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ABSTRACT

This thesis presents two methods for modelling urban
air pollution using the time series analysis technique. This
technique is different from the atmospheric diffusion
technique commonly applied to modelling air pollution, a
brief review of which is given in Chapter I along Qith other
works in urban air pollution. The two types of models
developed here are the stochastic and the dynamic system
models, which are established to describe the behavior, in
Edmonton, of a particular air pollutant called oxides of
nitrogen. Since models from Time Series Analysis are based
on observed data, Chapter II is devoted to describing the
source, precision, and organization of the data used to
develop the models. In Chapter III, the stochastic models
are developed, tested, and used for forecasting while Chapter
IV is devoted to the development of the dynamic system models.
With the oxides of nitrogen data collected in Calgary, Sarnia,
Sudbury, Toronto, and Windsor, stochastic models explaining
the pollutant's behavior in those cities are developed in
Chapter V and compared with the corresponding model for
Edmonton. This comparison resulted in a general stochastic
model for the behavior of oxides of nitrogen in the urban
atmosphere. Finally, in Chapter VI recommendations and
suggestions concerning the use of the models, and further use
of time series analysis technique in building urban air

pollution models are given.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Constituents of air pollution include dust, fumes,
gas, mist, odor, smoke, Vvapor and noise. The mere existence
of any of these pollutants in ambient air does no%t necess-
arily constitute pollution. Air pollution occurs when the
presence of one or more of them is in such quantity,
characteristic, and duration capable of damaging or un-
reasonably interfering with comfortable enjoyment of life
and property. The injurious levels of concentration of most
of the pollutants as well as the sources and causes of the
pollutants have been identified by researchers, several of
whom are mentioned in the following sections. However,
knowing the source and concentration is not enough, it is
also desirable to know the fluctuation of the pollutants'
concentration with time and space. That is, one would like
to know in advance when a particular pollutant is likely to
reach a dangerous level in the atmosphere so as to prevent
it from doing so wherever possible. Such knowledge is poss-
ible to obtain through models that explain the behavior of
the pollutant over time. There are several air pollution
models in existence using the diffusion approach. As pre-
dictive models, they give either consistently low estimates
or consistently high estimates of the pollutants as explained

in the symposium report edited by Atkisson and Gaines [2].




The object of this thesis is to present a different
approacii to air pollution modelling. This approach employs
time series analysis. The measurements of a particular
pollutant observed over a long period of time will be
studied and analyzed. The analysis will yield a model of
the stochastic process which generates the behavior of a
pollutant in an urban area. A transfer function model of
a dynamic system with the measurements of the pollutant as
output will also be built. The models will be used in fore-
casting and their forecast estimates will be compared with
the observed values of the pollutant to prove the models'
potential as a predictive device.

The air pollutant that will be so investigated is the
gas known as oxides of nitrogen(NOx). The behavior of
this pollutant in Edmonton will be studied and compared
with the behavior of the same pollutant in some other cities
in Canada.

Time series analysis requires a great deal of computa-
tion including inversion of matrices, iterations involving
solutions of sets of linear equations, and numerical estima-
tion of derivatives. Since a long series of observations is
required to build the models, time series analysis requires
facilities for large data processing. Therefore, useful
results are obtainable from this type of analysis only if a
digital computer is employed. The investigator must have
both practical and theoretical knowledge of the computer

science discipline including numerical analysis, and infor-



mation retrieval. The problem investigated in this thesis,
therefore, is in the area of the interface of computing
science with one of today's main problems affecting all of
humanity.

1.2 Measurement and Control of Urban Air Pollution

1.2.1 Sources

In order to measure and control air pollution, various
sources of the pollutants must be known. Sources have been
recognized as Natural Air Pollution Sources, and Man-made
Sources as discussed in Rossano [61]. Some examples of
natural sources are swamps producing gases and odors, forest
fires yielding smoke and flyash, and wind blowing dust and
pollen. Sources of man-made pollution cover a very wide
range. Only some of the major ones affecting urban envir-
onment will be mentioned here.

One of the major man-made sources of air pollution is
combustion. Combustion sources can be categorized as
follows:

(a) Fuel burning in home heating units and power plants.

(b) Motor vehicles represented by autos, buses and trucks.

(c) Refuse burning in community and apartment house in-
cinerators.

Pollutants emitted by combustion are oxides of sulfur, oxides

of nitrogen, carbon monoxide, smoke, flyash, metal oxide,

particles and odor.

Manufacturing processes as sources of air pollution

may be classed into two categories:




(a) Metallurgical plants, represented by smelters, steel

mills, and aluminium refineries, and

(b) Chemical plants, represented by petroleum refineries,

pulp mills, super phosphate fertilizer plants, and
cement mills.

Pollutants associated with manufacturing processes include

particles, oxides of nitrogen, oxides of sulfur, hydrogen

sulfide, fluorides, organic vapor, and odor.

Some other well known man-made sources include the
following:

(i) Nuclear energy activities producing radioactive fall
out.

(ii) Dust producing processes like crushing, grinding,
demolition, and milling, which generate mineral and
organic particulates.

(iii) Agricultural activities like crop spraying, field
turning, and straw burning, which produce pollutants
like organic phosphates, chlorinated hydrocarbons,
smoke and flyash.

The number and the spatial distribution of these
sources are very important in measurement and control. For
this purpose the sources have been categorized into the
following emission types:

(a) Point sources: these sources have a high

rate of emission and can be easily recognized. Examples
are power plants, petroleum refineries, and steel mills,

(b) Area-wide (or multiple) sources: these consist of a



large number of smaller sources distributed over a well-
defined area like an entire residential area.

(c) Line sources: these for example include freeways, high-
ways and arterials carrying a steady stream of moving

vehicles.

1.2,2 Air Pollutant Measuring Devices and Units of

Measurement

There are two main methods for the determination of
airborne contaminant concentration. One is by remote sensing
and the other is by removal of particulates and gases from the
gas stream.

Remote sensing and analysis does the measurement on
the material in situ. The advantage of this method is that
it does not involve physical contact with the substance and
hence no error from alteration or modification is invodved.
Remote infra-red sensing of sulfur dioxide in stack plumes
is an example of this technique.

The second method collects particulates and gases from a
gas stream, then subjects the material collected to analy-
sis. For gases, a sample of the air stream is absorbed in
specific reagent liquids before wet chemical analysis is per-
formed. There are both manual and automatic devices using
this method. The automatic devices known as Automatic Cont-
inuous Analyzers are more desirable in air pollution monit-
oring. They continuously perform the following operations

in sequence: collect air samples, analyze them, and record



the results either in form of a curve on a strip chart or
by punching the results on paper tape. These automatic de-
vices are available for only a few of the gas pollutants.
However,ome -of such jpollutants for which they are currently
available is oxides-of-nitrogen. More detailed description
of these and other devices can be found in Rossano [61],
while names of some of the commercially available brands
can be found in Magill et al. [35].

The commonly used units of measurement in air pollu-
tion monitoring are parts per million parts of air measured
by volume (ppm), and micrograms per cubic meter of air
(ug/m3). Gas pollutants are usually measured in ppm (or
sometimes parts per hundred million (pphm) while particulates
are measured in ug/m3. In the OECD [50]report, these and
other units of measurement are defined.

1l.2.3 Control

The main objectives of measuring and analyzing air
pollutants are to be able to obtain information for setting
control standards and to be able to keep the pollutants with-
in the control limits. There are tolerance thresholds with
the main air pollutants. These help in setting air quality
standards for the pollutants. Such standards for different
pollutants are well documented in Atkisson and Gaines [2].

Once the standards are known various techniques can
then be applied to ensure that these standards are not vio-
lated. One kind of control is to stop the human activity

generating the pollutant. Another form of control effects



a reduction in the emission rate of the pollutant. Engineers
have been able to effect emission reduction in three ways.
The first is by process modification. An example of process
modification is the modification of automobile engines (e.g.
Chrysler "Clean Air Package" includes a modified carburetor)
to prevent the generation of excessive concentrations of
carbon monoxide and hydrocarbons. The second method devised
by engineers is material substitution. Substitution of, for
example, a low-sulfur fuel such as natural gas for a high-
sulfur fuel reduces the emissions of sulfur dioxide. The
third method is gas cleaning. Gas cleaning employs three
methods for removing gaseous contaminants; absorbing the
pollutant into a liquid, adsorbing the pollutant onto the
surface of a solid, and chemically changing the pollutant
into a non-polluting substance. For the removal of part-
jiculate air pollutants from their gaseous media one or a
combination of mechanisms and forces are employed. Such
mechanisms and forces include gravitational force, centri-
fugal force, magnetic force and thermal diffusion giving
rise to devices like settling chambers, centrifugal coll-
ectors, wet collectors, and filters. The descriptions of

some of this equipment can be found in Rossano [61].

1.3 Oxides of Nitrogen as an Air Pollutant

1.3.1 Major Air Pollutants

The known major air pollutants are the oxides of

nitrogeh, of sulfur, and of carbon, particulates, ozone and



oxidant, odor, and organic contaminants. Examples of some

of these pollutants are listed below.

Pollutant _ Constituents
Oxides of Nitrogen Nitric Oxide (NO)

Nitrogen Dioxide (NOZ)

Oxides of Sulfur Sulfur Dioxide (SOZ)
Sulfur Trioxide (SO3)

Oxides of Carbon Carbon Monoxide (CO)
Carbon Dioxide (C02)

Organic Contaminants Aldehydes
Phenols

In this thesis NO is studied since it is one of the most
'important' air pollutants - this will become apparent in
the discussions below - and because NOx data are available
over long period of time,they are suitable for Time Series
Analysis.

The general term, NOx, includes NO, N02, N204, and
NZOS' Since N204 and Nzo5 exist only in small quantities
and are not known to be capable of producing any adverse
effects, they are not important by themselves in air pollu-
tion. The term NOx in air pollution often refers to only

NO and NO, together.

2

Oxides of nitrogen are introduced to the atmosphere
from a variety of sources. A principal source of man-made
oxides of nitrogen is the combustion of fossil fuel, which

is used in power plants, heating equipment, and internal

combustion engines. NOx is produced by automobile exhausts



owing to inefficient burning of fuel. Details of the emis-
sion of NOX by automobile exhausts and steps taken to con-
trol it can be found in Agnew [1]. NO and NO, are known to
be present in dangerous concentrations (145-1000 ppm} in
cigarette smoke. Leithe [33] contains detailed information
on cigarette smoke and Lawrence [32] describes efforts to
remove NOx from tobacco smoke.

Production of oxides of nitrogen during combustion can

be expressed in the following chemical reaction equation:

N2 + O2 + 2NO.

After the initial combustion reaction, nitric oxide further
reacts with oxygen to form NO2 and higher oxides. These
reaction processes are well explained by Strauss [69].

Since NO reacts with oxygen at ambient temperature to form
Noz, NO is seldom found in appreciable concentration. There-
fore NO, is the main component of NO_ .

2

1.3.2 Toxicology of NO

Nitrogen dioxide (N02) is especially poisonous and its
presence, even in small quantity creates a health hazard.
It can be perceived by smell in concentrations as low as 0.1
ppm, although the odor threshold may be as high as 25 ppm
if one is accustomed to it. With increasing dosage of NO2
the following sequence of effects can be observed: odor per-
ception, nasal irritation, discomfort in breathing, acute

respiratory distress, pulmonary oedema, and finally, death.
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More information about these effects can be found in Strauss -
[69].

Nitric oxide is not toxic in the 10-50 ppm range.
Since large NO concentrations are not stable in air but are
converted to NO2 little is known about damages purely due
to it. Paralysis and convulsion have been reported after
exposing animals to NO, but no cases of poisoning in man

have been reported.

1.3.3 Effect of NOx and Photochemical Smog on Plants

Nitrogen dioxide (NOZ) is a phototoxic substance
since it can cause damage to vegetation. One of the main
effects is chlorosis of leaves between the veins, where the
destruction of chlorophyll results in bleaching of the
leaves. The concentration level beyond which bleaching is
induced is about 3 ppm. Another effect of the phototoxic
NO2 is the suppression of plant growth. Concentration of
less than 1 ppm affects plant growth according to Oglesby
in Rossano [61].

Although oxides of nitrogen by themselves may not
reach dangerous levels in the ambient air, enough evidence
shows that in the Los Angeles area the products of photo-
chemical reactions initiated by nitrogen dioxide do reach
levels which are harmful to humans, animals and plants.
Middleton [42] discusses such damages. A full explana-
tion of how photochemical smog is caused is given by Agnew

[1], and Strauss [69].
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1.3.4 NOx Standards

Clean air, that is, air in areas sufficiently distant
from places of human activity or other abnormal influences,
is known to contain approximately 20.93% by volume of 02;
78.1% by volume of N2; 0.93% by volume of Argon; 0.03% by
volume of COZ; and other minor gases. Traces of so called
pollutants in concentrations below 1 ppm also occur in
'clean air', where these pollutants are due to natural pro-
cesses as discussed in Junge [29]. NOx concentration in
'clean air' ranges from 0.000 to 0.030 ppm.

Air quality standards vary with organizations setting
them and purposes for which they are set. Thus the World
Health Organization (WHO) is always interested in the
"hygienic" level of air quality or "no-effect" level, while
some countries such as Canada, U.S.A., Western Germany base
their standards on presently achievable goals. The three
levels of air quality standards are the adverse level, the
serious level, and the emergency level. Descriptions of
these levels of allowable concentrations and durations of
time for major pollutants can be found in Strauss [69], and
Atkisson et al. [2]. In order to prevent possible risk to
public health and atmospheric discoloration, California in
1969 adopted the Nox standard of a concentration of 0.25 ppm
for at most one hour's duration in ambient air. For auto-
mobile exhaust emission, California in 1971 adopted 4.0
grams of nitrogen oxides per mile as the maximum. In

Alberta, the Department of Health has set 0.15 ppm as the
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maximum acceptable limit of NOx concentration in develop-
ing the Alberta Combined Air Quality Index (ACAQI). However
this index, ACAQI, is still in the initial development
stage. In comparison, the maximum acceptable level is the
same as the gerious level mentioned before. The federal
Government of Canada denotes the three levels as maximum
desirable level, maximum acceptable level, and maximum
tolerable level where the maximum tolerable level corres-
ponds to the emergency level mentioned earlier. More
examples of NOx concentration standards adopted in some
other countries can be found in Hepple [23].

In the next section, the diffusion technique in air
pollution modelling and some existing diffusion models

will be discussed briefly.

1.4 Diffusion Model

1.4.1 Basis of Diffusion Models

Most efforts in modelling urban air pollution use the
diffusion approach based on two similar methods. The first
requires the exact solution of an equation of continuity
for the pollutant where the adequate determination of some
co-efficients is necessary. Details of the equation of con-
tinuity for an air pollutant are discussed in Atkisson et al.
[2] while its application to atmospheric diffusion can be
found in Pasquill [56]. Since the coefficients required for
the solution of the equation of continuity are representat-

ives of the product of eddy size and eddy velocity which in
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turn depend on mapy variables,the exact solution of the
equation becomes very difficult. As a result the first
method is not used very often in predicting atmospheric
concentration of pollutants.

The second method originally developed by Panofsky
[53] enjoys more popularity because it is easy to work with.
In its simple form for a continuous point source, the model

for ground level concentration can be expressed as

e 2

C = ﬁﬁagaz exp (- E%—? - Ei;?) (1.4.1)
where C is the pollutant concentration,
u is the mean wind speed (assumed constant),
Q is the rate of pollutant emission (gram/sec.),
oy is the standard deviation of horizontal plume
concentration,
g is the standard deviation of the vertical

plume concentration, and
Xsys2Z are the spatial coordinates representing the
downwind, crosswind, and vertical distances,
respectively, with regard to the origin at the
point source.
The assumption inherent in this approach is that the concen-
tration distribution from a continuous source has a Gaussian
distribution relative to the centre line of the plume both
in the vertical, and the perpendicular direction to the wind.

Effluent from a continuous point source moves downwind,
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spreading horizontally and vertically such that the dist-
ribution of the concentration of the contaminant in any
cross section along either the horizontal or the vertical

is Gaussian (i.e., has a normal distribution) while the mass
in such a cross section is constant. The variances of the
two normal distributions are functions of diffusion co-
efficients and of distance x, downﬁind. More explanation

of this approach can be obtained from Moses [46].

1.4.2 Examples of Urban Air Pollution Models

Several people have used the diffusion approach to ur-
ban air pollution modelling.

Lamb [31] in 1968 used the approach to produce a most
extensive atmospheric diffusion model for the Los Angeles
basin. His model was based on the solution of the contin-
uity equation. The model was used to compute carbon mon-
oxide concentrations over Los Angeles for September 23, 1966
at 1200 grid points. The results did not agree satisfactor-
ily with observations owing in part to some assumptions in
the model and also to sources outside the Los Angeles basin
which were not accounted for. Despite its limitations,
Lamb's model is one of the great advancements in solving this
problem.

Clarke [12]used the popular Gaussian diffusion app-
roach to build one of the most well-known models. In his
model, the receptor (or monitoring station) was located at

the centre of four concentric circles having radii of 1, 4,
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10, and 20 kilometers, respectively. These circles were
divided into 16 equal sectors of 22.5 degrees. A source in-
ventory was obtained for each of the 64 annular sectors.

For each of the annular rings a chart was prepared relating
C/Q, as defined in (1.4.1), and wind speed for various at-
mospheric stability classes. To refine his model, Clarke
[13] later considered the contributions made by traffic flow,
industry and commerce. The concentration at a point was
then the sum of contributions from the point sources, traffic
flow, industry, and space heating sources. He utilized his
model to compute 802 and NOx concentrations in Cincinnati,
Ohio.

Other existing models using the diffusion approach in-
clude those by Hilst [26], Pooler [57], and Ryan [63]. Like
the two discussed above the models show commendable efforts,
as well as pointing to the fact that continued effort in the
development of urban air pollution models is necessary.
Therefore, a completely different approach to urban

air pollution modelling is worth considering.

1.5 Computers and Pollution Problem

1.5.1 Data Processing

Any air pollution surveillance program has to handle
a great deal of data. Efficient operation demands that the
data be well organized and be available for use when it is
required. For this, a good information storage and retrieval

system of the quality and magnitude which only a digital com-
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puter can handle is essential. An example of the task for
such a system is the management of the emission inventory
information. Since sources of air pollution in an urban
area increase with time and the rates of emission of these
sources do fluctuate, continuous information about sources
is required. Aan information system that will handle this
task should have a large storage capacity as well as an
up-dating facility. The Province of Ontario has such a com-
puterized source-inventory management system as explained by
Shanks et al. [65] .

The author of this thesis believes that an air pollu-
tion monitoring network can be handled better by the use of
computers rather than doing it manually. The measuring in-
strument can be interfaced with an analog-digital converter.
which in turn can be coupled with a small computer. Several
small computers at different stations can then, through com-
munication lines, at required intervals, report back to a
central computer. One of the advantages of implementing
this idea is that human mistakes in reading and recording
data from measuring equipment will be eliminated. Since
reports will be received regularly through the central com-
puter, action to control pollution concentration could be
taken more promptly. In addition the central computer can
be programmed to check and report equipment break-down and
other such adverse situations. The point made in this para-
graph remains as a suggestion as far as this thesis is con-

cerned, efforts in this work will concentrate on developing
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models, other than the diffusion model, for NOX.

1.5.2 Modelling and Simulation

Not:only is the computer useful in the monitoring of
air pollution and the storage and retrieval of the data, it
also is indispensable in the analysis of the data, as for
example in modelling and simulation of air pollution. As
discussed by Moses [46], most of the diffusion models deve-
loped are impossible to handle without the use of the com-
puter for the enormous computations. The indispensability
of the computer in using time series analysis to develop an
air pollution model will be quite obvious from Chapters III
and IV of this thesis. The use of the model for predictive
purposes requires computations that are better handled by
the computer. If done by hand the result may not be ready
in time for action.

Where models are not based on empirical data, the
supply of input data has to come from simulation , For
diffusion models emission data from the sources of the
pollutant as well as meteorological data are required to
estimate the pollutant's concentration at a point. How-
ever in order to study potential. pollution distributions or
ones where only sparse data is available, realistic values
for the diffusion model must be generated by simulation.
Simulation then could use source-inventory information com-
bined with conjectured meteorological conditions to produce
input data for the diffusion model. The Ontario computerized

air pollution management system referred to earlier ,[65],
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incorporates such simulation facility.

1l.5.3 Models Proposed in this Thesis

Since time series analysis deals with large samples
(long series) of observations the computer is an essential
tool for storage and accurate retrieval of the data and for
fast calculations with the data. The computer will thus be
used extensively in the development of the two types of
models for oxides of nitrogen proposed in this thesis. The
first is the stochastic model which is developed in Chapter
III while the second is the ‘dynamic system model developed
in Chapter IV. Both of the models make use of observed ser-
ies of data. The stochastic model uses only the oxides of
nitorgen data, whereas, for the dynamic system model the
pollutant's observed values as well as the observations
of factors influencing the pollutant's concentration are
considered. As the model building procedures in Chapters
III and IV will show, the series of data are analyzed and
made to supply information on which the models are based,
hence the models proposed in this thesis are bound to be

representative of the pollutant's behavior.



CHAPTER II

OBSERVED NOx DATA: SOURCE, PRECISION,

AND ORGANIZATION

In stochastic modelling as opposed to deterministic
modelling, past and current observations of a phenomenon are
employed to establish a model that explains the behavior of
the phenomenon within certain probabilistic limits. Thus
stochastic model building is strictly based on observed data
which must be very reliable if the model is to explain the
phenomenon adequately. 1In addition to reliability the
amount of data must be adequate. For time series analysis
the data need to consist of at least fifty successive obser-
vations and preferably one hundred or more. The reasons for

this data requirement will be given later in Chapter III.

2.1 Source and Precision

The NOx data used to develop the models are those of
Edmonton. Models for Calgary, Windsor, Sarnia, Toronto and
Sudbury data were developed also as comparison to the
Edmonton model. Both the Edmonton and the Calgary data were
obtained from the Environmental Health Services Division of
the Alberta Department of Health in Edmonton, while the
Windsor, Sarnia, Toronto and Sudbury data came from the
Ministry of Environment of the Province of Ontario. The
Alberta Environmental Health Services Division has been coll-

ecting and storing air pollution data for the city of Edmonton
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since July, 1964. A monthly summary of the data known as
"pir Pollution Summary Edmonton" is published by the depart-
ment. A similar publication exists for Calgary as well.

The main air pollutants for which data are available
in Edmonton are particulate matter (recorded as a soiling
index), oxides of nitrogen, nitrogen dioxide, oxidants,
hydrocarbon, and carbon monoxide. Continuous monitoring of
Sulfur Dioxide is just being developed. Hourly averages of
NOx and the five minute peaks are recorded at only one
station located on the third floor of the Administration
Building, 109 Street and 98 Avenue which is on the southward
fringe of the downtown area. Owing to frequent machine mal-
function there are many breaks in the record. Another cause
of discontinuity of the record is the zeroing of the in-
strument which is done every day. This accounts for loss
of two hourly observations per day, since only one machine
is used. At present the zeroing takes place between 3 and
5 p.m.

The measuring instrument is a Beckman Atmosphere
Analyzer Model K1004, which is manufactured by the Beckman
Company for continuous measurement of oxides of nitrogen.
The specifications for the Beckman Model K1004 state that
the ppm NOx in the air are measured with a precision of 3
decimal places. The instrument quantitatively introduces
both the air sample and the reagent solution into a con-
taetor where the contaminant is absorbed into the solution.

After the liquid is separated from the air stream, it flows
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into the detector where the chemical analysis is performed by

coulometry. The signal from the detector is amplified and
fed into a read-out device, in this case a chart recorder,
which draws a continuous curve of the amount of NOx in the
analyzed air samples. Hourly averages of NOx are then ob-
tained by a technician who reads these off the chart by "eye-
balling". These hourly averages are then recorded and stored
as part of the data base of NOx measurements. The principle
and technique upon which the instrument is based were pro-
posed by Saltzman [64].

Although No_ has been monitored in Edmonton since 1964,
it is not easy to obtain NOx series long enough for time
series analysis owing to the reasons given earlier in this
section. Missing data which create holes in the records
break the observations into very short series most of which
are less than fifty data points long. Since long series of
about 100 data points are desirable for time series analysis
a large part of the records are not useful for the analysis.
However by searching through the whole data base, series long
enough to study hourly and daily behavior of NOx are found.

The NOx Hourly Average series which was chosen for
analysis is that for the two weeks, February 22 to March 7,
1967 which contained 336 hourly measurements without any
"holes" (missing observations). For the purpose of this
work maximum NOX concentration for a day is defined as the max-
imum of the hourly averages for the day. The daily maximum

concentration of NOx obtained as just defined constitute the



Daily Maximum NOx series from April 1, 1971 to March 31, 1972
used to study the daily behavior. This part of the record
has very few holes to be filled as compared to other parts.
About twenty holes were encountered and nearly all of them
consist of one missing observation while the rest have five
or less observations missing. The holes that existed were
filled by taking the average of one observation before the
hole and one after it. In this way 366 consecutive daily-

maximum observations were obtained for the analysis.

2.2 Organization

Oxides of Nitrogen data are merely a part of the pol-
lution data collected for the City of Edmonton as the last
section indicates. In addition to the pollutants' data,
wind data are also collected and stored along with the air
- pollution data. These data, as they are collected each day,
get punched on computer cards and stacked in monthly decks.
The monthly decks contain an average of 400 cards, and, hence
up to March 1972, data for 93 months were contined on about
37,200 computer cards. In order to make these data more
amenable to computer processing in this work they are trans-
ferred to magnetic tape. The details of how the data are
organized and stored on tape and how they can be retrieved

is discussed in Appendix A.
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CHAPTER III
STOCHASTIC MODEL BUILDING

As stated in Chapter I two types of models are deve-
loped in this thesis to represent the behavior of NOX. The
first, referred to as the stochastic model, recognizes the
time-dependent nature of a phenomenon in the presence of the
unknown factors influencing its behavior. The second model
type is the combined transfer function-noise model which also
takes into account time-dependence, and in addition recog-
nizes the dynamic relationship between the phenomenon and
the influencing factors. Hence, the transfer function-
noise model is the system analysis approach to the problem,
where the phenomenon observed (in this case Nox) is the out-
put from the system and the factors influencing the behavior
(for example temperature) of the phenomenon are the inputs.
The first model type will be established for NOx in the
rest of this chapter while the second will be developed in
Chapter 1IV.

In designing and testing the models for the NOx data
the methods developed by Box and Jenkins [6] will be used
extensively and, hence, the details of the theoretical dev-
elopment and the historical background of those techniques
will not be restated here. The present analysis of the NOx
data will thus use the Box and Jenkins [6] approach as a
tool in solving the problem of how the oxides of nitrogen

process behaves.
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3.1 Stochastic Models in NOx Data Analysis

A stochastic process is a statistical phenomenon that
evolves in time according to probabilistic laws; while a
time series is a set of values observed sequentially in time
and thus is one particular realization of the underlying
stochastic process. Observation of a continuous time series
can be made at some fixed interval giving a discrete se-
quence of observations. NOx observations dealt with here
constitute discrete time series since the observations are
recorded for fixed time intervals. The first series consists
of the NOx hourly averages where the observations are close
to the average value over a one-hour interval and hence the
time scale is in hours. The second series consists of the
daily maxima of NOx where the maximum of the hourly averages
is taken for each day and hence this time scale is in days.

If a time series comes from a stationary process
then the underlying process from which it has been observed
may be an autoregressive (AR) process, a moving average (MA)
process, or a combination of both called autoregressive-
moving average (ARMA) process. A detailed and rigorous
definition of the stochastic stationary process is given in
Box and Jenkins [6]. There are various ways in which a pro-
cess can be non-stationary and so there are many ways in
which a time series observed from a non-stationary process
can exhibit non-stationary behavior. The number of ways non-

stationary behaviors can be displayed by a time series will
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not be enumerated here; .they can be found in Box and Jenkins
[6], but a particular kind of non-stationary behavior which
the two NOx series display is hereby mentioned. Like many
empirical time series, they behave as though they have no
fixed mean, but they exhibit homogeneity in the sense that,
apart from a local level, or perhaps a local level and trend
one part of the series behaves much like any other part. The
stochastic process which underlies such homogeneous non-
stationary behavior can,by differencing,be changed to a
stationary process, that is the resulting process of the
suitable difference may be an AR, MA, or ARMA process.
Therefore, such series may be representable by the modified
form of the ARMA called autoregressive integrated moving
average (ARIMA) Models. Non-stationary behavior of a series
can be discovered through the sample autocorrelation function
as will be shown later in this chapter. The sample auto-
correlation function also can be used as an aid in ident-
ifying which of the three types of models to try and fit to
the series exhibiting stationary behavior.

It is necessary to give a brief definition of the terms
autoregressive and moving average at this point. Let Zyr
Zy_yr Zg_gr +++e.+ be the values of a process at equally
spaced time points t, t-1, t-2, ......; and let Yy yt—l,

Yg.pte+e+e- Where y, = z - u, be the deviations from the

t
mean, u, of the stationary series. Then the model, relating
the present value Y to the previous values, can be ex-

pressed as



Yp = @1¥p t 3% 5t ceeeen + apyt-p te, (3.1.1)

and is referred to as an autoregressive (AR) model of order
p, because ‘A is "regressed" on previous values of the same
process. The coefficients a; (L =1,2, «eeese, p) are re-
ferred to as the autoregressive parameters. The series of
shocks s (known as "white noise") consists of a seguence
of uncorrelated random variables whose distribution is

usually assumed to be normal with mean zero and constant var-

. 2 .
iance 0_ . The moving average model expresses Yy in terms

of present and past random shocks,

Y, =€ - be ; -bye 5= ... - bqet-q' (3.1.2)

where the coefficients bj (j =1, 2, eeeees, q) are referred
to as the moving average parameters. The moving average

model is equivalent to a linear filter with a finite number

of non-zero wéights , ARMA model is a combination of (3.1.1)

and (3.1.2).

The general form of the stochastic model that will be

considered here can be written as
a(B) { (l—B)dzt } = b(Ble, (3.1.3)

where B is the backward shift operator defined as
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_ a _
Bz, = Zey and B Zy =24+ and
a(B) =1~ a,B - a.p? - - aBP
1 2 ” & 60 90 0 p ,
b(B) =1 - b,B - b_B - Y
l 2 * 0 8 000 q ’

ztis the observed value (i.e. transformed as discussed in
section 3.2) of NOx at time t, { (1L - B)dzt } is the differ-
enced series, and e is the random shock at time t, The

integers d, p, and q in turp denote the following:

d is the degree of differencing performed on the
data,
p is the number of autoregressive parameters (or

order of the AR model part),
q is the number of moving average parameters (or
order of the MA model part).
The general model (3.1.3) is referred to as an auto-
regressive integrated moving average model ARIMA (p, 4, q).

The same model can be written as an ARMA (p, q) model
a(B)wt = b(B)et ' (3.1.4)

where w, = (1 - B)dzt is a stationary series whose length,
n=N-d. In the next section the specific stochastic

models that explain the behavior of the NQxhourly averages
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and the daily maxima of NOx will be identified.

3.2 Stochastic Model - Identification

The sets of the NOx raw data presented in Series A
and B were transformed to their natural logarithms. Since
the measurements constituting the data are very small
numbers in the range 0.000 to 0.500 ppm, and since the
natural logarithm of zero is indeterminable, 0.001 was
added to each observed value of the series before logarithmic
transformation. Thus the original series {zt} is trans-
formed to the series { 1ln (zt + 0.001) }. Because all sub-
sequent analyses will be performed on the transformed series
any reference to z, from this point on is a reference to
1n (zt + 0.001) except where a distinction is made.

The transformed time series, now referred to as
{zt}, are plotted in Figures 3.1 and 3.2. Since there app-
ears to be variation in level, no fixed mean seems to exist,
however, a "seasonal" cycle is not apparent either. Series
behaving in this way come from non-stationary processes.
Nevertheless, appropriate differencing of the transformed
series may result in a stationary series which then would
be suitable for the proposed analysis.

It is conjectured here that the amount of differenc-
ing required to get a stationary series may be indicated by
comparing the variance of the undifferenced series with the

variances of the various differenced series. A reduction in
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the observed (sample) variance seems to indicate less in-
stability of the series. For the two series under consider-
ation, the first differences have a lower variance than the

others as shown in Tables 3.1 and 3.2.

TABLE 3.1 Differences for transformed Hourly

Averages of NOx

Difference Length of Series. .. .. Mean . Variance
No Differencing 336 -5.495 1.202
(1 - B) 335 -0.004 0.444
(1 - B) (L - B) 334 0.007 2.970
(1 - 8% 312 ~0.021  2.497
(1 -8 (-5 311 ~0.013  1.452

TABLE 3.2 Differences for transformed Daily

Maxima of NOx

Difference Length of Series Mean . . Variance
No Differencing 366 -4.111 1.577
(1L - B) 365 0.000 0.981
(L -8B) (1L -B) 364 -0.008 4.587
(1 - B7) 359 0.019 1.881

(1-B) (L-B) 358 0.003  2.115




32

The 24th difference of the Hourly Averages was taken to see
whether or not the variation in level was due to a 24 - hour
'seasonal' pattern; while the 7th difference of the Daily
Maxima was taken to investigate the 7 - day 'seasonal'’
pattern that could exist in the Daily Maximum of NOx series,
The results in the tables show that those "seasonal"
patterns do not seem to exist in the two series, otherwise
those differenced series would have had lower variances.
Thus the stationary model type that should be investigated
first for both series is the ARMA (p, q) model of the form
(3.1.4) where d = 1.

An important and more reliable indicator of the degree
of differencing needed is the autocorrelation function
(k) , where

Pygz

2
pag®) = EL (3, - U) (B, -0 1/ 0%, (3.2.1)

U is the mean of {Zt}, and k is the lag or time difference
between the values of the time series considered for corre-
lation. The failure of the autocorrelation function to
rapidly decay indicates non-stationary behavior on the part
of the series, hence, further differencing and or trans-
formations must be considered and tried. For both of the
observed time series (in this case their transformations)

we obtain the corresponding sample autocorrelation functions
rzz(k), referred to simply from here on as the autocorre-

lation function. Figures 3.3 and 3.4 show the autocorre-
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lation functions of the undifferenced hourly average and
daily maximum series respectively; while Figures 3.5 and 3.6
show the autocorrelation functions of the respective first
difference {Wt}. The autocorrelation function of the daily
maxima of NO, plotted in Figure 3.4, certainly decays

rather slowly, thus indicating non-stationary behavior.
However, upon taking the first difference the corresponding
autocorrelation function shown in Figure 3.6 indicates com-
paratively low values beyond lag 2.

Further examination of the autocorrealtion function
reveals the specific types of models which may be fitted to
the data. Models may be categorized according to the number
of autoregressive and moving average terms to be considered,
[i.e. (p, q) ]. Since the theoretical autocorrelation
function is known for a given model, the shapes of these
functions may broadly be classed into two categories; the
exponentially decaying functions and the functions display-
ing exponential decay mixed with damped sine functions. The
examples below indicate the shapes of the theoretical auto-
correlation functions for some of the model types.

(a) ARMA (1,0): w

= aw (3.2.2)

t g-1 * &t

The autocorrelation function p(k), decays
exponentially where p(l) = a, and the residual
variance

_ _ .2 2
g = (1 a’) cw
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(b) ARMA(O, 1): w,_= e, - be (3.2.3)

t t-1

The autocorrelation function has value
zero heyond lag 1,

o(1) = -b / (L + b?) for

-1 < b < 1; and,

2
2 _ %
% < 2
l+b
(c) ARMA(2, .0): w, = a;w,_; + W, _, +e, (3.2.4)

The autocorrelation function is a
mixture of exponential decay and a
damped sine wave. The parameters

ajs a,, are given by

a; p(l) [1-p(2)]1/ 11~ pz(l)],

a, = [p(2) - 21/ [1- 0%,

where for stationarity of the model

-l<a <l,

2

a2+al

- a <1-

<l' and

a

02 = [1 - a;p(l) - ap(2] 0,

[

2

(d) ARMA(0, 2): w =e, - be, 1 - bey (3.2.5)

The autocorrelation function is
zero beyond lag 2. The parameters
bl' bz, are given by

_ _ 2 2
p(l) = bl (1 bz) / (1 + bl + b2 )
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2
1 +
for invertibility of the model

p(2) = b, / (L +b b22) where

-1 < b2 <1,

b2 + bl

- b1 < 1.

<1, and

(e) ARMA(l, 1): w, = aw, _, * e - be, (3.2.6)

The autocorrelation function decays
exponentially as of lag 1. The

parameters, a and b, can be obtained

from

o(1) = (1L - a) (a-b) / (1L+b* - ab)
p(2) = ap(l) where

-1 <ac<l, and

-1 <b <1 in order for the model to
be stationary and invertible.

2 2
2 Ty [1 - a”]

% " Tl-ab) (a-b)

Since the theoretical autocorrelation function is not
known, the observed sample autocorrelation function is used
as its estimate. The observed autocorrelations at lag k,
K=1, 2, 3, +oees., K and K = N/4 are sufficient to identify

the model. The sample autocorrelation function, rww(k) or
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simply r(k) is obtained from the sample autocovariance
function wa(k) or simply C(k). Hence, the estimator of

p(k) is r(k),
r(k) = c(k) / c(0), (3.2.7)

where C(k) is the estimate of the theoretical autocovariance

of lag k,

K
1 W

1
t

—

ck) = & 1

Zil—

- W) W), (3-2.8)

(Wey =

for k=0, 1, 2, ¢veeeees K

C(0) is the sample estimate of the theoretical var-
iance 0w2 of the series {wt}, and W is the observed average
of the series. Usually W is zero since W is the difference
of the series {zt}. It sihould be noted that to obtain a
useful estimate of the autocorrelation function, at least
50 observations are needed.

Figure 3.5 shows that the hourly NOx may perhaps just
be an ARMA(0, 0), namely just white noise process written

as w_ = e, because r(1l), r(2), «ee.s., r(k) do not appear

t
to be very different from zero. Figure 3.6 shows that the
daily NOx may be fitted by an ARMA(O, 2) model otherwise
known as an MA model of order 2, see (3.2.5). It can be
seen that after lag 2 the observed autocorrelations do
not appear to be very different from zero. These con-

jectured models will be used as starting points in trying to

find the appropriate models for the two sets of NOx data.
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3.3 Stochastic Model - Preliminary Estimation

ne use of the autocorrelation function (or autoco-
variance function) in the initial estimation of the para-
meters and the residual variance can be extended to deal
with models of more than two parameters. In determining
initially which model to use in the preliminary stage, it
must be pointed out that, although, a given ARMA model has
a unique covariance structure, a particular covariance
structure does not determine an ARMA model uniquely. In
other words there is no one to one correspondence between
autocovariance functions (or autocorrelation functions) and
ARMA models.

One of the initial estimation tools is the Yule -
Walker equation in Jenkins and Watts [28], which uses the
observed autocorrelations to solve for parameters in auto-
regressive models. For instance, let the model be autore-
gressive and of order 5, then the five autoregressive para-
meters will be obtained by solving the following set of five

linear equations:

alr(O) + azr(l) + a3r(2) + a4r(3) + asr(4) = r(l)
alr(l) + a2r(0) + a3r(l) + a4r(2) + asr(3) = r{2)
alr(2) + a2r(l) + a3r(0) + a4r(l) + asr(Z) = r(3) (3.3.1)
alr(3) + a2r(2) + a3r(l) + a4r(0) + asr(l) = r(4)
alr(4) + a2r(3) + a3r(2) + a4r(l) + asr(o) = r(5)



If the model is of order p, then p such equations will have
to be solved for the p parameters a; s i=1,2, vevuee, p.
After obtaining these initial parameter values an estimate

of the residual variance is given by

2
e —~C(0) [1- Elr(l) - ézr(2)- terees = épr(p)] ,

g
where 5i is the estimated parameter. For further details on

this approximation of the residual variance see Bartlett [4].

A general method of using the autocovariances for ob-
taining initial estimates of the parameters of autoregress-
ive - moving average processes is described in Chapter 6 of
Box and Jenkins [6]. Since their method is used to obtain
the initial estimates for the NOx models, a brief summary
of the algorithm is given in Appendix B.

For the problem on hand, a general Fortran IV program
(see Program 2 in Owolabi [52]) following the algorithm in
Appendix B is developed and implemented. Using the pro-
gram the following sixteen ARMA models with the appropriate
initial estimates were produced for both the hourly and
daily NOx data (i.e. for the first differences, LAY of the
transformed data):

(peq) = (1,0), (2,0), (3,0), (4,0), (L,1), (1,2), (2,1),
(2,2), (3,%¥), (3,2), (4.1), (4,2), (0,%), (0,2),
(0,3), (0,d).-

Table 3.3 shows the initial parameter estimates obtained for

some of these models for hourly NOx while Table 3.4 shows
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the same thing for daily NO.

TABLE 3.3 Initial Parameter Estimates for transformed

Hourly Averages of NOx

Model for wt Parameter Estimates Residual
al a2 bl b2 Variance
ARMA(1,0) -0.039 - - - 0.444
ARMA(1,1) 0.310 - 0.349 - 0.444
ARMA (1,2) 6.769 - 0.185 =0.006 20.362
ARMA(2,0) -0.040 -0.014 -~ - - 0.444
ARMA(0,1) - - 0.039 - 0.444
ARMA (0, 2) - - 0.039 0.012 0.444

By examining the initial estimates of the residual variances
and of the parameters of these models, the model with the
smallest variance, and with parameters enjoying the
stationarity and invertibility properties is the model
which promises to be the "best-fitting" one. Details re-
garding the invertibility and stationarity conditions are
given in Box and Jenkins [6]. Another factor that needs

to be considered in identifying the model that may fit best
is parsimony in the use of parameters. A model with less

parameters than the " optimal model " and with residual
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TABLE 3.4 Initial Parameter Estimates for transformed

Daily Maxima of NOx

Model for Wy Parameter Estimates Residual
ay a2 bl b2 Variance
ARMA(1,0) -0.298 - - - 0.893
ARMA(1,1) 0.513 - 0.891 - 0.875
ARMA(1,2) -0.203 - 0.227 0.260 0.806
ARMA(2,0) -0.377 =0.265 - - 0.830
ARMA(2,1) 0.768 -0.498 -0.135 - 7.450
ARMA(0,1) - - 0.331 - 0.884
ARMA(O,z) - - 00460 00191 00786

variance a little bit larger than the one for the optimal
may produce quite an adequate fit to the data, and may be
easier to interprete in its practical context. Considering
these points and looking at Table 3.4 it is easy to see
that ARMA(0,2) model may be able to fit the daily data.
Table 3.3 shows that any of the ARMA(1,0), ARMA(0,1) models
can fit the hourly data, but they are not better than the
ARMA(0,0) process conjectured earlier for the data.

The algorithm employed for the solution of the
sets of linear equations in this work is the Gauss - Jordan
algorithm described in many numerical analysis books such as

the one by cCarnahan, et al. [9].
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- The models decided on after the identification and
initial estimation procedures must be rigorously "processed"
in order to obtain efficient estimates of their parameters.
This processing will be done for the two models which have
been identified for the hourly and daily NOx data in the

estimation stage which is discussed in the next section.

3.4 Stochastic Model - Estimation

The initial estimates of the parameters for the models
identified in section 3.3 are used here to initiate the
iterative procedure which produces the values of the para-
meters that give the minimum residual variance ( or minimum
residual sum of squares).

In section 3.3 the process generating the first
difference of the transformed daily maxima of NOx (i.e. wt)

was identified as ARMA(0,2) which is

- b,e -b

w 1%e-1 ~ P28t-2

£t~ S

For given values of bl' b2 this model is used to gener-

ate recursively a series of residuals, ey given by

e, =w, +Be,  +bhye

The w,, t =1, ¢eeeeey N = 1,constitute the series to be

tl
modelled; the unknown starting values eo, e_l are equated
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to the expected value of e, which is zero. The sum of

t
squares of the generated residual series, {et}, is then
calculated. In this manner the sum of squares can be
calculated for all possible values of the parameters b1 '

b2 and the set of values of the parameters producing the
minimum sum of squares is the best set of parameter esti-
mates for the fitted model. The algorithm for this
iterative model estimation constitutes Appendix C. A
Fortran IV program (see Program 3 in Owolabi [52]) is
written to implement this algorithm. Using that program the

most efficient set of values of the parameters of the

ARMA(0,2) model for the daily NOx data are

Bl = 0.500 with standard error of b1 equal to 0.045,

52 = 0,260 with standard error of b2 equal to 0.051,
2 _

Ge = 0,772

Here the parameters are large compared to their standard
errors and should be retained.

As discussed in section 3.3, Wy oy the first difference
of the transformed hourly NOx data seemed to behave like a
white noise process, ARMA(0,0). However, one of the sixteen
initial ARMA models for the L series having a low residual
variance estimate is ARMA(0,l). The corresponding efficient
estimate of its parameter b, can be found at this stage.
Then the ARMA(0,1) model can be compared to the ARMA(0,0)
to see which one fits the hourly data better. The ARMA(O,1l)

model for the hourly data is
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The series of residuals, e for the model can be generated

for the given value of b, according to

e, =w_+ bet_

t t 1

where again the value e, is set to zero. Using the model
estimation algorithm of Appendix C (.e. the same Fortran
Program) as for daily data, the most efficient parameter of

the ARMA(0,1) model for hourly average NOx is found to be

5 = 0.054 with standard error of 5 equal to 0.064,

5.° = 0.444
Since the parameter is verv small compared with its standard
error it cannot be considered to be different from zero.
Hence, the model that fits the hourly series is ARMA(0,0)
and not ARMA(0,1). This implies that the first difference
of the transformed hourly data behaves like a white noise
process.

The model that fits the transformed NOX Hourly

Average series is

which can be written in terms of the zt as
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For the transformed daily maximum NOx series the model
that seems to have the best fit is

W, = - 0.5e

e = & - 0.26 e

t-1 2

which can be written in terms of z, as

t

2, = 2,1 te - 0.5 €1 - 0.26 e

t 2

Before finally accepting these models as being repre-
sentative of the processes generating the corresponding
series they should undergo some diagnostic checks. These

diagnostic checks.are .presented in the next section.

3.5 Stochastic Model - Diagnostic Checks

In this section three tests are employed as diagnostic
checks of the models. 1In effect these check the behavior
of the residuals e s whether or not they are white noise.
A good fitting model describes the data behavior (nearly)
completely leaving only small independent errors in the un-
explained part.

The first diagnostic check is the comparison of the
estimated variance of the fitted series (i.e. w, in this

case) to the estimated residual variance. A small 5e2
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implies that most of the Gwz is explained by the model.

In the second test, the series of the residuals e, is
checked. If a model provides a good fit to the data, then
the residuals remaining should constitute a series of white
noise since white noise is uncorrelated (see section 3.1)
the autocorrelation function re(k) =0, for k > 0. This
second test, therefore, involves estimating the autocorre-
lation function, re(k), of the residual
series e s t=1,2, .e..0.y, n, and performing a chi - square
test on these autocorrelations. The test statistic, hereby
called Q, can be shown to have a Chi - Square distribution
with K - p - q degrees of freedom where K = n/4. Q is
obtained by

K

Q=n ¥ r
k=1 ¢

2 x)

If Q is less than the upper 5% critical point for Chi -
Square with the appropriate degrees of freedom then the
hypothesis that re(k) = 0 for k > 0 is accepted, and the
residuals can be taken as constituting a white noise series.
The third test called the cummulative periodogram test
checks if a seasonal pattern exists in the residuals which
would indicate that the model does not explain the behavior
of the data as well as it should. A seasonal pattern in the
residuals will be indicated by periodicity in the residual
series, and it can be detected by the use of periodogram.

The periodogram, I(fi) of a time series e t=1, 2, civene,
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n is defined as

i} 2 0B 2 noo. 2
I(f,) = 5[(2 etCos 2nfit) + (2 et81n 2nfit) ]
1 t=1 t=1
i, . n
where fi =3 is the frequency and i = 1, 2, vveees, =
2

Since the cumulative spectrum, P(f), of white noise, if
plotted against f, is a straight line running from (0,0) to

(0.5,0e2

Y, (or P(f) / oez) is a straight line running from
(0,0) to (0.5,1), and since I(f) provides an unbiased
estimate of the power spectrum at frequency f, the cumulat-

ive periodogram divided by the observed error (or residual)

. 2 2 _ .2, . . 2
variance s (where So = 0g ) is an estimate of P(fj) / o
J
1)
C(f.) =
] ns 2
e

Detailed explanation about this can be found in Box and
Jenkins [6]. C(fj) is known as the normalized cumulative
periodogram. If the fitted model adequately accounts for
seasonal patterns so that no seasonal pattern exists in the
residuals, the plot of C(fj) against fjwill be scattered
around the straight line joining the points (0,0) and
(0.5,1). Using the Kolmogrow - Smirnov test, as explained
in Hald [22], to draw 95% confidence limits for the plot,
the probability lines should not be crossed more than 5%

of the time if the residuals behave in a white noise

fashion.



These three tests were applied to the residuals of
the two mouels developed in section 3.4 and the results are
the following:

(a) NOxHourly Averages

(1) d_% = 1.202

0.444

Q
i

Variance due to model (differencing in this
case) is 0.758

(ii) Calculated Chi - Square is Q = 63.68 for
n/4 = 83 degrees of freedom. The upper 5%
critical point for Chi - Square with 83
degrees of freedom is 105.27.

(1ii) Figure 3.7 demonstrates the result of the
cumulative periodogram test. The points
scattered along the theoretical line and are
all within 95% confidence limits.

In test (i), 8e2 = sz because the model is ARMA(0,0). How-
ever, the main interest is in the behavior of Z, - Since
2 _s2 .52

6e =0, < oz it can be concluded that the model written

in terms of N explains the behavior of the transformed
hourly data well enough. In test (ii), the fact that the
calculated Chi - Square is less than the theoretical one,
implies that re(k) = 0, for k > 0, hence the residuals con-
stitute a white noise process. Test (iii) also shows that
the residuals constitute a white noise process, and that

There is no seasonal pattern. Thus the model fitted to the

hourly data in section 3.4 is finally accepted.
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(b) Daily Maxima of NO

X
(i) §2=1.577
4
- 2 _
ow = 0.981
L2

Variance due to model (considering wt) is
0.209.
Variance due to model (considering zt) is
0.805.

(ii) calculated Chi - Square is Q = 66.52 for
[ (n/4)- 2] = 89 degrees of freedom. The
upper 5% critical point for Chi - Square

with 89 degrees of freedom is 112.02.

(iii) Figure 3.8 is the result of the cumulative
periodogram test. The plots scatter along
the theoretical line and are all within the
95% confidence limits.

Since in test (i) 8e2 < sz < Bzz,in test (ii) the calcul-
ated Chi - Square is less than the theoretical one, and in
test (iii) the cumulative periodogram test indicates no
seasonal pattern, the model fitted to the transformed daily
maxima of NOx in section 3.4 can be finally accepted.

Since the models have passed through the diagnostic
checks and are found adequate for explaining the behavior

of the corresponding series, they can be used for forecasting.

The models will then be used to forecast NOx concentrations
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in the next section.

3.6 Forecasting with the Stochastic Models

From the models established in section 3.4 and sub-
jected to diagnostic checks in section 3.5, forecast funct-
ions will be derived later on in this section. First, a
brief description of confidence limits of forecasts will be
given. Let Zt(L) be the forecast made at origin t for an
observation ZipL’ which is I steps ahead. Then 95% confi-

dence limits of the forecast for lead time L are
%t(L) + 1.96 L), (3.6.1)

where V(L) is the variance of the L steps - ahead - fore-
cast error given by
L-1

_ 2
V(L) = [1 + jil wj 1 Oq

2

The weights wj' j =1, 2, eeseesy L = 1 can be obtained from
the parameters of the fitted model by equating coefficients

of powers

- - - p - md 2
(1 alB cevnne apB ) (1L - B) (1 + wlB + sz + erees)

2 q
= l-bB—bB = esesse "'bB

More details about wj can be obtained from Box and Jenkins

[6].
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The model fitted to the transformed NOx hourly averages

in section 3.4 is

and from it we can try to derive a forecast function. The
forecast at origin t of an observation L steps ahead is given

by

A

zt(L) = + et(L)

2t
Since et(L) is unknown it is equated to its expected value

zero and so the forecast function becomes

Qt(L) =z,
This forecast function shows that the best forecast value
for all future time is the current value. Since the fore-
casts from origin t of the next L hourly values of NOx
supplied by this function is the value at the current origin
the forecast for various L - values is simply a straight
horizontal line.

The model fitted to the transformed daily maximum NOx

series in section 3.4 is



-1 + et - O.Set_l - 0.26et_2

The forecast function derived from this model is

Be(L) = zpygog ¥ ep 7 OeSeyyy g - 0260,
The terms on the right of the forecast function are treated
according to the following four rules:

(1) The 2z j=0,1,2;+¢4...), which have already

£y
happened at origin t, are left unchanged.

(ii) The zt+j(j=l'2"""‘)' which have not yet
happened, are replaced by their forecasts Qt(j) at origin t.

(iii) The et-j (3=0,1,2,......), which have happened,
are available from 2oy T ﬁt_j_l(l).

(iv) The €t (3=1,2,+4+4+.), which have not yet
happened, are replaced by zero, since zero is the uncondit-
ional expected value of e,
For lead 1 forecast, for example, the forecast funct-

ion above can be written as

Using (3.6.1) the 95% confidence interval of lead 1 fore-
cast is found to be Qt(l) + 1.72 for the transformed daily
maxima of Nox. Figure 3.9 shows the lead-one forecasts of
the last 30 values of the transformed daily maximum NO, -

series and their 95% confidence intervals. Aall the observed
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values lie within the corresponding confidence intervals.
The forecasts optained are transformed back to the original
units by taking the antilogarithm and subtracting 0.001.
These forecasts are presented in Table 3.5 and Figure 3.10
so that both the forecasts and the observed values can be
compared in the original data frame. Table 3.6 contains
the last 30 observations of the original series.

The forecasts of lead times 1 to 30 presented in
Figure 3.1l also show that all the observed values lie
within their confidence intervals. However, all forecasts
from lead - 2 on have constant values. This fact is dis-
played on Figure 3.1l by the horizontal line traced by the
lead times 2 to 30 forecast values. The lead times 1 to
30 forecasts are also transformed back to the raw data units

and are presented in Table 3.7 and Figure 3.12.

TABLE 3.5 Lead-one Forecasts of the last thirty days of the

Daily Maximum NO Series using Stochastic Model*

0.093 0.077 0.065 0.080 0.042 0.063
0.082 0.050 0.072 0.066 0.072 0.061
0.104 0.042 0.153 0.082 0.124 0.092
0.199 0.163 0.089 0.088 0.099 0.112
0.072 0.076 0.094 0.0152 0.114 0.114 .

* Read across the page. The forecasts are in ppm.



PABLE 3.6 'The last thirty days of the Daily Maximum

NO_  series*
X

0.153 0.072  0.094  0.027  0.053  0.1l21
0.042 0.073  0.074 0.081  0.057 0.156
0.028 0.281  0.117 0.163  0.098  0.381
0.279 0.058  0.050  0.083  0.124  0.052

0.054 0.100 0.281 0.151 0.113 0.132

* Read across the page. The observations are in ppm.

TABLE 3.7 Leads one to thirty Forecasts of the last thirty
days of Daily Maximum NOx Series using

Stochastic Model*

0.093 0.060 0.060 0.060 0.060 0.060
0.060 0.060 0.060 0.060 0.060 0.060
0.060 0.060 0.060 0.060 0.060 0.060
0.060 0.060 0.060 0.060 0.060 0.060
0.060 0.060 0.060 0.060 0.060 0.060

* Read across the page. The forecasts are in ppm.
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The forecasts presented in the tables above,especially
the lead-one forecasts in Table 3.5, indicate that the
stochastic model can be used to predict NO, concentration
since many of the forecasts are close to the observed
values in Table 3.6. In Chapter IV, the dynamic system
model will be developed and forecasts generated by it can

be compared with the stochastic model forecasts.
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CHAPTER IV
DYNAMIC SYSTEM MODEL
4,1 Definition

The Dynamic System Model developed for oxides of
nitrogen in this chapter is known as a combined transfer
function-nojise model. In developing the model, the infor-
mation supplied by the observed NOx series will be combined
with the information supplied by the series of factors
influencing the behavior of NOx in the urban atmosphere.
The observed values of NOx are regarded as output from a
dynamic system while temperature, wind speed, and traffic
flow are factors conjectured to influence Nox in the urban
atmosphere and are regarded as imputs (or leading indicators
as economists know them) to the system. The dynamic system
in this case is the urban atmosphere and Figure 4.1 shows a
simple representation of it.

Since three measurable imputs to the system have been
conjectured for this work the sort of transfer function
model that can represent the system is known as a multiple
input transfer function model whose general form may be

written as

(1 - B) Zt = Vl(B) (1 - B) Xl,t toeieeen

+ vm(B) (1 - B) xm,t + By, (4.1.1)

where xl,t' X2,t’ Ceseeey Xm,t are m series of input
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factors, %, is the output series, and Et is the series of

t
noise disturbance (or imput to the system from unknown
sources) not to be confused with the previously mentioned
"white noise". vi(B) is an operator such that

_ 2

and Vig! vil’ Vigr seeees are referred to as the impulse
response function for imput xi,t' B is again a backward
shift operator defined as Bxi,t = Xi,t—l'

The model (4.1.1) relates incremental change in the
output 2, to the incremental changes in the input factors.
The model as it is written involves a general assumption
that each input factor requires only the first difference
to make the process generating it stationary, but some may
require higher differencing. Cases where the type of dif-
ferencing varies among the input factors can be handled and
an example of it is discussed in section 4.2, For sim-
plicity the assumption is introduced in this general
definition.

The function (4.1.1) can be expressed as follows:

!
(1-B) z_=a; (B) by (B) (1-B) xl't_dl t oo

-1 ,
+a (8 by (B) (L~ B) X, ed_ (4.1.2)

+ Et'



where aj(B) and bj(B) are operators defined for each input

series as follows:

An incremental change in the level of one input may not
have an immediate effect on the output level. This time
delay for the jth input facto: known as delay response
time is represented by dj. For a system with only one
input, the model can be written in the form (4.1.1) and

(4.1.2) as follows:

2

(1 - B) Zt = (v0 + le + V2B + ...) (1 - B) Xt + Et
= v(B) (1 - B) Xt + Et
_ ol )
=a (B)b(B) (1-B) X _4+E,,
where parameters a; and bi are obtainable by equating
coefficients of B in the equation
R |
v(B) = a =~ (B)b(B),
. _ _ 2 _ p 2
l.eo (l alB a2B ™ eses e apB ) (VO + VlB + coocoo)
= (b, = byB = suuuns - b_8%) 89,
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This equation gives the following relations from which a;

and bi could be calculated if the vj's are kaown:

Vj =0, j < d,
vj = b0 j =4,
v, = a,Vv. + a V. + es 00 + a Vv. - .
j 173-1 ° "273-2 pj-p J-d’
j = d + 1, d + 2,' s s 0 00 g d + S
vy = + (4.1.3)

j alvj-l + azvj_z + s 0 o800 aij_p,

j >d + s,

Assuming that the impulse response function Vj' j=0, 1,2,
.v.... is known, then p, and s, the number of the ai(i =1,
2, v....., p) parameters, the bi (1=1, 2, coveses 8)
parameters, respectively can be determined from the vj's.
The delay response time d may easily be determined from
the first expression in (4.1.3). Let the absolute value
of vj be a maximum at j = m, then s can be taken to be any
value from 0,1, ......, m = d. If there are several con-
secutive maxima, m takes on the value j of the last maxi-
mum. The value of p can be determined by looking at vj
from v, onwards. From v the vj's behave like the
autocorrelation function of an autoregressive process
described in Chapter III; hence, their pattern can be used
to identify the number of a; parameters in the model. In
practice the number of autoregressive parameters usually

does not exceed two, i.e., p < 2. There are no
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restrictions on the magnitudes of bo, bl’ R

S
whereas the parameters ayr Agr eeeeney ap have to obey
stationarity rules analogous to those of autoregressive
parameters discussed in section 3.2. One of these rules
is that a; t a2y ceenn. t ap < 1.0, which greatly helps
at the model identification stage.

The steps involved in building a dynamic gygtem model
are very similar to the ones outlined in Chapter III for the
stochastic model. They are in order, the identification
step, including initial estimates of the parameters, the
estimation step, the diagnostic checking step and the
forecasting step; and will be dealt with in sections 4.2,
4,3, 4.4, and 4.5, respectively.

Before building the model, the input factors
should be described briefly. The temperature and the wind
speed data are measurements taken at the Edmonton Indus-
trial Airport. The hourly temperature is presented as
Series C while the daily maximum temperature is presented
as Series D. All temperature observations are given in
degrees Fahrenheit. Series E contains the hourly wind
speed data and Series F is the daily wind speed data,
all measured in mph. The traffic flow data are the ob-
servations made on Jasper Avenue and 122 Street in
Edmonton which is 3 blocks north and 13 blocks west of the
NOx monitoring station. Series G consists of the hourly
data while Series H consists of the daily data of the

total number of vehicles.
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All the data in Series C to H correspond to the same
periods relevant to the NOx data in Series A and Series B.
Thus the hourly data are observed for the period February
22 to March 7, 1967 and the daily data for the period
April 1, 1971 to March 31, 1972. However the data avail-
able for the input factors leave something to be desired
in the sense that they are not collected where NOx is
being monitored. Since the input factors are monitored
far away from the NO, monitoring station they may fail
to give any explanation about the NOx behavior. As the
results of the transfer function identification, discussed
in the next section, shows, only temperature helps to

explain the behavior of NOx in the city.

4.2 Dynamic System Model - Identification

In this section the transfer function ﬁodel connecting
output NOx to each of the input factors will be identified
wherever it is found that there is a dynamic relationship
between the output and the particular input. Since the
correlation function is used extensively, the correlation
function and its sample estimator are defined below.

The crosscorrelation function pxz(k), of input X

t
and output Zt at lag k is given by

g (k) = ELX - U (B = 0] grk=0, 1, 2, ..,

c_0
X 2



and

o, (k) = E[(Xpyp = U (3 - U]

%% %2
fork=-l, "'2, s s sy

where Ux is the mean of the process Xt, and UZ is the mean
of the process Zt‘ As the theoretical crosscorrelation is
unknown the observed sample corsscorrelation function is
used for identification. Usually the crosscorrelation at
lags k=0, 1, 2, ......, is the required part of the
function needed for identification of the transfer
function, hence that part of the observed crosscorrelation
function is given here. The observed sample crosscorre-

lation function rxz(k), is defined as

r (k) = sz(k)/sxsz, (4.2.1)
1 N-k _ _
where sz(k) = ﬁ.til (xt - X) (zt+k -2z),k=0,1, 2, ...,
sx = /E;;TET'
Sz © sz{f]’

X is the observed mean of the X, series, and z is the

observed mean of the zt series, From now on the observed

sample crosscorrelation function of x, and 2z, will be

t t
referred to simply as the crosscorrelation function and
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will be written as r(k).

The impulse response function Vj’ =0, 1, 2, coeeney
relating the output 2z, to the input x_ can be obtained from
the crosscorrelation function of X, and Z - One method
of obtaining the impulse response function involves solving
a set of linear equations for Vj' This is like solving
the Yule - Walker equations (3.3.1) in section 3.3, where
crosscovariances from lag zero to a conjectured lag K are
substituted for autocorrelations on the right side of the
equations, and autocovariances of the input series are
substituted for the autocorrelations on the left side.

This approach is defective in that it requires the know-
ledge of a lag K beyond which vj is effectively zero.

In the preferred second method which is used in the
algorithm (Appendix D) for the identification of the
transfer function model, this lag K problem is not en-
countered because the crosscorrelation function, hence
vj decays fast and so K can be set as low as 10. K is
set arbitrarily equal to 14 for the algorithm in this
work. A brief discussion of the second method is given’
in the following paragraph.

A stochastic model is fitted to the input series.

The stochastic model could be any of the model types
(3.1.3) discussed in section 3.l. The stochastic model
is then used to prewhiten (i.e. to obtain residuals of
input x,) the input series {xt} such that the residuals

Yy obtained are a white noise process. The same model
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fitted to the input series is used to transform the output
series {zt} such that some sort of residuals Ww,, say,
which are not necessarily white noise will be obtained.
The crosscorrelation function r(k) of the input residual
Ye and the output residual Wy obtained by this procedure
is estimated according to (4.2.1) for k =0, 1, ......;, K
where for practical purposes K < 14. Then the impulse

response function Vi is given by

r(k)sw
= — fork=0, l, R EEN] K. (402-2)

Sy

Yk

After obtaining the impulse response function Vi in this
way, the parameters a; (i=1,2, ......, P) and bi
(i=0,1, ......, s) can be obtained according to (4.1.3).
Since v, as defined in (4.2.2) is directly propor-
tional to r(k), r(k) can be used to decide the signifi-
cance of V- If r(k) is significantly different from
zero at lag k, it can be concluded that Vie is signifi-
cantly different from zero at lag k. Since r(k) has
approximately a normal distribution, twice the observed
standard deviation of r(k) can be used to test whether
or not r(k) is significantly different from zero with
approximately 95% probability. Furthermore one of the
series (i.e. residuals yt) used to estimate r(k) is known

to be white noise, so that the standard deviation (STD)
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of r(k) is given by

(4.2.3)

More details about the distribution of r(k) are given in
Bartlett [4]. Further details of the identification
procedure for the transfer function model using the cross-
correlation function can be found in Box and Jenkins[6]
while the use of cross spectral analysis for the same
purpose can be found in Jenkins and Watts [28].

In the rest of this section the results obtained
by following the above identification procedure,
which is the basis of the transfer function model iden-
tification algorithm in Appendix D, will be presented.
The algorithm (implemented in Fortran IV; see program 4
in Owolabi [52]) is used to identify transfer function
models for the NO_ hourly average series, and the
daily maximum NOx series, For the purpose of the analysis
here and the rest of the chapter, the input series and the
output series are transformed according to the transfor-
mations presented in Table 4.1. From now on, reference
to any one of these series implies reference to its

transformation.



TABLE 4.1 Raw Data Transformation

Series Raw Data Transformation
NOx zt ln(zt + 0,001)
Temperature X, ln(xt + 50.0)
Wind Speed X, ln(xt)
Traffic Flow xt ln(xt)

NOX Hourly Average

Figure 4.2 shows the plot of hourly NOx series with
the cofresponding hourly temperature series, wind speed
series, and traffic flow series. The plotted series are
the transformations of the data in series A for NO
hourly averages, series C for hourly temperature, series
E for hourly wind speed, and series G for hourly traffic
flow. The relationship of NO, hourly averages with any
of the input factors is not obvious from the plot. How-
ever, the possible transfer function relating Nox to each
of them is investigated using the procedure emphasized
earlier in this section and the algoritkm in Appendix D.

The stochastic model which was found to fit the
hourly temperature series is a modified ARMA (2,0).

Using the stochastic model fitting method of Chapter III,

the hourly temperature model turns out to be
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(1 - 0.338B - 0.2118%) (1 - B) X, =y (4.2.4)

t
This model is used to "prewhiten" the temperature series
such that the remaining series of residuals ‘A is merely
white noise and, hence, have zero autocorrelation. The

same model (4.2.4) is used to transform the z_ series,

t
the resulting series is of course not necessarily un-
correlated. The estimated crosscorrelation function

r(k), of the two new series is plotted in Figure 4.3

and its values with the standard deviation STD, are given
in Table 4.2. An estimate of the impulse response function
Vi is obtained from the r(k) according to (4.2.2). At

this point, the significance of r(k) implies the signi-
ficance of Ve Comparing r(k), k=0, 1, ......, 14 with
twice its standard deviation [i.e. #2 (STD) ], in Table
4.2, it is found that only r(3) may be considered as
significantly different from zero. r(3) = 0.107 is com-
paratively close to twice its standard deviation of

0.110. All other r(k), k # 3 are not as close to

twice 'their standard deviations as «r(3).

This means the effect of an incremental change in the

level of hourly temperature is delayed two hours before

it is apparent in the level of hourly NOx concentration

in the urban atmosphere. Since only 03 is significantly

A A

different from zero, b0 = vy = 2.82 and b0 is the only



parameter in the transfer function. Therefore, the

transfer function describing hourly NO in terms of

TABLE 4.2 Crosscorrelation and Impulse Response
Functions of prewhitened hourly

Temperature and transformed NOx

Lag k r(k) STD of r(k) 2 X (STD) Vi
0 0.022 0.055 0.110 0.588
1 0.005 0.055 0.110 0.119
2 -0.049 0.055 0.110 -1.289
3 0.107 0.055 0.110 2.824
4 0.046 0.055 0.110 1.202
5 -0.048 0.055 0.110 -1.272
6 0.015 0.055 0.110 0.397
7 0.101 0.055 0.110 2.675
8 -0.015 0.055 0.110 -0.388
9 0.049 0.055 0.110 -1.300
10 -0.075 0.055 0.110 -1.988
11 0.004 0.056 0.112 0.114
12 -0.055 0.056 0.112 -1.441
13 0.016 0.056 0.112 0.435
14 -0.014 0.056 0.112 -0.370
Sy = 0.724
s, = 0.027
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hourly temperature alone can be written as

la}

(L-B) Z2_=5bD

& 0 (4.2.5)

(l - B) xt_3o
The model fitted to the hourly wind speed series is
a modified ARMA (3,0) and has the following form:

2

(1 + 0.239B + 0.1398% + 0.1658%) (1 - B) X,

=y, . (4.2.6)

The hourly wind speed series is prewhitened and the
hourly NOx series transformed according to this wind
speed model .The crosscorrelations of the two residuals
Y and w, are estimated and presented in Table 4.3 and
Figure 4.4. As before Table 4.3 also contains estimates
of Vi and the standard deviation (STD) of r(k). From
Table 4.3 it can be seen that only r(10) is significantly
different from zero when compared with twice its standard
deviation (i.e. r(10) = -0.116 * 0,110). However, the fact
that the significance of r(10) is a border line case
coupled with the fact that lag 10 is such a large lag
makes the significance of r(10) doubtful. The parameter
go = 310 obtained by the identification procedure was
subjected to the efficient estimation method of section
4,3 and £0 so produced was found to be not significantly

different from zero, and, hence, was omitted from the

model. This means that a change in the hourly wind speed
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TABLE 4.3 Crosscorrelation and Impulse Response
Functions of prewhitened hourly Wind Speed
and transformed NOx

Lag k r(k) STD of r(k) 2 x (STD) Vi

0 -0.022 0.055 0.110 -0.049
1 -0.045 0.055 0.110 -0.098
2 ~-0.032 0.055 0.110 -0.071
3 -0.095 0.055 0.110 -0.209
4 -0.004 0.055 0.110 -0.009
5 ~-0.026 0.055 0.110 -0.056
6 0.090 0.055 0.110 0.198
7 0.075 0.055 0.110 0.165
8 0.041 0.055 0.110 0.090
9 0.059 0.055 0.110 0.129

10 -0.116 0.055 0.110 -0.254

11 -0.073 0.056 0.112 -0.160

12 -0.078 0.056 0.112 -0.170

13 -0.067 0.056 0.112 -0.148

14 0.088 0.056 0.112 0.194

= 0,681

0.311
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does not seem to influence hourly changes in the NOx
level. The wind speed - ignoring direction - does not
seem to influence NOx since the wind direction is probably
an important characteristic affecting the NO level. In
fact it has been shown in the "Air Pollution Summary
Edmonton" published by the Environmental Health Services
pivision of Alberta Department of Health that south and
southwest winds are correlated with high NOx concentration
in the Administration Building.

The hourly traffic flow series is described by a
seasonal model with a 24 - hour period. The model is

(1 - 0.2668) (1 - B4

) X =yt 0.568y, ;- (4.2.7)
As for temperature and wind this model (4.2.7) is used

to prewhiten the hourly traffic flow series and to trans-
form the NOX hourly average series. The crosscorrelations
of the two new series are given in Table 4.4 and plotted
in Figure 4.5. Comparing r(k)'s with +2(STD) in Table

4.4 it can be seen that none of the r(k)'s are significantly
different from zero. This implies that an incremental
change in the level of hourly traffic flow has no effect
on hourly NO concentration. The result here is quite
astonishing in view of the fact that automobile exhaust
constitutes a source of NOx in urban areas. However,

two reasons may account for this apparent lack of auto-

mobile effect here. One is that most automobiles nowadays



TABLE 4.4 Crosscorrelation and Impulse Response
Functions of prewhitened hourly Traffic
Flow and transformed NOx
Lag K r(k) STD of r(k) 2 x (STD) Vie
0 0.044 0.057 0.114 0.145
1 -0.055 0.057 0.114 -0.181
2 0.039 0.057 0.114 0.126
3 -0.082 0.057 0.114 -0.269
4 -0.007 0.057 0.114 -0.024
5 -0.005 0.057 0.114 ~-0.026
6 -0.009 0.057 0.114 -0.031
7 -0.003 0.057 0.114 -0.011
8 -0.054 0.057 0.114 -0.177
9 0.021 0.057 0.114 0.069
10 -0.018 0.058 0.116 -0.059
11 0.037 0.058 0.116 -0.122
12 0.034 0.058 0.116 0.111
13 -0.016 0.058 0.116 -0.052
14 0.073 0.058 0.116 0.241
S, = 0.996

0.304



have pollution control devices. The other and perhaps the
most important in this case is that the traffic flow data
available are collected far away from the Administration
Building where NO_ is monitored. .

It has been found that only hourly temperature is re-
lated to hourly NOX. In the following discussion a possible
transfer function connecting daily maxima of NO with each

of the input factors will be identified.

Daily Maxima of NO

The‘daily maximum Nox series and the daily temperature,
wind, and traffic flow series are subjected to the same type
of analysis as the hourly data. Series D is the daily maxi-
mum temperature series, series F is the daily mean wind speed
series, and series H is the daily traffic flow series. The
daily maxima of NO, series is of course Series B. The trans-
formation of the daily data is identical to the transforma=
tion used for the hourly data, see Table 4.1. The trans-
formed daily data are plotted in Figure 4.6. Again the
relationship of NO, with any of the three input factors is
not obvious from Figure 4.6, however only a visual compari-
son is of little value here, as the hourly data indicated.

The stochastic model fitted to the daily maximum

temperature is

(1-0.198 + 0.1838%) (1 - B) X_ =y, (4.2.8)
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After using the model to prewhiten the daily temperature
series and transform the NO, series the crosscorrelation
function of the two resulting series are estimated. The
estimated crosscorrelation function r(k) is plotted in
Figure 4.7 and its values with the standard deviation
(STD) are given in Table 4.5. An estimate of the impulse
response function Vi is obtained from r(k) according to
(4.2.2). Comparing r(k), k =0, 1, ......, 14 with twice
its standard deviation [i.e. #2(STD)] in Table 4.5 it

can be seen that r(0) is significantly different from zero
since r(0) 2 STD = 0.113 +0.104 do not include zero, r(2)
can be regarded at first sight as being significantly
different from zero. However, results from efficient
estimation of parameters in section 4.3 indicate that

r(2) is not significantly different from zero. So only

one impulse response weight is available and b0 =V, = 1.43.

The transfer function model identified for temperature alone

is
(1 - B) Z, - b(l - B) X, (4.2.9)
The stochastic model fitted to the daily mean wind
speed is

(1 + 0.436B + 0.3378%) (1 - B) X, =y, (4.2.10)
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TABLE 4.5 Crosscorrelation and Impulse Response
Functions of prewhitened daily Temperature
and transformed Nox

Lag k r(k) STD of r(k) 2 x (STD) Vi

0 0.171 0.052 0.104 1.426
1 -0.,067 0.052 0.104 -0.554
2 0.113 0.052 0.104 0.941
3 -£.043 0.053 0.106 -0.355
4 -0.044 0.053 0.106 -0.362
5 0.022 0.053 0.106 0.183
6 -0.072 0.053 0.106 -0.602
7 0.022 0.053 0.106 0.179
8 0.074 0.053 0.106 0.620
9 -0.053 0.053 0.106 -0.437

10 0.029 0.053 0.106 0.241

11 0.069 0.053 0.106 0.575

12 -0.091 0.053 0.106 -5.753

13 0.006 0.053 0.106 0.050

14 0.048 0.053 0.106 0.400

s_= 1.058
= 0,127

s
Y
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After the usual prewhitening and transformation operations
using model (4.2.10), the r(k)'s for the new series ob-
tained are estimated along with the vk's. Table 4.6
contains the r(k)'s with their standard deviations and
the vk's. Figure 4.8 shows the r(k)'s. From Table 4.6,
it can be seen that none of the cross correlations are
significantly different from zero, hence as in the hourly
situation,the daily mean wind speed fails to contribute
significantly to the behavior of the daily maximum level
of NOX in the city.

The daily traffic flow series is described by a
seasonal model with a 7 - day period. The model is

7

(1 -0.276B) (1 - B') X, = Yy (4.2.11)

t
As for temperature and wind this model (4.2.11) is used to
prewhiten the daily traffic flow series and to transform
the Nox daily average series. The crosscorrelations of the
two new series are given in Table 4.7 and plotted in Figure
4.9, Comparing r(k)'s with 2(STD) in Table 4.7 it can be
seen that none of the r(k)'s are significantly different
from zero. This means no transfer function connects the
daily maximum NO, with the daily traffic flow.

Since the foregoing show that there is no justification
for including both wind speed and traffic flow in the
transfe; function model for NOX, the combined transfer

function - noise model for either hourly or daily series



TABLE 4.6 Crosscorrelation and Impulse Response
Functions of prewhitened daily Wind Speed
and transformed NOx

Lag k r(k) STD of r(k) 2 x (STD) Vie

0 ~0.036 0.052 0.104 -0.055
1 0.000 0.052 0.104 0.001
2 0.024 0.052 0.104 0.057
3 -0.025 0.053 0.106 -0.059
4 0.081 0,053 0.106 0.193
5 0.085 0.053 0.106 0.201
6 -0.007 0.053 0.106 -0.018
7 0.016 0.053 0.106 0.039
8 -0.029 0.053 0.106 -0.069
9 -0.044 0.053 0.106 -0.104

10 -0.006 0.053 0.106 -0.015

11 -0.013 0.053 0.106 -0.031

12 ~-0.005 0.053 0.106 ~0.011

13 -0.025 0.053 0.106 -0.060

14 0.025 0.053 0.106 0.059

s, = 0.911
s, = 0.382
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TABLE 4.7 Crosscorrelation and Impulse Response
Function of prewhitened Traffic Flow and

transformed NOX

Lag k r(k) STD of r(k) 2 x (STD) Vi

0 0.066 0.053 0.106 0.900
1 0.010 0.053 0.106 0.134
2 -0.059 0.053 0.106 -0.803
3 0.087 0.053 0.106 1,183
4 -0.039 0.053 0.106 -0.525
5 0.059 0.053 0.106 0.795
6 0.079 0.053 0.106 1,071
7 -0.029 0.053 0.106 -0.396
8 0.094 0.053 0.106 1.270
9 0.054 0.053 0.106 0.727
10 0.038 0.054 0.108 0.519
11 0.078 0.054 0.108 1,054
12 0.047 0.054 0.108 0.631
13 -0.012 0.054 0.108 ~0.163
14 0.021 0.054 0.108 0.279

s, = 1,180

s, = 0.087
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will include only temperature X, and the noise term Et'

Thus, using (4.2.5), the combined transfer function -

noise model for NOX is

(1 -B) 2, = b(lL - B)

t

For the hourly series when

ey

b = 2.82, and from (4.2.9)

(1 -B) 2, = b(l - B)

t

For the daily series where

N

is b = 1.43.

The stochastic models

X + E_ . (4.2.12)

the initial estimate of b is

it is

X, +E, . (4.2.13)

the initial estimate of b

identified for Et in each of

(4.1.12) and (4.2.13) are of the form:

E, = e, -he ;- hpe, o = haep 4 and (4.2.14)
E, = e, - hjep g - hpep o (4.2.15)
respectively. The parameters hi(i = 1,2,00000, ) for each

of these models will be estimated along with the parameter

of the corresponding transfer function in the next section.

Before the parameter estimation stage it is necessary

to describe briefly at this point what the combined trans-

fer function - noise model should have looked like if

any of the models(4.2.12) and (4.2.13) had at least two



94

input factors instead of just one. This is necessary for
this approach to be generally useful for pollution models
although the data does not justify more than one input

in this thesis. Let the daily series,for example, have

two input factors related to it instead of one. Then we
would have two identified transfer functions for the out-
put series. Let traffic flow be the second input factor

so related where the relationship is expressible simply as

(1-8") 2, =b(l -B") X

¢ + (4.2.16)

Then combining (4.2.9) for daily temperature with (4.2.16)
for daily traffic flow, the two identified input transfer

functions could have been combined as follows:

- -1 .
=> Zt = (1 - B) bl(l - B) xl,t
7.-1 7
+ (1 - B) b2(l - B') X2,t (4.2.17)
7
N ;- bl(l - B) Xl,t . b2(1 - B") let
t (1 -B) (1 - B)
7 _ 7
> (1-B) (1-B) 3z, =b (-8 Q-8)x

7
+ b2(l - B) (1 -B") X2,t
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7 8 _ I | 8
> (l-B-B" +B) Z, = bl(l B-B"  +B) Xl,t
7 8
+ b2(l -B~-~B"  +B") XZ't
=> g =13 +38_.-2_ .+ (1-B-8+8% x
t t-1 t-7 t-8 1,t
7 8
+b2(l—B-B +B)X2’t.
The function (4.2.17) can be generalized for m imput
factors where m > 2,
Let the estimate of Zt by (4.2.9) be
2,6 = Zpoy Ty (1-B) x1,t and estimate of
Zt by (4.2.16) be
- _ 7
2,6 T Py T RL-BY) Xy
then the series Et can be obtained from
Et =z - zl,t - zZ,t (4.2.18)

and then a stochastic model can be identified for series
Et' Let the stochastic model identified for Et be of the

form

Et = h(B) L (4.2.19)

then combining (4.2.17) and (4.2.19) we have
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1 1

7
b2(l - B

3 - 7,-
Zt = (1 - B) bl(l - B) Xl,t + (1 -B") )X2,t

+ h(B) e (4.2.20)

t’

which is known as the combined transfer function-noise model.
Once the model has been identified in this form, the para-
meters have to be estimated together in order that the
non-significant parameters can be detected and rejected.

An algorithm that can produce efficient estimates of

the parameters will be discussed in the next section.

4.3 Dynamic System Model - Estimation

In this section efficient estimation of the para-
meters of the combined transfer function-noise models
identified in section 4.2 will be made. The estimates
can be obtained easily by the use of the Marquardt
algorithm for nonlinear least squares. The theoretical
basis of the algorithm is stated by Marquardt [36] and
the practical application of it is briefly indicated
in Box and Jenkins [6]. The algorithm supplies the para-
meter estimates that minimize the residual sum of squares,
the covariances of the parameters, and the variance of
the residuals generated by the optimal parameter values.
The algorithm, described in detail in Appendix E, causes
rapid, convergence (in most cases within ten iterations,

provided a minimum exists) to the optimal values even if
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zeros are given as initial values of the parameters. As
for the other algorithms in this work, a Fortran IV
program (see program 5 in Owolabi [52]) is written to
implement this algorithm. The rest of this section
consists of the results obtained from using this algorithm

for the hourly and daily models.

NOX Hourly Average

The combined transfer function-noise model
identified for the hourly series in section 4.2, see

(4.2.12), is

3t Eg

l1-B = - B
( ) Zt b(l ) Xt-
Considering Et as an ARMA (0,3) model, the above can be

written as

(1-B) 2, =b(1-B) X_,+e,-h (4.3.1)

1%¢-1
ha8p-Dyep g

where hl’ h2, h3 are the moving average parameters for

the stochastic model of the Et series, and b is known from

section 4.2 as the only transfer function parameter. From

this model (4.3.1) the residual series, e, t=1,2,.....,

n can be generated as
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e, = (1 - B) Zt - b(l - B) xt_3 + hlet—l + hzet_2

+ h3et_3

for different sets of values of b, hl’ h2, h3, in order for
the algorithm to determine the optimum set of parameter
values . As in Chapter III, the initial, unknown et's
are set to zero. Since b can assume any real value as
stated in section 4.1 and hl' h2, h3, being moving

average model parameters, have to obey the invertibility
conditions discussed in section 3.2, b can quite arbit-
rarily be set to 1.0 and hl' h2, h3 set to 0.0 as the
initial parameter values in the Marquardt algorithm (i.e.
the program thereof). With these initial values, the

following set of optimal parameter values is determined:

b is 2.501 with standard deviation of 1.032,

hl is 0.088 with standard deviation of 0.055,

h2 is 0.050 with standard deviation of 0.055,

~

h. is 0.125 with standard deviation of 0.055,

3
where the corresponding variance of the residuals is
0.405.

If the optimal estimates of the parameters obtained

are compared with twice their standard deviations, it can




99

be seen that only b and h3 are significantly different
from zero. Therefore the combined transfer function -
noise model relating hourly oxides of nitrogen to tempera-
ture can be parsimoniously expressed as

(1 -B) 2

= 2,501(1 - B) X + e, - 0.125et_3.(4.3.2)

t t-3

Daily Maximum NOX

Most of the comments made above in connection with
the hourly model estimation apply to the daily model and
so they will not be repeated. The identification procedure
gives temperature as the only leading indicator; hence, the
combined transfer function - noise model identified for
the daily series can be written from (4.2.12) and (4.2.15)
as

(L - B) z_=Db(l-B) Xt e - hlet-l - hzet_z.(4.3.3)

t
From (4.3.3) the residual series e, can be generated

according to

+ h.e

ey = (1 -B) Z 1%t-1 * Bo8op:

& . b(l - B) xt + h

The initial values of the parameters supplied to the
program of the Marquardt algorithm are arbitrarily chosen

as b = 1.0, hl = h2 = 0.0. The program produces the
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following optimal estimates of the parameters:

b is 0.971 with standard deviation of 0.344,
hl is 0.491 with standard deviation of 0.052,

~

h2 is 0.268 with standard deviation of 0.052,

where the variance of the residuals is (.742.

All three parameters are significantly different from
zero when compared with twice their standard deviations.
Hence, the combined transfer function - noise model
relating daily maximum NOx to daily maximum temperature
is given by

(L-B) 2, =0.971 (1 -B) X_+e_ - 0.49let_

t t
- 0.268e,

(4.3.4)

t 1

¢

Before the two models established here are accepted
as the final dynamic system models suitable for represent-
ing the behavior of oxides of nitrogen in the urban atmos-
phere, they must be submitted to careful diagnostic
checking. The diagnostic checks are applied in the next

section,

4.4 Dynamic System - Diagnostic_Checks

Comparing the residual variances obtained in the last
section with the residual variances obtained through the

stochastic models fitted in Chapter III and shown in
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Table 4.8, it can be seen that the dynamic models are
as good as the stochastic models if not better, because
their residual variances are smaller than residual variances

of the corresponding stochastic models.

TABLE 4.8 Variance Comparison of Stochastic and

Dynamic System Models

NO, Variance of Stochastic Dynamic System

Series Transformed Model's Model's
Data Residual Residual

Variance Variance

Hourly

Averages 1.202 0.522 0.405

Daily

Maxima ‘ 1.577 0.772 0.742

The first test therefore concerns the variances of
the residuals which are found to be smaller than the
variances of the transformed data shown in Table 4.8.
Since the variances of the residuals are very small it can
be concluded that the dynamic models are adequate.

One other test may be applied for the diagnostic

check of the dynamic system models. This test uses the



Chi - square test as discussed in section 3.5 where the
Chi - square random variable Q is a function of the
autocorrelation function of the residuals according to
(3.4.1). The observed Chi - square value Q of the residual
autocorrelations corresponding to (4.3.2) is 73.25. The
theoretical upper critical Chi - square value at 95% for
81 degrees of freedom is 103.0l. Thus we accept the
hypothesis that the residuals behave in a white noise
fashion, implying that they are uncorrelated. For the
daily maximum NO the observed Chi - square value is

Q = 65,26 while the theoretical upper critical Chi -~
square value at 95% for 88 degrees of freedom is 110.90.
This also indicates that the residuals of (4.3.3) seem to
behave like white noise. These tesﬁs show that the
combined transfer function - noise models for both the
hourly averages and daily maxima of NOx as given by
(4.3.2) and (4.3.3), respectively explain the NOx behavior
well. Thus the models can be used for forecasting the

oxides of nitrogen concentration in the urban atmosphere.

4.5 Forecasting with the Dynamic System Models

NOx Hourly Average

To forecast zt(L) (i.e. transformed hourly average of
NOX) at L hours ahead of a time origin t, the forecast

function corresponding to the hourly model (4.3.2) is
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~

zt(L) = + 2,501 (x )

ZeaL-1 t4L-3 © Ttt+L-4

- 0.125 e, ;5 . (4.5.1)

The terms on the right hand side of (4.5.1) are given as:

é e+ 120
“ety T ( 2,3) i,
(% .. j <0
X 0 = (07 - (4.5.2)
J ( Xt(j) i>o0,
( et+j j <O
e = N
3 (o 3 >0,

xt(j) is calculated from model (4.2.4) fitted to the input
series as:

A

xt(J) = 1.338 Xt+j-l - 0.127 xt+j-2 - 0.211 xt+j—3 /

A

and e, is calculated from e, = 2z, - 2, (1).

t
Using (4.5.1) the lead - one and leads 1 - 30
forecasts of the last 30 hours for the hourly series are
obtained. Figure 4.10 shows the plot of these forecasts
with their 95% confidence limits and also the corresponding
observed series. From Figure 4.10 it can be seen that all
the observed values fall within 95% confidence limits of

their lead - one forecasts which is z, (1) + 1,247 in the
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logarithmic units. For the purpose of comparison with
the raw data, the forecasts are transformed back to the
raw data units by taking the antilog and subtracting
0.001. This transformed forecasts is presented in Table
4.9 while the corresponding observed raw data is pre-
sented in Table 4.10. It can be seen from the two tables
that most of the lead - one forecasts are close to the
observed values.

The leads 1 to 30 forecasts with their 95% con-
fidence limits, and also the corresponding observed
series are presented in Figure 4.11 in logarithmic
units. Although none of the observed values fall out-
side the confidence limits, the confidence limit itself
is so wide that none could have fallen outside it. How-
ever this model can be used to forecast hourly NO, three
hours ahead. This is an improvement over the stochastic
model for the hourly series which can forecast reliably
only one hour ahead. The forecasts here also are trans-
formed back to the raw data unit and presented in Table

4.11.
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TABLE 4.9 Lead ~ One Forecasts of the last thirty
hours of NOx Hourly Averages Series using

Dynamic System Model *

0.017 0.018 0.039 0.058 0.042 0.028
0.006 0.003 0.003 0.003 0.003 0.003
0.003 0.003 0.007 0.011 0.007 0.008
0.004 0.013 0.016 0.010 0.012 0.002
0.002 0.003 0.002 0.002 0.001 0.000

* Read across the page. The unit of measurement is ppm.

TABLE 4.10 The last thirty hours of NOx Hourly Averages

Series *
0.022 0.040 0.060 0.050 0.030 0.006
0.003 0.003 0.003 0.003 0.003 0.003
0.003 0.007 0.010 0.007 0.008 0.003
0.011 0.012 0.011 0.002 0.002 0.002
0.002 0.002 0.002 0.001 0.000 0.000

* Read across the page. The unit of measurement is ppm.
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TABLE 4.11 Leads 1 to 30 Forecasts of the last thirty
hours of NOx Hourly Averages Series using

Dynamic System Model *

0.017 0.014 0.014 0.014 0.014 0.014
0.014 0.014 0.014 0.014 0.014 0.014
0.014 0.014 0.014 0.014 0.014 0.014
0.014 0.014 0.014 0.014 0.014 0.014
0.014 0.014 0.014 0.014 0.014 0.014

* Read across the page. The unit of measurement is ppm.

Daily Maximum NOX

Using the model (4.3.3) for the daily maxima of
NO» the forecast function for the daily maximum series
is given by

A

+0.971 (x - 0.491 e

2, (L) = 2471 w1~ X1 1
- 0.268 € (4.5.3)
where (4.5.2) can be used to obtain zt+j , xt+j , and

et+j while xt(j) is calculated from model (4.2.8), fitted

to the input series as:
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R (3) = 119 Xppy g = 0373 Xy 0.183 X, y1 5 -

Function (4.5.3) is used to obtain lead - one and
leads 1 to 30 forecasts of the last 30 days of the daily
maximum series. Figure 4.12 shows the plot of these
forecasts with their 95% confidence limits and also the
corresponding observed series. From Figure 4.12 it
can be seen that all the observed values fall within 95%
confidence limits of their lead - one units., For the
purpose of comparison with the raw data observed, the
forecasts are transformed back to the raw data units
py taking the antilog and subtracting 0.001. This trans-
formed forecast is presented in Table 4.12 while the
corresponding observed raw data are presented in Table
4.13. It can be seen from the two tables that most of
the lead - one forecasts are close to the observed
values.

The leads 1 to 30 forecasts with their 95% con-
fidence limits, and also the corresponding observed
series are presented in Figure 4,13 in logarithmic units.
As shown in Figure 4.13 all the observations fall within
the 95% confidence limits of their corresponding forecasts.
The forecast function here, as in the corresponding
stochastic model forecast function, can predict reliably
two days ahead. However the forecast values here are

closer to the raw observations than the forecast values
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TABLE 4.12 Lead - one Forecasts of the last thirty

days of Daily Maxima of NOx Series using

Dynamic System Models *
0.094 0.079 0.065 0.082 0.042 0.063
0.083 0.047 0.075 0.068 0.073 0.060
0.105 0.043 0.156 0.080 0.125 0.090
0.201 0.167 0.087 0.088 0.097 0.114
0.071 0.077 0.095 0.152 0.115 0.114
* Read across the page. Unit of measurement is ppm.
TABLE 4.13 The last thirty days of Daily Maxima of

NOx Series *
0.153 0.072 0.094 0.027 0.053 0.121
0.042 0.073 0.074 0.081 0.057 0.156
0.028 0.281 0.117 0.163 0.098 0.381
0.279 0.058 0.050 0.083 0.124 0.052
0.054 0.100 0.281 0.151 0.113 0.132

* Read across the page.

The unit of measurement is ppm.
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TABLE 4.14 Lead Times 1 to 30 Forecasts of last thirty
days of Daily Maxima of NOX Series using

Dynamic System Model *

0.094 0.060 0.060 0.060 0.060 0.060
0.060 0.060 0.060 0.060 0.060 0.060
0.060 0.060 0.060 0.060 0.060 0.060
0.060 0.060 0.060 0.060 0.060 0.060
0.060 0.060 0.060 0.060 0.060 0.060

x Read across the page. The unit of measurement is ppm.

There are no dynamic system models developed for
Calgary, Windsor, Sarnia, Toronto, and Sudbury because
the necessary additional data for wind,traffic,and temperature
are not available. However, daily maximum series of oxides
of nitrogen are available for these five cities and are used
to develop stochastic models for oxides of nitrogen in those

cities in Chapter V.



CHAPTER V

COMPARATIVE STUDY OF NOx IN SOME OTHER CITIES

5.1 Stochastic Models for Five other Cities

In this chapter the daily maximum NOx stochastic
model as developed for Edmonton in Chapter III is compared
with the same type of model established here for Calgary,
Sarnia, Sudbury, Toronto, and Windsor. As will be apparent
shortly the models for the six Cities are all of the
ARIMA (0, 1, 2) type, and hence an attempt is made to
establish a.general ARIMA (0, 1, 2) model which may be
able to explain the behavior of the daily maximum of NO,
in any urban center. It should be noted that the stochas-
tic model established for Edmonton's daily maximum NOx
series is also an ARIMA (0, 1, 2), but written (for the
purpose of analysis)in its modified ARMA (0,2) form,
because the model is expressed as

W, =e, -Db - b

t St T P1 Se-1 " P2 Cp v

where w, = (1 - B) 2, = 2z, - 2
The ARIMA form will be used throughout this chapter because
it shows the degree of differencing.

To save space,data employed for the development of the

stochasticumodel for the five cities are not included in
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this report. The interested reader can obtain them from
the sources mentioned in Chapter II.

The various series of the original daily NOx data
are all transformed by first adding 0.001 ppm and then
taking the natural logarithm, thus resulting in the
transformed series zt's. The same model building procedure
as outlined in Chapter III is used for Calgary and each of
the four Ontario cities. The final stochastic model and

relevant parameter estimates are described briefly below.

Calgary NOx

The daily maximum NOx data available for Calgary
consists of 730 observations (for 1970, 1971) which is
quite an adequate series for stochastic modelling. The

model is found to be ARIMA (0, 1, 2) and this is of the

form
_ . v r2
(1-B) 2, =(lL-b;B-byB ) ey (5.1)
where
b = 0.564 with standard deviation of 0.031,
b = 0.214 with standard deviation of 0.036,

with corresponding residual variance of 0.294. The

variance estimate of the transformed series is 0.492.



Sarnia NOx

The 1971 daily maximum NOx data from Sarnia consist
of 365 observations. The model that describes the process
from which this series is observed is found to be an

ARIMA (0, 1, 2) of the form (5.1), where

0.563 with standard deviation of 0.043,

o N B o i)

0.326 with standard deviation of 0.050,

and the residual variance is estimated to be 0.204. The

variance estimate of the transformed series is 0.329.

Sudbury NO
X

The daily maximum NOx series from Sudbury consist
of observations for only seven months, namely January
to July 1971. The 212 consecutive observations again in-
dicate an ARIMA (0, 1, 2) model as the best fitting one,

where

1° 0.566 with standard deviation of 0.057.

b
b2 = 0.414 with standard deviation of 0.063,

and the residual variance is estimated to be 0.031. The

variance estimate of the transformed series is 0.360.
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Toronto NOx

The 1971 daily maximum NOX data available from
Toronto contained many "holes" which were filled in
according to the method proposed in section 2.1. After
'patching' the data the usual stochastic model building
procedure is employed for the resulting 365 observations.
An ARIMA (0, 1, 2) model is found to fit this Toronto

series, where

= 0.600 with standard deviation of 0.042,

[ o 2 S © 21
'—l
1

0.280 with standard deviation of 0.050,

and residual variance is estimated to be 0.296. The

variance estimate of the transformed series is 0.392.

Windsor NOx

The daily maximum NOx data in Windsor is a series of
consecutive observations for 8 months; namely January
to August, 1971. An ARIMA (0, 1, 2) model is obtained

for those 243 observations also where

0.447 with standard deviation of 0.057,

o T

0.323 with standard deviation of 0.061,

and residual variance is estimated to be 0.224. The

variance estimate of the transformed series is 0.342.
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5.2 Result
In all the six cities considered in this study the
stochastic process generating daily maximum NO_ is

found to be of the ARIMA (0, 1, 2) type, that is

Zy = Zt-l + e, - bl e 1 - b2 €1 - (5.2)

~

The parameter estimates, bl ' £2 , for the different

cities differ only slightly. This does not imply that

the NO, level in the different cities are the same. &as a
matter of fact the estimated mean of the transformed series
for the different cities vary. If the models were fitted
on the transformed series without differencing, the dif-
ferent means would have shown up different constant
terms. However, since the ARIMA model is fitted on the
first difference of the transformed series (for stationarity
reasons) the mean of the first difference is zero as ex-
plained in Section 3.2, thus making the constant term in
the model zero. Table 5.1 summarizing the comparison of
the six models, shows that Toronto has a higher NOx pol-
lution average than any of the other cities and Edmonton
Nox average is the lowest, although its NOx variation is
more than three times as large as that of the other cities.
However, it must be remembered that the series for the
different cities do not belong to the same year (although
all are within the 1970 - 72 period) nor do they have

equal length as shown in section 5,1, Although the Sudbury
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model explains only 16% of the observed variation it is
the best fitting model for this series. Since the
analysis has been performed on the logarithmic trans-
formation of the series as indicated in Chapter III, the
means and variances in Table 5.1 are in their natural
logarithms and their antilogarithms have to be taken to
get their values in ppm - the averages in ppm are in-
dicated in parenthesis. For instance the average NO,
for Edmonton is 0.016 ppm. Also in Table 5.1 population
figures of the cities according to the 1971 census as
recorded in the 1972 issue of the Canada Yearbook are
included.

The fact that the best fitting model for each city
turns out to be the same type with only slight differences
in their parameters is extremely surprising. Especially,
since NO, is produced primarily by motor vehicles and
industry, it would stand to reason that in large industrial
urban areas the behavior of daily NOx may be différent
from its behavior in less densely populated urban areas.
However, this study supplies evidence to the contrary.
Since the ARIMA (0, 1, 2) models are so similar, one
suspects that perhaps a common ARIMA model exists for
all urban centers. This common model should then be the
ARMA (0,2) type for the first difference of the trans-
formed data, that is of the ARIMA (0, 1, 2) type. To try
to establish such a common ARIMA (0, 1, 2) model, the

first difference of the six NO, series are pooled (that is
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concatenated) together such that a first difference series,
2274 observations long, is obtained. For the pooling,
variation over space is considered rather than variation
over time. Thus the (1 - B) Z, series for the different
cities are regarded as samples, observed in the different
cities, of the overall process (1 - B) Zy The

ARIMA(0, 1, 2) model fitted to this overall series turns
out to be

(1-B) 2, = (1 - 0.500B - 0.2708) e, 1 (5.3)

t
with corresponding residual variance of 0.347. To ensure
that this combined model adequately describes the NO
behavior in the individual cities, it must be compared to
the six individual models in Table 5.1. The test

employed here is similar to the 'constancy' test explained
by Huang [27], and the 'coincidence' test used for re-
gressions and described by Williams [78]. This test for
regression can be applied to the ARIMA(O, 1, 2) models
because the first difference of the transformed zt's are
regressed on the et's which are white noise and hence
independent. Thus this model is like a regression model
which relates a dependent variable to two independent
variables. The test makes use of the analysis of variance
as follows.

Let there be m samples having SR PYRETRERY n
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elements respectively. Let n =n, +n, toeeees t 0y

and let there be k estimated parameters of the model. If

SS. is the total residual sum of squares due to the over-

1
all model obtained by pooling all the samples, and SS,

is the sum of the sums of squares within each sample, then

SS. = 8S, - SS. is the sum of sums of squares between each

3 1 2
regression plane and the overall regression plane. It can

be shown that

SS ,
34£ has a Chi - square distribution with n - k
e
degrees of freedom,
552
T has a Chi - square distribution with n - km
e
degrees of freedom,
SS3
T has a Chi - square with km - k degrees of
e
freedom, and that
SS3/(km - k)
has an F distribution with (5.4)
SSz/(n - km)
(km - k) and (n - km) degrees
of freedom.
Let bl ' b2 ? seeseay bk be the parameters of the

overall model, and b11 ' b12 ;o eeseeny blk H b21 ,
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b b ! seseeed bml ’ bm2 ; be the parameters

22 7 s e e ey 2k
for each of the m individual models, respectively, then

the hypothesis to be tested is that

11 ~ "2l 31 ml

12 = Pyy = b3 b2

(5.5)

byy = by = b3k = tieees =b, = by
If the hypothesis is true (i.e. the overall regression
hyperplane and the individual regression hyperplanes are
coincident) then SSl = 882 , and SS3 is zero. The test

of the hypothesis (5.5), therefore, can be considered as

a test of significance of SS3 .  Thus under hypothesis
(5.5), the observed ratio (5.4) can be compared to the
upper 5% critical point of the F distribution with the
appropriate degrees of freedom. If the ratio is less than
the upper 5% critical point, then SS3 is not significantly
different from zero.

Assuming (5.5) for the overall and the six individual
ARIMA(0, 1, 2) models respectively, the observed F - value
(5.4) is 0.609 for 10 and 2263 degrees of freedom. However,
the upper 5% critical point of F with 10 and 2263 degrees

of freedom is 1.83, hence the hypothesis (5.5) is accepted.
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It can be concluded, therefore, that the stochastic
process generating daily maximum NOx in these urban

centers can be described by the ARIMA(O0, 1, 2) model,

¢ t-1 T & T 0.500e,__, - 0.270e, _, - (5.6)
From the above evidence it seems reasonable to conclude
further, that the process generating daily maximum NO

in any urban center may be described by the same

ARIMA(0, 1, 2) model.

To test how good this general model will be at fore-
casting, it is used to obtain lead - one forecasts of
daily maximum NOx for January 1970 in Edmonton, (where
January 1970 in Edmonton is outside the period used to
develop the model). Table 5.2 and Table 5.3 which con-
tain the forecasts and the observed data respectively,
indicate that the forecasts here are as good as those

obtained for the corresponding model in Chapter III.



125

TABLE 5.2 Lead - one Forecasts of the Daily Maxima

of NOx for January 1970 in Edmonton *

0.031 0.028 0.031 0,023 0.022 0.032
0.050 0.034 0.059 0.040 0.028 0.027
0.025 0.027 0.034 0.028 0.063 0.027
0.036 0.040 0.069 0.132 0.124 0.134
0.191 0.165 0.129 0.195 0.16l 0.134
0.112

* Read across the page. The unit of measurement is ppm.

TABLE 5.3 Observed Daily Maxima of NOx for January

1970 in Edmonton *

0.025 0.031 0.018 0.016 0.039 0.106
0.043 0.096 0.047 0.017 0.016 0.018
0.023 0.042 0.029 0.128 0.026 0.030
0.047 0.136 0.496 0.336 0.242 0.390
0.254 0.118 0.246 0.189 0.109 0.076
0.047

* Read across the page. The unit of measurement is ppm.
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Since the general model is conjectured to be adequate

for describing the daily behavior of NO, in any urban center

it can be used to forecast daily maximum NO concentration

in any city. Further discussion and recommendations for

future work are given in the next chapter.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The models established for Nox in this study generate
some surprising information concerning the behavior of the
pollutant in urban atmosphere. One such fact revealed
by the stochastic models is that the concentration of NO, in
urban centers follows no particular pattern. For example,
one would expect a 7 - day cycle in the daily behavior, such
that the minimum concentration occurs during the week-end
when there is less traffic flow and industrial activities.
The fact that all of the particular stochastic models
fitting the data from the individual cities, and the general
stochastic model (5.6) for urban centers, contain no seasonal
term to reflect a 7 - day cycle shows that no such cycle
exists. Other information produced by stochastic models is
that NO, behaves in the same way in all urban centers.
As a result it was possible to establish a general
stochastic model (5.6) to explain the behavior of NO, in
urban atmosphere. The general stochastic model established
is ARIMA(0,1,2) based on the first difference of the
transformed data; hence, the difference in the level
of concentration among the cities does not affect the
parameters of the model.

The dynamic system models (combined transfer function-
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noise models) show that among the three factors which were
conjectured to be capable of influencing the behavior of NOx
in urban atmosphere, only temperature had such influence.

The three input factors considered were temperature, wind
speed, and traffic flow. Traffic flow was considered because
it is known that automobile exhaust is a major source of NOx
in a city. Wind speed was considered because atmospheric
mixing and transport due to wind could have an effect on the
concentration of air pollutants. Temperature was considered
since temperature affects the amount of energy to be generated
for heating, and hence, the amount of NOx emitted by power
plants. The transfer function connecting temperature to
hourly behavior of NOx in the Edmonton atmosphere shows that
an incremental change in temperature has an effect on NO,
concentration after two hours. For the daily behavior, an
incremental change in the daily temperature is reflected in
the NO, maximum concentration thaf same day. Temperature
observations in the Industrial Airport are known to be fairly
representative of temperature in the city (See Hage and Longley
[21]). However, the wind speed observed in the same airport
and the traffic flow observed on Jasper avenue cannot represent
the situation in the whole city, and, thus, cannot represent
the situation in Administration Building, where NOx is being
monitored. The remoteness of the observation stations of wind
speed and traffic flow from where NOx is being monitored may
account for the apparent lack of relationship between them and

NO,. It is especially surprising that no relationship is found
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to exist between NOx and traffic flow; as a result the
dynamic system models do not involve traffic flow.

Comparing the model types developed in this study
with diffusion models it can be seen that stochastic and
dynamic system models have some advantages over diffusion
models. The models give forecasts which are close to the
observed values, and unlike the reported characteristic of
diffusion models, the models developed here produce air
pollutant concentration estimates which are neither con-
sistently smaller nor consistently greater than the
observations. In addition the confidence intervals of
the forecasts generated by the stochastic and the dynamic
system models could be estimated and used as a measure of
the reliability of the forecasts. Thus it was found that
the stochastic model for daily'maxima of NOx would produce
reliable forecasts for one and two days ahead. The dynamic
system model (4.3.2) for hourly NOx would produce reliable
forecasts for one, two,and three days ahead, while the dynamic
system model (4.3.4) for daily maxima of NOx would produce
reliable forecasts for one and two days ahead. Although
longer lead forecasts by these models are tolerable as
some idea of future occurrence, their 95% confidence inter-
vals are too wide; as a result the fact that all the
observations fall within the 95% confidence intervals does
not, for practical purposes, prove the reliability of longer
lead forecasts. The only obvious advantage of the diffusion

model over the model types proposed in this study is that the
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diffusion models can supply information levels of a pollu-
tant where no monitoring station exists, since the develop-
ment of the diffusion model does not require the observed
data of the pollutant at the receptor. However,the develop-
ment of diffusion models require other data, like source
inventories and meteorological observations. Notwithstanding,
if necessary observations are available for the development
of stochastic and dynamic system models, they are better
as predictive models for air pollutants than diffusion models.
Comparing stochastic models with dynamic system models
one would find that the dynamic system models are prefer-
able. Dynamic system models can give information about
the relationship connecting the pollutant with the influenc-

ing factor as illustrated in this study in the case of NOx
and temperature. Also the lack of relationship between the

conjectured input factor and the output is detectable at the

model development stage as exemplified in the case of NOx
and the two input factors, traffic flow, wind speed. 1In
addition, dynamic system models generate better forecasts

in the sense that the estimates they produce are closer to
the observed values than those produced by stochastic models.
Generally dynamic system models can be used as a basis for
the control of the system. However, the possible dynamic
system models established for NO_ in this study
cannot be used for control because ambient temperature,

which is the only input factor cannot be controlled. If

traffic flow had an obvious connection with NOx through a
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transfer function, then a dynamic control function required
to control the pollutant's level could have been obtained
from the resultant combined transfer function-noise model.
The control aspect, however, lies outside the scope of this
thesis; further details about control functions are given
in Box and Jenkins [6].

In general, the city of Edmonton still enjoys a clean
atmosphere. The NOx level is usually below the safe standard
set in many places. The Alberta clean air act passed in
January 1973 stipulated an annual mean of 0.03 ppm while
the mean observed for daily maxima of NO over a year in
this study is 0.016 ppm. Although some places close to
power stations, refineries, and highways may experience
higher concentrations, the concentration level for the city
as measured at the Administration Building is generally
below the safe level.

6.2 Recommendations

Precision and continuity of the measurements of con-
centration of air pollutants cannot be over-emphasized in
any pollution surveillance program. Therefore, it is hereby
recommended that monitoring stations obtain more reliable
neasuring instruments or that two instruments are alloted
to each station, so that one may be used as a back-up device.
This would prevent loss of observations which at present

is common in monitoring NOx in all the cities investigated
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in this work. Wherever possible these instruments may
be interfaced with computers for accurate data recording,
analysis and immediate reporting.

For the City of Edmonton more monitoring stations are
necessary for NOX. A network of stations would give a
better overall picture of the pollutants level in the city
than only one station. In addition, input factors that
could affect NO,, concentration should be monitored at or
very near the NOx monitoring stations.

To use the different forecast functions developed in
Chapters III, IV, and V for the purpose of forecasting NOX,
the minimum number of paét records required is the highest
degree of backward shift operator B in the function (or in
the model which leads to the forecast function); for example
model (5.3) requires a minimum of 2 past records. However,
50 past records are recommended wherever possible. If the
recursive estimation of values is started 50 points back,
loss of information that may be caused by equating the
initial error €., to zero,will be compensated by the time the
required future estimate is calculated. It should be
emphasized that the models here fit certain transformations
of the data (see transformations in Table 4.1), hence the
records used should first be appropriately transformed

[ln (z_ + 0.001) in the case of NOX] before applying the

t
forecast function. The forecast obtained then is given as
a logarithm and it should be transformed back to ppm

by taking its antilogarithm and subtracting 0.001.



It may be desirable to forecast the mean concentration
of a pollutant over a region including many cities ( or a
city including many monitoring stations). If reliable
records of the pollutant exist for stations all over the
region they can be used to calculate a series of means for
the whole region. The series of regional means can be re-
garded as output while the set of local means will be in-
puts to the system. Then a combined transfer function -
noise model connecting the inputs to the output can be
developed, and this will be capable of generating forecasts
of regional means. This cannot be developed for Edmonton
at present because there is only one monitoring station.
Also it is not tried for cities considered here because
the series available are not of equal length and they do
not cover the same period of time.

The time series analysis approach to pollution model-
ling is described generally in this study such that
people interésted in the field of air pollution could be
aware of its potentialities. Although models in this study
were developed for NO, it is obvious from the discussion
that the same procedures, outlined in this study, could be
followed to establish models that would be able to explain
the behavior of any other measurable air pollutant like
oxides of sulfur, oxides of carbon and particulate matter.
In addition, further investigation employing dynamic system

model approach could provide a powerful tool for air

pollution eontrol in urban centers.
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Appendix A

Data Organization on the Magnetic Tape

On magnetic tape all the data for a month are
stored in a file, thus there are 93 files on the tape.
The first file contains data for July 1964, the second
for August, 1964 and so on till the 93rd file which
contains data for March 1972. As more monthly data are
acquired, files can be created for them starting from
file 94 for April 1972.

The files have variable size depending on the number
of records each contains. A record is 80 bytes which
is the size of an 80 column card. The records are
blocked and the block size of 7200 bytes is fixed. Since
some of the data are alphanumeric (i.e. wind speed and
direction) while the others are numeric the data are
stored on tape in A - format so as to make them re-
trievable in any suitable format.

The first 62, 60, 58, or 56 records (depending on
the number of days in the month) in a file contains the
daily wind records for two stations which are the Edmonton
Industrial Airport and Edmonton -Inteérnational Airport ,
Each station has 12 two-hourly readings of wind speed
and direction on its record per day. For all the records
the first two columns contain identification code for

the record, The wind record has '21' as its identification
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code. The next six columns give year, month, and day,
which are then followed by columns containing wind
direction and speed.

The pollutants' records follow the wind data in the
file. Like wind record the first 2 columns contain code
that identifies the pollutant. The next 6 columns give
year, month, and day. The list that follows show the

code dictionary for the pollutants.

Code Pollutant

31 Soiling Index (Smoke) for Station 1
32 Soiling Index (Smoke) for Station 2
33 Soiling Index (Smoke) for Station 3
34 Soiling Index (Smoke) for Station 4
35 Soiling Index (Smoke) for Station 5
36 Soiling Index (Smoke) for Station 6
41 NOx hourly average

51 NO, five minute peak

42 NO, hourly average

52 NO, five minute peak

61 Oxidant hourly average

71 Hydrocarbon hourly average

81 Carbon Monoxide hourly average

Data for soiling index of smoke or coefficient of

haze (COH) are two hourly measurements, so there are 12



151

data points per station per day. For other pollutants
there are 24 data points per day.

In each record, the actual data starts from the 9th
column. Each data point for the pollutants is allocated
3 columns. Interpretation of the 3 - column data point

for each pollutant is the following.

Pollutant Value of Retrieved Measurement
coH X.XX units

NOx XXX ppm

NO, XXX ppm

Oxidant XX.X pphm
Hydrocarbon X.X ppm

Carbon Monoxide XX.X ppm

If 999 is encountered in the data field, it indicates
that there is no measurement for that pollutant at that

particular time.



(1)

(2)

(3)

(4)

Appendix B

Initial Estimate Algorithm

Perform the necessary transformation and differencing
to obtain Wy from Zy . Thus, the process to be

investigated is an ARMA(p,q).

Estimate the autocovariance function, C(k), of the
series w_ .
Estimate the autoregressive parameters a1 1 8y 1 eenes
a_ from the autocovariances by solving the following

P
set of equations

alc(q) + 32C(q -1+ ...... + apc(q -p+ 1) = C(qgt+l)
a;Clq + 1) + a,Clq) + .....0 t apc(q -p+ 2) =Cl(qt+2)

. .
o)

3,C(qtp=1)-+.2,C(q+p=2) + .x.... + 2 Cla) . =.Clg+p)

" la)

Use the estimates A1 1 8y 4 eeeens ' ap obtained in
(3) to obtain modified covariance sequence C'(j) for

j=OI 1' -.....,an fOllOWS:
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(@]
——
.
-
i

A

for p > 0, (a0 = -1)

C (j) = c(3) for p = 0.

Use autocovariances C'(O), C'(l), ...... , C'(q) to
iteratively compute estimates of the moving average
parameters gl ' gz P oeeseney gq applying the
Newton - Raphson algorithm developed by Wilson [78]
and summarized below

(a) Obtain initial values of X's given by

vC10)
0, 3 =1, veenen y g

it

X5

X.
]

(b) Start iteration

(i) Obtain Fj given by

qg] I(
. X.X.,. ~-C

=
1}

j =0, l, e s s 0w 0y qc

(ii) Obtain Matrix T which is given by



(iii)

(iv)

(v)
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X, X, - Xy Xg Xy e e Xy
X, X, X, 0 0 X, X .. X
X, X3 X, 0 0 )

- +
X 0 0 0 0 0 X
| "q j N 0

Obtain Hj , J=0,1, ......, g where Hj is the
correction factor for xj by solving the set of

linear equations given by

where T is the g + 1 by q + 1 matrix, H and F
are vectors having g + 1 elements each.

Obtain new values of Xj given by

X. = X. - H, ; for j =0, .....

i i i J ' r 4
1f IEjl < epsilon or]Hﬁj < epsilon for
j=0,1 «..0.., g where epsilon is a small
number, say, 0.001 then go to (c¢) to obtain the

estimates of bl ' b2 } seecesey bq , otherwise

go back to (b).
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(c) Obtain parameter estimates bj given by

bj=-Xj/x0 ’ j=l’ oooooo ' q.

Obtain also residual variance estimate, 63 '
given by

Yooy 2

°e2 = x0

(6) Output results.
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(2)

(3)

(4)

(5)

(6)

Appendix C
Model Estimation Algorithm

Input the number p, and values of the initial
estimates of autoregressive parameters if any.
Input the number q, and values of the initial estimates

of moving average parameters if any.

Perform the necessary transformations and dif-

ferencing on the raw data to obtain series {wt}.

Estimate series {et} of the residuals using the
possible model and the current estimates of the para-

meters,
Estimate sum of squares, SS, of residuals, given by

e.2 where n is the length of w_ series.

58
1t

[[]
Hs

i t

Repeat steps (3) and (4) for all possible values in
the admissible region of the parameters. This

produces a grid of residual sum of squares.

Pick the set of parameters which give minimum sum

of squares, SS, in the grid.
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Obtain the estimate Se2 of the residual variance,
ce2 .. given by

2 _
Se =8S/(n -1-q - 2p),
Output the efficient estimates of the model's
parameters and the estimate of the residual

variance.
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(3)

(4)

(5)

(6)

Appendix D
Transfer Function Model Identification Algorithm

Plot the output and input series together to detect

visually, if possible, the relationship between them.

Fit stochastic model of the type discussed in

Chapter 3 to the input series.

Prewhiten the input and transform the output

according to the model fitted to the input. This will
give a series of residuals Ve o of the input which are
not autocorrelated, and a series of residuals Ve

of the output which may or may not be autocorrelated.

Calculate the crosscorrelation function r(k),

k=1, 2, ...... ;, K of ' and Wy where K = 14,

Use r(k) to obtain the impulse response function

Vi given by
v = r(k) sw/sy .

Use r(k) to determine d,p and s as explained in

section 4,1.
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(7)

(8)

Use Vi to estimate parameters a s i=1, ..o Py

and b, , 1 =9, ...... r S.

Carry out steps (1) to (7) for each leading indicator .

Output results,
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Appendix E

Marquardt Algorithm for Estimating Parameters

Input the number m, of parameters to be estimated
and the initial values P; i=1, ......, m, Of
the parameters. Estimate the residual sum of squares

due to the initial value of the parameters.

Initialize iteration counter I to zero. Set the
maximum number IUP, of iterations that will be
allowed, say IUP = 10. Specify R = 0.01, say, and
F = 10 where R and F constrain the search. Specify
also an epsilon EP = 0,001, as the convergence para-
meter. Specify a delta del = 0.01 that will
be used to perturb the parameters one at a time

when the derivatives of e, are being calculated.

First Stage of Iteration

(3)

(4)

I=I+1

If I > IUP go to (17).

Obtain the residual series, ey from the model

using the current value of the parameters.

Calculate the partial derivative of each e, in the
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(6)

(7)

161

series with respect to different parameters as

follows:

(a) Derivative Xi,t of et(pl 1 Py 1 eennas ' pm)

with respect to parameter 1 is given by

xi,t = {et(pl 1 Py s eeenes , pm)
- et(Pl ? p2 7 eses e ’ pi + del, e ey pm)
p; + del, ..., pm)}/del.

(b) cCalculate Xi as in (a) for all e

't t/
t=1, (eesn ., N where n is the size of the
series. |

(c) Carry out steps (a) and (b) for all Py’
i=1, «eev.. , m. Thus for m parameters there

will be m vectors each containing n X; ¢ and
. ’

all the m vectors constitute an n bym matrix.
Form an m by 'm matrix

n
A,. = 1
1) =1

X

.

i,t59,t

Form vector G having m elements where
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n
G, = L X

, ,e
i =1 i,t’t

(8) Obtain a vector D, of scaling quantities having m

elements where

D, =/(a,.)

11l ¢

Second Stage of Iteration

(9) Obtain the modified linearized equations as follows:

A* = 2 I . | .
ij ij/ i j ! 1 J
* =
* =

(10) Solve the following set of linear equations for

HY .

A*H* = G* |

(11) Scale H* back to H to give the parameter corrections

thus

= *
H, = H*,/D, .



(12)

(13)

(14)

(15)

(16)

(17)

Obtain the new parameter values
p; =p; +H; 1=1, ceeeee, M,

Estimate sum of squares, SS, of the residuals due to
the new parameters. Compare this with the old sum

of squares, S0, due to the old parameters.
If SS < S0 go to (1l6).

If SS > SO multiply R by F. Test if R is greater
than its upper bound, UP, say UP = 2.
If R < UP, go to 9; otherwise the search has failed,

then go to 17.

Test all H; i=1, coeve., M,

(a) If every Hi is less than EP, the optimal esti-
mates of the parameters have been obtained.
Obtain also the covariance matrix of the para-
meter estimates which is the inverse of the m
by m matrix A.

Variance estimate of parameter p; is A-l..

ii *°
(b) If the condition in (a) is not satisfied, set
old values of the parameters P; to their new

values. Divide R by F. Go back to (3).

Qutput results.
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SERIES A NOx HOURLY AVERAGES FROM FEBRUARY 22 TO MARCH 7,

1967%

0.004 0.001 0.002 0.001  0.000 0.000
0.006 0.010 0.017 0.019  0.008 0.007
0.003  0.003 0.003 0.001  0.001 0.004
0.006 0.013 0.012 0.032  0.027 0.012
0.010 0.010 0.003 0.008  0.014 0.020
0.017 0.010 0.000 0.010  0.009 0.000
0.007 0.001 0.004 0.000 0.042 0.136
0.130 0.045 0.007 0.003  0.001 0.001
0,007 0.002 0.002 0.002  0.002 0.002
0.002 0.006 0.004 0.006  0.007 0.002
0.001 0.008 0.006 0.000  0.001 0.003
0.012 0.005 0.005 0.011  0.007 0.002
0.003 0.003 0.003 0.003  0.003 0.003
0.003 0.001 0.001 0.001  0.001 0.001
0.001 0.001 0.001 0.004  0.004 0.003
0.002 0.002 0.002 0.002  0.002 0.002
0.002 0.002 0.002 0.002  0.002 0.002
0.002 0.002 0.002 0.002  0.002 0.002
0.002 0.002 0.002 0.002  0.002 0.002
0.002 0.002 0.002 0.002  0.002 0.002
0.002 0.002 0.002 0.002  0.002 0.002
0.002 0.002 0.002 0.007  0.007 0.007
0.007 0.005 0.004 0.003  0.003 0.040
0.060 0.050 0.040 0.023  0.025 0.025
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0.018
0.007
0.011
0.015
0,004
$.001
0.010
0.002
0.000
0.000
0.025
0.015
0.013
0.005
0.008
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.003
0.004

0.000

0.005
0.007
0.010
0.009
0.001
0.003
0.010
0.003
0.000
0.000
0.020
0.011
0.008
0.006
0.011
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.003
0.004
0.000

0.000
0.070
0.009
0.012
0.000
0.010
0.008
0.003
0.000
0.000
0.012
0.011
0.006
0.010
0.011
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.004
0.004

0.000

0.000
0.030
0.002
0.009
0.000
0.010
0.000
0.002
0.000
0.000
0.010
0.011
0.006
0.017
0.011
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.004
0.000
0.000

0.000
0.020
0.010
0.007
0.000
0.009
0.000
0.002
0.000
0.030
0.007
0.012
0.005
0.011
0.010
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.003
0.004
0.000
0.010

0.000
0.011
0.015
0.007
0.000
0.009
0.001
0.001
0.000
0.035
0.018
0.015
0.004
0.011
0.004
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.003
0.003
0.004
0.000
0.015
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0.022
0.003
0.003
0.011

0.002

0.040
U.003
0.007
0.012

0.002

0.060
0.003
0.010
0.011

0.002

0.050
0.003
0.007
0.010

0.001

0.030
0.003
0.008
0.002

0.000

0.006
0.003
0.003
0.002

0.000

*The first record is the observation for midnight to 1 a.m.
on February 22 and consecutive observations are listed row

wise.

observations are in ppm.

Four rows constitute observations for one day.

The

166



SERIES B

0.147
0.038
0.013
0.049
0.095
0.057
0.017
0.039
0.011
0.023
0.023
0.013
0.013
0.015
0.023
0.012
0.024
0.013
0.012
0.023
0.025
0.029
0.014
0.008

DAILY MAXIMA OF NOxFROM APRIL, 1971 TO MARCH,

1972%

0.033
0.017
0.037
0.116
0.018

0.027

0.009

0.013
0.016
0.009
0.019
0.018
0.019
0.014
0.016
0.016
0.011
0.012
0.012
0.038
0.042
0.028
0.018
0.040

0.030
0.012
0.034
0.059
0.073
0.013
0.010
0.016
0.018
0.003
0.019
0.023
0.010
0.014
0.016
0.024
0.011
0.020
0.008
0.033
0.020
0.023
0.044
0.023

0.016
0.020
0.034
0.083
0.055
0.039
0.009
0.030
0.019
0.006
0.009
0.037
0.011
0.005
0.013
0.027
0.012
0.036
0.004
0.014
0.024
0.035
0.059
0.008
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0.072
0.017
0.003
0.033
0.079
0.016
0.044
0.028
0.020
0.013
0.010
0.043
0.015
0.023
0.018
0.016
0.006
0.021
0.022
0.009
0.031
0.071
0.015
0.006

0.041
0.023
0.015
0.067
0.027
0.053
0.034
0.013
0.008
0.011
0.008
0.037
0.017
0.023
0.014
0.023
0.015
0.021
0.018
0.139
0.037
0.021
0.024
0.001

0.022
0.039
0.023
0.028
0.013
0.026
0.035
0.014
0.014
0.019
0.008
0.013
0.016
0.023
0.012
0.028
0.014
0.018
0.015
0.024
0.049
0.013
0.022

0.004



0.016
0.007
0.003
0.002
0.007
0.007
0.000
0.013
0.020
0.022
0.023
0.030
0.008
0.099
0.010
0.026
0.004
0.000
0.000
0.000
0.020
0.145
0.086
0.097
0.153
0.073

0.117

0.016
0.001
0.008
0.014
0.001
0.000
0.000
0.007
0.013

0.022

0.064

0.000
0.008
0.020
0.005
0.003
0.017
0.000
0.005
0.004
0.020
0.122
0.073
0.049
0.072
0.074
0.163

0.016
0.001
0.000
0.009
0.001
0.000
0.000
0.008
0.015
0.022
0.041
0.000
0.008
0.059
0.007
0.000
0.000
0.019
0.005
0.000
0.020
0.000
0.025
0.019
0.094
0.081

0.098

0.016
0.001
0.000
0.008
0.001
0.000
0.000
0.001
0.013
0.022
0.023
0.000
0.008
0.019
0.002
0.036
0.019
0.049
0.000
0.000
0.020
0.029
0.043
0.041
0.027
0.057
0.381

0.007
0.008
0.002
0.008
0.007
0.000
0.009
0.052
0.007
0.033
0.026
0.000
0.008
0.015
0.002
0.010
0.067
0.028
0.018
0.020
0.020
0.107
0.192
0.053
0.053
0.156

0.279

0.013
0.003
0.002
0.007
0.012
0.000
0.016
0.017
0.013
0.029
0.028
0.000
0.008
0.003
0.000
0.0l0
0.007
0.038
0.001
0.020
0.020
0.096
0.047
0.023
0.121
0.028

0.058

0.012
0.003
0.002
0.008
0.013
0.000
0.017
0.006
0.0l16
0.018
0.035
0.007
0.005
0.006
0.018
0.003
0.000
0.042
0.000
0.020
0.020
0.074
0.062
0.176
0.042
0.281

0.050
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0.083 0.124 0.052 0.054 0.100 0.281 0.151

0.113 0.132

*The first record is the observation for April 1, 1971 and
consecutive observations are listed row wise. Each row
constitures observations for a week. The observations are
in ppm.



SERIES C HOURLY TEMPERATURE*

12.0 8.0 7.0 9.0 8.0 8.0 7.0

7.0 5.0 9.0 10.0 12.0 12.0 12.0
13.0 13.0 - 12.0 10.0 8.0 7.0 7.0

3.0 1.0 -2.0 -1.0 0.0 -1.0 0.0
-1.0 -1.0 0.0 ~2.0 -4.0 -2.0 0.0

3.0 5.0 8.0 10.0 12.0 14.0 14.0
12.0 11.0 10.0 10.0 9.0 8.0 8.0

8.0 8.0 7.0 8.0 7.0 7.0 6.0

6.0 7.0 10.0 11.0 14.0 16.0 18.0
19.0 21.0 21.0 20.0 15.0 15.0 15.0
15.0 14.0 9.0 14.0 13.0 14.0 12.0
12.0 10.0 9.0 11.0 13.0 16.0 18.0
23.0 28.0 30.0 31.0 34.0 38.0 32.0
29.0 28.0 37.0 36.0 35.0 32.0 32.0
31.0 27.0 30.0 28.0 29.0 28.0 26.0
26.0 28.0 30.0 32.0 33.0 35.0 36.0
36.0 35.0 32.0 30.0 30.0 28.0 27.0
28.0 28.0 26.0 24.0 22.0 21.0 21.0
20.0 21.0 22.0 24.0 28.0 32.0 35.0
38.0 40.0 40.0 41.0 40.0 37.0 36.0
34.0 33.0 31.0 33.0 33.0 34.0 33.0
31.0 31.0 32.0 30.0 31.0 31.0 33.0
37.0 37.0 38.0 38.0 40.0 41.0 41.0
39.0 37.0 36.0 36.0 35.0 34.0 34.0
34.0 32.0 29.0 27.0 27.0 27.0 27.0
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28.0
35.0
27.0
24.0
25.0
28.0
22.0
21.0
31.0
22.0

19.0

- 26.0

23.0
13.0
14.0
44.0
34.0
2.0
7.0
13.0
5.0
19.0

34.0

26.0
36.0
26.0
23.0
27.0
27.0
22.0
23.0
29.0
21.0
17.0
26.0
21.0
13.0
27.0
42.0
27.0
-1.0
10.0
1.30

6.0
23.0

33.0

28.0
36.0
27.0
22.0
29.0

27.0

22.0

25.0
30.0
20.0
15.0
26.0
20.0
12.0
31.0
40.0

20.0

13.0
11.0

7.0
24.0

32.0

*Read across the page.
Fahrenheit.

30.0
36.0
27.0
22.0
31.0
27.0
21.0
27.0
28.0
22.0
17.0
26.0
20.0
12.0
37.0
40.0
15.0
-1.0
15.0

9.0

9.0
28.0

32.0

31.0
34.0
25.0
21.0
31.0
27.0
20.0
28.0

25.0

10.0
29.0

31.0

34.0
32.0
25.0
21.0
32.0
27.0
21.0
29.0
24.0
21.0
20.0
26.0
16.0
13.0
41.0
36.0

6.0

1.0
15.0

7.0
12.0
31.0

30.0

Measurements are in degrees

35.0
31.0
25.0
23.0
31.0
26.0
20.0
30.0
23.0
19.0
24.0
24.0
15.0
11.0
44.0
35.0

4.0

4.0

13.0

700'

15.0
34.0
31.0
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SERIES D HOURLY WIND SPEED*

3.0 6.0 6.0 8.0 6.0 5.0 6.0

7.0 11.0 11.0 11.0 15.0 12.0 10.0

7.0 9.0 8.0 6.0 3.0 5.0 6.0
6.0 6.0 5.0 6.0 6.0 5.0 9.0
9.0 9.0 6.0 6.0 10.0 9.0 12.0
13.0 14.0 14.0 14.0 12.0 15.0 14.0
11.0 14.0 14.0 15.0 16.0 17.0 12.0
8.0 11.0 11.0 14.0 13.0 9.0 11.0
8.0 10.0 9.0 11.0 9.0 11.0 10.0
10.0 8.0 8.0 5.0 4.0 8.0 8.0
6.0 4.0 5.0 6.0 4.0 4.0 5.0
6.0 6.0 3.0 5.0 6.0 4.0 3.0
1.0 3.0 3.0 2.0 3.0 3.0 4.0
8.0 5.0 19.0 . 6.0 8.0 9.0 9.0
7.0 10.0 10.0 12.0  12.0 7.0 6.0
9.0 7.0 6.0 5.0 2.0 3.0 4.0
7.0 6.0 3.0 5.0 6.0 6.0 6.0
7.0 7.0 7.0 9.0 6.0 8.0 5.0
7.0 3.0 4.0 4.0 5.0 6.0 3.0
5.0 6.0 6.0 8.0 6.0 7.0 5.0
6.0 5.0 6.0 7.0 8.0 5.0 5.0
4.0 6.0 4.0 6.0 4.0 B.b 4.0
11.0 9.0 6.0 6.0 6.0 6.0 10.0
11.0 12.0 9.0 7.0 8.0 8.0 10.0
10.0 8.0 9.0 9.0 10.0 13.0 13.0

172



10.0
15.0
7.0
8.0
9.0
6.0
7.0
9.0
16.0
5.0
7.0
6.0
7.0
6.0
12.0

12.0

10.0

12.0
12.0
6.0
6.0
10.0
6.0
7.0
12.0
15.0
1.0
4.0
8.0
8.0
6.0
12.0
16.0
31.0
9.0
9.0
6.0
7.0
7.0

8.0

10.0
9.0
6.0
7.0
8.0
8.0
7.0

13.0

13.0
2.0
4.0

11.0
8.0
7.0

13.0

14.0

31.0

12.0
8,0
6.0
8.0
8.0

9.0

*Read across the page.

8.0

6.0 .

4.0
10.0
9.0
9.0
8.0
14.0
13.0
5.0
4.0
13.0
4.0
7.0
12.0
15.0
25.0
13.0
6.0
6.0
10.0
10.0
9.0

12.0
7.0
8.0

10.0
9.0
7.0
6.0

15.0
9.0
4.0
5.0

14.0
6.0
6.0

10.0

12.0

23.0

14.0
4.0
7.0
9.0

11.0

8.0

15.0
7.0
6.0

10.0
8.0
6.0
7.0

13.0
9.0
4.0
5.0

11.0
5.0
9.0

13.0

15.0

22.0

12.0
2.0
7.0
8.0

12.0

8.0

Measurements are in mph.

10.0

14.0
8.0
4.0
7.0
9.0
7.0

12.0

12.0

21.0

16.0

10.0
2.0
7.0
9.0

14.0
7.0
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SERIES E HOURLY TRAFFIC FLOW «

403 213 94 47 22 31 139
786 1595 982 885 973 1157 1185
1151 1078 1420 1670 1122 1034 1021
837 760 731 497 236 89 52
24 41 162 798 1632 1054 1005.
1048 1197 1297 1246 1176 1461 1734
1234 1262 1165 1018 718 736 481
255 130 49 36 39 161 815
1645 1086 951 1048 1262 1539 1279
1286 1513 1839 1362 1126 1265 944
793 848 736 517 340 163 95
67 124 379 641 976 1116 1255

1340 1388 1426 1446 1293 1329 1088

944 1189 954 593 860 887 600
357 208 132 68 90 151 201
382 661 753 1002 1177 1325 1552
1495 1262 883 854 869 842 698
626 279 118 64 32 31 40
137 839 1631 1103 949 . 1002 1179

1347 1177 1203 1389 1620 1149 1188
1111 819 705 771 371 194 137
35 39 27 141 810 1617 1045
918 1088 1186 1254 1196 1136 1440

1768 1154 119 1050 793 695 688
401 180 13 28 40 26 148
789 1592 1063 969 1062 1202 1357
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1245

847

29
1029
1185

229
1654
1267

793

68

1395
939
423
324

1534
578
157

1272

1019

40

869
1736

‘*Read across the page.

1237
776
47
1171
1218
102
1129
1548
928
126
1355
1219
218
669
1297
290
778
1210
772
35
986
1184

1441
758
149

1311

1195

35
930

1802
768
375

1430

1043
120
779
863
100

1591

1212
704

30

1065

1194

1646
480
795

1269

1061

33
989

1412
490
679

1425
567

66

1022

940
73

1033

1424
633
147

1282

1070

1167
207
1537
1234
742
35
1117
1235
318
1070
1411
858
81
1149
847

31.

931
1666
374
803
1132
772

117
95
1123
1511
661
155
1366
1248
149
1178
1274
891
180
1357
836
14

923

1154
177
1551
1091
729

1119
47
9717
1744

414 .

812
1242
1037

103
1288
1162

611

175
1533

126

38
1071
1089

18
1062
1385

787

Observations are number of vehicles.

175



SERIES F DAILY TEMPERATURE *

41.0 46.0 44.0 44.0 52.0 59.0 49.0
47.0 47.0 37.0 43.0 46.0 53.0 61.0
49.0 42.0 50.0 50.0 62.0 52.0  53.0

61.0 63.0 57.0 57.0 51.0 48.0 47.0

52.0 61.0 69.0 61.0 72.0 71.0 63.0
59.0 77.0 64.0 57.0 65.0 81.0 86.0
83.0 60.0 61.0 60.0 56.0 65.0 66.0

62.0 68.0 68.0 74.0 80.0 78.0 71.0
68.0 64.0 72.0 72.0 66.0 74.0 77.0
81.0 71.0 60.0 57.0 59.0 61.0 64.0
73.0 71.0 74.0 69.0 59.0 58.0 59.0
59.0 69.0 71.0 77.0 78.0 79.0 63.0

61.0 65.0 51.0 58.0 68.0 73.0 69.0

71.0 55.0 56.0 69.0 65.0 62.0 62.0
67.0  58.0 57.0 61.0 70.0 70.0 79.0
83.0 75.0 78.0 81.0 84.0 80.0 74.0
81.0 72.0 62.0 70.0 75.0 70.0 72.0
79.0 86.0 75.0 88.0 92.0 82.0 80.0

81.0 82.0 82.0 76.0 76.0 81.0 86.0

73.0 59.0 74.0 76.0 73.0 73.0 68.0
8l.0 88.0 86.0 71.0 72.0 80.0 72.0
69.0 74.0 73.0 76.0 83.0 72.0 68.0
63.0 72.0 18.0 83.0 58.0 67.0 67.0
65.0 71.0 64.0 68.0 60.0 54.0 48.0
52.0 62.0 64.0 49.0 48.0 58.0 65.0
68.0 59.0 48.0 43.0 43.0 52.0 40.0
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45.0 60.0 66.0 68.0 66.0 75.0 73.0
55.0 75.0 73.0 64.0 65.0 56.0 52.0
37.0 34.0 41.0 40.0 48.0 51.0 52.0
53.0 54.0 52.0 51.0 46.0 33.0 22.0
24.0 36.0 39.0 42.0 41.0 35.0 35.0
25.0 11.0 17.0 20.0 47.0 46.0 42.0
41.0 34.0 31.0 39.0 35.0 36.0 32.0
45.0 45.0 39.0 43.0 40.0 26.0 20.0
19.0 20.0 19.0 21.0 25.0 29.0 30.0
39.0 37.0 24.0 16.0 9.0 12.0 23.0
22.0 5.0 -11.0 -10.0 -5.0 -3.0 -8.0
23.0 26.0 19.0 31.0 10.0 3.0 -6.0
-14.0 -13.0 -19.0 1.0 16.0 26.0 20.0
35.0 35.0 26.0 21.0 6.0 27.0 36.0
35.0 23.0 24.0 31.0 20.0 18.0 -17.0
-19.0 2.0 42.0 37.0 30.0 =20.0 -19.0
-11.0 -9.0 -8.0 -14.0 -20.0 -25.0 -22.0
-1.0 24.0 30.0 29.0 19.0 11.0 13.0
10.0 4.0 2.0 -1.0 3.0 13.0 27.0
36.0 36.0 30.0 36.0 11.0 21.0 31.0
32.0 21.0 1.0 0.0 2.0 1.0 7.0
8.0 4.0 -10.0 -7.0 -2.0 -2.0 -4.0
0.0 2.0 11.0 14.0 16.0 19.0 7.0
14.0 33.0 44.0 46.0 53.0 51.0 51.0

49.0 48.0 41.0 35.0 45.0 43.0 43.0
35.0 38.0 33.0 34.0 37.0 35.0 41.0

47.0 50.0

*Read across the page. Measurements are in degrees Fahrenheit.



SERIES G

9.5
12.0
15.9
14.3

9.3
9.9
16.4
8.5
10.6
8.6
7.7
9.4
11.7
7.2
7.2
6.8
4.9
11.0
6.6
11.8
6.6
10.5
7.6
7.7
14.7

8.1

DAILY WIND SPEED =*

8.5
9.0
8.9
12.8
7.8
12.8
13.7
4.9
14.6
8.6
6.9
3.9
14.2
11.7
14.0
13.0
10.1
10.2
8.5
12.8
6.0
12.2
4.8
12.1
8.0
12.2

11.3
16.2
9.8
10.2
11.3
16.0
9.4
8.2
11.7
13.9
6.5
6.3
22.4
14.8
17.3
10.4
15.3
7.0
7.8
9.8
5.5
6.3
11.0
10.8
13.5
11.5

11.8
6.0
13.7
7.0
9.5
8.6
8.8
6.1
13.5
11.1
12.0
5.2
16.5
10.4
15.5
3.8
3.8
9.3
9.8
6.4
11.8
7.8
9.8
9.5
11.0
12.6

10.9
9.5
10.0
9.7
6.2
8.0
12.1
11.1
10.4
14.6
14.7
7.5
6.2
6.8
12.9
8.3
8.1
17.5
8.4
11.4
11.3
17.0
9.9
18.1
7.3

8.3

9.3
7.4
17.7
13.0
7.6
11.0
5.0
7.2
6.5
15.0
18.4
8.3
5.8
9.1
12.6
8.0
6.4
8.4
5.6
10.9
6.4
13.7
9.3
21.6
8.0

8.8

11.5
8.0
13.5
8.0
12.6
13.5
8.7
8.8
5.2
7.7
15.6
13.3
5.9
19.7
9.0
6.7
5.5
7.2
10.8
8.4
9.2
11.5
8.4
20.1
7.3

17.4



8.0
11.3
14.6

9.3
10.1
21.0

5.3
11.6

6.8
10.6
16.4
11.3
10.0
10.0
14.9

7.0
11.8

7.8

6.1

7.7

9.3

5.1

6.2
13.7

5.6
12.9

5.8

7.8
7.2
5.2
6.0
9.9
14.5
5.5
8.2
12.3
6.8
18.6
11.0
8.1
21.0
5.4
10.1
6.0
13.1
8.1
6.5
11.8
13.2
8.0
5.3
9.1
4.9

12.8

6.4

(63
.
(o)}

13.3
5.4
6.9

10.3
7.7

11.8

13.3
4.9
7.2
8.2
5.6
9.7
8.5
8.3
5.8
9.7
9.8
10.3
8.7
7.4
8.0
6.7
9.6

7.2

7.3
5.7
11.8
6.7
10.5
8.2
8.8
11.7
13.8
6.4
6.9
13.3
8.6
14.6
16.5
7.3
8.5
15.3
12.8
12.6
8.3
4.5
10.9
8.1
8.1

6.3

10.4
12.5
6.9
10.1
14.4
6.6
7.7
22.8
7.2
11.2
8.4
7.6
8.9
5.8
8.3
20.0
8.3
11.3
8.4
6.1
7.0
6.1
14.1
5.0
5.8

6.0

6.2
8.7
9.2
16.3
8.8
5.6
8.3
10.2
7.8
7.6
9.8
16.5
7.1
9.3
8.7
8.3
3.1
8.5
8.1
10.3
10.5
12.1
7.8
7.3
5.3

3.5

*Read across the page. Measurements are in mph.

11.6
14.1
9.6
19.6
13.8
9.2
6.6
12.5
6.6
6.8
7.5
12.9
8.2
13.8
10.8
8.3
4.5
7.6
6.6
12.0
4.8
6.0
9.5
8.8
13.6
5.8

179



SERIES H

22448
24057
22790
22259
224438
22296
21088
22089
21887
21842
22200
22200
22572
16853
21992
21909
21909
22195
21034
21019
21333
21788
22332
22197
21738
21175

DAILY TRAFFIC FLOW *

23241
18113
24167
23845
24034
22832
23313
22825
23522
22790
23234
23234
22947
22716
22487
23055
23055
22517
21927
22185
21591
22486
22780
22614
22483
22128

22520
17912
21707
22027
21528
20698
21281
19172
20521
20559
20455
20455
20188
19180
19307
19262
19262
19304
18281
10183
18781
19989
19330
20131
20181
20230

19895
17477
17798
18937
17943
18061
17564
15249
18564
18670
18059
18059
18164
17991
17513
17568
17568
15616
16318
16440
16660
16716
14950
16927
16825
16626

180

21925
21304
21635
20917
21813
21053
21109
14937
21376
21376
21376
21376
21722
21027
21227
21227
21227
14673
20425
20410
20531
21655
15263
20535
20403
20416

21694
22557
21745
21787
21264
21059
20811
21067
21904
21528
21528
21619
21768
21735
21598
21598
22190
20669
20011

21033
21270

22020
21606
20397
20841
21107

21965
23327
21640
22013
21883
209 38
21246
21404
21694
21512
21512
21468
22762
21236
21535
21535
21585
20458
20145

20911
20686

21413
21696
20748
20727
19997



22112
21422
21561
21758
20971
18224
19308
21243
21060
21376
18780
18705
18705
22108
19905
19905
18322
18322
20877
20484
19896
19537
20348
20823
21804
20502
24227

%Read across the page. Observations are number of vehicles.

22001
23019
22959
22791
22729
22729
22638
21877
21320
22634
19805
22782
22782
21130
19763
19763
20082
20082
21000
20557
20515
19616
21848
21059
22652
22073

18916

21022
20753
2116l
21441
20818
20818
19417
21237
18737
21059
21059
20979
20979
15250
18553
18648
17601
17601
18702
19923
13771
16961
21224
20903
21345

21016

16953
16347
16867
18998
17587
17587
16009
17300
13479
16229
16229
17525
17525
14172
14865
15232
12475
12475
15014
16081
15065
14052
16446
18202
17193
17957

20368
15560
20919
20488
20759
20759
20759
20383
19558
19448
19448
21098
16540
16799
17931
16546
16546
13802
19802
19510
17434
20100
19859
20705
21086

20934

20644
21509

21523

- 20878

21104
20592
29791
20415
19798
19179
19179
20456
21026
19440
17883
17393
17393
20455
20455
18835
18478
18313
20478
20946
21368

21388

20991
20424
21184
19966
20786
21684
20091
19842
19994
20447
19712
18185
20876
18838
18838
16577
16577
19733
19621
19273
19075
19016
20155
21198
20859

21896

181





