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Abstract

Power electronic devices have been utilized in myriad applications in power system at all

voltage and power levels. Accurate and efficient simulation is required for precise con-

trol and performance analysis of power electronic converters. Nonlinear physics-based

device-level models of power electronic devices, such as insulated-gate bipolar transis-

tor and power diode, have been previously developed to give detailed information of the

components. Due to the high frequency switching transients, model complexity and non-

linear device characteristics, the application of physics-based model has hitherto been lim-

ited. Massive-thread computing brings up a new concept of dealing with highly complex

models using parallel processing. Graphics processors equipped with thousands of com-

pute cores meet the requirement of data and task parallelism for the solution of large-scale

power electronic systems containing multiple detailed components while significantly in-

creasing the simulation efficiency.

This thesis provides the application of massively parallel processing in large-scale power

electronic circuit simulation. Massively parallel modules are developed for the physics-

based IGBT and power diode models, in addition, efficient numerical solvers are devel-

oped for numerical linear and nonlinear system solution. The implementations are ver-

ified for the simulation of modular multi-level converters (MMCs) and compared with

commercial device-level simulation software. The results show good agreement, larger-

scale computational capability and considerable acceleration.
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1
Introduction

Computational speed is an overriding concern in large-scale power electronic circuit sim-

ulation using device-level circuit simulators. Modeling complex systems composed of

power electronic subsystems such as automotive, renewable energy, and smart grid tech-

nologies, can often be very challenging as the system modeler is faced with a difficult com-

promise between system size, modeling complexity, and simulation duration to obtain a

reasonable execution time for the application. Computational bottlenecks arise during re-

peated nonlinear transient simulations which are quite frequently required in cases that

include but are not limited to the following:

• Robust design of power electronic systems involving optimization to fine-tune pa-

rameters at the circuit and component levels requiring several design iterations and

hundreds of simulation runs.

• In addition to transient analysis, simulation-based statistical and sensitivity analysis

of the system hierarchy to reduce design costs and time.

• Comprehensive fault analysis of systems using a matrix of faults representing pos-

sible device/component failures requiring multiple simulation runs to evaluate sys-

tem performance and improve reliability.

• Data visualization and analysis of large sets of post-simulation results to extract

meaningful system performance indices.
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Chapter 1. Introduction

• Detailed modeling of complex mixed-signal and multi-domain subsystems with widely

different time constants, for e.g., electronic, electrical, magnetic, thermal, and hy-

draulic systems.

1.1 Device-Level Model Simulation

Comparing with circuit-level and system-level simulation, device-level simulation pro-

vides possibility to observe transient response inside a single power electronic device,

however, on the other hand, brings more computational complexity [1]. There are a variety

of device-level simulators available for power electronic circuit simulation, both commer-

cial and non-commercial. A partial listing of such tools include Saber�, Orcad�, PSIM�,

PLECS�, LTSpice, PECS, PETS, DesignLab, etc. All of these simulation tools provide a

plethora of models for semiconductor devices such as diodes, BJTs, JFETs, MOSFETs and

IGBTs and fundamental circuit components such as linear/nonlinear resistors, capacitors,

inductors, and independent/dependent voltage and current sources. These software tools

are capable of performing an assortment of studies such as nonlinear dc, transient, lin-

ear ac (small-signal), and Monte Carlo analyses. Furthermore, since many design projects

may include analog, digital, and mixed-signal simulations, most of these tools either pos-

sess native mixed-signal capabilities or they provide co-simulation interfaces to leverage

the features of an external toolset [2] - [4].

Model simplifications included circuit size reduction, and using averaged or linearized

models for the switching devices to observe only the system-level behavior. Model order

reduction [5] was the usual course for improving computational speed in device-level cir-

cuit simulators. However, evaluating the system’s comprehensive behavior entails main-

taining many different models of varying size and complexity on different simulation

tools. It would be far more effective if the same simulation tool could efficiently show both

the system-level and device-level results over long time frames. Taking IGBT (Insulated

Gate Bipolar Transistor) as an example, there are several models from detailed physics-

based model to ideal switch model. Equipped with both advantages of high switching fre-

quency of MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and low conduc-

tance loss of BJT (Bipolar Junction Transistor), in addition, lower on-state resistance and

higher output current capability, IGBTs have become essential devices in power converters

and motor drivers. Based on modeling method, IGBT models can be classified into two cat-

egories, physics based mathematical models, which are based on semiconductor physics
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Chapter 1. Introduction

and has higher accuracy, and behavioral model, which simulate its behavior using fitting

algorithms and of less accuracy [10]- [12]. Hefner brought up the first complete analytical

physics-based model available for circuit simulator, which is implemented in SaberRD�,

consisting of a BJT with base current supplied by a MOSFET and also takes into consider-

ation of nonlinear capacitances between terminals [7], [8]. For behavioral models, lookup

tables are used in [13] to obtain the voltage controlled current source, junction capacitance

and resistance in equivalent circuit. The drawback of behavioral model is a requirement of

precalculated database and not suitable to predict IGBT characteristic.

As the most common voltage source converter for HVDC, modular multi-level con-

verter (MMC) is always simulated using simplified IGBT and diode model because of

its complex structure consisting of a serious of submodules (SM). Device level details in

IGBT and diode are not available in these simplified models. Hefner’s analytical physics-

based IGBT model and Lauritzen and Ma’s diode model with reverse recovery [14], [15]

are adopted in this thesis to achieve detailed simulation results.

1.2 Massive Parallel Architecture

A key attribute shared by currently available simulation tools in terms of program execu-

tion is that they are single-thread programs designed to run sequentially on the CPU. Al-

though some modifications have been made for distributed processing on multiple CPUs,

such as the distributed iterative analysis (DIA) in Saber� [16], the actual execution of pro-

gram code on individual CPUs is still sequential. Therefore, the attained task parallelism

is coarse-grained at best. The resulting computational efficiency of device-level circuit

simulators was primarily derived from an increase in CPU clock speed which until the

mid 2000s could be relied upon to provide the necessary acceleration. However, computer

chip manufactures no longer rely on clock speed; they have transferred to multi-core CPU

and many-core GPU (Graphic Processing Unit) architecture to increase chip performance.

While multiple thread concepts on CPUs such as hyperthreading were introduced early

on, they were hardly taken advantage of by circuit simulators mainly due to the cumber-

some task of rewriting the program code to enable multiple threads of execution.

GPUs offer a massively-parallel architecture composed of hundreds of cores grouped

into streaming multiprocessors that can access both shared local memories and global sys-

tem memories [17]. The attained data parallelism is fine-grained and is of the single in-

struction multiple data (SIMD) type. In other words, to take advantage of the GPU’s
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Chapter 1. Introduction

architecture one must re-cast the device models and the numerical algorithms into the

SIMD format [19]. Mature application programming interfaces (APIs) are available for

SIMD abstraction such as CUDA�, DirectCompute�, and OpenCL�. The user develops

C/C++ code interlaced with special constructs and functions to access the parallel cores

and distributed memories on the GPU. Furthermore, optimized numerical libraries such

as CUBLAS (CUDA Basic Linear Algebra Subroutines) and CUFFT (CUDA Fast Fourier

Transform) are available for linear solvers and data processing. GPU-based massively-

parallel processing has been used world-wide for myriad applications such as computa-

tional fluid dynamics, life sciences, medical imaging, game physics, seismic simulations,

etc., and impressive acceleration has been reported [20] - [23]. For power system compu-

tation, GPUs have been used for various applications, such as transient stability simula-

tion [24], electromagnetic transient simulation [25], dynamic state estimation [26], [27] and

power flow calculation [28].

Based on GPU hardware architecture and CUDA thread abstraction, the design of

massive parallel large scale power electronics system is enabled. Unlike simulation tools

at hand utilize single core or multi-core CPUs using sequential programming, massive

thread programming adapts to the many core GPU architecture. The CUDA abstraction is

built through high throughput streaming multiprocessors, and each multiprocessor con-

tains many cores. Acceleration through GPU parallelism is mostly effective when dealing

with many similar tasks such as adding arrays of data. The structure of large scale power

electronic system meets the application of many core GPU processor. IGBTs and diodes

make up SMs in MMC circuit, the construction of each SM is the same and all the SMs

are in a similar situation which is suitable for accelerating. This system-level parallelism is

based on the MMC circuit construction and make massive parallel programming applica-

tion meaningful and approachable.

1.3 Motivation for this work

There are currently only several simulation tools dealing with physics-based detail power

electronic models, and the execution time is quite long. For large-scale power electronic

system, the complexity of detailed model is forced to reduce for reasonable simulation

time to view the system-level results. In traditional power converters regarding switching

device as ideal switch, the inner structure is neglected. The number of IGBTs and diodes

are large in practical power converters, showing the detail in a single device would bring
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Chapter 1. Introduction

remarkable convenience for circuit design and verification.

The main difficulty of physics-based model is to solve a large number of non-linear

differential equations. Each IGBT and diode requires a discretized linearized equivalent

circuit using Newton-Raphson and Gear’s first or second order method. For a single IGBT

and diode pair, a fixed dimension conductance matrix is developed. In a system containing

numbers of IGBT-diode pairs will have a large conductance matrix relating to the pair’s

conductance matrix. For a full matrix, there are several ways to solve the linear matrix

equation such as Gaussian elimination and LU decomposition. The system-level conduc-

tance matrix for MMC has a similar structure to block diagonal matrix with several non

zero off-diagonal elements. This special matrix structure makes parallelism for solving this

large size conductance matrix equation possible.

GPUs offers a way to meet the grown complexity, however the GPU is originally de-

signed to perform graphics, converting the power electronic models to suit GPU architec-

ture requires a lot of programming skills. The most effective way is to maximize paral-

lelism, for both system-level and device-level. The physics-based device level model for

IGBT and diode used in this thesis can both be linearized and discretized into equiva-

lent circuits. After rearranging the sequence of calculation, one power electronic device

is broken down into several units which can be processed in parallel. System-level par-

allelism varies according to circuit structure. In most cases, IGBTs and power diodes are

used as a pair and this pair come up repeatedly, which meet the system-level parallelism.

In the MMC circuit structure, the system-level parallelism is to decompose the semi block

diagonal matrix mathematically. Currently, there is no work in the literature that imple-

ments large-scale device-level power electronic circuit simulation on massively parallel

hardware.

In addition, to increase simulation efficiency during transient analysis, variable-time

step method is adopted instead of a fixed time-step. In most power converters, most por-

tion of the simulation time is for steady-state result, while transient time points call for

more calculation. Arranging source dynamically according to task instead of fixed time

point is another method to benefit simulation tools.

This thesis focuses on the GPGPU application in power electronic simulation by taking

advantage of the physics structure approximation and mathematical simplification. GPU

offers many core compared with CPUs, massive thread programming for power electronic

system is developed using CUDA platform 5.5 [29] in C++. Optimization of code is of

essential importance to make models suitable for GPU programming, such as avoiding
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frequent data transformation between different registers, otherwise, CPU coding can easily

surpass the speed and flexibility.

1.4 Research Objectives

To accomplish the large-scale power electronic circuit simulation on a massive parallel

architecture, research objectives are listed as follows,

• The massive thread mapping for linear passive elements model such as resisters,

inducers and capacitors into unified lumped Norton model.

• Discretized and linearized diode model (Diode-DLE) using P. O. Lauritzen and C. L.

Ma’s model [14].

• Analog equivalent circuit of IGBT using Hefner’s model [8] and its conversion into a

discretized and linearized equivalent IGBT model (IGBT-DLE).

• Newton-Raphson iterative method to solve nonlinear equation numerically.

• Gaussian Elimination and LU decomposition comparison for a single device and a

system containing many non linear power electronics.

• Method to update the semi-block diagonal Jacobian matrix equation of MMC using

a relaxation algorithm.

• Development of partial LU decomposition to solve Jacobian matrix equation and

meet parallelism.

• Variable time-step scheme using the predictor and corrector method.

• Power electronic system case study of MMC circuit simulation, result evaluation for

accuracy and time consumption.

1.5 Thesis Outline

This thesis contains 5 chapters. The rest of the chapters are outlined as follows:

• Chapter 2 introduces background of the GPU hardware architecture and implemen-

tation of CUDA abstraction.
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Chapter 1. Introduction

• Chapter 3 describes the algorithms used to simulate a large-scale power electronic

system, including the physics-based device models of linear passive elements and

nonlinear power diode and IGBT, Newton-Raphson method and matrix equation

solver and their massive thread parallel implementation.

• Chapter 4 presents the case study for MMC circuit of which output voltage, current

and execution time are compared with SaberRD�.

• Chapter 5 gives the conclusion and some future work of the thesis.

7



2
Background on GPGPU

With the development of modern CPUs, the GPUs are experiencing updating among vari-

ous generations. Non-graphical application of GPUs, known as GPGPU has become prac-

tical and popular. The FermiTM generation architecture has brought not only exceptional

gaming performance, but also High Performance Computing (HPC) capability. Based on

evolution of FermiTM, next generation KeplerTM architecture offers higher performance

with improvement of programming flexibility for multiple high level languages. In addi-

tion, a comparison between the latest generation PascalTM and KeplerTM will be made to

show the big potential of GPU development.

The GPU hardware architecture and CUDA abstraction will be described in this chap-

ter, including the new features in GK110 GPU and potential power for various applica-

tions.

2.1 GPU Hardware Architecture

According to specification in Tab. 2.1, GK110 is of 28 nm fabrication with 7.1 billion tran-

sistors on a 561 mm2 die as shown in Fig. 2.1(a), while GP104 is of higher performance and

power efficiency using 16nm fabrication with 7.2 billion transistors. In hybrid computa-

tional systems, CPU and GPU cooperate as host and device respectively. Before device side

execution, host sends instructions and data to device side through PCIe 3.0×16 interface

at the bandwidth up to 15.754 GB/s. Instructions will be distributed though GigaThread

to each streaming multiprocessor(SMX). And data from host memory will be transfered to

8
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Table 2.1: GPU Specification

Chip GK110 GP104
Fabrication 28 nm 16 nm
Transistors 7.1 billion 7.2 billion
Die size 561 mm2 314 mm2

Bus interface PCIe 3.0 × 16 PCIe 3.0 × 16
Number of single precision cores 2880 2560
Memory bandwidth 336 GB/s 320 GB/s
Memory bus width 384 bit 256 bit
Memory size 6 GB 8 GB
Memory type GDDR5 GDDR5X
Core clock 837 MHz 1607 MHz

(a) Die of NVIDIA� GK110 (b) Die of NVIDIA� GP104

Figure 2.1: Die of NVIDIA� GK110 and GP104

Table 2.2: Processing Power Comparison Between CPU and GPU

Base Clock GFLOPS(SP) GFLOPS(DP)
GeForce GTX Titan Black (Kepler) 889M Hz 5121 1707
GeForce GTX 1080 (Pascal) 16.7M Hz 8228 257
Intel i7-3770(Ivy Bridge) 3.4G Hz 108.8 54.4

global memory on GPU board. After that, in each SMX, warp scheduler distribute every 32

threads into a warp as execution unit, which means, at most 32 threads can operate simul-

taneously for each warp scheduler while other threads will be parallelized with pipeline

by the device automatically. After computation, result data will be saved in global memory

9



Chapter 2. Background on GPGPU

Figure 2.2: Hybrid computing system structure

and then transfer back to host side through PCIe 3.0 interface.

GK110 architecture contains 15 streaming multiprocessor (SMX) with registers, caches

and shared memory in each SMX as in Fig. 2.2. Each SMX contains 192 single precision

CUDA cores, which is 3 times of the 32 cores in FermiTM and 64 double precision units.

A CUDA core executes one instructor of floating point or integer for a thread. In Tab.2.2,

GPUs has higher computing power in both single and double precision computation than

traditional CPUs. The new features in GK110 SMX is the higher double precision perfor-

mance for wider computational applications.

There are several type of memories on board, including global memory, shared mem-

ory and registers. The registers inside a SMX is the fastest one but with limited number;

shared memory has access to all cores inside the SMX with low latency; and global mem-

ory has a great amount with the scope to the entire device while accessed in high latency.

As listed in Tab. 2.1, shared memory can be configured as the size of 16KB, 32KB or 48KB,

which shares the 64KB on-chip memory with L1 Cache. The memory management, includ-

ing allocation and organization, is the key of programming efficiency. One of the optimal

methods is to reduce the operation with global memory and take full advantage of shared

10
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Block (0, 0) Block (0, 1)

Block (1, 0) Block (1, 1)

Grid0

Grid1

Kernel0

Kernel1

Block (0, 0) Block (0, 1)

Block (1, 0) Block (1, 1)

Block (2, 0) Block (2, 1)

Figure 2.3: Thread hierarchy in CUDA

memory and registers according to their lifetime and scope.

2.2 CUDA Programming

CUDA offers both a platform and programming model for GUGPU programming. NVIDIA�

is improving CUDA version to adapt the GPU hardware and meet the computational re-

quirement. CUDA is designed based on the GPU hardware architecture with scalable

models, which makes parallel programming on the GPU can benefit various applications.

In addition, CUDA supports multiple languages, such as C/C++, Fortran and Python.

In heterogeneous programming, the CPU works as a host running serial code while

GPU accomplish the parallel computing on device side.
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2.2.1 Thread Management

The function involving data parallelism is referred as a kernel, which organizes massive

threads into blocks inside a grid, as shown in Fig. 2.3.

The following example demonstrates the parallel matrix addition.

//Kernel definition
global void kernel(float A[N][N], float B[N][N], float

C[N][N])
{

int i = blockIdx.x ∗ blockDim.x + threadIdx.x;
int j = blockIdx.y ∗ blockDim.y + threadIdx.x;
if (i < N && j < N) C[i][j] = A[i][j] + B[i][j];

}

int main()
{

· · ·
//Kernel invocation for adding two matrix
dim3 nthread(32, 32);
dim3 nblock((N - 1)/nthread.x + 1, (N - 1)/nthread.y +

1);
kernel<<<nblock, nthread>>>(A, B, C);
· · ·

}

The key word global defines the kernel as a global function of parallel matrix ad-

dition called from host side. The kernel is configured before execution, of which threads,

blocks and grid are defined according to the computing task and GPU resource. Thread is

the parallel processing unit which is executed by each core, and its index can have up to

three dimensions in a block. In above example, a two-dimensional block containing 32 ×
32 threads is allocated to meet the two-dimensional matrix.

There is a limitation of thread numbers per block and the maximum dimension size

of a grid. In compute capability 3.5 hardware, the maximum dimension size of a block

is 1024×1024×64; the maximum dimension size of a grid is 2147483647×65535×65535.

Additionally, the maximum thread number per block is 1024, which restricts the block

structure as well. The grid, block, thread hierarchy represents the architecture of the

GPU, SMX and core. Each thread in a block has an identical index threadIdx, which can

be one-dimensional (threadIdx.x), two-dimensional (threadIdx.x, threadIdx.y) or three-

dimensional (threadIdx.x, threadIdx.y, threadIdx.z), according to the block structure. Sim-

ilarly, each block has a built in index blockIdx. As shown in Fig. 2.4, the N×N matrix

in the example is divided into blocks with two-dimensional block indexes (blockIdx.x,

blockIdx.y). In case that the dimension N may not be evenly divided by the number of

12
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Figure 2.4: Block structure of a N× N matrix

thread in that dimension, ((N - 1)/nthread.x + 1, (N - 1)/nthread.y + 1)

is assigned to the block number per grid.

All threads inside a kernel must be synchronized before the end of execution. Block-

level synchronization barrier, a synchronization point makes sure all threads inside a block

has reach the command line and ready for next instructions, from the device side. Device-

level synchronization barrier sets synchronization point to make sure all threads inside a

grid complete all preceding requested tasks before the next kernel execution.

Another important new feature of GK110 is dynamic parallelism which enables launch-

ing nested kernels as shown in Fig. 2.5. Since the data transmission between GPU and CPU

through PCIe3.0 interface is the most time consuming part in GPU programming, moving

the top-level loop onto the GPU not only reduces the burden to marshal and transfer the

operating data but increases the utilization of the precious computational capability of the

GPU. In Fig. 2.5(a), launching multiple kernels without dynamic parallelism makes that

the GPU works as an co-processor and the CPU has high occupancy for host control. In

Fig. 2.5(b) Due to launching nested kernels with dynamic parallelism, the GPU can be

more autonomous and allocate resource flexibly according to task load. The launching

depth can reach up tp 24 generations within the limitation of GPU resources, which bene-

fits in recursive parallel algorithms containing loops and conditions substantially.
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Figure 2.5: (a) Launching multiple kernels without dynamic parallelism, (b) Launching
nested kernels with dynamic parallelism

2.2.2 Memory Management

As shown in Fig. 2.2, the data flow in hybrid computing system is between CPU(host)

and GPU(device). The host memory is on the CPU side for data transaction with the GPU,

which should be allocated before kernel execution. Based on the limitation of PCIe 3.0

interface bandwidth, the host memory should be page-locked (pinned) memory. In this

way, physic memory (RAM) is directly requested by DMA on the GPU without involving

pinned buffer on CPU like normal virtual memory. Global memory is off-chip memory on

the GPU board making transaction with host memory and other on-chip device memory.

It need to be allocated so that memory coping from host can have destination, and freed

after transferring computation result back to host. Since CUDA device use unified virtual

address [29], host and device memory has same pointer type so that data transaction can be

conveniently achieved. Compared with shared memory, global memory has higher latency

and lower bandwidth, which makes utilizing shared memory with the scope and lifetime

of single block to replace the usage of global memory. In a CUDA compute capability 3.5

system, shared memory size has the flexibility of 16kB, 32kB or 48kB. The register numbers

has a limitation for each block of 65536 with lowest latency and scope of thread. Therefore,

the size limitation of shared memory and register numbers affect the planning of thread

and block structure.
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2.2.3 Error Handling and Event Management

All CUDA API calls return cudaError t value indicating error types. Errors from calling

a kernel, which are asynchronous errors, can’t be returned before completing the kernel.

This feature makes debugging code on device part difficult. The only way to check asyn-

chronous errors is to synchronize device right after calling the kernel, and check the error

code right away. Errors can be retrieved by loading the last error in the error variable.

Synchronizing and checking error part can only be accomplished on the host side, which

means dividing a kernel into small parts and retuning to host memory every time is a

practical way for error checking.

CUDA runtime API offers functions to record events at any point of the program asyn-

chronously. The elapsed time can be obtain after completing the event in milliseconds with

a resolution of around 0.5 microseconds. It uses the timer on GPU to avoid synchronization

interface.

2.3 Summary

GPU computation has a specific application capability for massive thread programming

based on its hardware architecture. The KeplerTM GK110 equipped with 7080 transis-

tors contains 15 SMX featuring 192 single-precision 64 double-precision CUDA cores each.

While the new PascalTM GP104 is the currently most efficient and fastest GPU with 2560

single-precision cores [18]. Furthermore, CUDA is abstracted based on GPU hardware

architecture for massive thread programming. In large scale power electronic circuit ap-

plication, the circuit characteristics and GPU programming features are both considered

for efficient simulation.
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3
Massive-thread Parallel Device-level Modules

Device-level power electronic circuit simulation is computationally so burdensome that

engineers are forced to make model simplifications or reduce system size to obtain a rea-

sonable execution time. This chapter proposes a massive-thread parallel simulation of

large-scale power electronic circuits employing device-level modeling to obtain higher

data throughput and lower execution time. Parallel massive-thread modules are proposed

for the physics-based IGBT and power diode components.

3.1 Linear Passive Elements

3.1.0.1 Model Formulation

Linear passive elements (LPEs), including resistance, inductance, capacitance can be dis-

cretized by using the trapezoidal rule of integration. Each inductance and capacitance in

an arbitrary combination linear system shown in Fig. 3.1(a) can be modeled as a Norton

impedance network consisting of an equivalent resistance and a history current source
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R L C R ReqL ReqC

IhL IhC

Req

Ih
(a) (b) (c)

Figure 3.1: (a) An arbitrary linear passive elements combination, (b) Discretized equivalent
Norton impedance of LPE, (c) Simplified Norton lumped model

shown in Fig. 3.1(b), whose parameters are given as

iL(t) =
vL(t)

RL
eq

+ ILh (t−Δt), (3.1)

RL
eq =

2L

Δt
, (3.2)

ILh (t−Δt) =
vL(t−Δt)

RL
eq

+ i(t−Δt), (3.3)

iC(t) =
vC(t)

RC
eq

+ ICh (t−Δt), (3.4)

RC
eq =

Δt

2C
, (3.5)

ILh (t−Δt) = −vC(t−Δt)

RC
eq

− i(t−Δt), (3.6)

Conversion between Norton equivalent circuits and Thevenin equivalent circuits yields a

simplified Norton equivalent circuit shown in Fig. 3.1(c).

i(t) =
v(t)

Req
+ Ih(t−Δt), (3.7)

Req = RL
eq +RC

eq +R, (3.8)

Ih(t−Δt) =
ILh (t−Δt)RL

eq + ICh (t−Δt)RC
eq

Req
, (3.9)

3.1.0.2 Parallel Massive-thread Mapping

All linear elements in power systems can be transferred into an unified lumped Norton

model, which makes it possible to be processed in parallel in the same kernel. And from

(3.1) to (3.6), history current ILh and ICh are updated as

ILh (t) = 2i(t)− ILh (t−Δt), (3.10)

ICh (t) = −2i(t) + ICh (t−Δt), (3.11)
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Algorithm 1 LPE Kernel
Calculate equivalent resistance Req

while t < tend do
Calculate i(t) from v(t) and Ih (3.7)
Update history current source for L (3.10)
Update history current source for C (3.11)
Update total history current source Ih(3.9)

� Kernel0

t← t+Δt

Equivalent resistance Req, Req, R
Global Memory

LPE1

LPEn-1

...

Kernel0

 Current vector of inductance, capacitance iL, iC

History current vector ih, ih 

Node voltage v
Node current i

L C

L C

i

ih, ih
L C

iL, iC

Req, Req, RL C

v

iL, iC

ih, ih
L CLPE0

Figure 3.2: Massive thread parallel implementation of LPE elements

All the LPEs can be processed inside one kernel. There are 3 steps inside the kernel

to compute at one time step. Firstly, compute unified lumped LPE current from (3.7),

followed by history currents updating in each L and C form (3.10) and (3.11). Then update

the LPE history current from (3.9). Each time a kernel reads and writes data from global

memory in device before and after the computation inside a kernel. The massive thread

parallel module for LPE is shown in Fig. 3.2.

3.2 Nonlinear Device-Level Models

3.2.1 Nonlinear Power Diode

3.2.1.1 Model Formulation

Detailed device level modeling of power diodes has a wide range of circuit operation con-

dition since it includes equations for drift and diffusion of electrons and holes. How-

ever, different from conventional detailed model too complicated to simulate, this paper

presents a simplified physics-based model containing p-i-n structure suitable for power
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diode’s work condition of high-voltage and fast switching. Based on Linvil’s lumped

charge concept [6] and derivation from semiconductor charge transport equations, this

model adopts reverse recovery, junction capacitance and contact resistance to present its

physics.

In a p-i-n structure diode, reverse recovery happens when turn off a forward conduct-

ing diode rapidly described as following equations:

iR(t) =
qE(t)− qM (t)

TM
, (3.12)

0 =
dqM (t)

dt
+

qM (t)

τ
− qE(t)− qM (t)

TM
, (3.13)

qE(t) = ISτ(e
vE(t)

VT − 1), (3.14)

Where iR(t) is the diffusion current in i region, qE(t) represents charge variable in junc-

tion area, qM (t) represents charge variable in the middle of i region, TM is the diffusion

transit time across i region, τ is the lifetime of recombination, IS is the diode saturation

current constant, vE is the junction voltage and VT is the thermal voltage constant.

The voltage drop across i-region vM (t) is described as

vM (t) =
VTTM i(t)

qM (t)
. (3.15)

Contact resistance is presented as an internal resistance RS and has following expression,

v(t) = 2vM (t) + 2vE(t) +RSi(t), (3.16)

where v(t) is the voltage across the diode and i(t) is the total diode current. The charge of

junction capacitance qj(t) contributes to a part of i(t) as following,

i(t) = iE(t) +
dqJ
dt

. (3.17)

Charge qJ(t) in the capacitance CJ(t) is

qJ(t) =

∫
CJ(t)d(2vE), (3.18)

where

CJ(t) =

⎧⎪⎪⎨
⎪⎪⎩

CJ0

(1− 2vE(t)

φB
)m

vE < φB
4

m·2m+2CJ0vE(t)
φB

− (m− 1)2mCJ0 vE ≥ φB
4

, (3.19)

CJ0 is the zero-biased junction capacitance, φB is the built-in potential and m is the junction

grading coefficient.
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Figure 3.3: (a) Power diode symbol, (b) Physical structure of power diode, (c) Discretized
and linearized equivalent circuit of power diode (Diode-DLE)

3.2.1.2 Model Discretization and Linearization

Equation (3.12) to (3.19) describe the physical based model of power diode. However,

since its time-varying and nonlinear characteristic, it is necessary to obtain a discrete and

linearized equivalent circuit for simulation.

Using trapezoidal rule to discretize the differential term dqM
dt in equation (3.13) can

result following equations,

qM =
Δt · qE(t)

2TM (1 + k1Δt
2 )

+
qhist(t−Δt)

1 + k1Δt
2

, (3.20)

where qhist(t) =
Δt

2TM
qE(t)− k1Δt

2
qM (t), (3.21)

k1 =
1

τ
+

1

TM
. (3.22)

Similarly, dqJ
dt in (3.17) is discretized as,

iJ(t) =
2

Δt
qJ(t)− 2

Δt
qJ(t−Δt)− iJ(t−Δt), (3.23)

where iJ(t) =
dqJ(t)

dt
, (3.24)

And from (3.18) and (3.19), qJ is obtained as,

qJ(t) =

⎧⎪⎨
⎪⎩

CJ0φB

m−1 (1− 2vE(t)
φB

)(1−m) vE < φB

4

m·2m+2CJ0v
2
E(t)

φB
− (m− 1)2m+1CJ0vE(t) vE ≥ φB

4

. (3.25)

For nonlinear elements such as qE in (3.14), according to (3.12) to (3.14), reverse recovery

equations are linearized into an equivalent circuit consisting of a dynamic conductance
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gR and parallel current source iReq. gR is the partial derivative of iR(t) respect to 2vE as

following,

gR =
∂iR(t)

∂(2vE(t))
=

1

2vT
k2ISτe

vE(t)

VT , (3.26)

where,

k2 =
1

TM
− Δt

2T 2
M (1 + k1Δt

2 )
, (3.27)

iReq = iR(t)− 2vE(t)gR

= k2ISτ(e
vE(t)

vT − 1)− qhist(t−Δt)

TM (1 + k1Δt
2 )

− 2vE(t)gR.
(3.28)

If RM represents equivalent resistance in terms of 2vM , (3.15) turns into

RM =
2VTTM

qM
. (3.29)

The current iJ from junction capacitance in (3.23) is linearized as following,

gJ =
∂iJ(t)

∂(2vE(t))
=

2

Δt

∂qJ
∂(2vE)

=
2

Δt
CJ(t), (3.30)

iJeq = iJ(t)− 2vE(t)gJ . (3.31)

Based on the analysis above, a complete physical power diode’s equivalent circuit is

shown in Fig. 3.3. A 3×3 conductance matrix GDiode, voltage vector V Diode and current

vector IDiode
eq satisfy following equation:

GDiode · V Diode = IDiode
eq , (3.32)

Where GDiode = ⎛
⎜⎜⎜⎝

gR + gJ −gR − gJ 0

−gR − gJ gR + gJ + 1
RM+RS

− 1
RM+RS

0 − 1
RM+RS

1
RM+RS

⎞
⎟⎟⎟⎠ , (3.33)

V Diode = [vA vin vK ]T , (3.34)

IDiode
eq = [−iReq − iJeq iReq + iJeq 0]T (3.35)

Applying Newton-Raphson method to obtain numerical solution for equation 3.32 yields

the following equation

GDiode(n) ·ΔV Diode(n) = ΔIDiode
eq

(n)
, (3.36)
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where

ΔV Diode(n) = V Diode(n+1) − V Diode(n), (3.37)

ΔIDiode
eq

(n)
= GDiode(n) · V Diode(n) −ΔIDiode

eq
(n)

. (3.38)

To solution of (3.36) ΔV Diode(n) is to update the (n+1)th iterative value V Diode(n+1)
based

on previous values, which will reach the solution of (3.32) after several iterations if con-

verging.

3.2.1.3 Parallel Massive-thread Mapping

Algorithm 2 Diode Kernel
procedure PHYSICS BASED POWER DIODE MODULE

Reverse Recovery:
Calculate qE(t) from vE(t) as (3.14)
Calculate qM (t) from qE(t) and qhist(t−Δt) using (3.20)
Update qhist(t) in (3.21)
Calculate gR and iReq from vE(t) as (3.26) and (3.28)

Junction capacitance:
Calculate CJ(t) from vE(t) as (3.19)
Compute gJ and iJeq form vE(t) as (3.30) and (3.31)

� Kernel0

Complete module:
Solve matrix equation (3.32) � Kernel1
Update vE(t)
if vE(t) not converged then

go to Reverse Recovery:
else

Store vA, vin, vK into global memory

A system containing n diodes, the massive-thread parallel model consists of 2 kernels

as shown in Fig. 3.4. The outer loop is to solve the model using Newton-Raphson method,

which will be described latter. Updating the equivalent inductance and current source

from reverse recovery and junction capacitance are accomplished in Kernel0. And Kernel1

is to solve the matrix equation using Newton-Raphson iterative method. Then vE(t) is

updated from vA and vin to compare the difference with the last iterative vE(t) to decide

if converge. This loop will continue until vE(t) get converged and move to the next time

point.
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Figure 3.4: Massive thread parallel implementation of power diode

3.2.2 Nonlinear Physics-based IGBT

3.2.2.1 Module Formulation

Insulated Gate Bipolar Transistors(IGBTs) are essential in a lot of power electronic applica-

tions. Since buffer-layered IGBTs have much faster switching speed at high voltage condi-

tion, this model is developed and implemented in some commercial softwares. Hefner’s

physics-based model of IGBTs [8] is described to observe dynamic behavior and transient

response and the results are verified by physics-based simulator SaberRD�.

Based on the model, IGBT is described as a combination of a bipolar transistor and a

MOSFET. Since these internal devices are differently structured from standard microelec-

tronic device, a regional approach is adopted to identify the phenomenological circuit of

IGBT as shown in Fig. 3.5(a). An analog equivalent circuit, shown in Fig. 3.5(b), makes

it possible to implement in circuit simulators by replacing the BJT with base and collec-

tor current sources and MOSFET with a current source. This analog circuit represents

the currents between each of the terminal nodes and internal nodes in terms of nonlinear

functions of system variables.

3.2.2.1.1 Currents The steady-state collector current icss of BJT is formulated as

icss =
iT

1 + b
+

4bDpQ

(1 + b)W 2
, (3.39)
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where b is the ambipolar mobility ratio, Dp represents hole diffusivity, the anode current

iT and quasi-neutral base width W are shown as following,

iT =
vae
rb

, (3.40)

W = WB −Wbcj = WB −
√

2εsi(vds + 0.6)

qNscl
. (3.41)

The instantaneous excess-carrier base charge Q is given as

Q =

⎧⎪⎨
⎪⎩
Q1 veb ≤ 0

max(Q1, Q2) 0 < veb < 0.6

Q2 veb ≥ 0.6

. (3.42)

The emitter-base depletion charge Q1 and excess carrier quasi-neutral base charge Q2 has

the following expression

Q1 = Qbi −A
√

2qNBεsi(0.6− veb), (3.43)

Q2 = p0qALtanh(
W

2L
), (3.44)

where Qbi is the emitter-base junction built-in charge, NB is the base doping concentration.

vae represents the voltage across rb, q is the Electron charge, p0 is the carrier concentration

at the emitter end of the base, A is the device active area, L is the ambipolar diffusion

length, WB represents the metallurgical base width, Wbcj is the base-collector depletion

width, εsi is the silicon dielectric constant, vds means the drain-source voltage and Nscl

is the collector-base space concentration. When veb ≥ 0, p0 can be a iterative numerical

solution due to the relationship with Q2 in (3.44) based on comparison between Q1 and

Q2. The Newton-Raphson method is adopted to solve p0 in the following equation

qveb
kT

= ln[(
p0
n2
i

+
1

NB
)(NB + p0)]− βln(

p0 +NB

NB
), (3.45)

where

β =
2μp

μn + μp
. (3.46)

If 0<veb <0.6 and Q1 >Q2, instead of the numerical solution, p0 is modified as

p0 =
Q1

qALtanh(W2L)
. (3.47)

The base resistance rb in (3.40) is expressed as

rb =

{
W

qμnANB
veb ≤ 0

W
qμeffAneff

veb > 0
, (3.48)
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where μn and μeff stand for electron mobility and effective mobility, and neff is the effec-

tive doping concentration.

The steady-state base current ibss is caused by decay of excess base charge of recombi-

nation in the base and electron injection in the emitter, expressed as following,

ibss =
Q

τHL
+

4Q2N2
sclisne

Q2
Bn

2
i

, (3.49)

where τHL is the base high-level lifetime, isne is the emitter electron saturation current, ni

is the intrinsic carrier concentration and QB represents the background mobile carrier base

charge as

QB = qAWNscl. (3.50)

And the MOSFET channel current is expressed as

imos =

⎧⎪⎪⎨
⎪⎪⎩
0 vgs < vT

Kp(vgs − vT )vds − Kpv2ds
2 vds ≤ vgs − vT

Kp(vgs−vT )2

2 vds > vgs − vT

, (3.51)

where Kp is the MOSFET transconductance parameter, vgs is the gain-source voltage and

vT is the MOSFET channel threshold voltage [9].

In addition, there is a avalanche multiplication current imult in Fig. 3.5(b). Due to

thermal generation in the depletion region and carrier multiplication which is an key factor

to determine the avalanche breakdown voltage and the leakage current, imult is given as

imult = (M − 1)(imos + icss + iccer) +Migen, (3.52)

The avalanche multiplication factor M is expressed as following

M = [1− vds
BVcb0

]−BVn , (3.53)

where BVcb0 is the open emitter collector-base breakdown voltage and the collector-base

thermally generated current Igen has the following expression

igen =
qniA

τHL

√
2εsivbc
qNscl

. (3.54)

3.2.2.1.2 Capacitance and charges The gate-source capacitance Cgs in analog module is

a constant while all the others are charge related.

Qgs = Cgsvgs. (3.55)
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The gate-drain capacitance Cgd is as

Cgd =

{
Coxd vds ≤ vgs − vTd
CgdjCoxd

Cgdj+Coxd
vds > vgs − vTd

, (3.56)

where vTd is the gate-drain overlap depletion threshold voltage, Coxd is the gate-drain.

And the gate-drain overlap depletion capacitance Cgdj is given as

Cgdj =
Agdεsi
Wgdj

, (3.57)

where Agd is the gate-drain overlap area, εsi is the silicon dielectric constant and Wgdj is

the gate-drain overlap depletion width given as following,

Wgdj =

√
2εsi(vdg + VTd)

qNscl
. (3.58)

And the charge of Cgd has the expression as

Qgd =

⎧⎨
⎩
Coxdvdg vds ≤ vgs − vTd
qNBεsiA

2
gd

Coxd
[
CoxdWgdj

εsiAgd
− ln(1 +

CoxdWgdj

εsiAgd
)]− CoxdvTd vds > vgs − vTd

. (3.59)

Similarly, other capacitances are related to a certain depletion capacitance and the deple-

tion capacitance depends on active area and width. The drain-source depletion capacitance

Cdsj , is related to (A-Agd) and drain-source depletion width Wdsj as following,

Cdsj =
(A−Agd)εsi

Wdsj
. (3.60)

And the charge Qds is as

Qds = Ads

√
2εsi(vds + 0.6)qNscl. (3.61)

The emitter-base capacitance Ceb is solved for ∂Qeb
∂Veb

according to the following equation

Vebj = 0.6− (Q−Qbi)
2

2qNBεsiA2
, (3.62)

as

Ceb = −qNBεsiA
2

Q−Qbi
. (3.63)

And Qeb is the same as Q given in (3.42). The collector-emitter redistribution capacitance

Ccer is solved from ambipolar diffusion equation as

Ccer =
QCbcj

3QB
, (3.64)
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Figure 3.5: (a) Phenomenological physical structure of IGBT, (b) Analog equivalent circuit
of IGBT (IGBT-AE)

where QB is the background mobile carrier base charge and the base-collector depletion

capacitance Cbcj is the same as Cdsj . The carrier multiplication charges and capacitance are

related to Ccer as given

Qmult = (M − 1)Qce, (3.65)

Cmult = (M − 1)Ccer. (3.66)

3.2.2.2 Model Discretization and Linearization

Similar to power diode model, the analog equivalent circuit model (IGBT-AE) in Fig. 3.5(b)

containing nonlinear and time variable element is transferred into discretized and lin-

earized equivalent equivalent circuits (IGBT-DLE) as shown in Fig. 3.6.

After applying Newton-Raphson method of linearizion on four current sources and

the conductivity-modulated base resistance rb, these five elements are converted into dis-

cretized elements. Given the imos at the (n+ 1)th iteration as an example yields

in+1
mos = inmos +

∂inmos

∂vgs
(vn+1

gs − vngs) +
∂inmos

∂vds
(vn+1

ds − vnds)

= inmoseq + gnmosgsv
n+1
gs + gnmosdsv

n+1
ds , (3.67)
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Figure 3.6: Discretized and linearized equivalent circuit of IGBT (IGBT-DLE)

where

inmoseq = inmos − gnmosgsvgs − gnmosdsvds. (3.68)

Similarly, applying to iT , icss, ibss, imult gets equation (3.69) to (3.72) as following,

in+1
T =inTeq + gnTaev

n+1
ae + gnTbcv

n+1
bc + gnTebv

n+1
eb , (3.69)

in+1
css =incsseq + gncssbcv

n+1
bc + gncssaev

n+1
ae + gncssebv

n+1
eb , (3.70)

in+1
bss =inbsseq + inbssebv

n+1
eb + gnbssbcv

n+1
bc , (3.71)

in+1
mult =inmulteq + gnmultdsv

n+1
ds + gnmultdsv

n+1
ds + gnmultaev

n+1
ae + gnmultebv

n+1
eb (3.72)

All the capacitances are displaced with pairs of a conductance in parallel with a current

source. Euler, trapezoidal or other Gear 2nd order method on charges at the t+Δt time

point make it discretized. Given trapezoidal method on Qgs as an example,

Qgs(t+Δt) = Qgs(t) +
h

2
[iQgs(t+Δt) + iQgs(t)], (3.73)
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solving for the iQgs yields

iQgs(t+Δt) =
2

h
[Qgs(t+Δt)−Qgs(t)]− iQgs(t) = iQgseq(t) +GCgs(t+Δt)vgs(t+Δt)

(3.74)

iQgseq(t) = iQgs(t)−GCgs(t)vgs(t). (3.75)

With the conversion above, IGBT-DLE is modeled as in Fig. 3.6. Applying KCL to nodes

Gate, Collector, Base, Emitter and Anode gives the five equations as following,

dQgs

dt
− dQds

dt
= iG (3.76)

−imult − dQmult

dt
− dQgs

dt
− imos − dQCcer

dt
− icss − dQdsj

dt
= iC (3.77)

dQgd

dt
+ imos +

dQdsj

dt
+ imult +

dQmult

dt
− ibss − dQeb

dt
= 0 (3.78)

dQeb

dt
+ ibss +

dQCcer

dt
+ icss − iT = 0 (3.79)

iT = iA (3.80)

After applying the detailed linearized equivalent circuit, a 5×5 conductance matrix GIGBT

is obtained to satisfy the following equation

GIGBT · V IGBT = IIGBT
eq , (3.81)

Where

V IGBT = [vc vg va vd ve]
T , (3.82)

IIGBT
eq = [iceq igeq iaeq ideq ieeq]

T , (3.83)

Where

iceq = imulteq + iCmulteq + icsseq + iCcereq + iCgseq + iCdsjeq + imoseq, (3.84)

igeq = −iCgseq + iCdgeq, (3.85)

iaeq = −iTeq, (3.86)

ideq = iCcebeq + ibsseq − imoseq − iCdgeq − iCdsjeq − imulteq − iCmulteq, (3.87)

ieeq = −icsseq − ibsseq − iCcereq − iCcebeq + iTeq, (3.88)
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GIGBT =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gmultds+gmultgs+gCmultbc+
gcssbc+gCcerbc+gCgs+
gCdsj+gmosds+gmosgs

−gmultgs − gCgs − gmosgs −gmultae − gcssae
−gmultds−gCmultbc−gcssbc+

gcsseb−gCcerbc−gdsj−
gmosds+gmulteb

−gmultae−gcssae+
gcsseb−gmulteb

−gCgs gCgs + gCdg 0 −gCdg 0

−gTbc 0 gTae gTbc − gTeb −gTae + gTeb

gbssbc−gmosgs−gmosds−
gCdsj−gmultds−gmultgs−

gCmultbc

gmosgs − gCdg + gmultgs gmultae

gCeb−gbssbc+gbsseb+
gmosds+gCdg+gCdsj+

gmultds−gmulteb−gCmultbc

−gCeb+gbsseb−
gmultae+gmulteb

−gcssbc−gCcerbc−
gbssbc+gTbc

0 gcssae − gTae

gcssbc−gcsseb+gCcerbc−
gbsseb+gbssbc−gCeb−

gTbc+gTeb

−gcssae+gcsseb+gbsseb+
+gCeb+gTae−gTeb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(3.89)

Similarly, when using Newtone-Raphson method to solve the matrix equation (3.81), in-

stead of solve node vector V IGBT directly, ΔV is obtained to update V IGBT iteratively.

Therefore, the iterative equation is given as

GIGBTΔV = −I. (3.90)

Where

−I = [ic ig ia id ie]T , (3.91)

ic = imulteq + iCmulteq + icsseq + iCcereq + iCgseq + iCdsjeq + imoseq + (gmultgs − gCgs

+ gmosgs)(vg − vc) + (gCmultbc + gmultds + gCdsj + gmosds + gcssbc + gCcerbc)(vd − vc)

+ (gmultae + gcssae)(va − ve) + (gmulteb + gcsseb)(ve − vd), (3.92)

ig = −iCgseq + iCdgeq + gCgs(vc − vg) + gCdg(vd − vg), (3.93)

ia = −iTeq + gTae(va − ve) + gTbc(vb − vc) + gTeb(ve − vb), (3.94)

id = iCcebeq + ibsseq − imoseq − iCdgeq − iCdsjeq − imulteq − iCmulteq + (gbssbc − gmultds

− gCmultbc − gCdsj − gmosds)(vb − vc) + (gCeb + gbsseb − gmulteb)(ve − vb)− gCgd(vb − vg)

− (gmosgs + gmultgs)(vg − vc)− gmultae(va − ve), (3.95)

ie = −icsseq − ibsseq − iCcereq − iCcebeq + iTeq + (gTbc − gcssbc − gbssbc − gCcerbc)(vb − vc)

+ (gTae − gcssae)(va − ve) + (gTeb − gbsseb − gCeb − gcsseb)(ve − vb), (3.96)

3.2.2.3 Parallel Massive-thread Mapping

For a system containing n IGBTs, the massive thread parallel implementation is shown in

Fig. 3.7 and described in the following algorithm. There are 12 kernels involved in the

module. Kernel0 and Kernel1 is to check PN junction and FET junction voltage limitation

within successive Newtone-Raphson iterations. And the main equivalent parameters up-

dating is accomplished in Kernel2 to Kernel9, including rb, 6 nonlinear capacitors and 5
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Figure 3.7: Massive thread parallel implementation of IGBT

current source approximation. And Kernel10 is to build the iterative Jacobian matrix equa-

tion in (3.90) and solve ΔV IGBT use LU decomposition or Gaussian elimination, which

will be described in detail in later sections. Kernel11 assigns n cuda blocks containing 5

threads per block to update voltage vector in each IGBT. If ΔV IGBT converges, it means

the iterative solution for current time point is accomplished and node voltage V IGBT will

be stored into global memory and used as the initial value for next time point. Otherwise,

repeat from checking junction limitation for the next time point iterative value.

The 6 nonlinear capacitors Cgd, Cgs, Cdsj , Cmult, Ceb and Ccer are updated Kernel3 to

Kernel6 and Kernel8 for charges, currents, equivalent conductance and parallel current

sources. Intermediate parameters p0, Q, Q1, Q2 and M are processed in p0, Q and M

unit in Kernel3, Kernel4 and Kernel5. Capacitance and charges in these 6 capacitors are

updated in Kernel6 and Kernel8. Followed by equivalent conductance GQ and parallel

current source IQeq update in Kernel10. Similarly, for the approximation to current sources

imos, iT , icss, ibss and imult, Kernel10 updates GI and IIeq. In this way, parameters in IGBT-

DLE are updated. Solving for ΔV IGBT in the matrix equation (3.90) is accomplished in

Kernel11. And Kernel12 is to update V IGBT from previous iteration value and ΔV IGBT .
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Algorithm 3 IGBT Kernel
procedure PHYSICS BASED IGBT MODULE

Check PN junction voltage veb(t) and vbc(t) from last iteration value � Kernel0
Check MOSFET junction voltage vgs(t) from last iteration value � Kernel1

Update paramters from IGBT-AE to IGBT-DLE
Solve p0 as (3.45) to (3.47) � Kernel2
Calculate Q, Q1 and Q2 as(3.42) to (3.44) � Kernel3
Update intermediate parameter M as (3.53) � Kernel4
Calculate C and Q in Cgd, Cgs, Cdsj and Ceb as (3.55) to (3.63) � Kernel5
Calculate C and Q in Ccer and Cmult as (3.65) to (3.66) � Kernel7
Update IQ, IQeq and GQ in all capacitors as 3.73 to 3.75 � Kernel8
Calculate rb as (3.48) � Kernel6
Calculate GI and IIeq for all current sources as (3.39) to (3.72 ) � Kernel9
Build matrix equation (3.90) using (3.84) to (3.96) and solve for ΔV � Kernel10
Update V IGBT (t) for current iteration � Kernel11
Check convergence of ΔV IGBT

if ΔV IGBT converges then
Store V IGBT to global memory and update t

else
Start from checking junction iterative limitation

3.3 Newton-Raphson Iteration

3.3.1 Algorithm

Newton-Raphson method is widely used to solve nonlinear equations numerically based

on the idea of linear approximation. To find the root of a nonlinear system F (X) consisting

k unknown variables, adopting the Jacobian matrix JF (X) for linear approximation gives

following equation,

0 = F (Xn) + JF (X
n)(Xn+1 −Xn). (3.97)

Jacobian matrix JF (X) is a k × k matrix of all first-order partial derivatives of F .

JF =
dF

dX
=

⎡
⎢⎢⎢⎢⎣

∂F1

∂X1
· · · ∂F1

∂Xk
...

. . .
...

∂Fk

∂X1
. . .

∂Fk

∂Xk

⎤
⎥⎥⎥⎥⎦ . (3.98)

Solving for root of F (X) is numerically replaced by solving (3.97) for Xn+1 − Xn and

update Xn+1 from Xn and the difference until the norm of the difference, ||Xn+1 −Xn||,
is smaller than a predefined convergence criteria ε.

Newton-Raphson method is usually applied in nonlinear power electronic circuits to
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Figure 3.8: Massive thread parallel implementation of Newton-Raphson iteration

solve the transient and stable situations. According to KCL,

ΣI(V ) = 0, (3.99)

where I(V ) refers to the sum of current leaving each node, applying (3.97) gives,

JV
n(V n+1 − V n) = −ΣIn, (3.100)

Given the physics-based IGBT as an example, JV
n is the GIGBT (n) matrix. Solve the KCL

at each node of collector, gate, anode, drain and emitter. In this way, (3.81) gets its Newton-

Raphson iterative equation as,

GIGBT n
(V n+1 − V n) = −In, (3.101)

−In = [ic(n) ig(n) ia(n) id
(n)

ie(n)]T , (3.102)

3.3.2 Massive-thread parallel implementation

To develop the massive-thread parallel module for N-R method, 4 kernels are involved as

shown in the following algorithm as shown in Fig. 3.8.
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Algorithm 4 Newton-Raphson Kernel
procedure N-R ITERATION

Iterative loop:
Calculate F (Xn) � Kernel0
Calculate JF (X

n) from Xn � Kernel1
Copy JF (X

n) and F (Xn) into shared memory
Solve ΔXn in JF (X

n)ΔXn = −F (Xn) � Kernel2
Update Xn+1 ←Xn +ΔXn

Calculate ||ΔXn||
Store ||ΔXn|| into global memory

� Kernel3

if ||ΔXn|| < ε then
t← t+Δt

else
go to Iterative loop

Firstly, Kernel0 is to update F (Xn), in power electronic circuits case, In which equals

to the sum of currents leaving the nodes. The Jacobian matrix JF (X
n) which is the ad-

mittance matrix in power electronic circuits, is calculated in Kernel1 and copied to shared

memory for Kernel2 to solve the equation (3.97). Xn+1 is updated and verified if the dif-

ference is within convergence criteria in Kernel3. The loop will repeat until converged or

report convergence error if the number of iterations exceed limitation.

3.4 Gaussian Elimination and LU Decomposition

In the previous Newton-Raphson method, there is a necessity to find an efficient way to

solve the linear system in the form of

A · x = b. (3.103)

Although there are a lot of ways such as Jocobi method, Gauss-Seidel method, conju-

gate gradient algorithm to solve the equation. However, these iterative methods are not

equipped with the characters to be well paralleled. Jocobi method has relatively low con-

vergence rate depending on the starting value. And in both Gauss-Seidel method and

conjugate gradient algorithm, the updating of Xk is dependent on Xk−1 within an itera-

tion. Take parallelism into consideration, direct methods are preferred for efficiency.
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Figure 3.9: Gaussian elimination

3.4.1 Gaussian Elimination Matrix Equation Solution

3.4.1.1 Method formulation

Gaussian elimination matrix equation solution (GEMES) is a direct method as following,

⎡
⎢⎢⎢⎢⎢⎢⎣

A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

. . .
...

An1 An2 · · · Ann

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

b1

b2
...

bn

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.104)

The original Gaussian elimination is to use row reducing method to update the augmented

matrix A∗ containing A and b to an upper triangular matrix as following,

A∗
i,j = A∗

i,j−A∗
i,k/A

∗
k,k ∗A∗

k,j (1 ≤ k ≤ n−1, k+1 ≤ i ≤ n, k+1 ≤ j ≤ n+1). (3.105)

The parallelism of this method is shown in Fig. 3.9. Each time, column vector m is updated

to store the factors as following, since after each step, one column in A∗ matrix is calculated

to zero, the factor vector m can be updated using zero elements’ space in A∗ to register.

mi = A∗
i,k = A∗

i,k/A
∗
k,k (1 ≤ k ≤ n− 1, k + 1 ≤ i ≤ n). (3.106)

The elements in augmented matrix are updated as following,

A∗
i,j = A∗

i,j −A∗
i,kA

∗
k,j (1 ≤ k ≤ n− 1, k + 1 ≤ i ≤ n, k + 1 ≤ j ≤ n+ 1). (3.107)

(3.106) and (3.107) can be paralleled in GPU, speeding up compared with sequential pro-

gramming. To ensure convergence and precision, partial pivoting is adopted to find the
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maximum elements in column and exchange rows. A permutation matrix P represents

the transformation of partial pivoting and (3.103) becomes

P ·A · x = P · b. (3.108)

After getting the upper triangular augmented matrix, backward substitution is used to

compute result vector x. Assuming the n×n A matrix together with vector b is converted

to upper triangular matrix T and vector c, and T and c are stored in the augmented matrix

A∗ as

A∗ = [T |c]. (3.109)

To solve the equation

T · x = c, (3.110)

after computing xk, the products related to xk are subtracted to update the right side of

equation as following,

Ak,n+1 =Ak,n+1/Ak,k (n ≥ k ≥ 1), (3.111)

Ai,n+1 =Ai,n+1 −Ai,kAk,n+1 (1 ≤ i ≤ k − 1), (3.112)

3.4.1.2 Massive thread parallel implementation

As shown in Fig. 3.10, there are two kernels involved when implementing GEMESM into

massive thread parallel module using following algorithm. Kernel0 is to transfer the aug-

mented matrix [A|b] into upper triangular including partial pivoting. There are 4 steps in-

side Kernel0 including finding maximum column element index, row elements swapping,

factor column vector updating and minor matrix updating for n×n threads in each block.

After coping the augmented matrix [A|b] to shared memory, the row index of maximum

elements in target column is found after log2n times comparison. Then the row elements of

the same row index are swapped with the first unfinished row. After row elements swap-

ping, first column elements are updated to store the factors and used to update the rest of

the matrix in every thread. This loop will repeat n-1 times and results an upper triangular

matrix [T |c] storing in the same position as [A|b]. Backward substitution is accomplished

in Kernel1, after n loops to get results from xn to x1.

3.4.2 LU Decomposition Matrix Equation Solution

LU Decomposition Matrix Equation Solution (LUDMES) uses LU factorization with par-

tial pivoting decomposes the matrix A into product of two triangular matrix U and L as
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Figure 3.10: Massive thread parallel implementation of GEMESM

Algorithm 5 Gaussian Elimination Kernel
procedure SOLVE MATRIX EQUATION USING GAUSSIAN ELIMINATION

Upper triangular matrix:
Find the address of maximum elements in column
Swap row elements with first unfinished row
Column elements update using (3.106)
Update rest of the matrix using(3.107)
if Not last row then

go to Upper triangular matrix
else

Store [T |c] matrix as updated [A|b] into global memory

� Kernel0

Backward substitution:
Calculate xk using (3.111)
Update rest Ai,n+1 using (3.112)
if Not all x elements calculated then

go to Backward substitution
else

Store final result vector x into global memory as updated b

� Kernel1

following,

P ·A = L ·U , (3.113)

where P is the row permutations matrix and L, U refer to the lower and upper triangular

matrices. If L has all the diagonal elements setting to 1, similar to Gaussian elimination to
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Figure 3.11: LU decomposition

store the factor for current column, elements in each column of L is given as

Lik = Aik/Akk (1 ≤ k ≤ n− 1, k + 1 ≤ i ≤ n). (3.114)

The sub-matrix in A is updated to U elements as following,

Uij = Aij − LikAkj (1 ≤ k ≤ n− 1, k + 1 ≤ i ≤ n, k + 1 ≤ i ≤ n). (3.115)

LU decomposition, (3.103) becomes

L ·U · x = P · b. (3.116)

After LU decomposition, if define

U · x = y, (3.117)

substitution (3.117) into (3.116) yields

L · y = P · b. (3.118)

To solve vector x, there are two step after LU decomposition, forward substitution to

solve y in (3.118) and backward substitution to solve x in (3.117). Similar to the backward

substitution when use Gaussian elimination to solve matrix equation, forward substitution

for y is given as

yk =(Pb)k/Lk,k (1 ≤ k ≤ n), (3.119)

yi =(Pb)i − Li,kyk (k + 1 ≤ i ≤ n). (3.120)

Backward substitution to solve x is as

xk =yk/Uk,k (n ≥ k ≥ 1), (3.121)

xi =yi − Ui,kyk (1 ≤ i ≤ k − 1). (3.122)
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Figure 3.12: Massive thread parallel implementation of LUDMESM

3.4.2.1 Massive Thread Parallel Implementation

The procedure of solving matrix equation using LU decomposition is similar to Gaussian

elimination except the following features,

• GEMESM transfers the n×n matrix A into an upper triangular matrix along with the

vector b while LUDMESM only deals with the A in to upper and lower triangular

matrix L and U first. Therefore, in the cases that Jacobian matrix stays the same

during N-R iteration and only vector b changes, LU decomposition will be preferred.

• After transferring A matrix and vector b, there is only backward substitution to do

for GEMESM while there is forward substitution followed by backward substitution

for LUDMESM.

As shown in Fig. 3.12, the massive thread parallel module for LUDMESM contains two

kernels. The LU decomposition and forward substitution are accomplished in Kernel0.

And backward substitution is accomplished in Kernel1. The forward substitution in LUDMESM

is done simultaneously with the minor of matrix updating. To avoid data transportation
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between shared memory and global memory frequently, tasks utilizing the same num-

ber of threads are combined to be done in one kernel. Compared with GEMESM, though

LUDMESM has one more forward substitution to do, it can be done while doing the trian-

gular decomposition.

Algorithm 6 LU decomposition
procedure SOLVE MATRIX EQUATION USING LU DECOMPOSITION

LU decomposition:
Find the address of maximum elements in column
Swap row elements with first unfinished row
Column elements update using (3.106)
Update rest of the matrix using(3.107)

Forward substitution:
Calculate yk using (3.119)
Update yi using (3.120)
if Not last row then

go to LU decomposition
else

Store L and U matrix and vector y into global memory

� Kernel0

Backward substitution:
Calculate xk using (3.121)
Update rest xi using (3.122)
if Not all x elements calculated then

go to Backward substitution
else

Store final results into global memory

� Kernel1

3.5 Block Jacobian Matrix Computation for Modular Multi-level

Converter

In Modular Multi-level Converter (MMC) circuit, a serial of IGBTs and power diodes are

connected to convert between DC and AC in HVDC system, which means there are more

than one nonlinear elements in one node. One IGBT and one diode consist an unit and two

units build a sub module (SM). Fig. 3.13 shows the connection inside an SM and the node

order. Using the physics-based IGBT and power diode module mentioned above, IGBT

has 5 nodes and power diode has one more inside, resulting the Jacobian matrix, which is

also the G matrix for the SM has the shape of
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2

3 4 8 9 11
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Figure 3.13: Node order of an SM in MMC

Goriginal
SM =⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1,1 G1,2 G1,3 G1,4 G1,5 G1,6 G1,7 G1,8 G1,9 G1,10 G1,11

G2,1 G2,2 G2,3 G2,4 G2,5 G2,6

G3,1 G3,2 G3,3 G3,4 G3,5 G3,6

G4,1 G4,2 G4,3 G4,4 G4,5 G4,6

G5,1 G5,2 G5,3 G5,4 G5,5 G5,6

G6,1 G6,2 G6,3 G6,4 G6,5 G6,6 G6,11

G7,1 G7,7 G7,8 G7,9 G7,10 G7,11

G8,1 G8,7 G8,8 G8,9 G8,10 G8,11

G9,1 G9,7 G9,8 G9,9 G9,10 G9,11

G10,1 G10,7 G10,8 G10,9 G10,10 G10,11

G11,1 G11,6 G11,7 G11,8 G11,9 G11,10 G11,11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.123)

3.5.1 Matrix Updating Using a Relaxation Algorithm

Matrix Goriginal
SM has many zero elements, and to make it better organized, the two admit-

tance, G6,11 and G11,6, brought by capacitance are to be transformed using a relaxation

algorithm. The Newtone-Raphson equation for a SM is given as

Goriginal
SM

n ·ΔV n = −In, (3.124)

which can be transformed as following,

Gn
SM ·ΔV n = −In +

[
0 0 0 0 0 −G6,11Δvn11 0 0 0 0 −G11,6Δvn6

]T
, (3.125)
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Where GSM =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G1,1 G1,2 G1,3 G1,4 G1,5 G1,6 G1,7 G1,8 G1,9 G1,10 G1,11

G2,1 G2,2 G2,3 G2,4 G2,5 G2,6

G3,1 G3,2 G3,3 G3,4 G3,5 G3,6

G4,1 G4,2 G4,3 G4,4 G4,5 G4,6

G5,1 G5,2 G5,3 G5,4 G5,5 G5,6

G6,1 G6,2 G6,3 G6,4 G6,5 G6,6

G7,1 G7,7 G7,8 G7,9 G7,10 G7,11

G8,1 G8,7 G8,8 G8,9 G8,10 G8,11

G9,1 G9,7 G9,8 G9,9 G9,10 G9,11

G10,1 G10,7 G10,8 G10,9 G10,10 G10,11

G11,1 G11,7 G11,8 G11,9 G11,10 G11,11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.126)

Since capacitances in the circuit are big and there is an outer Newton-Raphson loop, relax-

ation algorithm can be adopted to use previous value Δvn−1
6 and Δvn−1

11 instead of current

ones. In this way, updating the right side of equation (3.125) using known values results a

better block organized GSM .

3.5.2 Partial LU Decomposition for Block Jacobian Matrix

3.5.2.1 Partial LU Decomposition for a Single Submodule

To solve the equation (3.125), a method utilizing GSM ’s block character called partial LU

decomposition is adopted to solve the specific case. Given an example of situation con-

taining only one SM, the Jacobian matrix is exactly GSM . If denote each block of GSM as

shown in Fig. 3.14, where A1 and A2 are 5×5 matrices, c1 and c2 are 1×5 row vectors, d1

and d2 are 5×1 column vectors and e is only one element.

c1 c2e1

d1

d2 A2

A1

5 5

5 5

1 5 1 5

5

5

Figure 3.14: Jacobian matrix of a SM
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Applying LU decomposition to A1 and A2 yields the following equations,

L1 · U1 = A1, (3.127)

L2 · U2 = A2. (3.128)

Define that partial LU decomposition of GSM shown in Fig. 3.15,

h1

g1

g2

U1

U2

f11 f2

L1

L2

5×5

5×5

L U

f1

Figure 3.15: Partial LU decomposition of a SM Jacobian matrix

where f1,f2,g3,g4,h1 satisfy the following relationship,

f1 · U1 = c1 (3.129)

f2 · U2 = c2 (3.130)

L1 · g1 = d1 (3.131)

L2 · g2 = d2 (3.132)

h1 + f1 · g1 + f2 · g2 = c1. (3.133)

Once L1,U1, L2 and U2 are computed using LU decomposition as (3.127) to (3.128), f1,f2,g3,g4

can be calculated using backward and forward substitution in (3.129) to (3.132), followed

by getting h1 according to (3.133). This partial LU decomposition computes the semi-

upper-triangular matrix L and semi-lower-triangular matrix U and the decomposition pro-

cedure is able to be parallelized.

After obtaining the L and U matrices, it is similar to forward and backward substitution

in solving matrix equation using original LU decomposition while nearly twice faster. To

solve the equation

L · U · x = b, (3.134)

define

U · x = y, (3.135)
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Vector y is divided into 3 parts denoted as y1, y2 and y3, which has the size length of 1, 5

and 5. Similar method is applied to vector x and vector b into 3 parts. And y2 and y3 are

to be computed in parallel using forward substitution, since

L1 · y2 = b2 (3.136)

L2 · y3 = b3, (3.137)

then

y1 = b1 − f1 · y2 − f2 · y3. (3.138)

Similarly, to solve

U · x = y, (3.139)

x1 can be solved directly as

x1 = y1/b1, (3.140)

y2 and y3 are updated to subtract the x1 part as following,

y′2 = y2 − x1g1 (3.141)

y′3 = y3 − x1g2. (3.142)

Using backward substitution can solve x2 and x3 individually according to

U1 · x2 = y2 (3.143)

U2 · x3 = y3. (3.144)

3.5.2.2 Partial LU Decomposition for MMC

When there is only one SM inside a circuit, if one IGBT and one diode are grouped as a pair

of nonlinear elements, only two pairs of nonlinear elements are connected in one node. For

a complete MMC circuit, there are nodes connecting three pairs of nonlinear elements. The

complete Jacobian matrix GMMC has the structure shown in Fig. 3.16.
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d
2k-1

d
2k A2k

Figure 3.16: Jacobian matrix structure of MMC circuit

For convenience to latter decomposition, the connection between node 1 and node 11

are to be simplified using the method as dealing with the capacitance inside a SM using

the relaxation algorithm. Similar to the node 11 and 21, ... To solve the equation

Gn
MMC ·ΔV n = −In (3.145)

is equal to solve the following equation

Gn∗
MMC ·ΔV n = (−I)n∗, (3.146)

where Gn∗
MMC is updated as shown in Fig. 3.17.
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Figure 3.17: MMC updated Jacobian Matrix Gn∗
MMC using the relaxation algorithm

(−I)n∗ =(−I)n + (−GMMC1,11ΔV n−1
11 −GMMC11,1ΔV n−1

1 −GMMC11,21ΔV n−1
21

−GMMC21,11ΔV n−1
11 − ...−GMMC10k−9,10k+1ΔV n−1

10k+1

−GMMC10k+1,10k−9ΔV n−1
10k−9)

(3.147)

Similar to the method for a single SM, partial LU decomposition can still be applied

with some improvement as shown in Fig. 3.18. Complete LU decomposition to A1, A2...A2k−1

individually in a MMC circuit containing k SMs can be fully parallelized. And f1, f2...f2k−1

and g1, g2...g2k−1 is calculated using backward and forward substitution. The product of

semi-upper-triangular matrix L and semi-lower-triangular matrix U as following is almost

G∗
MMC .
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Figure 3.18: Partial LU decomposition for G∗
MMC

All the elements in the product, named as P, are equal to the ones in G∗
MMC except the

ones in connection with two SMs. Given P11,11 as an example, is equal to the product of

last row of L1 and last column of U2 in addition of f3·g3+f4·g4 however G∗
MMC11,11

is only

the product of last row of L1 and last column of U2. This can be accomplished by modify

Um5,5 to U∗
m+15,5

as following,

U∗
m+15,5 = Um+15,5 − fm+2 · gm+2 − fm+3 · gm+3 (m = 1, 3, ..., 2k − 1), (3.148)

After getting the L and U matrix utilizing partial LU decomposition, similar to previous

method, forward and backward substitution are explained as following. If define

U · x = y, (3.149)

to solve

L · y = b, (3.150)

using blocked forward substitution as in Fig. 3.19, vector y is divided into small vectors,

numbering each size 5 vector from y1 to y2k.
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Figure 3.19: Blocked forward substitution

Since

Lm · ym = bm (m = 1, 3, ..., 2k − 1), (3.151)

Lm+1 · ym+1 + fm+2 · ym+2 + fm+3 · ym+3 = bm+1 (m = 1, 3, ..., 2k − 1), (3.152)

forward substitution for each block as Lm · ym = bm gives ym individually. After that, ym

and first 4 elements in ym+1 are already calculated to satisfy (3.19) and there is one more

step to update one element ym+15 as following,

ym+15 = ym+15 − fm+2 · ym+2 − fm+3 · ym+3. (3.153)

The equation

U · x = y (3.154)

has the following structure in Fig .3.20.

Um

Um+1

x
m

x
m

+1

. =

y
m

y
m

+1

g
m

g
m

+1

Figure 3.20: Blocked backward substitution
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Since

Um · xm + gm · xm−15 = ym (m = 1, 3, ..., 2k − 1), (3.155)

Um+1 · xm+1 +

⎡
⎣gm+1

0

⎤
⎦ · xm−15 = ym+1 (m = 1, 3, ..., 2k − 1), (3.156)

xm+15 can be calculated individually for each m using

xm+15 = ym+15/Um+15 . (3.157)

xm−15 ’s effect in ym and ym+1 is subtracted as following

ym = ym − gm · xm−15 (m = 1, 3, ..., 2k − 1), (3.158)

ym+1 = ym+1 −
⎡
⎣gm+1

0

⎤
⎦ · xm−15 (m = 1, 3, ..., 2k − 1). (3.159)

Then xm and xm+1 can be computed using normal backward substitution

Um · xm = ym (m = 1, 3, ..., 2k − 1), (3.160)

Um+1 · xm+1 = ym+1 (m = 1, 3, ..., 2k − 1). (3.161)

This partial LU decomposition is suitable for parallel simulation, it utilizes character of

boarded block diagonal matrix. In MMC circuit, the size of Jacobian matrix grows with the

number of output voltage level. In stead of solving an equation containing a (11k-1)×(11k-

1) Jacobian matrix, it solves the 5×5 block as a computing unit, in addition, this method

utilizes limited share memory in GPU programming.

3.5.3 Parallel Massive-thread Mapping

As shown in Fig. 3.21, there are 4 kernels involved in the parallel module for the partial LU

decomposition method in MMC. Kernel0 is to update the matrix equation using relaxation

algorithm. The original GMMC matrix will have the shape of G∗
MMC after completing

Kernel0. To calculate the semi-upper triangular matrix L in a MMC circuit containing k

SMs, meaning 2k blocks, there are 3 steps inside Kernel1 listed as following,

• Normal LU decomposition in each block to get Lj and Uj , where j is from 1 to 2k.

• Backward substitution can get fj from Uj and cj , forward substitution can get gj

from Lj and dj in each block

• An element modification in Um5,5 , where m=1,3,..., 2k-1.
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Figure 3.21: Massive thread parallel implementation of partial LU decomposition

Kernel2 is responsible to calculate vector y similar to forward substitution with additional

elements modification. In Kernel3, the xm+15 is calculated first and its products are sub-

tracted, followed by backward substitution in each block to get result xj .

Algorithm 7 Partial LU decomposition for MMC
procedure SOLVE MATRIX EQUATION FOR MMC CIRCUIT USING PARTIAL LU DECOM-
POSITION

Produce semi-upper and semi-lower triangular matrix:
Update matrix equation using relaxation algorithm (3.125), (3.147) � Kernel0
Block LU decomposition to get Lj , Uj as (3.127), (3.128)
Back and forward substitution for fj , gj as (3.129) to (3.132)
Um5,5 modification using (3.148)

� Kernel1

Modified forward substitution:
Forward substitution in block as (3.151)
ym+15 update according to (3.153) � Kernel2

Modified backward substitution:
Compute xm+15 directly as (3.157)
Subtract xm−15 ’s effect to update yj (3.158), (3.159)
Backward substitution in block as (3.160), (3.161)

� Kernel3
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Figure 3.22: Flow chart of Variable Time Step Scheme

3.6 Variable Time-Step Scheme Using Predictor-Corrector Method

A variable time step scheme is used for numerical solution of the transient nonlinear sys-

tem response to ensure both efficiency and accuracy. In most power electronic systems,

transient portion is smaller than steady-state part, dynamically adaptive time step reduces

the calculation during steady state while maintains accuracy on transient state.

To find the numerical solution of ordinary differential equations (ODEs), predictor-

corrector method offers a way to use a polynomial prediction from the derivative from

the previous point for the current point, followed by refining the predicted value. The

predictor step usually adopts an explicit method such as Forward Euler method, while the

corrector step uses implicit method. If the local truncation error (LTE) is out of tolerance,

which means the current time-step size is too large to obtain accurate result, a refined

time-step size is adopted to recalculate current time point predictor and corrector.

To solve the system algebraic equation using iterative method, predictor-corrector vari-

able time step method (PCVTSM) is adopted as shown in Fig. 3.22. Based on Gear’s

method [31], to compute the numerical solution of V(t), forward Euler in this case is used

to calculate the approximation from values of t-Δt as a predictor Vcorr(t). And an implicit

method backward Euler or Trapezoidal method depending on if current calculation point

is discontinuous to compute a corrector.
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Figure 3.23: MMC circuit structure

3.7 Modular Multi-Level Converter (MMC)

3.7.1 Circuit Structure

MMC circuit has popular application on HVDC circuit, there are different types of simu-

lation models including physics-based models, equivalent circuit base model, arm switch-

ing function and average value model [32]- [36]. Even physics-based model provides

most detailed information inside every device, to achieve this, time-step size should be

in nanosecond, therefore, the computational requirement makes it uncommonly used in
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Table 3.1: Capacitor charging and switching state of an SM

Gate Combination iSM Capacitor State SM Operating Figure

10 >0 Charging
Cm

S1

S2

D1

D2

10 <0 Discharging
Cm

S1

S2

D1

D2

01 >0 Unchanged
Cm

S1

S2

D1

D2

01 <0 Unchanged
Cm

S1

S2

D1

D2

simulation [37].

Fig. 3.23 shows a 3-phase cascade MMC circuit structure consisting of n half bridge

submodules (SM) in each arm. Each half bridge SM is consisting of two of IGBTs, two

inverse-parallel diodes and an energy storage capacitor. Based on the gate signal combi-

nation of each IGBT inside SM and current direction, SM has different operating states. In

Tab. 3.1, once S1 gate has on signal and S2 gate has off signal, Cm will charge and discharge

according to iSM direction. In addition, gate signal combination 00, which means SM is

blocked, is not used in normal operation. And gate signal combination 11 will cause the

short circuit of the capacitor.

3.7.2 Phase-Shifted Carrier Modulation Strategy

The control strategies of MMC circuit adopted in this thesis include the active and reactive

power control, capacitor voltage averaging and balancing control [38]- [40]. In Fig. 3.24,

the control loop for power in [41] utilizes the abc/dq0 frame transformation for output ac

power calculation.

P = vdid + vqiq, (3.162)
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Q = vqid − vdiq, (3.163)

When the voltage vector aligned with the d axis, which means vq =0, gives the following

equation,

P = vdid (3.164)

Q = vdiq. (3.165)

In Fig. 3.23, the sum of n SMs voltage in upper arm and lower arm are va1 and va2 in phase

a to illustrate control strategy, the following equations are obtained,

(vca − vsa)− (
La

2
+ Ll)

dia
dt
−Rlia = 0, (3.166)

where vca and vsa is the reference converter output voltage and point of coupling (PCC)

voltages in phase-a. Applying abc/dq frame transformation yields

(vcd − vsd) = (
La

2
+ Ll)

did
dt
− ω(

La

2
+ Ll)iq +Rlid (3.167)

(vcq − vsq) = (
La

2
+ Ll)

diq
dt

+ ω(
La

2
+ Ll)id +Rliq. (3.168)

For current control, the following equations are obtained from (3.167) and (3.168),

did
dt

=
vcd − vsd + ωLciq

Lc
− Rlid

Lc
, (3.169)

diq
dt

=
vcq − vsq − ωLcid

Lc
− Rliq

Lc
, (3.170)

where

Lc =
La

2
+ Ll. (3.171)

Based on [42], the outer-loop in Fig. 3.24 is the active power controller while the inner-

loop is the current controller. Given the fixed power reference, the difference of active and

reactive power is given to PI controllers to produce reference dq current. After producing

the dq voltage, the abc phase reference voltage is calculated for modulation.

The capacitor voltage averaging and balanced control are shown in Fig. 3.25, the ref-

erence capacitor voltage vref
c is to be compared with capacitors’ average voltage followed

by a PI controller to produce a DC loop current command iZ . The difference between arm

current average value ia and iZ is to produce the average control voltage vA through an-

other PI control. For balance control voltage vB , the capacitor voltage in every SM is to

be compared with vc followed by the gain of K5. And whether the SM is in the upper
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Figure 3.25: Averaging and balancing control of the MMC

or lower arm decide the direction of vB . After that, the total control signal should take

account of load voltage reference vl and feed forward voltage of Vdc. Before comparing

with carrier waves, vj need to be normalized using vref
c . Averaging control is to make sure

average voltage value of all the capacitors in every phase to follow the command value,

while the balancing control adopts phase-shifted carrier signals to force the dc voltage of

each capacitors to follow the reference value. If there are n SMs in one phase, the normal-

ized modulation signal in Fig .3.26 is compared with n the carrier signals to produce gate

signal for each SM. Each carrier signal has a phase shift of 2π /n with each other.
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3.8 Behavior-based MMC Solution

3.8.1 Equivalent Model for SM

In system-level MMC circuit simulation, the behavior-based IGBT and diode models in

[43] are commonly adopted. IGBT and diode are modeled as ideal switch models in series

with voltage source and resistors, which is shown in Fig. 3.27(a), (b). Based on the fact

that the relationship between output voltage and current from IGBT and diode is close to

linear as in Fig. 3.28(a), a linear approximation of IGBT output voltage vce and current ic,

diode output voltage vF and current iF is obtained using

rSIGBT =
Δvce
Δic

, (3.172)

rSd =
Δvf
Δif

. (3.173)

In addition, the turn-off current is modeled using two linear slopes as shown in Fig. 3.28(b)

[43]. The capacitor in each SM is discretized into a resistor rcap in series with a historical

voltage source vcap h(t-Δt). The r1, v1 and r2, v2 in Fig. 3.27(c) is decided by the gate signal
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and arm current direction. In this way, each SM’s Thevenin equivalent circuit in Fig.3.27(d)

contains a time dependent inductance and historic voltage source [37], where rSM and vSM

are given as

rSM =
r2(r1 + rcap)

r1 + r2 + rcap
, (3.174)

vSM =(
v2
r2

+
v1 + vcap h(t−Δt)

r1 + rcap
)rSM . (3.175)

And the capacitor historic voltage is updated using the method of linear passive elements

as following,

vcap h(t−Δt) = vcap h(t− 2Δt) + 2rcapicap(t−Δt), (3.176)

where

rcap =
2Δt

C
. (3.177)

This simplified model makes each arm of MMC containing n SMs in Fig. 3.23 replaced

with a voltage source and a resistor as following,

varm =
n∑

i=1

vSMi, (3.178)

rarm =
n∑

i=1

rSMi. (3.179)

The arm current can be calculated using the arm equivalent model. Since each SM’s input

current is the same as arm current, the node voltage inside each SM can be updated in

parallel using the solved arm current for the current time point.

3.8.2 Parallel Massive-thread Mapping

As shown in Fig. 3.28, only one kernel containing 6n threads is involved to calculate solve

the MMC circuit using behavior-based models. Assuming a system containing n SMs in

each arm, there are 6n SMs in total for 3-phase. According to gate signal and previous time

arm current direction, v1, r1 and v2, r2 in each SM are obtained to build the equivalent

Thevenin circuit using (3.174) and (3.175). Using the sum of n SMs in each arm, the arm

current are solved for node voltage update in each SM. Based on the fact that once the arm

current is solved, the SM only contains 2 node voltages to be updated, only one thread is

needed for each SM.
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Algorithm 8 Behavior-based MMC solution kernel
while t < tend do

Update v1, r1 and v2, r2 in each SM
Calculate the vSM (t), rSM (t) in each SM as (3.174) and (3.175)
Sum the n SMs in each arm and solve iarm(t)
Node voltage and current solution for each SM

� Kernel0

t← t+Δt

3.9 Summary

In this chapter, massively parallel implementation models of electronic components in-

cluding physics-based IGBT and power diode, numerical nonlinear equation solver us-

ing Newtone-Raphson method, linear equation solver including GEMES and LUDMES.

Based on MMC Jacobian matrix characteristic, a blocked Jacobian matrix equation solver

is developed using partial LU decomposition improving parallelism. To increase simula-
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Figure 3.28: Massive thread parallel implementation of behavior-based MMC solution

tion efficiency, a PCVTSM is developed and massively implemented. Using the detailed

physics-based model increases calculation complexity while bringing accurate details. In

addition, to achieve higher level of MMC circuit, the behavior-based SM model is im-

plemented in massive-thread architecture. In system level, the control strategy of MMC

circuit including active and reactive power control and averaging and balancing control

are explained. With the methods mentioned above, massively parallel implementation for

power electronic circuit is practically and applicable.
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4
MMC Case Study and Data Analysis

Based on the physics-based device-level, as well as linear behavioral, IGBT and power

diode models and massively parallel implementations in Chapter 3, the large-scale MMC

case is tested for results and simulation execution time comparison between massively

parallel simulation and sequential simulation. Both single-phase and three-phase MMC

circuits are simulated. Single-phase results are compared with SaberRD� and three-phase

results are compared with C++ sequential simulation result.

4.1 Test case for 5-level Physics-based MMC Simulation Case Study

In Chapter 3, the structure and modulation strategy of the MMC were explained. The

case of a single-phase 5-level MMC circuit is simulated both on GPU and SaberRD�. The

converter has 8 SMs both in upper-arm and lower-arm. Tab. 4.1 lists the hardware and

Table 4.1: Environment Specification

GPU CPU

NVIDIA KeplerTM GK110 NVIDIA PascalTM GP104 Intel Ivy Bridge

GeForce GTX Titan Black GeForce GTX 1080 CoreTM i7-3770

Cores 2880 2560 4 (8 threads)

Frequency 889 MHz 1607 MHz 3.4 GHz

Memory 6 GB 8GB 8 GB
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Table 4.2: 5-level Single-phase MMC Circuit Specification

System specification

Arm inductance La 5 mH Load inductance LL 5 mH

Load Resistance RL 4.6 Ω SM capacitance Cm 4 mF

DC voltage Vdc 1000 V Gate resistance 100Ω

System frequency fs 60 Hz Carrier signal frequency fc 2500 Hz

Simulation time ts 100 ms Initial time-step size h 1 ns

IGBT specified parameters

A 0.1 cm2 AGD 0.05 cm2 Isne 6.5e-14 A

NB 2.0×1014 cm−3 Vcrit 0.6 V τHL 0.6 s

Kf 1.0 Kp 0.38 A/V θ 0.02 V−1

Vt 4.7 V WB 0.009 cm BVf 1

BVn 4 Cgs 6.2×10−10 F Coxd 1.75 ×10−9 F

LTD 1×10−3 V

Diode specified parameters

IS 10−14 A τ 5 μs TM 5 μs

VT 0.0259 V m 0.5 Cj0 1nF

VJ 0.7 V ISE 10−22 Rc 10−3

software specification of the GPU and CPU used in the work. The parameters of physics-

based device level IGBT and power diode models adopted in the case study are listed in

Tab. 4.2.

G5−level
79×79 ΔV79×1 = −I79×1. (4.1)

As illustrated in Chapter 3, the Jacobian matrix to solve a single IGBT is a 5×5 ma-

trix GIGBT in (3.90), adding an anti-parallel diode brings one more circuit node inside

the diode. Thus, the Jacobian matrix for the pair is a 6×6 matrix. For the SM consisting

of 2 pairs of IGBT and diode, the Jacobian matrix GSM has the dimension of 11×11. In

the 5-level MMC circuit containing 8 cascading SMs, there are 79 node voltages, except

the two nodes connecting to DC voltage source, to be calculated. To solve the following

Newton-Raphson iterative equations not only takes lot of execution time, but also brings

convergence problems.

Another challenge of solving the high level MMC circuit is the ill conditioning of the
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Jacobian matrix. The condition number of Jacobian matrix influences the solution accuracy.

The condition of a square nonsingular matrix A is defined as following:

cond(A) = ||A|| · ||A−1||. (4.2)

If the condition number is close to 1, it means the matrix is well-conditioned, whereas if

the condition number is too large, the matrix is deemed as ill-conditioned. In equation

(4.1), if cond(G5−level
79×79 ) is too large, a small error in -I79×1 will cause a large inaccuracy

in the iterative solution. Given the example of the single IGBT Jacobian matrix during

simulation, the matrix has the following values. GIGBT =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.17722× 10−19 −1.2410× 10−9 −1.0000× 10−12 −5.3015× 10−10 0

−1.2410× 10−9 3.9958× 10−9 0 −2.7558× 10−9 0

0 0 0.5454 0 −0.5454
−5.3015× 10−10 −2.7548× 10−9 0 4.3443× 10−9 −1.0593× 10−9

−2× 10−12 0 −0.5454 −1.0583× 10−9 0.5454

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.3)

Tab. 4.3 lists the condition number of the GIGBT during a iterative equation solution

process taking 5 iterations to converge. The condition numbers of the Jacobian matrix are

quite large which means the whole system is very sensitive to errors and it is hard to find

accurate solution. Due to these characteristic, SaberRD� cannot solve single-phase MMC

systems containing more than 8 SMs, there is no existing DC solution and the iterative

process fails.

The system-level simulation results comparison between SaberRD� and the GPU sim-

ulation is shown in Fig. 4.1(a) to Fig. 4.5(b). The result proves the GPU simulation ac-

curacy. In addition, SaberRD� is more sensitive to the system parameters than the GPU

code. It will not give complete simulation result when using default setting values. Ad-

justing the local truncation error (LTE) limit and target Newton-Raphson iteration number

will help to complete the simulation. The use of a variable time stepping method for a

system having a large condition number, means that the simulation is sensitive to small

errors, and the convergence problem is influenced by several factors. Changing the LTE

Table 4.3: Condition number of iterative Jacobian matrix GIGBT

Number of iteration 1 2 3 4 5

cond(GIGBT ) 2.3813×1017 1.6154×1017 5.7653×1016 9.2175×1016 7.1517×1017
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Figure 4.1: 5-level MMC circuit output voltage waveform and FFT analysis from
SaberRD�

limit affects the sampling time points, which in some case makes the simulator skip some

points that do not converge. While in the GPU code, the convergence problem also exists;

nevertheless, instead of solving a 79×79 matrix equation directly as in SaberRD�, solving

a 5×5 block matrix equation using partial LU decomposition reduces the chances of non-

convergence. Fig .4.1(b), Fig. 4.2(b), and Fig. 4.4(b), Fig. 4.5(b) show the output voltage

and load current Fast Fourier transform (FFT) analysis of SaberRD� and the GPU simu-

lation results. Since the voltage and current result are obtained using variable time-step

method, to obtain FFT result, a sampling rate of 20480 Hz is performed in advance. Linear

interpolation, although it is easy to implement, it is prone to distortion, is adopted to pro-

duce samples at fixed rate. Beside the base frequency of 60 Hz, the harmonic frequency

around fc of 2.5 kHz is obvious. Due to the inductors in the circuit, the load current has

lower harmonics than voltage. And the capacitor voltage comparison between SaberRD�

and GPU is shown in Fig. 4.3(a) and Fig. 4.3(b). With averaging and balancing control,

the capacitor voltages are kept around 2Vdc/narm, where narm refers to the number of SMs

per arm.
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Figure 4.2: 5-level MMC circuit output voltage waveform and FFT analysis from GPU
simulation
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Figure 4.3: Capacitor voltages in upper and lower arm form SaberRD� and GPU
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Figure 4.4: 5-level MMC circuit load current waveform and FFT analysis from SaberRD�
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Figure 4.5: 5-level MMC circuit load current waveform and FFT analysis from GPU
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Figure 4.6: IGBT turn-on turn-off voltage and current waveform from SaberRD� and the
GPU simulation

The device-level simulation result is given in Fig. 4.1 which shows the detailed turn-on

and turn-off time, voltage and current. Tab. 4.4 gives the power dissipation of S2 and D2

in during switching and conducting situation. The power loss in IGBT is calculated using

the following equation

P IGBT =

∫
vce(t)ic(t)dt

Ts
, P diode =

∫
vf (t)if (t)dt

Ts
, (4.4)

where vf is the voltage cross the diode and if stands for the current through current, and

Ts is the switching period.

Table 4.4: Device-level switching time and power dissipation for S2 and D2

Switching time (μs) Power dissipation (W)

Saber� GPU Saber� GPU

tIGBT
d(on) 0.10 0.098 PIGBT

on 112.31 113.02

tIGBT
r 0.17 0.15 PIGBT

off 75.01 74.84

tIGBT
d(off) 0.33 0.34 PIGBT

cond 287.52 289.06

tIGBT
f 0.67 0.65 PDiode

cond 7.48 7.55

tDiode
rr 0.66 0.64 PDiode

rr 9.95 10.07
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Figure 4.7: 3-phase 11-level MMC circuit output voltage waveform and FFT analysis using
physics-based and behavior-based model from the GPU simulation

4.2 Test Case for 3-phase 11-level Physics-based MMC Simula-

tion

The 3-phase MMC circuit simulation results are compared between GPU and CPU codes

since SaberRD� can only converge and give result for the 3-phase 2 SM per phase with

time consumption of 183 seconds. The 3-phase 11-level MMC system parameters are listed

Table 4.5: 3-phase 11-level MMC Circuit Specification

System specification

Arm inductance La 5 mH Load inductance LL 5 mH

Load Resistance RL 20 Ω SM capacitance Cm 4 mF

DC voltage Vdc 2000 V Gate resistance 100Ω

AC voltage source Vsl l 2000 V Rated power Prated 600 kW

System frequency fs 60 Hz Carrier signal frequency fc 2500 Hz

Simulation time ts 100 ms Initial time-step size h 1 ns
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Figure 4.8: 3-phase 11-level MMC circuit load current waveform and FFT analysis using
physics-based and behavior-based model from the GPU simulation

in Tab. 4.5 with the same IGBT and diode parameters as in the single-phase case. Fig. 4.7(a)

and Fig. 4.8(a) give the output voltage and load current of each phase simulated on the

GPU. The FFT analysis of phase a voltage and current are given in Fig. 4.7(c) and Fig.

4.8(c) with a sampling frequency of 20480 Hz. Compared with Fig. 4.2(b) and 4.5(b), the

harmonics are smaller in both voltage and current waveforms due to increasing levels. For

comparison, the 3-phase 11-level MMC circuit using behavior-based model is also simu-

lated using the same system specification. As shown in Fig. 4.7(b) and Fig. 4.8(b), both

the voltage and current waveforms using behavior-based model are smoother than the

ones using physics-based models. The FFT analysis of voltage and current comparison is

more obvious in Fig. 4.7(c), Fig. 4.7(d), Fig. 4.8(c) and Fig. 4.8(d). Due to the nonlinear

capacitance and dynamic current sources in physics-based models, it is more sensitive to

transient in each nonlinear device.

In Fig. 4.9, the active power control results are given by changing the reference active

power value from 0.9 pu to 0.3 pu during 1 ms to 1.5 ms. As shown in Fig. 4.9(b), the output

voltage almost keep steady during the change of active power reference, which verify the

averaging and balancing capacitor voltage control. And in Fig. 4.9(c), the amplitude of

3-phase current varies to make output active power to follow the reference value, proving
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Figure 4.9: 3-phase 11-level MMC circuit active power control results

the power control strategy in Chapter 3. The CPU simulation gives exactly the same output

voltage and current except with a higher time consumption.
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Figure 4.10: 3-phase 201-level behavior-based MMC output voltage and load current

4.3 3-phase 201-level Behavior-based MMC Simulation

A behavior-based MMC circuit is simulated for comparison between GPU and CPU for

large-scale power electronic converter application. The converter contains 400 SMs on each

phase having the specification in Tab. 4.6. Fixed time-step scheme is adopted for execution

time comparison since the time-step size is much higher than that of physics-based model

case. The output voltage and load current simulation output is shown in Fig. 4.10(a) and

Fig. 4.10(c), which is highly close to sinusoidal compared with lower level result. From

the zoomed waveform of voltage and current in Fig 4.10(b) and Fig. 4.10(d), there are

still harmonic component in the waveforms, similarly, current waveform is more close to

sinusoidal waveform due to the arm and load inductance. Each capacitor voltage in Fig.

4.11(a) is around reference capacitor voltage 380V (2Vdc/narm) with capacitor averaging

and balancing control strategy. Fig. 4.11(b) gives the zoomed waveform of the rectangular

in Fig. 4.11(a) showing the detail of capacitor voltage change in the same arm.
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Figure 4.11: 3-phase 201-level capacitor voltages in upper and lower arm
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Table 4.6: 3-phase 201-level MMC Circuit Specification

System specification

Arm inductance La 150 mH Load inductance LL 3 mH

Load Resistance RL 5 Ω SM capacitance Cm 4 mF

DC voltage Vdc 38 kV Gate resistance 100Ω

System frequency fs 60 Hz Carrier signal frequency fc 2500 Hz

Simulation time ts 0.5 s Fixed time-step size h 10 μs

4.4 Execution Time Comparison

The single-phase MMC circuits are tested from 2-level to 11-level as shown in Tab. 4.7

for 100 ms time simulation using variable time-step method. Since SaberRD� is hard to

converge when containing more than 8 SMs, the execution time comparison for higher

levels is between GPU and CPU codes. The CPU code has similar execution time with

SaberRD� based on the completed cases. Both CPU code and SaberRD� are slower than

GPU code when there are more than 8 SMs as shown in Fig. 4.12. In addition, the GPU

code is running on both GK110 and GP104 to get execution time TGPU1, TGPU2 and speed-

up SU1, SU1 compared with CPU code. With the development of GPUs, GP104 achieves

higher speed-up compared with GK110. The 3-phase execution time comparison between

GPU and CPU codes is listed in Tab. 4.8. In the 3-phase MMC case, the computation of

the three phases is naturally paralleled for the GPU; therefore, as shown in Fig. 4.13, the

advantage of GPU computation and speed-up is more obvious.

73



Chapter 4. MMC Case Study and Data Analysis

2 4 6 8 10 12 14 16 18 20
Number of SMs

0

100

200

300

400

500

600

700

Ti
m

e 
(s

)

TSaber
TCPU
TGPU1
TGPU2

Figure 4.12: Single-phase physics-based MMC circuit execution time comparison

Table 4.7: SaberRD�, CPU and GPU execution time of single-phase physics-based MMC

nSM nIGBT nV level TSaber (s) TCPU (s) TGPU1 (s) SU1 TGPU2 (s) SU2

2 4 2 43 44.8 147.1 0.30 58.9 0.76

4 8 3 100 95.9 154.4 0.62 60.7 1.63

6 12 4 149 143.8 162.5 0.88 65.4 2.20

8 16 5 202 193.5 171.7 1.13 69.2 2.82

10 20 6 - 250.9 184.2 1.36 74.1 3.39

12 24 7 - 310.3 195.7 1.59 79.3 3.91

14 28 8 - 361.8 206.5 1.75 83.2 4.35

16 32 9 - 420.5 218.6 1.92 87.9 4.78

18 36 10 - 501.5 245.2 2.08 98.7 5.08

20 40 11 - 657.8 285.5 2.30 115.4 5.70
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Figure 4.13: 3-phase physics-based MMC circuit execution time comparison

Table 4.8: CPU and GPU simulation execution time of 3-phase physics-based MMC

nSM per phase nIGBT nVln
nVll

TCPU (s) TGPU1 (s) SU1 TGPU2 SU2

2 12 2 3 150.8 156.2 0.97 63.1 2.39

4 24 3 5 327.9 172.9 1.90 70.0 4.68

6 36 4 7 473.5 191.7 2.47 76.9 6.16

8 48 5 9 710.3 219.2 3.24 88.2 8.05

10 60 6 11 834.1 248.5 3.36 99.4 8.39

12 72 7 13 1121.1 289.2 3.88 115.2 9.73

14 84 8 15 1279.2 354.3 3.61 142.3 8.99

16 96 9 17 1475.4 387.9 3.80 156.5 9.43

18 108 10 19 1752.4 480.2 3.65 193.1 9.08

20 120 11 21 2237.3 521.1 4.29 209.6 10.67
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The behavior-based 3-phase MMC circuits are tested from 11-level to 201-level for 0.5

s time simulation using 10 μs fixed time-step method as shown in Fig. 4.14(a) and Tab.

4.9. Fig. 4.15 and Fig. 4.16 gice the output voltage and load current waveforms from 21-

level and 501-level in each phase of 3-phase MMC circuit, as well as the capacitor voltage

in upper and lower arm, with the growth of levels, the arm inductance increases to give

smoother voltage and current waveforms. The simplified model of SM makes the whole

arm of the MMC can be treated as a equivalent Thevenin circuit, therefore, the calculated

arm current makes the computation for each SM independent from each other. For the

behavior-based model of SM, there are two node voltage in the SM, the SM output voltage

and capacitor voltage need to be updated. With the growth of SM numbers in each phase,

the parallel update makes the speed-up of GPU simulation significant.

Table 4.9: CPU and GPU simulation execution time of behavior-based 3-phase MMC

nSM per phase nIGBT nVln
nVll

TCPU (s) TGPU1 (s) SU1 TGPU2 (s) SU2

20 120 11 21 37.2 35.5 1.05 14.1 2.64

40 260 21 41 67.4 35.9 1.88 14.4 4.68

80 480 41 81 129.2 36.2 3.57 14.5 8.91

100 600 51 101 156 36.6 4.26 14.6 10.68

160 960 81 161 255.8 40.2 6.36 16.1 15.89

200 1200 101 201 302.8 40.9 7.40 16.4 18.46

250 1500 126 251 376.2 41.9 8.98 16.8 22.39

300 1800 151 301 453.2 45.1 10.05 18.1 25.04

350 2100 176 351 526.2 45.6 11.54 18.2 28.91

400 2400 201 401 595.6 48.3 12.33 19.3 30.86

500 3000 251 501 755.2 48.9 15.44 19.5 38.73

600 3600 301 601 894.5 52.2 17.14 20.8 43

800 4800 401 801 1188.2 59.1 20.10 23.6 50.34

1000 6000 501 1001 1495.6 62.5 23.93 25.0 59.8
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Figure 4.14: 3-phase behavior-based MMC circuit execution time and speed-up compari-
son
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Figure 4.15: 3-phase 21-level behavior-based MMC circuit simulation results
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Figure 4.16: 3-phase 501-level behavior-based MMC circuit simulation results
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4.5 Summary

In this chapter, the cases of single-phase 5-level and 3-phase 11-level MMC circuits are

simulated to verify the physics-based IGBT and power diode model in a practical applica-

tion. And the case of 201-level 3-phase MMC circuit using linear behavior-based models

is tested for large-scale massively parallel simulation application. The massively paral-

lel implementation of MMC circuit is advantageous and gains speed-up compared with

serial CPU programming for both physics-based and linear behavior-based cases. In addi-

tion, with the growth of converter levels, the speed-up grows significantly, especially for

3-phase cases. However, the main limitation of higher level MMC configurations simula-

tion using physics-based models is the convergence problem due to the high nonlinearity

of the IGBT and power diode models. Since the system Jacobian matrix is ill-conditioned,

the accuracy and convergence are directly influenced. The Jacobian matrix size increases

by the factor of n2, with n being the SM number in single-phase. With the partial block

Jacobian matrix decomposition, the Jacobian matrix size being dealt within each block is

constant. Therefore, the total time consumption of GPU simulation increases much more

slowly than that for the CPU when the used memory size is within limitation. When deal-

ing with the simplified behavior-based IGBT and diode models inside each SM, the paral-

lelism is based on the ability to calculate the arm current, which is also the output current

of each SM in the same arm. Since the reduced size of Jacobian matrix compared with that

of physics-based models, the ability to calculate arm current makes the Jacobian matrix

naturally decomposed to each SM, which is suitable for massively parallel computation.

80



5
Conclusion and Future Work

System-level and device-level simulation provides different focus in power electronic con-

verter simulation. Adopting physics-based device-level models to build a multiple level

power electronic converters gives a chance to give insight into the device while solving

the entire system. The cost is to accomplish the high computational requirement brought

about by the complex system model. By using CPU based sequential programming to

implement the simulation, with the growth of converter levels, the higher execution time

makes it impractical. With the development of GPGPU, the system-level converter struc-

ture makes it suitable for massively parallel implementation. Compared with single-core

and multi-core CPU, the many core GPU structure brings unique computational capability

for massive-thread parallel problem solution.

This thesis describes the nonlinear physics-based IGBT and power diode model and

numerical solver implementation for power electronic circuit simulation. The device-level

massive parallelism is implemented on these models and the solvers. In power electronic

circuits simulation, the accomplishment of high level MMC gives opportunity for more

massively parallel simulation application. The contributions of this thesis and recommen-

dations for future work are presented in this chapter.

5.1 Contributions

• The device-level physics based IGBT and power diode model are linearized and dis-

cretized to be solved using linear solution method. The equivalent circuits of com-
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plex nonlinear power electronic models are provided.

• IGBT and power diode and numerical solution have wide application in power elec-

tronic circuits. Massively paralleled implementation of the device-level models was

proposed for the first time on the GPU. These modules can be used in future appli-

cations.

• The test cases of up to 3-phase 11-level MMC circuit simulation using physics-based

models is hard to perform using SaberRD�. Using the methods in this thesis on GPU

gives simulation results and achieves accelerated execution time.

• The dimension of Jacobian matrix grows with the level of MMC circuit. The block

computation using partial LU decomposition proposed up in this thesis increases

the system-level parallelism, which can help solve large power electronic circuits

containing repeated structures.

• A comparison of LU decomposition and Gaussian elimination solution is developed

for various applications. When using parallel implementation of the two methods,

the execution procedures are closer than in sequential code, which makes the ad-

vantageous aspects of these two solution method suitable for specific cases with less

limitation.

• The predictor-corrector variable time-step method increases the simulation efficiency

by arranging computational resources according to tasks, which can benefit wide

range of circuit simulation applications.

• Since large numbers of physics-based models in MMC will cause convergence prob-

lem, using the linear behavior-based IGBT and power diode models for up to 501-

levels MMC with parallel simulation shows significant speed-up comparing with

sequential simulation.

5.2 Future work

• The main limitation of application for higher MMC circuit simulation comes from

the ill-conditioning of the Jacobian matrix. One approach is to increase the precision

of calculation with the improvement of hardware.

• There are many ways to improve the Newton-Raphson method for nonlinear equa-

tions so that the convergence of the system can be increased.
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• The physics-based IGBT and diode model can be improved using other discretiza-

tion and linearization methods so that the Jacobian matrix of the IGBT can be better

conditioned.

• The decomposition of large dimension Jacobian matrix in this thesis is based on a

mathematical method. There are other ways such as using electric characteristics of

the circuit and adding transmission lines to physically decompose the system.
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