, 2001). Industrial construction “tends to be much more labor-intensive, 

though some of the largest hoisting and materials-handling equipment is also required” (Parker et 

al., 1984). Driven by the need for productivity improvement, industrial construction has pioneered 

prefabrication and offsite construction, gradually evolving into large-scale modular construction 
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practice (Borjeghaleh and Sardroud 2016). For instance, piping spools used to be prefabricated at 

a workshop on-site to reduce field handling and welding. This gradually evolved into an 

industrialized prefabrication plant and a module assembly yard for industrial module fabrication 

(Liu et al. 2016). The trend for industrialization of buildings ranging from exterior/interior wall 

panels to fully built home modules takes after the large-scale prefabrication practice in industrial 

construction. Regardless of being industrial construction or buildings, prefabrication at offsite 

facilities can be viewed as the basic engineering method. This paper looks into precast wall panels 

and prefabricated pipe spools as typical prefabrication problems in order to identify research needs 

for computing. 

Defining work packages (WP) within the project work breakdown structure (WBS) is the first 

step in the estimation process. Next, with a sufficient WBS definition, work amount for each WP 

is scheduled and estimated, monitored, and controlled (PMI 2017). The estimator’s job is to 

determine the quantity of work and choose the resource group to complete each individual work 

item (activity or task) in a particular WP. Then the total labor hours (LH) required to perform 

each given activity contained in a particular WP is estimated. In the application context of 

estimating labor hours for prefabricated products, this research follows the current practice to 

formalize a cost estimating model based on the product fabrication complexity factor. The basic 

idea is any variations against the base product will increase production complexity, thereby 

requiring additional work efforts. Therefore, a complexity factor, which can act as the multiplier 

on the base product labor cost, is directly correlated to labor hours (LH) required for fabricating 

a certain product type. These complexity factors are represented with a mean denoting the average 
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benchmark, along with a standard deviation accounting for the uncertainty in the labor hour 

prediction. An example case is illustrated (Fig. 1) to clarify the concept.  

 

Figure 2.1: Products of varied complexity against base product in one hypothetical work 

package. 

The above illustration shows different variation types for a particular work package in fabrication 

of a certain product. Here, A denotes the base product type. B and C are the complexity types 

that can be seen as variations of A. Case No. 1 denotes the base product. That means no additional 

complexity is factored, and productivity for Case 1 is set as the base productivity. In case No. 2, 

feature B is added on top of A. That means additional complexity is factored with the 

consideration of work item B. Now, if the base productivity is 𝑃𝐴, and the measured productivity 

for product type “A – B” is 𝑃𝐴−𝐵, the complexity factor for the added work item B (𝐹𝐴−𝐵) would 

be 𝐹𝐴−𝐵 =
𝑃𝐴−𝐵

𝑃𝐴
. In a similar manner, as shown in Case No. 3, if the measured productivity for 

product type “A – C” is 𝑃𝐴−𝐶, the complexity factor for the added work item C (𝐹𝐴−𝐶) would be, 

𝐹𝐴−𝐶 =
𝑃𝐴−𝐶

𝑃𝐴
. Now, if there is one new product case, where both work items B and C are present 

in the work package, the productivity of the work package (Case No. 4) is defined with a new 

factor  𝐹𝐴−𝐵−𝐶 =
𝑃𝐴−𝐵−𝐶

𝑃𝐴
.  
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A dataset containing one thousand precast wall panel records is tapped to analyze the precision 

of the MLR-based estimating model as it is continuously updated with newly appended project 

data. 

2.2.2 Review of MLR Applications 

MLR was used to predict the peak and average traffic volume (Lingras and Adamo 1996). Liu et 

al. (2010) applied MLR to determine the deterioration of the underground metallic pipe subject 

to different soil properties. Cao et al. (2018) tested the MLR model to predict the unit bid price 

and evaluated the prediction performance by mean absolute error (MAE), the mean absolute 

percentage error (MAPE), and mean square error (MSE). However, the precision of model 

prediction had been largely overlooked and model validation had not factored in the variance of 

the predicted output and its relationship with the input parameters. Choi et al. (2015) applied 

the data clustering technique combined with MLR model to determine the future maintenance 

cost of highways. To prove the robustness of the model, the predicted error sum of square (PRESS) 

statistics was used to determine the quality of prediction by comparing each observed response 

from a model calibrated with a new subset against that from the fitted model. Nonetheless, the 

variance in the model output resulting from using a different subset of the data in MLR was not 

investigated. In addition, MLR (linear regression) and artificial neural network (ANN) models 

were contrasted for risk assessment of the bridge maintenance performance projects (Elhag and 

Wang 2007). Both MLR and ANN were calibrated to model risk scores and risk categories. 

Pearson's correlation coefficient (r), and the root mean square error (RMSE), and MAPE were 

used to evaluate the accuracy performance of the proposed models. When the MLR model was 

presented separately with the testing data set (a subset of the modeling data), significant changes 
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in model accuracy (RSME, MAPE, and r values) were observed. Yet, the precision performance 

in terms of the model prediction variance was not assessed. Another relevant endeavor was to 

evaluate the performances of different data mining techniques in predicting the compressive 

strength of high-performance concrete by Chou et al. (2011). Nonlinear regressions (such as ANN 

and support vector machines) and MLR models were calibrated using manyfold cross-validation 

techniques, while model’s prediction performance was evaluated based on r, RMSE, and MAPE 

(Chou et al., 2011).  

Researchers have used factor analysis techniques for MLR models to enhance the accuracy of the 

estimated project costs by selecting the more significant factors that contribute to the estimation 

(Trost and Oberlender 2003, Zayed and Halpin 2005; Lowe et al. 2006). Model accuracy was 

reported in most cases as the standard error or variance of the final output based on the estimated 

residuals. Portas and Abourizk (1997) maintained that a range of productivity estimates is always 

preferable to the estimator instead of having a point value estimate. Therefore, providing a 

confidence range around the predicted point value is highly desirable. Marchionni et al. (2016) 

applied one quantitative equation to estimate the prediction interval of the predicted output of 

the MLR model developed to estimate the water supply infrastructure cost. However, this interval 

prediction equation is constructed with an assumption that the residual mean is zero and has a 

constant variance. The parametric prediction intervals made under this assumption may not 

perform well when the dataset is relatively small and/or has outliers with rather large residuals 

(Olive 2007). Mohsenijam and Lu (2019) demonstrated a modified version of the above equation 

to quantify the prediction interval for an MLR model in modeling labor hours for structural steel 

fabrication projects. It is noteworthy such established MLR variance estimation methods fall short 
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in accounting for the impact of the uncertainty associated with each input parameter of the model 

on the uncertainty of the final output. To our best knowledge, measurements quantifying the 

contribution of each input variable of an MLR model to the ultimate uncertainty (or variance) of 

the predicted output are missing in the literature. So far, the only approach available to derive 

such a measurement is by designing experiment scenarios and conducting sensitivity analysis (i.e., 

changing the input variable and observing the changes in output). Furthermore, it is common 

practice to develop the total estimate by aggregating the estimate for distinctly scoped work 

packages. Therefore, there is a practical need for calibrating a set of MLR equations –each denoting 

a model for one work package– in order to generate the final estimate. Variances in the MLR 

equations need to be aggregated in quantifying the uncertainty of the estimate, resulting in the 

variance of the final estimate. MLR based methods for final estimate variance analysis based on 

aggregating a collection of work package estimates are yet to be formalized. 

2.2.3 Review of Error Propagation Theory  

The law of error propagation generalizes the relationship between random variable errors and the 

corresponding function (Koch 1999); and provides the fundamental formula for evaluation of 

precision in adjustment theory (Amiri-Simkooei et al. 2016). Given a linear function, the variance 

or covariance of the error propagation model can be derived analytically. The error of any system 

output can be obtainable through functional substitution with truncated Taylor Series 

(considering up to first order derivative). A nonlinear function can be preprocessed with 

linearization by Taylor series expansion prior to applying error propagation, while it is 

theoretically possible to extend Taylor series expansion to any existing order in order to improve 

computing accuracy (Xue et al. 2015). Nonetheless, research and application of the error 
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propagation theory in civil or construction engineering have remained scarce. The majority of the 

related applications are found to fall in the field of automation control and sensor technology (Cho 

et al. 2004, Cantoni et al. 2007, Hasan and Lu 2017, Wai-Lok Lai et al. 2018). Hasan and Lu 

(2021) focused on applications of project scheduling and S-curve budgeting that is based on an 

activity-on-node (AON) project network model and critical path method (CPM) analysis.  Error 

propagation theory was applied in determining variances in labor hour budgets at various stages 

of a project schedule, resulting in the analytical definition of S stripe instead of S-curve for the 

project labor cost budget.  

In this research, we integrate the error propagation theory with MLR modeling in an attempt to 

quantify the variance of the output in connection with labor cost estimating in prefabrication, 

which is due to variations in complexity features of the prefabricated components. Applying first-

order derivatives to approximate the propagation of random errors in the MLR model makes the 

solution algorithm straightforward, practical, and sufficient and eliminates the need for any 

additional simulation modeling effort for this purpose. The Monte Carlo (MC) simulation is used 

in the case study to cross-validate the results against the proposed model. 

2.3 Method for Precision Analysis on MLR-based Estimating Model 

The generic model of labor hour estimating in the prefabrication application context can be 

expressed by Eq. 2.1:  

𝐿𝐻𝑇,𝑢 = ∑𝐿𝐻 = ∑ (𝑃𝑢,𝑗 × 𝑊𝑢,𝑗)
𝑗

                     (2.1) 

Here, 
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∑𝐿𝐻 = Total man hour required to complete a job; 

𝑢 = Product type; 

𝑃𝑢 = Labor productivity (LH/Unit) for particular product type 𝑢; 

𝑊𝑢,𝑗 = Total work unit performed (quantity takeoff) on product type 𝑢.  

𝑗 = Work breakdown unit ID (e.g., formwork preparation, rebar preparation, laying out 

the insulation, pouring, and finishing) 

Labor productivity 𝑃𝑢,𝑗  for particular product type 𝑢, can be further elaborated with Eq. 2.2,  

𝑃𝑢,𝑗 = 𝑃 (𝑢,0,𝑗) × 𝐹𝐷,(𝑢,𝑖,𝑗)                            (2.2) 

Here,  

𝑖 = type of the product, variations, and design features that have an impact on labor hours 

(i.e., wall panel with variations in shape and technical design). Here, 𝑖 =  0 denotes the 

default or base product with no variations.  

𝑗 = Work breakdown unit ID (e.g., formwork preparation, rebar preparation, laying out 

the insulation, pouring, and finishing). 

𝐹𝐷,(𝑢,𝑖,𝑗)= Design complexity factor for work breakdown unit 𝑗 and variation type 𝑖 for 

product type 𝑢. 

Complexity factors can have inherent uncertainties which are represented by the mean value, µ, 

and standard deviation, σ 
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𝐹𝐷,(𝑢,𝑖,𝑗) =
𝑃𝐷,(𝑢,𝑖,𝑗)

𝑃 (𝑢,0,𝑗) 
= 𝐹𝐷,(𝑢,𝑖,𝑗)(𝜇𝐹(𝑢,𝑖,𝑗), 𝜎𝐹(𝑢,𝑖,𝑗))                    (2.3) 

The complexity factor, 𝐹𝐷,(𝑢,𝑖,𝑗) is dependent on many independent feature attributes, 𝑘 is added 

complexity to the base product 𝑢, and result in the variation of type 𝑖. Therefore, 𝐹𝐷,(𝑢,𝑖,𝑗) would 

be a function of all the complexities (𝐹 (𝑢,𝑖,𝑗,𝑘)) resulting from the variations of different features 

of product type 𝑢, which is expressed as Eq. 2.4:  

𝐹𝐷,(𝑢,𝑖,𝑗)(𝜇𝐹(𝑢,𝑖,𝑗), 𝜎𝐹(𝑢,𝑖,𝑗)) = 𝑓(𝐹 (𝑢,𝑖,𝑗,1), 𝐹𝐷,(𝑢,𝑖,𝑗,2), 𝐹𝐷,(𝑢,𝑖,𝑗,3), …… , 𝐹𝐷,(𝑢,𝑖,𝑗,𝑘))                  (2.4) 

As previously mentioned in the introduction, the basic assumption of the model is that each 

feature variation (𝑘)  of the product 𝑢 is measured against the relevant base product feature, the 

relationship can be expressed with Eq. 2.5:  

𝐹 (𝑢,𝑖,𝑗,𝑘) = 𝑓 (
𝑙 (𝑢,𝑖,𝑗,𝑘)

𝑙 (𝑢,0,𝑗,𝑘)

)                                  (2.5) 

Therefore, Eq. 2.4 can be rewritten in the form of MLR equation:  

𝐹𝐷,(𝑢,𝑖,𝑗)(𝜇𝐹(𝑢,𝑖,𝑗), 𝜎𝐹(𝑢,𝑖,𝑗)) =  𝛽 (𝑢,𝑖,𝑗,0) + ∑ 𝛽 (𝑢,𝑖,𝑗,𝑘)

𝑙 (𝑢,𝑖,𝑗.𝑘)

𝑙 (𝑢,0,𝑗,𝑘)

𝑘

1
               

or,                                          

𝐹𝐷,(𝑢,𝑖,𝑗) = 𝛽 (𝑢,𝑖,𝑗,0) + ∑ 𝐹 (𝑢,𝑖,𝑗,𝑘)

𝑘

1
   (2.6) 

Herein, 𝛽 (𝑢,𝑖,𝑗,𝑘) = (𝜇𝛽(𝑢,𝑖,𝑗,𝑘), 𝜎𝛽(𝑢,𝑖,𝑗,𝑘)), represents the coefficients in the MLR model to estimate 

the applicable labor cost multiplier against the base product;  𝛽 (𝑢,𝑖,𝑗,0) = (𝜇𝛽(𝑢,𝑖,𝑗,0), 𝜎𝛽(𝑢,𝑖,𝑗,0)) 

represents the intercept of the MLR equation. Note Eq. 2.6 follows the generic format of the MLR 



51 

equation and can be calibrated using the least-square optimization method (Lowe et al. 2006). To 

facilitate feature selection by identifying the most relevant features, applying a stepwise regression 

technique such as the one proposed by Mohsenijam et al. (2017) is also deemed appropriate and 

effective.   

Now, Eq. 2.1 can be rewritten as Eq. 2.7 for estimating labor cost in LH, 

𝐿𝐻𝑇,𝑢 = ∑ 𝑃0,(𝑢,𝑗) (𝛽 (𝑢,𝑖,𝑗,0) + ∑ 𝐹 (𝑢,𝑖,𝑗,𝑘)

𝑘

1
)

𝑗
𝑊𝑢.𝑖,𝑗  =  𝑓𝑇                      (2.7) 

How to analyze the MLR variance based on the error propagation theory is interpreted as follows:  

For any function, 𝑦 =  𝑓(𝑥), measurement of the systematic error can be obtained by comparing 

the difference between 𝑦 and its Taylor Series first expanded term, 𝑦0, as expressed by the 

following equation (Eq. 8),  

𝑦 − 𝑦0 =
𝜕𝑦

𝜕𝑥
(𝑥 − 𝑥0)                               (2.8) 

Now, if 𝑦 has 𝑚 number of observations and each of them is dependent on 𝑛 number of 

independent variables for 𝑥 (assuming MLR is established), then the Eq. 2.8 becomes, 

[

𝑑𝑦1

𝑑𝑦2

⋮
𝑑𝑦𝑚

] =

[
 
 
 
 
 
 
 
𝜕𝑦1

𝜕𝑥1

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

𝜕𝑥1

𝜕𝑦2

𝜕𝑥2

⋯

𝜕𝑦1

𝜕𝑥𝑛

𝜕𝑦2

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

𝜕𝑦𝑚

𝜕𝑥2
⋯

𝜕𝑦𝑚

𝜕𝑥𝑛 ]
 
 
 
 
 
 
 

[

𝑑𝑥1

𝑑𝑥2

⋮
𝑑𝑥𝑛

] 

or,                                                               𝑑𝑦 = 𝐽𝑥𝑦𝑑𝑥                  (2.9) 
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Eq. 2.9 is the general form of system error propagation where  𝐽𝑥𝑦 is called the Jacobian (Jacobian 

matrix) of the equation, and values of any particular measurement at an independent variable 

follow Gaussian distributions (e.g., Normal). Thus, the propagation of random error in the system 

follows the law of propagation of variance and covariance (POV), which can be expressed by Eq. 

2.10.  

       𝐶𝑦 = 𝐽𝑥𝑦 𝐶𝑥 𝐽𝑦𝑥
𝑇                  (2.10) 

Here, 𝐶𝑦 is the covariance matrix of random output y, and 𝐶𝑥  is the covariance matrix of random 

input 𝑥. 

Now, to examine the total error in final labor hours estimated due to the variance in the model 

coefficients, Eq. 2.10 is applied in connection with Eq. 2.7. 

Therefore, Jacobian (𝐽𝑇) of  𝐿𝐻 𝑇 ( 𝑜𝑟 𝑓𝑇)  is given as Eq. 2.11,  

𝐽𝑇 = [
𝜕𝑓𝑇

𝜕𝛽0,𝑖

𝜕𝑓𝑇

𝜕𝛽1,𝑖

𝜕𝑓𝑇

𝜕𝛽2,𝑖

…
𝜕𝑓𝑇

𝜕𝛽𝑘,𝑖
]                   (2.11) 

Given all the coefficients are independent, the covariance matrix of the Eq. 2.7 is expanded in Eq. 

2.12,  

𝐶𝑇 = 

[
 
 
 
 
 

𝑣𝑎𝑟(𝛽0,𝑖) 𝐶𝑜𝑣(𝛽1,𝑖, 𝛽0,𝑖) 𝐶𝑜𝑣(𝛽2,𝑖, 𝛽0,𝑖) 𝐶𝑜𝑣(𝛽𝑘,𝑖, 𝛽0,𝑖)

𝐶𝑜𝑣(𝛽0,𝑖, 𝛽1,𝑖) 𝑣𝑎𝑟(𝛽1,𝑖) 𝐶𝑜𝑣(𝛽2,𝑖, 𝛽1,𝑖) … 𝐶𝑜𝑣(𝛽𝑘,𝑖, 𝛽1,𝑖)

𝐶𝑜𝑣(𝛽0,𝑖, 𝛽2,𝑖) 𝐶𝑜𝑣(𝛽1,𝑖, 𝛽2,𝑖) 𝑣𝑎𝑟(𝛽2,𝑖) 𝐶𝑜𝑣(𝛽𝑘,𝑖, 𝛽2,𝑖)

⋮ ⋱
𝐶𝑜𝑣(𝛽0,𝑖, 𝛽𝑘,𝑖) 𝐶𝑜𝑣(𝛽1,𝑖, 𝛽𝑘,𝑖) 𝐶𝑜𝑣(𝛽2,𝑖, 𝛽𝑘,𝑖) 𝑣𝑎𝑟(𝛽𝑘,𝑖) ]
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= 

[
 
 
 
 
 
𝑣𝑎𝑟(𝛽0,𝑖)

𝑣𝑎𝑟(𝛽1,𝑖)

𝑣𝑎𝑟(𝛽2,𝑖)

⋱
𝑣𝑎𝑟(𝛽𝑘,𝑖)]

 
 
 
 
 

               (2.12) 

Now the total variance (𝜎𝑇
2) can be extended as Eq. 2.13 from Eq. 2.10, resulting in Eq. 2.14 and 

Eq. 2.15. 

𝜎𝑇
2 = [

𝜕𝑓𝑇

𝜕𝛽0,𝑖

𝜕𝑓𝑇

𝜕𝛽1,𝑖

𝜕𝑓𝑇

𝜕𝛽2,𝑖

…
𝜕𝑓𝑇

𝜕𝛽𝑘,𝑖
]

[
 
 
 
 
 
𝑣𝑎𝑟(𝛽0,𝑖)

𝑣𝑎𝑟(𝛽1,𝑖)

𝑣𝑎𝑟(𝛽2,𝑖)

⋱
𝑣𝑎𝑟(𝛽𝑘,𝑖)]

 
 
 
 
 

[
 
 
 
 
 
 
 

𝜕𝑓𝑇

𝜕𝛽0,𝑖

𝜕𝑓𝑇

𝜕𝛽1,𝑖

𝜕𝑓𝑇

𝜕𝛽2,𝑖

⋮
𝜕𝑓𝑇

𝜕𝛽𝑘,𝑖]
 
 
 
 
 
 
 

  (2.13)  

or, 

𝜎𝑇
2 = (

𝜕𝑓𝑇

𝜕𝛽0,𝑖
)

2

𝑣𝑎𝑟(𝛽0,1) + (
𝜕𝑓𝑇

𝜕𝐹𝛽1,𝑖

)

2

𝑣𝑎𝑟(𝛽1,1) + (
𝜕𝑓𝑇

𝜕𝛽2,𝑖
)

2

𝑣𝑎𝑟(𝐹3,1) + ⋯

+ (
𝜕𝑓𝑇

𝜕𝛽𝑘,𝑖
)

2

𝑣𝑎𝑟(𝐹𝛽𝑘,𝑖
)     (2.14) 

or,                  𝜎𝑇
2 = 𝐺0,𝑖 + 𝐺1,𝑖 + 𝐺2,𝑖 + ⋯+ 𝐺𝑘,𝑖; 𝑤ℎ𝑒𝑟𝑒, 𝐺𝑘,𝑖 = (

𝜕𝑓𝑇

𝜕𝐹𝑘,𝑖
)
2

𝑣𝑎𝑟(𝐹𝑘,𝑖)                          (2.15) 

Here, 𝐺𝑘,𝑖 denotes the contribution to the total variance attributable to each individual factor’s 

variance, 𝑣𝑎𝑟(𝐹𝑘,𝑖) for work breakdown unit 𝑗 and product variation type 𝑖. 

The influence factor (IF) of the variance of each complexity factor is defined as in Eq. 2.16. IF 

denotes the contribution in percentage of the variance of each input complexity to the total 

variance in the LH estimate.  
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𝐼𝐹𝑘,𝑖 = 
𝐺𝑘,𝑖

𝜎𝑇
2
                     (2.16) 

2.4 Recapitulating Application Steps 

The LH variance estimating framework described above is developed by applying MLR combined 

with error propagation theory, which starts with the formulation of the labor hour estimating 

model and ends with verifying the variance of the model’s prediction, as follows:  

Step 1: Identify the work package 𝑢 for which the estimating model needs to be formulated.  

Step 2: Identify the number of the independent variables (𝑙 (𝑢,𝑘)) that contributes to the 

complexity of the product. Herein, the product complexity reflects LH requirement changes due 

to the shift in the contributing attribute value.  

Step 3: Define one base product (can be the most common construction product constructed or 

built in the production facility) and its attributes along with base productivity (𝑃𝑏𝑎𝑠𝑒,(𝑢,𝑗) ) value, 

which can be compared against other variations of the products to define the product complexity 

factor (𝐹𝐷,(𝑢,𝑖)) for a particular variation. 

Step 4: Define the number of independent iterations 𝑁 and the size of data (randomly selected) 

𝑛 used in each iteration in order to formulate the MLR model linking the input variables 

(complexity contributing attributes 𝑙 (𝑢,𝑘)) with the final output (product complexity 𝐹𝐷,(𝑢,𝑖) ). 

Step 5: Run the MLR regression analysis to formulate the product complexity estimation model 

as shown in Eq. 2.6 for a set of random data (𝑛). Note, only relevant attributes should be 

considered in formulating Eq. 6. Running this process for 𝑁 times will give the estimate of the 
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variances. (𝜇𝛽(𝑢,𝑖,𝑘), 𝜎𝛽(𝑢,𝑖,𝑘)) of the regression coefficients (𝛽 (𝑢,𝑖,𝑘)). These variances of the 

regression coefficients contribute to the variance of final product complexity 

estimate(𝜇𝐹(𝑢,𝑖), 𝜎𝐹(𝑢,𝑖)).  

Step 6: Readily plug in the mean values of the regression coefficients into Eq. 2.7 to compute the 

mean 𝐿𝐻. 

Step 7: Apply the error propagation formula (Eq. 2.13) to estimate the variance (𝜎𝑇
2)  of the 

mean 𝐿𝐻 resulting from Step 6.  

Step 8: Compare the obtained maximum practical variance (𝜎𝑇
2)  of the estimated 𝐿𝐻𝑇 with a 

predefined allowable variance threshold. If the estimated variance is less than the threshold, this 

model described in Eq. 2.7 is accepted.  

Step 9. Compute the influence of the variance of the coefficients (which represents the variability 

of the input complexity in dimension) on the total variance accumulated on the estimated 𝐿𝐻using 

Eq. 2.16.  

 

Suppose the variance exceeds the acceptable threshold, in that case, the MLR model can be 

improved by applying complementary data mining techniques (e.g., using various combinations of 

input variable sets [Chan and parker 2005; Mohsenijam et al. 2017), applying classification 

techniques to find different ranges of data clusters (Lu et al. 2019; Huang and Hsieh 2020), etc.]. 

Otherwise, a nonlinear estimating model can be adopted [e.g., scaling the data set using log 
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functions, applying nonlinear regression techniques (Kim at al. 2004; Bayram and Al-Jibouri 

2016)]. The proposed method consisting of major steps is shown in a flowchart (Fig. 2.2). 

  

Figure 2.2: Major steps in the proposed method for determining IFI of the regression coefficients. 
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2.5 Application Case   

In collaboration with one of Canada's major precast product producers, a data set of 1000 instances 

of precast wall panel products commonly used in building construction were prepared for 

demonstrating the application of the proposed research. Each instance has a record consisting of 

three attributes (𝑙1, 𝑙2, 𝑎𝑛𝑑 𝑙3) and labor hour estimate (𝐿𝐻𝑖) value. Table 1 summarizes data 

properties. Herein, 𝑷𝒊  is the total labor hour required to produce per square meter floor of the 

wall panel. 𝒍𝟏 can be thickness (in mm), 𝒍𝟐 horizontal reinforcement (kg per sq m), 𝒍𝟑 vertical 

reinforcement (kg per sq m). The schematic of a typical solid wall panel is given in Fig. 2.3 (plan 

view) and Fig. 2.4 (reinforcement details). The solid bunker type wall panel (“bunker” is industry 

jargon referring to the rectangular shape without any opening, solid wall panel) is the simplest 

type of wall panel that the partner company produces. The length, width, thickness, horizontal 

and vertical rebar details (weight and spacing of the rebar) are the attributes extracted from the 

company BIM data repository. The labor hour information for making each defined type of wall 

panel is extracted from the company’s job costing system.  
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Figure 2.3: Plan view of a typical solid wall panel. 
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(b) 

Figure 2.4: Reinforcement details of a typical solid wall panel. 
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Table 2.1 Data properties of the example case. 

Properties Attributes Productivity,  (𝑷𝒊)  

𝒍𝟏 𝒍𝟐 𝒍𝟑 

Minimum 3 6 11 3.49 

Maximum 20 10 16 135.43 

Average 11.59 8.03 13.57 69.02 

Standard deviation  5.28 1.45 1.73 19.71 

 

In this case, correlation analysis was performed for each pair of attributes, and results are 

summarized in Table 2.2, showing that all the correlation values are below 0.23, which indicates 

there is no significant correlation between the identified attributes. The two-tail t-test was also 

performed to check the significance of the difference between any two attributes. The results are 

summarized in the bottom part of Table 2.2, showing that all correlation coefficients r (absolute 

value) and regression coefficient (β) are nearly zero, and p-values from the two-tail t-test are below 

0.05. This further corroborates that there is no correlation among the input variables, and the 

results are significant. Therefore, the input variables are verified to be independent of one another.  
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Table 2.2 Correlation analysis results for three attributes of the data set. 

Attributes 𝒍𝟏 𝒍𝟐 𝒍𝟑 

Correlation coefficient, 𝑟 

𝑙1 1   

𝑙2 0.02119 1  

𝑙3 0.03475 0.02757 1 

Regression coefficient 

𝑙1 1   

𝑙2 0.00573 1  

𝑙3 -0.01125 0.03299 1 

(Two tail 𝑡 −  𝑠𝑡𝑎𝑡 and 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑠) 

𝑙1 - - - 

𝑙2 (1.96, 2.24 ×10-80) - - 

𝑙3 (1.96, 9.96×10-29) (1.96, 0) - 

 

The proposed method is now applied to establish the labor hour estimating MLR equation and 

compute the variance. The step-by-step application procedure as per the Fig. 2.2 is explained with 

sample calculations elaborated below:  
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Step 1: for this example, we define only one work package (WP). Therefore, u = 1 

Step 2: there are a total of three independent variables to determine the total labor hour (LHT). 

Therefore, 𝑘 = 3 

Step 3: for this example case, we assume the average productivity of the entire dataset as the 

base productivity and average attribute values as the base dimensions. Therefore, the case data 

set, 𝑃0= 69.02, and 𝑙0,1= 11.59, 𝑙0,2= 8.03, 𝑙0,3= 13.57. 

Note if all the input variables selected to construct the estimation model are clearly identifiable 

in any industry average productivity database (like RS-means). Data from such a database can 

also be employed to define the base (productivity) rate. 

Step 4: we decide that a subset of 100 random records (𝑛 = 100) from the total data set will be 

used to perform the MLR analysis resulting in the regression equation for product complexity 

factor, 𝐹𝐷,(𝑢,𝑖,𝑗). Besides, there will be in total 𝑁 =  100 repetitions of this process to compute the 

variance of the regression coefficients (𝛽 (𝑢,𝑖,𝑘)). Therefore, as per Eq. 2.6, the product complexity 

factor estimation equation (𝐹𝐷,(𝑢,𝑖)) for this case example would become,  

𝐹𝐷,(𝑢,𝑖) = 𝛽 ( 𝑖,0) + (𝛽 ( 𝑖,1)

𝑙 ( 𝑖,1)

𝑙 0 (1)
+ 𝛽 ( 𝑖,2)

𝑙 (𝑖,2)

𝑙 0 (2)
+ 𝛽 ( 𝑖,3)

𝑙 (𝑖,3)

𝑙 0(3)
)            (2.17) 

According to Eq. 2.7 (for the case product), the new LH estimation model would be,  

𝐿𝐻𝑇 = 𝑃0 [𝛽 ( 𝑖,0) + (𝛽 ( 𝑖,1)

𝑙 ( 𝑖,1)

𝑙 0 (1)
+ 𝛽 ( 𝑖,2)

𝑙 (𝑖,2)

𝑙 0 (2)
+ 𝛽 ( 𝑖,3)

𝑙 (𝑖,3)

𝑙 0 (3)
)]  𝑊             (2.18) 
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Here, for this example case, all the values (attribute) for the base product are,  𝑃0 = 69.02, 𝑙 0 (1)= 

11.59, 𝑙 0 (2)= 8.03, 𝑙 0 (3)=13.57. 

Step 5: we select a subset of 100 records and perform the MLR equation for calculating product 

complexity factor 𝐹𝐷,(𝑢,𝑖,𝑗) and repeat the process 100 times to compute the mean and variance of 

the regression coefficients (𝛽 (𝑢,𝑖,𝑘) = (𝜇𝛽(𝑢,𝑖,𝑘), 𝜎𝛽(𝑢,𝑖,𝑘))). The regression coefficients derived from 

the first ten iterations as per Eq. 2.17 are summarized in Table 2.3. From Table 2.3, it is evident 

that the derived coefficient values (𝛽 (𝑢,𝑖,𝑘)) for Eq. 2.17 vary significantly from iteration to 

iteration.  

Furthermore, a hypothesis test was conducted to determine the significance of each coefficient in 

the calibrated linear regression equation. A linear regression t-test was performed to determine 

the validity of the hypothesis. The test hypothesis was confirmed by comparing the P-values with 

a desired significance level (α) derived from t statistics (Olive 2017). Here, the P-value is the 

probability of observing a sample statistic as extreme as the test statistic. The objective of the 

hypothesis test is to determine whether there is any significant linear relationship between an 

independent variable 𝑙 ( 𝑖,𝑘) (in Eq. 2.17) and the dependent variable 𝐹𝐷,(𝑢,𝑖). The coefficient value 

(the slope of the regression line 𝛽 ( 𝑖,𝑘)) equal to zero means there is a significant relationship 

between the independent and the dependent variable. Hence, the null hypothesis (𝐻0) for this case 

would be zero, and the alternate hypothesis (𝐻𝑎) asserts that the slope would not be equal to zero. 

The ratio between the estimated mean (𝝁𝜷(𝒊,𝒌)) and the standard deviation (𝜎𝛽(𝑘)) represents the 

t (stat) value, can be estimated using Eq. 2.19,  

𝑡 =
𝝁𝜷(𝒊,𝒌)

𝜎𝛽(𝑘)
        (2.19) 
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Table 2.3 Values of the regression coefficients for first 10 iterations. 

Iteration 

No. (𝑵) 

Regression Coefficients (𝜷 (𝒖,𝒊,𝒌)) 

𝜷 ( 𝒊,𝟎) 𝜷 ( 𝒊,𝟏) 𝜷 ( 𝒊,𝟐) 𝜷 ( 𝒊,𝟑) 

1 -0.148 0.285 0.343 0.535 

2 -0.203 0.214 0.496 0.479 

3 -0.064 0.098 0.419 0.577 

4 0.375 0.228 -0.243 0.625 

5 0.147 0.113 0.269 0.476 

6 0.068 0.142 0.192 0.601 

7 -0.166 0.202 0.319 0.668 

8 -0.004 0.264 0.265 0.498 

9 0.201 0.263 0.193 0.333 

10 0.451 0.136 0.201 0.193 
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It is also important to note the degree of freedom of the relationship in finding the p- values from 

the standard t-distribution. The degree of freedom can be calculated using Eq. 2.20, where 𝑛 is 

the number of observations, 𝑘′ = number of independent variables. The estimated p values can 

be compared with the significance level 𝛼. If the p-value is less than 𝛼, we can reject the null 

hypothesis and accept the alternate hypothesis. Otherwise, we will accept the null hypothesis.  

𝑑𝑓 = (𝑛 − 𝑘′ − 1)                   (2.20) 

For example, as per Eq. 2.20, the t-test statistic for intercept 𝛽 ( 𝑖,0) is: 0.047/0.081=0.581, and the 

corresponding P-value obtained from the standard two-tail distribution is 0.55607, which is greater 

than 0.05 (significance level). That means we cannot reject the null hypothesis. In other words, 

there is a significant chance that the value of 𝛽 ( 𝑖,0) is zero; therefore, we can consider the 

contribution of this coefficient is insignificant in the formulated MLR equation, and the intercept 

can be removed from the regression equation.  

We checked the p values of the regression coefficient and kept the corresponding input variables 

that were found to be significant (p-value is less than 0.05 significance level). In this example case, 

all the input variables are kept, except for the intercept (𝜷𝟎), which is discarded as the p-value is 

greater than 0.05 (insignificant). The regression analysis results are summarized in the following 

table (Table 2.4).  

Table 2.4 Regression analysis results summary (round 1). 
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Variables Coefficients 𝝁𝜷(𝒌) 𝝈𝜷(𝒌) t Stat P-value Remarks  

Intercept 𝛽 ( 𝑖,0) 0.047 0.081 0.581 0.5607 Insignificant 

𝑙1 𝛽 ( 𝑖,1) 0.194 0.018 10.737 1.59E-25 Significant 

𝑙2 𝛽 ( 𝑖,2) 0.241 0.045 5.280 1.58E-07 Significant 

𝑙3 𝛽 ( 𝑖,3) 0.517 0.064 8.026 2.82E-15 Significant 

 

After eliminating the insignificant variables in the MLR model, we selected a subset (100 records) 

of the entire data set, performed the regression analysis, and repeated the process for 100 

independent iterations. The updated results are summarized in Table 2.5, and all variables are 

verified to be significant (P - values of the coefficients 𝛽 ( 𝑖,𝑘) are less than 0.05). Therefore, the 

obtained MLR coefficient values ready to plug in Eq. 2.17 are: 𝛽 ( 𝑖,0)= 0, 𝛽 ( 𝑖,1)= (0.196, 0.017), 

𝛽 ( 𝑖,2)= (0.256, 0.037), and 𝛽 ( 𝑖,3)= (0.546, 0.040). 

Table 2.5 Regression analysis results summary (round 2). 

Variables Coefficients 𝝁𝜷(𝒌) 𝝈𝜷(𝒌) t Stat P-value Remarks 

𝑙1 𝛽 ( 𝑖,1) 0.196 0.0176 11.175 2.1116E-27 Significant 

𝑙2 𝛽 ( 𝑖,2) 0.256 0.0377 6.795 1.8549E-11 Significant 

𝑙3 𝛽 ( 𝑖,3) 0.546 0.0400 13.665 4.2912E-39 Significant 
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2.5.1 Error Propagation Application for Variance Estimate  

The variance of the predicted labor hour depends on the values of the input variables. In this case, 

the variance is estimated for three wall panel fabrication scenarios, namely: Scenario 1 for the 

maximum complex product (all 𝑙𝑘 values are maximum), Scenario 2 for the minimum complex 

product (all 𝑙𝑘 values are minimum), and Scenario 3 for the base product (𝑙𝑘 values are equal of 

𝑙𝑏𝑎𝑠𝑒,𝑘). In each scenario, a total of 100 work units (𝑊) of the defined product type is assumed for 

deriving total labor hour.  

Step 6 Plugging in the values of 𝑙 ( 𝑖,1), 𝑙 ( 𝑖,2), 𝑙 ( 𝑖,3), and 𝑊 in Eq. 2.18 gives rise to the mean LH 

estimate for the three different scenarios of product complexities, respectively. 

For example, for the minimum complex product (S1: variation type  𝑖 =  𝑚𝑖𝑛), 𝑙 ( 𝑖,1) = 3, 𝑙 ( 𝑖,2) =

6, and 𝑙 ( 𝑖,3) = 11. Therefore, the average LH for this product type (S1) would be (using Eq. 2.18):  

𝐿𝐻𝑇 = 𝑃0 (𝛽 ( 𝑖,1)

𝑙 ( 𝑖,1)

𝑙 0 (1)
+ 𝛽 ( 𝑖,2)

𝑙 (𝑖,2)

𝑙 0 (2)
+ 𝛽 ( 𝑖,3)

𝑙 (𝑖,3)

𝑙 0 (3)
)  𝑊   

Or,  

𝐿𝐻𝑇,𝑆1 = 69.02 (0.196
3

11.59
+ 0.256

6

8.03
+ 0.546

11

13.57
)  100 = 4725 

Results for all three scenarios are shown in Table 2.6. 

Table 2.6 Summary of the LH estimate for three different scenarios. 
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Scenario 

ID  

Scenario Remark 𝒍𝟏 𝒍𝟐 𝒍𝟑 Product 

Complexity, 

𝑭𝑫,( 𝒊) 

Total, 

𝑳𝑯 

(mean) 

Standard 

deviation  of 

estimated 

𝑳𝑯 

S1 Minimum product 

complexity 𝑖 =  𝑚𝑖𝑛 

3 6 11 0.686 4732 298 

S2 Base product 

complexity 𝑖 =  𝑏𝑎𝑠𝑒 

11.59 8.03 13.57 1.000 6899 398 

S3 Maximum product 

complexity 𝑖 =  𝑚𝑎𝑥 

20 10 16 1.303 8995 505 

  

Step 7: in this step, Eq. 2.13 (specified in Eq. 2.18 for the current case) is used to find the variance 

around the estimated LH for the three scenarios. The generic variance calculation model is 

expanded for this example case: 

𝜎𝑇
2 = (

𝜕𝑓𝑇

𝜕𝛽0,𝑖
)

2

𝑣𝑎𝑟(𝛽0,1) + (
𝜕𝑓𝑇

𝜕𝐹𝛽1,𝑖

)

2

𝑣𝑎𝑟(𝛽1,1) + (
𝜕𝑓𝑇

𝜕𝛽2,𝑖
)

2

𝑣𝑎𝑟(𝐹3,1) + (
𝜕𝑓𝑇

𝜕𝛽𝑘,3
)

2

𝑣𝑎𝑟(𝐹𝛽𝑘,3
)    (2.21) 

Taking the square root, we have the standard deviation (Standard Deviation) of the estimated 

total LH, for Scenario 1 

𝜎𝑇 = 

√(𝑃0

𝑙 ( 𝑖,1)

𝑙 0 (1)
× 𝑊)

2

𝑣𝑎𝑟(𝛽1,1) + (𝑃0

𝑙 ( 𝑖,2)

𝑙 0 (2)
× 𝑊)

2

𝑣𝑎𝑟(𝐹3,1) + (𝑃0

𝑙 ( 𝑖,3)

𝑙 0 (3)
× 𝑊)

2

𝑣𝑎𝑟(𝐹𝛽𝑘,3
)   

or, 
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𝜎𝑇 = 𝑃0 × 𝑊𝑟√(
𝑙 ( 𝑖,1)

𝑙 0 (1)
)

2

𝑣𝑎𝑟(𝛽0,1) + (
𝑙 ( 𝑖,2)

𝑙 0 (2)
)

2

𝑣𝑎𝑟(𝛽1,1) + (
𝑙 ( 𝑖,3)

𝑙 0 (3)
)

2

𝑣𝑎𝑟(𝐹𝛽𝑘,3
) 

𝜎𝑇 = 69.02 × 100√(
3

11.59
)
2

0.0172 + (
6

8.03
)
2

0.0372 + (
11

13.57
)
2

0.0402 = 298.23 

The last column of Table 2.6 shows the values of the standard deviation for the estimated LH in 

all the three scenarios.  

Step 8: In this example case, we assume that the maximum allowed threshold for standard 

deviation of the estimated total labor hour 𝐿𝐻𝑇 is at 10% in order to accept the estimating model 

presented in Eq. 2.18. For all the three scenarios (Table 6), the estimated standard deviation of 

the estimated 𝐿𝐻𝑇 is found to be less than the 10% of the predicted mean [e.g., (𝜎𝑇,𝑆3 = 505) <  

(10% 𝑜𝑓 𝐿𝐻𝑇 𝑓𝑜𝑟 𝑆3 =  899)]. Therefore, the 𝐿𝐻𝑇 estimation model (Eq. 2.18) is accepted.  

Step 9: Influence of each individual attribute in total variance estimate can be measured using 

Eq. 2.16, which is elaborated for this case as Eq. 2.21.  

𝐼𝐹𝑘,𝑖 = 
𝐺𝑘,𝑖

𝜎𝑇
2
 

or  

𝐼𝐹𝑘,𝑖 =

(
𝜕𝑓𝑇
𝜕𝐹𝑘,𝑖

)
2

𝑣𝑎𝑟(𝐹𝑘,𝑖)

𝜎𝑇
2

 

Therefore, for Scenario 1, and 𝑙1, the 𝐼𝐹1,𝑆1 value would be,  
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𝐼𝐹1,𝑆1 =

(𝑃0

𝑙 ( 𝑖,1)

𝑙 0 (1)
× 𝑊𝑟)

2

𝑣𝑎𝑟(𝛽1,1)

𝜎𝑇
2

 

=
(69.02 × 100 ×

3
11.59

)
2

(0.018)2

298.232
= 0.011 = 1.1% 

Similarly,  

𝐼𝐹2,𝑆1 =
(69.02 × 100 ×

6
8.03)

2

× 0.0382

298.232
= 0.426 = 42.6% 

and,  

𝐼𝐹3,𝑆1 =
(69.02 × 100 ×

11
13.57

× 0.040)
2

298.232
= 0.426 = 42.6% 

Table 2.7 has the summary of 𝐼𝐹𝑘,𝑖 results for all three scenarios.  

Table 2.7 Influence of each individual attributes on the total in calculating the total LH. 

Scenario ID Scenario Remark 𝐼𝐹𝑘,𝑖 

𝒍𝟏 𝒍𝟐 𝒍𝟑 

S1 Minimum product complexity 𝑖 =  𝑚𝑖𝑛 1.1% 42.6% 56.3% 

S2 Maximum product complexity 𝑖 =  𝑚𝑎𝑥 17.2% 41.3% 41.5% 

S3 Base product complexity 𝑖 =  𝑏𝑎𝑠𝑒 9.3% 42.7% 48.0% 
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From Table 2.7 it is observed on the three scenarios, input factors 𝑙3 and 𝑙2 exert more significant 

influence on the variance of LH predicted by the MLR, while the contribution of 𝑙1 to the predicted 

LH variance is relatively less considerable.  

2.5.2 Cross Checking against Monte Carlo Simulation 

The data used in the illustration case (Table 2.1) were analyzed by applying Monte Carlo (MC) 

simulation directly on Eq. 2.18. Total LH and their variances for the three scenarios of product 

complexities were derived independently so as to enable cross verification. Input values for the 

MC simulation model are summarized in Table 2.8. 

Table 2.8 Input values for the MC simulation analysis to estimate total labor hour. 

Scenario Scenario Remark 𝒍𝟏 𝒍𝟐 𝒍𝟑 𝜷 ( 𝒊,𝟏) 

(𝝁𝜷(𝟏), 𝝈𝜷(𝟏)) 

𝜷 ( 𝒊,𝟏) 

(𝝁𝜷(𝟏), 𝝈𝜷(𝟏)) 

𝜷 ( 𝒊,𝟏) 

(𝝁𝜷(𝟏), 𝝈𝜷(𝟏)) 

S1 Minimum product 

complexity 𝑖 =  𝑚𝑖𝑛 

3 6 11 

(0.196, 

0.0176) 

(0.256, 

0.0377) 

(0.546, 

0.04) 

S2 Base product 

complexity 𝑖 =  𝑏𝑎𝑠𝑒 

11.

59 

8.03 13.57 

S3 Maximum product 

complexity 𝑖 =  𝑚𝑎𝑥 

20 10 16 

 

Based on 1000 simulation runs for each scenario, the derived average LH for the three scenarios 

is contrasted against that resulting from the proposed error propagation model in Fig. 2.5, with 

no significant difference found in the case of the mean values. On the other hand, the variance of 
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the LH estimate is observed to slightly increase with the increment of the complexity in the 

simulation case. Detailed results from these two methods are given in Table 2.9.  

 

Figure 2.5: Mean LH resulting from 1000 MC simulation run and applying error propagation 

model. 

Table 2.9 Result comparison for proposed analytical model vs. simulation model. 

 

S1 (Mean, Standard 

deviation ) 

S2 (Mean, Standard 

deviation ) 

S3 (Mean, Standard 

deviation ) 

LH from Proposed 

Analytical Model (4798, 298) (6899, 398) (8995, 505) 

LH from MC 

Simulation (4737, 310) (6917, 395) (8972, 486) 
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2.5.3 Further Observation and Discussion 

In quantifying the total labor hour estimate (𝐿𝐻𝑇) and its associated variance by applying the 

proposed analytical model and MC simulation, it is observed that the ratio of the standard 

deviation (𝜎𝑇) and estimated mean labor hour (𝐿𝐻𝑇) remains nearly constant for all three case 

scenarios (S1, S2, and S3). For the proposed analytical model and MC simulation model, the ratio 

of 𝜎𝑇/𝐿𝐻𝑇 is averaged 6% and 8.3%, respectively (Table 2.10).  

Table 2.10 Analysis of the ratio of the standard deviation (𝜎𝑇) and estimated mean labor hour (𝐿𝐻𝑇) by 

the proposed analytical model and MC simulation. 

Scenarios Proposed 

Analytical Model 

MC Simulation Ratio: Proposed 

Analytical Model/MC 

simulation 

Standard deviation  𝜎𝑇 /Mean 𝐿𝐻𝑇 

S1 6.3% 6.5% 0.97 

S2 5.8% 5.7% 1.02 

S3 5.6% 5.4% 1.04 

 

It is notable that the ratio of the standard deviation derived from the proposed analytical model 

and the value resulting from simulation are 0.97, 1.02, and 1.04 in Scenario 1, 2, and 3, 

respectively. There may have some insignificant errors due mainly to the approximation in the 

error propagation model by keeping first-order derivative terms only. Besides, the preliminary 

assumption in developing the model is that all the input variables are independent (there is no 
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correlation between any two input variables). It is worth mentioning, as shown in Table 2.2, the 

regression coefficient (namely, 𝑟 denoting the correlation between two variables) is not exactly 

zero but close enough to zero (the hypothesis was checked through statistical testing). That also 

accounts for the difference in the results between the proposed analytical model and MC 

simulation. Note one can adjust the acceptance threshold on the precision metric to a certain 

extent so as to account for the bias. Despite the bias, the resulting variance analysis is found 

effective in gauging the precision of the MLR model. As long as the precision (i.e., the ratio of 

standard deviation over mean) is below a certain threshold (say, 10%), one can conclude the MLR 

model passes the precision test. Otherwise, the model is rejected, and its input definition and data 

need to be reexamined and refined prior to updating the MLR model.  

In this case study, all the three selected variables were found significant and sufficient to formulate 

the MLR model for estimating the LH (Eq. 2.18). The MLR model’s parameters along with 

associated statistical descriptors are summarized in Table 2.5. Hence, this finding addresses the 

first research inquiry. It is worth mentioning that variable identification and selection is one 

indispensable step in problem definition and regression modeling. It is worth mentioning that 

variable identification and selection is one indispensable step in problem definition and regression 

modeling. To ensure a sufficient problem definition, it is advisable to start with the inclusion of 

as many variables as possible in the input space; then, significance and independence tests are 

performed to streamline the input factors. For instance, correlation analysis and standard t-test 

of the regression coefficients were applied in this study to reduce the dimensionally of the input 

space in regression modeling. Additionally, principal component analysis (Chan and Park, 2005) 

or stepwise regression (Mohsenijam et al. 2017) provides proper techniques to prune the 
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unnecessary input factors of the MLR model and complement the proposed method. Input factor 

selection and pruning analysis for MLR is taken out of the scope of this study. The second inquiry 

of this research is answered in Steps 6 and 7 in the case study. The point value estimate of the 

LH along with the variance estimate for the three application scenarios is given in Table 2.6. On 

the third research inquiry, the influence of the three MLR model input factors on the variance of 

the output are analytically derived using Eq. 2.16, with results summarized in Table 2.7. It is 

noteworthy that in the literature of MLR applications, such analytical findings as shown in Table 

2.7 are only obtainable through using the MC random sampling in the context of checking 

sensitivity of model responses.  

2.6 Pipe Spool Fabrication Case 

For further demonstration of the practical applicability of the proposed methodology, a process 

piping spool fabrication case is described. The case is originally given in Lu et al. (2017) to 

demonstrate the productivity benchmarking and cost estimating practice in industrial 

construction. A processing plant construction project had all the piping spools prefabricated in a 

fabrication shop. Three sample spools were used to build the application case and verify the 

feasibility of the proposed research in estimating labor hours for fabricating piping spools (mainly 

fitting, welding and handling). Table 2.11 gives the takeoff summary for each spool. Note the 

nominal pipe size (NPS) specifies pipe inner diameter while the schedule number (Sch.) denotes 

pipe wall thickness. 
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Table 2.11 Required materials for fabricating the three sample spools. 

Material Name 

Quantity 

Spool 1 Spool 2 Spool 3 

152 mm, Sch.40 Pipe 12.1 (m) 5.4 (m) 7.3 (m) 

50 mm, Sch.80 Pipe 1.1 (m) -  

76 mm, Sch.40 Pipe - 1.4(m) - 

50 mm, Sch.80 Elbow 1 - - 

152 mm, Sch.40 Elbow - 2 2 

50 mm, Sch.80 Flange 1 - - 

76 mm, Sch.40 Flange - 1 - 

50 mm× 152 mm, Sch.80/Sch.40 Olet 1 - - 

152 mm Hydro pipe - 1 - 

152 mm×76mm', Sch.40 Reducer - 1 - 

152 mm, Sch.40 Tee - 1 - 

 

The welding work package is the most significant in piping spool fabrication. The complexity of 

welding depends on welding type, wall thickness, and diameter of the pipe spool. All the 
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complexity factors for each spool case against the base weld type are given in Table 2.12. Note, 

the productivity of the base product (Butt Weld with 50 mm diameter and wall thickness being 

Schedule 80) is 𝑃0 = 0.43 LH/ Unit. Each complexity factor is defined with a mean value and a 

standard deviation. Quantity takeoff for the welding work package for the three spool cases is 

given in Table 2.13.  

Table 2.12 Weld complexity definition for the pipe spool case. 

Variation ID, 

𝒊 Item for welding Size (mm) Wall Thickness 

Complexity Factor 

(mean, standard 

deviation   dev) 

1 Weld-neck flange 50 Sch 80 (1.05,0.09) 

2 Weld-neck flange 76 Sch 80 (1.70,0.05) 

3 Olet Weld 50 Sch 80 (4.20, 0.19)  

4 Hydro Weld 152 Sch 40  (1.80, 0.15) 

5 Butt Weld 152 Sch 40 (1.80, 0.23) 

6 Butt Weld 76 Sch 40  (1.10, 0.11) 

0 Butt Weld 50 Sch 80 (1, 0.03) 

 

 

 



78 

 

Table 2.13 Quantity takeoff for the welding work package on three spool cases. 

Variation ID, 𝒊 Quantity (counts) 

Spool 1 Spool 2 Spool 3 

1 1 1 - 

2 -   

3 1 - - 

4 - 1 - 

5 1 6 3 

6 - 1 - 

0 2 - - 

It is worth mentioning that variances on input factors, in this case, were estimated by consulting 

with experienced estimators, as relevant data was not collected in the original estimating study. 

When a database containing historical data on spool configurations and labor hours in fabrication 

is available, it is advisable to characterize variances on input factors using the sampling technique 

given in Step 5 of the proposed methodology (shown in Fig. 2.2). 

On pipe spool No. 1, as for the welding work package, the total LH required is determined as per 

Eq. 2.22 derived from Eq. 2.7.      
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𝐿𝐻𝑇,𝑢 = ∑ 𝑃0,(𝑢,𝑗)𝐹 (𝑢,𝑖,𝑗)
𝑗

𝑊𝑢.𝑖,𝑗                     (2.22) 

Here, 𝑗 = Welding; 𝑢 = Pipe spool, and 𝑖 = variations in the welding. For welding work package 

of this pipe spool fabrication case, Eq. 2.23 is derived from Eq. 2.22.  

𝐿𝐻𝑇,𝑊𝑒𝑙𝑑𝑖𝑛𝑔 = {𝑃0 × 𝐹 (1) × 𝑊(1)} + {𝑃0 × 𝐹 (3) × 𝑊(3)} + {𝑃0 × 𝐹 (5) × 𝑊(5)}

+ {𝑃0 × 𝐹 (0) × 𝑊(0)}         (2.23)     

Therefore, the mean LH estimate for Spool 1 would be derived as:  

𝐿𝐻𝑇,𝑊𝑒𝑙𝑑𝑖𝑛𝑔 = {0.43 × (1.70) × 1} + {0.43 × (4.20) × 1} + {0.43 × (4.20) × 1} + {0.43 × (1) × 2}

=  3.89 

The variance of the total LH estimate as per Eq. 2.23 would be derived as:  

𝜎𝑇,𝑊𝑒𝑙𝑑𝑖𝑛𝑔
2 = (𝑃0 × 𝑊(1))

2
𝑣𝑎𝑟 (𝐹 (1)) + (𝑃0 × 𝑊(3))

2
𝑣𝑎𝑟 (𝐹 (3)) + (𝑃0 × 𝑊(5))

2
𝑣𝑎𝑟 (𝐹 (5))

+ (𝑃0 × 𝑊(0))
2
𝑣𝑎𝑟 (𝐹 (0))           (2.24) 

or, 

𝜎𝑇,𝑊𝑒𝑙𝑑𝑖𝑛𝑔
2 = 0.0015 + 0.0067 + 0.0098 + 0.00067 = 0.0186 

Table 2. 14 summarizes LH estimate along with the associated variance estimate for all the three 

pipe spool cases, plus the upper and lower limits at 95% confidence level.  

Variance contribution for each individual weld type on total LH can be calculated as per Eq. 2.24, 

with results given in Table 2.15. It is notable that Spool 3 requires only Variation 5 welding work; 

but for Spool 1, four variations (Variations 1,3,5,0) are applicable, with the most significant being 
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Variation 5 (Butt Weld Size 152 Sch 40 at 52.5%), followed by Variation 3 (Olet Weld at 35.8%), 

Variation 1 (Weld-neck flange at 8%), and Variation 0 (Base Butt Weld Size 50 Sch 80 at 3.6%). 

For Spool 2, four variations (Variations 2,4,5,6) are applicable, with the predominant variable 

being Variation 5 (Butt Weld Size 152 Sch 40 at 98.1%). 

Table 2.14 Summary of all the LH with their variance estimate for all three pipe spool cases. 

Pipe Spool 

ID.  

Total 

LH  

Variance  Lower bound 

at 95% 

confidence level 

Upper bound at 

95% confidence 

level 

1 3.89 0.019 4.16 3.62 

2 6.62 0.359 7.80 5.45 

3 2.32 0.088 2.90 1.74 

 

Table 2.15 Variance contribution for each individual weld type on total LH variance. 

Variation 

ID, 𝒊 

Item Size 

(mm) 

Wall 

Thickness 

Pipe 

Spool 1 

Pipe 

Spool 2 

Pipe 

Spool 3 

1 Weld-neck flange 50 Sch 80 8.0% - - 

2 Weld-neck flange 76 Sch 80 - 0.1% - 

3 Olet Weld 50 Sch 80 35.8% - - 
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Variation 

ID, 𝒊 

Item Size 

(mm) 

Wall 

Thickness 

Pipe 

Spool 1 

Pipe 

Spool 2 

Pipe 

Spool 3 

4 Hydro Weld 152 Sch 40  - 1.2% - 

5 Butt Weld 152 Sch 40 52.5% 98.1% 100.0% 

6 Butt Weld 76 Sch 40  - 0.6% - 

0 Butt Weld 50 Sch 80 3.6% - - 

 

2.7 Conclusions  

Advances in information technology have gradually removed the barrier of data availability in 

rendering quantitative decision support to estimating. At present, relatively large datasets 

containing high-quality design features and labor cost data for industrial fabrication are readily 

accessible, while those datasets continue to grow in size as more recently completed fabrication 

projects are appended. This has provided us the opportunity to develop an analytical method 

aimed at (1) analyzing the variability of model parameters in response to dynamic changes in the 

data underpinning the model and (2) accounting for the variability of model predicted cost 

estimate due to the variability inherent in model parameters. 

In the practical context of estimating labor hours for prefabricated products, this research 

formalizes a cost estimating model based on the product fabrication complexity factor. Any 

variations of a fabrication product against the base product will increase production complexity. 

Thus, a complexity factor, which acts as the multiplier on the base product labor cost, is directly 
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correlated to the production cost in terms of labor hour (LH) that is required for fabricating a 

certain product type. These complexity factors are represented with a mean (constant number) 

reflecting the average benchmark, along with a standard deviation denoting the uncertainty in 

labor hour prediction. The research is focused on accounting for the variance of the MLR’s 

predicted output, namely, the precision of its prediction. The variance of MLR output is quantified 

at a particular input point in the input space.  

The MLR equation derived from applying the analytical methods described in this paper 

represents a complexity factor-based estimating model. The newly proposed method sheds light 

on the variance of the MLR predicted estimate. It also provides insight on the effect of each input 

upon the variance of the MLR prediction. Hence, the proposed methodology eliminates the need 

to implement MC simulation techniques in practical applications.  A process piping spool 

fabrication case was described for further demonstration of practical applicability, in which three 

sample spools were analyzed to verify the proposed research in estimating labor hours for various 

welding work items. 

The proposed variance analysis is found especially effective to gauge the precision of the MLR 

model. For instance, as long as the precision (i.e., the ratio of standard deviation over mean) is 

below certain threshold (say, 10%), one can conclude the MLR model passes the precision test. 

Otherwise, the model is rejected, and its input definition and data need to be reexamined and 

refined prior to updating the MLR model. It is stressed the proposed variance analysis method 

relies on MLR as the base model; however, MLR may not be adequate in addressing highly 

complicated cost estimating problems where highly nonlinear relationship between input and 

output variables exists. Under such circumstances, the MLR model can be complemented with 
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more sophisticated data mining techniques (e.g., using various combinations of input variable sets, 

applying classification techniques to find different ranges of data clusters, etc.). Alternatively, 

nonlinear estimating models can be adopted (e.g., scaling the data set using log functions, applying 

nonlinear regression techniques like artificial neural networks, etc.). Driven by application needs, 

the research can be further enhanced by applying more sophisticated regression models and taking 

higher order Taylor expansion in applying the error propagation theory. Those extensions point 

to promising directions for further computing research in civil engineering.  
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Chapter 3 

Enhanced Model Tree Modeling Technique for Quantifying Output 

Variances Due to Random Data Sampling: Productivity Prediction 

Applications 

 

3.1 Introduction  

Given a production process, productivity is generally defined as the ratio of the measurable output 

against the input of consumed resources. Quantifying productivity requires unambiguous 

specifications of the scope of work and appropriate measurements of input and output. Due to the 

labor-intensive nature of construction activities, labor productivity (labor hour required per unit 

of work) is the commonly applied productivity definition in the construction industry (Abdel-

Hamid and Mohamed-Abdelhaleem 2022). Yet, productivity of a repetitive construction process 

could vary considerably thanks to variations in engineering design, work environment, and human 

factors (Portas and AbouRizk 1997; Durdyev et al. 2018). Hence, predicting productivity for a 

commonly practiced method in the construction field turns out to be a challenging decision, which 

requires prior work experiences and comprehensive evaluation of job elements specific to design 

features and the work environment (Song and AbouRizk 2008). To account for productivity 

variation in a particular application domain, productivity could be analytically modeled by 

multiple linear regressions (MLR), which summarized identified productivity elements in 
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connection with relevant input factors or job features (Edwards and Holt 2000). Nonetheless, 

productivity in construction still presents itself as a complicated problem that could render the 

use of linear models (such as MLR) to be inadequate in representation of the hidden patterns and 

nonlinear relationships hidden in the data (Tam et al. 2002). On the other hand, implementing 

nonlinear regression models or artificial intelligence (AI) methods such as artificial neural networks 

(ANN) would generally enhance model accuracy while compromising the model's explainability in 

terms of transparent reasoning logic (Naumets and Lu 2021).  

The resource enumeration method is the mainstream approach for making cost budgets on 

resource-centric prefabrication projects (AbouRizk et al. 2001). This method involves a systematic 

selection of project work packages, quantity takeoffs, and productivity estimates. For industrial 

construction, productivity is measured by labor hours per unit of work. Multiplying the quantity 

takeoff with productivity yields labor hour (LH) estimates for individual work packages and hence 

the labor cost budget of the total project. Moreover, productivity is key to establishing activity 

time estimates and project schedule development. It is imperative to recognize that deviations 

from productivity benchmarks would translate into uncertainties and risks of the project system, 

which potentially exerts significant impact on project budget and schedule (Hasan and Lu 2021). 

Hence, adequacy and effectiveness of project planning and control is contingent upon the accuracy 

and precision of labor productivity. 

How to characterize the precision of the estimated productivity remains vague and subjective. In 

civil construction cost estimating, it is common to impose a 5-10% contingency on the estimate as 

a rule of thumb (Ammar et al. 2023). However, high variability in productivity in the real world 

would defy this rule of thumb, resulting in a considerable underestimate of risks. This variability 
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can be determined by accounting for the primary factors contributing to productivity variation, 

assessing estimated ranges, and conducting a probabilistic analysis using Monte Carlo simulation 

(Barraza 2011). Lack of cost variation information has been identified as the major limitation of 

industrywide productivity and cost data services (Karlsen and Lereim 2005; Wang et al. 2012). 

Published industry benchmark productivity information (such as RS Means) ignores potentially 

the high variation in productivity.  

3.1. Research Motivation 

The hurdle of data availability in productivity study is being gradually overcome thanks to 

technological advances over the past few decades. The proliferation of building information model 

(BIM) and labor hours tracking automation in the construction industry -in particular, in the 

prefabrication of structural components and building subassemblies- has given rise to the 

accumulation of well structured, consistent data containing job features and labor hours in the 

industry. Historical data on design features for building components such as prefabricated products 

are recorded in the industry databases underlying BIM systems (Shen and Issa 2010). Job cost 

data, in terms of labor hours spent in prefabrication, are consistently tracked in payroll 

management systems and project control systems. In practice, large datasets containing high-

quality design features and labor cost data become inexpensively available and readily accessible. 

Such datasets continue to grow as more recently completed projects are appended (Lee et al. 

2017). This has spawned the industry need and provided the research impetus to model 

productivity by applying regressions and ANN and produce data driven predictive analytics on 

productivity performances in both short and long terms. In view of sustainable business 

development, productivity models are of strategic significance in terms of (1) making critical 
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project management decisions on estimating, scheduling, and cost budgeting; and (2) striving for 

better profitability, client satisfaction and business growth.  

As the productivity database continuously expands, the data used for productivity modeling and 

analysis actually represents a random sample taken at a particular time. Given the same problem 

domain, different datasets can be sampled by different modelers in the same time period or by the 

same modeler at different time periods. As such, the productivity model calibrated by applying 

the same analytical method would result in different model parameters and a variance of the 

predicted productivity. For instance, given identical input factors, if the dataset available for MLR 

modeling varies in size and content, a different MLR equation was produced; given the same input 

settings, the predicted output varied (Hasan and Lu 2022). This has given rise to a new research 

problem in connection with productivity prediction by applying regressions or ANN models, 

namely: in addition to the accuracy (i.e., how accurate is the point-value output), the precision of 

a productivity prediction model is also crucial to validation and utilization of the model as decision 

support tool. Herein, the precision is herein defined as a specific confidence interval around the 

predicted point value due to the variance in sampling the dataset for model calibration. The 

quantification of precision of the prediction output resulting from any productivity requires the 

variance (standard deviation) to be known in statistics (Rodríguez et al. 2013). This present 

research is intended to fill this gap in knowledge by enhancing the Model Tree regarding its 

analytical capability of providing the variance for the predicted productivity, given a relatively 

large dataset available for a productivity problem. This research essentially builds on recent 

progresses in Model Tree applications in productivity study (Mohsenijam et al. 2021) and MLR 
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in variance analysis (Hasan and Lu 2022) in efforts to extend the capability of the nonlinear AI 

method of Model Tree in modeling construction productivity.  

3.2. Research Overview  

Non-parametric supervised learning methods like KNN (k-Nearest Neighbors), reliant on neighbor 

similarity for prediction, lack suitability for mathematically encapsulating input-output 

relationships (Guo et al. 2003). Classification trees categorically cluster data via binary recursive 

partitioning, generating tree-like prediction structures (Buntine 1992). Regression Trees, akin to 

classification, assign constant values to leaves, providing specific point predictions (Breiman et al. 

2017). In contrast, the model tree is generally categorized as a nonlinear regression model (Chang 

and Kim 2011; Vanli et al. 2019), which applies binary rules to identify data classes suitable for 

creating an MLR model for each class. The final model is expressed as a set of MLR equations 

constrained by rules defining each class (Quinlan 1992). In addition, model tree is recognized as a 

logic-driven machine learning model which ensures transparency in model development in 

explaining linear and nonlinear input-output relationships, respectively. Having a clear and 

transparent model structure is essential to gain the trust of practitioners and promote the AI 

implementation in practice.  

Model Tree was initially created as an extension of the classification tree technique by Morgan 

and Sonquist (1963), who utilized the automatic interaction detection (AID) method to construct 

regression trees. Regression tree produces a tree-structure-like predictive model, where the feature 

domain is divided into branches by nonlinear classifiers, and at the end of each branch, there are 

leaf nodes, each corresponding to a constant value. Model tree combines a decision tree with 
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regression analysis by breaking down the big data set into small subsets, so that the nonlinear 

input-output relationship can be represented into a series of linear multi-variate data models 

(Quinlan 1992). It is noteworthy that Model Tree stands out as the ideal choice of explainable AI 

method, outperforming other nonlinear regression and AI techniques in terms of preventing model 

overfitting, improving prediction accuracy, and enabling model explainability (Mohsenijam et al. 

2021). Nonetheless, like other nonlinear regression models or AI methods, Model Tree only 

produces point-value predictions, lacking variance analysis in the predicted outputs.  

In this research, a productivity problem is decomposed into branches (classes) by applying the 

non-linear classifier algorithm in Model Tree. Then the Model Tree is enhanced in such a way 

that the MLR equation on each tree branch can predict the point-value output as well as the 

associated variance due to the variances in the input variables (or productivity features). As 

illustrated in Figure 1, the enhanced model tree has 𝑛 productivity features identified as inputs 

(𝑥1, 𝑥2, … , 𝑥𝑛), which produces the point-value prediction 𝑌 along with the associated standard 

deviation (STD) of 𝑌, 𝜎𝑌 (square root of the variance 𝑌).   

Enhanced 

Model Tree

x1

Y (point value prediction) 

σY (STD of the prediction) 

x2

x3

xn

Input Model Output  
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Figure 3.1: Input-output relationship of the proposed enhanced model tree. 

As the environment of prefabrication operations in construction is better controlled and less 

susceptible to external factors (Lou et al. 2021), productivity of prefabrication of structural 

components and building assemblies of certain type is the chosen application domain. It is worth 

mentioning that prefabrication of the same-type structural components in building and 

infrastructure construction is still classified as "made-to-order" labor-intensive production 

processes; productivity could broadly fluctuate because of product variations in detailed elements 

or special features (Hamzeh et al. 2019).  

The remainder of this paper is organized as follows. First, in the literature review section, 

established productivity models and their limitations are critically reviewed, along with model tree 

applications in investigating construction productivity and other civil engineering problems. Then 

the enhanced model tree framework for productivity modeling is proposed.  Subsequently, a case 

study in the real-world context of structural steel fabrication productivity is presented to 

demonstrate step by step applications of the proposed methodology. To show the general 

applicability of the research, a second case study in piping spool fabrication productivity is 

described. Conclusions are drawn based on the observations from the case study. Research 

contributions and limitations are also summarized in the conclusion section.     
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3.2. Literature Review  

3.2.1. Productivity Models 

With a wide range of influential factors potentially accounting for the high variability of 

productivity in the construction project environment, developing productivity prediction models 

presents a long-standing challenge for construction research (Tsehayae and Fayek 2016). Applying 

data analytics to improve productivity prediction in construction was attempted in 1990s (e.g., 

Minato and Ashley 1998; Song and AbouRizk 2008; Bai et al. 2019). Generally, a regression model 

is established based on a selection of relevant elements identified to affect labor productivity to 

represent the intricate empirical relationships between different factors (both internal and external 

to the project) and productivity rates (Durdyev et al. 2018; Hamzeh et al., 2019). Statistical 

techniques coupled with linear regression models were commonly applied for productivity modeling 

(Smith 1999; Mohsenijam and Lu 2019). Note statistical analyses are largely restricted by the 

number of influencing factors that can be included while linear regression has limited capabilities 

to consider the combined, nonlinear effects of the influencing factors (Yi and Chan 2014). To 

tackle complex productivity modeling problems, nonlinear regression models as well as ANN had 

been widely applied, demonstrating good potential for quantitatively evaluating the effects of 

multiple factors in productivity prediction, especially when numerous factors could be involved in 

complicated nonlinear relationships (Tam et al. 2002; El-Gohary et al. 2017). ANN models 

generally demanded a large amount of structured data for training in modeling productivity. 

Besides, convoluted ANN algorithms rendered the majority of ANN models to act like “black box” 

without providing much explanation of reasoning logic. To a large degree, the black box had led 
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to user’s mistrust in the productivity predicted from ANN models, hampering ANN applications 

in the construction industry (Naumets and Lu 2021). Another considerable hurdle in productivity 

modeling arose from the concepts or methods that could be subjective in nature and relevant in 

defining certain parameters (Guo et al. 2017). For instance, to adapt models to different project 

contexts described with limited data, expert system in combination with fuzzy set theory was used 

to estimate labor productivity in different construction activities (Christian and Hachey 1995; 

Fayek and Oduba 2005). In general, expert systems fell short in identifying a mapping function 

and generalizing rigorous solutions. In addition, rules obtained from domain experts could be 

subject to personal prejudices and biases (Yi and Chan 2014). 

Besides mainstream quantitative methods, recent literature has introduced the hybridization of 

classification and regression techniques to improve the accuracy of labor productivity predictions 

(Elmousalami 2020; Mohsenijam et al. 2021). A hybrid intelligent structure called Neural-

Network-Driven Fuzzy Reasoning showed its potential for modeling datasets with clear clusters 

(Mirahadi and Zayed 2016). Hybrid feature selection (HFS), which combined filter and wrapper 

methods with principal component analysis (PCA), was used to identify relevant factors for 

developing labor productivity models (Ebrahimi et al., 2022). In addition, the Decision-Making 

Trial and Evaluation Laboratory (DEMATEL) method, the Analytic Network Process (ANP) 

method, and the Technique for Order of Preference by Similarity to the Ideal Solution (TOPSIS) 

method were proposed for comparing the productivity of different construction methods in a single 

model (Shahpari et al. 2019). The Model Tree was a hybrid of decision tree and MLR and applied 

in estimating labor cost, providing promising explainable artificial intelligence (XAI) solutions 

(Naumets and Lu 2021). 
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Despite considerable progress in developing productivity prediction models, the focus of research 

had been placed on increasing prediction accuracy, largely overlooking the precision of the model 

due to the dynamic way by which data is selected from the available database. There had been 

little attention paid to the variance associated with a point-value prediction made by a model. On 

the other hand, model validations were mainly based on evaluating error terms between the 

predicted output and the target output, without addressing the variance of the predicted output. 

Indeed, validating whether the productivity model is sufficient to serve the application purpose 

has yet to consider the variance of the predicted values. This research tackles the identified 

fundamental limitation inherent in productivity prediction models by enhancing the model tree 

application. 

3.2.2. Model Tree 

The concept behind the model tree is illustrated along with linear regressions in Fig. 3.2. The left 

figure shows the regression line fitted to a disparate data set with low accuracy. However, accuracy 

of the linear regression analysis is improved by dividing the dataset into three individual sets 

constrained by branching rules established by the model tree.  
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Figure 3.2: Illustration of improvement of regression analysis with model tree application. 

Model Tree algorithms essentially address the classification problem by following the “divide and 

conquer” strategy (Solomatime and Xue 2004). The M5P algorithm for calibrating the model tree 

was originally introduced by Quinlan (1992), and later improved by Wang and Witten (1997), 

consisting of four steps: (a) branching of data to grow a complete tree; (b) development of a 

regression model at each node for pruning and prediction, (c) pruning the tree to avoid the over 

fitting problem; and (d) smoothing the tree to compensate for the sharp discontinuities caused by 

the splitting.  

By the M5P model tree algorithm, elements (or input features) are selected to make branches 

based on their values, thus splitting the data into subsets that have similar target variable 

behaviors. The process involves finding the most informative feature and its corresponding split 

value that best separates the data into distinct groups. The selection of elements and their split 

values is determined using a recursive approach. Initially, the entire dataset is considered as one 
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node or branch. The algorithm searches through all input features to find the feature and its 

corresponding split value that result in the best split of the data into two subsets based on their 

target variable behavior. The "best split" is defined by a criterion such as the reduction in variance 

or the improvement in the model's predictive accuracy. The standard deviation of the class 

instances having reached a particular node is treated as a measure of the error at a particular 

node in the model tree. The splitting criterion is to maximize the expected reduction in this error 

by checking each possible value on each attribute. The attribute along with the associated splitting 

value that maximizes the expected error reduction at a node is set as the splitting criterion to 

partition the dataset (Wang and Witten 1996). The standard deviation reduction (SDR) is given 

by Eq (3.1). 

𝑆𝐷𝑅 =  𝑆𝑇𝐷(𝑇) − ∑
𝑇𝑖

|𝑇|
 𝑆𝑇𝐷(𝑇𝑖)

𝑖

                  (3.1) 

𝑆𝑇𝐷 = √
∑ (𝑦𝑗 − �̅�)𝑗

𝑛
               (3.2) 

Where 𝑇 is the is the set of data points that reach the node and 𝑇𝑖 is the data point that result 

from splitting at the node and falls into one sub-space according to the chosen splitting parameter 

and 𝑆𝑇𝐷 is the standard deviation. That means, the resulting partition based on variable 𝑥𝑖 at 

the value of a consists of two sets of observations: (1) observations where 𝑥𝑖 is less than or equal 

to 𝑎, (2) observations where 𝑥𝑖 is greater than 𝑎. 𝑆𝑇𝐷(𝑇𝑖) is the standard deviation associated 

with the current subset. M5P determines the SDR value for input variables and then splits the 

dataset based on the specific variable at a particular value that would maximize the expected 

error reduction. Herein, STD is calculated for the output values by Eq. 3.2, based on the 
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observations subject to the current branching condition. Splitting would terminate if only a 

minimal number of instances remain in the branch or expected error reduction is insignificant. In 

the end, an MLR model is fitted for each end leaf node in the model tree, using the instances of 

data that has reached that specific node. 

The Model Tree based approach was applied to various civil engineering problems such as 

predicting labor cost, workability of concrete (Mohsenijam et al. 2021), forecasting river flow 

(Taghi Sattari et al. 2013), sediment transport in pipes (Najafzadeh et al. 2017), predicting 

compressive strength of high-performance concrete mix (Deepa et al. 2010). In the construction 

application domain, decision tree was used in estimating productivity loss due to project change 

orders (Lee et al. 2004).  Desai and Joshi (2010) applied decision trees with constant branch nodes 

to analyze and predict labor productivity. Despite its simplicity and explainability, the model tree 

algorithm still lacks the variance estimate of the predicted output for a given set of inputs. 

Variance estimate of productivity is crucial for reining in the risk of cost overruns during project 

budget formulation and in establishing a pragmatic project schedule. Currently, the only available 

approach to obtain such measurements is through experimental design and sensitivity analysis 

(e.g., using Monte Carlo simulation), which involves altering the input variables and observing 

the resulting changes in the output. The analytical method characterizing the variability of the 

input variables to connect those with the variance of the predicted output using the model tree 

algorithm is still missing in the literature.  
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3.3. Productivity Modeling Framework  

3.3.1. Productivity model for prefabrication 

For prefabricated components of certain type, productivity is specifically defined as the sum of 

productivity elements, each being linked with a particular feature attribute, where labor effort 

(labor hours) required to make the feature is determined against a standard base product. Consider 

the following example: the productivity of the formwork prepared for precast a wall panel means 

the labor hour (LH) required per unit area of wall panel (𝑙𝑎), which can be derived by considering 

the five feature attributes: number of strands in the wall panel (𝑙𝑆𝑡𝑟), number of lifter arrangement 

(𝑙𝑙𝑖𝑓), height of the wall panel (𝑙ℎ), opening size of the wall panel (𝑙𝑜𝑝), and number of edges (𝑙𝑒𝑑). 

The features of the wall panel formwork are illustrated in Fig. 3.3.  

Lifter 
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Strand Arrangement

Window Opening

Length

Width
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Figure 3.3: Typical precast wall panel formwork. 

The productivity of formwork preparation, P is established by combining respective productivity 

components associated with each feature attribute, namely, number of strands (𝑃𝑆𝑡𝑟), number of 

lifter (𝑃𝑙𝑖𝑓), height (𝑃ℎ), opening size (𝑃𝑜𝑝), and edges (𝑃𝑒𝑑), as written as (Eq. 3.3),  
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𝑃 =  𝑃𝑆𝑡𝑟 + 𝑃𝑙𝑖𝑓 + 𝑃ℎ + 𝑃𝑜𝑝 + 𝑃𝑒𝑑          (3.3) 

For the base product, which has an area of 𝑙𝑎,0, number of strands 𝑙𝑆𝑡𝑟,0, number of lifter 

arrangement 𝑙𝑙𝑖𝑓,0, height of the wall panel 𝑙ℎ,0, opening size 𝑙𝑜𝑝,0, and number of edges 𝑙𝑒𝑑,0 and 

the productivity component due to each feature is 𝑃𝑆𝑡𝑟, 𝑃𝑙𝑖𝑓 , 𝑃ℎ , 𝑃𝑜𝑝, and 𝑃𝑒𝑑 respectively, then the 

base product’s productivity is given as per Eq. 3.4,  

𝑃0  =  𝑃𝑆𝑡𝑟,0 + 𝑃𝑙𝑖𝑓,0 + 𝑃ℎ,0 + 𝑃𝑜𝑝,0 + 𝑃𝑒𝑑,0         (3.4) 

Now, given a new formwork with different dimensions, to decide each productivity component we 

can use linear interpolation for each feature against the standard product. Say, if the productivity 

component for number of  strand for the standard wall panel is 𝑃𝑆𝑡𝑟,0, and standard number of 

strand is 𝑙𝑆𝑡𝑟,0; therefore, for a product dimension 𝑙𝑆𝑡𝑟, the productivity component is  𝑃𝑆𝑡𝑟 =

(
𝑃𝑆𝑡𝑟,0

𝑙𝑆𝑡𝑟,0
) 𝑙𝑆𝑡𝑟. Following this approach, productivity of formwork preparation 𝑃 is defined in Eq. 3.5: 

𝑃 =  (
𝑃𝑆𝑡𝑟,0

𝑙𝑆𝑡𝑟,0
) 𝑙𝑆𝑡𝑟 + (

𝑃𝑙𝑖𝑓,0

𝑙𝑙𝑖𝑓,0
) 𝑙𝑙𝑖𝑓 + (

𝑃ℎ,0

𝑙ℎ,0
) 𝑙ℎ + (

𝑃𝑜𝑝,0

𝑙𝑜𝑝,0
) 𝑙𝑜𝑝 + (

𝑃𝑒𝑑,0

𝑙𝑒𝑑,0
) 𝑙𝑒𝑑         (3.5) 

Following the same formwork preparation example, a 10 cm height is the height of the base 

product (wall panel) and its associated productivity component is 1.5 LH/sq. m. (𝑃ℎ,0 = 1.5), 

standard strand number is 4 and it contributes 1.9 LH/sq. m. (𝑃𝑆𝑡𝑟,0 = 1.9), standard lifter number 

is 4 and it contributes 0.1 LH/ sq. m. (𝑃𝑙𝑖𝑓 = 0.1),  standard opening size is 0.25 sq. m. and it 

contributes 0.2 LH/sq. m. (𝑃𝑜𝑝,0 = 0.1), and standard number of edge is 4 and it contributes 0.05 

LH/sq. m. (𝑃𝑒𝑑,0 = 0.05). Now, for any new wall panel with dimensions, 𝑙𝑆𝑡𝑟 = 6, 𝑙𝑙𝑖𝑓 = 4, 𝑙ℎ =

8 𝑐𝑚, 𝑙𝑜𝑝 = 0.44 sq. m., and 𝑙𝑒𝑑 = 4, the productivity estimate 𝑃 would be, 4.6 LH per sq. m. of 

the wall panel area, as elaborated in Eq 3.6.  
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𝑃 =  (
1.9

4
) 6 + (

0.1

4
)4 + (

1.5

10
)8 + (

0.2

0.25
) 0.44 + (

0.1

4
)4 = 4.6

𝐿𝐻

𝑠𝑞.𝑚.
              (3.6) 

The productivity given in the above precast example can now be generalized. If there are 𝑛 

component attributes for defining the productivity, the productivity 𝑃 for the work package can 

be defined as sum of the productivity components 𝑃𝑛 for 𝑛 number of attributes. This productivity 

component 𝑃𝑛 can be derived based on the standard (base) product. Given the number of feature 

attributes is 𝑛 and productivity component is 𝑃𝑛
0, then for 𝑙𝑛 dimension the productivity 

component can be determined as 𝑃𝑛
0 ×

𝑙𝑛 

𝑙𝑛.0 
. Therefore, the general form of the productivity model 

is given in Eq. 3.7.  

𝑃 = ∑𝑃𝑛

𝑛

= ∑(𝑃𝑛
0 ×

𝑙𝑛 

𝑙𝑛
0  

)

𝑛

 =    𝑃1
0 × (

𝑙1 

𝑙1
0 
) + 𝑃𝑛

0 × (
𝑙2 

𝑙2
0 
) + ⋯+ 𝑃𝑛

0 × (
𝑙𝑛 

𝑙𝑛
0  

)          (3.7) 

Here, Eq. 3.5 resembles the basis form of an MLR equation, which is further given in a generic 

form in Eq. 3.8. In Eq. 3.8 the base product’s productivity for attribute n is 𝑃𝑛
0 , which should be 

the coefficient 𝛽 of MLR equation and product feature ratio of 
𝑙𝑛 

𝑙𝑛.0 
 denotes be input variable 𝑥 in 

the MLR equation, with output variable 𝑌 denoting productivity 𝑃.  

𝑌 = 𝛽0 + 𝛽1 × 𝑥1 + 𝛽2 × 𝑥2 + ⋯+ 𝛽𝑛 × 𝑥𝑛         (3.8) 

The productivity definition in the prefabrication context is essentially the MLR model. Next, the 

variance analysis on MLR is reviewed. Here, 𝛽0 is the intercept of the MLR equation (Eq. 7), 

denoting the bias present in the productivity model (Eq. 3.7). Next, the variance analysis on MLR 

is reviewed. 
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3.3.2. Variance Analysis  

Hasan and Lu (2022) proposed the variance analysis technique for MLR model predictions 

integrating the error propagation theory. The technique is to apply first-order derivatives to 

approximate the propagation of errors in the input factors of the MLR model. In this research, 

the Model Tree is enhanced by integrating the variance analysis on MLR equations at branches 

of the tree structure, resulting in quantifying the variance of the output predicted by the model 

tree for estimating prefabrication productivity.  

The first step of MLR variance analysis is to determine the mean and variance of each coefficient 

of the MLR equation. To this end, a random subset of the data is sampled to derive the MLR 

productivity model; this process is repeated for N times to generate N number of MLR equations, 

based on which the average and standard deviation of the coefficients are determined. Here, in 

Eq. 3.6, 𝛽𝑛 is the regression coefficient associated with input variable 𝑥𝑛. 𝛽𝑛 is the intercept of 

the MLR equation representing the model bias. Now, if the MLR equation is established from one 

random data sample taken, constrained by the Model Tree’s branching rules, 𝛽𝑛 will be different 

each time given N number of sampling experiments. Therefore, there will be N number of MLR 

equations; form which, mean and standard deviation (μ, σ) of each β parameter can be calculated. 

Therefore, the final form of Eq. 3.8 is given in (Eq. 3.9): 

𝑌(𝜇𝑌, 𝜎𝑌) = 𝛽0(𝜇0, 𝜎0) + 𝛽1(𝜇1, 𝜎1)𝑥1 + ⋯+ 𝛽𝑛(𝜇𝑛, 𝜎𝑛)𝑥𝑛                 (3.9) 

Error propagation theorem explains the law of propagation of random error observing the law of 

propagation of variances and covariances (Taylor 2022), expressed by Eq. 3.10.  
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𝐶𝑌 = 𝐽𝑥𝑌𝐶𝑥𝐽𝑌𝑥
𝑇                (3.10) 

Here, 𝐶𝑌 is the covariance matrix of random output 𝑌, and 𝐶𝑥   is the covariance matrix of random 

input 𝑥, and 𝐽𝑥𝑌 is the Jacobian (Jacobian matrix) of the Eq. 3.9. Jacobian (𝐽𝑥𝑌) of 𝑌 is given as 

Eq. 3.11,  

𝐽𝑥𝑌 = [
𝜕𝑌

𝜕𝛽0

𝜕𝑌

𝜕𝛽1

𝜕𝑌

𝜕𝛽2
…

𝜕𝑌

𝜕𝛽𝑛
]              (3.11) 

Given all the coefficients are independent, the covariance matrix of the Eq. 3.10 is expanded in 

Eq. 3.12,  

𝐶𝑥 = 

[
 
 
 
 
𝑣𝑎𝑟(𝛽0)

𝑣𝑎𝑟(𝛽1)

𝑣𝑎𝑟(𝛽2)

⋱
𝑣𝑎𝑟(𝛽𝑛)]

 
 
 
 

               (3.12) 

Now, to examine the total error in output 𝑌 due to the error propagated from the variance in the 

model coefficients 𝛽𝑛(𝜇𝑛, 𝜎𝑛), Eq. 3.10 is applied along with Eq. 3.9. The final output variance of 

the MLR model presented by Eq. 3.9 would be (Eq. 3.13),  

𝐶𝑌 = 𝜎𝑌
2 = [

𝜕𝑌

𝜕𝛽0

𝜕𝑌

𝜕𝛽1

𝜕𝑌

𝜕𝛽2
…

𝜕𝑌

𝜕𝛽𝑛
]

[
 
 
 
 
𝑣𝑎𝑟(𝛽0)

𝑣𝑎𝑟(𝛽1)

𝑣𝑎𝑟(𝛽2)

⋱
𝑣𝑎𝑟(𝛽𝑛)]

 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝜕𝑌

𝜕𝛽0

𝜕𝑌

𝜕𝛽1

𝜕𝑌

𝜕𝛽2

⋮
𝜕𝑌

𝜕𝛽𝑛]
 
 
 
 
 
 
 
 
 

 

= (
𝜕𝑌

𝜕𝛽0
)
2

𝑣𝑎𝑟(𝛽0) + (
𝜕𝑌

𝜕𝛽1
)
2

𝑣𝑎𝑟(𝛽1) + ⋯+ (
𝜕𝑌

𝜕𝛽𝑛
)
2

𝑣𝑎𝑟(𝛽𝑛)          (3.13) 
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Here, each {(
𝜕𝑌

𝜕𝛽𝑛
)
2
𝑣𝑎𝑟(𝛽𝑛)} term denotes the variance contribution of attribute 𝑛 to the prediction 

𝑌 for a given set of input 𝑥𝑛. The Refer to Hasan and Lu (2021) for detailed decomposition 

processes of Eq. 3.9 and construction of Eq. 3.10. 

The performance of each MLR equation in terms of variance in predicted output can then be 

checked based on a testing dataset. To evaluate the performance of the derived productivity model 

regarding the variance, we propose to use coefficient of covariance (𝛼) as the index, which is the 

ratio of the standard deviation (𝑆𝑇𝐷) 𝜎𝑃 against the predicted output 𝑃𝑝 given in Eq. 3.14. The 

acceptance of the model can be based on the preset threshold of the coefficient of covariance 𝛼𝑐. 

If 𝛼 is less than  𝛼𝑐 then the model should be accepted; otherwise rejected.  

𝛼 =  
𝜎𝑃

𝑃𝑝
          (3.14) 

3.3.3. Enhanced Model Tree Application Framework 

The proposed productivity modeling framework integrates the variance analysis method for MLR 

models with the M5P algorithms, giving rise to an enhanced framework for applying the model 

tree.  

First, the entire data set is separated into training and testing sets. The training set, which is 

used to calibrate the model, while the testing set is chosen at random and reserved for checking 

the model performance on unseen cases. The base product is defined by its known attribute values. 

Next, the M5P algorithms are applied to calibrate the model tree, whose performance is checked 

using the k-fold cross-validation technique by using the training set only. If the performance of 

the tree model is satisfactory, say square of correlation coefficient R2 is greater than a limit 



103 

(>0.70), the modeling process will continue to the next step; otherwise, it is be terminated. The 

model tree algorithm partitions the training set into small subsets through applying non-linear 

classifiers, resulting in a series for MLR models at end leaf nodes.  

Upon this point, the variance analysis is performed on each MLR model in the model tree, 

producing the variance estimate of the predicted productivity for any given set of inputs. Model’s 

accuracy performance is evaluated by contrasting the model output against the target value and 

calculating correlation coefficient; model’s precision performance is checked by deriving the 

coefficient of covariance 𝛼𝑐 for both training and testing sets.  

The following paraments related to model calibration are used in this study to execute the 

proposed framework, as follows:  

(1) The number of folds 𝑘 for k-fold cross validation of the model tree classification model can 

be set as 𝑘 = 5,  

(2) the minimum number of instances for each branch of the Model Tree is set as 30 instances 

to produce MLR models,  

(3) the threshold to check the acceptance of the classification model considers square of 

correlation coefficient (𝑅2) greater than 0.70,  

(4) the number of runs 𝑁 to develop the MLR productivity model and reveal mean and 

variance of coefficients is set as 𝑁 = 100, and  

(5) finally, the threshold of model acceptance is set as: on model accuracy, the square of 

correlation coefficient (𝑅2) should be greater than 0.80; on model precision, the Coefficient 

of variation α should be less than 0.30.   
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Note,  

• K-fold cross-validation divides observations into k groups (folds) randomly, using the first 

as validation while fitting on the remaining k − 1 folds. The choice of k depends on data 

availability, with no strict applicable rules (Kuhn and Johnson, 2018). However, each 

train/test group should be statistically representative of the dataset. For this study, 𝑘 =

 5 was selected based on data size. A comparable rationale is considered for determining 

the number of repetitions 𝑁.  

• The number of instances in each tree branch is set to 30 to conduct significant statistics 

(Navidi 2011). If more data is available, this threshold can be set to any number higher 

than 30 and an iterative process can be followed to find a threshold to confirm the best 

performance for the model.  

• On the other hand, a higher value of 𝑅2, approaching 1, signifies a stronger correlation 

between actual and predicted values. Depending on the specific requirements of the model's 

application, the acceptance threshold of 𝑅2 for the classification model is recommended as 

0.80 for preliminary model validation.  

The framework is illustrated in Figure 3.4, with application steps further elaborated as follows.  
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Figure 3.4: Construction productivity model computation framework. 

 

Step 1: Select a set of attributes (𝑛) that defines a prefabricated product along with the values 

of the base product attributes 𝑙𝑛.0.  

Step 2: Apply the Model Tree algorithm to classify the datasets into small subsets suitable for 

constructing MLR models. To evaluate the performance of an MLR model, square of correlation 

coefficient (R2), and mean absolute percentage error (MAPE) between the output and target 
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variables can be used. For this study, R2 is used as the model accuracy performance index of the 

model tree classifier.  

Step 3: If the model accuracy is satisfactory, then in the next step, select a subset of the total 

data represented by each branch of the model tree; data is randomly selected to prepare a 

productivity MLR model specific to that branch as per Eq. 3.8, where, coefficient 𝛽 of MLR 

equation should be the productivity component 𝑃𝑛
0 for product feature 𝑙𝑛.0, and 

𝑙𝑛 

𝑙𝑛.0 
 is represented 

by input variable 𝑥 in the MLR equation. Repeating the process 𝑁 times would result in the 

productivity model for branch 𝑀 as per Eq. 3.9 where 𝑌 represents the predicted productivity 𝑃 

for input 𝑥𝑛 . 

Step 4: Estimate the variances as per Eq. 3.13 of the productivity MLR model in connection with 

each branch of the model tree. If the average Coefficient of variation 𝛼𝑎𝑣𝑔  for both test set 

(𝛼𝑎𝑣𝑔,𝑡𝑒𝑠𝑡), and training set (𝛼𝑎𝑣𝑔,𝑡𝑟𝑎𝑖𝑛) of productivity model 𝑃𝑀 at branch 𝑀 falls below the 

acceptable threshold (e.g. say less than 0.30), then the model can be accepted for application, 

otherwise should be rejected.  

It is worth mentioning that a computer program was coded in Python 3.8 programming language 

(Python Software Foundation 2019) using Scikit-learn module (Pedregosa et al. 2011). The model 

tree implementation of the program resorted to the python-m5p package developed by Marie 

(2022). In the ensuing section, a case of modeling the productivity for prefabrication of structural 

steel is presented to demonstrate the application of the proposed methodology. 
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3.4. Case Study Structural Steel Fabrication 

The available dataset consists of a total of 208 instances of structural steel fabrication performed 

by one fabricator over two years. Each record has 37 attributes describing the fabricated division 

plus one recorded productivity ratio (37 input attributes and 1 output variable). Among 37 input 

attributes four attributes (X1 to X4) are nominal factors denoting classes or types of the project, 

summarized in Table 3.1; the rest are all numerical parameters describing various aspects of the 

engineering design and project details, which are summarized in Table 3.2. Thirty-three instances 

were reserved from the original data set for testing the overall performance of the calibrated 

productivity model. The remaining 175 instances were used for model calibration. Note this data 

set is intended to model steel fabrication productivity at the division level, i.e., a division of 

structural steel fabrication is a well-defined scope of work with productivity rate recorded in terms 

of LH per kg.  

 

 

 

 

Table 3.1 Data properties of the structural steel fabrication labor cost dataset for nominal 

attributes. 
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Attribute 

ID 

Attribute Number 

of distinct 

labels 

Labels of the nominal attributes 

X1 Scope of work 2 Supply Only, Supply & Erection 

X2 Sector 5 Oil & Gas, Commercial & 

Institutional, Industrial & Mechanical, 

Transportation & Infrastructure, 

Others 

X3 Location 6 SSE, SSW, SSV, SSS, SSP, SSB 

X4 Module fabrication 

complexity 

4 Medium, Light, Heavy, Very heavy 

 

 

 

Table 3.2 Data properties of the structural steel fabrication labor cost dataset for numerical 

attributes. 
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Attribute 

ID 

Attribute Unit  Average STD M edian max M in 

X5 Hollow steel weight kg 37555 10650

5 

1772 11410

20 

0 

X6 Hollow steel quantity - 162 361 21 3475 0 

X7 Hollow steel length m 4581 13453 144 86505 0 

X8 Wide flange weight kg 112814 19640

9 

22605 10127

86 

0 

X9 Wide flange quantity - 254 432 85 2494 0 

X10 Wide flange length m 7156 14413 1223 79886 0 

X11 C-shape weight kg 4830 9250 713 52088 0 

X12 C-shape quantity - 88 175 17 1397 0 

X13 C-shape length m 1218 3637 109 24715 0 

X14 L-shape weight kg 7955 12982 2743 89325 0 
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Attribute 

ID 

Attribute Unit  Average STD M edian max M in 

X15 L-shape quantity - 394 687 60 4263 0 

X16 L-shape length m 2092 6012 286 57294 0 

X17 Plate weight kg 43115 10759

7 

7521 88787

8 

0 

X18 Plate quantity - 1078 1742 406 14586 0 

X19 Plate length m 947 1800 252 17325 0 

X20 Round bar weight kg 259 1867 0 25720 0 

X21 Round bar quantity - 189 917 0 9375 0 

X22 Round bar length m 55 505 0 7286 0 

X23 Miscellaneous weight kg 406 4412 0 63903 0 

X24 Miscellaneous 

quantity 

- 2 21 0 308 0 
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Attribute 

ID 

Attribute Unit  Average STD M edian max M in 

X25 Miscellaneous length m 6 46 0 610 0 

X26 S-shape weight kg 224 986 0 11819 0 

X27 S-shape quantity - 141 835 0 10122 0 

X28 S-shape length m 20 80 0 649 0 

X29 Wide T-shape weight kg 1700 7331 0 58783 0 

X30 Wide T-shape 

quantity 

- 25 91 0 734 0 

X31 Wide T-shape length m 232 871 0 6510 0 

X32 Pipe weight kg 1199 7672 0 10749

0 

0 

X33 Pipe quantity - 46 238 0 3108 0 

X34 Pipe length m 309 1659 0 17998 0 
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Attribute 

ID 

Attribute Unit  Average STD M edian max M in 

X35 Total weight of the 

module 

kg 210055 28574

6 

72801 12538

66 

1583 

X36 Total quantity of 

module 

- 2379 3132 1285 19855 12 

X37 Total length of 

module 

m 16616 33173 3903 19785

2 

52 

Y Total labor hours 

(output) 

LH 4006 5394 1597 31788 32 

 

In this case, we set the number of folds 𝑘 = 5 for k-fold cross validation of the model tree 

classification model, minimum number of instances = 30 for each branch of the Model Tree, square 

of correlation coefficient 𝑅𝑀
2  = 0.70, number of runs 𝑁 = 100 to develop the MLR productivity 

model, and the threshold to the indices for accepting model 𝛼𝑐= 0.30.   



113 

3.4.1. Step 1: Attribute Selection for Productivity Model 

The majority of factors are numeric (real numbers, e.g., quantity takeoff, or percentage ratio). 

Nonetheless, in modeling labor productivity, some nominal factors are commonly encountered and 

need to be quantitatively represented to facilitate attribute selection analysis and enable regression 

model formulation. In the presented case study, the dummy encoding technique (Alkharusi 2012) 

is applied to represent a categorical variable to a set of binary variables (also referred to as 

"dummy variables"). Each category becomes a binary indicator, assuming 1 for presence and 0 

for absence. Despite the efforts in ensuring independence in selecting inputs, this research 

thoughtfully addresses the possibilities of multiple elements having interactions with one another 

and forming a nonlinear model in making productivity predictions. A correlation-based greedy-

stepwise search strategy was employed to select the most relevant features for modeling the 

problem (Caruana and Freitag 1994; Ranjan et al. 2021). Note the process of selecting suitable 

independent elements as model inputs is described in Appendix C based on the previous work 

published in Hasan and Lu (2022).  

Selected attributes were ‘total weight of structural pieces’ (X35), ‘plate quantity’ (X18), wide 

flange weight (X8), ‘plate length’ (X19), ‘wide T-shape (t beam) weight’ (X29), ‘L-shape (angle) 

length’ (X16), and ‘module fabrication complexity’ (X4). Among the selected variables, only X4 

is a nominal type of variable, and the rest are numeric. Herein, the weight of structural pieces in 

a fabrication division (X35) is directly related to the amount of work to be done. Plate quantity 

and length (X18) have an indirect impact on productivity as they provide insight into the number 

of beam-column joints and the complexity of shop plate processing. The weight and proportion of 

wide flange (X8) and T beams (X29) also affect fabrication productivity. Furthermore, the length 
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of angles (X16) can provide an idea of how the bracing arrangement impacts productivity. Lastly, 

the complexity of the structural system (X4) should be considered when selecting a fabrication 

style. In this case, all the variables selected align closely with common knowledge and practical 

knowhow in the domain of structural steel fabrication.  .   

With the attributes identified the productivity model for structural steel proposed is given in Eq. 

3.15, (as per Eq. 3.7).  

𝑃 =   𝑃𝑋4−𝑀
0 × (

𝑙𝑋4−𝑀 

𝑙𝑋4−𝑀
0  

) + 𝑃𝑋4−𝐿
0 × (

𝑙𝑋4−𝐿 

𝑙𝑋4−𝐿
0  

) + 𝑃𝑋4−𝐻
0 × (

𝑙𝑋4−𝐻 

𝑙𝑋4−𝐻
0  

) + 𝑃𝑋4−𝐻𝑉
0 × (

𝑙𝑋4−𝐻𝑉 

𝑙𝑋4−𝐻𝑉
0  

)

+ 𝑃𝑋16
0 × (

𝑙𝑋16 

𝑙𝑋16
0  

) + 𝑃𝑋29
0 × (

𝑙𝑋29 

𝑙𝑋29
0  

) + 𝑃𝑋19
0 × (

𝑙𝑋19 

𝑙𝑋19
0  

) + 𝑃𝑋8
0 × (

𝑙𝑋8 

𝑙𝑋8
0  

)

+ 𝑃𝑋18
0 × (

𝑙𝑋18 

𝑙𝑋18
0  

)       (3.15) 

3.4.2. Step 2: Model Tree Integration  

With the selected attributes, the Model Tree algorithm of M5P was invoked to identify classes 

and subsets (branches), using a total of 175 samples, with the soothing and pruning functions 

enabled. The minimum number of instances option was set as 30. The model's performance was 

tested using 5-fold cross-validation techniques in terms of prediction accuracy. The resulting R2 

was 0.82, greater than the preset acceptance threshold of 0.70. The subsequent step was to 

generate the model tree with a total of 4 branches, shown in Fig. 3.5. Hence, each branch is linked 

with a productivity prediction MLR equation for structural steel fabrication. A sample 

classification performance at some control points of the Enhanced Model Tree algorithm illustrated 

with attribute 35 is provided in Appendix E. 
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The total productivity model consists of four MLR equations constrained by the boundary 

conditions set by each model tree branch. Note, by learning from the provided training data, the 

M5P algorithm had chosen the total weight of the steel division (unit of measure KG) as the main 

criterion in branching.  

X35

X35

          kg 

Branch 4

>65794.61 kg 

X35

          kg >13529.37 kg 

Branch 1 Branch 3

           kg >434349.93 kg 

Branch 2
 

 

Figure 3.5: M5P model tree for labor productivity prediction data classification. 

3.4.3. Step 3: Formulating Labor Productivity Prediction Model  

In Eq. 3.15, productivity is defined as the labor hour required to complete per unit weight of steel 

fabrication (LH/kg), which is calculated by dividing Y over X35 for each of the instances. The 

base product attribute values (𝑙𝑛
0) include 𝑙𝑋16

0 , 𝑙𝑋29
0 , 𝑙𝑋19

0 , 𝑙𝑋8
0 , and 𝑙𝑋18

0 , which are 2092 m, 1700 

kg, 947 m, 112814 kg, and 1078 respectively. In addition, for the nominal attribute (X4), the 

product attribute and base product attribute ratio(
𝑙𝑋4−𝑀 

𝑙𝑋4−𝑀
0  

) equals either 1 or 0 (1 means the feature 

is present; 0 = feature is absent).  
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To construct the productivity model 80% of the records belonging to each branch (randomly 

selected) were taken each time to perform the MLR analysis; the process was repeated 100 times, 

resulting in the mean and standard deviation of each MLR coefficient. It is noted in the current 

case study, the intercept of the MLR model was set to zero (as p value was found insignificant). 

Once all the four branches of the model tree were calibrated, four MLR equations were derived 

for productivity prediction, each being associated with one branch of the model tree. The results 

are given in Table 3.3. Note the mean values of the model coefficients 𝑃𝑛
0 define the MLR equations 

to predict productivity (𝑃) for a given set of input parameters (𝑙𝑋4−𝑀).  

Table 3.3 Productivity model for 4 classifications represented by each of model tree branches. 
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Branch Branch Logic 

(boundary 

conditions) 

Productivity M odel 

1 Total weight of 

pieces (X35) ≤ 

13529.37 kg 

𝑃 =   (0.02610, 0.00280) × (
𝑙𝑋4−𝑀 

𝑙𝑋4−𝑀
0    

)

+ (0.00517, 0.00549) × (
𝑙𝑋4−𝐿 

𝑙𝑋4−𝐿
0  

)

+ (0.04727, 0.00385) × (
𝑙𝑋4−𝐻 

𝑙𝑋4−𝐻
0  

)

+ (0.10248, 0.00729) × (
𝑙𝑋4−𝐻𝑉 

𝑙𝑋4−𝐻𝑉
0  

)

+ (0.04608, 0.03092) × (
𝑙𝑋16 

2092 
)

+ (0.00311, 0.00673) × (
𝑙𝑋29 

1700 
)

+ (0.01005, 0.00556) × (
𝑙𝑋19 

947 
)

+ (−0.10416, 0.06668) × (
𝑙𝑋8 

112814  
)

+ (0.03409, 0.00704) × (
𝑙𝑋18 

1078  
) 
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Branch Branch Logic 

(boundary 

conditions) 

Productivity M odel 

2 13529.37 kg < 

Total weight of 

pieces (X35) ≤ 

65794.61 kg 

𝑃 =   (0.03091, 0.00888) × (
𝑙𝑋4−𝑀 

𝑙𝑋4−𝑀
0    

)

+ (0.01599, 0.00921) × (
𝑙𝑋4−𝐿 

𝑙𝑋4−𝐿
0  

)

+ (0.09453, 0.01943) × (
𝑙𝑋4−𝐻 

𝑙𝑋4−𝐻
0  

)

+ (0.20171, 0.01413) × (
𝑙𝑋4−𝐻𝑉 

𝑙𝑋4−𝐻𝑉
0  

)

+ (−0.00200, 0.01033) × (
𝑙𝑋16 

2092 
)

+ (−0.01155, 0.00454) × (
𝑙𝑋29 

1700 
)

+ (−0.00505, 0.00428) × (
𝑙𝑋19 

947 
)

+ (−0.00960, 0.03072) × (
𝑙𝑋8 

112814  
)

+ (−0.00903, 0.01284) × (
𝑙𝑋18 

1078  
) 
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Branch Branch Logic 

(boundary 

conditions) 

Productivity M odel 

3 65794.61 kg < 

Total weight of 

pieces (X35) ≤ 

434349.93 kg 

𝑃 =   (0.02358, 0.00215) × (
𝑙𝑋4−𝑀 

𝑙𝑋4−𝑀
0    

)

+ (0.01050, 0.00327) × (
𝑙𝑋4−𝐿 

𝑙𝑋4−𝐿
0  

)

+ (0.05596, 0.00454) × (
𝑙𝑋4−𝐻 

𝑙𝑋4−𝐻
0  

)

+ (0.26468, 0.00634) × (
𝑙𝑋4−𝐻𝑉 

𝑙𝑋4−𝐻𝑉
0  

)

+ (−0.00100, 0.00114) × (
𝑙𝑋16 

2092 
)

+ (−0.00010, 0.00064) × (
𝑙𝑋29 

1700 
)

+ (−0.00019, 0.00071) × (
𝑙𝑋19 

947 
)

+ (−0.00104, 0.00177) × (
𝑙𝑋8 

112814  
)

+ (0.00175, 0.00088) × (
𝑙𝑋18 

1078  
) 
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Branch Branch Logic 

(boundary 

conditions) 

Productivity M odel 

4 Total weight of 

pieces (X35) > 

434349.93 kg 

𝑃 =   (0.01706, 0.00117) × (
𝑙𝑋4−𝑀 

𝑙𝑋4−𝑀
0    

)

+ (0.00919, 0.00117) × (
𝑙𝑋4−𝐿 

𝑙𝑋4−𝐿
0  

)

+ (0.05368, 0.00502) × (
𝑙𝑋4−𝐻 

𝑙𝑋4−𝐻
0  

)

+ (0, 0) × (
𝑙𝑋4−𝐻𝑉 

𝑙𝑋4−𝐻𝑉
0  

)

+ (0.00010, 0.00007) × (
𝑙𝑋16 

2092 
)

+ (0.00017, 0.00006) × (
𝑙𝑋29 

1700 
)

+ (0.00074, 0.00044) × (
𝑙𝑋19 

947 
)

+ (−0.00007, 0.00021) × (
𝑙𝑋8 

112814  
)

+ (0.00030, 0.00027) × (
𝑙𝑋18 

1078  
) 

 

Given a new fabrication job, for example, a division’s weight 13500 kg with complexity level heavy, 

‘plate quantity’ (X18) = 1138, Wide flange weight (X8) = 10528 kg, ‘plate length’ (X19) =1075 

m, ‘wide T-shape (t beam) weight’ (X29) = 2124 kg, ‘L-shape (angle) length’ (X16) = 895 m, this 
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instance falls under the constraints of Branch 1 of the productivity model. MLR productivity 

model generated at Branch 1 is as Eq. 3.16: 

𝑃 =   (0.02610, 0.00280) × (
𝑙𝑋4−𝑀 

𝑙𝑋4−𝑀
0    

) + (0.00517, 0.00549) × (
𝑙𝑋4−𝐿 

𝑙𝑋4−𝐿
0  

)

+ (0.04727, 0.00385) × (
𝑙𝑋4−𝐻 

𝑙𝑋4−𝐻
0  

) + (0.10248, 0.00729) × (
𝑙𝑋4−𝐻𝑉 

𝑙𝑋4−𝐻𝑉
0  

)

+ (0.04608, 0.03092) × (
𝑙𝑋16 

2092 
) + (0.00311, 0.00673) × (

𝑙𝑋29 

1700 
)

+ (0.01005, 0.00556) × (
𝑙𝑋19 

947 
) + (−0.10416, 0.06668) × (

𝑙𝑋8 

112814  
)

+ (0.03409, 0.00704) × (
𝑙𝑋18 

1078  
)         (3.16) 

Now plugging the mean of  𝑃𝑛
0(𝜇𝑖,𝑛) we get the productivity as 0.109 LH/kg (Eq. 3.17) in 

fabrication of this job.  

   𝑃 =    0.02610 × 0 + 0.00517 × 0 + 0.04727 × 1 +  0.10248 × 0 + 0.04608 × (
895

2092 
)

+  0.00311 × (
2124

1700 
) + 0.01005 × (

1075 

947 
) − 0.10416 × (

10528 

112814
)

+ 0.03409 × (
1138 

1078 
) =   0.109

𝐿𝐻

𝑘𝑔
    (3.17) 

3.4.4. Step 4: Variance Analysis of the Productivity Model  

The variance analysis on each branch of the model tree is performed using Eq. 3.13. For the steel 

fabrication productivity model, variance of the output can be found from Eq. 3.18.  
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𝐶𝑃 = 𝜎𝑃
2 = (

𝜕𝑃

𝜕𝑃𝑋4−𝑀
0 )

2

𝑣𝑎𝑟(𝑃𝑋4−𝑀
0 ) + (

𝜕𝑃

𝜕𝑃𝑋4−𝐿
0 )

2

𝑣𝑎𝑟(𝑃𝑋4−𝐿
0 ) + (

𝜕𝑃

𝜕𝑃𝑋4−𝐻
0 )

2

𝑣𝑎𝑟(𝑃𝑋4−𝐻
0 )

+ (
𝜕𝑃

𝜕𝑃𝑋4−𝑉𝐻
0 )

2

𝑣𝑎𝑟(𝑃𝑋4−𝑉𝐻
0 ) + (

𝜕𝑃

𝜕𝑃𝑋16
0 )

2

𝑣𝑎𝑟(𝑃𝑋16
0 ) + (

𝜕𝑃

𝜕𝑃𝑋29
0 )

2

𝑣𝑎𝑟(𝑃𝑋29
0 )

+ (
𝜕𝑃

𝜕𝑃𝑋19
0 )

2

𝑣𝑎𝑟(𝑃𝑋19
0 ) + (

𝜕𝑃

𝜕𝑃𝑋8
0 )

2

𝑣𝑎𝑟(𝑃𝑋8
0 ) + (

𝜕𝑃

𝜕𝑃𝑋18
0 )

2

𝑣𝑎𝑟(𝑃𝑋18
0 )        (3.18) 

For the example given in the previous section, the variance estimate on the predicted labor 

productivity 0.042 LH/kg would be 0.00039, therefore the standard deviation (STD) is 0.020 

LH/kg, as elaborated in Eq. 3.19 and 3.20.   

𝐶𝑃 = 𝜎𝑃
2 = (0)2(0.00280)2 + (0)2(0.00549)2 + (1)2(0.00385)2 + (0)2(0.00729)2

+ (
895

2092 
)
2

( 0.03092)2 + (
2124

1700 
)
2

(0.00673)2 + (
1075 

947 
)
2

(0.00556)2

+ (
10528 

112814
)
2

(0.06668)2 + (
1138 

1078 
)
2

(0.00704)2  = 0.00039                  (3.19) 

or,  

𝜎𝑃 = √0.00039    = 0.020
𝐿𝐻

𝑘𝑔
                 (3.20) 

Now, as per Eq. 3.14, the Coefficient of variation for the predicted output is 0.182 (𝛼𝑃 ) (Eq. 3.21). 

𝛼𝑃 = 
𝜎𝑃

𝑃𝑝
= 

0.020

0.109
= 0.182             (3.21) 

3.4.5. Performance Evaluation: Calibrated Productivity Model 

We evaluated the performance of the obtained productivity model with both the training and test 

datasets. The correlation between actual and predicted productivity is depicted in Fig. 3.6. Root 
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mean square error (RMSE), mean absolute percentage error (MAPE), and the average of 

Coefficient of variation (𝛼𝑃) of the predicted outputs are summarized in Table 3.4. Note the 

performance indices on training and testing sets are closely aligned, with model performance on 

training set outperforming the testing set by small margins. The square of correlation coefficient 

(R2) for both training and testing datasets are greater than the acceptable threshold of 0.80 and 

the average Coefficient of variation 𝛼𝑃 for both training and testing datasets are below the 

acceptable threshold of 0.30. Therefore, the productivity model as produced was acceptable. It is 

noteworthy that the maximum Coefficient of variation possible was 1.08 for the training set and 

0.84 for the testing set, respectively. This pointed to certain scenarios in which the modeler should 

pay special attention to the higher variability in the productivity.  
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Figure 3.6: Correlation between actual and predicted labor productivity after model tree 

application for (a) training, (b) testing dataset. 
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Table 3.4 Performance indicator of the labor productivity model. 

Performance indicator Training Set  Testing Set  

Square of correlation coefficient, R2 0.93 0.97 

Root mean square error (RMSE), 0.0139 0.0167 

Mean absolute percentage error (MAPE) 27.8 27.3 

Average – Coefficient of variation (𝛼𝑃,𝑎𝑣𝑔) 0.29 0.25 

Maximum – Coefficient of variation (𝛼𝑃,𝑚𝑎𝑥) 1.08 0.84 

Apart from analyzing the performance of the overall model, the productivity models associated 

with each branch were separately evaluated, as shown in Fig. 3.7, revealing significantly better 

accuracy performance as of Branch 1, 3, and 4; the square of correlation coefficient (R2) between 

actual and predicted productivity values surpassed 0.90.  
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Figure 3.7: Prediction performance of all four productivity models. 

However, Branch 2 had a slightly worse result but still fell below the acceptance threshold. As 

such, if the input attribute set falls under the constraints of Branches 1, 3, and 4, we can expect 

more reliable results in terms of lower output variance. While, if the input sets fall under the 

constraints of Branch 2, we anticipate less reliable predictions. Performance evaluation results for 

individual branch’s productivity models are also summarized in Table 3.5. 
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Table 3.5 Performance indicators of all four productivity models. 

Performance indicator Branch 

1 

Branch 

2 

Branch 

3 

Branch 

4 

R2 0.99 0.86 0.98 0.98 

RMSE 0.008 0.023 0.008 0.003 

MAPE 25.8 41.1 24.5 16.1 

Average – Coefficient of variation 

(𝛼𝑃,𝑎𝑣𝑔) 

0.16 0.54 0.25 0.19 

Maximum – Coefficient of variation 

(𝛼𝑃,𝑚𝑎𝑥) 

0.60 1.08 0.79 0.66 

 

In addition to the model performance in terms of prediction accuracy, the performance of 

prediction precision was also evaluated in terms of the absolute error of the labor productivity 

prediction (absolute value of (actual P – predicted P)) against the predicted standard deviation 

of the prediction for each instance (Eq. 3.22). Results are plotted in Figure 3.8, showing 94.3% of 

instances in the training set, the precision ratio falls below the cut value of 1.96; for the test 

dataset, the result is 90%.  Note 1.96 is selected as it is the value to multiply the standard 

deviation in fixing the upper bound of the prediction at 95% confidence level in statistics. 
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟, 𝑒 =   
|𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡| 

𝑆𝑇𝐷 𝑜𝑓 𝑡ℎ𝑒 𝑂𝑢𝑡𝑝𝑢𝑡
=    

|𝐴𝑐𝑡𝑢𝑎𝑙 𝑃 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃| 

𝑆𝑇𝐷 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃
  (3.22) 
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Figure 3.8: Performance of the variance prediction of the productivity model (a) training set, (b) 

test set. 

3.4.6. Comparing Enhanced Model Tree with Established Models 

For cross checking the performances of the enhanced Model Tree, the productivity problem had 

been independently modeled by MLR model and ANN model with the same input definitions and 

the same dataset. Both ANN and MLR models were created in the widely used, freely available 

WEKA platform for data mining applications (Frank et al. 2016). The obtained MLR model in 

WEKA is given in Eq. 23, which is one MLR equation in contrast with four MLR equations on 

branches of the model tree. The ANN model calibrated in Weka was configured with a learning 

rate of 0.3, momentum of 0.2 and one hidden layer with 5 nodes in it; the sigmoid function was 

used as activation functions. The experiment was conducted on a computer with an Intel Core i7-
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4770 3.40GHz CPU and 16 GB of RAM. The training time required for the final productivity 

model derived using MLR, enhanced model tree and ANN algorithms was recorded as 0.004, 0.045, 

and 0.101 seconds respectively. 

 

𝑃 =    0.0139 × (
𝑙𝑋4−𝑀 

𝑙𝑋4−𝑀
0    

) + 0.0474 × (
𝑙𝑋4−𝐻 

𝑙𝑋4−𝐻
0  

) + 0.173 × (
𝑙𝑋4−𝐻𝑉 

𝑙𝑋4−𝐻𝑉
0  

) − 0.0002 × (
𝑙𝑋29 

1700 
)

− 0.0011 × (
𝑙𝑋19 

947 
) − 0.0008 × (

𝑙𝑋8 

112814  
) + 0.0013 × (

𝑙𝑋18 

1078  
)

+ 0.113                          (3.23) 

Results are summarized in Table 3.6 and following observations based on the current study are 

made: 

• The enhanced Model Tree outperformed the standalone MLR in terms of model accuracy 

due to nonlinear modeling capacity of the Model Tree; the enhanced Model Tree resulted 

in higher R2 on the training dataset (0.92) and smaller RMSE on the training dataset 

(0.0139). 

• The enhanced Model Tree and ANN delivered comparable performances on model accuracy 

in terms of R2 and RMSE. Nonetheless, the enhanced Model Tree was preferred to ANN 

because (1) the variance was analytically predicted alongside the point-value output and 

(2) the productivity model was explainable in terms of the reasoning logic for productivity 

prediction.  
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Table 3.6 Performance evaluation for various productivity models independently developed in the 

case study. 

Performance 

Index 

Enhanced M odel 

Tree 

M LR M odel ANN M odel 

 Training 

Set  

Testing 

Set  

Training 

Set  

Testing 

Set  

Training 

Set  

Testing 

Set  

R2 0.93 0.97 0.88 0.87 0.92 0.89 

RMSE 0.0139 0.0167 0.0191 0.0073 0.0169 0.0077 

Average – 

Coefficient of 

variation 

(𝛼𝑃,𝑎𝑣𝑔) 

0.29 0.25 - - - - 

 

The performance of a model tree consistently surpasses that of a standalone MLR approach. Model 

Tree demonstrates a level of accuracy comparable to ANNs in terms of RMSE, contingent upon 

the specific case, dataset characteristics, and the requisite experimental exploration. Determining 

whether the enhanced model tree fares better or worse than acounterpart model (e.g., ANN) 

necessitates a deliberate process of trial and error that aligns with the particular application 

requirements and data complexities. 
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The testing set consisted of 33 records randomly selected from the original data at the beginning 

and was kept separate throughout the analysis. In machine learning, the testing set is mainly 

reserved to prevent the model from overlearning (over-calibrated to the training set and predict 

the training set with high accuracy but perform poorly on the unseen test set.)  In this case, 

RSME on the testing set for the enhanced model tree is still acceptable, small enough to indicate 

no overlearning based on the training set. Note that the RSME can be sensitive to distortion by 

outliers (Naumets and Lu 2021). The square of correlation coefficient R2 is the commonly used 

measure of the overall accuracy in machine learning (the closer to 1, the more accurate predictions 

overall against targets), which is also shown in Table 4. The R2 value for the training set of the 

enhanced model tree model is 0.97, and it is higher than that of MLR (0.87) and ANN (0.89). The 

model performance is evaluated considering multiple accuracy measures (R2 and RMSE) on the 

training set and the testing set, as well as the explainability of model logic.     

3.5. Second Case: Pipe Spool Fabrication  

A pipe spool refers to a prefabricated segment of a piping system consisting of diverse components 

like flanges, elbows, reducers, tees, supports, and pipes. These elements are preassembled into 

discrete units and eventually integrated into an industrial plant or production skid/module. This 

fabrication is commonly executed in a controlled shop environment for higher productivity, better 

quality control, and lower labor costs. A data set of seventy-one records of pipe spool fabrication 

projects were collected from over sixty industrial construction projects performed by an industry 

partner over a four year’s horizon. Given the labor-intensive nature of spool fabrication, labor 

productivity presents itself as the major factor in making project cost budgets. Table 3.7 

summarizes the properties of the pipe spool dataset used for the case study. Note this dataset was 
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prepared to demonstrate and validate novel algorithms for sensitivity analysis on a 

backpropagation ANN model (Lu et al 2001). In this case, only the enhanced Model Tree was 

applied to the dataset following the proposed methodology. 

Table 3.7 Data properties of the structural steel fabrication labor cost dataset for numerical 

attributes. 

Attribut

e ID 

Attribute  Remarks M in M ax 

X1 In-line fitting (pcs) 

per foot of pipe in 

spool 

Ratio indicating the average length 

of pipe section in spool  

0 0.128434 

X2 Non-in-line fitting 

(pcs) per foot of 

pipe in spool 

Ratio indicating complexity of 

spool configuration   

0.022643 0.811826 

X3 Valve (pcs) per foot 

of pipe in spool 

Ratio indicating complexity of 

spool configuration   

0 0.094528 

X4 Support (pcs) per 

foot of pipe in spool 

Ratio indicating complexity of 

spool configuration   

0 0.045499 

X5 Flange (pcs) per 

foot of pipe in spool 

Ratio indicating complexity of 

spool configuration   

0.001326 0.730643 
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Attribut

e ID 

Attribute  Remarks M in M ax 

X6 Multistation roll 

weld inches/total 

roll weld inches 

Multistation roll weld requires 

extra handling between weld 

stations 

0 0.42571 

X7 Repair rate Index of crew’s proficiency  0 0.230769 

X8 Radiography test 

requirement 

Index of quality control stringency 

by specifications 

0 100 

X9 Non-CS units/total 

units 

Non-CS component in fabrication 

requires extra care in storage, 

handling, and welding 

0 1 

X10 Shop workload 5-point rating based on shop 

workload in units and no. of 

concurrent jobs indicating how 

busy the shop was 

1 5 

X11 Drawing revision 

rate 

5-point rating based on percent of 

revised spool drawings indicating 

drawing quality 

1 3 

X12 Priority rushed 

spools 

A 5-point rating based on percent 

of rushed spool due to client 

priority indicating shop work 

schedules. 

1 5 
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Attribut

e ID 

Attribute  Remarks M in M ax 

X13 Rework spools A 5-point rating based on percent 

of reworked spools due to drawing 

errors and quality defects 

1 5 

X14 Material shortage 

problems 

A 5-point rating on efficiency of 

material supply 

1 5 

X15 Late drawing issues A 5-point rating based on percent 

of late spool drawing issuance by 

client that impacts fabrication 

1 5 

X16 Nigh shift 

MHs/total MHs 

Night shift affects labor 

productivity 

0 0.340288 

X17 Over time 

MHs/total MHs 

Overtime affects labor productivity 0 0.263572 

X18 Extra work 

MHs/total MHs 

Extra work affects labor 

productivity 

0 1.195918 

X19 Apprenticeship 

MHs/total MHs 

Welder qualification system affects 

labor productivity: 

Apprentice versus journeyman 

0 0.517419 

Y Labor hour required 

per unit 

Labor hour required per unit 0.132533 0.503078 
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Similar to the previous case, a correlation-based greedy-stepwise search strategy was employed to 

select the most pertinent input attributes in the data preparation stage. Out of the nineteen input 

attributes, eight were selected for pipe spool productivity modeling, specifically: non-in-line fitting 

(pcs) per foot of pipe in spool (X2),  Support (pcs) per foot of pipe in spool (X4),  flange (pcs) per 

foot of pipe in spool (X5),  repair rate (X7), non-CS units/total units (X9), shop workload (X12), 

nigh shift MHs/total MHs (X16), and (over time MHs/total MHs )X17. The enhanced model tree 

algorithms were executed on the entire data set to calibrate the productivity model by modeling 

parameters as follows: number of folds for cross validation 𝑘 = 3, minimum number of instances 

for each branch 𝐼 =  15; the number of iterations on MLR productivity model 𝑁 =  30; the 

variance index threshold to check the acceptance of the model 𝛼 was set to be below 0.30. The 

number of folds to cross validate the model and the minimum number of instances for each branch 

were reduced considering the limited size of the dataset. The resulting productivity model is given 

in Eq. 3.24 (as per Eq. 3.7) and the variance of the estimated productivity is shown in Eq. 3.25. 

The enhanced model tree algorithm found four MLR equations classified by rules over the current 

scope of productivity study, summarized in Table 3.8.  

𝑃 =   𝑃𝑋2
0 × 𝑋2 + 𝑃𝑋4

0 × 𝑋4 + 𝑃𝑋5
0 × 𝑋5 + 𝑃𝑋7

0 × 𝑋7 + 𝑃𝑋9
0 × 𝑋9 + 𝑃𝑋12

0 × 𝑋12 + 𝑃𝑋16
0 × 𝑋16

+ 𝑃𝑋17
0 × 𝑋17      (3.24) 
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Table 3.8 MLR equations with rules for pipe spool productivity model.  

Branch  Branch Logic 

(boundary 

conditions) 

Productivity M odel 

1 X9 ≤ 0.575, 

X4 ≤ 0.003 

(0.7173, 0.5212)X2 - (26.3898, 23.8687)X4 - (0.3894, 

0.8927)X5 – (0.1986, 0.3529)X7 – (0.1275, 0.1301)X9 + 

(0.0408, 0.0105)X12 + (0.3339,0.1916)X17 

2 X9 ≤ 0.575, and 

0.003 < X4 ≤ 

0.015 

(0.6004, 0.4319)X2 + (15.9546, 4.9743)X4 - (0.2415, 

0.6736)X5 + (0.1683, 0.4105)X7 – (0.0837, 0.2067)X9 - 

(0.0045, 0.0152)X12 + (0.6777, 0.3511)X16 - 

(0.1744,0.2885)X17 

3 X9 ≤ 0.575, and 

0.015 < X4  

(0.4847, 0.2012)X2 + (0.7383, 1.264)X4 - (0.0639, 0.2927)X5 - 

(0.4908, 0.2181)X7 + (0.2203, 0.2334)X9 + (0.0119, 

0.0069)X12  + (0.0948, 0.0896)X16 + (1.6399,0.5893)X17 

4 X9 > 0.575 (0.3177, 0.3919)X2 + (2.3519, 4.2931)X4 - (0.0767, 0.3955)X5 

- (1.2147, 0.3940)X7 + (0.3955, 0.0623)X9 - (0.0315, 

0.0153)X12 - (0.0927, 0.2104)X16 - (0.5982,0.3757)X17 

 

It is noteworthy that the square of correlation coefficient (R2) between actual and predicted 

productivity values is 0.68 (lower than 0.80) while the average variance index of the derived model 

is 0.51 (greater than 0.30 threshold). In particular, the outcome implies precision of the 

productivity model is below the threshold of acceptance, hence, the predictions made by the model 
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would not be recommended for practical applications. The second spool fabrication case, with 

limited records available (only seventy-one in total), the entire dataset is only utilized for training 

the enhanced model tree and check the model logic (its explainability) against practical knowhow; 

as a “fail” case, it is demonstrated how to reject a model with the proposed method. This helps 

check and validate the generalizability of the proposed model. The research is not to generalize 

the performance comparison between the model tree, the ANN and MLR. Results from the first 

case provide adequate information in this regard.   

3.6 Discussion of Research Contributions  

The hurdle of data availability in productivity study has been gradually overcome due to 

technological advances over the past few decades such as the proliferation of building information 

model (BIM) and labor hours tracking automation in the construction industry. Large datasets 

containing design features and labor cost data become inexpensively available and readily 

accessible, which are potentially valuable for predicting productivity by applying regressions or 

artificial intelligence (AI). As the productivity database continuously expands, the data used for 

productivity modeling and analysis represents a random sample taken at a particular time for the 

underlying productivity problem definition. Given the same problem domain, different datasets 

can be sampled by different modelers at the same time or by the same modeler at different time 

periods. As such, the productivity model calibrated by the same analytical method would end up 

with different parameters, resulting in a variance of the predicted productivity. This has given 

rise to a new research problem in connection with productivity prediction by applying regressions 

or ANN models: in addition to the accuracy (i.e., how accurate is the point-value output), how to 
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determine the precision of a productivity prediction model (i.e., the variance of the output), which 

is also crucial to validation and utilization of the model as decision support tool.  

This research improves the variance estimation technique of nonlinear regression-based prediction 

model -namely the model tree- for modeling construction productivity. Unlike artificial neural 

networks (ANN), the model tree is a logic driven machine learning model which ensures 

transparency in model development in regards to explaining nonlinear input-output relationships. 

The enhanced model tree is preferred over other machine learning techniques because (1) the 

variance in the productivity estimate is analytically predicted alongside the point-value output, 

and (2) the productivity model is explainable in terms of the reasoning logic for productivity 

prediction. Such transparency in model structure is essential for gaining trust from practitioners 

and promoting the implementation of the AI model. The model tree is utilized in this research by 

taking advantage of its function as a nonlinear classifier, which partitions the dataset into discrete 

subsets delineated by binary rules. The ensuing data classes within each subset lend themselves 

to straightforward MLR modeling. Next, the proposed approach enhances the model tree by 

coupling with variance analysis, which is connected with the application of a random sampling 

technique for statistically characterizing the MLR coefficients. This novel methodology aligns 

closely with the intended objective of devising explainable AI for estimating the variance 

associated with the prediction of productivity. 

The “variance index” is introduced to check the model performance based on the presented method 

of variance calculation for predicted output.  The variance index calculation requires the standard 

deviation (square root of variance), determined individually for each input setting. Note this is in 

contrast with calculating the variance of the output from the absolute errors by comparing actual 
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and predicted values over the entire model dataset. However, the traditional MLR and ANN 

models lack the capability to determine the variance associated with each prediction, thus 

disallowing quantification of the variance index. 

It is noteworthy that the error propagation theory underpinning the enhanced model tree assumes 

that a coefficient in the MLR equation at each model tree branch follows a Gaussian distribution. 

Nonetheless, this assumption may not always hold true in the context of modeling labor 

productivity in construction, thus constraining the research application. On the other hand, when 

well-structured productivity data are not readily available, it would be an acceptable practice to 

approximate a normal distribution by estimating the mean and standard deviation in a way 

resembling range estimating or Program Evaluation and Review Technique (PERT) in 

construction management. That is to assume Gaussian distribution and derive mean and standard 

deviation from Optimistic (L), Most Likely (M), and Pessimistic (U) estimates (Peurifoy and 

Oberlender, 2001). Meanwhile, as data availability expands in precast and fabrication industry, 

an alternative emerges: fixing MLR element productivity parameters' mean and standard 

deviation by sampling the training set against the testing set. This sampling process is often linked 

to Gaussian distributions in statistics, which is demonstrated by correlated P-P plots on slopes of 

selected productivity elements in the steel fabrication case (shown in Appendix D). 

An alternative method of calculating the variance of the predicted output can be using Ensemble 

learning technique.  Ensemble learning involves combining the predictions of multiple machine 

learning models by averaging their outputs, often utilizing random subsets of data (Dietterich 

2002). While this approach can provide predictions with variance estimates, it typically requires 

processing inputs using a large number of models to obtain an output along with a variance 
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estimate during the prediction stage. In contrast, the proposed enhanced model tree algorithm 

eliminates the need to process inputs separately to obtain the variance of the model, thereby 

substantially improving computing efficiency. substantially improving computing efficiency. 

3.7 Conclusions  

The present research enhances the established AI technique called Model Tree to quantity the 

variance for the predicted productivity due to random sampling of training data. In this research, 

a productivity problem is decomposed into branches (classes) by applying the non-linear classifier 

algorithm in Model Tree. Then the Model Tree is enhanced in such a way that the MLR equation 

on each tree branch can predict the point-value output as well as the associated variance. This 

research essentially builds on recent progresses in Model Tree applications in productivity study 

(Mohsenijam et al. 2021; Naumets and Lu 2021) and MLR in variance analysis (Hasan and Lu 

2022) in efforts to extend the capability of the nonlinear AI method of Model Tree in modeling 

construction productivity. Prefabrication of the same-type structural components in building and 

infrastructure construction is still classified as "made-to-order" labor-intensive production 

processes; productivity could broadly fluctuate because of product variations in detailed elements 

or special features. A case of modeling the productivity for prefabrication of structural steel is 

presented to demonstrate the application of the proposed methodology. For cross checking, 

multiple linear regressions (MLR) and artificial neural networks (ANN) were independently 

applied to the same problem definition using the same data. The enhanced Model Tree 

outperformed MLR in prediction accuracy; and was preferrable over ANN considering (1) the 

prediction of the variance alongside the point-value output and (2) model explainability in terms 

of reasoning logic in prediction.  
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The enhanced model tree algorithms as described in this paper are completely data-driven and 

analytical, given the productivity data available is sufficient. As such, the mean and variance of 

each coefficient associated with each productivity component in the proposed methodology are 

derived from random sampling of the training data. When only limited data are available that do 

not allow for random sampling, those parameters can be determined by alternative means; for 

instance, by resorting to the knowhow of experienced practitioners, who have years of experiences 

in performing the work process and are able to give reliable estimates for the most likely value, 

the minimum, and the maximum. In such a case, the mean can be approximated as a weighted 

average of the three points, while the standard deviation can be estimated based on the range, 

e.g., taking one sixth of the range by assuming normality.  

It is stressed that the research is not conducive to “reducing waste or delay by these variances” at 

all. The proposed method is intended to predict the variance associated with a productivity 

estimate given a certain set of job attributes. This variance is the potential risk accounting for 

labor cost overrun. A large variance prediction indicates a high risk for cost overrun to occur if 

the predicted mean value for a certain method is used in estimate and bidding. The research is 

not directly conducive to “reducing waste or delay by these variances”. It only helps with selecting 

a less risky Method A (less variance) over Method B, note the predicted mean value on Method 

B can be more favorable than A considering the mean productivity alone. 

Finally, not specific to productivity models in the domain of construction research, the focus of 

regressions and AI based prediction modeling research has been confined to increasing prediction 

accuracy, largely overlooking the precision of the model due to the dynamic way by which data is 

selected from the available database. Model validations have been mainly based on evaluating 
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error terms between the predicted output and the target output, without addressing the variance 

of the predicted output. Therefore, the enhanced Model Tree model framework holds potential to 

prove itself as explainable AI or non-linear regression technique across a wide range of application 

domains. 
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Chapter 4 

Estimating Output Variance of a Regressing Tree Model: Case 

Study of Concrete Strength Prediction 

 

4.1 Introduction  

The application of machine learning algorithms has revolutionized the field of civil engineering. 

These algorithms enable engineers to analyze large datasets and make predictions that would 

otherwise be difficult or impossible using traditional methods (Huang et al. 2019). However, the 

increasing complexity of these algorithms has also highlighted the need for explainable artificial 

intelligence (XAI) techniques (Belle and Papantonis 2021). These techniques help ensure that the 

models are transparent and understandable; hence, model predictions can be trusted by decision 

makers. The Model Tree approach is one such technique that has become popular in recent years. 

This approach combines decision trees and regression analysis into an XAI modeling framework 

for generalizing complex-nonlinear relationships between variables (Frank et al. 1998). The Model 

Tree has been applied to address various civil engineering problems such as predicting the 

construction labor productivity and the workability of concrete (Mohsenijam et al. 2022), 

forecasting river flow (Taghi Sattari et al. 2013), sediment transport in pipes (Najafzadeh et al. 

2017), predicting compressive strength of high-performance concrete mix (Deepa et al. 2010).  
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Typically, the performance of a numerical model is evaluated by calculating the relative and 

absolute errors and assessing the statistical correlation between the model's output and the target 

values (Alexander 2020). These measures aim to assess model bias, variance, and complexity (Yu 

et al., 2006). Root Mean Square Error (RMSE) or the coefficient of determination (R2) are 

commonly applied measures for model accuracy. However, precision estimate, which is the variance 

estimate tied with individual model output, has yet to be investigated but is of vital importance 

and immediate relevance to many civil engineering applications. For instance, a concrete strength 

prediction model could produce a prediction based on the input data. However, it will not indicate 

the estimate of uncertainty surrounding the expected result, which can be crucial for design or 

quality assurance purposes.  

In this research, the Model Tree algorithm has been enhanced with the intention to propose a 

framework to account for the variance estimate of the predicted output. The commonly applied 

model tree algorithm of M5P, has been chosen as the basis. M5P calibrates multiple linear 

regression (MLR) models at the leaf node of a decision tree by recursively splitting the data into 

subsets based on the values of the input variables. The variance analysis method for MLR model 

proposed by Hasan and Lu (2022) is integrated in M5P to estimate the variance of the predicted 

output. To demonstrate the application of the enhanced model tree approach, a common civil 

engineering problem: concrete strength prediction has been choosen. The dataset was taken from 

the University of California, Irvine, machine learning repository (UCI 2020). The remainder of 

this paper further explains the enhanced model tree approach as well as the application steps. 
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4.2 Variance Analysis on Model Tree 

Combining a decision tree with regression analysis allows the breaking down of a large dataset 

into smaller subsets. This approach enables the representation of nonlinear input-output 

relationships through a series of linear multivariate data models using unique sets of binary rules. 

To implement the variance analysis technique proposed by Hasan and Lu (2022), it is necessary 

to determine the mean and standard deviation of the coefficients for each multiple linear regression 

(MLR) model in the model tree. Subsequently, the theory of error propagation can be applied to 

obtain a variance estimate for predictions given a specific set of inputs. The application framework 

for the enhanced model tree is illustrated in Fig. 4.1 and comprises three main steps. 

Step 1. The enhanced model tree algorithm starts with applying the M5P algorithm to classify 

the dataset into small subsets suitable for constructing MLR models. M5P uses a divide-and-

conquer strategy in breaking down the dataset of a complicated problem into smaller subsets until 

a stopping criterion (minimum number of instances) is met (Quinlan 1992). The n-fold cross-

validation technique is used to check the performance of the decision tree model. The correlation 

coefficient, mean absolute error, and root mean squared error between the output and target 

variables are used to check the model’s prediction accuracy. If the model accuracy is satisfactory, 

then move to the next step. 
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Figure 4.1: Variance analysis framework for m5p model. 

Step 2. A subset of the total data at each branch of the model tree is randomly selected to 

prepare an MLR model specific to that branch. For M th branch of the decision tree, the MLR 

model that relates the input variable Xi with the output variable YM is given in Eq. 4.1.  

𝑌𝑀 = 𝛽0,𝑀 + 𝛽1,𝑀𝑋1,𝑀 + ⋯+ 𝛽𝑖,𝑀𝑋𝑖,𝑀                 (4.1) 

Here, 𝛽𝑖,𝑀 is the regression coefficient associated with input variable 𝑋𝑖,𝑀. 𝛽0,𝑀 is the intercept of 

the MLR equation representing the model bias. Now if the MLR equation had been calibrated to 

a random data sample from the available data at a specific branch, the 𝛽𝑖,𝑀 would be different 
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each time. And for N number of random iterations, there will be N number of MLR equations 

form which mean and standard deviation (μ, σ) of each β parameter can be calculated. Therefore, 

the final form of Eq. 4.1 will be (Eq. 4.2): 

𝑌𝑀 = 𝛽0,𝑀(𝜇0,𝑀, 𝜎0,𝑀) + 𝛽1,𝑀(𝜇1,𝑀, 𝜎1,𝑀)𝑋1,𝑀 + ⋯+ 𝛽𝑖,𝑀(𝜇𝑖,𝑀, 𝜎𝑖,𝑀)𝑋𝑖,𝑀                 (4.2) 

This process should be performed for all the model tree branches (total M times), to prepare total 

M number of MLR models constrained by the logic of each branch of the decision tree. 

Step 3. Next step is to apply the error propagation theorem to estimate the variance of the 

prediction. Error propagation theorem explains the propagation of random errors from 

independent variables to the dependent variable in a numerical system, expressed by Eq. 4.3. 

𝐶𝑦 = 𝐽𝑥𝑦𝐶𝑥𝐽𝑦𝑥
𝑇                (4.3) 

Here, 𝐶𝑦 is the covariance matrix of random output y, and 𝐶𝑥  is the covariance matrix of random 

input 𝑥, and 𝐽𝑥𝑦 is the Jacobian (Jacobian matrix) of the Eq. 4.2.Now, to examine the total error 

in output YM due to the errors propagated from the model coefficients 𝛽𝑖,𝑀(𝜇𝑖,𝑀 , 𝜎𝑖,𝑀), Eq. 4.3 is 

applied in connection with Eq. 4.2. The final output variance of the MLR model is given in Eq. 

4.4: 

𝐶𝑌 = 𝜎𝑇,𝑀
2 = (

𝜕𝑌𝑀

𝜕𝛽0,𝑀
)

2

𝑣𝑎𝑟(𝛽0,𝑀) + (
𝜕𝑌𝑀

𝜕𝛽1,𝑀
)

2

𝑣𝑎𝑟(𝛽1,𝑀) + ⋯+ (
𝜕𝑌𝑀

𝜕𝛽𝑖,𝑀
)

2

𝑣𝑎𝑟(𝛽𝑖,𝑀)          (4.4) 

 The decomposition process of Eq. 4.3 and construction of Eq. 4.4 can be found in Hasan and Lu 

(2022). The variation level of each MLR equation then can be tested by using a metric, if the 
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results are satisfactory (less than the threshold), the model is accepted for making point value 

prediction as well as the associated variance estimate. Otherwise, the tree model is rejected.  

4.3 Concrete Strength Prediction: Case Study 

The dataset used in this study consists of a total of 1030 instances with eight attributes denoting 

high performance concrete (HPC) design properties and the corresponding compressive strength. 

For multifold cross validation in the development of the model tree, 90% (927) from the data set 

were used in model calibration, while the rest randomly selected 10% (103 instances) were reserved 

for verification purposes to test the performance of the overall framework. The basic data 

properties of the case study date set are given in Table 1.  

Table 4.1 Data properties of the HPC dataset for strength prediction model. 

ID Attribute  M aximum  M inimu

m  

M edian  M ean Standard 

Deviatio

n  

X1 Cement (kg/m3) 540 102 272.9 281.2 104.5 

X2 Blast furnace slag (kg/m3) 359.4 0 22 73.9 86.2 

X3 Fly ash (kg/m3) 200.1 0 0 54.2 64 

X4 Water (kg/m3) 247 121.8 185 181.6 21.4 
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ID Attribute  M aximum  M inimu

m  

M edian  M ean Standard 

Deviatio

n  

X5 Super Plasticizer (kg/m3) 32.2 0 6.35 6.2 6.0 

X6 Coarse Aggregate (kg/m3) 1145 801 968 972.9 77.7 

X7 Fine Aggregate (kg/m3) 992.6 594 779.5 773.6 80.1 

X8 Age (days) 365 1 28 45.7 63.1 

Y Compressive Strength 

(MPa) 

82.6 2.33 34.4 35.8 16.7 

 

Step 1. To build the concrete strength prediction model, an M5P model was first developed using 

a total of 927 (90% of the sample) samples by using the WEKA software (Frank et al. 2016), 

keeping the soothing and pruning function enabled. The least number of instances was set as 50 

(above the minimum threshold of 30), which means at least fifty records are required to calibrate 

MLR and apply the variance analysis. The model's performance was tested using 10-fold cross-

validation techniques. The resulting correlation coefficient was reported to be 0.90, the mean 

absolute error was 5.8, and the root mean square error was approximately 7.5. Given the practical 
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application context, these performance results are considered acceptable (Kasperkiewicz et al. 

1995), and we proceeded to the next step of the framework application. It is noteworthy that the 

model tree generated a total of 8 branches (M = 8), shown in Figure 2. Hence, each branch will 

result in one linear model (LM) for concrete strength prediction. 

X8

X1

Branch 1

     
> 21 

X1

        kg/m
3
  

X4

Branch 2

        kg/m
3 > 164.8 kg/m

3 

X2
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3

Branch 3

X4

Branch 5

         kg/m
3 > 192.97 kg/m

3 

Branch 6

X8

Branch 4

     days > 42 days 

     kg/m
3

Branch 7

> 13 kg/m
3 

Branch 8

> 352.5 kg/m
3
  

         kg/m
3 

 

Figure 4.2: M5P model tree for concrete strength prediction model. 

Step 2. In step 2 of the model development, the variance analysis model proposed by Hasan and 

Lu for each rule was applied to identify a linear model (LM) in the form of multiple linear 

regression (MLR) equations with associated variance estimate of the coefficients of the input 
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variables. The generic form of the MLR equations is given in Eq. 4.5 as per Eq. 4.2.  Since there 

are eight input variables, the value of i would vary from 1 to 8.  

𝑌𝑀 = 𝛽0,𝑀(𝜇0,𝑀, 𝜎0,𝑀) + 𝛽1,𝑀(𝜇1,𝑀, 𝜎1,𝑀)𝑋1,𝑀 + ⋯+ 𝛽8,𝑀(𝜇8,𝑀, 𝜎8,𝑀)𝑋8,𝑀      (4.5) 

 

Next, a random subset of data presented by the specific branch of the model tree was taken to 

develop an MLR model and this process was repeated 100 times (N = 100). The subset was 

selected in a way so that at least fifty records are available in the sample set to obtain statistically 

significant results. In each run, we obtained one MLR equation with a set of regression coefficient 

𝛽𝑖,𝑀. The mean and variance estimate (𝜇𝑖,𝑀 , 𝜎𝑖,𝑀) of 𝛽𝑖,𝑀 for the regression equation were then 

determined based on one hundred data samples. The procedure was followed to construct all the 

eight MLR models associated with the eight branches of the model tree, with mean and variance 

(μi,σi) estimates of the coefficients associated with input variables determined, given in Table 4.2.  

The mean values of the MLR coefficients 𝛽𝑖,𝑀 are used to predict concrete strength for a given 

mix design parameters (𝑋𝑖,𝑀). For example, if the mix properties of a concrete batch are: X1 = 

190.34 kg/m3, X2= 0, X3=125.18 kg/m3, X4=161.85 kg/m3, X5=9.88 kg/m3, X6=1088.1 kg/m3, 

X7=802.59 kg/m3, X8=14 days, then first we can determine that, this concrete mix falls under 

Branch 1. As per branch 1 MLR model, the concrete strength Y1 is (as per Eq. 4.6) 22.72 Mpa. 
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Table 4.2 MLR equations for all 8 branches. 

 Branch Logic M LR M odel 

Branch 

1 

X8≤21days Y1=(0.091, 0.004)X1+(0.055, 0.005)X2+(0.040, 

0.008)X3-(0.109,0.022)X4+(0.376, 0.096)X5+(0.001, 

0.003)X6-(0.001, 0.004)X7+(1.328, 0.08)X8 

Branch 

2 

X8>21days, and X1≤164.8 

kg/m3 

Y2=(0.026, 0.042)X1+(0.122, 0.008)X2+(0.05, 

0.01)X3-(0.086,0.029)X4+(0.062, 0.146)X5+(0.003, 

0.005)X6+(0.015, 0.005)X7+(0.069, 0.013)X8 

Branch 

3 

X8>21days, and 164.8 

kg/m3<X1≤352.5 kg/m3, and 

X4≤175.98 kg/m3 

Y2=(0.112, 0.022)X1+(0.109, 0.014)X2+(0.063, 

0.025)X3-(0.154,0.054)X4+(0.03, 0.027)X5+(0.017, 

0.009)X6+(0.009, 0.008)X7+(0.168, 0.024)X8 

Branch 

4 

X8>21days, and 164.8 

kg/m3<X1≤352.5 kg/m3, and 

X4>175.98 kg/m3, and 

X2≤13 kg/m3, and X8≤ 42 

days 

Y2=(0.155, 0.022)X1-(0.069, 0.038)X2+(0.105, 

0.022)X3-(0.175,0.078)X4+(0.236, 0.255)X5+(0.002, 

0.019)X6+(0.023, 0.022)X7-(0.245, 0.19)X8 
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 Branch Logic M LR M odel 

Branch 

5 

X8>42days, and 164.8 

kg/m3<X1≤352.5 kg/m3, and 

175.98 kg/m3<X4≤ 192.97 

kg/m3, and X2≤13 kg/m3 

Y2=(0.17, 0.027)X1 +(0.071, 0.041)X3-

(0.215,0.139)X4+(1.629, 0.628)X5+(0.002, 

0.013)X6+(0.024, 0.017)X7+(0.016, 0.001)X8 

Branch 

6 

X8>42days, and 164.8 

kg/m3<X1≤352.5 kg/m3, and 

X4> 192.97 kg/m3, and 

X2≤13 kg/m3 

Y2=(0.17, 0.036)X1+(0.69, 0.897)X2+(0.061, 

0.029)X3-(0.574,0.207)X4+(1.805, 1.724)X5+(0.053, 

0.023)X6+(0.046, 0.025)X7+(0.019, 0.006)X8 

Branch 

7 

X8>21days, and 164.8 

kg/m3<X1≤352.5 kg/m3, and 

X4>175.98 kg/m3, and 

X2>13 kg/m3 

Y7=(0.09, 0.016)X1+(0.04, 0.012)X2-(0.021, 

0.021X3-(0.032,0.041)X4+(0.792, 0.272)X5+(0.01, 

0.01)X6+(0.005, 0.01)X7+(0.051, 0.011)X8 

Branch 

8 

X8>21days, and 352.5 

kg/m3<X1 

Y8=(0.115, 0.012)X1+(0.166, 0.013)X2+(0.093, 

0.016)X3-(0.218,0.032)X4-(0.414, 0.154)X5+(0.017, 

0.006)X6+(0.025, 0.007)X7+(0.039, 0.01)X8 
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𝑌1 = (0.091) 190.34 + (0.055)0 + (0.040) 125.18 − (0.109) 161.85 + (0.376) 9.88 

+ (0.001) 1088.1 − (0.001) 802.59 + (1.328) 14 =  22.72 𝑀𝑃𝑎       (4.6) 

Step 3. Variance estimate model was formulated following Eq. 4.4 for all 8 MLR models as 

prepared in step 2 (given in Table 4.3). For example, the variance estimate model for Branch 1 

would be (Eq. 4.7):  

𝜎𝑇,1
2 = (𝑋1,1)

2
𝑣𝑎𝑟(𝛽1,1) + (𝑋2,1)

2
𝑣𝑎𝑟(𝛽1,1) + ⋯+ (𝑋8,1)

2
𝑣𝑎𝑟(𝐹𝛽𝑖,𝑀

)      (4.7) 

So, given the same concrete mix as previously mentioned in Step 2, the estimated variance of the 

prediction would be 38.16, as per (Eq. 4.8) (i.e., standard deviation of 6.17 MPa.) Note, the 

variance estimate result can be verified by Monte Carlo simulation approach and details of such 

verification methodology can be found in Hasan and Lu (2022).   

𝜎𝑇,1
2 = (190.34 × 0.004)2 + (125.18 × 0.008)2+(161.85 × 0.022)2  + ( 9.88 × 0.096)2

+ (1088.1 × 0.096)2 + ( 802.59 × 0.003)2 + (14 × 0.08)2  =  38.16       (4.8) 

4.4 Model Performance 

The performance of the enhanced model tree was tested with the reserved 10% of the data from 

the dataset -a total of 103 instances in the testing set. The concrete strength prediction was made 

for each case. The prediction result gave a point value prediction associated with a standard 

deviation of the prediction. The accuracy of the results was tested by comparing the point-value 

model output with the target output in the test set. The Pearson’s coefficient of correlation (R2) 

of the predicted and target concrete compressive strength is 0.88 and the mean absolute error of 
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the prediction is 5.91. The R square value at zero intercept is 0.98, which is deemed satisfactory. 

The output vs the target plot shows a near 45-degree tilt line as shown in Fig. 4.3(a).  
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Figure 4.3: Model performance: (a) predicted concrete strength (b) predicted variance of the 

concrete strength. 

To compare the prediction error with the predicted variance estimate (STD), a relative error term 

is defined to divide the actual absolute error over the standard deviation of the output as per Eq. 

4.9. The error data for the 103 test records are plotted in Figure 4.3(b) showing that, all the 

prediction variances are below the upper threshold of the predicted error of 1.96. Note 1.96 is also 

the cut value applicable to the standard deviation in determining the 95% confidence interval of 

the sampled mean in statistics.  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟, 𝑒 =  
|𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟| 

𝑆𝑇𝐷 𝑜𝑓 𝑡ℎ𝑒 𝑂𝑢𝑡𝑝𝑢𝑡
=   

|𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑡𝑎𝑟𝑔𝑒𝑡| 

𝑆𝑇𝐷 𝑜𝑓 𝑡ℎ𝑒 𝑂𝑢𝑡𝑝𝑢𝑡
    (4.9) 
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4.4 Conclusion 

The major limitation of the MLR model lies in its insufficiency to represent the nonlinear 

relationships between inputs and output common to engineering applications. Machine learning 

algorithms, including artificial neural networks, are much more powerful in coping with nonlinear 

regressions but lack transparency in explaining the model’s decision-making logic. In contrast, 

decision trees are a type of machine learning algorithm that recursively partitions input data into 

subsets based on feature values, assigning a label or value to each subset based on the majority 

class or average value of the output variable. The resulting tree structure allows easy 

interpretation and visualization of data classification and model prediction. Combining decision 

trees with regression analysis, a model tree essentially breaks down nonlinear input-output 

relationships into a series of MLR models. The variance analysis technique proposed by Hasan 

and Lu (2022) can be integrated into the model tree to further enhance its capability of estimating 

variances of predicted point values for any given input setting, which has been demonstrated in a 

concrete strength prediction case in this paper. Although the application of the proposed 

framework is explained from the perspective of the concrete strength prediction model, it will 

potentially broaden the application scope in solving many civil engineering problems.  

  



156 

Chapter 5 

Error Propagation Model for Analyzing Project Labor Cost Budget 

Risks in Industrial Construction 

 

5.1 Introduction  

Industrial construction encompasses a wide range of projects that are essential to our utilities and 

basic industries and generally features large amounts of the highly complex process of piping, 

mechanical, electrical, and instrumentation work (Barrie and Paulson, 2001). In contrast with 

infrastructure construction, industrial construction does not require fleets of construction 

equipment and plant (such as scrapers, loaders, cranes and trucks, etc.) to handle basic materials 

(such as earth, rock, concrete, and asphalt, etc.), but “tends to be much more labor-intensive, 

though some of the largest hoisting and materials-handling equipment is also required” (Parker et 

al., 1984). Hence, labor cost on major activities in industrial construction is conventionally 

determined independently of equipment use. To perform takeoff on a particular work package, the 

key is to determine labor productivity, which could vary broadly among different projects (Parker 

et al., 1984). For instance, for field pipe installation in industrial construction, the amount of 

work-in-place is usually counted in pipe footage; field productivity for pipe installation is measured 

in labor hours per foot of installed pipe. Then, the uncertainty in labor cost estimate (in labor 

hours required) is largely attributable to the variation in labor productivity. 
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Well established cost estimate and project schedule are consolidated into a reliable cost budget, 

which underpins effective cost control practice in project management and is crucial to successful 

project delivery (Ahuja et al. 1994). In industrial construction, labor cost accounts for the bulk of 

the total project cost, usually ranging from a quarter to a half of the total. Besides, among major 

project cost components (material, equipment, and labor), labor cost is considered as the project 

element with the highest risk (Hanna et al., 2005). Therefore, in making budgets for labor costs 

on industrial construction projects, the common practice is to apply labor hours (LH) based 

budgeting.  

Cost planning starts with defining work packages under the project work breakdown structure 

(WBS), based on which work is scheduled and estimated, monitored, and controlled (PMI, 2017). 

Next, the estimator determines the quantity of work and chooses the resource group to complete 

each individual work item (activity) in a work package based on the project WBS. Then, the total 

LH required to perform that activity for a particular work package (WP) is calculated accordingly. 

By specifying sequencing constraints (logical and technological) between work packages, critical 

path method (CPM) based project planning tools (such as Primavera P6) can be applied to 

produce project schedule and labor cost budget. 

Labor productivity (LH required per unit of work) provides the best indicator of the production 

efficiency and represents the key factor for estimating labor cost in construction (Dozzi and 

AbouRizk, 1993; Rojas and Aramvareekul, 2003). In fabricating and installing made-to-order 

components in industrial construction, every activity in a project has its unique parameters for 

describing work complexity and defining work content. The current practice of planning industrial 

construction relies on “productivity benchmark” data, which represents average productivity 
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performance determined statistically from corporate historical databases or national industry 

standards (Park et al., 2005). The “productivity benchmark” serves a good basis, which is generally 

overridden given available data and information on company-specific actual performances and on 

project-specific productivity-related factors (Park et al., 2005). The evidence of using data 

analytics for the purpose of better productivity prediction is well documented in the literature 

(Minato and Ashley, 1998). Various techniques have been utilized in productivity related research 

to model the complex relationships between different external influencing factors and the 

productivity rates, namely: statistical and regression models (Smith, 1999; Mohsenijam and Lu 

2019), expert systems, artificial neural networks (Sonmez and Rowings, 1998; Lu et al., 2001), and 

operations simulation (Zayed and Halpin, 2005; Nasirzadeh and Nojedehi, 2013). It is commonly 

argued that in connection with the fabrication and installation of engineering products in industrial 

construction (such as pipe spool, structural steel components, precast concrete structural units, 

etc.), the takeoff on one particular work item needs to be multi-dimensional (dependent on 

multiple parameters each denoting a certain feature of the job or the project), instead of reducing 

to just one single parameter (e.g., total area, or weight, or volume).  

In general, uncertainties inherent in both internal and external project environments presented 

distinctive challenges in establishing proper productivity benchmarks (Thomas, 2015). Methods 

for accounting for risks in project labor cost budgeting due to variations in labor productivity still 

lacks scientific rigor and can be a subjective decision process. This has potentially led to insufficient 

budgeting in the planning stage, thereby resulting in budget overrun in the execution stage.  
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5.1.2 Risk Analysis Methods: Critical Review 

Major methods for analyzing risks inherent in a system output (such as labor cost budget) due to 

variations in input variables (such as productivity related factors) generally entail two steps, 

namely: Step 1: Establishing the system model to relate input variables with system output; Step 

2: Given a valid system model, sensitivity analysis is applied by perturbing an input variable 

within its practical range of variation, resulting in the observation of system output response. 

Hence, risks in the system output are generalized from the observed system output data by 

performing “what-if” scenario analysis or simulation analysis.  

In Step 1, researchers commonly resort to multiple linear regression, fuzzy expert system or 

artificial neural network (ANN) models through data-mining when physical or logical processes of 

the system are not clearly defined, but the real-life system has recorded historical data allowing 

direct input-to-output mapping (Kisi et al., 2017). Alternatively, given underlying processes of the 

system can be clearly, logically represented in a computer simulation platform (e.g., discrete event 

simulation or critical path network scheduling), operation simulation models can be established in 

Step 1 through mapping processes over time and space of the problem domain, (Halpin and Riggs, 

1992; Mulholland and Christian, 1999). 

Analyses in Step 2 demand the design of a large number of likely scenarios denoting variability 

and uncertainty on input variables (by design or by random sampling) and conducting experiments 

by assessing each scenario with the established model on the computer. Examples are what-if 

scenario analysis on an operations simulation model (Chan and Lu, 2008); or Monte Carlo 

simulation experiments by describing variability in input variables with statistical distributions 
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(Lu et al., 2001). In general, knowledge and knowhow in connection with the modeling method, 

the computer tool, coding, and statistical analysis are indispensable in implementing research. 

The law of error propagation expresses the relationship between random variable errors and the 

corresponding function (Koch, 1999). It is the fundamental formula for the evaluation of precision 

in adjustment theory (Amiri-Simkooei et al. 2016). Nonetheless, error propagation has been a less 

applied alternative in construction research to substitute for “what-if” scenario simulation 

experiments or Monte Carlo sampling techniques in Step 2. With a well-established mathematical 

theory as its foundation, its effective application is dependent on a sufficient system model 

resulting from in Step 1 and the ensuing analytical formulation of the error propagation based on 

the system model. The user only needs to plug numbers in the derived formula in order to quantify 

the risks in the system output (labor cost budget) due to variations in input variables (labor 

productivity). Obviously, error propagation potentially provides more efficient and practical 

decision support in a deterministic time window, which does not require the use of professional 

computer software, sensitivity analysis, or Monte Carlo sampling.  

Applying critical path method or discrete event simulation has been the mainstream methodology 

in construction system modeling. Monte Carlo simulation lends itself well to performing risk 

analysis on such models. One main advantage with Monte Carlo simulation lies in the ease with 

which to communicate its underlying random sampling process to domain subject experts who 

generally are not simulation experts. Hence, the Monte Carlo simulation has been the preferred 

technique for risk analysis in construction engineering and management.  In short, uncertainty 

quantification and analysis based on error propagation theory has been less researched in the 

construction domain and is yet to be fully integrated with research and practice in construction 
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engineering despite its proven usefulness and maturity in other sectors (Veregin 1995; Lichti et al. 

2005; Puatanachokchai & Mikhail, 2008; Wang et al. 2018). To the authors' best knowledge, there 

is not yet one published paper on applying error propagation theory for uncertainty quantification 

and risk analysis in construction planning.  

5.1.2 Research Overview 

The objectives of this research are to determine the effect of productivity uncertainties upon labor 

cost budgeting in a quantitatively reliable, statistically significant manner, while depicting the S-

curve, which is a visual representation of accumulated labor cost (LH) of a project against project 

time, as the S stripe which portrays an interval about the mean value with a certain confidence 

level.  In short, the present research develops an error propagation model to analyze the effect of 

labor productivity variability on labor cost budget. It proposes the concept of "S stripe" against 

the "S-curve" for representing the derived risks in the project budget. In particular, how to apply 

the proposed analytical methodology is illustrated with a steel fabrication project case. Monte 

Carlo simulation is applied to cross-validate the analytical method and to contrast simulation 

against the newly proposed method in the particular application context of steel fabrication labor 

cost budgeting. In drawing conclusions, the advantages of the newly proposed method are 

recapitulated from a practical application perspective, and the significance of the present research 

in terms of risk analysis for construction engineering and management in general, is also addressed. 

In the ensuing section, we first present a critical review of mainstream methods for risk analysis 

in construction. 
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5.2 Error Propagation Model for Risk Analysis in Labor Cost Budgeting  

5.2.1 Multi-dimensional labor-hours estimating 

In the context of industrial construction, direct labor costs are generally compiled from a 

comprehensive list of work items to be performed in (Thomas and Sakarcan, 1994). It is 

noteworthy that in the current practice, the list of work items represents the estimator’s 

interpretation of work performed by skilled trades. Total labor-hours required (𝐿𝐻𝑇) for handling 

and connecting materials into the final product is calculated as per Eq. 5.1. Next, the required 

total labor-hour (𝐿𝐻𝑇) is used to determine the time duration of a specific work item based on the 

number of workers involved in the work item, as per Eq. 5.2.  

𝐿𝐻𝑇 = ∑𝐿𝐻 = 𝑃𝐿𝐻 × 𝑊𝑟                        (5.1) 

Here, 

∑𝐿𝐻 = Total man hour required to complete any job. 

𝑃𝐿𝐻 = Labor productivity (LH/Unit); 

𝑊𝑟  = Total Units of work performed (quantity takeoff).  

Now, if we would like to find the total time required to complete the job, that would be, 

𝑇 =
𝐿𝐻𝑇

𝑛𝐿  
                  (5.2) 
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Here, 𝑇 = Time required to complete, 𝑊𝑟 units of the job (quantity takeoff) to be done by the 

number of workers of particular skilled trades involved in the work item, namely 𝑛𝐿.  

The takeoff on one particular work item is multi-dimensional (dependent on multiple parameters, 

each denoting a certain feature of the work item). The labor hours required is thus represented 

by a mathematical equation correlating multiple input features with labor hours. A general form 

of the equation is given in Eq. 5.3:  

𝐿𝐻𝑇 = ∑𝐿𝐻 = 𝑃𝐿𝐻 × 𝑊𝑟 

= 𝑓(𝑥1, 𝑥2, 𝑥2, …… , 𝑥𝑛) 

= 𝑓(𝑥𝑖); 𝑖 = 1, 2, 3,…… , 𝑛                     (5.3) 

Here, 𝑥𝑛 represents all the parameters in calculation of labor hours, each having associated 

productivity rate (𝑃𝐿𝐻) and work unit takeoff (𝑊𝑟).  

A data-driven model for establishing the labor cost budget (LH as shown in Eq. 5.1) essentially 

consolidates labor cost estimate and project schedule. In this research, the labor hours are 

calculated by a linear regression equation, as expressed in Eq. 5.4. The activity level uncertainties, 

which are identified to account for productivity variations, are represented in the coefficients (𝛽) 

in terms of standard deviation (𝜎) of average value (𝜇).  

𝐿𝐻𝑇 = 𝑓(𝑥𝑖) 

= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2, …… ,+𝛽𝑛𝑥𝑛 

(𝛽0, 𝛽1, 𝛽2  …… , 𝛽𝑛) = [(𝜇0, 𝜎0), (𝜇1, 𝜎1), (𝜇2, 𝜎2),…… , (𝜇𝑛, 𝜎𝑛)]             (5.4) 
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In Eq. 5.4, 𝑥𝑖 and 𝛽𝑖 are the independent parameters and coefficients, where, 𝜇𝑖 and 𝜎𝑖 are the 

mean and standard deviation of productivity rate 𝛽𝑖. Herein,  𝜇𝑖  and 𝜎𝑖   represent the average 

productivity performance and the variability of the coefficient  𝛽𝑖, respectively; while, 𝑥𝑖 denotes 

the associated quantity takeoff for a particular work item, which is constant.  

Mohsenijam and Lu (2019) described a practical case of developing the labor hour regression 

equation for estimating total LH for each job (e.g., handling, cutting a division, etc.) in the 

application context of structural steel fabrication. The eleven input variables identified in 

Mohsenijam and Lu (2019) as the most relevant for determining required LH given a particular 

division of structural steel are shown in Table 1.  

Table 5.1 List of variables to estimate LH for structural steel fabrication. 

Variable (𝒙𝒊) - 

Unit 

Structural Feature 

Type 

Unit 

𝑥1 Material Weight Weight (Kg) 

𝑥2 Material Steel Section Length (m) 

𝑥3 Material Plate Area (m2) 

𝑥4 Material Hollow Section Length (m) 

𝑥5 Material Cold Formed Length (m) 

𝑥6 Material Bars Length (m) 
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Variable (𝒙𝒊) - 

Unit 

Structural Feature 

Type 

Unit 

𝑥7 Material Anchors Quantity (number) 

𝑥8 Connection: Weld Length (m) 

𝑥9 Connection: Bolted Quantity (number) 

𝑥10 Material Pipe Length (m) 

𝑥11 Connection: Stud Quantity (number) 

 

5.2.2 Preparing Project Budget  

Total LH required to complete any activity 𝑗 depends on productivity rate and quantity takeoff 

encoded in Eq. 5.5, 

𝐿𝐻𝑇,𝑗  =  𝑓(𝑥𝑖) =  𝑓𝑗 = 𝛽0,𝑗 + 𝛽1,𝑗𝑥1 + 𝛽2,𝑗𝑥2, …… ,+𝛽𝑖,𝑗𝑥𝑖;    𝑖 = 1, 2 , 3, …  , 𝑛                   (5.5) 

Here, 𝑥𝑖 and 𝛽𝑖 are the quantity takeoff parameters and productivity coefficients, respectively. 

Note 𝑥𝑖 is constant, while 𝛽𝑖 is a random variable following normal distributions with mean and 

standard deviation known.  

As per Eq. 2, total mean time to complete that activity should be,  
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𝑇𝑗 =
𝐿𝐻𝑇,𝑗

𝑛𝐿𝑒𝑎𝑑,𝑗 
 

=
1

𝑛𝐿𝑒𝑎𝑑,𝑗
× (𝛽0,𝑗 + 𝛽1,𝑗𝑥1 + 𝛽2,𝑗𝑥2, …… ,+𝛽𝑖,𝑗𝑥𝑗)                         (5.6) 

Here,𝑇𝑗, is the time duration for the activity 𝑗;  

Now, with activity duration determined using Eq. 5.6, the total project duration is to add up 

activity time duration along the critical path. The generic equation to find the total project 

duration is as Eq. 5.7, where the number of critical activities (on the critical path) is 𝑀, 

𝑇𝑇 = ∑𝑇𝑗

𝑀

𝑗=0

                          (5.7) 

The cumulative LH required at a particular time point 𝑡 of the project is equal to the total LH of 

all activities completed up to time 𝑡. If the number of activities completed or partially completed 

up to time 𝑡 is 𝑁, total LH required for the project until 𝑡 is determined as Eq. 5.8: 

 𝐿𝐻 𝑇𝑜𝑡𝑎𝑙,   𝑡 = ∑(𝐿𝐻𝑇,𝑗 ×
𝑡𝑗,𝑘

𝑇𝑗
)

𝑁,𝑡

𝑗,𝑘

;         {
(𝑡𝑗,𝑘 = 𝑡 − 𝑡𝑠𝑡,𝑗)  𝑤ℎ𝑒𝑛, 𝑡𝑗,𝑖 < 𝑇𝑗

( 𝑡𝑗,𝑘 = 𝑇𝑗)            𝑤ℎ𝑒𝑛, 𝑡𝑗,𝑖 ≥ 𝑇𝑗 
 

=   𝑓𝑡(𝑥𝑖) =   𝑓𝑡                           (5.8) 

Here, 

 𝑡𝑗,𝑘 = Time elapsed for the activity 𝑗;  

𝑡 = Time elapsed for the entire project, 
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𝑡𝑠𝑡,𝑗 = Start time of activity 𝑗 as per project schedule. 

5.2.3 S Curve Plotting 

The guide to the Project Management Body of Knowledge (PMBOK) defines “an S-Curve is a 

sigmoid function, that is a mathematical process or function that results in an S-shaped curve also 

called a Sigmoid Curve" (PMI, 2017). In general, the slope of the curve is flatter at the beginning 

and near the end, but is steeper in the middle section. In the industrial construction practice, the 

highly complex, nonlinear problem of deriving S curve for project planning and control is simplified 

to tally the cumulative LH up to a data date in the project schedule using Eq. 8. The S curve can 

be generated by plotting  𝐿𝐻 𝑇𝑜𝑡𝑎𝑙,   𝑡 values at different time points 𝑡 along with the total project 

duration. In the present research, the standard deviation of the cumulative LH at a particular 

time point due to known standard deviations in labor productivity at each work package is 

analytically derived, which seamlessly integrates labor cost estimating, project planning, 

scheduling, and budgeting, as shown in Fig. 5.1.  
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Figure 5.1: Proposed solution framework for construction project planning. 
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To establish a confidence interval around the average value, an error propagation model is critical 

to determine the standard deviation of the cumulative LH at a particular time point of the project. 

Analogous to plotting the S curve, the lower bound and upper bound of the interval at certain 

control points of the time line can be articulated to form the S stripe, resulting in visualization of 

the risk of labor cost budget due to variability inherent in labor productivity. In the following 

section, the analytical model development based on error propagation theory is illustrated with 

an application case. 

5.3 Proposed Framework for Generating “S stripe” 

5.3.1 Error Propagation Theory  

The law of error propagation expresses the relationship between random variable errors and the 

corresponding function (Koch, 1999); providing the fundamental formula for evaluation of 

precision in adjustment theory (Amiri-Simkooei et al. 2016). Given a linear function, the variance 

or covariance of the error propagation model can be obtained analytically. A nonlinear function 

requires the linearization by Taylor series expansion prior to nonlinear error propagation; while it 

is theoretically possible to use Taylor series expansion to any existing order (Xue et al., 2015). 

The error of any system output can be obtained if the true nature of the error is known based on 

functional substitution with truncated Taylor Series (considering up to first order derivative).  

In this research, we apply the error propagation theory to quantify the random error present in 

labor cost budgeting equations due to variations in labor productivity. Note variations in labor 

productivity are assumed to be random errors and denoted by the standard deviation of 

productivity rate for each work item in a work package. Applying first order derivatives to 
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approximate the propagation of random errors makes the solution algorithm simple and practical. 

The methodology presented herein is effective for characterizing random errors in the derived 

labor cost budget at each stage of the project and upon the final project completion. Besides, 

Monte Carlo (MC) simulation method is applied to the same case study for cross-validation and 

critical comparison against the new analytical method.   

For any function, 𝑦 =  𝑓(𝑥), measurement of the systematic error can be obtained by comparing 

the difference between 𝑦 and its Taylor Series first expanded term, 𝑦0, as expressed by the 

following equation (Eq. 5.9),  

𝑦 − 𝑦0 =
𝜕𝑦

𝜕𝑥
(𝑥 − 𝑥0)                               (5.9) 

Now, if 𝑦 has 𝑚 number of observations and each of them is dependent on 𝑛 number of 

independent variables for 𝑥 then the Eq. 5.9 becomes, 

[

𝑑𝑦1

𝑑𝑦2

⋮
𝑑𝑦𝑚

] =

[
 
 
 
 
 
 
 
𝜕𝑦1

𝜕𝑥1

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

𝜕𝑥1

𝜕𝑦2

𝜕𝑥2

⋯

𝜕𝑦1

𝜕𝑥𝑛

𝜕𝑦2

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

𝜕𝑦𝑚

𝜕𝑥2
⋯

𝜕𝑦𝑚

𝜕𝑥𝑛 ]
 
 
 
 
 
 
 

[

𝑑𝑥1

𝑑𝑥2

⋮
𝑑𝑥𝑛

] 

or, 

𝑑𝑦 = 𝐽𝑥𝑦𝑑𝑥                  (5.10) 

Eq. 5.10 is the general form of system error propagation where  𝐽𝑥𝑦 is called the Jacobian (Jacobian 

matrix) of the equation, and values of any particular measurement at an independent variable 

follow Gaussian distributions (e.g., Normal) due to the presence of the randomness of error 
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(represented as standard deviation or variance). Thus, the propagation of random error in the 

system follows the law of propagation of variance and covariance (POV), which can be expressed 

by the following equation 11. Note, detailed derivation of Eq. 5.11 from Taylor Series expansion 

can be found in Appendix A. 

       𝐶𝑦 = 𝐽𝑥𝑦 𝐶𝑥 𝐽𝑦𝑥
𝑇                  (5.11) 

Here, 𝐶𝑦 is the covariance matrix of random output y, and 𝐶𝑥  is the covariance matrix of random 

input 𝑥. 

Now, to examine the total error in labor hours propagated through different nodes of the project 

network up to time 𝑡, Eq. 5.11 is applied in connection with Eq. 5.8. 

Therefore, Jacobian (𝐽𝑇𝐴
) of,  𝐿𝐻 𝑇𝑜𝑡𝑎𝑙,   𝑡, ( 𝑜𝑟 𝑓𝑡)  should be,  

𝐽𝑡 = [
𝜕𝑓𝑡

𝜕𝛽0,1

𝜕𝑓𝑡
𝜕𝛽1,1

𝜕𝑓𝑡
𝜕𝛽2,1

…
𝜕𝑓𝑡
𝜕𝛽𝑖,𝑗

]                   (5.12) 

And considering all the coefficients are independent (not correlated to each other), the covariance 

matrix of the Eq. 5.8 is expanded,  

𝐶𝑡 = 

[
 
 
 
 
 
𝑣𝑎𝑟(𝛽0,1)

𝑣𝑎𝑟(𝛽1,1)

𝑣𝑎𝑟(𝛽2,1)

⋱
𝑣𝑎𝑟(𝛽𝑖,𝑗)]

 
 
 
 
 

               (5.13) 

Now the total variance (𝜎𝑡
2) adding up all relevant activities completed up to time point 𝑡 can be 

computed as follows (Eq. 5.14) from Eq. 5.11, 
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𝜎𝑡
2 =

[
𝜕𝑓𝑡

𝜕𝛽0,1

𝜕𝑓𝑡

𝜕𝛽1,1

𝜕𝑓𝑡

𝜕𝛽2,1

…
𝜕𝑓𝑡

𝜕𝛽𝑖,𝑗
]

[
 
 
 
 
 
𝑣𝑎𝑟(𝛽0,1)

𝑣𝑎𝑟(𝛽1,1)

𝑣𝑎𝑟(𝛽2,1)

⋱
𝑣𝑎𝑟(𝛽𝑖,𝑗)]

 
 
 
 
 

[
 
 
 
 
 
 
 

𝜕𝑓𝑡

𝜕𝛽0,1

𝜕𝑓𝑡

𝜕𝛽1,1

𝜕𝑓𝑡

𝜕𝛽2,1

⋮
𝜕𝑓𝑡

𝜕𝛽𝑖,𝑗 ]
 
 
 
 
 
 
 

         (5.14)  

5.3.2 Generating “S stripe” based on CPM 

The “S stripe” generation methodology is established on top of the classical CPM. The first step 

of the process is to identify all the paths possible to complete the project. The duration of each 

activity can then be calculated using the mean of productivity rate fixed in activity-level 

estimating. CPM is accordingly applied to identify the critical path and determine the mean of 

total project duration. The error propagation model is applied to characterize the variability of 

the required labor hours at a particular time point in terms of standard deviation. The mean of 

the cumulative labor hours required against time elapsed is plotted, resulting in the S-curve first. 

Then, by setting a certain level of confidence, the S stripe is plotted.   

Steps to compute this propagated uncertainty through the project network are summed up as 

follows: 

Step 1: Develop project WBS and project AON network diagram representing all logical 

constraints. 

Step 2: Define activity duration equation (Eq. 5.6) for all activities in AON. 
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Step 3: Apply CPM to schedule activities and identify critical path based on mean activity 

duration calculated from Eq. 5.7.  

Step 4: Apply error propagation formula (Eq. 5.14) to quantify the propagated uncertainty (in 

the form of standard deviation of cumulative LH at particular time points at project level). 

Step 5: Generate S Curve by drawing the “Time duration vs mean cumulative LH” graph for the 

project, plus S stripe by articulating lower and higher bounds for a given confidence interval based 

on standard deviations of cumulative LH at control points as derived from Step 4.   

 

5.4 Example Case  

To demonstrate the application of the proposed methodology, a steel bridge girder fabrication 

project is considered. In a typical bridge girder fabrication project, steel plates of different 

dimensions and grades are transformed into “I” section girders in a fabrication shop. The 

fabrication operation mainly consists of the following main work packages (WPs): (A1) preparing 

plates, (A2) flanges preparation, (A3) web preparation, (A4) stiffener preparation, (A5) 

assembling girder (by fitting and welding flanges to web), (A6) stiffener fitting and welding, (A7) 

final finishing work on the girder (e.g., studding, sandblasting, finishing). The length and width 

of the girder being fabricated are 20m and 0.6m, respectively. Work package definition for this 

steel girder preparation project is shown in Table 5.2.  

Table 5.2 Work breakdown structure of the example project. 
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ID Work 

Packages 

Predecesso

rs 

Direct Labor 

Cost (LH) 

Productivity 

variables (µ, σ ) 

Number of 

Workers 

(Leading 

Trades) 𝒏𝑳𝒆𝒂𝒅 

A1 Preparing 

plates 

- 𝛽1,𝐴1 𝛽1,𝐴1 = (32, 2)  2 

A2 Flanges 

preparation 

A1 𝛽1,𝐴2𝑥𝑔 𝛽1,𝐴2 = (4.8, 0.25)  2 

A3 Web 

preparation 

A1 𝛽1,𝐴3𝑥𝑔 𝛽1,𝐴3 = (6, 0.5)  2 

A4 Stiffener 

preparation 

A1 𝛽1,𝐴4𝑥𝑔 + 𝛽2,𝐴4𝑦𝑔 𝛽1,𝐴4 = (4.5, 0.2)   

𝛽2,𝐴4 = (6, 0.25)   

2 

A5 Assembling 

girder 

A2, A3 𝛽1,𝐴5𝑥𝑔 𝛽1,𝐴5 = (8 , 0.15)   4 

A6 Stiffener fitting 

and welding 

A4, A5 𝛽1,𝐴6𝑥𝑔 + 𝛽1,𝐴6𝑦𝑔 𝛽1,𝐴6 = (9.6, 0.2) 

𝛽1,𝐴6 = (16, 0.4)   

4 
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A7 Final finishing A6 𝛽1,𝐴7𝑥𝑔 𝛽1,𝐴7 = (8, 0.5) 2 

• Here, 𝑥𝑔= Length of the girder, and 𝑦𝑔= Width of the girder. 

• For this example, 𝑥𝑔  =  20 𝑚 and 𝑦𝑔  =  0.6 m 

 

5.4.1 Step 1 

The logical interdependencies among the work packages as given in the Table 2 “Predecessors” are 

represented in the AON diagram in Fig. 5.2. 

A1

A2

A3

A4

A5 A6 A7

 

Figure 5.2: AON network diagram for the example girder preparation project. 

5.4.2 Step 2  

To prepare for CPM analysis, activity duration equation (Eq. 5.6) for all activities is given in 

Table 5.3. 
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Table 5.3 Activity duration determination for all work packages in case project. 

Activity ID Time equation, 𝑻𝒋 M ean Duration (hr) 

A1 𝛽1,𝐴1

𝑛𝐴1 
 

16 

A2 𝛽1,𝐴2𝑥𝑔

𝑛𝐴1 
 

48 

A3 𝛽1,𝐴3𝑥𝑔

𝑛𝐴1 
 

60 

A4 (𝛽1,𝐴4𝑥𝑔 + 𝛽2,𝐴4𝑦𝑔)

𝑛𝐴1 
 

46.8 

A5 𝛽1,𝐴5𝑥𝑔 40 

A6 (𝛽1,𝐴6𝑥𝑔 + 𝛽1,𝐴6𝑦𝑔)

𝑛𝐴1 
 

50.4 

A7 𝛽1,𝐴7𝑥𝑔

𝑛𝐴1 
 

80 
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5.4.3 Step 3  

CPM is applied to identify all the possible paths. Table 5.3 summarizes all the paths and related 

path lengths calculation. Duration of each path (path length) is calculated based on mean activity 

duration as given in Table 5.3 and summarized in Table 5.4.  

Table 5.4 Duration of each path (path length) is calculated based on mean activity duration. 

ID Path Total Duration Critical 

Path? 

P1 A1 – A2 – A5 – A6 – A7   16+48+40+50.4+80 = 234.4 No 

P2 A1 – A3 – A5 – A6 – A7   16+60+40+50.4+80 = 246.4 Yes 

P3 A1 – A4 – A6 – A7   16+46.8+50.4+80 = 193.2 No 

 

5.4.4 Step 4  

A bar chart project schedule resulting from CPM analysis is presented in Fig. 5.3. 
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Figure 5.3: Project schedule for the example project case. 

Eq. 5.14 is applied to quantify the propagated LH variance at different time points in project 

duration.  For example, as we can see from Fig. 5.3, Activities A1, A2, A3, and A4 are 100% 

completed after 76 hr of the total project. Therefore, total LH budgeted for the project up to 76 

hr is the sum of all LH required to complete A1, A2, A3, and A4, as determined by Eq. 5.8: 

 𝐿𝐻 𝑇𝑜𝑡𝑎𝑙,   𝑡 = ∑(𝐿𝐻𝑇,𝑗 ×
𝑡𝑗,𝑘

𝑇𝑗
)

𝑁,𝑡

𝑗,𝑘

 

= ∑ (𝐿𝐻𝑇,𝑗 ×
𝑡𝑗,𝑘

𝑇𝑗
)

4,76

𝑗,𝑘

 

= (𝐿𝐻𝑇,𝐴1 ×
𝑡𝐴1,76

𝑇𝐴1
) + (𝐿𝐻𝑇,𝐴1 ×

𝑡𝐴1,76

𝑇𝐴1
) + (𝐿𝐻𝑇,𝐴1 ×

𝑡𝐴1,76

𝑇𝐴1
) + (𝐿𝐻𝑇,𝐴1 ×

𝑡𝐴1,76

𝑇𝐴1
) 

= (𝛽1,𝐴1 × 1) + (𝛽1,𝐴2𝑥𝑔 × 1) + (𝛽1,𝐴3𝑥𝑔 × 1) + ((𝛽1,𝐴4𝑥𝑔 + 𝛽2,𝐴4𝑦𝑔) × 1) =  𝑓76           (5.16) 
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= 32 + (4.8 × 20) + (6 × 20) + (4.5 × 20 + 6 × 0.6) 

= 32 + 96 + 120 + 93.6 = 341.6 LH 

So, the mean of the total LH required to complete all jobs until 76 hr of the project is 341.6 LH.  

Therefore, Jacobian (𝐽76) of,  𝐿𝐻 𝑇𝑜𝑡𝑎𝑙,   76, ( 𝑜𝑟𝑓76)  should be (as per Eq. 5.12),  

𝐽76 = [
𝜕𝑓𝑡

𝜕𝛽1,𝐴1

𝜕𝑓𝑡
𝜕𝛽1,𝐴2

𝜕𝑓𝑡
𝜕𝛽1,𝐴3

𝜕𝑓𝑡
𝜕𝛽1,𝐴4

𝜕𝑓𝑡
𝜕𝛽2,𝐴4

] = [1 20 20 20 0.6] 

And, the covariance matrix of 𝑓76 would be (as per Eq. 5.13),  

 

𝐶76 = 

[
 
 
 
 
 
 
𝑣𝑎𝑟(𝛽1,𝐴1)

𝑣𝑎𝑟(𝛽1,𝐴2)

𝑣𝑎𝑟(𝛽1,𝐴3)

𝑣𝑎𝑟(𝛽1,𝐴4)

𝑣𝑎𝑟(𝛽2,𝐴4)]
 
 
 
 
 
 

 

=

[
 
 
 
 
22

0.252

0.52

0.22

0.252]
 
 
 
 

 

 

Now variance of the cumulative LH can be found using Eq. 5.14,  
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𝜎76
2 = [1 20 20 20 0.6]

[
 
 
 
 
22

0.252

0.52

0.22

0.252]
 
 
 
 

[
 
 
 
 

1
20
20
20
0.6]

 
 
 
 

= 145.02 

So, the variance of total LH required at time point 76 hr of the project is 145.02. Variances for 

LH required at different times along the project duration are also determined in a similar fashion, 

which is summarized in Table 5.5. 

Table 5.5 Variance, Standard Deviation and 95% Confidence Interval Derived for LH required at 

different times along the project duration. 

Time 

point 

(hr) 

Completed 

Activities 

M ean - 

Cumulative 

LH 

Variance - 

LH  

(𝐽𝑇𝑃2
 𝐶𝑇𝑃2

 𝐽𝑇𝑃2

𝑇 ) 

STD - 

LH 

95% 

Confidence 

Interval of 

M ean 

16 A1 32 4 2.00 [28.1, 35.9] 

76 A1, A2, A3, A4 341.6 145.02 12.04 [318.0, 365.2] 

116 A1, A2, A3, A4, 

A5 

485.6 154.02 12.41 [461.3, 509.9] 
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166.4 A1, A2, A3, A4, 

A5, A6 

687.2 170.08 13.04 [661.6, 712.8] 

246.4 A1, A2, A3, A4, 

A5, A6, A7 

847.2 270.08 16.43 [815.0, 879.4] 

 

5.4.5 Step 5  

In Fig. 5.4, the S-curve (“Time duration vs Mean Cumulative LH” graph) is plotted; then, the 

lower and higher bounds of 95% confidence interval derived for LH required at different times are 

articulated to generate the S stripe as per Step 4.   
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Figure 5.4: S-Curve and S stripe plotted for the cumulative LH over project duration. 

5.5 Research Validation  

To validate the application of the proposed methodology, the same project data, given in Table 

5.1, was analyzed by applying Monte Carlo simulation, and the total project LH with time elapsed 

for the project was derived. The total LH required to complete the entire project along with 95 % 

confidence values (both upper and lower bound) are plotted for different number simulation runs 

in Fig. 5.5. Until 500 simulation runs, the cumulative LH required for the project fluctuates. It is 
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observed from Fig. 5.5 the mean and 95% confidence interval for the total LH budget on the case 

study project stabilize after the simulation run increases beyond 500.  

 

Figure 5.5: Values for total LH required for different number of simulation run. 

Based on 1000 simulation runs, the average and variance for project LH budget are compared 

with the results from the error propagation model being proposed. When both sets of the results 

from two different methods are plotted side by side (Fig 5.6) no significant difference is observable 

visually up to 100 hours of the project duration. From 100 hours to 250 hours, the simulated labor 
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hours is marginally higher than obtained from the proposed analytical method. The correlation 

coefficient between the two sets of results is 0.9999 (Fig. 5.7). Results from two methods at selected 

control points of time are also contrasted in the Table 5.6.  

 

Figure 5.6: Average and variance for project LH budget resulting from 1000 simulation runs 

against results obtained by applying the error propagation model being proposed. 
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Figure 5.7: Mean of cumulating LH comparison: results obtained by applying proposed 

methodology vs simulated results. 

Table 5.6 Result comparison between error propagation and simulation application. 

Time point 

(hr) 

Error Propagation 

Algorithm 

Simulation Results (1000 

runs) 

M ean - 

Cumulative 

LH 

STD - LH   M ean - 

Cumulative 

LH 

STD - LH 

R² = 0.9999
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16 32 2.00 32.2 2.5 

76 341.6 12.04 342.1 15.3 

116 485.6 12.41 501.9 16.2 

166.4 687.2 13.04 703.6 16.7 

246.4 847.2 16.43 863.5 20.8 

 

5.6 Further observation 

The case study has revealed two limitations of the simulation method: (1) setting the simulation 

model on a computing platform for an AON network diagram given project networks of practical 

size and complexity is not straightforward and requires programming skills; (2) simulation 

experiment design is time consuming; in particular, determining the sufficient number of 

simulation runs to obtain reliable sampling results entails trial and error specific to a case problem 

(note a minimum of 500 simulation runs is required  in the above case study).  

In contrast, the proposed analytical method will circumvent those barriers to obtain solutions and 

derive S stripe. The user only needs to plug the number in the derived formula in order to quantify 

the risks in the system output (such as labor cost budget) due to variations in input variables 

(such as labor productivity). For skilled trades working on highly specialized tasks (such as 
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welding, drilling), experienced tradespersons would have reliable know-how on the mean and 

variance of labor-hours required to complete a definitive scope of work. Obviously, the error 

propagation method potentially provides more efficient and practical decision support in a 

deterministic time window, not requiring the use of professional computer software or trial and 

error. 

5.7 Summary and Conclusions  

This research looks into current practices of planning, estimating, and budgeting prefabrication 

projects in industrial construction. Concurrently, it has identified the room for improvement in 

regards to the development of labor cost budget subject to variations inherent in labor productivity 

in the prefabrication processes involving skilled trades (such as welders, boilermakers, ironworkers, 

pipefitters). In particular, the paper proposes the analytical model based on error propagation 

theory for propagating uncertainties in labor productivity on the work package level to the derived 

labor cost budget on the project budget level. The resulting standard deviation of the cumulative 

labor hours at a particular time point of the project is further used to establish a confidence 

interval around the average value. Thus, analogous to plotting the S curve, the lower bound and 

upper bound of the interval at control points along the project duration can be articulated to form 

the S stripe, which visually portrays the risk in labor cost budgeting due to variations inherent in 

labor productivity. The proposed methodology has been verified by applying Monte Carlo 

simulation to the same project data in the case study.  

For skilled trades working on highly specialized tasks (such as welding, drilling), experienced 

tradespersons would have reliable know-how on the mean and variance of labor-hours required to 
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complete a definitive scope of work. In practical application, the user only needs to plug the 

number in the derived formula in order to quantify the risks in the system output (such as labor 

cost budget) due to variations in input variables (such as labor productivity). Thus, the error 

propagation method potentially provides more efficient and practical decision support in a 

deterministic time window, not requiring time-consuming simulation experiments or using special 

computer software. 
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Chapter 6 

Conclusion 

 

6.1 Research Summary  

This concluding chapter serves as a comprehensive summary of the findings and achievements of 

the research presented in this thesis. The key points discussed throughout the thesis are carefully 

highlighted, emphasizing the significant contributions made to both academic knowledge and 

practical applications. Additionally, the limitations that require further investigation are outlined, 

thereby opening up promising avenues for future research. 

The literature review suggests that previous research on productivity modeling mainly focused on 

improving prediction accuracy without adequately considering the risks of relying on a single 

prediction value or the precision of a model's prediction. Validation and input selection were often 

based on comparing the model's predicted output with the target output (actual data) without 

considering the variance of the predicted output or the impact of individual input parameters on 

variance. This research addresses the identified limitations of labor productivity prediction models 

and provides analytical solutions for variance analysis of regression-based productivity prediction 

models for prefabrication construction. Particularly, this research combines error propagation 

theory with MLR modeling to determine the variance in estimating labor productivity and 

budgeting labor cost for prefabricated products. The attempt is made to create a metric based on 
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the resulting variance analysis (the ratio of standard deviation to mean) to objectively evaluate 

the precision of the MLR model. Establishing the MLR-type model is essential to examine how 

variability in productivity information at the work package level affects the entire project level 

through the project schedule and how uncertainty in project-level labor hours accumulates over 

the course of the project duration. Understanding the limitations of the MLR model in representing 

the nonlinear input-output relationship, this research further investigates a nonlinear regression 

model, namely the model tree algorithm. Coupling the generalized variance analysis model 

proposed for the MLR model, this research enhances the established model tree algorithm and 

enables it to make point value prediction and associated variance. The proposed enhanced model 

tree is adept in generalizing complex nonlinear input-output relationships by learning from data 

and providing interpretable rules for inferring variance estimates of the prediction.  

Chapter 2 of this thesis critically reviews established methods for variance analysis on MLR models 

and proposes an analytical approach to quantify the variance of the predicted output. The 

proposed method integrates error propagation theory with MLR modeling, allowing for the 

assessment of precision in cost-estimating applications. The research presented in Chapter 2 

emphasizes the significance of precision in MLR modeling and the impact of individual input 

parameters on the variance of the prediction. It advances regression modeling methods in general 

with respect to MLR variance analysis. By formalizing a cost-estimating model based on the 

product fabrication complexity factors using the proposed variance analysis technique for the MLR 

model, the study accounts for the variability of labor hour estimates for different product types 

due to their complex features. The complexity factors are represented with a mean and standard 

deviation, reflecting average benchmarks and variability in labor hour prediction. MLR variance 
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analysis technique is instrumental in quantifying the overall labor hour variability for different 

work packages arising from the product variability of product features.  

The proposed methodology eliminates the need for Monte Carlo simulation techniques in practical 

applications, offering a more efficient approach to gauge the precision of the MLR model. The 

application of the MLR model with variance analysis technique is illustrated with an application 

case in estimating labor costs for precast solid wall panels. In addition to that, the research also 

demonstrates practical applicability through a process piping spool fabrication case, validating the 

proposed method in estimating labor hours for various welding work items.  

Overall, this research advances the variance estimation technique of regression-based prediction 

model namely MLR in construction productivity modeling. It opens up promising directions for 

further computing research in civil engineering, encouraging the application of more sophisticated 

regression models and higher-order Taylor expansions in the future. However, the research 

acknowledges that MLR may not be sufficient for highly complicated cost estimating problems 

characterized with nonlinear relationships between input and output variables. In such cases, more 

sophisticated data mining techniques or nonlinear estimating models are advocated to complement 

the MLR model. 

In the realm of practical productivity modeling for fabrications, where product design features are 

correlated with labor productivity, it is commonly observed that nonlinear input-output 

relationships are prevalent. This characteristic could hamper the widespread adoption of the 

Multiple Linear Regression (MLR) model in productivity modeling endeavors. This challenge has 

been tackled in Chapter 3. Research presented in Chapter 3 focuses on enhancing the model tree 
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algorithm, an a well-established commonly applied AI technique, to address the variance in 

predicted productivity arising from the random sampling of training data. With the increasing 

availability of large datasets containing design features and labor cost data in the construction 

industry, predictive modeling using regressions or AI has become more feasible. However, the use 

of different datasets sampled by various modelers or at different time periods may lead to diverse 

model parameters and, consequently, a variance in predicted productivity. This raises the need to 

determine the precision of productivity derived by of a prediction model in addition to its accuracy. 

The study decomposes the productivity problem into branches using the model tree's nonlinear 

classifier algorithm. Using the method outlined in Chapter 2, the model tree is enhanced to predict 

the point-value output and its associated variance in each branch. A case study on structural steel 

fabrication productivity with collected data from the industry demonstrates the application of the 

proposed methodology, with the enhanced model tree outperforming MLR in prediction accuracy 

and being preferred over ANN due to its variance prediction and model explainability. The 

methodology presented in the chapter is data-driven and analytical, which derives the mean and 

variance of each coefficient associated with productivity components primarily due to a random 

sampling of training data. In cases where limited data is available, alternative means, such as 

expert estimation based on the knowledge of experienced practitioners, can be employed. In short, 

the enhanced model tree shows high potential as an explainable AI or nonlinear regression 

technique with broader applicability in various domains beyond construction productivity.  

Chapter 3 concludes by highlighting the fact that the enhanced model tree algorithm has a broader 

application potential in tackling many civil engineering problems. Chapter 4 of this thesis acts on 

this notion and presents a case study to develop a strength prediction model for high-performance 
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concrete. It is well-established that the relationships among input variables that impact the 

concrete strength are highly nonlinear. The enhanced model tree algorithm is found to be sufficient 

in terms of (1) predicting accuracy (the Pearson’s coefficient of correlation of the predicted and 

target concrete compressive strength is 0.88), (2) explaining decision logic with the decision tree 

structure, and (3) producing variance estimate of the prediction. In summary, as data availability 

and complexity continue to grow in civil engineering applications, the proposed methodology offers 

a practical and powerful solution for accurate and transparent predictions, and further advances 

the field of engineering applications using machine learning techniques, and explainable artificial 

intelligence (XAI).  

Chapter 5 of this thesis delves into labor cost budgeting in the context of industrial construction, 

wherein large-scale fabrication operations are employed to produce modules and structural 

components offsite, facilitating rapid installation in the field. An analytical methodology is 

developed to assess the impact of productivity variability at the work package level on labor cost 

budgeting for the total fabrication project. The proposed error propagation model calculates the 

variance of cumulative labor hours at specific time points during the project, establishing a 

confidence interval around the average value. Termed the "S stripe," this visual tool depicts the 

risk associated with labor cost budgeting due to labor productivity variabilities. Such a tool is 

instrumental in many applications, from project bidding to project control. The methodology is 

applied and rigorously verified in a case study of a steel fabrication project, demonstrating a close 

correlation with results obtained from MC simulation. The data-driven approach derived from the 

earlier chapters is applicable to determine the variability in project-level labor hour estimate due 

to productivity variability on each work package. However, when data evidence is limited, skilled 
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trades engaged in highly specialized tasks, such as welding and drilling, can be relied upon to 

confidently provide reliable information on the mean and variance of labor hours required to 

complete specific scopes of work. This provides versatility in the research application and 

strengthens its impact and potential for broader implementation in the construction industry.  

6.2 Research Contributions 

6.2.1 Academic Contributions  

The present study examines the current practices of planning, estimating, and budgeting for 

prefabrication projects in the context of industrial construction. As a result, the room for 

improvement is identified in regard to the development of labor cost budget subject to variations 

inherent in labor productivity in the prefabrication processes involving skilled trades (such as 

welders, boilermakers, ironworkers, pipefitters). This research study makes following academic 

contributions to the existing knowledge as follows.  

Academic contribution 1: This research proposes a variance analysis technique for multiple 

linear regression (MLR)-based prediction models derived analytically based on the error 

propagation theory in terms of: 

• Developing a systematic approach to represent the variability of the model's input 

parameters through statistical measures like mean and variance. 

• Formalizing a method to calculate the variance of the predicted output (e.g., productivity 

of a particular product) from an MLR model by considering the known variances of its 

parameters. 
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• Defining a metric to evaluate the sufficiency of the MLR model. 

Academic contribution 2: In this research, an analytical method is proposed to quantify the 

influence of the variance of each input parameter upon the variance of the predicted output where 

input variables are related to predicted output using MLR, 

• To identify the critical input parameters that contribute to the final output variance to a 

large degree. 

Academic contribution 3: A labor productivity model that connects product engineering design 

features as inputs to the targeted productivity as the output has been proposed, allowing for: 

• Determining the contribution ratio of product features to the final productivity definition. 

• Estimating the variance of the productivity prediction. 

• Identifying the crucial input product features based on their respective contributions to 

the total output variance. 

Academic contribution 4: This research enhances the established AI technique called Model 

Tree to quantity the variance for the predicted output due to random sampling of training data 

through: 

• Integrating the proposed variance analysis technique for MLR equations with the 

commonly applied model tree algorithm (M5P Tree algorithm). 

• Proposing the use of Coefficient of variation as a metric to evaluate the application fitness 

of the model tree model.  
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Academic contribution 5: Realizing the need of accounting for the nonlinear relationships 

present between the product design features and labor productivity, this research proposes a 

framework for productivity modeling using the enhanced model tree method through, 

• Applying the non-linear classifier algorithm from established model tree algorithm to 

decompose nonlinear productivity problem into branches (data classes) in order to make 

it suitable for MLR applications in corelating input features with output.  

• Using the enhanced model tree method in such a way that the MLR equation on each tree 

branch can predict the point-value output as well as the associated variance. 

• Taking full use of the Coefficient of variation of enhanced model tree algorithm to test the 

applicability of the prepared model.  

Academic contribution 6: This research introduced a methodology to address the variance in 

the total labor hour budget by consolidating the variance estimates of labor productivity at the 

work package level through: 

• Determining the lower and upper boundaries for cumulative labor hours budgeted at 

various control points throughout the project lifecycle, aiming for a specific confidence 

level. 

• Introducing a novel project control tool named the S stripe, which visually represents the 

estimated variance of the total labor hours estimate at specific time points of the project. 

The S stripe establishes a confidence interval around the average value, akin to plotting 

the S curve. It articulates the lower and upper bounds of the interval at control points 
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along the project duration, effectively illustrating the risk in labor cost budgeting due to 

inherent variations in labor productivity. 

6.2.2 Industry Contributions 

This research proposed methods to prepare productivity models for fabrication projects to estimate 

productivity for fabrication products with associated variance. In practical application, the user 

only needs to plug the number in the derived formula in order to quantify the variance associated 

with the labor cost budget due to variations in input variables (product feature attributes). Thus, 

the error propagation-based regression methods provide more efficient and practical decision 

support in a deterministic time window, not requiring time-consuming simulation experiments or 

using special computer software. 

The proposed enhanced model tree represents a significant addition to the data mining and AI 

toolbox in construction, regression, and AI-based prediction modeling domains. Traditionally, 

research efforts have been heavily geared towards augmenting prediction accuracy, often 

neglecting the equally crucial aspect of model precision. With the introduction of the enhanced 

model tree, industry practitioners can now benefit from a powerful tool that enhances prediction 

accuracy and addresses the variance in predicted output. Such an analytical capability enables a 

more comprehensive understanding of the model's precision and leads to more informed and 

effective decision-making processes, which are vital for gaining trust from practitioners in data-

driven predictive models. 

It is important to highlight that the enhanced model tree algorithms, as presented in this study, 

rely entirely on data-driven and analytical methods, given the availability of sufficient productivity 
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data. This approach allows for the derivation of the mean and variance of each coefficient 

associated with the productivity components by employing random sampling of the training data. 

However, when limited data are available, and random sampling is not feasible, domain experts 

with extensive experience in the work process can provide reliable inputs of the mean and variance 

on each productivity component, such as the most likely value, minimum, and maximum. In such 

situations, the mean is approximated as a weighted average of the three points, while the standard 

deviation is estimated based on the range. For instance, one common approach is assuming 

normality and calculating one-sixth of the range to obtain the standard deviation. By 

incorporating data-driven methods, expert know-how, and experiences, the proposed methodology 

affords a flexible and practical approach to handling various data availability scenarios in 

productivity modeling. This hybrid approach facilitates accurate and reliable productivity 

predictions, enabling better decision-making and resource allocation in various industrial 

applications. 

The applicability of the enhanced Model Tree model extends far beyond productivity models in 

construction research. Its potential as an explainable AI or non-linear regression technique spans 

across various application domains. Consequently, professionals across different industries can 

harness the enhanced model tree to gain valuable insights into their specific processes and 

operations. By considering both prediction accuracy and model precision, industry professionals 

can elevate their analytical decision support to new heights.  

Furthermore, with the ability to estimate the variance in labor cost budgeting due to inherent 

variations in labor productivity by consolidating variance estimates of labor productivity at the 

work package level, industry practitioners can better understand the risks associated with labor 
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cost budgeting in planning construction projects. Determining lower and upper boundaries for 

cumulative labor hours budgeted enables project managers to make more informed decisions 

during the project planning stages (preparing for the bid and constructing a realistic project 

schedule). The novel project control tool, known as the S stripe, visually represents the estimated 

variance of the total labor hours estimated at specific time points of the project and offers clarity 

and transparency for risk analysis and communication. By establishing a confidence interval 

around the average value, akin to plotting the S curve, the S stripe offers a clear and intuitive 

understanding of the inherent variations in labor productivity and their impact on labor cost 

budgeting. With this methodology in place, the industry gains a powerful means of assessing and 

managing risks associated with labor cost budgeting, especially in large-scale prefabrication 

operations and other labor-intensive construction projects. Industry professionals can rely on the 

S stripe to make more data-driven and well-informed decisions, ensuring that labor cost budgets 

align with project requirements and expectations to ensure informed resource allocations and 

better project control.  

The method's versatility and applicability make it a valuable asset in the field of industrial 

fabrication and construction, providing an innovative approach to address the challenges posed 

by fluctuating and uncertain labor productivity. Overall, the methodology sets a new standard for 

labor cost estimating and budgeting in the industry, potentially advancing project control 

practices and contributing to improved project outcomes. 

The analytical approach resulting from this research provides an alternative solution to the 

commonly applied Monte Carlo simulation technique within industrial contexts for performing 

uncertainty analysis on complicated numerical models. This alternative approach eliminates the 
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need for advanced computing resources in the application stage, making it particularly relevant 

to the real world setting of estimating productivity for construction components or activities. 

Moreover, it aligns seamlessly with the accumulated experience and expertise of estimators and 

trade workers by offering a direct and pragmatic method. Estimators can readily apply it by 

inputting values into analytical equations preprogrammed in a spreadsheet. As a result, this 

practical approach does not entail configuring complex computing platforms and applying 

simulation software in analyzing each estimating scenario. It is widely acknowledged that Monte 

Carlo simulation demands user’s knowledge and training in computer programming and statistics, 

especially when simulation is applied to intricate systems and updating simulation setup is 

frequently justified. Applying Monte Carlo simulations in such complicated circumstances can be 

associated with sluggish performance and high costs. It is reasonable to anticipate that the 

proposed approach may substitute for Monte Carlo simulation and enhance both accessibility and 

acceptability of risk analysis in practical engineering and management applications, not confined 

to productivity estimating.  

6.3. Research Limitations  

The proposed variance analysis method relies on MLR as the base model; however, MLR may not 

address complicated cost-estimating problems where highly nonlinear relationships are present 

between input and output variables. Under such circumstances, the MLR model can be 

complemented with more sophisticated data mining techniques (e.g., using various combinations 

of input variable sets, applying classification techniques to find different ranges of data clusters, 

etc.). Alternatively, nonlinear analytical processing models can be adopted (e.g., scaling the data 
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set using log functions, applying nonlinear regression techniques like artificial neural networks, 

etc.).  

The formulation of the variance estimation model in Chapter 2 is based on the assumption that 

the input variables used in the model are independent of one another. However, it is imperative 

to substantiate this assumption with robust statistical evidence. Should a significant correlation 

be present between the chosen input variables, it has the potential to compromise the effectiveness 

of the current model, thereby magnifying the fundamental limitation of the proposed research. In 

reality, the modeler needs to revisit the problem definition by consulting with domain experts, 

thus removing certain input variables or consolidating correlated input factors as one. In the long 

run, a reconsideration and redevelopment of the model formulation will become an appealing 

research opportunity to factor in the covariance between the input variables in the applied error 

propagation model.  

Driven by application needs, this research has proposed an enhanced version of the model tree 

algorithm to overcome the limitations of the MLR models. Depending on the data quality, it can 

be found inadequate upon checking the Coefficient of variation formalized in this research. The 

shortfall can be due to not having sufficient records for each input feature or selected input features 

inadequately accounting for the productivity in the problem domain. On such occasions, models 

would require additional data collected on new features or must couple with more advanced data 

modeling or decision-making techniques (e.g., fuzzy inference system, agent-based modeling, etc.), 

applying more sophisticated regression models (regression with nonlinear functions) and taking 

higher-order Taylor expansion in applying the error propagation theory.  
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The proposed methodology is founded on the premise that the variability in input factors 

contributes to productivity variability and can be quantified through the variance estimate of the 

associated input parameter in the regression formulation. However, if the data distribution exhibits 

significant skewness to such an extent the error propagation theory is no longer applicable, the 

underlying Gaussian or normality assumption may become invalid, leading to an unacceptable 

model. The potential consequences of such an eventuality warrant further investigation.        

6.4. Recommendations for Future Work   

This section presents potential avenues for future research that arise from the findings and 

contributions of this study. 

The success of applying the proposed research relies on identifying the appropriate input product 

features for productivity modeling. Selecting the right amount of relevant input features for 

preparing the productivity model is essential to achieving reliable outcomes. Many feature 

selection techniques can be employed in preparing the productivity model in the future to facilitate 

the identification of the input factors, which would complement this research.  

The preparation of the variance analysis technique encompasses a recursive procedure that entails 

the sampling of a subset from the existing dataset. This process is instrumental in deriving the 

mean and variance of the coefficients in the Multiple Linear Regression (MLR) model, which are 

subsequently used in the construction of the variance estimation model. One established approach 

for achieving random sampling with replacement is the Bootstrap method, which offers a viable 

alternative to the arbitrary selection of the number of instances within the dataset during random 

sampling (Efron and Tibshirani 1994). Nonetheless, it is noteworthy that current research 
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endeavors have not yet delved into a critical comparison between these two sampling methods. 

This presents an avenue for future research endeavors to investigate the effect of various random 

sampling techniques on the proposed MLR variance analysis. 

Even the enhanced model tree algorithm might reach its limits in certain scenarios. This would 

suggest that the model might necessitate incorporating additional data related to novel features 

or integration with more advanced data modeling or decision-making techniques (such as fuzzy 

inference systems, agent-based modeling, etc.). Furthermore, employing more sophisticated 

regression models, like regression with nonlinear functions, and incorporating higher-order Taylor 

expansions in applying error propagation theory could prove beneficial. Beyond the domain of 

construction engineering and management, these potential extensions offer promising avenues for 

future research in the field of civil engineering computing. 

Accessing data directly from the BIM model, interpreting it with appropriate construction 

engineering and management insights, and feeding it into a productivity prediction model would 

be conducive to preparing cost estimate and budget in planning construction projects. When 

actual labor hour data is collected during construction, it can be fed back into the productivity 

model for further calibration and continual updating. Automating this approach would render the 

productivity modeling and planning framework self-sustaining, and further research in this 

direction can be pursued in the future.  

With the increase in data availability and complexity within the civil engineering domain, the 

introduced methodology provides a novel solution for precise and transparent predictive analytics. 

Not limited to labor productivity estimating, this algorithm can be tested in many applications in 
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civil engineering (e.g., finding optimal solutions for shear-strength concrete masonry walls and 

establishing the factor of safety for model applications).  

As a future research direction, it is essential to investigate the impact of skewed data distributions 

on the proposed methodology. This will help determine the validity of the assumption underlying 

the error propagation theory that input factors' variability contributes to productivity variability 

through variance estimates in regression. Exploring potential remedies or adjustments for dealing 

with skewed data distributions will enhance the applicability and robustness of the methodology 

in real-world applications. 

In this research, the capability of the nonlinear regression technique, namely the model tree, has 

been enhanced by integrating the MLR based variance analysis technique. It will be worthwhile 

to investigate the use of the similar variance analysis framework to predict the output variance of 

an artificial neural network (ANN) model in future follow-up research.     
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Appendix A 

Uncertainty Quantification  

 

A.1 Error Propagation  

Measurement is a process subject to variation. Since all the measurements are subject to 

discrepancy, what is conceived as the actual value of a measurement is merely an estimate of the 

true value. The difference between a measured value of a quantity and its true value is considered 

as an error. If it is possible to obtain a reasonable estimation of true value, then it can be used to 

get an estimated value of error which is basically known as the residual. Among three different 

types of error, blunder should be avoided during the measuring process through verification. 

Systematic error of a derived quantities can be derived from the systematic error of the measured 

(known) quantities. This is done by functional substitution with truncated Taylor Series which 

behaves like removing the first term. 

Taylor series is a representation of a function as an infinite sum of terms calculated from the 

values of its derivatives at a single point. Eq. A.1 expresses a function of x, f(x) which can be 

expanded value of x = xo.  

𝑓(𝑥) = ∑
𝑓𝑛(𝑥0)

𝑛!

∞

𝑛=0

(𝑥 − 𝑥0)
𝑛                                            (A. 1) 
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Eq. A.1 can be further expanded as, 

𝑓(𝑥) = 𝑓(𝑥0) +
𝑓1(𝑥0)

1!
 (𝑥 − 𝑥0) +

𝑓2(𝑥0)

2!
 (𝑥 − 𝑥0)

2 +  ………                   (A. 2) 

 

As the value of n goes up, the higher-order terms become insignificant. Thus, keeping the first 

two terms of the series Eq. A.2 can be written as, 

𝑓(𝑥) = 𝑓(𝑥0) +
𝑓1(𝑥0)

1!
 (𝑥 − 𝑥0)                 (𝐴. 3) 

or, 

𝑦 = 𝑦0 + 𝑦′∆𝑥 

or, 

𝑦 − 𝑦0 = 𝑦′∆𝑥 

or,  

∆𝑦 = 𝑦′∆𝑥 

or, 

                                  𝑑𝑦 =
𝜕𝑦

𝜕𝑥
𝑑𝑥                      (𝐴. 4) 

 

Now if y has m number of observations and each of them is dependent on n number of independent 

variables for x then the Eq. A.4 becomes, 
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[

𝑑𝑦1

𝑑𝑦2

⋮
𝑑𝑦𝑚

] =

[
 
 
 
 
 
 
 
𝜕𝑦1

𝜕𝑥1

𝜕𝑦1

𝜕𝑥2

𝜕𝑦2

𝜕𝑥1

𝜕𝑦2

𝜕𝑥2

⋯

𝜕𝑦1

𝜕𝑥𝑛

𝜕𝑦2

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑦𝑚

𝜕𝑥1

𝜕𝑦𝑚

𝜕𝑥2
⋯

𝜕𝑦𝑚

𝜕𝑥𝑛 ]
 
 
 
 
 
 
 

[

𝑑𝑥1

𝑑𝑥2

⋮
𝑑𝑥𝑛

] 

or, 

𝑑𝑦 = 𝐽𝑥𝑦𝑑𝑥                                                       (𝐴. 5) 

 

Eq. A.5 is the general form of systematic error propagation where  𝐽𝑥𝑦 is called the Jacobian 

(Jacobian matrix) of the equation. This one is the equation for quantifying the systematic error 

of a measurement. 

A.1.1 Propagation of Random Error 

It is not perfect using Eq. A.5 to quantify the random error of any measurement. Values of 

measurement follow Gaussian distribution due to the presence of the randomness of error. 

Standard deviation/Variance of any set of measured values is a reasonable estimate of randomness. 

Thus, propagation of random error follows the law of propagation of variance and covariance 

(POV) which can be expressed by the following equation, 

∑
𝑦𝑦

= 𝐽𝑥𝑦 ∑
𝑥𝑥

𝐽𝑦𝑥
𝑇                                (𝐴. 6) 

or, 
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        𝐶𝑦 = 𝐽𝑦𝑥  𝐶𝑥 𝐽𝑦𝑥
𝑇                                         (𝐴. 7) 

or, 

[
 
 
 
 

𝜎𝑦1
2 𝜎𝑦1𝑦2

𝜎𝑦2𝑦1
𝜎𝑦2

2 ⋯
𝜎𝑦1𝑦𝑚

𝜎𝑦1𝑦𝑚

⋮ ⋱ ⋮
𝜎𝑦𝑚𝑦1

𝜎𝑦𝑚𝑦2 ⋯ 𝜎𝑦𝑚
2

]
 
 
 
 

= 𝐽𝑦𝑥

[
 
 
 
 

𝜎𝑥1
2 𝜎𝑥1𝑥2

𝜎𝑥2𝑥1
𝜎𝑥2

2 ⋯
𝜎𝑥1𝑥𝑛

𝜎𝑥1𝑥𝑛

⋮ ⋱ ⋮
𝜎𝑥𝑛𝑥1

𝜎𝑥𝑛𝑥2 ⋯ 𝜎𝑥𝑛
2

]
 
 
 
 

𝐽𝑦𝑥
𝑇                                      (𝐴. 8) 

Here, ∑𝑦𝑦  is the covariance matrix of random output y and ∑𝑥𝑥  is the covariance matrix of 

random input x. 

A.1.2 Explanation for  𝐶𝑦 = 𝐽𝑦𝑥 𝐶𝑥 𝐽𝑦𝑥
𝑇    

For a specific measurement, any observation (input) x can be mapped onto output y. Output y 

basically can be expressed as a function of x in 2D space. Now if any error (∆x) exists in input 

value of x, this will propagate onto y through f(x). This error can be quantified with the 

approximation of linearization of f(x) at the point (x,y) and  the slope of the line would be  
𝑑𝑦

𝑑𝑥
 . 

Using the same basic principle of Eq. A.4 the measurement of the error would be, 

∆𝑦 =
𝑑𝑦

𝑑𝑥
∆𝑥                                    (𝐴. 9) 

If now a set of observation (input) of a specific measurement x, which is random in nature and 

follows normal distribution, can be mapped onto a set of random output (normally distributed 

also) y with a relationship function f(x), its shape would be somewhat distorted and the resulting 

distribution would be asymmetric, certainly not Gaussian anymore.  
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When approximating f(x) by a first-order Taylor series expansion (Eq. A.3) about the point x = 

µx, the following linear relationship can be obtained, 

𝑦 = 𝑓(𝑥) ≈ 𝑓(𝜇𝑥) +
𝜕𝑓(𝜇𝑥)

𝜕𝑥
 (𝑥 − 𝜇𝑥)                                           (𝐴. 10)  

If y = f (x1, x2, x3, … …, xn) then the Eq. A.10 becomes,  

𝑦 ≈ 𝑓(𝜇1, 𝜇2, …… , 𝜇𝑛) + ∑[
𝜕𝑓

𝜕𝑥
((𝜇1, 𝜇2, …… , 𝜇𝑛)] (𝑥𝑖 − 𝜇𝑖) 

𝑛

𝑖=1

  

or, 

𝑦 ≈ 𝑎𝑜 + ∑𝑎𝑖

𝑛

𝑖=1

 (𝑥𝑖 − 𝜇𝑖)                                           (𝐴. 11) 

where, 𝑎𝑜 = 𝑓(𝜇1, 𝜇2, …… , 𝜇𝑛) and 𝑎𝑖 =
𝜕𝑓

𝜕𝑥
((𝜇1, 𝜇2, …… , 𝜇𝑛) 

Now  

𝜇𝑦 = 𝐸[𝑦] = 𝐸 [𝑎𝑜 + ∑𝑎𝑖

𝑛

𝑖=1

 (𝑥𝑖 − 𝜇𝑖)]  

                              = 𝐸 [𝑎𝑜] + ∑𝐸[𝑎𝑖𝑥𝑖]

𝑛

𝑖=1

− 𝐸[𝑎𝑖𝜇𝑖] 

                       = 𝑎𝑜 + ∑𝑎𝑖𝐸[𝑥𝑖]

𝑛

𝑖=1

− 𝑎𝑖𝐸[𝜇𝑖] 

          = 𝑎𝑜 + ∑𝑎𝑖𝜇𝑖

𝑛

𝑖=1

− 𝑎𝑖𝜇𝑖 
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                 = 𝑎𝑜 + ∑𝑎𝑖𝜇𝑖

𝑛

𝑖=1

− 𝑎𝑖  = 𝑎𝑜 

   𝜇𝑦 = 𝑓(𝜇1, 𝜇2, …… , 𝜇𝑛)                            (𝐴. 12) 

And, 

𝜎𝑦
2 = 𝐸 [(𝑦 − 𝜇𝑦)

2
] 

𝜎𝑦
2 ≈ 𝐸 [(𝑎𝑜 + ∑𝑎𝑖

𝑛

𝑖=1

 (𝑥𝑖 − 𝜇𝑖) − 𝑎𝑜)

2

] = 𝐸 [(∑𝑎𝑖

𝑛

𝑖=1

 (𝑥𝑖 − 𝜇𝑖))

2

] 

                                                                            = 𝐸 [∑𝑎𝑖
2

𝑛

𝑖=1

 (𝑥𝑖 − 𝜇𝑖)
2] 

                                                                       = ∑𝑎𝑖
2𝐸[(𝑥𝑖 − 𝜇𝑖)

2]

𝑛

𝑖=1

 

                                                  = ∑𝑎𝑖
2𝜎𝑖

2

𝑛

𝑖=1

 

                                                       = ∑(
𝜕𝑓

𝜕𝑥𝑖
)
2

𝜎𝑖
2

𝑛

𝑖=1

 

So, the final equation becomes, 

𝜎𝑦
2 = ∑(

𝜕𝑓

𝜕𝑥𝑖
)
2

𝜎𝑖
2

𝑛

𝑖=1

                                   (𝐴. 13) 

If y has m number of observation which is dependent on n number of variables of x, then general 

matrix form of Eq. A.13 would be, 
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[
 
 
 
 

𝜎𝑦1
2 𝜎𝑦1𝑦2

𝜎𝑦2𝑦1
𝜎𝑦2

2 ⋯
𝜎𝑦1𝑦𝑚

𝜎𝑦1𝑦𝑚

⋮ ⋱ ⋮
𝜎𝑦𝑚𝑦1

𝜎𝑦𝑚𝑦2 ⋯ 𝜎𝑦𝑚
2

]
 
 
 
 

=

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥1

𝜕𝑓2
𝜕𝑥2

⋯

𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚
𝜕𝑥1

𝜕𝑓𝑚
𝜕𝑥2

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛]

 
 
 
 
 
 
 

[
 
 
 
 

𝜎𝑥1
2 𝜎𝑥1𝑥2

𝜎𝑥2𝑥1
𝜎𝑥2

2 ⋯
𝜎𝑥1𝑥𝑛

𝜎𝑥1𝑥𝑛

⋮ ⋱ ⋮
𝜎𝑥𝑛𝑥1

𝜎𝑥𝑛𝑥2 ⋯ 𝜎𝑥𝑛
2

]
 
 
 
 

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

𝜕𝑓2
𝜕𝑥1

𝜕𝑓1
𝜕𝑥2

𝜕𝑓2
𝜕𝑥2

⋯

𝜕𝑓𝑚
𝜕𝑥𝑛

𝜕𝑓𝑚
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓1
𝜕𝑥𝑛

𝜕𝑓2
𝜕𝑥𝑛

⋯
𝜕𝑓𝑚
𝜕𝑥𝑛]

 
 
 
 
 
 
 

 

or, 

𝐶𝑦 = 𝐽𝑦𝑥  𝐶𝑥 𝐽𝑦𝑥
𝑇                                (𝐴. 14) 

Which cross validates the Eq. A.6. 
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Appendix B 

Source Codes for Program Implementation  

 

B.1 General 

All the programs are written in Python 3.8 environment using the Microsoft Visual Studio 2022 

platform.  

B.2 Generate Statistical Description of the Regression Model 

B.2.1 Algorithm 1 

 

#importing necessary libraries  

 

import pandas as pd 

from sklearn.linear_model import LinearRegression 

from sklearn.utils import resample 

import numpy as np 

 

# Specify the absolute path of the Excel file 

file_path = 'C:/Users/shuvo/Desktop/My Code Kitchen/Model 
Tree/data.xlsx' 
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# Read the Excel file, skipping the first row as it contains column 
labels 

data = pd.read_excel(file_path) 

 

 

#Extract the input and output variables from the DataFrame: 

 

X = data.iloc[:, 1:]  # Input variables 

y = data.iloc[:, 0]   # Output variable 

 

 

#Initialize the parameters n (percentage of data to select) and m 
(number of iterations): 

 

n = 0.8  # 80% of the data will be used for each iteration 

m = 10   # Number of iterations 

 

 

 

#Create an empty DataFrame to store the model parameters: 

parameters_df = pd.DataFrame(columns=['Intercept'] + list(X.columns)) 

 

 

 

#Run the regression model process m times: 

for i in range(m): 
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    # Randomly select n% of the data 

    X_sample, y_sample = resample(X, y, n_samples=int(n * len(X)), 
random_state=i) 

     

    # Fit the linear regression model 

    model = LinearRegression() 

    model.fit(X_sample, y_sample) 

     

    # Store the model parameters in the DataFrame 

    parameters_df.loc[i] = [model.intercept_] + list(model.coef_) 

 

 

#Print the table of model parameters: 

print(parameters_df) 

 

 

 

#Calculate the average and standard deviation of the model parameters: 

avg_parameters = parameters_df.mean() 

std_parameters = parameters_df.std() 

 

print("Average Parameters:") 

print(avg_parameters) 

 

print("Standard Deviation of Parameters:") 

print(std_parameters) 
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#End of the  

print ("code complete") 

 

B.2.2 Explanation for Algorithm 2 

Following the Python script that performs linear regression with bootstrapping on a dataset stored 

in an Excel file. The purpose of the script is to estimate the parameters of a linear regression 

model multiple times using different random subsets of the data to evaluate the stability and 

uncertainty of the model. 

Here's a breakdown of the code: 

1. Import necessary libraries: The script imports required libraries, including pandas for data 

manipulation, scikit-learn's LinearRegression for linear regression modeling, and numpy 

for numerical computations. 

2. Specify the file path: The variable file_path contains the absolute path of the Excel file 

that contains the dataset. 

3. Read the data: The script reads the data from the Excel file into a pandas DataFrame, 

skipping the first row as it contains column labels. 

4. Extract input and output variables: The dataset is split into input variables X and the 

output variable y. X contains all the columns of the DataFrame except the first column 

(assuming the first column contains the output variable). 
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5. Set parameters for bootstrapping: The variable n represents the percentage of data to 

select for each iteration of bootstrapping (in this case, 80% of the data), and m represents 

the number of iterations to perform. 

6. Create an empty DataFrame: The script creates an empty DataFrame called 

parameters_df to store the model parameters for each iteration. 

7. Run the regression model process m times: The script runs a loop for m iterations. In each 

iteration, it randomly selects n% of the data for training using bootstrapping (random 

sampling with replacement). It then fits a linear regression model using scikit-learn's 

LinearRegression class and stores the model's intercept and coefficients in the 

parameters_df DataFrame. 

8. Print the table of model parameters: After the loop finishes, the script prints the table of 

model parameters, showing the intercept and coefficients for each iteration. 

9. Calculate the average and standard deviation of the model parameters: The script 

calculates the average and standard deviation of the model parameters from the 

parameters_df DataFrame. 

10. Print the average and standard deviation of the model parameters: The script prints the 

average and standard deviation of the model parameters to evaluate the stability and 

uncertainty of the model. 

This program employs bootstrapping to generate multiple linear regression models using different 

subsets of the data, and then it calculates the average and standard deviation of the model 

parameters to assess the robustness of the linear regression estimates. 

B.3 Model Tree Algorithm to identify the Data Classes 
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B.3.1 Algorithm 2 

 

# Import the necessary modules and libraries 

import numpy as np 

import pandas as pd 

import seaborn as sns 

 

from sklearn.model_selection import cross_val_score 

from sklearn.tree import DecisionTreeRegressor, export_text 

from m5py import M5Prime 

 

# Load your dataset using pandas 

file_path = 'C:/Users/shuvo/Desktop/My Code Kitchen/Model Tree/Data.csv' 

# Read the Excel file, skipping the first row as it contains column 
labels 

data = pd.read_csv(file_path)  # Assuming the first row contains the 
variable names 

 

X = data.iloc[:, 1:] 

# Extract variable names from the first row 

feature_names = X.columns.tolist() 

 

# Extract input features (X) and target variable (y)  

X = data.iloc[:, 1:].values  # Exclude the first column as input 
features; convert to NumPy array 

y = data.iloc[:, 0].values  # First column as the target variable; 
convert to NumPy array 
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print (type(X)) 

print (type(y)) 

input("hold") 

 

 

# Define regression models and evaluate them on 10-fold CV 

regr_0 = DecisionTreeRegressor() 

regr_0_label = "Tree 0" 

regr_0_scores = cross_val_score(regr_0, X, y, cv=10) 

 

regr_1 = M5Prime(use_smoothing=False, use_pruning=False) 

regr_1_label = "Tree 1" 

regr_1_scores = cross_val_score(regr_1, X, y, cv=10) 

 

regr_2 = M5Prime(use_smoothing=False) 

regr_2_label = "Tree 2" 

regr_2_scores = cross_val_score(regr_2, X, y, cv=10) 

 

regr_3 = M5Prime(use_smoothing=True) 

regr_3_label = "Tree 3" 

regr_3_scores = cross_val_score(regr_3, X, y, cv=10) 

 

scores = np.c_[regr_0_scores, regr_1_scores, regr_2_scores, 
regr_3_scores] 

avgs = scores.mean(axis=0) 
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stds = scores.std(axis=0) 

labels = [regr_0_label, regr_1_label, regr_2_label, regr_3_label] 

 

scores_df = pd.DataFrame(data=scores, columns=labels) 

sns.violinplot(data=scores_df) 

 

# Fit the final models and print the trees: 

# 

regr_0.fit(X, y) 

print("\n----- %s" % regr_0_label) 

print(export_text(regr_0, feature_names=feature_names)) 

 

regr_1.fit(X, y) 

print("\n----- %s" % regr_1_label) 

print(regr_1.as_pretty_text(feature_names=feature_names)) 

 

regr_2.fit(X, y) 

print("\n----- %s" % regr_2_label) 

print(regr_2.as_pretty_text(feature_names=feature_names)) 

 

regr_3.fit(X, y) 

print("\n----- %s" % regr_3_label) 

print(regr_3.as_pretty_text(feature_names=feature_names)) 
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B.3.2 Explanations for Algorithm 2 

Following code performs an evaluation of regression models on a dataset using cross-validation 

and compares the performance of different decision tree regression models, including M5Prime 

with different configurations. 

Here's an explanation of the code: 

1. Import necessary libraries: The script imports necessary libraries, including NumPy, 

pandas, seaborn for visualization, scikit-learn's DecisionTreeRegressor, and M5Prime from 

the m5py library. 

2. Load the dataset: The script loads the dataset from the CSV file specified in the variable 

file_path using pandas. 

3. Extract input features and target variable: The script extracts input features X and the 

target variable y from the dataset. The input features are taken from columns 1 and 

onward, while the target variable is taken from the first column. 

4. Define and evaluate regression models using cross-validation: The script defines four 

regression models with different configurations: a standard DecisionTreeRegressor (regr_0) 

and three M5Prime models (regr_1, regr_2, and regr_3) with different settings for 

smoothing and pruning. It then evaluates the models' performance using 10-fold cross-

validation and stores the cross-validation scores in regr_0_scores, regr_1_scores, 

regr_2_scores, and regr_3_scores. 
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5. Compute the mean and standard deviation of the cross-validation scores: The script 

calculates the average and standard deviation of the cross-validation scores for each model 

and stores them in avgs and stds. 

6. Visualize the cross-validation scores: The script creates a DataFrame scores_df containing 

the cross-validation scores of all four models and visualizes the distribution of scores using 

a violin plot from seaborn. 

7. Fit the final models and print the trees: The script fits the final models (regr_0, regr_1, 

regr_2, and regr_3) on the entire dataset and prints the decision trees for each model 

using the export_text and as_pretty_text functions from scikit-learn and M5Prime, 

respectively. The trees are printed with feature names to display the decision rules used 

by the models. 

This program assesses the performance of various decision tree regression models and evaluate 

their efficacy on the provided dataset through cross-validation. The visualization and displayed 

trees offer valuable insights into the decision-making process of each model, aiding in 

comprehending their predictive abilities. 

B.4 Program to Run CPM Analysis to Plot S-Curve  

B.4.1 Algorithm 3 

import networkx as nx 

import matplotlib.pyplot as plt 

import csv 
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def solve_cpm(tasks, dependencies): 

    # Create a Directed Acyclic Graph (DAG) 

    G = nx.DiGraph() 

     

    # Add nodes to the graph 

    for task in tasks: 

        G.add_node(task['name']) 

     

    # Add edges (dependencies) to the graph 

    for dependency in dependencies: 

        G.add_edge(dependency[0], dependency[1]) 

     

    # Calculate the earliest start and finish times 

    earliest_start_time = {} 

    earliest_finish_time = {} 

    duration_map = {task['name']: task['duration'] for task in tasks} 

     

    for task in nx.topological_sort(G): 

        max_earliest_start_time = 0 

        for predecessor in G.predecessors(task): 

            max_earliest_start_time = max(max_earliest_start_time, 
earliest_finish_time[predecessor]) 

         

        earliest_start_time[task] = max_earliest_start_time 

        try: 

            earliest_finish_time[task] = max_earliest_start_time + 
duration_map[task] 
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        except Exception as e: 

            print("exception ", e) 

     

    # print the earliest start and finish times 

    print("Earliest Start Time:", earliest_start_time) 

    print("Earliest Finish Time:", earliest_finish_time) 

 

 

 

    # Calculate the latest start and finish times 

    latest_start_time = {} 

    latest_finish_time = {} 

     

    for task in list(nx.topological_sort(G))[::-1]: 

        if not list(G.successors(task)): 

            latest_finish_time[task] = earliest_finish_time[task] 

            latest_start_time[task] = earliest_start_time[task] 

        else: 

            min_latest_finish_time = float('inf') 

            for successor in G.successors(task): 

                min_latest_finish_time = min(min_latest_finish_time, 
latest_start_time[successor]) 

             

            latest_finish_time[task] = min_latest_finish_time 

            latest_start_time[task] = min_latest_finish_time - 
duration_map[task] 
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    # Calculate total float (slack) 

    total_float = {} 

     

    for task in tasks: 

        total_float[task['name']] = latest_start_time[task['name']] - 
earliest_start_time[task['name']] 

     

    return G, earliest_start_time, earliest_finish_time, 
latest_start_time, latest_finish_time, total_float 

 

 

def display_schedule(G, earliest_start_time, earliest_finish_time, 
latest_start_time, latest_finish_time, tasks): 

    labels = {task['name']: task['name'] for task in tasks} 

     

    # Create a horizontal bar chart 

    plt.figure(figsize=(10, 6)) 

     

    # Determine the y-axis position for each task 

    y_positions = range(len(G.nodes)) 

     

    # Draw the bars for each task 

    for task, y in zip(G.nodes, y_positions): 

        x_start = earliest_start_time[task] 

        x_finish = earliest_finish_time[task] 

        width = x_finish - x_start 

        plt.barh(y, width, left=x_start, height=0.5, align='center', 
alpha=0.8) 
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        plt.text(x_start + width / 2, y, labels[task], ha='center', 
va='center', color='black') 

 

        x_start = latest_start_time[task] 

        x_finish = latest_finish_time[task] 

        width = x_finish - x_start 

        plt.barh(y, width, left=x_start, height=0.2, align='center', 
alpha=0.3, color='gray') 

     

    # Set the x-axis and y-axis labels 

    plt.xlabel('Time') 

    plt.ylabel('Tasks') 

     

    # Set the y-axis ticks and labels 

    plt.yticks(y_positions, [labels[node] for node in G.nodes]) 

     

    # Set the x-axis limit based on the maximum finish time 

    max_finish_time = max(earliest_finish_time.values()) 

    plt.xlim(0, max_finish_time + 10) 

     

    # Display the chart 

    plt.title('Cortical Path Method Schedule') 

    plt.grid(True) 

    plt.show() 

 

 

## Define the tasks and their durations 
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#tasks = [ 

#    {'name': 'A', 'duration': 4}, 

#    {'name': 'B', 'duration': 3}, 

#    {'name': 'C', 'duration': 2}, 

#    {'name': 'D', 'duration': 5}, 

#    {'name': 'E', 'duration': 6}, 

#    {'name': 'F', 'duration': 4}, 

#    {'name': 'G', 'duration': 2} 

#] 

# #dependencies = [('A', 'B'), ('A', ' C'), ('A', ' G'), ('A', ' E'), 
('B', 'D'), ('C', 'D'), ('D', 'F'), ('E', 'F'), ('E', ' G'), ('F', 'G')] 

### Define the dependencies between tasks 

#dependencies = [ 

#    ('A', 'B'), 

#    ('A', 'C'), 

#    ('A', 'G'), 

#    ('A', 'E'), 

#    ('B', 'D'), 

#    ('C', 'D'), 

#    ('D', 'F'), 

#    ('E', 'F'), 

#    ('E', 'G'), 

#    ('F', 'G')    

  

 

#] 

#print("task",tasks) 
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#print("dependenccies",dependencies) 

 

 

# Specify the path to the CSV file 

csv_file_path = 'C:/Users/shuvo/Desktop/My Code Kitchen/Model 
Tree/tasks.csv' 

 

#Read task and dependency information from CSV file 

tasks = [] 

dependencies = [] 

 

with open(csv_file_path, 'r') as csvfile: 

    reader = csv.DictReader(csvfile) 

    for row in reader: 

        tasks.append({'name': row['Task'], 'duration': 
int(row['Duration'])}) 

        if row['Dependencies']: 

            dependencies.extend([(row['Task'], dependency.strip()) for 
dependency in row['Dependencies'].split(',')]) 

print("task",tasks) 

print("dependenccies",dependencies) 

# Solve the CPM problem 

G, earliest_start_time, earliest_finish_time, latest_start_time, 
latest_finish_time, total_float = solve_cpm(tasks, dependencies) 

 

# Display the schedule 

display_schedule(G, earliest_start_time, earliest_finish_time, 
latest_start_time, latest_finish_time, tasks) 



250 

 

B.4.2 Explanations of Algorithm 3 

This code is an implementation of the Critical Path Method (CPM) to schedule tasks in a project. 

The CPM is a project management technique that identifies the critical tasks and their 

dependencies to determine the minimum time required to complete the project. 

Here's an explanation of the code: 

 

1. Import necessary libraries: The script imports the necessary libraries, including networkx 

for handling the Directed Acyclic Graph (DAG) representing the tasks, matplotlib for 

visualization, and csv to read task and dependency information from a CSV file. 

2. Define the solve_cpm function: This function takes the list of tasks and their dependencies 

as input and calculates various parameters of the CPM, including earliest start time, 

earliest finish time, latest start time, latest finish time, and total float (slack). 

3. Define the display_schedule function: This function visualizes the schedule of tasks using 

a horizontal bar chart. It takes the CPM parameters and the task information as input 

and plots the tasks' start and finish times. 

4. Read task and dependency information from a CSV file: The script reads task and 

dependency information from a CSV file specified in the variable csv_file_path. 
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5. Solve the CPM problem: The script calls the solve_cpm function with the tasks and 

dependencies read from the CSV file. The function calculates the CPM parameters and 

returns them. 

6. Display the schedule: The script calls the display_schedule function with the CPM 

parameters and task information to visualize the tasks' schedule using a horizontal bar 

chart. The chart shows the earliest start and finish times (colored bars) and the latest 

start and finish times (gray bars) for each task. 

This program allows project managers to use the CPM technique to schedule tasks in a project, 

identify critical tasks, and determine the project's minimum completion time. The visual 

representation of the schedule helps in understanding the project's timeline and identifying tasks 

with slack time, which can be delayed without affecting the project's overall duration. 

B.5 Program to Perform Data Processing by Taking Input from CPM Analysis and 

Plot Gant Chart for S stripe plotting  

B.5.1 Algorithm 4 

import tkinter as tk 

from tkinter import filedialog, messagebox 

import pandas as pd 

from tkinter import ttk 

import matplotlib.pyplot as plt 

from tkcalendar import Calendar 

import matplotlib.dates as mpl_dates 
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# Function to import CSV file 

def import_csv(): 

    # Open file dialog to select CSV file 

    filepath = filedialog.askopenfilename(filetypes=[("CSV Files", 
"*.csv")]) 

 

    if filepath: 

        # Read CSV file into pandas DataFrame 

        global df 

        df = pd.read_csv(filepath, header=0) 

 

        # Clear previous table content 

        table.delete(1.0, tk.END) 

 

        # Print the number of variables 

        num_variables = df.shape[1] 

        print(f"Number of Variables: {num_variables}") 

 

        #Get the column names/variable names from the first row 

        var_names = list(df.columns) 

        print("Variable Names:") 

        for var_name in var_names: 

            print(var_name) 

 

        # Update the combobox options for variable selection 

        variable_activity.set("") 
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        variable_start_date.set("") 

        variable_duration.set("") 

        activity_combobox['values'] = var_names 

        start_date_combobox['values'] = var_names 

        duration_combobox['values'] = var_names 

 

        # Display DataFrame as a table in the GUI 

        table.insert(tk.END, df.to_string(index=False)) 

 

# Function to handle the calendar selection 

def pick_date(): 

    def on_date_select(): 

        global selected_date 

        selected_date = cal.selection_get().strftime("%Y-%m-%d")  # Get 
the selected date from the calendar 

        messagebox.showinfo("Selected Date", f"Selected Date: 
{selected_date}") 

 

 

        # Use the selected date for further processing 

        selected_date = pd.to_datetime(selected_date) 

        selected_date = pd.Series(selected_date) 

        selected_date = 
selected_date.repeat(len(df)).reset_index(drop=True) 

 

    # Create a new window for the calendar 

    top = tk.Toplevel(window) 
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    # Create the calendar 

    cal = Calendar(top, selectmode="day", date_pattern="yyyy-mm-dd") 

    cal.pack() 

 

    # Create a button to confirm the date selection 

    confirm_button = tk.Button(top, text="Select Date", 
command=on_date_select) 

    confirm_button.pack() 

 

# Function to handle Gantt chart plotting 

def plot_gantt_chart(): 

    activity = variable_activity.get() 

    start_date = variable_start_date.get() 

    duration = variable_duration.get() 

 

    # Check if all variables are selected 

    if not activity or not start_date or not duration: 

        messagebox.showerror("Error", "Please select Activity, Start 
Date, and Duration.") 

        return 

 

    # Get the start date and duration from the DataFrame 

    start_dates = df[start_date] 

    durations = df[duration] 

 

    try: 

        selected_dates = pd.to_datetime(selected_date) 
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        start_dates = pd.to_timedelta(start_dates, unit='d') + 
selected_dates 

    except ValueError: 

        messagebox.showerror("Error", "Invalid Start Date format.") 

        return 

 

    # Calculate finish dates 

    finish_dates = start_dates + pd.to_timedelta(durations, unit='d') 

    #print(start_dates, finish_dates, duration) 

 

    # Create a Gantt chart 

    fig, ax = plt.subplots() 

    bars = ax.barh(df[activity], durations, left=start_dates, 
height=0.5) 

    ax.set_xlabel("Duration") 

    ax.set_ylabel("Activities") 

    ax.set_title("Gantt Chart") 

 

    # Format x-axis as dates 

    ax.xaxis_date() 

 

    # Set the date format of the x-axis labels 

    date_format = mpl_dates.DateFormatter("%Y-%m-%d") 

    ax.xaxis.set_major_formatter(date_format) 

    plt.xticks(rotation=90)  # Rotate x-axis labels vertically 

 

    # Add duration values at the end of each bar 
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    for bar, duration in zip(bars, durations): 

        end_date = bar.get_x() + bar.get_width()  # Calculate the end 
date position 

        ax.text(end_date, bar.get_y() + bar.get_height() / 2, 
str(duration), 

                ha='left', va='center') 

     

    # Show the plot 

    plt.show() 

 

# Create the GUI window 

window = tk.Tk() 

window.title("CSV File Editor") 

 

# Create a frame for the buttons 

button_frame = tk.Frame(window) 

button_frame.pack(side=tk.TOP, padx=50, pady=50) 

 

# Button to select CSV file 

import_button = tk.Button(button_frame, text="Import CSV", 
command=import_csv) 

import_button.pack(side=tk.LEFT) 

 

# Create the text widget and scrollbars 

table = tk.Text(window, wrap=tk.NONE) 

table.pack(fill=tk.BOTH, expand=True) 

 

# Create the horizontal scrollbar 
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x_scrollbar = tk.Scrollbar(window, orient=tk.HORIZONTAL, 
command=table.xview) 

x_scrollbar.pack(fill=tk.X, side=tk.BOTTOM) 

 

# Configure the text widget to use the scrollbar 

table.configure(xscrollcommand=x_scrollbar.set) 

 

# Configure the window to adjust the size of its contents 

window.pack_propagate(False) 

 

# Bind the resizing event to adjust table size 

window.bind("<Configure>", lambda event: 
table.configure(width=event.width-20, height=event.height-120)) 

 

# Frame for Gantt chart options 

gantt_frame = tk.Frame(window) 

gantt_frame.pack(pady=10) 

 

# Label for Activity selection 

activity_label = tk.Label(gantt_frame, text="Activity:") 

activity_label.grid(row=0, column=0) 

 

# Combobox for Activity selection 

variable_activity = tk.StringVar() 

activity_combobox = tk.ttk.Combobox(gantt_frame, 
textvariable=variable_activity) 

activity_combobox.grid(row=0, column=1) 
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# Label for Start Date selection 

start_date_label = tk.Label(gantt_frame, text="Start Date:") 

start_date_label.grid(row=1, column=0) 

 

# Combobox for Start Date selection 

variable_start_date = tk.StringVar() 

start_date_combobox = tk.ttk.Combobox(gantt_frame, 
textvariable=variable_start_date) 

start_date_combobox.grid(row=1, column=1) 

 

# Label for Duration selection 

duration_label = tk.Label(gantt_frame, text="Duration:") 

duration_label.grid(row=2, column=0) 

 

# Combobox for Duration selection 

variable_duration = tk.StringVar() 

duration_combobox = tk.ttk.Combobox(gantt_frame, 
textvariable=variable_duration) 

duration_combobox.grid(row=2, column=1) 

 

# Create a button to pick the project start date 

pick_date_button = tk.Button(button_frame, text="Pick Start Date", 
command=pick_date) 

pick_date_button.pack(side=tk.LEFT) 

 

# Button to plot Gantt chart 

plot_button = tk.Button(window, text="Plot Gantt Chart", 
command=plot_gantt_chart) 



259 

plot_button.pack(pady=10) 

 

# Start the GUI event loop 

window.mainloop() 
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Appendix C 

Attribute Selection for The Case Study Dataset of Chapter 

3 

The result of the correlation analysis showing the significant correlation of each input variable 

with output (𝑟) and the significant partial correlations (correlation coefficient greater than 0.5) 

in-between input variables (𝒓′) are presented in Table C1. Greedy search strategy involves an 

initial correlation study among the attributes to establish a rank based on Pearson's correlation 

coefficient (𝑅) for each attribute connected to the output variable. Then attributes are selected to 

establish input output relationships following the correlation rank order. The performance of the 

model has then been assessed based on the correlation coefficient and F statistics of the model 

formulated in each step of the greedy search. Attributes with has partial correlation with selected 

attributes modeling are considered in model at the same time and their significance is tested 

observing the t statistics. Significant attributes are kept in the model, otherwise removed in the 

next iteration of the greedy search. The first three iterations of the greedy search process is shown 

below as an example of the search process.  

Table C.1: shows all the correlation coefficients for input variable in relation with the output 

LH.  
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Variables Correlation 

with the 

output, 𝒓 

Partial Correlation, 𝒓′ (>0.5) 

X35 0.738 X36(0.58), X37(0.65) 

X36 0.597 - 

X18 0.579 X36(0.84) 

X9 0.561 X10(0.63), X18(0.59), X29(0.57), 

X30(0.55), X31(0.50), X35(0.63), 

X36(0.69) 

X8 0.540 X9(0.73), X10(0.73), X35(0.86), 

X36(0.53), X37(0.62)  

X17 0.480 - 

X10 0.470 X11(0.53), X12(0.53), X13(0.55), 

X16(0.52), X35(0.70), X36(0.53), 

37(0.90) 

X37 0.447 - 

X6 0.411 X7(0.65), X16(0.50), X35(0.55), 

X37(0.59) 
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Variables Correlation 

with the 

output, 𝒓 

Partial Correlation, 𝒓′ (>0.5) 

X5 0.409 X6 (0.87), X7(0.57), X35(0.61), 

X37(0.37) 

X15 0.374 X36(0.62) 

X14 0.364 X15(0.75), X16(0.57), X36(0.57) 

X7 0.350 X10(0.73), X13(0.51), X16(0.68), 

X35(0.56), X37(0.91) 

X19 0.319 - 

X29 0.312 X30(0.91), X31(0.80) 

X30 0.285 X31(0.78) 

X3 0.276  

X11 0.267 X12(0.80), X13(0.83), X37(0.63) 

X31 0.266 - 

X12 0.264 X13(0.74), X37(0.61) 
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Variables Correlation 

with the 

output, 𝒓 

Partial Correlation, 𝒓′ (>0.5) 

X16 0.247 X37(0.74) 

X13 0.242 X34(0.50), X37(0.67) 

X2 0.235 - 

X1 0.160 - 

X4 0.138 - 

X34 0.095 - 

X21 0.080 - 

X20 0.077 X23(0.91), X24(0.91) 

X27 0.077 - 

X28 0.049 - 

X23 0.045 - 

X24 0.040 - 

X26 0.028 X28(0.60) 
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Variables Correlation 

with the 

output, 𝒓 

Partial Correlation, 𝒓′ (>0.5) 

X25 0.028 - 

X32 0.027 - 

X33 0.020  

X22 0.018 - 

 

Iteration 1: the attribute with the highest correlation (rank 1) is selected at the beginning to start 

with. The attributes which have partial correlation 𝒓′ (greater than 0.50) with the selected 

attribute. In this example case, the rank 1 attribute is X35: the weight of the module. The partially 

correlated attributes with X15 are X36: the quantity of the module, and X37: the length of the 

module. We check record the regression coefficient of the input-output relationship, 𝑅 1 = 0.771 

and F stat is found significant (9.68E-42<0.05). The regression analysis results for considering all 

the three attributes are given in Table C2. From Table C2 observing the t stat and P values of 

each attribute, we can conclude that all the attributes found to be significant therefore kept in 

the model at the end of the first iteration.  
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Table C2: Regression analysis result for iteration 1.  

Attribute  t Stat P-value Significance 

X35 10.49 4.75E-21 Significant  

X36 5.01 1.12E-06 Significant  

X37 -2.01 4.53E-02 Significant  

Iteration 2: in iteration 2, the next ranked attribute is selected which is X36 (rank 2). This 

attribute is already accepted in the previous model. Hence, there is no need for further analysis.  

Iteration 3: in iteration 3, ranked 3 attribute is X18 is added to the model and regression analysis 

is done. The recorded correlation coefficient of the model is 𝑅 3 = 0.794 and F stat is found 

significant (4.40E-45<0.05). The regression analysis results for considering all the three attributes 

are given in Table A3. From Table C3 observing the t stat and P values of each attribute, we 

found that presence of attribute X18 and X35 is significant however X36 and X37 found to be 

insignificant. Therefore, we remove the attributes X36 and X37 model and do the analysis again. 

The recorded correlation coefficient of the model is 𝑅 3′ = 0.793 and F stat still found significant 

(5.31E-47<0.05). Since the deleting the attributes does not deteriorate the model’s performance 

(∆𝑅3 = |𝑅3′ − 𝑅3| =   0.001 < 0.02), X36 and X37 both are kept removed from the model.  

The results of the regression analysis are given in Table C4.  
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Table C3: Regression analysis result for iteration 3.  

Attribute  t Stat P-value Significance  

X18 4.618888 6.67E-06 Significant  

X35 10.71123 1.07E-21 Significant  

X36 -0.96218 0.337052 Insignificant  

X37 -0.38591 0.699945 Insignificant  

Table C4: Regression analysis result for iteration 3 after removing the attribute X36 and X37.  

Attribute   t Stat P-value Significance 

X18 6.97 3.79E-11 Significant  

X35 13.05 4.59E-29 Significant  

Iteration 4: in iteration 4, ranked 4 attribute is X9 is added to the model and regression analysis 

is done. The recorded correlation coefficient of the model is 𝑅 4 = 0.793 and F stat is found 

significant (8.04E-46<0.05). The regression analysis results do not show significant improvement 

(∆𝑅4 = |𝑅4 − 𝑅3|  = 0.000 < 0.02), so attribute X9 can be removed from the model.  
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Appendix D  

Example of theoretical and observed probability plot (PP 

plot) on coefficients (productivity contribution) of the 

M LR model as presented by Branch 1 of the structural 

steel model. 
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Figure D.1. PP plot of coefficients (productivity contribution) for variables X16 and X18 within 

the steel fabrication productivity model, as presented by Branch 1 of the enhanced model tree for 

variance prediction. (Note a perfect correlation in a PP plot indicates a normal distribution 

underlying the sampled data.) 
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Appendix E  

Sample Classification Results from Enhanced M odel Tree  

Sample classification performance at some control points of the Enhanced Model Tree algorithm 

illustrated with attribute 35 is provided in the following table (added in Appendix 3). At the 

initial stage (base case), when no branching was considered, all 175 instances were used to prepare 

the MLR model resulting in an R2 value of 0.77. The tabulated results show classification based 

on attribute 35 improves the prediction efficiency (value of R2). The model tree classification 

(branching) algorithm terminates when no further improvement is observed, subject to the 

minimum number of instances being retained in each branch (in this case, set at 30). Consequently, 

no other attributes offer the opportunity for further branching and resulting in an R2 value greater 

than 0.77; hence, they are not considered in the model tree classification. 

Table E1: M odel Tree classification performance at different control points.  

Attribute  Branch 

Decomposition 

level 

Branch Logic R 2 

X35 Base case (no 

branching) 

- 0.77 

Level 1 X35>65794.61 kg 0.86 

Level 1 X35≤65794.61 kg 0.64 



269 

Level 2 X35≤13529.37 kg 0.91 

Level 2 13529.37 kg ≤X35< 65794.61 

kg 

0.72 

Level 2 65794.61 kg ≤X35≤434349.93 kg 0.87 

Level 2 X35>434349.93 kg 0.93 

 

 


