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ABSTRACT

This thesis is concerned with the one-dimensional propagation of boundary-
generated waves in two semi-infinite solids. In the first part of the thesis a
viscoelastic solid obeying a single-integral constitutive functional is considered.
Unlike in many other studies, the instantaneous elastic response function of the
solid is not required to be strictly convex. An asymptotic solution is constructed
and analyzed. In the second part of the thesis second sound propagation in
elastic heat conductors is taken into consideration. First, a theoiy of thermoe-
lasticity consistent with the second law of thermodynamics and the principle
of material frame indifference is derived to describe second sound. Then, the
one-dimensional propagation of second sound is examined in the linearized the-
ory. Predictions of the linearized form of our theory, originally formulated by
Lord and Shulman, are compared against those of the linearized theory of Green
and Lindsay. It is found that predictions of the latter theory are unrealistic.
Lastly, attention is turned to the nonlinear theory and implications of the ma-
terial nonlinearity on the propagation of second sound is analyzed on the basis

of the nonlinear geometric optics solution.
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CHAPTER I

INTRODUCTION

We are concerned with the propagation of waves in two materials. Both
materials have memory but the processes they may undergo and the manners
in which they remember the past are radically different. We are interested
in constructing formal asymptotic solutions for our wave propagation problems
to obtain not only qualitative but also approximate numerical information for
comparison with experiments.

The first material we consider is a viscoelastic solid. In purely mechanical
deformations of viscoelastic materials experience indicates that the stress at the
present depends on the entire history of deformations but deformations which
occurred in the recent past have more influence on the present stress than those
which occurred in the distant past. In mathematical terms this fading memory
is expressed by means of a constitutive functional that relates the present stress
to the history of strain. A fading memory hypothesis is then invoked to im-
pose certain smoothness requirements on the constitutive functional. We refer
the reader to the recent article of Saut and Joseph [1] and references therein
for detailed descriptions of fading memory hypotheses. Also of relevance to our
work are the recent studies of single-integral constitutive relations by Gurtin
and Hrusa [2,3] without recourse to any convention#l fading memory hypothe-

sis. In nonlinear deformations of wiscoelastic materials fading metﬁory manifests



itself by introducing a dissipative mechanism competing against the destabilizing

effect of nonlinearity of the material.

Available mathematical models that are capable of capturing the above
mentioned competition between nonlinearity and dissipation can roughly be di-
vided into the classes of rate type, single-integral type and multiple-integral
type models. It is known that each class has advantages and disadvantages,
and experiments indicate that none could be considered the best class of mod-
€ls since under certain loading regimes and for certain materials one may be
more appropriate than the others whereas under different loading conditions or
for some other materials another may become better suited. However, because
of their simplicity for analytical and numerical studies, and flexibility for in-
corporating experimental data, single-integral models havc;. received considerable
attention in the past few decades. The reader can consult the recent mono-
graph of Renardy, Hrusa and Nohel [4] and their more recent survey article (5]
for detailed reviews of the related literature,

In the first part of this study we undertake an asymptotic analysis of
one-dimensional propagation of small-amplitude, high-frequency disturbances by
choosing a ‘#ingle-integral stress functional for the viscoelastic solid we consider.
The physikal problem we deal with describes the longitudinal propagation of
small-amplitude, high-frequency disturbances entering into a homogeneous semi-
infinite material that has been unstrained and at rest until a disturbance is

applied at the boundary. We assume the constitutive functional obeys certain



physically reasonable conditions guaranteeing that the material exhibits instan-
taneous elastidty and that the resulting system of integrodifferential equations
may be regarded as hyperbolic with history dependent real characteristics; see
[4].

Our main departure from most other studies is that we do not require
the instantaneous elastic response function of the material to be strictly con-
vex but rather allow an inflection point at the constant base state described
above. We could have considered several inflection points but because of the
local nature of our asymptotic analysis this is not necessary. Motivated by the
concept of local linear degeneration related with a similar situation in the the-
ory of hyperbolic partial differential equations, we call the instantaneous elastic
response function locally lipea.rly degenerate at the base ;thte. In the context
of hyperbolic systems of partial differential equations, problems suffering from
local linear degeneracies have been considered by several authors; see, for ex-
ample, Liu [6], Klainerman and Majda [7], and He and Moodie [8]. In the
context of viscoelastic materials, the wofks of Dafermos [9], Nohel, Rogers and
Tzavaras [10]), and Warhola and Pipkin [11] are particularly related with the
case when the instantaneous elastic response function is locally linearly degen-
erate at some constant base state. Some related experimental observations have
been addressed in Nunziato et al. [12].

The second material of interest in this study is an elastic heat conductor

that conducts heat by second sound. The concept of second sound originated



in 1941 from Landau’s attempt [13] to develop a theory of superfluidity for the
superfluid liquid helium, He-2. Studying the propagation of sound accarding to
his theory Landau showed that in He-2 there exizi r sound welecities. The
first of these is the velocity of the ordinary acoustic wave while the second the
velocity of a thermal wave. This latter wave is called second sound.

In 1944, Peskhov {14] reported the experimental detection of second sound
in He-2. In this report, on the basis éf similarities between superfluidity and
superconductivity, he argued that an analogous phenomenon might be observed
in superconductors as well. Later, Peskhov [15] speculated further that second
sound could be detected also in crystals. Following speculations of Peskhov,
several attempts have been made to develop theories of second sound in solids..
A detailed historical account on these attempts can be found in the survey
article of Joseph and Preziosi [16]. In spite of many theoretical studies, no
notable experimental effort was expended to detect second sound in solids until
the mid-sixties.

Another concept related with thermal waves propagating at finite veloci-
ties is the concept of the “paradox of instantaneous propagation of thermal dis-
turbances” predicted by the classical linear theory of heat conduction. In the
classical theory Fourier's Law states that the heat flux is proportional to the
temperature gradient. Therefore, according to Fourier’s Law heat flow starts at
the same instant a temperature gradient is generated. When Fourier’s Law and

the classical energy-temperature relation giving the specific internal energy as a



linear function of the temperature are combined with the energy balance equa-
tion, the resulting equation is the classical parabolic heat equation suggesting
that thermal disturbances diffuse with infinite velocity.

This concept was initiated in 1948 by Cattaneo {17] in his study concern-
ing the kinetic theory of gases. Based on the observation we just explained
briefly, Cattaneo argued that since thermal disturbances must propagate with
finite velocities, this prediction of Fourier’s theory is physically paradoxical. To
eliminate the paradox, he then proposed an alternative law of heat conduction.
Cattaneo’s Law is a rate type constitutive equation relating the present heat
flux to the past history of temperature gradient and implies simply that heat
flow does not start instantaneously but establishes itself gradually with a re-
laxation time after a temperature gradient is created. When Fourier’s Law is
replaced with Cattaneo’s Law in the classical theory of heat conduction, the
resulting equation is the well known hyperbolic telegraphy equation whose so-
lutions propagate at finite velccities.

In 1963, Chester [18] brought the two concepts together and suggested
that Cattaneo’s Law would provide a satisfactory mathematical model to de-
scribe second sound in crystals at low temperatures. In 1966, solving the lin-
earized phonon Boltzman equation, Guyer and Krumhansl [19] derived a set of
macroscopic equations as a model for second sound in crystals. The heat flux-
temperature relation they determined deviates from Cattaneo’s Law by terms

involving spatial gradients of the heat flux and reduces to Cattaneo’s Law when



these terms are neglected. Shortly after, Guyer and his collaborators {20} an-
nounced the first successful demonstration of second sound in a solid, He-4.
After this experiment, second sound has been observed in the dielectric crystals
He-3 [21] and NaF [22-25], and also in Bi {26]. All these experiments have been
performed at very low temperatures with “specially refined high-purity” crys-
tals and “heat-pulse propagation” techniques have been employed. For other
experiments reference is made to the survey article [16].

In the late sixties and early seventies, many attempts have been made to
develop continuum theories capable of predicting thermal waves propagating at
finite velocities for various types of materials; see Oncii and Moodie [27]. In
the second part of the thesis we take two of these continuum theories into con-
sideration as mathematical models for examination of second sound in crystals.
These are the linear theory of Lord and Shulman [28] and the theory of Green
and Lindsay [29] for thermoelastic materials. Qur choice of thermoelasticity
theories resides in the fact that experimentally observed thermal fluctuations in
the above experiments, though at varying degrees, are coupled with deforma-
tions. In view of experiments we deal with the one-dimensional propagation of
disturbances generated at the boundary of a homogeneous semi-infinite material
body by disturbing the temperature,

The linear theory of Lord and Shulman (28] is a simple modification of the
classical linear theory of thermoelasticity: Lord and Shulman simply replaced

Fourier’s Law with Cattaneo’s Law to write down their constitutive equations.



Based on experimental data for NaF, Pao and Banerjee [30] showed that the pre-
dictions of the Lord and Shulman theory are in agreement with the experiment.
The work done over the past two decades on the propagation of disturbances
in the linear theory of Lord and Shulman now constitutes a considerably large
literature. The number of studies on the propagation of disturbances in the
Green and Lindsay theory is, on the other hand, comparatively small.

Green and Lindsay [29] developed their constitutive theory by exploiting a
modified form of the Clausius-Duhem inequality as the mathematical statement
of the second law of thermodynamics. By incorporating the rate of tempera-
ture into their list of independent constitutive variables, they obtained a set of
constitutive equations which involve Fourier’s Law as the constitutive equation
for the heat flux for isotropic materials. We compare predictions of the lin-
earized equations of the Green and Lindsay theory against those of the Lord
and Shulman theory in the one-dimensional problem we set up and find that
predictions of the former theory are physically unreasonable.

We then abandon the use of the theory of Green and Lindsay, and con-
tinue our analysis of the problem in a nonlinear theory we develop on the basis
of thermodynamical arguments. We give our derivation prior to the formulation
of the one-dimensional problem we examine. This is a three-dimensional devel-
opment. Our nonlinear constitutive equations are extensions of the nonlinear
constitutive equations recently developed by Coleman, Fabrizio and Owen [31]

for rigid heat conductors to include elastic heat conductors. In our derivation



we also provide a solution to the problem of lack of material frame invariance
Cattaneo’s Law suffers from. Our constitutive equations reduce to those of the
theory of Lord and Shulman after linearization. In our analysis of the one-
dimensional problem we concentrate our attention on the nonlinear influence
of temperature on the propagation of second sound. In fact, the above noted
experiments indicate a strong dependence of the material parameters on the
temperature in the range of temperatures in which second sound occurs. The
nonlinear influence of deformations, on the other hand, appears to be unimpor-

tant.



CHAPTER 2

ONE-DIMENSIONAL VISCOELASTIC SOLIDS

In this chapter we formulate the one-dimensional problem described in the
introduction for the viscoelastic solid we wish 40 study. We start our formu-
lation by delineating the appropriate governing equations. We then introduce
the single-integral stress functional we choose for our viscoelastic solid and de-
fine the instantaneous elastic moduli. We conclude this chapter by discussing
the properties of the resulting 2 x 2 system of Volterra integrodifferential

equations for preparation to the asymptotic analysis of the next chapter.

2.1. Basic Equations

Consider the longitudinal motion of a one-dimensional viscoelastic solid
that has been unstrained, at rest and occupied the interval (0,00) for all
time ¢ < 0. Denote by x(z,t) the motion of the solid, that gives the
position at time ¢ of the particle with the reference position z € (0,00),
and suppose the solid is homogeneous with the constant mass density pp in
its reference configuration. The velocity v(z,t) and strain u(z,f) are then

defined by
) o .
v=5t)-c-, u=8—:- . (2.1)
It follows from (2.1) that
ou v
%50 - @2



and the law of conservation of linear momentum in the absence of body forces

takes the form

2@
|
P&
I
=

Po (2.3)

where S(z,t) is the Piola stress.
It will be necessary in what follows to deal with dimensionless variables.

Consequently, we introduce the following nondimensionalization scheme:

=12, =zt x"=ix
(2.4)
V= % v, S*'= -;3—2; S,

where L and T are appropriate length and time scales. We shall use these
nondimensional variables exclusively but omit the asterisks for convenience. In
terms of the dimensionless variables the equations (2.2) and (2.3) take the re-

spective dimensionless forras

Ou Ov
R (25)
o 8s
* o (26)

We now suppose that the dimewsiciiéss Piola stress is determined by a
single-integral functional through ihz acistion

§ = F(u'), @2.7)

10



where F is that single-integral functional which depends on the entire history

of strain at z wup to time t defined as

u'(z,7) =u(z,t ~7), 0<7<o0. (2.8)
The restriction of u(z,-) to (0,00), that is,

ul(z,7) =u(z,t-1), 0<7<o00, (2.9)

is called the past history of strain at z up to time ¢. We shall use wu(z,t)
and u(z,0) interchangeably to indicate the present value of the strain at z.
The single-integral functional F will be specified in the next section.

Under the assumptions on the motion of the solid we have
u(z,t) =v(z,t) =0, z>0, t<0. (2.10)

Let us now suppose that a wave motion is set up at the boundary z =0 with

the boundary condition
u(0,t) = eao(t/e?) for all t € (—o00,00), &11)

where 0<e<«1 and p isan integer such that 1<p<gq for some integer
¢21. The function oy vanishes forall ¢<0 andiseithzrunoothforall
t orsmoothforall ¢ exceptfor ¢t=0 whereitisonlyLipsch.itzeontimmm,
that is, 03(0) # 0 with the prime indicating differentiation with respect to
the argument. Further, together with its first derivative, oo is integrable

11



on (—oo0,00). Note that since prescribing the boundary velocity resuits in an
equivalent problem, we deal only with the case of boundary prescribed strain.
We avoid traction boundary conditions, which offer some technical difficulties,

for expositional simplicity. Until further notice we assume o3(0) = 0.

2.2. The Stress Functional and the Instantaneous Elastic Moduli

Let us suppress the z dependence of the strain for convenience and
limit our attention to the class of bounded strain histories which are functions
from [0,00) to D where D is an open, bounded and simply-connected
neighbourhood of zero on the real line and D is the closure of D.

In this thesis we are concerned with the single-integral functionals given

of the form

F(u') = G(u(?)) + /o ” a'(7)H (u(t), u(t — r))dr, (2.12)
or, equivalently,

F(u*) = G(u(t)) + _; a'(t — 8)H(u(t), u(s))ds, (2.13)

where s=t—7, 0 < T <00 isthe past time. In this functional a is a twice
continuously differentiable, positive, decreasing and convex function on [0, c0)
whereas with n>2, G and H are n times continuously differentiable
functions on D and D°, respectively. With no loss of generality, we set
a(oo) =0, normalize H according a8 H(u,u)=0 forall u€ D and

12



further suppose G(0) =0. Therefore, the solids we are dealing with are stress
free in their strain free equilibrium states, though such a requirement is not
necessary for our analysis. The function a is called the memory function.
Let us denote with w0 the vector defined as w = (w;,w2)T = (u(t), u(s))T
for fixed ¢ and s, where the superscript T denotes the transpose. That
G and H are n times continuously differentiable functions indicates they

admit the following Teylor series 2xpansions:

G(u) = ch u +oflul"), (214)
Hw)=) ¥ B; 2 ,’ + o{fwl*), (2:15)
k=1 itj=k A
i,j20
where
Gi(u) = G(u), k=1,2,...,n, (2.16)
Hij(wy,w2) = 8:.;0’ H(w,wp), i+5=1,2,. 1,7 20, (2.17)
1

while Gj=Gy(0) and Hi; = H;;(0,0).

The function G(u) is called the equilibrium clastic response function of
the material at the constant strain history u'(7) = u(t), 0 < 7 < co. The
fnctions Gifu) are called the k-th order equilibrivm clastic moduli at u.
‘We assume that the first order equilibrium modulus obeys the condition

Gi(u) >0 for all ueD, (2.18)

13



which is compatible with the experiments at least near zero.
In view of the properties of the memory function a we require that the

following stability condition is satisfied:
Ho;(wl,W2) >0 for all (w;,wz) e D?. (2.19)

As will become apparent in the subsequent sections, this requirement ensures
that the mechanism arising from the memory of the material is dissipative. We
remark that since H(u,u)=0 we have Hoi(u,u)= —Hjo(u,u)> 0.

The introduced properties of a,G and H are sufficient, but not nec-
essary, for the material to exhibit instantaneous elasticity. In this matter we
refer the reader to the articles of Coleman [32,33].

Let u* be a given history and define a corresponding history u! by

u'(0)+a, r=0,
u¥(r), 0<7<o00.

ui(r) = { (2.20)

Coleman (32] called u! the jump continuation of u' with jump o where
« is a constant. It is evident that u! describes a jump of size « imposed
on u' attime ¢t

The function E of a, defined as
E(a; u') = F(up), (2.21)

is called the instantaneous elastic response function of the material at the strain

history u®. Needless to say, this function depends not only on the jump a,

14



but also on the entire history u!. We remark that such a function is undefined
unless a' is integrable; nonintegrability of o' indicates that the material
does not exhibit an instantaneous elastic response but, as for the viscous fluids,
a jump in the strain results in an infinite stress. Implications of this and weaker
type of singularities in a' have been examined in the monograph [4] in detail.

The derivatives

dk
Ex(u') = o B(o; )le=0, kF=1,2,...,n, (2.22)

are called the k-th order instantaneous elastic moduli at u‘. By virtue of

the fact that knowledge of the entire history u* is equivalent to the knowledge
of its past history u! and its present wu, it is possible to consider F(u')
as F(u!;u). With this observation, Ei(u*) can be defined alternatively as
the usual partial derivatives of F(uf;u) with respect to the present value u

by keeping the past history u! constant:

Ei(u') = %,F(uf.; u). (2.23)

When necessary, we shall refer to such derivatives of the functionals like F as
the instantaneous derivatives. It follows from (2.13), (2.14), (2.15) and (2.23)

that the Ei(u') take the expﬁcit forms

- Ex(u?) = Gi(u(®) + t d'(t — s)Hyo (u(t), u(s))ds. (2.24)

--00

15



The first order instantaneous elastic modulus is required to obey the con-

dition
Ey(x')>0 forall u'€D. (2.25)

Like the condition (2.18) on Gj(u), this condition on Ej(u') is compatible
with the experiments near zero. Further, with (2.25) it is guaranteed that the

equations we consider may be regarded as hyperbolic and that they never change
type (see [4]).

Let us Taylor expand E about a=0 and get
n a‘
E(o;ut) = F(u*) + :‘: Ex(u') 27 +o(a"). (2.26)
=1

K Ex(u)=0 forall u*e€D, thesum in (2.26) terminates ai:ter the first
term so that E is a linear function of a. Since this does not mean that
the stress functional F is linear, we call the instantaneous elastic response
function E linearly degenerate if this happens. If Ep(u‘)#0 for all

ut € D, then
E(a;u*) = F(u') + By (u')a + 3 Bo(u*)a? + o(a?). (2.27)

In this case we call the instantaneous elastic mpbnse function E genuinely

nonlinear. On the other hand, if

Y IB(u!)| #£0 for all u'€D, (2.28)
k=2
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the instantaneous elastic response function E is not linearly degenerate but,

though not necessarily genuinely, nonlinear, which we now assume (see [9]).
Suppose that there exists a strain history ‘€ D where, requiring that

1<g<n, q is the smallest integer such that FE,4;(u*)#0 and that for all

u' € D other than @, Ep(u')#0. Therefore, at #*

E(a; @) = F@") + Ey(@')a + —— Eg1(@)a"* + o(a®™). (2.29)

(¢ +1)'

It is clear that when g¢=1, E is genuinely nonlinear. To accomodate such a
situation, we then call the instantaneous elastic response function E locally
linearly degenerate up to order g —1 at the strain history u‘, reserving
the term zeroth order local linear degeneracy to indicate genuine nonlinearity.
It is easy to extend this definition to the case where there are several strain
histories such as #'. For simplicity in discussion we limit our attention to
when @' is constant and further suppose @'(r) =0 for all 7 € [0,00).
We remark that in shearing motions of viscoelastic materials it is necessary
that E,(0) =0 (see [34]). At the constant strain history #'=0 we have

E(0) = E; where
Ei=Gi-a(0)Hw, k=12,...,n. (2.30)

Before closing this section we ititroduce the following functional for con-

venience

K(u']0ut) = ‘ a'(t — s)Ho1 (u(t), u(s)) Oz u(s)ds. (2.31)

~00
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We call this functional the dissipation functional for reasons which will become

clear in what follows.

2.3. The System
It is the consequence of the ongoing discussion that the strain u(z,t)
and the velocity v(z,t) satisfy the following system of Volterra integrodiffer-

ential equations:

us—v.=0
z>0, t>0 (2.32)
v, — E1(vt)u o= K(u'lur..),
where subscripts following a comma indicate partial derivatives.
With a view to giving arguments to justify that (2.32) may be regarded as
hyperbolic with iﬁstory dependent characteristics, let us consider first the system

of m quasilinear partial differential equations
e +A(u)‘oz = 0’ (2‘33)

where u isa vector function of ¢ and ¢, and A a sufficiently smooth
matrix function of w€l with U being a domain in IR™. If the matrix
A is the Jacobian matrix of a sufficiently smooth vector function f of uel,
that is, A(w)= grad,f(m), then (2.33) is conservative.

If foreach uw€i, thematrix A(u) has m real eigenvalues {);(u)}7,
with the corresponding set of m linearly independent right eigenvectors

{ri(u)}=,, then the system (2.33) is hyperbolic. The system (2.33) is sirictly
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hyperbolic if these eigenvalues are distinct for each u €Y. The integral curves

of the ordinary differential equations
——A(u), 1=1,2,...,m, (2.34)

are called the characteristics of (2.33). We assume from now on that (2.33) is
strictly hyperbolic.
The i-th family of characteristics is called genuinely nonlinear in the

sense of Lax [35] if

grady\i(u) -ri(u) #0 for all uwel, (2.35)
whereas it is called linearly degenerate in the sense of Lax if

grade);(u) -ri(w) =0 for all u€eU. (2.36)

If there is linear degeneration in the i-th characteristic family, then the first
derivatives of solutions originating from smooth data do not blow up, to put
it differently, waves do not break, in the i-th mode of propagation; see, for
example, Lax [35]. If, on the other hand, the i-th characteristic family is
genuinely nonlinear, these derivatives blow up in finite time in this mode of
propagation.

A more complicated case is when one of the characteristic families, say

the i-th, is neither linearly degenerate nor genuinely nonlinear. That is, there
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exists a nonempty pteper subset V of U such that
V = {u € U| gradgAi(u) -ri(u) =0 at wu}. (2.37)

We call the :-th characteristic family locally linearly degenerate on V. It
has been shown by John [36] among others that although local linear degeneracy
may improve the lifespan of smooth solutions in the i-th mode of propagation,
it cannot prevent blow-up of the first derivatives.

Let us now consider the dissipative hyperbolic system

e + A, = ), (2.38)

where b is a sufficiently smooth vector function of uwe Y. It is well known
that the implications of Lax’s definitions concerning the characteristic families
of the non-dissipative system (2.33) do not readily extend to the dissipative
system (2.38). Setting u = (u,v)” we see that the equations (2.32) mimic

the dissipative system (2.38) with the history dependent coefficient matrix

A(ut) = (_ E:’(u,) '(')1) (2.39)

and right-hand side vector ¥u‘juf

has the real and distinct eigenvalues

2) = (0, K(u‘lt_z:.',))T. The matrix A(u!)

do(v') = = VEi(6') < 0 < VEi(uf) = M(v), (2.40)



with the corresponding right eigenvectors

n@)=0L-vEE), na)=0 VEW).  (24)

Therefore, the system (2.32) may be regarded as strictly hyperbolic with the

real characteristics

dz = M.(1t S —
Z =M, i=12 (2.42)

We remark that for these characteristics to be defined, FE;(u') must exist
which necessitates that a' must be an integrable function. The equations
(2.24), (2.40) and (2.42) reveal formally that when &' is not integrable, the
solutions of the system (2.32), as for the solutions of parabolic equations, prop-
agate with infinite speeds (see {4]). Therefore, if a' is not integrable, the
problem should not be viewed as hyperbolic.

It follows from (2.40) and (2.42) that if the instantaneous elastic response
function E is genuinely nonlinear, then the characteristics of (2.32) depend
on the entire history of the strain u'. On the other hand, if E is linearly
degenerate, the characteristics of (2.32) may depend only on the past history

t

u; and cannot depend on the present value wu. It is then clear that the

instantaneous directional derivatives

- gradg)g(v') -my(ut) = .2_%/_}‘_.;._3;5 = grade)(v*) -my(ut), (2.43)
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vanish identically when E is linearly degenerate. Although recent studies
(see, for example, Dafermos [9,37] and Hrusa [38]) suggest a strong connection
between this and the concept of linear degeneracy in the sense of Lax, a detailed
discussion of the nature of this connection falls beyond the scope of this thesis.

We conclude this section with a few remarks about the implications of the
local linear degeneracy of E on the characteristics of (2.32). First, we define

the following function of « at the strain history u':

Ao ') = hy(ug) = =Aa(uc), 24)

where u! and a are given in (2.20). This function provides a measure
for the size of the jumps in A;(u') and —Ay(u’) after a jump of size «
imposed on the strain history u' at the instant ¢. Because of the properties

of F,A admits the expansion

n-1
A(a;u')=xx(u‘)+§m(u‘)"Tf+o(a"-’), (245)
where
dk
Ax(u?) = oF A(o;u*)|a=0, k=1,2,...,n-1. (2.46)

Since E is locally linearly degenerate up to order g—1 at the strain history

@Y(z,7) =0, 0 <7 < o0, it follows from (2.24), (2.40), (2.45) and (2.46) that

M@;0)=2(0) + 5 Kot + ofa), (2.47)
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where

Ay = y(0) = E’*j;n (248)
2V

It can be seen from either of (2.45) or (2.47) that, unlike linear degineracy,

local linear degeneracy does not mean that the eigenvalues are independen! of
the present strain u. However, since A{«;8) — A1(0) = O(laf?} it turns
out that when the solutions perturbing » buse state for which u(z,t) = 0
for all ¢t < 0 are small, the larger the order of local linear degeneracy of
E is, the smaller is the influence of the present values of these solutions on
the eigenvalues of the system. As the asymptotic results of the riext chapter
will show, the waves originating from the boundary disturbance (2.11) do not
break down unless the first derivative of the disturbance is sufficiently large.
Specifically, if the disturbance is of order ¢, then its first derivative must be
of order ¢~9*! for a possible breakdown of the waves. Whether waves break
or not then depends on the result of the competition between nonlinearity and

dissipation.



CHAPTER 3

ASYMPTOTIC ANALYSIS OF THE VISCOELASTIC PROBLEM

In this chapter we present an asymptotic analysis of the problem formu-
lated in the previous chapter by constructing single wave expansions through a
systematic use of the method of multiple scales. These single wave expansions
are uniformly valid over the time depending on the properties of the material
and of the disturbances as long as the first derivatives remain bounded. We
are interested in determining the conditions for the boundedness or the blow-
up of these derivatives. The method we develop is based on the simple single
wave expansions of nonlinear geometric optics for hyperbolic systems of partial
differential equations. Methods based on these expansions have been rendered
systematic procedures through the recent studies of Hunter and Keller [39] and
Hunter, Majda and Rosales [40,41] among others and reviewed in the recent
survey article of Majda [42].

The first section of this chapter is devoted to the formal construction of
the single wave asymptotic expansions. In the second section the results are
analyzed and comparisons are made with the findings of Coleman and Gurtin
[34] about the growth snd diecay of one-dimensional acceleration waves in a
general class of viscoelastic materials by specializing their results to the case we
consider. Finally, in the last section, a simple but important numerical example

is examined.



3.1. Geometric Optics Solution

In this section we are concerned with constructing a formal asymptotic so-
lution #(z,t),V(z,t) which uniformly approximates the solution u(z,t), v(z,t)
of the problem (2.32), (2.10) and (2.11) in its region of smoothness within terms
of order €ePtl. To be precise, we are concerned with constructing the formal

single wave asymptotic solution of the form

(z,t)=eU(z, & ;¢),

1<p<yq, (3.1)
Wz, t)=eV(z, & ;¢),
where, with
o(z’t) = '¢—(:;,"t_)' ) (3.2)

U and V are given by
U(z,0;€) = Uy(z,0) + €?Up44(z,6),
(3.3)
V(z,0;¢) = Vi(z,0) + e V,+1(z, 0).
Here ¢(z,t) is a phase function yet to be specified and it is required that
the formal solution (3.1) satisfies (2.32) with errors of order P41,

It follows from (3.1) and the boundary condition (2.11) that

¢(0,t) =1, (3.4)

and recall that the solid we are dealing with is homogeneous. Consequently, we
limit our attention to linear phase functions of the form

Hat)=t-3, (3.5)

25



where )\ is a constant with the significance of the wave speed associated with
the wave of phase ¢. With the relation (3.5) and compatible with the history

condition (2.10) we demand also that

U(z,0;e) =V(z,0;e) =0 for all ¢<0. (3.6)

Regarding z and 6 as independent variables by the method of mul-
tiple scales we now impose the following conditionson U and V:
i) U and V are smooth functions of z and 4,
il) foreach z>0,U, V,U,, V,, Uy and V¥V, are bounded and inte-
grable functions of 4.
The first step in the construction is the derivation of the equations which

U and V satisfy within errors of order &P*!. It is clear from the trans-

formation
(2,8) = (2,6), (8.7
that
0, — 0 L 0
z z = —oy Vo,
. e (338)
8, L g C—P 80.

To determine how the integrals in (2.32) transform let us define
i(z,t) = By (¥*(=, ")),

j(z,t) =K (&"(zv -)Iﬁ'f.',(z, ‘))‘

(3.9)



Suppressing the € dependence of U for notational convenience, after ap-

propriate changes of variables we find

i(z,t) = I(z, 6;¢€),
(3.10)
j(zst) = "(310;5)’

where

f
-

I(z,6;¢) = G1(eU(z,0)) + ¢ / ) @'(?0 — ePp)Hyo (eU(z, 0),€U(z,0))dip,
o (3.11)
J(z,0;¢) = P! /o ’ d'(e?0 — e’p)Ho1 (U (2, 0), €U (z, ¢))U =(=, p)dp

6
- £ / a'(e?8 — €?p)Hox (U (2, 6), U (2, 9))U (2, 1) dip.
A (3.12)

In (3.12) the lower limits of the integrals are changed to zero because of (3.6).

We now claim that
By + £ Ep41U%(2,0) + o(e?), if ¢21,p=
I(z,ﬁ;e):{?l & EgnU9(z,0) +o(e?), if ¢21,p=¢ (3.13)
Ey + ofeP), if ¢22,1<p<yg,
and
o
1(2,0;6)=-6£Q?\—111’1U(z,9)+0(€), ¢21,1<p<y, (3.14)

uniformly as ¢ — 0.
To prove the claim let us deal with I(z,0;c) first. With this in mind,
we now expand Gy(eU(2,0)) and Hio(cU(z,6),eU(z,p)) into the Taylor
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series

P .
Gi(eU(z,0)) =G1+ ) % Gin1U(z,8) + ofe?), (3.15)

=1

~ P oeiti o . .
Hio(eU(2,0),eU(z,¢)) = Huo+ Y. T Hurs U2, 0072, 0) + ofe?).

:’;l-jj):ol * (3.16)

Introducing these expansions into (3.11) and rearranging the terms we then get
I(z,6;¢) = Ii(z,8; ¢) + I(z, 6;¢), (3.17)
where

Pi - 6 ,
h(s,b0) =Y 5 (Gr+Biano [ a(eP0-ep)ip}Ui(2,0) + o),
=0 = -0

= Z %:- {é.-.;.; - a(0)§i+1,o}U‘($, 6) + ofe?),
i=0

P i - .
=Y % BialUi(z,6) + of?), (3.18)
iz ¥
and
P i+j+p
Iy(z,0;¢) = E z ]
021 (3.19)

0 3
x g [ /(20— )02, @)dp}U(2,6) + ofe™),
(]
uniformly as ¢ — 0. Although (3.18) is obvious, (3.19) needs justification.

Indeed, it is implicit in (3.19) that

Iy(z,0;¢) = of¢”), (3.20)
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uniformly as ¢ — 0. We now prove (3.20).

Let us define
0 .
Wi(z,6;¢) = / a'(eP0 — )0 (z,p)dp, j=1,2,...,p. (3.21)
0
The order relation (3.20) follows if Wj(z,8;¢) =0(1), j =1,2,...,p. But

0 .
Wiz, 8;¢)| < / 10/(6%8 — €29)| Uz, ) dip

< la'(NleolU (=, NS W (25 )1y (3-22)

where |-| and |-}1 are the usual Lo, and IL; norms, respectively.
This shows that Wj(z,8;¢) = O(1), j =1,2,...,p. There then follows (3.20)
and hence (3.13) so that it remains to verify (3.14).

To prove (3.14), let us rewrite (3.12) as
J(z,6;€) = Ji(z,0;¢) — Ja(=, 6;€), (3.23)
where
6
Ji(z, 6;¢) = er ™ / a'(P0 — ePp)Hoy (U (2, 0),€U(2,9))U (3, p)dp, (3.24)
0

and

8
Tz 8i6) = 5 /o &/(e20 — £0) Hoy (€U (2, 8), U (2, @)U, o(x, 0)dp.  (3:25)



We shew first that  Ji(z,0;€) = o(e?) uniformly as € — 0. This re-

quires a proof of
e~U+P) Jy(z,6;¢) = O(1), (3.26)
uniformly as €— 0. Let us define Hpax = max {Ho1(w)] so that
weD

9
e+ y(z, 6;¢)| < / la'(78 — )| [Hox (eU(z, 6),eU(z, )| U,=(z,)lde

< Hpax 1a'(-)]oo IU, =(, ) (3.27)

This proves (3.27) and therefore, (3.14) follows if

Jo(z,0;6) = —— z ( )Hm U(z,0)+ole), ¢=21, 1<p<q. (3.28)

To prove (3.28), let us expand Hg, (eU(z,0),eU(z,p)) into the series

P i+ . .
HnleU(,0)0w) = Y. oy Bl 00 (a0) +ole®), (329
i+j=0 7°

and insert this expansion into (3.25) to get
1 & eititl
J2($ 6; E) =< N7 ANt
’ A i-;o i + 1)

% Fo { / 420 — )T (2, 0] o0} U (5, ) + o).
(3.30)

To make some progress we now define
0 -
Yi(z,0;¢) = /; a'(eP6 — ePp)[UH (z,0)l oo, 7=0,1,2,...,p. (3.31)
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Integrating (3.31) by parts we then find
Yj(z,8;€) = a'(0)U7* (2, 6) + eP Zj(z, 6;¢), (3.32)
where

Zi(z,0;€) = / ’ a" (€70 — eP)UT ) (z, ) dyp. (3.33)
0

Reminding that a" is bounded on [0,00),

]
12;(z, ;)] < / |a"(£78 — e?)| [U(z, )| 7+ dip
0
< 16" oo (2 YolU s Y (3.34)
so that Z;(z,0;¢) = O(1) and therefore,

Yj(,6;¢) = ¢'(0)U7+!(z,0) + O(e”), (3.35)

uniformly as € — 0. Thus,

4 i+l O\ - -
6 a 0 H' 4 S
Jo(z,6;¢) = .+Z- 0 i(j +1)! ( )A — Um“(z’ 6)+ o(erl-l)’ (3.36)
=

uniformly as € —0. From (3.36) and (3.23) follows (3.14) immediately.

Summarizing the results we distinguish two cases. These cases are

CAsEl. ¢q21,p=gq:

Ug+3 Ve=¢V,,

~

~ E 1() H
Vot Px" Ug=€eE U, ~¢? _Eﬁl_ Ul —¢€* ﬂg%gﬂ U + o).

(3.37)
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CAsE2. ¢2>2,1<p<q:

U,d + % ‘/,0 = 5P'V,za
= _ , (3.38)
Vot vy =By, et L0 4 yr)

It then follows from the assumption (3.3) and the above equations that

for both cases the leading terms solve the

O(1) PROBLEM:

Ul,o + §V1,0 = 01
= (3.39)

Vig+ % U1, =0.

The equation (3.39) is satisfied provided we choose

Ui(z,0) = o(z,8),

(3.40)
Vi(z,0) = ~Xo(z,6),
and determine the phase ¢ by solving the equation
1- % =0, (3.41)

for the wave speed . Indeed, the equation (3.41) is the familiar eikonal
equation of geometric optics. Since we are interested in the waves travelling
into the region z > 0, we choose the positive root A = B, so that the

rays

z = Mt —to), | (3.42)
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associated with the phase ¢ move into the region z >0 from the boundary

z=0 with increasing time. The amplitude function o(z,6) satisfying
a(0,0) = 0o(0), (3.43)
from the boundary condition {2.11) is yet to be determined.
We now proceed to determine o(z,0) in each case separately.

Casel. ¢g21,p=g:
It follows from (3.3), (3.37), (3.40) and (3.42) that in Case 1 the amplitude
function o(z,0) and the functions Ugi(z,6) and Vo4i(z,6) must be

chosen so as to satisfy the

O(¢?) PROBLEM:

Ugtr,0+ 5 Vet1,0 = —Ao,

E T0)): (3.44)
V¢+l,0 + AU,.H'@ = Azd',,_- - -f;Tl 0”0,9 _¢ (oiHol 0.

For the boundary condition (2.11) to be satisfied at the order €%+, Ugya(z,6)

must obey

Suppose that (0,z,) is the region of space in which the solution of the
problem remains smooth. Since we required that the leading order term of the

formal solution provides a uniformly valid approximation to the solution of the
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problem in (0,z,) with errors of order €9*!, we will choose Ugy; and

V,,.H in such a way that

[Ug+1(z, )l Vg4a(z,0)| =0(1) for all z € (0,z,) (3.46)

is also satisfied.
It follows from (3.44) that the amplitude function o(z,0) satisfies the

transport equation

0,s —vgoiog+ 5 0=0, (3.47)
where
B _ a(0)Ho
V1=m, ﬂ-—'———z-:\2—>0. (348)

Thus, the amplitude function o(z,0) is determined by the equation (3.47)
and the initial condition (3.43). We defer the solution of (3.47) and (3.43)

until the next section.

In view of the condition (3.45) we now choose
Ugs1(2,0) =0. (3.49)
Therefore, the equations (3.44) determine Vi41(z,0) as

Vesr = —No,s (3.50)



or, upon integrating,

8
Vens(a,0) = ¥ [ oa0)de. (3.51)
0
This gives
WVsa(2,0)| < ¥os(z, My for all =€ (0,2), (352)

so that the condition (3.46) is automatically satisfied.
To summarize, the formal solution in this case is given by
u(z,t)= eo(z,0),
q21, (3.53)
¥z, )= ~eAo(2,0) — €N [ 0,o(,¢)de,
uniformly for all z € (0,z,) as €—0, where o(z,0) is determined from

(3.47) and (3.43) whereas

o=t=22 \_E. (3.54)

&9

We now turn our attention to Case 2.

CasE 2. ¢22, 1<p<qg:
In this case, the equations (3.38), (3.40) and (3.42), and the assumption

(3.3) show that o(z,0), Upt1(2,0) and Vj4i(z,0) must satisfy the

O(c?) PROBLEM:

Upt1,0+ % Vorr,0 =-A0¢
(3.55)

w3
Vot1,0 + Wpi1,0 = N0, — ﬂ%& a,
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and

Up+1(0, 8) =0, (3.56)

which emerges from the boundary condition (2.11). Further, we require
|Up+1($, o, IVP.H(.'B,O)l =0(1) for all ze€(0,z,). (3.57)

Since the selection procedure for this case is identical to that of Case 1,
without duplicating the work we write down the following conclusion:

The formal asymptotic solution for Case 2 takes the form
u(z,t)= eo(z, 0),
g2, 1<p<gq, (3.58)
%z, ty= —eAo(z,0) - #H1N? [ 0,x(=, ¢)dp,
uniformly for all z € (0,z,) as & — 0 but this time o(z,0) solves the

transport equation
o:+50=0, (3.59)

with p as in (3.48), and satisfies the initial condition (3.43) where

o=t=2A - |/E. (3.60)

epP

In closing this section we note that although we have constructed the
formal asymptotic solutions under the assumption of smoothuess, this assump-

tion may be relaxed. It is a consequence of the results of Coleman and Gurtin



[34] that when oo is smooth everywhere except at ¢ =0 where o suf-
fers a jump discontinuity, then jump discontinuities in the first derivatives of
u(z,t), v(z,t) propagate along the surface z = Af, which corresponds to
the phase surface 8(z,t) =0. It is clear from the condition (2.10) that all of
u(z,t), v(z,t), ¥(z,t) and ¥(z,t), and their derivatives of all orders vanish
ahead of this surface. In space-time regions of smoothness behind this surface,
i(z,t) and ¥(z,t) are uniformly asymptotic respectively to u(z,t) and
v(z,t). As will be seen in the next section, if jumps in the first derivatives of
the asymptotic solution t(z,t), 9(z,t) are allowed formally, then these jumps
are identical to the corresponding jumps in the first derivatives of the solution

u(z,t), v(z,t), that are obtained from the exact theory of acceleration waves.

3.2. Analysis of the Results

Our objective in this section is to determine the place and time of blow-
up of the first derivatives of u(z,%), ¥(z,t), if they explode at all. Since
#(z,t), 9(z,t) are asymptotic to u(z,t), v(z,t) uniformly in regions of
smoothness, blow-up of the first derivatives of u(z,t), ¥(z,t) indicates blow-
up of the first derivatives of u(z,t), v(z,t). Therefore, the place and time
of blow-up predicted by the formal asymptotic solution gives the approximate
breaking place and time of the waves after which the formation of shock waves
is expected. Also in this section, with p=1 and ¢>1, we compare our
results with the results of Coleman and Gurtin [34] about the one-dimensional

propagation of acceleration waves in a general class of viscoelastic materials by
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specializing their results to the case we consider. Based on this comparison we

see that the formal asymptotic solution is uniformly valid even when the first

derivatives suffer jump discontinuities across the wave front 6(z,t) =0, which

is not evident from the construction procedure of the previous section.

We start with examining the case ¢ > 1 and p = q. Solving the

problem (3.47) and (3.43) by the method of characteristics we find

o(z,6) = ao(€)e ™=/,

where
0= = 4 2 oggeyemer -,
Since
€= - =5
R T QAT B
we have

ab()ee/
142 o1 (E)oh(E)eresr - 1)’

c¢(z,0) =
and, with (3.64), the equation (3.47) gives

1- 24 6871 (E)on(€)
+ 21 o871 (£)ah (€)(eHe=/* — 1)

s

0,:(z,0)=~- ;

a(€)erP

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)



It is now apparent from (3.53) and (3.61) to (3.65) that the condition for

breaking of the waves is
=1+ 22 o Hai(e)e ™ 1) =0. (3.66)

Because 6 =¢ and therefore, 8¢=1 at z =0, there exists some interval
(0,Z,) of z in which 8, >0. Presumably, Z, is the smallest positive
z at which 6¢ =0. If there does not exist such a positive =z, then Z,
is infinity and thus, the formal asymptotic solution is uniformly valid for all
z>0 and ¢>0, which implies that the waves do not break. A scrutiny of

(3.66) shows that this is the case if
veod " (€)oh(€) < -’i for all ¢> 0. (3.67)
Otherwise, 7, is given by
Z,=min {z>0/1+ —,;- of 1 (E)op(E)e™*/A ~ 1) =0}, (3.68)

from which also the corresponding &, is determined. Thus, the waves break
at the approximate position Z, an& the approximate time 7, which is
computed from (3.62).

In the simpler case ¢>2 and 1<p<g, the solution of the problem

(3.59) and (3.43) is

o(z,6) = og(B)e*</, (3.69)
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where

t—z/A
6= (3.70)

Thus, together with (3.69) and (3.70), (3.58) implies the boundedness of the
first derivatives of u(z,t), v(z,2) forall >0 and t>0.

The above results can be collected into the following proposition.
PROPOSITION. Let q>1 be the smallest integer such that E,,.H #0. Then

i)if ¢>2 and 1<p<gq, thenas ¢—0 the single wave expansion
given by (3.58), (3.69) and (3.70) is a uniformly valid asymptotic solution
of the problem (2.32), (2.10) and (2.11) for all z>0 and t>0.

i) if ¢21 and p=gq, thenas e€—0 the single wave expansion given
by (8.54), (3.61) and (3.67) is a uniformly valid asymptotic solution of the
problem (2.32), (2.10) and (2.11) for all z>0 and t>0 as long as
the condition (3.67) is satisfied. I the condition (3.67) is violated, this
expansion is 8 uniformly valid asymptotic solution of the problem in the
region (0,3,)x(0,7,) where %, and ?, are determined form (3.68)

and (3.62), respectively.

The above proposition summarizes the relevant information on the break-
down of smooth solutions. We now turn attention to the comparison we promised

in the opening of this section and fix p=1.



A one-dimensional acceleration wave is a propagating singular surface
z = y(t) across which the first derivatives of u(z,t) and wv(z,t) euperience
jump discontinuities but are continuous functions elsewhere while u(z,t) and
v(z,t) are continuous everywhere. Suppose 03(0) # 0 and so an acceler-
ation wave is generated at z = y(0) = 0. Since this wave propagates into
the region (0,00) for the solid we consider, we have that y'(¥) » 0 and
that u(z,t) = v(z,t) =0 for z > y(t). For the viscoelastic sofid obeying

the constitutive relation (2.12), a result of Coleman and Gurtin [34] shows
4 =2 @.7)
dt y =N .

where A is the previously obtained constant wave speed so that y(t) = At.
Let us denote with [g] the jump discontinuity of the function g¢(z,t)
across the surface z = At. It follows from a theorem of Coleman and Gurtin

[34] that the amplitude of the jump

f (t) = [v..] = —A[ﬂ,g], (3.72)
satisfies the ordinary differential equation

S o

where p and »; as in (348) with ¢=1. Because of (2.11) and (3.72),
f obeys the initial condition

£(0) = ~Ad(0). (3.74)
a



The solution of (3.73) and (3.74) is easily obtained to give

—Aaf(0)e*+

b === T e D

(3.75)

Whether this jump remains bounded or tends to infinity in finite time is not
difficult to determine from (3.65). In particular, if E,=0 sothat v =0,

then it is bounded for all £>0, since

[v,] = =Alu,g = —Aag(0)e ™. (3.76)

We observe from (3.61) to (3.65) for the case ¢ =1 and from (3.69) and

(3.70) for the case ¢ > 1 that o,(z,6) is continuous across 6(z,t) =0.

Therefore, for both cases

[‘6"] = —A[q’gl =-A0 '0(3, 0), (3.77)

«shich is easily seen from (3.53) and (3.58), respectively. It then follows from
{3.64) for g=1 that

~\oh(0)e—#=/A

Bl = M= T o 1)

z =M. (3.78)

That ¢ =0 if and only f @ =0 is correct as long as 6, > 0 in some
neighbourhood of ¢ = 0. In fact, at the instant the condition 6¢ >0 is
violated at 6 =0, the above jumps explode. We also note

[Be] = =M, = =Aoh(0)e~*</*, z=\, (3.79)
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obtained from (3.70) and (3.77) for ¢ > 1.

Comparing (3.78) and (3.79) with (3.75) and (3.76) we see that the exact
theory of acceleration waves and the asymptotic single wave expansion proce-
dure agree in their predictions on the growth and decay of jumps in the first
derivatives propagating along the wave front 6(z,t) = 0. In particular, both
approaches indicate that if the instantaneous elastic response function is lin-
early degenerate locally at the constant base state, that is, E, =0, then
waves never break at the wave front. On the other hand, the asymptotic solu-
tion shows that under conditions stated in the proposition, waves break behind
the wave front even when E, = 0. Therefore, the asymptotic single wave
expansion procedure gives the additional important information that even small
amplitude solutions originating from smooth data, if they are sufficiently high

frequency, may develop singularities in finite time as long as the instantaneous

elastic response function is not linearly degenerate.

3.3. A Numerical Example

Let us assume that the stress functional F is given by

F(u*(z,")) = f(u(z,1)) + -/; . d'(t — s)f (u(z,s))ds, (3.80)

where f(0)=0, f'(v) >0 forall u and 0<a(0) <1. This functional
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can be put in the form (2.13) by defining

G(u(z,t)) = (1 - a(0)) f(u(z, 1)), (3.81)
H(u(z,1),u(z, ) = £(u(z9)) - F(uz,1). (382)

The significance of the requirement 0 < a(0) < 1 can be seen from the
identity (3.81) and the condition (2.18). Note that if a(0) = 1, then the
functional (3.80) cannot describe the stress response of a viscoelastic solid but
may describe that of a viscoelastic fluid; see Pipkin [43].

We present our example calculations by choosing the material functions

f and a as

f(u) =u+ku®*?; k>0, g1, (3.83)

a(t) = me™™; 0<m<l, r>0, (3.84)

and the boundary disturbance oo as

gin (t/e?), 0<tfe? <,
0, 7 <tfel.

oo(tfe?) = { (3.85)

Note that in view of the arguments given in the previous section, we have
allowed jump discontinuities in o}.
We examine the case p=gq only, since when ¢ >2 and

1< p< ¢ waves do not break. With the above choice ¥ material functions



and the boundary disturbance, we find from (3.58), (3.61) and (3.62) that the

asymptotic solution u(z,t) of the strain takes the form

~ esinfe™™*, 0<E<m,
. 3.86
=) {0, £<0 and £>7 (3.85)
where
t=z _ o [&+UEE gntg(emre—1), 0<E<w a8
€t l ¢ <0 and >
Therefore, the inequality (3.67) indicates that waves never break if
(g+ 1k sin9™ ¢ cosé <mr; 0ZEL . (3.88)

It is clear that this condition is always satisfied for F <€< 7 regardless of
the magnitudes of the material parameters. Let us assume that the condition
(3.88) is violated in the range 0<¢< 7.

For clarity in exposition we shall calculate the approximate breaking dis-
tance and time of the waves for ¢ =1 and ¢ = 2. The implications of
higher order nonlinearities, that is, ¢ > 2, are similar to those for ¢q = 2
qualitatively.

In the case ¢=1 we have from (3.68)

¥, =min {z> 0|1+ n%’% cos{(e~™"* - 1) = 0}, (3.89)



which occurs at £ = 0. Therefore,

~_ 1 mr
z,——-ﬁz—;ln(l—-é?),
and
2'.:5.,

(3.90)

(3.91)

which is obtained from (3.87) with z =%, and € =0. This result clearly

indicates that the waves generated by the boundary disturbance (3.85) break

at the wave front t =2z located at z =TZ,.

For ¢=2 the approximate breaking distance is given by

~ . | 3k o -2mrzx —
Z, =min {z > 0|1+ Y- sin2f(e 1) =0},

which occurs at ¢ = Z. This shows

- 1 mr
z.—--é-'-n-r-ln(l--ﬁ-),

and

~ . 1
t,=z,+'€2(z 5/

(3.92)

(3.93)

(3.94)

It is clear from (3.93) and (3.94) that this time the waves generated by the

boundary disturbance (3.85) break behind the wave front ¢ =z located at



In Figs. 3.1-3.3, we display graphically the asymptotic solution u(z,t)
of the strain given by (3.86) and (3.87) for the particular choice of k=1,
m=05 r=1 and &=0.1. In these figures the breaking place and time
of the wave ate %, =1, = 0.5754 for ¢ =1 whereas for ¢ =2, these
quantities are Z, = 04055 and %, = 0.4083. In Fig. 3.1 we adjusted the
time scaling to facilitate an easier comparison between the cases ¢=1 and
¢=2. In Fig. 3.3 we plotted also the corresponding linear asymptotic solution
obtained by setting k=0 in (8.87) for purposes of comparison. These figures
depict how the nonlinearity of the material distorts the propagating disturbance.
Fig. 3.2 displays a sequence of snapshots of the wave until it breaks. With these

figures our analysis of the viscoelastic problem now concludes.
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CHAPTER 4
CONSTIT “*IVE RELATIONS FOR SECOND SOUND

IN ELASTIC FEAT TONDGCTORS

As of this chapter we turn our attention to second scwtid thermoelasticity.
Our objective in this chapter is to present a thermodynamical development of
the nonlinear constitutive equations for an elastic heat conductor for which the
heat flux obeys a nonlinear version of Cattaneo’s Law. We give our develop-
ment in three dimensions. The heat pulse propagation probiem discussed in the
introduction will be studied in later chapters after specializing the constitutive
equations determined here for an isotropic material body whose departures from
an equilibrium state are one-dimensional.

In our derivation of the thermodynamical restrictions on the constitutive
equations we shall employ the methods of classical continuum thermodynamics
in the manner of Coleman and Noll {44]. When deformations are ignored, the
constitutive equations we derive yield those of Coleman, Fabrizio and Owen (31]
that are valid for rigid heat conductors. The linearized forms of our constitutive
equaticas are identical to the linear constitutive equations of the theory of Lord
and Shulman [28]. In our formulation we also provide a simple solution to
the problem of lack of material frame invariance from which the constitutive

equations of Coleman, Fabrizio and Owen suffer.
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We begin our derivation by recalling some preliminary notions of the clas-
sical continuum thermodynamics. Following this, we postulate a set of constitu-
tive functions involving an evolution function for the heat flux. These functions
are assumed to depend on the deformation gradient, absolute temperature, heat
flux and temperature gradient. We investigate the restrictions imposed by the
second law of thermodynamics on these constitutive functions in their general-
ity. We then linearize the evolution function of the heat flux for the heat flux
and temperature gradient obtaining a nonlinear version of Cattaneo’s Law and
determine further restrictions required by the second law for this special case.
Lastly, we give a brief account on the requirements of the principle of material

frame indifference for our constitutive functions.

4.1. Preliminary Notions

Let £ denote a three-dimensional Euclidean point space. Also let the
particles of a body B be identified with their positions X € £ they occupy
in a fixed reference configuration B. Assume that a positive mass measure is
assigned to B through the definition m(P) = [, prdV where m(P) is
the mass of the subpart P of B, and pg(-):B — (0,00) is the referential
mass density.

We assume that the material comprising B is characterized by a given
process class IP(B) of B. It is convenient to considler the process class

IP(B) of B as a set of ordered 8-tuples of functions on B X IR

= {X, 0; e,nS,Qbr} € IP(B)’ ,
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defined with respect to the reference configuration B and satisfying the laws
of balance of linear momentum, balance of moment of momentum, balance of
energy and imbalance of entropy, where z = X(X,t) € £ is the motion, 0=
6(X,t) € (0,00) the absolute temperature, e = e(X,t) the specific internal
energy per unit mass, % = n(X,t) the specific eniropy per unit mass, §=
S(X,t) the first ?fola-Kirchhoﬁ stress tensor, Q=Q(X,t) the referential heat
fluz vector, b=§X,t) the specific body force per unit mass and r = r(X,¢)
the radiant heating per unit mass. Any motion X(-,t) of B it a continuous
and almost everywhere invertible function from B into &.

Let X(-,-): BxIR —+ £ be a given motion of B. The deformation

gradient F' at X at time ¢t is given by
F=F(X,t)= Grad X(X, ), (4.1)

where Grad denotes the gradient with respect to X. The velocily v of X

at time ¢ is determined by
v=o(X,t) = X(X,1), (4.2)

where a superimposed dot denotes the material time derivative. We shall use
Div to denote the divergence with respect to X. To ensure the invertibility
of X(-t) we assume that J= detF >0 so that the motion is orientation

preserving. Further, the law of conservation of mass requires that

pr=Jp, ‘(4'3)
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where p = p(X,t) is the mass density of X at time t.
Under sufficient smoothness assumptions and in view of (4.3), the usual
integral forms of the laws of balance of linear momentum, balance of moment

of momentum, balance of energy and imbalance of entropy are equivalent to the

local referential equations

pro = DivS+ pgb, (4.4)

FST =SFT, (4.5)
pré =8 -F — DivQ+ pgr, (4.6)
PRI 2 prr /0 — Div(Q/8), (4.7)

where S-F= tr(STF) and tr indicates the trace. The inequality (4.7) is
also known as the entropy production inequality.

Let ¢ =y(X,t) be the specific free energy per unit mass defined by
¥ =e—nd. (4.8)
Then from (4.6) and (4.7) follows the dissipation inequality
pa(t +1d) -5 - E+3Q-G<0, (49)

where G =G(X,t) = Grad 6(X,t) is the temperature gradient with respect
to the reference configuration B.



4.2. Constitutive Assumptions and Thermodynamic Restrictions
Let D be an open, simply-connected domain consisting of quadruplets
(F,0,Q,G), and suppose that if (F,0,Q,G) isin D, then so is its corre-

sponding “thermal equilibrium” state (F,6,0,0).

Assumption. For every = € IP(B) the specific free energy (X, 1),
the specific entropy n(X,t), the first Piola-Kirchhoff stress tensor S(X,t),
and the time rate of the heat flux Q(X,t) are given by continuously differ-

entiable functions on D such that

¥ = ¥(F,0,Q,G), (4.10.a)
n = i(F,6,Q,6), (4.10.)
S =5(F,0,Q.6), (4.10.c)
Q=H(F,0,Q,G). (4.10.d)

Further the tensors GgH(-) and G8gH(-) are non-singular.

It is clear that once ¢)(-) and #(-) are known, then the relation (4.8)
gives the continuously differentiable function é(-) determining e(X,t) such
that

e=¢F,0,Q,6G). (4.10.)

The assumed properties of the heat fluz evolution function H(-) indicate that

it is invertible for @ and also for G. We denote the inverse of H(-) with



respect to Q with Q=H*(F,0,G,Q). Notice that
daH*(+) = ~[GH(-)] " éeH (")

so that the tensor 8gH*(-) is also continuous and non-singular. Note also that
in a materially inhomogeneous body the functions 1,(3,15,3 and H depend
on X as well. For convenience this is not written but understood.

Given any motion X(X,t) and any temperature field 6(X,t) one
uses the constitutive equations (4.10) to determine e(X,t),n(X,¢),5(X,t) and
Q(X,t), and the equations (4.4) and (4.6) determine ¥X,t) and r(X,?).
Hence for any given motion and temperature field a corresponding process is
constructed. ‘The method of Coleman & Noll [44] is based on the postulate
that every process m so constructed belongs to the process class IP(B) of

B. In view of the constitutive relations (4.10) this iz equivalent to the

Dissipation Principle. Given any motion and any temperature field, the
process ® constructed from the constitutive relations (4.10) belongs to the
process class IP(B) of B. Therefore the constitutive functions (4.10) are
compatible with the second law of thermodynamics in the sense that they satisfy

the dissipation inequality (4.9).

Theorem 1. The Dissipation Principle is satisfied if and only if the fol-

lowing conditions hold:



(i) the free energy response function !/:‘(F, 6,Q,G) is independent of
the temperature gradient G and determines the entropy and the first Piola-

Kirchhoff stress through the relations

#(F,0,Q) = —0$(F,6,Q), S(F,6,Q) =prdrd(F,6,Q);  (411)

(ii) the reduced dissipation inequality

prY3Q¥(F,6,Q) - H(F,6,Q,G) + Q-G < 0, (4.12)

is satisfied.

To prove the theorem, by the chain rule we obtain
¥ = Ot - I+ 8996 + 8¢ - Q + 86¥ - G. (4.13)

Substituting this equation together with the constitutive relations (4.1) into the

dissipation inequality (4.9) gives
A s A . |
(prOFY — 8)- F+ pr(9s + i1)8 + prOQ - H + prOc¥ -G+ 5 Q-G < 0. (4.14)

In (4.13) and (4.14) we omitted the arguments for convenience. Theorem 1
now follows from demonstrating in the manner of Coleman & Noll [44] that
F,6 and G may be assigned arbitrary values independently from the other

variables.
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Theorem 2. The time derivative of the heat fux €} vanishes for all

thermal equilibrium states (F,0,0,0) € D and the tetisor

K(F’ 0) = aQH(Fv 0’010)~166H(Fv 9,0,0), (4'15)

is positive definite.

Let Q=0 and recall that H*(F,,G, ) is the inverse of H(F,6,-,G).

It then follows from (4.12) that
H*(F,6,G,0)-G<0. (4.16)

Fixing F and 6, define f(G)=H*"(F,0,G,0)-G. The inequality (4.16)

shows that f(0) is a maximum so that
2. 1(@) = H'(F,6,6,0) + 0GH"(F,,G,0)76, (417)

vanishes at G =0. Therefore H*(F,6,0,0) = H(F,6,0,0) =0. This proves
the first claim of Theorem 2.

In order to show K(F,0) is positive definite, recall that dGH*(:) =
—OqH(-)'3GH(-), and 8gH*(-) is continuous and non-singular. Let
0 <G < C for some constant C where G =|G| is the magnitude of G.
The following statement is an immediate consequence of H*(F,6,0,0) =0 and

the mean value theorem:

H*(F,0,G,0) = 0gH*(F,0,6G,0)G, 0<c<1. (4.18)
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From (4.16), (4.18) and defining
K*(F,0,G) = —8yH"{F,6,G,0)

we have G-K*(F,0,6G)G > 0. Let us rewrite this as n-K*(F,0,eGnjn >0,
where n is the unit vector n=G/G. As G is urbitrary, letting

G — 0 shows that n-K*(F,0,00n>0 holds for all arbitrary unit vectors =.
Since K*(F,0,G) is non-singular, it then follows that K(F,6) = K*(F,0,0)

is positive definite.

4.3. Cattaneo’s Law
In this section we investigate the case when H(F,0,Q,G) is linearin Q
and G. This is equivalent to expanding H(F,6,Q,G) about (Q,G)=(0,0),

and keeping only the terms first orderin Q and G in the expansion:

Q = &H(F,6,0,00Q + dcH(F, 6,0,0)G, (4.19)

where we have used H(F,6,0,0) =0.

For convenience in what follows we define
T(F,0)"" = —0H(F,6,0,0), Z(F,0)"! = —acH(F,6,0,0). (4.20)

It is clear from (4.15) and (4.20) that K(F,0) = T(F,6)Z(F,6)"!. Rewriting

(4.1) as

Q =-T(F,0)'Q - Z(F,6)"'G, (4.21)
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from the inequality (4.12) we get
—prO3QY/(F,8,Q)-T(F,8)*Q — prodgd(F,6,Q) - Z(F,6)"'C+Q -G < 0. (4.22)

Since G and Q are arbitrary, this inequality is always satisfied if and only

if
2HF.0.Q) = -5 ZFHQ, prlgh(FO.Q)-TEH7Q20. (429

Noting ag:ﬁ(F, 0,Q) is symmetric we then see that for the Dissipation Prin-

ciple to hold Z(F,6) must be symmetric:
Z(F,6) = Z(F,0)". (4.24)

Notice that with (4.24), the second of (4.23) is equivalent to Q-K(F,6)'Q >0
which obtains automatically by virtue of the fact that K{(F,6) is positive

definite.

From (4.8), (4.11), (4.23) and (4.24) we have the following theorem.

Theorem 3. Let the evolution equation of the heat flux be given by the

following form of Cattaneo’s Law:

T(F,0)Q + Q = -K(F, 0)G. (4.25)

Then the Dissipation Principle is equivalent to the conditions:

(i) the tensor K(F,0) is positive definite;
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(ii) the tensor Z(F,0) is symmetric;

(iii) the response functions of the specific free energy, specific internal energy,

specific entropy and first Piola-Kirchhoff stress are given by

oriHF,0,Q) = padolF,6) + 55 Q- Z(F. 0,
pré(F,0,Q) = préo(F,6) + Q- A(F, 6)Q,
prii(F,0,Q) = priio(F,6) + Q- B(F,6)Q,

5(F,6,Q) = 5u(F,9) +Q-P(F,0Q,

where
$o(F,6)= ¥(F, 6,0), éo(F, 0)= $o(F, 6) — 6950(F, 6),
iio(F,8)= —Batpo(F,0),  S5o(F,8)= prrio(F,0),
while
Z(F,0)=K(F,0)'T(F,6), AF,0=-% % [2:2],
BF.6)=-1 5 (230], PF0)=% & 2F.0).

(4.26)
(4.27)
(4.28)

(4.29)

(4.30)

(4.31)

Note that in (4.29) we have used the notation @Q-PQ to indicate the

second order tensor E with the Cartesian components E;; = PpgiiQpQq

where summation over the repeated indices is implied.

4.4 Consequences of the Principle of Material Frame Indifference

The principle of material frame indifference states that the constitutive

equations characterizing the response of a material must be invariant under
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a change of frame or observer. Accordingly, we demand that the constitutive

relations (4.10) remain invariant under the change of frame
z—0z+e . (4.32)

where O = O(t) is a proper orthogonal tensor and ¢ = ¢(t) is a vector.
Under a change of frame, the scalars ¢,n and 6 remain unchanged, F

and G transform as

F — OF,

(4.33)
G -G,

and the first Piola-Kirchhoff stress tensor S and the referential heat flux

vector @ transform as

S — 08, (4.34.0)

Q-Q. (4.34.b)

It is an immediate consequence of (4.34.b) that

Q-Q (4.35)

It follows that the principle of material frame indifference is satisfied if and only
if
$(F,0,Q) = ¥(OF,6,Q),  (436a)

7(F,0,Q) =n(OF,6,Q), (4.36.b)
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S(¥,6,Q) = OS(OF, 6,Q), (4.36.¢)

H(F,6,Q,G) = H(OF,6,Q,G). (4.36.d)

The reduced forms of the constitutive functions (4.10) can now be deter-

mined from (4.35) using methods described in Truesdell and Noll {45]. Limiting

our attention to (4.25) and omitting details we find that with
T(F,0) =T(C,8), K(F,6)=K(C,9), (4.37)

the relation

T(C,0)Q +Q=-K(C,0)G, (4.38)

is a frame invariant form of (4.25), where € =FTF is the right Cauchy-Green
deformation tensor.

With a view to comparing (4.38) with the form of Cattaneo’s Law con-
sidered by Coleman, Fabrizio and Owen, let ¢ =g(z,t) be the current value
of the heat flux in the present configuration B, = X(B,t). They considered

the following form of Cattaneo’s Law:

T(0) +q = -K(6)g, (4.39)

where, with grad denoting the gradient with respect to z, g¢= grad 6(z,?)
so that ¢g=F"T7G. As pointed out by Coleman, Fabrizio and Owen, (4.39) is

not frame invariant.
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Recall that

Q=JFq, (4.40)
so that differentiation gives
Q=JFg, (4.41)
where
g=4q-Lq+{trL)q, (4.42)

and L= gradv(z,t) is the spatial gradient of the velocity. As it follows from

(4.35) and (4.41) that q transforms as
¢-0gq, (4.43)

it is frame invariant. Note that the above derivative @ reduces to the upper
convective derivative : =g-Lg for incompressible motions. It is straightfor-

ward to show that (4.38) is equivalent to
T(F,0)g+9= —K(F,0)9, (4.44)

where

T, 0) = FT(C,0)F, R(F,60)= %Fz?(c, 0)FT. (4.45)

n4a



Comparison shows that the essential deviation of our comstitutive equation

{4.44) from their constitutive equation (4.39) is the replacement of ¢ with

L]
q-



CHAPTER 5
ONE-DIMENSICNAL THERMOELASTIC SOLIDS

WITH SECOND SOUND

With this chapter we begin concerning ourselves with the one-dimensional
departures of a semi-infinite, homogeneous, isotropic,~ thermoelastic material
body from its reference configuration (0,00). The points z € (0,00) of
this reference configuration are used to identify the particles of the body and
t to denote the time. The constant py is the referential mass density of the
material. The material body is assumed to have been unstressed, unstrained
and at rest in this reference configuration with a uniform absolute temperature
6 >0 forall ¢t<0. For convenience we assume also that in the above
described reference state the material has been free of internal energy.

Let x(z,t) be the motion of the material body. Then the functions

w(z,t), v(z,t) and u(z,t) defined as

w=x—2, V=

ow ow
a— y U= ‘a—; ’ (51)
are the displacement, velocity and strain, respectively. Consequently, the strain

and velocity satisfy the compatibility equation

Ou Ov
5{ - 'a—' = 0- (5'2)



Let us now assume that there are no body forces nor external heat sources
for the problems we are about to examine. The respective local forms of the

laws of balance of linear momentum and balance of energv are then

ov 0S
il =0, (5.3)
Oe v  Oq _
00'5{-5'5;-!-5—0, (5.4)

where S(z,t) is the Piola stress, e(z,t) the specific internal energy per unit
mass and g(z,t) the heat flux. To this list of functions we add the absolute

temperature 6(z,t) >0 and the temperature difference ©(z,t) given by
© =6—6,. (5.5)

The above basic equations are to be completed by specifying the consti-
tutive equations for the Piola stress, specific internal energy per unit mass and
heat flux. In our analysis of the linear problem we take the theories of Lord and
Shulman [28] and Green and Lindsay [29] into consideration. We introduce the
linear constitutive equations of these theories in the next two sections, respec-
tively. After this, we specialize the nonlinear ccastitutive equations we have
determined in the previous chapter to the one-dimensional material body to
be studied. We @nclude this chapter by introducing the nondimensionalization

scheme we employ in our asymptotic analysis.



5.1. Linear Constitutive Equations in the Theory of Lord and Shulman

In tLis theory the heat flux obeys Cattaneo’s Law with the form

o 00
To 5y H9= ko 5, (5.6)
where
T0 > 0: Ko > os (57)

are constants with the significance of thermal relaxation time and thermal con-
ductivity, respectively.
The Piola stress and specific internal energy per unit mass are determined

from the constitutive relations

S=(A+2p)u— (3 +24)a0, (5.8)

poe = (3 + 2p)abyu + pocO, (5.9)

where A and p are the isothermal Lamé constants, a the coefficient of
linear thermal expansion and ¢ the specific heat per unit mass at constant

strain. The constants A,u,a and c¢ are required to obey the conditions

p>0, 3IA+24>0, a>0, c>0. (5.10)



5.2. Linear Constitutive Equations in the Theory of Green and
Lindsay

In this theory the heat flux obeys Fourier’s Law
80
q=—Ko —a'; N (5.11)

while the Piola stress and specific internal energy per unit mass are given by

the constitutive relations

S=(A+2n)u—- B+ 2p)a(B+ 7 %—?-), (5.12)

poe = (3 + 2u)abdou + poc(© + 72 %te-), (5.13)

where xg,\, 4,0 and c¢ are as before. Green and Lindsay showed that if

12 2 0, then thermodynamical requirements indicate 7, > 2. We suppose
2 >0, (5.14)
and define the nondimensional parameter g as
T = P, (5.15)

so that £ > 1. In our analysis we shall assume 75 =79 which will ensure
that both theories predict the same linear speed for the purely thermal second

sound.



It may be mentioned that neither the positivity of 7o in the theory of
Lord and Shulman, nor the positivity of 7, in the theory of Green and Lind-
say is necessary for compatibility with thermodynamical requirements. On the
other hand, if these conditions are not satisfied, then instabilities occur. This
is easier to see in the theory of Lord and Shulman: if one sets the temperature
gradient to a constant, then the relation (5.6) shows that when 7o is negative,

the heat flux grows exponentially with time.

5.3. Nonlinear Constitutive Equations Based on Cattaneo’s Law

As we have menuv.:u-< i “he introduction, in view of the experimental
studies cited there, - ~t.: ‘clerested mainly in the nonlinear influence of the
temperature on the response of the material. Therefore, we assume that in the

nonlinear case, the heat flux obeys Cattanco’s Law with the form
g , _ a6 .
7(6) i —«(6) 3 £.16)

and by doing so, neglect the influence of deformations on the thermal relaxation
time 7(8)>C and thermal conductivity x(f)>0. We suppose 7 and &
are continuously differentiable functions of 6 >0. The equation (5.16) can be

written alternatively as

g 1 1 99

a—-]-To)-q:—-zTé-)--a-;, (5.17)

where

2(8) = 7(6)/x(0). (5.18)



It follows from the assumption (5.16) and Theorem 3 of the previous

chapter that the Piola stress and specific internal energy per unit mass are

given by
S = So(u,8), (5.19)
poe = poeo(u,8) + a(e)qz, (5.20)
where
1 1,
a(0) = 7 2(6) - 5% (9), (5.21)

while the constitutive functions Sp(u,0) and eo(u,6) obey the compatibility

relation

) a5
0 -a% (4,6) = So(u,6) — 8 5" (u,). (5.22)

We assume So(u,0), eo(u,d) are twice continuously differentiable in u and
6, and note that by hypothesis Sp(0,60) =0 and eg(0,60) =0.
Since Sp(u,0) and eo(u,8) are twice continuously differentiable, they

admit the following Taylor series expansions about (u,8) = (0,6):

So(u,O) = Siu+ 520 + % Suu2 + Si2u® + % 32292 + o(uz, 62),
(5.23)
eo(u,0) = eyu + €20 + % e11u? + e;9u0 + % €202 + o(u?,6?),

where

25,
Ou

950

S1=——=(00), S2=—7 (0,62),
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62 So 05y &Sy

Su = 55 (0,80), Si2= 5000 (0,65), S22 = TR (0,60),

aeo aeo

(0 00) € = (0 00),

e & &
en =57 (06), er2=75 (0.0), en=75 (0.0), (52

while © is the temperature difference given by (5.5). Neglecting the terms

o(u?,0%) in the above gives the second order approximations to Sg(u,6) and
€0 (u, 9)

From the compatibility equation (5.22) we have the following relations
poe1 = —0yS2, poe1z = —60Sy2, poenn = 51— 6o Sy2. (5.25)
Guided by the linear constitutive relations (5.13) and (5.14) we set
Si=A+2u, S;=—(3\+2)a, e=c¢ (5.26)
and define the dimensionless material parameters v,vp,v3 and v, as
00S:S1u=-1S;,  6uS12= 125,

(5.27)
09 S22= 1353, Opezn= v4ez,

for convenience.
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Let us now deal with Cattaneo’s Law (5.16). Since z(6) and 7(8) are

continuously differentiable, the following Taylor series expansions about 6 =6,

are valid:
2(8) = 2(6p) + 2'(60)0 + o(0),
(5.28)
7(8) = 7(60) + 7'(60)© + o(8).
In view of the linear relation (5.6) we set
7(60) = 70, #(6b) = 0, (5.29)

and from (5.18) it follows that z(6y) = 7o/xo. We shall use the nondimen-

sional parameters (; aad (2 defined as

802'(60) = C12(60), Go7'(60) = (a7(6o), (5.30)

also for convenience in what follows.
It is now a straightforward matter to show that the second order approxi-
mations to the constitutive equations for the heat flux, Piola stress and specific

internal energy per unit mass take the forms

P ) o 66
79% te(-Ggh=-20-65) % (1)
_ 1 (A+2p)? o?
S=(A+2¢)u—(3r+ 2“)“9 tIM Gt 2n)a6‘o
( ,\;2,,) . (3A+2n)a (5.32)
o 8
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1
poe = (3 + 2p)abou + ppcO + = (1 —-v)(A+ 2u)u?,

+ v3(3A + 2u)au® + % Vg — ot 92 +(1- —C,

‘..’

°"° (5.33)

5.4. Nondimensionalization

In the rest of our analysis we employ the following nondimensionalization

scheme:
z‘=-’%v:z, (t*, 70, 2)—To-(t sT05T2)s
. POTA+2E) o, A+2p o _At2
%o(3\ +2u)aby (3) + 2u)aby o (3r+ 2p)a00
fo 1l g ol gl

(3 +2p)aby ’

y e, ¢ =pocb'00 g, © =—® (5.34)

where U is an appropriate velocity scale. From now on we shall use these

dimensionless variables but omit the asterisks for convenience

The need for the following dimensionless parameters will arise in the sequel
as well:

6
C =% ['\'“"]"2, (5.35)

=1 . (5.36)

4



6= (3X +2u)%a%6,

PO (5.37)

In the above the parameter & is the well known thermoelastic coupling con-
stant of the classical theory of thermoelasticity whereas C, and C; are the
respective dimensionless velocities of the acoustic and second sound waves when

the coupling is ignored; see, for example, Oncii and Moodie [46].
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CHAPTER 6
ASYMPTOTIC ANALYSIS

OF THE LINEAR THERMOELASTIC PROBLEMS

In this chapter we shall study the propagation of boundary generated
disturbances according to the linear theories discussed in the previous chapter.
With this in mind, we obtain from (5.1) to (5.4) and the nondimensionalization

scheme (5.35) the following dimensionless forms of the linearized balance laws:

Fw ;35

A M ©1)
Oc  0Oq _
B + el 0. (6.2)

Since the structures »f the constitutive theories we consider are substantially
different, we formulate the initial-boundary value prcblems for each case sepa-
rately. We then construct the geomettic optics expansions for these problems
and compare the predictions of the theories both qualitatively and numerically.
In our numerical computations we employ Padé approximants to extend the

validity of these expansions beyond their radius of convergence.

6.1 Problem Formulation in the Theory of Lord and Shulman
It follows from the nondimensionalization scheme (5.34) and the equations

(5.1), (5.5), (5.6), (5.8) and (5.9) that the dimensionless heat flux, Piola stress

76



and specific internal energy obey the relations

9 o _ 99
at+Cq"' Ct az’ (6‘3)
ow
—'é;_e’ (6-4)
ow 00
e=8 o+ 55 (6.5)

respectively.
Let us assume for convenience that the dimensionless displacement w(z,t)

is generated by a thermoelastic potential &®(z,t) according as

w=—. (6.6)

3’ 1 &9
s (6.7)
30 10 00 § o9 il
W o awas T o (68)
and the constitutive relation (6.4) may be rewritten as
*®
S = -8—1-2- - 9. (6-9)

In view of the assumptions concerning the past of the thermoelastic body
we consider, the equations (6.7) and (6.8) are tc be solved subject to the initial

conditicas

O(z,t) = %?— (z,t) = ¥(z,t) = %% (z,8)=0, 2>0,t<0 (6.10)

4 L e



and an appropriate set of boundary conditions. Physically relevant boundary
conditions consist of a thermal and a mechanical condition. In the theory
of Lord and Shulman we deal with the boundary prescribed temperature and

strain:

0(0.0) = FOH®, T2 (0.0)=gOH() (611)

where H(t) is the Heaviside unit step function while the functions f and

g are analytic on [0,00). It is clear from (6.9) that the boundary conditions

(6.11) are equivalent to
6(0,t) = f()H(t), S(0,t)=h(t)H(2), (6.12)

if we choose h(t) = g(#) — #(t). Since f and ¢ are analytic on [0,00)

they admit the following Taylor series expansions about t=0:

=Y 5%, =Yg =, (6.13)
=0 J: j=0 )
where
fi= g:jf ()le=0, 9 = '3{':' 9(t)le=o- (6.14)

Prior to further study of the problem we eliminate either of © or &

from the equations (6.7) and (6.8) to get

Py(8,,0,)0 =0, | (6.15)
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where U =(0,8)T and P, is the partial differential operator

L
CIC?

1 146

1
gter G

cI 8?. (6.16)

P(8,0;) = 3} - ( )333,2 + o -1+ 6§)0,8 +

It should be noted that one should not conclude from (6.15) that © and @
are uncoupled, for they are coupled through the equations (6.7) and (6.8). We
shall use one of them to determine the coupling between © and &.

Observe that the principal part of the operator Pp is

1 146 1

Therefore, the characteristic equation for P is

pr{w,€) =0, (6.18)

where w,f are scalars. The operator Pp is hyperbolic if for each real
£ #0, all roots w of the characteristic equation are real. It follows from

(6.17) and (6.18) that

(* - C}€)(w* - C3¢%) =0, (6.19)
where
Ce= {C"2 t+ 5)Ci+ G Al P42, e=1,2, (6.20)
and
A? = [C? - (14 8)C2? +48C5CF. (6.21)

9



It is trivial to see from (6.19) to (6.21) that the hyperbolicity condition is
met. Indeed, P; is strictly hyperbolic since for each £ # 0, the roots
of the characteristic equation are distinct. Consequently, thie initial-boundary
value problem we have formulated is hyperbolic so that its solution admits a

geometric optics expansion.

6.2. Geometric Optics Solution in the Theory of Lord and Shulman

We proceed to solve the problem by representing U in terms of its

geometric optics expansion

U(z,t) = 2U;(2)Fj(¢), U;=0,j<0, (6.22)
iz
where
U; =(9;,%;), (6.23)
F} = Fj., (6.24)
whereas
#(z,t) =t —z/A\ (6.25)

Note that in view of the initial and boundary conditions, and the fact that
the material is homogeneous, we have restricted our attention to linear phase
functions of the form (6.25). The equation (6.24) enables us to relate all of the

Fj to the wave form Fp by successive integrations.



To determine A and the amplitude functions Uj;, we substitute U

from (6.22) into (6.15), use (6.24) in the result, equate the coefficients of Fj—q,

and get
146, 1
{F_(Eg ) A2 CgC?}Uj

146 1+46

+‘X{'é?+*—CT-:\§}U§_1+{-C-3 }U,—l
146 2(1+6)
Higp - G+ ANVt 25
—-;—0;".,+0§-‘1’}=0, i=0,1,2,.... (6.26)
Setting j =0 in (6.26) we then obtain

1+6 1 _

{F—(Eg ) Az pCtz}Uo =0. (6.27)

Since, without loss of generality, we may require Us £0, (6.27) reduces to

the eikonal equation

1+s) 1
Xt

,\ ( 02 =0. (6.28)

As the waves generated at the boundary must travel into the region z >0,
we choose the positive roots Ag = Cp, £=1,2 of this equation, where C;
are given by (6.20) and (6.21). Thus, the phases for right-travelling waves are

determined as

ez t) =t —2z/Ce, £=1,2. | (6.29)
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This shows that in the theory of Lord and Shulman there are two wave com-

ponents with their wave fronts located at

t=z/C,,
(6.30)
t=z/C,,
and propagating through the medium at the finite speeds C; and C,, re-
spectively. From (6.20) and (6.21) we have C; < (C;,Ct) < Cy. Therefore, if
C,>C; thenas §—-0,C, = Cp, and C; — C; so that the fast wave
is quasi-elastic and the slow wave is quasi-thermal [46]. If C¢ > Cp, then
the roles of the fast and slow waves are reversed. However, in the materials in
which second sound occurred, the former situation is always the case.

Having determined the existence of two wave components, we then con-

sider the geometric optics expansion for U consisting of two expansions

o 2
Uz, t) =Y Y Usi(m)Fj(t—z/Cr), Ug=0,j<0,£=1,2,
j=0 ¢=1 (6.31)
Uy = (©cj, Be5)", (6.32)

where F; satisfy (6.24) as before. Inserting this expansion into (6.15) and
using (6.28) gives the so-called transport equations

1.8
GG

4 .
+ G, V-2 + (1+ 800 -0 - tsh

1 2(14+6
Usi + Wle; = Qo {(Ff + Y21 - _(-E-E—)U'l,j—l

=12, j>0, (6.33)
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where

__Cic
Qe= '-C—gt—cg——l Ce, (6.34)
and
C; - (1+8)C?
W= L Q. 6.35
With j=0 the solution of (6.33) is
Un(z) =Upe "=, (6.36)
where ﬁ[o = Uzo(@) Since
6C2C?
2 _ 2 pt .
Ci—(1+6)C; c-ct (6.37)

which follows from (6.20) and (6.21), (6.34) and (6.35) show that W, > 0,
€ = 1,2. Therefore, in the theory of Lord and Shulman, any discontinuous
change in U decays to zero as z tends to infinity.

It can be proved by induction on j that the amplitude coefficients Uy;

have the form
Wee N z"
Uei(z) = e 4* Eug,,j = £=1,2, 20, (6.38)
n=0
where
Ytnj = (tlnj ’ ‘Pluj)T- (6'39)



The coefficients ug,; of (6.38) are given recursively by

( Ql{(al? + -Elg. - %)Egnlv"—ltj-l - Q(ICts) Eﬂ‘ll"_ltj—l
+ é‘Elauzin-‘hi—z + (1 + 6)Egu[,n-—1’j—2 - E;ul'n"lvj'-a}’
1<n<y,
Utnj = 4
ﬁlja n=0,320,
L 0, n<0 or n>j
(6.40)
where E,; is the weighted difference operator defined as
Epuenj =u,n41,j — Wettnj. (6.41)

To complete the solution it remains to determine ff[j = (@q,@l,-) from
the boundary conditions and one of the field equations (6.7) and (6.8). Inserting
the expansion (6.31) into (6.7), equating the coefficients of Fj_a2(t-z/C¢) and

using (6.36) to (6.40) in the result we find that (6.7) is satisfied if and only if

1 1.— oW, — -
(Ez; - E)‘I’t.m + _C_'; By 41 + Wiy — Oy
f 4

2
=~ ;i +2Weon; + a Pe1,j+15 (6.42)
£=12, j=-2,-1,0,1,...

It is the iminediate consequence of (6.42) that @ =P =0, £=1,2 so that
the thermoelastic potential &(z,t) is a continuously differentiable function.

This ensures the continuity of the displacement field w(z,t).



Let us now insert the expansion (6.31) into the boundary conditions (6.11)

to get
ZZ%F )= Zf, H(t) (6.43)
=1 j=0 j=0
2 oo W
Z Z { Cz q" J+1 + (I)l g+t Wl q’lJ + o2 — 2Wepa;
1= (6.44)

C Ve, 1,J+1}F (t) ng J' H(t)a

J=0
where we have employed the Taylor series expansions (6.13) and (6.145. %ipon

choosing
t .
Fi(t) = 7 H(t), 7=0,12,..., (6.45)

we identify the coefficients of F; as

2
Y o=f i=012,..., (6.46)
=1
2 4 2
Y oz Beire=g—) By i=012..., (647)
t=1 ‘ =1
where
2W, 2
Byj = —E,—t- By + Wide,j-1 +Pe2,j-1 — 2Wepe,j-1 — G, Pui (6.48)

Note that the above choice of F; is consistent with the requirement (6.24).

85



The coefficients ©; and @, can now be solved for from the equa-

tions (6.42), (6.46) and (6.47). The solution is
Oun = Ka—1An, £=1,2,

612 = MpAw, £=1,2,

O = Ks_¢Aej + KeBij — Ks_tBs v, £=1,2, j21,

2
By42 = Me(Arj ~ Y Br), £=1,2, j21,

=1

where

GGy
GiCE=CL0)”

Ci(C?
M, = 1VY2 ,
tTC-CF
Agj = (C3_,~Clg; + Cif; _

Ci-e

(6.49)

(6.50)

(6.51)

(6.52)

(6.53)

With the above results, construction of the geometric optics expansions of

© and P are complete. These expansions are

81 =Y Y 04() ﬁl‘;—{‘i‘l’;'ﬂ(t —2/Cy),
j==0 =1 :

o 2 y .
Bz, t) =) Y B4(z) S-t—-—::;’—,/—(-h—)i H(t - z/Cy),

=2 (=1
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where ©p; and &, are defined by the expressions (6.38) to (6.41) and
(6.49) to (6.53).

We conclude this section by presenting the discontinuities in u,S and
© predicted by the theory of Lord and Shulman. These discontinuities,  irectly

computed from (6.54) and (6.55), are

[u]¢=,/c‘ = H(C—W‘:, £=1,2, (6.56)
C; ., -
[S.li=2/C'¢ = -C—tz Hte “’l’, L= 1,2, (6.57)
P
-
[0]t=z/04 = Pcz : Hle—wlza £=1,2, (658)
} 4

where

H,

_(C3_—CP)go +C3fo
- G-

(6.59)
and [ Je=z/c, indicates the discontinuity across ¢=z/Ce. We shall discuss
the implications of the above jump conditions in later sections. At this point we
mention only that if H, vanishes, then all of the field variables are cozitinuous
across t = z/Cp. It is interesting to note that this may happen even when

the boundary disturbances to © and u are jointly discontinuous, that is,

fo#0 and go#0, but only at one of the wave fronts.

6.3. Problem Formulation in the Theory of Green and Lindsay
In the theory of Green and Lindsay, the dimensionless constitutive rela-

tions for the heat flux, Piola stress and specific internal energy obtained from
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(5.1), (5.11), (5.12), (5.13) and (5.34) are

00
4==7- (6.60)
ow B 00
§==- (G+E '87)’ (6.61)
3w
e=8-—+(0+5 02 6t) (6.62)

respectively. Combining the above equatiors with (6.1) and (6.2) gives the
equations to be satisfied by © and the thermoelastic potential & defined

in (6.6). These equations are

, (6.63)

Po 1 50 90 . 5%
WO W w mae (6.64)

Therefore, the problem to be solved in the theory of Green and Lindsay is
described by (6.63), (6.64), (6.10) and (6.11). Since in this theory the boundary

conditions (6.11) imply

S(0,1) = {g(t) - F(t) —C"— FOYEE) - -g;; F0)6(t)

where §(t) is the Dirac delta function, (6.11) and (6.12) are not equivalent.

In this theory we examine the case when the boundary conditions are (6.12)
independently by assuming

W)=Y Y i b= z & Ol (6.65)

j=0
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As for the previous problem, we eliminate either of © or & from the

governing equations obtaining

P(8,8.)U =0, (6.66)

where

Po(@00.) = 'z (5; L

Cz 02 S - (1+6)a,a2 + = ez a,’, (6.67)

and U=(0,8)”,. Comparison between (6.16) and (6.67) shows the operator
Pg is also strictly hyperbolic. The characteristic equation associated with Pg

is also of the form (6.19) but this time the characteristic speeds C; and C;

are given by
Ce= {C‘2 +0+% )(’Z' )T P2, e=1,2 (6.68)
and
A? = [C? - (1+ 6B)C2)? + 488CECE. (6.69)

From (6.20), (6.21), (6.68) and (6.69) we see that when f =1, corresponding
characteristic speeds of the two theories are identical. When £ > 1, the faster
(slower) speed of the theory of Green and Lindsay is larger (smaller) than that

of the theory of Lord and Shulman.
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6.4. Geometric Optics Solution in the Theory of Green and Lindsay
In the light of the geometric optics solution in the theory of Lord and
Shulman, and because of the apparent similarities between Py and Pg, we

start from the outset with the expansion

oo 2

Uz,t)=)_ Y Us(2)Fj(t—z/A), Uy=0, j<0, £=12 (6.70)
j=0 =1

where F; satisfies (6.24) and Uy = (O¢j, Be;)T.

Proceeding as before we find A, and U, satisfy

1+5ﬂ 1
{E_(E,f ),\z C,’}U’f

] 1+5ﬂ 2 1
telat—g llatlg =

1 1468yy 0w . 2146
gt et 250 ’w.,-

146
L }Uld"'l

4 ; .
-zuzlj_a +U}v'j_4=0, e=1,2, J=0,1,2,.-- . (6.71)

From (6.71) and without duplicating the work we reach the following con-
clusion:
For the right-travelling waves Ay =C, £=1,2 where C,; are given

by (6.68) and (6.69) whereas

-W, n
Ui(z)=e wzm,., — =12, j20 (6.72)

n=0
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where

Utnj =
Ulja

\ 0,

and Ugnj = (tenj, Penj)T-

G- (1 +80 = gt o

—c"i::)Efut n-1,j-1— ME&: n~1,-1
+ é"‘E Ue,n—1,j-2 + (1 + 6)E2“l,n—1.1—2 - E[“l n—l,:-a}
1<n <y,

n=0,j20,

n<0 or n>j,

__cqc
Ql Cg Cg . Ch
w, = G (1+8C;

2C2C? Qe

E¢ tgnj =t nq1,j — We ttenj,

From (6.68) we get

C2

ci—c (B-10i +Ci),

(6.73)

(6.74)

(6.75)

(6.76)

(6.17)

and we have B >1. Thus, (6.74), (6.75) and (6.77) show W,>0, £=1,2.

Hence, the theory of Green and Lindsay agrees with the theory of Lord and

Shulman not only in s.s2dicting two wave components whose wave fronts are

t= .‘L'/Cl,

t=2z/C,,
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but also in predicting that jump discontinuities of any order across these wave
fronts are attenuated with z. Indeed, when B =1, like the corresponding
wave speeds Cj, the corresponding attenuation coefficients W, of the two
theories are identical as well.

Let us now proceed to complete the solution by determining the initial
values Uy; = (O¢j,8¢;)7 of the amplitude coefficients. First, we insert (6.78)

into one of the equations (6.63) or (6.64), say (6.63), and obtain

2W, — —
( *'3 Cz)‘I’l.J+l + == Ce X ‘I’l.v + Wz - _Cﬁ? etJ el.i—l

2
= —py.2,j-1 + 2Wepe,1,5-1 + C, Pai

=12 j=-1,0,1,.... (6.79)

Setting j = —1 in the above shows &4 =0, £ =1,2 so that for the
boundary conditions under consideration, the thermoelastic potential &(z,t)
is continuous. However (6.79) does not imply that ®4 =0, £=1,2 and
for this reason continuity of the displacement field w(z,t) is not guaranteed
in this theory. In fact, as it will be seen, the theory of Green and Lindsay
allows for jump discontinuities in the displacement.

We now insert tﬁe expansion into the boundary conditions (6.11), employ

the Taylor series expansions (6.13) and (6.14), choose

t )
Fi(t) = H H(t), j=0,1,2,..., , (6.80)
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and find that

Ze,, fi» 3=0,1,2,. (6.81)

=1

2’: 1
7520 =0, (6.82)

=3 @

2 —
Zﬁ@taﬂ s ch,, i=123,. (6.83)

e=1 ¢ =1
where
2W, 2

By = ‘E'i‘l’t: + WiBe,5-1 +002,i-1 — 2Wepey,j-1 — aw,,-. (6.84)

Note that we have F_; () = 4(¢).

From (6.79), (6.81), (6.82) and (6.83) we get the following result:

60 G
o= _C Jo, £=1,2, (6.85)
50303 _
Qll Cg( Cz) an L= 1s21 (6'86)
— C2 .
Ot = Ks—tA1j — —Ou,j-1 + KeBtj — K3~eBs-r,j, €=1,2, j21,
p (6.87)
—— 2 .
Bpj1=Mi(Aj— Y By), £=12, j21, (6.88)
=1
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where

Ct Ci(Cy —Ci-y)

=T (6.89

Ke=F eer=cry (689)
cic

M, = —172 , 6.90

‘Ce-e (690

Ci-e
We have completed the construction of the geometric optics expansions
for © and @ in the theory of Green and Lindsay. These expansions are

o 2 ;
o)=Y Y 05(e) L= g _zjc), (6o

1
j=1¢=1 J:

oo 2 i
#at) =Y. Y o) L He-aic), (699

j=1¢=1
where ©,; and &, are given by (6.73) and (6.74) together with (6.85) to
(6.91).

The geometric optics expansions for w,u and S can be constructed
from the expansions for © and @, and information on the discontinuities in
all of the field variables can be extracted from these expansions. It is clear from
(6.93) that the thermoelastic potential is continuous across each wave fromt.
On the other hand, all other field variables suffer from jump discontinuities.

Moreover, on arrival of the wave fronts u and S exhibit first a Dirac
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delta behaviour. This Dirac delta for S on the wave front t = z/C, is

proportional to
B C‘ Dye~Wex, (6.94)
where
D¢ = E;_{LE}' . (6.95)

Then S suffers from a jump discontinuity determined as

[S]t=z/C¢ = M(Pe + R"&z}gwwlz, (6.96)

whereas the discontinuities for © and w are

[B)¢=z/c. = (C7 - C’)Du:‘“"’, (6.97)
[Wh=zsc, = ﬂ Clee'“"‘, (6.98)
where
+C2 —2(1 +6)C?
2 2 ? ag2

Pt"' Czcsg-l{p tfl +(C3_¢+ﬂ C?C? Mz)fo}, (6.99)

_ 2(1 + 6)
=B emea— Czcz {(C3.¢ a ZIWE + o Welfo. (6.100)

Now, we compare the above jump conditions with the jump conditions

obtained for the theory of Lord and Shulman.



Firstly, it follows from (6.95) and (6.98) that according to the theory of
Green and Lindsay, any discontinuous thermal disturbance produces discontinu-
ities in the displacement field. As this implie: that for such disturbances one
portiom of matter penetrates into another, the fundamental continuum hypoth-
esis that matter is impenetrable is violated in the theory of Green and Lindsay.
Furthermore, when the thermal disturbance has a jump discontinuity, it is seen
from (6.94) and (6.95) that the stress takes infinite values on the wave fronts.
That these are not the cases in the theory of Lord and Shulman are seen from
(6.57) and (6.58). This is the first major disagreement between the two theories.

Secondly, (6.95) and (6.98) show that no discontinuous mechauical dis-
turbance can generate discontinuities in the temperature: the temperature is
always continuous unless the thermal disturbance is discontinuous. The the-
ory of Lord and Shulman disagrees also with this prediction of the theory of
Green and Lindsay by predicting discontinuities in the temperature generated
by discontinuous mechanical disturbances; see (6.58) and (6.59).

Finally, according to the theory of Lord and Shulman, if both the me-
chanicul and thermal disturbances are continuous, then all of the field variables
are also continuous. On the other hand, it can be seen from (6.96), (6.99) and
(6.100) that in the theory of Green and Lindsay such disturbances may gen-
erate discontinuities in the stress provided the first derivative of the thermal

disturbance is discontinuous. Moreover, the signs of the jump discontinuities in



stress depend on the relative sizes of the factors involved in (6.96) and may
change with z.

We now turn our attention to the examination of the boundary conditions
(6.12) we promised earlier. Since in this case the mechamical boundary condition
is a traction boundary condition, the geometric optics expansion of the stress

is needed. Using (6.61), (6.92) and (6.93) we get

o 2

Szt =YY -5,-«1»,,,4,(3)1:;-_,@—:;/0,). (6.101)

=0 f=1 P
Therefore, the boundary conditions (6.12) are satisfied if

fZZ ‘I’t.:+1F:-1(t) Eh, ,H(t), (6.102)

J=0 l—l =0

and together with (6.45), the equation (6.43) holds. Matching the terms on

either sides of (6.43) and (6.101) we then get

2
Zﬁli:ff’ i=0,12,..., (6.103)
=1
2
=0 (6.104)
2 —
Z'C'.';‘I’t,j-t-l =hj-1, j=123,.... (6.105)
=1 P

Repeating the previous solution procedure we obtain

C§_¢(C'3 - 03)

On = CHCL,—C)) fo, £=1,2, (6.106)
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5 __ 6CiCE
" T~ O]

fO‘) £= 1,2, (6107)

— C?__ .
Orj = Ka—edy; — —ﬂi(-),,,--, + K¢Byj — K3—¢B3—t,5, €=1,2, j 2(1’ |
6.108

2
By = Mi(4y; - > By), £=12, j21, (6.109)
=1
where

v _ (C3_¢—CPhj—1 + C}_,(fj—1 +BSi/C})
4y = Cg-l )

(6.110)

whereas B¢, K, and M, are defined by (6.84), (6.89) and (6.90), respec-
tively. Therefore, the geometric optics solution for the bounda.ry. conditions
(6.12) is also given by (6.92) and (6.93) but this time ©,; and &, are
determined from (6.73), (6.74), (6.84), (6.89), (6.90) together with (6.106) to
(6.110). Comparison shows that the previous discussion on the propagation of
discontinuities for the boundary conditions (6.11) applies to the case in which

the boundary conditions are (6.12) as well.

6.5. Numerical Results

In this section predictions of the theory of Green and Lindsay are com-
pared numerically against the related predictions of the theory of Lord and
Shulman. For purposes of comparison we consider a hypothetical 1;1aterial whose

material parameters ate Cp, =1, C;, =05 and § = 0.05. For the theory
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of Green and Lindsay we take the cases f=1 and f=3. The boundary

conditions are prescribed as
0(0,t) = H(t), S(0,t)=0. (6.111)

The numerical results presented in this section are obtained from the ge-
ometric optics solutions with the use of [10/10] Padé approximants. To explain
how Padé approximants can be applied to the geometric optics expansions, we
take the expansion for the temperature. At the wave front t = z/C, this
expansion is

A= 5/0) Y. & QuleXe-2/Co).

=07
Defining the time elapsed after the passage of the wave front as y=1t— z[Cq,
we find that at a particular location z the above expansion has the formal
power series representation

Y i Oyy’, y>0. (6.112)
j=0 7°

That the linear geometric optics expansions are convergent has been proved by
Ludwig [47] for analytic data. However, highly recursive nature of the amplitude
coefficients defy debermination of the radius of con§ergenoe by analytical means.
We do this numerically.

For a given location z we sum the series (6.112) using 30 terms and

then 40 terms. The numerical results obtained from summing 30 terms and
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40 terms are in agreement for a certain range of t. This procedure provides
us with a rough estimate of the length of time after which the series starts to
diverge at a given location z.

To extend the validity of (6.112) beyond its radius of convergence, we em-
ploy Padé approximants. Let Pr(y) and Qum(y) be polynomials of degree

L and M, respectively. Then the L, M Padé approximant for (6.112) is

defined as
[L/M]= g‘}g(% ) (6.113)
where
. i Jl, Oy’ - QPTL}(% = O(yl+M+1), (6.114)

=0

with the normalization condition
Qm(0)=1. (6.115)

We solve the coefficients of the numerator and denominator polynomials from
the system of linear equations constructed from (6.114) and (6.115).

It is known from numerical experiments that near main diagonal Padé ap-
proximants exhibit relatively better convergence characteristics when compared
to Padé approximants away from the main diagonal of the Padé table. For this
reason, we restrict our choice to the [L/L+J] Padé approximants where J
may take the values —1,0 or 1 depending on the behaviour of the bound-
ary disturbances. If, for example, the boundary disturbances tend to zero as ¢
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tends to infinity, then we choose the sequence of {L/L+-1] Padé approximants
to approximate the wave front expansions. It should be mentioned, however,
that choosing any one of the above indicated values for J would not affect
the accuracy of the approximation drastically. We terminate the sequence at
L=10 to avoid excessive computation times and eliminate those terms whose
singularities are either real or near real axis of the complex plane and lie in the
range of approximation. We then choose the highest order Padé approximant
from the remaining terms in the terminated sequence.

We display our numerical results for the temperature, displacement and
stress in Figs. 6.1-6.3. In Fig. 6.2, the Dirac delta terms of the stress in the
theory of Green and Lindsay have been neglected. We remark that at the first
wave front the Dirac delta pulse is compressive whereas it is tensile at the other.
This is compatible with the corresponding compressive and tensile jumps in the
displacement.

It is seen from Fig. 6.1 that for the boundary disturbances (6.111), the two
theories are in agreement on the behaviour of the temperature. This agreement
is excellent shortly after the arrival of the second wave front. Indeed, when
B =1 they predict the same behaviour for the temperature. However, they
are in complete disagreement on the behaviour of the displacement and stress
for small times. Whereas the displacement is continuous for the theory of Lord
and Shulman, it suffers from large jump discontinuities in the theory of Green

and Lindsay. The size of these discontinuities incresses with . Moreover,

101



a scrutiny of Figs. 6.2 and 6.3 shows that the predictions of the theory of
Green and Lindsay on the displacement and stress are not always compatible:
at station z =1, immediately after the arrival of the second wave front, the
stress for B =1 is tensile whereas the displacement behaves in a compressive
manner. It is also clear from these figures that both of the theories predict the
same material response for larger times. This is because the time derivatives
of the ficld variables diminish as ¢ increases so that their influence becomes
insignificant.

We now conclude this chapter with some remarks.

As was mentioned, Pao and Banerjee [30] showed the agreement between
the experiment and the theory of Lord and Shulman. We showed several dis-
agreements between the theory of Lord and Shulman, and the theory of Green
and Lindsay. We showed further that the theory of Green and Lindsay violates
its major premise by predicting discontinuities in the displacement. For this
reason we now abandon the use of Green and Lindsay theory and adopt the
nonlinear theory we proposed, that takes the theory of Lord and Shulman as a

special case, to examine influences of the material nonlinearity.
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Fig. 6.1. Variation of temperature with time
for the Lord and Shulman theory (—),
the Green and Lindsay theory with g=1(~~)
and the Green and Lindsay theory with g8 = 3(— —)
a)at z=1, b)at z=3.
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a)at z=1, b)at z=3.
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CHAPTER 7
ASYMPTOTIC ANALYSIS

OF THE NONLINEAR THERMOELASTIC PROBLEM

We begin our analysis of the nonlinear problem by writing down the di-

mensionless forms of the balance laws obtained from (5.3), (5.4) and (5.34):

v 35'
Oe av dq _

After nondimensionalization the compatibility equation (5.2) takes the form

Ou Ov
il 0, (7.3)
whereas the second order constitutive equations are given by
— +Ci(1- 648) - +C’(1 (20)g =0, (7.4)
S=u—-0+} vy +1ub - } 1367 (7.5)

e = bu+ 0+ (1 - 12)6u® + 1360 + 31, ©* + -512-(1 -30)¢. (16)
t

We will study the problem defined by the equations (7.1) to (7.6) subject

to the initial conditions

u(z,t) = 6(z,t) = v(z,t) = ¢(z,t) =0, z>0, t<0, (1.7)
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and the boundary conditions

©(0,t) = eB0(t/e), u(0,t) = euo(t/e), (7.8)

where 0<e<<1 whereas O, uy vanishforall ¢t<0, andon (—o0,00)
are bounded, integrable and smooth functions with integrable derivatives.

This chapter is organized as follows. In the first section some results of
Majda and Rosales [40] and Majda and Artola [48] concerning the derivation of
geometric optics solutions for a fairly general signalling problem in the quarter-
space >0 and ¢>0 are summarized. In the second section these results
are specialized to the problem above, and in the next section, the influence
of the material nonlinearity on the propagation of second sound is analyzed.
Finally, in the last section, numerical results based on the nonlinear geometric

optics solution are presented for a particular choice of the material parameters.

7.1. Nonlinear Geometric Optics for Hyperbolic Mixed Problems

Consider the strictly hyperbolic system

A(u)u, +B(upm,.=du), z>0, t>0, (7.9)

where w is an n-dimensional vector funciies: «f £ and ¢ whereas the
n X n matrices AB and the n-dimensions! vector d are sufficiently
smooth functions of w in a domain U CIR". Further, detA#0 for all

sclU.
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Since (7.9) is strictly hyperbolic in U, for each u€U the generalized

eigenvalue problem
(B—XA)F=0 and 2(B-14)=0, (7.10)

has n real and distinct eigenvalues {X.-(u)}};i with the corresponding sets
of linearly independent right eigenvectors {Fi(w)}L; and left eigenvectors

(l}(u)}:-;,. The integral curves of the ordinary differential equations

& &

=iw), i=1,2,...,n, (7.11)

are the characteristics of (7.9). We assume for all weld, A and B are
nonsingular. Consequently, each x;(u), t=12,...,n, is nonzero so that

z=0 is not a characteristic. We order {\(u)}%, as
A< < Amgt <0<An <o <X <y, (7.12)
and impose the normalizations
CAF =65, i,j=12,...,n, (7.13)

where §;; is the Kronecker delta.
The signalling problem we are interested in consists of the system (7.9),

the initial conditions
u(z,t)=0, z>0, t<0, (7.14)
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and the boundary conditions we shall introduce after we set the notation below.
Since for u € U there are m characteristics entering into z >0, ¢t > 0
at the boundary £ =0, m boundary conditions must be specified; see, for
example, Courant and Hilbert {49)].

For any constant n-dimensional vector v we assume that

A (v) v = Ago + A; (u,) + o ju}), (7.15)

B (u) v = Bv + By (w,9) + o ful), (7.16)
where Ay =A(0), B, =B(0) whereas the bilinear forms A4, and B, are
AI = grad.A(u)lﬂ., Bg = grad.B (U)lﬁ. (7.17)

To ensure u=0 is a solution of (7.9) we set d(0) =0 and suppose

du) =D v+ ofu]), (7.18)

where D= grad,d(w)ls=o. Finally, we define

di=XN0), ri=f0), &=&0), i=12,...,n (7.19)

and note that & Aorj = 5;5.
We are now ready to introduce the boundary conditions. Let M be a
mapping from IR® to IR™. The boundary conditions considered by Majda

and Artola [48] are

M(u)=e.4(t,";€°t-, z=0, t>0 (7.20)
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where wp is a constant and A (t,¢) is a prescribed bounded smooth
m-dimensional vector function vanishing for ¢ < 0 and having zero mean

with respect to ¢, meaning that
.1 T
Th—?:o o7 [- , A(t,p)dp =0. (7.21)
In our summary we deal with the case
M(@u)=Nu (7.22)

where N is a constant m X n matrix such that {N=}%, is a set of
m linearly independent vectors with the associated reciprocal vectors {R;}7,

defined as
RNrj=6;j, 4,j=12,...,m. (7.23)

We call any such N admissible for reasons which will become apparent shortly
after; also see [48].
It follows from the results of [40] and [48] that
#z,t)=¢ Z’i(taz"ﬁ)'i
J=1
ia the leading order geometric optics solution which approximates the solution

of the problem (7.9), (7.14) and (7.20) within errors of order €2, where

wot 4 k;
¥i= : : 2id y W =—Ajkj, (7.24)
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whereas o;(t,z,9;), j = 1,2,...,n have zero mean with respect to ¢;

and solve

aJtt + AJO"z + P aJ”Jy‘PJ K a’

+ Z r; 111_1.20 2T_/ GP(AP 05— Ajp€)og(N 6)dE = 0,

qu-
#J#q

(7.25)

subject to the boundary conditions

il =Ri[A- ) Wrdad ], i=12...,m, (7.26)

{=m+l1

and the initial conditions
oi(t,z,0;) =0, >0, t<0, j=12,...,n " (1.27)

In the above integrals we suppressed the explicit z,¢ dependence of ¢, and
g, for convenience, and, as usual, used the prime to denote the differentiation

with respect to the entire argument. The constants appearing in (7.25) are the

nonlinear self-interaction coefficient of the j-th wave
L' =4j[wo Ai(rj,rj) + kj Ba(rjors)l, (7.28)
the attenuation coefficient of the j-th wave

K; =4;Dr;, ' (7.29)
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the coefficient of the forcing on the j-th wave due to resonant interactions

between the p-th and g¢-th waves

r iq = 7 &j[wo As(rp,rq) + k; Bu(rp,ry)), (7.30)

whereas the A_‘;q are determined as

"’J"‘kq
k,,—lc, )

X, = (7.31)

Let us assume that each o;(t,z,¢;), j=1,2,...,n is bounded with
integrable derivatives. When this happens the integrals in (7.25) vanish, that
is, there are no resonant interactions, so that only m waves are generated at

z=0. The leading order asymptotic solution becomes

Uz, t)=¢ f:aj(z,t, Vi (7.32)
j=1
where
0jt+Aigjz + 10050, — Kjoj =0, j=12,...,m, (7.33)
subject to
oil._o =RiA (7.34)
and
oj(t,z,0;)=0, >0, t<0. | (7.35)
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This is ensured if the boundary function A is further required to possess

integrable derivatives.

7.2. Geometric Optics Solution
Here we intend to apply the method summarized in the previous section
to our problem. To this end, we define u = (u,0,v,¢)T and from (7.1) to

(7.6) get

Alu)u, +B(uls,; =du), z>0, t>0, (7.36)

where the only non-zero entries of the matrix A= (Aij)ax4 are

A=Az =Au =1,
Ay =14 v36u+v40, (7.37)

1
Ay = 6? (2 - (l)qa
and of the matrix B =(B;j)4xs are

By3 = =By = -1,

Bys = =6 ~ (2 — 13)6u 4 (1 — 13)60,

B;; = C: - Cf,u;u - C’guze, (7.38)
B3y = C2 - C2vu+ C1s0,

By =C? - C(16,
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whereas the only non-zero entry of the vector d=(di)s is

dy = —C%q+ C?(,0q. (7.39)
We have
u(z,t)=0, >0, t<0, (7.40)
and
Nu(0,t) = cA(t/e), (7.41)

where A(t/e) = (uo(t/€),00(t/))” whereas

[1000
N-[o ! 0 o]' (1.42)
From (7.37) and (7.38)
A, = diag(1,1,1,1), (7.43)
and
0 0 -10
c 0 61
Bo: —C: C; 0 0 , (7.44)
0 C? 0 O
where A; =A(0) and B, =B(0). Thus at u=@ the generalized eigen-

value problem

(B-XAF=0 and E(B-14)=0
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has the real and distinct eigenvalues X; = Ai(0), i=1,2,3,4 where
A =-A =Gy,
(7.45)
A2 =-23 =Gy,
and Cj, C, are given by (6.20) and (6.21). Since, as functions of u, A,B
and hence X;, i=1,2,3,4 are smooth, there is a neighbourhood U C IR*

of u=0 in which (7.36) is strictly hyperbolic.

However, (7.36) may change type. For example for all u€V, where
Y = {u € R*|1 + v36u + 14,0 = 0}, (7.46)

det A(u) =0 so that Au) = o is an eigenvalue. Then for any u € V
the lines t = const. are characteristics and consequently (7.36) is parabolic.
On the other hand, when u € V at least one of u and © must be of
O(1), in which case the second order constitutive equations are not valid. As
we are restricted to solutions remaining close to u=0, we limit our attention
to u€l ensuring hyperbolicity of the problem.

After some algebra we find that the right and left eigenvectors correspond-

ingto X=C;, t=12, subjectto LAor;=045;;, are

= X [0t Ci(C2 - o), ~€2e2, cic - e (ra)
1 .
i = -4y i aCiC?"'Cz, iCzi
respectively. Further
Nri= [C:’ C: - C?]T’ (7.49)
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so that N is admissible since Nr; and Nrp are linearly independent.

The reciprocal vectors determined from R;Nr; = 6;; are

1 .
R; = (A7) [C3_;-C3Cl, i=12 (7.50)
? - H

To specialize the results summarized in the previous section to our prob-
lem, let us observe from (7.8) and (7.41) that the boundary vector At/e) is
smooth bounded integrable with integrable derivative on (—00,00). Therefore,
there are no resonant interactions and so only two waves are generated at the
boundary z=0. Since A does not depend on ¢ iudependently it follows
from the theory in Section 7.1 that the leading order geometric optics solution

of the problem (7.36), (7.40) and (7.41) takes the form

(z,1) =622:¢.-(z, @iy (7.51)
i=1
where
i = t“z/ G (1.52)
and
Gix + o i = Lc{' 5i=0, i=1,, (7.53)
subject to
ai(0,9) = fi(y), ¢>0, | (7.54)
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and

oi(z,9)=0, >0, ¢<0. (7.55)
In the above

(C3-i — Cp)ua(e) + C300(y)
Cy(C3-i - C}) ’

fle) = i=12, (7.56)

K; = «~C;W;, where W;, i=1,2 are given by (6.34) and (6.35) while T'; =

CiGis, i1=1,2 where

_AC3-CHY +8CH(C3~367) | Gy(CE-Ch)
ST a@L-0)  2oHCL-0D

(7.57)
sCA 8C3(C3 - C7) (C; - C})?
RETo (o My R (o B o) R (o BT ) R

We have completed deriving the problems determining the leading order
asymptotic approximation which approximates the solution of the original prob-
lem within errors of €2. In the next section we shall solve these problems to
analyze the implications of what has been determined so far. In passing we
remark that the nonlinear self-interaction coefficients Gi, i = 1,2 ave inde-
pendent from the material parameters (; and (; so that, in the second
order theory we are working with, no knowledge of these parameters is neces-
sary. However, this does not mean that the nonlinear dependence of the internal
energy on the heat flux has no influence, for the first term in the right-hand side
of (7.57) involves contributions from the heat flux in the constitutive relation
(7.6).
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7.3. Analysis of the Results

We concentrate our attention on the strain u and the temperature dif-

ference © only. The velocity v and the heat flux ¢ behave in ways

similar to those for the strain u and the temperature difference ©, respec-

tively.

It follows from the previous section that as ¢ —+ 0, u and © are

given by

u(z,t) = eClo1(z, 1) + eChoa(z,p2) + O(¢?),

6(z,t) = £(C2 — C})o(=,¢1) +€(C} — C3)oa(z,02) + O(€%),

where -

t—-z/C; .
pi= €/ .’ 1=1,2,

whereas o;(z,0i), i=1,2 solve

iz + Gioici, + Wio; =0,

(7.58)

(7.59)

(7.60)

(7.61)

subject to (7.54) and (7.55). Since Cj, >C; and, therefore,as §—0, C,—

C, and C; —Cy, the fast wave is quasi-elastic and the slow wave is quasi-

thermal. This was discussed in our analysis of the linear problem in the previous

chapter.
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To determine whether these waves break or not, let us solve the problems

given by (7.61), (7.54), (7.55) and (7.56). The solution is

0,'(.1:, ‘Pt') = fi(Ei)e-w‘zv t= 1,2, (762)
where
@; = i ':/Ci =& — % filt)e™ = 1), (7.63)

In view of the discussion given in Section 3.2, we then conclude that the

¢-th wave breaks if the condition
Gi ! -W;z
Pige =1 fil&)e™" —1) #0, (7.64)
is violated. As long as
-G fi&) <1, i=12 (7.65)
m 8) = * ’

neither of the waves break, since (7.64) holds. Otherwise, the i-th wave

breaks at the approximate position Z; given by
~ . Gl‘ '] ..W z L
Fi= min {z>0]1- & fi&)(e™ ~1)=0}, i=12, (7.66)
Vs

from which the corresponding E; is determined as well. With z; and E.

at hand, (7.63) then gives the approximate breaking time %;. Consequently,
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the asymptotic solution ceases to be valid at the distance Z, az’ the time

-~

t, where
Z, = min {%,53}, %, = min {,%). 367

Provided the material constants are determined and the disturbances are
specified, valuable approximate quantitative information canm be obtained from
the above asymptotic solution with no essential d*#iculiy. We shall demonstrate
this for a physically reasonable set of matefial constaniy in the last section. In
the rest of this section, however, we shall investigate what other information
can be extracted from it without specifying the constants.

Let us look at the asymptotic solutions (7.58) and (7.59) more closely.
Remember now that as 6 +0 we have Ci —C, and C; = C;. It then

follows immediately that as § — 0

u(z,t) — eC:al (=, i-%/—cl) + eC:az (=, - :/C‘) + O(e?),
(7.68)
6(z,t) — £(C2 — C})oa(z, t=2/ C‘) +0(?). (7.69)

€

The last of these tells us what we have displayed already in the first figure of
the previous chapter: the main part of the temperature wave is carried by its
quasi-thermal component, that is, by second sound. This information is not
novel. To obtain novel information one should take the boundary disturbances

also into consideration.
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It will prove useful to rewrite the boundary disturbances given in (7.54)
and (7.56) as

_ (C3 - Chyuo(p) + C200(v)
0’1(0, ‘P) = C:(Cg — Cf) ) (7'70)

2_ 2
oa0,0) = G é;z‘('}ff_)_ z;)':e“") : (7.71)

Suppose the boundary temperature is kept constant and the wave motion
is set up by disturbing the strain. Since ©9 =0, letting § -0 in (7.70)

and (7.71) gives

oi(0,0)» 22 y(0,0) 0. (1)
) 4

This shows that for such disturbances second sound is practically unobservable.

Furthermore, (7.72), together with (7.68) and (7.69), shows also that

t-Z/Cp
€

u(z,t) = €C1(z, ) +0(e?), ©(z,t) = O(e?), (7.73)

so that the entire wave motion is practically isothermal. In fact, in view of
the apparent success of the theory of elasticity, this information is not so novel
either, since the theory of elastlsity relies on neglecting the thermal effects
entirely when the disturbances are mechanical. Because of this we disregard
purely mechanical disturbances until further notice and suppose the boundary

temperature is perturbed.
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Since it is supposed that ©¢ #£0, letting 6§ — 0 in (7.70) and (7.71)

gives

Ul(os ‘P) = uUC(;P) + (C?OE(PC)’?) , o2(0, ‘P) - (_C%_%z_) . (774)
P t 1

From the second of (7.74) we see once again that second sound is essentially
unaffected by mechanical disturbances. On the other hand, the first of (7.74)
indicates that a similar conclusion for first sound is not correct: the influence
of thermal disturbances on first sound is umavoidable regardless of the strength
of coupling. Prior to further discussion of this observation, we let § —0 also

in (6.34) and (6.35) to get

Wio0, Wy &, (1.75)

and recall that W, and W, are the attenuation coefficients of first sound
and second sound, respectively. Therefore, although second sound is dissipated,
first sound is practically not.

Let us put all of these observations together. In a purely mechanical
experiment, in which thermal effects can be neglected entirely, strain measure-
ments would give sufficient information concerning first sound. Consider now a
heat-pulse experiment (see [20-26]) in which only t.he temperature is measured.
In such a measurement the quasi-elastic component of the temperature wave

could go unnoticed since the main part of this wave is carried by.seoond sound.
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Therefore, in such cases and as long as one is interested in temperature mea-
surements only, it appears reasonable to neglect deformations entirely. In fact,
this last claim does not contradict the previous conclusion that deformations
are unavoidable, since neglecting them does not mean denying them. However,
such a neglect leads to loss of valuable information that otherwise could have
been obtained from strain measurements. A scrutiny of (7.68) and (7.74) shows
that even the quasi-elastic component of the strain wave, that is, first sound,
contains information regarding the speed of second sound. Indeed, it is the
quasi-elastic component of the strain wave which is not dissipated and, there-
fore, which can be observed more conveniently. Based on these arguments we
reach the following conclusion: taking deformations into consideration is worth
the effort even when the coupling is small. Furthermore, there are many cases
when the coupling is not so small so that both components of the temperature
wave are observable (see [23-25]).

Lastly, we will deal with the nonlinear self-interaction coefficients G;, ¢ =
1,2 to investigate the influence of material nonlinearity. As before, we let

0 — 0 and obtain from (7.57) the following result:

c Ct-C? Cl-C?
_% P W Tt
Gi=-3u G —p—+—Hx

Vg. (7.76)

This result hardly comes as a shock after the above observations. The non-
linearity of first sound comes essentially from the quadratic dependence of the
stress on the strain. Likewise, the nonlinearity of second sound derives mainly
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from the quadratic dependence of the internal energy on the temperature and
the heat flux. The cross terms in the temperature and the strain do not play

significant roles in the nonlinear behavior of either of the waves.

7.4. A Numerical Example

We present our example calculations for the boundary disturbances

2 exp (1 —4p?), 0, .
eo(¢)={§¢ = (1-4) ::0, (1.77)
and
uo(p) =0, ~co<p<oo. (7.78)

This choice is motivated by the previously mentioned heat pulse experiments.
The function in (7.77) describes a pulse of short duration that smoothly in-
creases from zero to its peak value 0.5 at ¢ = 0.5 and thereof decreases
asymptotically 2 zero as ¢ tends to infinity. It takes the value 0.1 at
¢ =1 and thereafir rapidly becomes practically unobservable. Let us now fix
€=0.1 and recall that at z=0, ¢ =1/e. Therefore, the duration of the
above pulse is slightly longer than 0.1 nondimensional time units.

We now turn our attention to the ma.tena.l parameters and specify the

first order constants as

Cp=1, C/=05, §=0.05. : (7.79)
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The above choice is roughly in accord with the experimental data obtained for

NaF at temperature of about 12°K.

Next, we set

n=0 =1 =0 (7.8C)

This is solely a matter of convenience. The first ciwo of the above offset the
quadratic influence of the strain on the stiess aud internal energy, respectively,
whereas the last offsets the quadratic dependence of the stress on the temper-
ature. Since as § —+ 0, Gy — —Cp11/2 and u» =0, for us first sound
is essentially linear so that we can concentrate on the nonlinear behaviour of

second sound. No deep physical significance should be attacned to the abuve

values.

Lastly, we choose

vy =3. (7.81)

This choice is motivated by experimental o}:servations. Hardy and Jaswal [22]
determined that for NaF, the specific heat at constant strain at low tempera-
tures is a cubic function of the absolute temperature. This indicates the above
value for vy.

With the above disturbances and material parameters we find from (7.64),
(7.65) and (7.66) that first sound remains smooth at least until second sound
breaks at the approximate place Z, =0.2213 and the appmw time %, =

0.5619, which occurs at £ = 0.75651. Since the peak value of the pulse
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Is attained at §; = 0.5, this indicates that second sound, generated by the
disturbances (7.77) and (7.78), breaks backwards behind the peak value. Indeed,
as long as G; > 0, (7.64), (7.65) and (7.66) show that second sound never
breaks at any §; for which f5(£;) is increasing. To put it differently, large
values of second sound travel more slowly than smaller values of it. This result
is in accord with the previously obtained result of Coleman, Fabrizio and Owen
[31] concerning the purely thermal second sound: a thermal wave propagating
in the direction of heat flux travels more slowly than one propagating in the
opposite direction. That the above results are in agreement can be inferred

easily from (7.64), (7.65) and (7.66) by observing that
C? | C?
q(z,t) =¢ F;(Cg - C¥ay(z,01) + 56‘2-(03 — C2)oa(z,02) + O(e?), (7.82)

where ¢;, i=1,2 are given by (7.60), and comparing it with (7.59).

In Figs. 7.1 and 7.2 we depicted the geometric optics solutions for the
temperature and strain. In these figures the linear geometiic optics solution, ob-
tained from the nonlinear solution by setting G1 =G; =0 and indicated by
the broken curves, are also displayed for purposes of comparison. The already
discussed qualitative behaviour of first and second sound waves are clearly seen
from these figures. The qualitative resemblance between our Fig. 7.1.a. and
F.g. 7.C. of Jackson and Walker [23] displaying tke oscilloscope trace of the

temperature detected at 12.7K in a high-purity NaF crystal of length 7.3 mm
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is interesting. However, it is unreasonable to reach a quick conclusion concern-
ing the physical validity of our theory on the basis of this resemblance. To
reach such a conclusion, or otherwise, more careful examinations of the mate-
rial parameters and boundary disturbances should be performed and a larger

number of comparisons with the experiments should be made.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

We studied the one-dimensional propagation of boundary generated, small-
amplitude, high-frequency waves in two semi-infinite solids. The leitmotif of
our study has been geometric optics. We constructed asymptotic geometric
optics solutions for our problems and demonstrated that valuable approximate
quantitative information can be obtained from these solutions with no essential
difficulty.

In the first part of our study we considered a viscoelastic solid. We lim-
ited our attention to that viscoelastic solid for which the present value of stress
is given by a single-integral functional of the history of strain. We assumed that
this functional obeys certain physically reasonable conditions ensuring that the
solid exhibits instantaneous elasticity and that the resulting system of Volterra
integrodifferential equations may be regarded as hyperbolic. We showed that al-
though the strict convexity (or concavity) of the instantaneous elastic response
function of the solid is sufficient for a possible break-down of the solutions
originating from smooth data, it is not a necessary requirement. It should be
mentioned that whether such a break-down occurs or not depends also on the
strength of the dissipative mechanism introduced by the memory of the mate-
rial. Qur asymptotic resuits imply that even small amplitude solutions origi-
nating from smooth data, if they are sufficiently high frequenc&, may develop

singularities in finite time as long as the instantaneous elastic response function
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is not linear. Such is the situation even when the instantaneous elastic response
function possesses inflection points, in which case it is not strictly convex.

The second part of our study was devoted to examining the one-dimensional
propagation of finite speed thermal waves in an elastic heat conductor. There
are two mnotions related with such waves. The first is second sound, which was
observed for the first time in superfluid liquid helium. The second is the para-
dox of instantanecus propagation of thermal disturbances predicted by Fourier’s
theory. There is no doubt that theories predicting finite speed for thermal
disturbances provide satisfactory solutions to eliminate the paradox. From a
practical point of view, however, this paradox does not pose a severe prob-
lem since for most materials “huge speeds and rapid relaxation restore diffusion
even on the scale of the response time of modern oscilloscopes (Joseph and
Preziosi [16]).” On the other hand, second sound has been detected not only
in superfluid liquid helium [14] but also in the dielectrics He-4 [20}], He-3 [21],
NaF [22-25] and in Bi [26] at low temperatures. Secondly, the recent discov-
ery of high temperature superconductors, which can operate above the nitrogen
boiling temperature, has revived some interest in second sound experiments in
superconductors in the last three years or so. As pointed out by Peskhov [14],
superconductors are potential candidates in which heat might be transported
by second sound. The question whether heat is transported by second sound in

high temperature superconductors or not, however, appears to be as yet unan-
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swered, although an unsuccessful recent experiment has been addressed in the
survey article by Flik [50]. These have been the motivations for our study.

The above mentioned experiments in crystals indicate that the speed of
second sound depends on the temperature and that, though at varying degrees,
detected thermal variations are coupled with deformations. Therefore, if one
adopis the point of view of continuum mechanics, then a nonlinear theory of
thermoelasticity capable of predicting finite speed for thermal disturbances pro-
vides a plausible mathematical model for studying the phenomenon. This led
us to extend the thermodynamically consistent theory of Coleman, Fabrizio and
Owen [31], valid for rigid materials, to include elastic materials. In our exten-
sion we also provided a solution to the lack of material frame invariance their
constitutive equations suffer from.

We then considered the linear equations of our theory for a one-dimensional
thermoelastic solid. The linearization of our equations gives the equations of
the linear theory of Lord and Shulman [28]. We compared several predictions
of these equations against the related predictions of the linearized equations of
the theory of Green and Lindsay [29]. We found out that predictions of the
latter theory are physically discomforting.

Lastly, we turned our attention to examining the nonlinear influence of
the temperature on the propagation of second sound in the nonlinear theory we
developed. The heat pulses generated in the above mentioned experiments are

excellent examples of small-amplitude, high-frequency boundary disturbances.
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This fact rendered the asymptotic geometric optics expansion procedure a good
mathematical tool for studying the phenomenon. We analyzed the predictions of
our theory on the basis of these expansions. One important implication of our
theory is that larger values of second sound propagate more slowly than smaller
values of it. Based on a temperature-rate front analysis Coleman, Fabrizio and
Owen [31] determined that according to their theory a temperature-rate wave
propagating in the direction of heat flux travels more slowly than one propa-
gating in the opposite direction. This is in agreement with the above noted

implication of our theory, which is an extension of theirs.
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