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Abstract

Despite the brain’s inherent ability to continually learn, biological insights are

rarely applied to continual reinforcement learning (RL). This thesis addresses

this gap by examining four under-investigated biologically-inspired modifica-

tions within the context of continual RL: energy minimization, wire length

constraints, sparse distributed memory multilayer perceptrons, and fuzzy tiling

activations. We show that some of these modifications help increase plastic-

ity and generalization as well as slightly decrease catastrophic forgetting. We

additionally provide an analysis of the learned representations.
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Preface

Parts of this thesis have been accepted as a workshop paper by Mastikhina,

Golnaz, and White at the 2024 Reinforcement Learning Conference: Finding

the Frame workshop. Newer results from the thesis may be submitted to a

conference.
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Chapter 1

Introduction

In order to be able to adapt to real world settings, reinforcement learning (RL)

agents need to be able to continually learn from evolving temporally-structured

information. However, unlike biological neural networks, artificial neural net-

works are poor at learning from sequences of data and suffer from significant

challenges with memory stability and plasticity (Kudithipudi et al. 2022; L.

Wang et al. 2024). These issues impact all deep continual learning sub-fields,

including continual RL. However, they are also prevalent in RL as a whole

as RL agents learn from data that is gradually acquired through exploration,

commonly leading to training on a continuously shifting distribution of data.

Plasticity loss in particular is a key RL challenge (Lyle, Zheng, Khetarpal, et

al. 2024; Nikishin et al. 2022).

In this thesis, we propose to draw more inspiration from the remarkable

ability of biological brains to continuously learn. Biological neural networks

have evolved around learning from sequential data, and they are able to main-

tain stable and reusable memories while still remaining plastic enough to keep

incorporating new information (Parisi et al. 2019). By examining already ex-

isting mechanisms that enable continuous learning in biological systems, we

may be able to better understand how to build artificial continuously learning

systems.

We examine four modifications to the Soft-Actor Critic (SAC) (Haarnoja,

Zhou, et al. 2019), only one of which has been applied to RL, that can be cat-

egorized into two overarching themes derived from brain functionality: energy
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constraints and memory indexing. Energy constraints impose natural limita-

tions to brain activity, while memory indexing refers to learning constrained

addresses that access whole memories. These themes are interconnected, as

energy constraints have been suggested to lead to the separation of groups of

neurons representing individual concepts in the brain (J. C. R. Whittington,

Dorrell, et al. 2023).

Within machine learning itself, energy constraints have previously been

shown to lead to disentanglement, or to an increase in neurons coding for indi-

vidual factors of variation in the environment (J. C. R. Whittington, Dorrell,

et al. 2023), and to the organization of neurons into clusters that correspond

to areas with different functions within brains(Margalit et al. 2023). Indexing

mechanisms, mainly through sparse activations, have been shown to improve

transfer learning (H. Wang et al. 2024) and decrease catastrophic forgetting

(Bricken et al. 2023).

For energy constraints, we look at non-negativity with weight and activa-

tion minimization (J. C. R. Whittington, Dorrell, et al. 2023) and wiring-length

constraints (Margalit et al. 2023). We refer to the former as small-bio, and

the latter as wire. Small-bio penalizes big weights and activations, and wire

encourages the similarity of representations between nearby neurons whilst dis-

couraging it between further away neurons. For indexing, we examine fuzzy

tiling activations (FTA) (Pan et al. 2021) and a neural network variant of

sparse distributed memory (Bricken et al. 2023), also called the spare dis-

tributed memory multilayer perceptron (SDMLP). Both are sparse activation

methods, but SDMLP introduces additional normalizations and an excitatory

to inhibitory varaint of top-k activations. Please see Chapter 3 for more back-

ground and details about the modifications.

1.1 Contributions

This thesis provides an exploration of a few biologically-inspired or aligned

modifications for continual RL. The key contributions are as follows:

1. We provide a brief overview primarily of existing modifications that have
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roots in brain function, but are under-investigated in RL in particular,

and why we think these modifications may be helpful for continual RL.

We then implement the energy constraints and indexing modifications

in a SAC agent.

2. Although we did not exhaustively optimize the implementations, we

show no significant benefits from the modifications in reducing catas-

trophic forgetting by SAC on a subset of Mujoco environments from

Metaworld (Yu et al. 2021).

3. We also show that a few of the modifications, most particularly one of

the energy constraint modifications (which we refer to as small-bio),

already show promising benefits for plasticity and generalization, which

are key desiderata of continual learning. This is shown through increased

performance by SAC on Mujoco environments (Tassa et al. 2018; Yu

et al. 2021), with corroborating representation metrics results, includ-

ing fewer non-updated units and a lower parameter norm (Lyle, Zheng,

Khetarpal, et al. 2024).

1.2 Thesis Structure

This thesis consists of six chapters. Chapter 2 provides a background to RL

and to the Soft Actor-Critic algorithm that is used in the experimental portion

of this thesis. Chapter 3 provides a brief overview of biologically inspired or

aligned principles and modifications that we believe may be helpful for contin-

ual RL, and explains the modifications that we try out experimentally. The

4th chapter provides more details into the implementations of the modifica-

tions, and of our general RL setup. The experiments section shows the results

of the modifications on a few setups for deconstructed continual learning prob-

lems, and we provide analyses of the properties of the resulting representations.

Chapter 6, further discusses the results, their limitations, and potential future

work.
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Chapter 2

Reinforcement Learning
Background

This chapter provides an overview of reinforcement learning to help understand

the Soft Actor-Critic (SAC) algorithm, which is the underlying reinforcement

learning algorithm used in this thesis.

2.1 Markov Decision Processes

Reinforcement learning is goal-directed learning where an agent interacts with

and learns from its environment (Sutton and Barto 2018). The Markov Deci-

sion Process (MDP) framework (Puterman 2014) formalizes these interactions

by defining them in terms of states, actions, and rewards. For each interaction

step, the agent is in state s out of a state space S and selects an action a from

an action space A according to policy π, receives reward r, and transitions to

s′, another state from the state space S. The agent’s goal is to learn a policy

π, which maps the agent’s actions to states, that maximizes its expected sum

of future rewards.

2.2 Approximate Q-Functions

A common approach to learning a policy includes assigning the expected future

sum of rewards to state-action pairs, and iteratively improving the accuracy

of these values in tandem with the policy. These values are incrementally

updated through temporal-difference (TD) learning. At optimality, each state-
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action pair would have a Q-value, Q∗(s, a), which is the expected future sum of

rewards starting from state s, taking action a, and acting optimally thereafter.

If the environment is deterministic, the optimal policy π∗ would have the agent

taking the action with the highest Q-value at each state.

When an environment has continuous states and action spaces, or when

there are too many possible states and actions in general, storing Q-values

for individual state-action pairs in a table can becomes infeasible. In such

an event, the agent is also likely to keep encountering state-action pair com-

binations that it has not seen before, so it must learn to approximate Q-

values by extrapolating from similar previous observations. This can be done

through parameterized function approximation, now commonly done with ar-

tificial neural networks as part of deep reinforcement learning, where the agent

learns the parameters w in the parameterized function Q(s, a;θ) (Sutton and

Barto 2018).

2.3 Deep Reinforcement Learning Considera-

tions

When Q-functions are learned with neural networks, target networks get em-

ployed to decrease early overgeneralization and help stabilize training (Mnih et

al. 2015). A target network is a lagging copy of a Q-function neural network

that helps update estimates of current state-action values in the main Q-

network using older estimates of subsequent state-action values in the agent’s

trajectory.

Additionally, to decrease correlations between states and thus increase sta-

bility in neural network training, as well as to improve sample efficiency, past

interactions between the agent and the environment tend to be saved in a

replay buffer and are revisited as learning progresses (Mnih et al. 2015).
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2.4 Policy Gradient and Actor-Critic Meth-

ods

While action-value functions can assist with learning policies, agents can learn

policies independently with function approximation. In what is referred to as

policy gradient methods, agents learn parameters θ for policy π(a|s,θ), which

gives the probability of taking action a in state s that would maximize the

future sum of rewards. For continuous control, when the environment has a

continuous action spaces, the policy network outputs the mean and standard

deviation for the probability densities of the action spaces.

The policy’s own estimate of the future sum of rewards is simplified com-

pared to that of value functions, as intermediate state values are not learned,

and may suffer from large variances. Actor-critic algorithms address this by in-

stead having the policy (actor) maximize the sum of future advantages, which

is the policy’s estimate of the sum of future rewards minus the expected sum

of future rewards obtained by a value function (critic) (Konda and Tsitsiklis

2003).

2.5 Maximum Entropy Reinforcement Learn-

ing

Instead of overfitting to only one policy that seems optimal to the agent at

the time but may in fact be sub-optimal, agents need to maintain some ex-

ploration of the environment. To address this, instead of maximizing just

the expected sum of rewards, maximum entropy reinforcement learning max-

imizes the expected sum of rewards with an entropy bonus, which improves

exploration by rewarding agents for acting more randomly (Haarnoja, Tang,

et al. 2017). The maximized objective summed over all time steps t is then∑
t E(st,at)∼ρπ [r(st, at) + αH(π(·|st))], where inside the summation is the ex-

pected value of the state-action pair at time step t following the current policy

π, r(st, at) is the reward after taking action at in state st at time step t, the

entropy term H(π(·|st)) is a measure of uncertainty over the policy’s distri-
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bution in state st at time step t, and α is the temperature parameter that

modules the relative importance of the entropy term.

2.6 Soft Actor-Critic

The soft actor-critic (SAC) is a maximum entropy actor-critic algorithm. It

consists of a replay buffer, one actor (policy) network, two critic (Q-value)

networks, and two critic target networks. There are two critics in order to

avoid overestimation of state-action values; the actor uses the smallest value

estimate out of the two outputted by the critics. The “soft” refers to the

maximum entropy (“soft”) Q-functions that now include entropy terms in

their estimates of state-action values, encouraging exploration with the actor.

In the most recent version of SAC, to avoid brittleness due to potential poor

parameter selection, the entropy term’s temperature parameter adjusts during

training (Haarnoja, Zhou, et al. 2019). The algorithm for SAC is described in

Table 2.1.

Soft Actor-Critic Algorithm
ϕ, θ1, θ2,D Initialize actor network, critic networks, and replay buffer
θ̄1 ← θ1, θ̄2 ← θ2 Initialize critic target networks
For each iteration:
For each environment step:
at ∼ πϕ(at|st) Sample action from policy
st+1 ∼ p(st+1|st, at) Transition to next state
D ← D ∪ {(st, at, r(st, at), st+1)} Store interactions in replay buffer

For each gradient update:

θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2} Update critic weights

ϕ← ϕ− λπ∇̂ϕJπ(ϕ) Update actor weights

α← α− λ∇̂αJ(α) Adjust temperature for entropy
θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2} Update critic target weights

Table 2.1: SAC Algorithm as per Haarnoja, Zhou, et al. 2019
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Chapter 3

Biologically-Inspired
Approaches to Continual
Learning

Living beings are arguably the only natural learning systems currently known

to us. Because of that, it might be unsurprising that deep learning has its

roots in studies of biological minds. As their name suggests, artificial neu-

ral networks resulted from simplified models of impulse propagation between

neurons and connectionist models of the brain (McCulloch and Pitts 1943;

Rosenblatt 1958). Convolutional neural networks (CNNs) were originally in-

spired by the visual cortex (Fukushima 1980; Fukushima and Miyake 1982;

LeCun et al. 2015), and TD learning, central to RL, started as an analog of

classical conditioning in animals (Sutton and Barto 1981; Sutton and Barto

1987). Moreover, neural and behaviour correlates keep surfacing from classical

and modern RL (Subramanian et al. 2022).

While we believe that we will likely will not need to fully replicate the

brain in order to have optimally functioning artificial learning systems, it may

be beneficial to continue taking inspiration from already existing continual

learning systems. However, other than for perhaps experience replay, which

has correspondences to the complementary learning systems theory (Flesch

et al. 2023; Kudithipudi et al. 2022; Mnih et al. 2015), biologically-aligned

approaches to tackling continual RL are heavily under-explored.

In this section, we cover a few biologically-aligned approaches to continual
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learning that we believe would be beneficial to try in continual RL, focusing on

modifications that have been tried elsewhere in machine learning and would

require only modest changes. We contextualize them within the framework of

how the brain stores information, group the main approaches into energy con-

straints and indexing, and include a few separate focuses that we believe could

be helpful for continual RL. We discuss how these approaches may end up be-

ing beneficial for orthogonality and generalization, which tie-in to catastrophic

forgetting and plasticity.

The described energy constraints and indexing modifications are later ex-

perimentally implemented in an RL agent in the thesis.

3.1 Energy constraints

The brain is energetically expensive; in humans, despite the brain compris-

ing on average 2% of our weight, it is responsible for approximately 20% of

our resting metabolic energy (Herculano-Houzel 2011; Kety 1957). Across

species, brains have a fixed energy cost per neuron, with the total metabolic

budget scaling based on the number of neurons (Herculano-Houzel 2011). Be-

cause this imposes an evolutionary constraint on the brain, the activity and

structure of neural networks in the brain is thought to be heavily guided by

energy optimization (Herculano-Houzel 2011; Oldham et al. 2022; Padamsey

and Rochefort 2023; Takagi 2021).

While there is likely to be a trade-off between biological constraints and

other factors in the evolution of the brain (Oldham et al. 2022), the brain

seems to be a strong example of form guiding function. For example, simply

the propagation of waves guided by the geometry of the brain can be used to

predict brain activity with high accuracy (Pang et al. 2023).

Understanding how biological constraints shape biological neural networks

may help us understand how to grow artificial cognition without hard-coding

specifics. For instance, in addition to broader regions of functional organiza-

tion, brains contain cells that code for individual factors of variation within

a task space, such as object vector cells (Høydal et al. 2019), or border cells
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(Solstad et al. 2008). Additionally, variables that define a task tend to each

be coded by one neuron (Flesch et al. 2023). Energy constraints have been

proposed to play a key role in how these representations are formed (Margalit

et al. 2023; J. C. R. Whittington, Dorrell, et al. 2023).

The compositional representations described above are thought to be in-

strumental in deriving new knowledge (Kurth-Nelson et al. 2023), and in more

effective continual learning of tasks (Mendez and Eaton 2021; Mendez and

Eaton 2022; J. C. R. Whittington, McCaffary, et al. 2022), particularly re-

lated ones. In the brain, this is likely done through the formation of cognitive

maps, which tie sensory representations with reusable abstract spatial rep-

resentations (Kurth-Nelson et al. 2023; Mendez and Eaton 2022; J. C. R.

Whittington, McCaffary, et al. 2022; J. C. Whittington et al. 2020).

While we think that cognitive mapping is a topic that could be particu-

larly promising to explore in RL, in this thesis we focus on the direct effects

of just using energy constraints to create compositional representations. At

this stage, we simply refer to them here as disentangled representations, where

more individual neurons code for individual factors of variation in the input

data. This form of disentanglement may create generalizable representations

that then create less interference between tasks, thus being beneficial for con-

tinual learning. Here, we focus on two different types of energy constraints on

SAC: biological constraints of non-negativity and energy minimisation (J. C. R.

Whittington, Dorrell, et al. 2023), which we refer to as ”small-bio”, and wiring

length constraints (Margalit et al. 2023).

3.1.1 ”Small-bio”

Biological constraints of non-negativity and energy minimization in conjunc-

tion, which we refer to as small-bio for short, have been shown to promote

disentanglement in neural networks (J. C. R. Whittington, Dorrell, et al. 2023).

Under optimal non-negative energy minimization, particularly for linear data,

neurons end up coding for at most one factor of variation in the environment,

instead of potentially multiple ones (J. C. R. Whittington, Dorrell, et al. 2023).

This energy minimization approach involves using positive activations (for ex-
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ample, through the use of a ReLU activation function (Nair and Hinton 2010)),

and adding additional losses for the l2 norm of the activations as well as the

l2 norm of the weights:

Lsmall-bio = Ldefault + βLactivations + βLweights (3.1)

Here, Ldefault is the default training loss, β modulates the strength of

small-bio, Lactivations is the l2 norm of the activations, and Lweights is the

l2 norm of the weights.

3.1.2 Wiring Length Constraints

Long-range neuronal projections are energetically expensive to form, so wiring

length may be one of the principles guiding the functional arrangement of neu-

rons (Margalit et al. 2023; Oldham et al. 2022). Wiring length constraints, im-

plemented within a topographic deep artificial neural network (TDANN), have

been shown to recreate representations created by the brain by introducing a

loss to encourage nearby neurons to have similar representations (Margalit et

al. 2023). Wiring length constraints within artifical neural networks have not

originally been shown to have a clear performance benefit, but to increase in-

terpretability due to physical clustering; we nonetheless see improvement with

wire in certain cases, even when applied to linear layers, as shown in Chapter

5. Within a TDANN, the following spatial loss, which we refer to as Lwire, is

applied to convolutional layers:

Lwire = Ldefault + α(1− Corr(r⃗, D⃗)) (3.2)

Here, α is the strength of the wire regularization, Corr is Pearson’s corre-

lation, r⃗ is a vector of pairwise similarity distances between activations, and D⃗

is a vector of the inverse distances for each pair. This loss encourages neurons

that are closer to each other within a layer to have more similar activations,

which leads to shorter wiring lengths between layers (Margalit et al. 2023).
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3.2 Indexing

Although it is not an official term, we use indexing to refer to theories and

empirical findings behind the brain developing neurons serve as indices into

a broader concept or memory (McClelland et al. 1995; O’Reilly et al. 2014;

Teyler and DiScenna 1986; Teyler and Rudy 2007). When those broad concept

or memories themselves are encoded by only a few neurons, we characterize

that under the category of energy constraints in the previous section.

Indexing is prevalent as a general principle in the brain, but it is particu-

larly associated with the hippocampus and seems to greatly factor into how

the brain stores knowledge - a phenomenon that is particularly relevant to

continual learning.

In the hippocampal indexing theory, and the complementary learning sys-

tems (CLS) theory, the hippocampus formation learns sparse, non-overlapping

representations that then index the overlapping and distributed representa-

tions in the neocortex (McClelland et al. 1995; O’Reilly et al. 2014). This

leads to a high orthogonality where, for example, only a small number of the

same neurons are active between multiple tasks (Flesch et al. 2023). As catas-

trophic interference during sequential task learning occurs when information

is indiscriminately distributed throughout a neural network, as is the default,

strategies that increase orthogonality in the representations can decrease for-

getting (Flesch et al. 2023; Lewandowsky and Li 1995).

Below, the Sparse Distributed Memory Perceptron (SDMLP) and Fuzzy

Tiling Activations (FTA) are sparse activation approaches that we see as con-

sistent with indexing. Incidentally, both modifications additionally have ties

to circuits in the cerebellum (Albus 1971; Sutton 1995; Xie et al. 2023).

3.2.1 FTA

FTA is an activation function that induces sparsity in neural networks by

binning inputs into a larger sparse vector with a fuzzy indicator function (Pan

et al. 2021). The fuzziness is used to avoid zero derivatives. FTA has previously

been designed for RL, but effects on plasticity and catastrophic forgetting have
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not yet been looked at. However, FTA has previously been shown to increase

transfer learning in Deep Q-Networks (Mnih et al. 2015; H. Wang et al. 2024).

3.2.2 Sparse Distributed Memory Multilayer Percep-
tron

Closely related to Hopfield networks, Sparse Distributed Memory (SDM) is

a mathematical associative memory model of how concepts, or patterns, are

stored and retrieved in the brain (Kanerva 1988; Kanerva 1992).

SDMLP is a one hidden layer neural network implementation of SDM that

treats input weights into the hidden layer as addresses, and output weights

as patterns (Bricken et al. 2023). In supervised learning, SDMLP has been

implemented with two sparse activation function variants applied to a wide

hidden layer: a top-k activation function, where k gradually decreases, and a

GABA switch variant of the top-k activation function (Bricken et al. 2023).

Within mature brains, γ-amino-butyric acid (GABA) is the main inhibitory

neurotransmitter. However, early during development, it is primarily excita-

tory. The switch in responses from excitatory to inhibitory in neurons is

referred to as the GABA switch (Ganguly et al. 2001). Accordingly, in the

GABA switch variant of SDMLP, the GABA top-k function starts out as ex-

citatory, and then transitions into inhibitory.

When applied together with Elastic Weight Consolidation (Kirkpatrick et

al. 2017) to the class incremental setting without memory replay for CIFAR-

10, SDMLP had been shown to obtain state-of-the art results (Bricken et al.

2023).

3.3 Other

We briefly include a few other biological aspects that we think could be fruitful

to investigate in the context of continual RL, although related strategies are

not implemented in the thesis. These aspects are plasticity within representa-

tion hierarchies, and prioritizing general representations over granular during

critical learning periods.
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Plasticity Within Representation Hierarchies Our brains do not have

full plasticity, especially when it comes to lower-order sensory information as

opposed to higher cognitive functions (Hensch 2004; Sydnor et al. 2021). Sen-

sory maps become established early in our lives and stay relatively stable. In

one example, kittens with vision deprivation in one eye retain a vision deficit if

this vision deprivation happens early post-birth during a critical period (Wiesel

and Hubel 1963). These critical periods occur progressively later during de-

velopment for progressively higher order representations (Sydnor et al. 2021;

Voss et al. 2017).

Critical learning periods occur in artificial neural networks as well; if an

information deficit is present early in neural network training, the neural net-

work will not be able to learn the information once it is re-added (Achille et

al. 2019).

We propose that when it comes to the stability and plasticity trade-off in

continual RL, throughout more of the agent’s lifetime, it may make sense to

prioritize the stability of lower order representations, or the representations in

the layers closer to the input, and the plasticity of higher order representations,

in the layers closer to the output.

Prioritizing General Representations over Granular Early On In the

brain, the formation of representations goes from more general to more gran-

ular over time (Taylor et al. 2021). For example, far before the maturation

of memories for specific experiences, children first develop conceptual under-

stand and generalizable knowledge (Keresztes et al. 2018). Indeed, earlier

in development, memory engrams are dense and imprecise (Ramsaran et al.

2023).

Additionally, when learning a new task, place cells for that task’s memory

replay begin by ”hovering” between states, and information gets progressively

more granular as the task is revisited (Berners-Lee et al. 2022).

Moreover, mice that are allowed to explore a maze before the introduction

of a reward overall learn to solve the maze faster than if the reward were

present from the beginning (Tolman and Honzik 1930). Similarly, pre-training
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improves continual learning in artificial neural networks through the early

formation of generalizable representations that then undergo less catastrophic

forgetting (Mehta et al. 2023).

To our knowledge, similar strategies have been under-explored in continual

RL. While we do not have specific approaches to recommend, as RL generally

makes heavy use of replay, it may be helpful to, for example, decrease the

granularity of stored experience earlier during training.
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Chapter 4

Methodology

In this chapter, we describe our implementation of the energy constraints and

indexing modifications introduced in the previous chapter. Three of the mod-

ifications have previously been implemented in supervised learning (Bricken

et al. 2023; Margalit et al. 2023; J. C. R. Whittington, Dorrell, et al. 2023),

and only one in reinforcement learning on DQN (Mnih et al. 2015; Pan et al.

2021). We evaluate the effects of different modifications on the Soft Actor-

Critic (SAC) reinforcement learning algorithm (Haarnoja, Zhou, et al. 2019)

on sequences of environments that are set up for investigating challenges within

continual learning. While we present some ablations in this chapter, Chapter

5 has the main results.

4.1 General Setup and Environments

We use the default hyperparameter values for the base agent (Haarnoja, Zhou,

et al. 2019), and tune additional modification-specific hyperparameters on the

first environment within a sequence. We reset the replay buffer between en-

vironments, and each environment starts with 10, 000 steps of random explo-

ration.

To evaluate the effects on negative and forward transfer, or worsened v.s.

improved performance following pre-training, we use environments from the

DeepMind Control Suite (Tassa et al. 2018). We evaluate negative transfer on

quadruped-run following pre-training on quadruped-walk as SAC shows de-

creased performance on the second environment following the pre-training. For
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effects on forward transfer, we look at humanoid-run following pre-training on

humanoid-walk, where unmodified SAC shows conversely higher performance

on the second environment. We trained humanoid for 3 million steps on walk

instead of 1 million steps to ensure that the positive transfer effect is not a

result of insufficient training.

We evaluate catastrophic forgetting and overfitting on robot arm tasks from

Metaworld, with positions between resets kept fixed and not randomized (Yu

et al. 2021). For catastrophic forgetting, we use separate output heads and

task IDs, and train on a thematically-related but otherwise arbitrarily chosen

sequence: faucet-close-v2 → window-close-v2→ faucet-close-v2. We

look at forgetting of the previous environments. For overfitting, we use one

output head and train on a sequence of three hammer-v2 tasks, also arbitrarily

chosen, with separate one-hot vector input IDs for each. We reset the replay

buffers between environments for all cases.

Whenever significance testing is performed, we use a p-value threshold of

0.05. As we evaluate the effects of multiple modifications, we first do a one-

way analysis of variance (ANOVA) to correct for the number of modifications.

For plots with ANOVA p-values below 0.05, we perform post-hoc testing with

pair-wise independent student t-tests. Significance testing is done with SciPy

(Virtanen et al. 2020).

4.2 Modifications Details

4.2.1 Energy Constraints

We find that energy constraints worked best when applied to the actor as well

as the critics (not shown).

Non-negativity and Energy Minimization - “small-bio”

For small-bio, energy minimization is simply imposed through l2 regulariza-

tion of activations as well as weights, and non-negativity can be imposed with

the ReLU activation function (Nair and Hinton 2010; J. C. R. Whittington,

Dorrell, et al. 2023), which is what we do in this thesis. Accordingly, we use
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Figure 4.1: small-bio appears to work better when l2 regularization is applied
to the activations as well as weights. There are 20 seeds, and the shading is
standard error of the mean (SEM)

ReLU for small-bio, as well as for regular SAC, and the the following loss:

Lsbio = Ldefault + βLactivations + βLweights (4.1)

Here, Ldefault is the respective regular SAC loss for the actor and the critics,

β modulates the regularization strength, Lactivations is the l2 norm of the pre-

ReLU activations for the respective network summed across layers, and Lweights

is the l2 norm of the weights for the respective network summed across layers.

sbio is small-bio.

Consistently with the small-bio paper, we find L2 regularization of both

activation and weights to appear to have better effects than L2 regularization

applied to only the weights or only the activations, as seen in Figure 4.1.

Following tuning, we use a β value 1e−5 for quadruped, and 1e−6 for all

the other environments.
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Figure 4.2: the wire modification appears to work best when applied to only
one hidden layer.

Wiring Length Constraints - “wire”

We apply wiring length constraints on the second hidden layer in the actor and

critic networks, and implement the Pearson’s correlation spatial loss variant

from the original wire paper (Margalit et al. 2023), but simply on a linear

layer as opposed to a convolutional layer. The implementation consists of the

following loss:

Lwire = Ldefault + α(1− Corr(r⃗, D⃗)) (4.2)

Here, α is the strength of the regularization, Corr is Pearson’s correlation,

r⃗ is a vector of pairwise similarity distances between the pre-ReLU activations

in the second hidden layer, and D⃗ is a vector of the inverse distances (in terms

of position within a layer) for each pair. For pair i, Di =
1

di+1
. This encourages

neurons that are positioned close to each other within a layer to have similar

activations, and neurons that are further apart to have different activations.

Figure 4.2 shows that applying wire on only one hidden layer appears to
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sufficiently work, even thought the performance gains are minimal. We use

an α value of 0.05 for quadruped and humanoid, and 0.1 for the faucet and

hammer sets of environments.

4.2.2 Indexing

We find that both indexing constraints worked best when applied only to the

actor, and not to the critics. This is shown below in Figure 4.3 for FTA.

Fuzzy Tiling Activations (FTA)

Figure 4.3: FTA did not lead to training when applied to the critics as well as
the actor.

We apply FTA (Pan et al. 2021) to the actor’s second hidden layer, and only

to the actor. The remaining hidden layers have a ReLU activation function.

As Figure 4.3 shows, we do not see training when FTA is applied to all of

SAC’s networks.

FTA is a fuzzy binning activation function. Following the original paper

(Pan et al. 2021), the FTA activation function consists of the following:

ϕη(z) := 1− Iη,+(max(c− z, 0) + max(z − δ − c, 0)) (4.3)
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Here, δ controls the size of the FTA bins. Given an input z is a lower limit

l and an upper limit u, then, the tiling vector c is:

c := (l, l + δ, l + 2δ, ...u− δ) (4.4)

The fuzzy indicator function above Iη,+(x), applied element-wise, is:

Iη,+(x) := I+(η − x)x+ I+(x− η) (4.5)

Here, η controls sparsity. For x < η, Iη,+(x) = x, and Iη,+(x) = 1 otherwise.

Following tuning, for quadruped we use a lower limit of −10, an upper limit of

10, a δ of 5, and η of 5, and a hidden layer size of 1024 for the second hidden

layer. For humanoid, these numbers are respectively −20, 20, 2, 2, and 5120.

For all the other environments, we use −10, 10, 5, 1, 1024.

Sparse Distributed Memory Multilayer Perceptron (SDMLP)

SDMLP is the modification that requires the most changes to original SAC. To

make SDMLP work for continual learning, the original paper’s modifications

include employing an activation function that is similar to a top-k function,

eliminating neural network bias terms, and enforcing l2 normalization on the

weights and data (Bricken et al. 2023).

We initially tried the non-GABA switch implementation of SDMLP, which

is closer to a standard top-k activation function, but appeared to encounter the

stale momentum problem reported by the paper. While using SGD without

momentum is a potential fix (Bricken et al. 2023), we could not get training

with SAC in general with SGD on quadruped (not shown).

For the GABA switch activation function, our implementation is close to

that of the original paper’s (Bricken et al. 2023). However, the SDMLP paper

uses neural networks with only one hidden layer, while we use two, with the
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GABA switch activation function applied to the second hidden layer. We

additionally do not feed representations through a fixed pre-trained network,

which is why we have the additional hidden layer prior to the one with the

GABA switch activation function. Additionally, instead of l2 normalization of

weights, we perform weight normalization (Salimans and Kingma 2016), which

we found to perform better with SAC (not shown).

The GABA switch activation function is as follows:

z∗i := ReLU(zi − λiI)

I := descending-sort(ReLU(z))(k+1)

λi := min(1,max(−1,−1 + 2Ci/s))

(4.6)

Here, Ci counts how many times neuron i has been activated, s controls

the ramp up time, and k is targeted number of neurons active at one time

for when the ramp up time ends. I is activation of the k + 1th most active

neuron. As a neuron continues to get more active, λi progresses from −1 to

1. This means that at the very beginning of training, all neurons receive an

activation boost, with the activation of the k + 1th most active neuron added

to theirs. However, as training progresses, the k + 1th most active neuron

transitions from excitatory to inhibitory, and eventually only neurons that are

more active than the k + 1th neuron remain active.

For quadruped, following tuning, k is 50, the size of the second hidden

layer is 1024, and the number of transition steps if 750, 000. humanoid, these

numbers are 100, 1024, 250, 000. For the hammer and faucet sets of environ-

ments, the number of k is 100, the hidden layer size is 2048, and there are

250, 000 transition steps. However, for all sets of environments, we slow the

number of transition steps by 10 as a slower ramp up time helps reduce the

stale momentum problem in SDMLP (Bricken et al. 2023), and we found that

a slower ramp up time increases performance on environments subsequent to

the first. Although a larger hidden layer is used in SDMLP, only 50 to 100

neurons are active at a time within the hidden layer soon after the beginning

of training.
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Figure 4.4: Matching hidden layer sizes does not lead to the same performance
improvement with regular SAC as with the SDMLP (sdm) modified SAC.
Additionally, slowing down SDMLP appears to be beneficial for performance
on the second environment.

Figure 4.4 shows that increasing the second hidden layer in the actor net-

work to the same number of neurons as in SDMLP does not lead to perfor-

mance improvements on quadruped-run after training on walk.
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Chapter 5

Results

In this section, we first look at the effects of the modifications on negative

transfer, or losses in plasticity, forward transfer, generalization and catas-

trophic forgetting. Then, we analyze the resulting representations. We focus

on the second hidden layer of the actor’s neural network; while small-bio

and wire are applied to the critics as well as the actor, FTA and SDMLP are

only applied to the actor, and wire, FTA, and SDMLP are only applied to

the second hidden layer.

5.1 Potential Mitigation Against Loss of Plas-

ticity and Catastrophic Forgetting

5.1.1 Plasticity

As Figure 5.1 shows, quadruped shows seemingly negative transfer from walk

to run, while humanoid has seemingly positive transfer that offsets any losses

in plasticity that may be present. In an ideal situation in sequential task

learning, we would want to see no loss in plasticity, and learning of future

tasks being facilitated by the learning of similar prior tasks.

In this section, we explore the effects of the modifications on mitigating

this loss in plasticity, on potentially on improving forward transfer, and also

on generalization. Small-bio in particular is expected to help with perfor-

mance past the first training environment due to it previously being shown to

increase disentanglement (J. C. R. Whittington, Dorrell, et al. 2023), but a de-
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Figure 5.1: Pre-training on walk prior to training on run appears to hinder
performance for quadruped, but to improve performance for humanoid.

crease in plasticity loss may also occur with the indexing modifications, FTA

and SDMLP, due to potentially decreases weights overlap between environ-

ments. To evaluate significance, we perform an ANOVA on the performance

plots with the modifications. For plots with ANOVA p-values below 0.05, we

then perform independent student t-tests on each of the modifications versus

regular SAC. We evaluate the areas under the curve (AUC) as well as the final

performances when evaluating differences in plasticity.

We see a potentially mitigating effect on loss of plasticity with small-bio,

and a reduction with overfitting (associated with plasticity and generalization),

for all the modifications. However, we do not see a measurable improvement

effect on positive transfer.

Forward and Negative Transfer For overall increases in performance

on the first task, Figure 5.2 shows a significant performance increase from

small-bio, wire, and SDMLP on quadruped-walk, but the ANOVA p-values

are not above 0.05 for humanoid-walk.
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Figure 5.2: Performance on the first environment for quadruped and hu-
manoid. sbio is small-bio, and sdm10 is SDMLP. The shading is SEM, and
there are 20 seeds per run. For the area under the curve (AUC), the ANOVA
p-values are 10−5 (left), and 0.005 (right). For final performance at the end
of training, the ANOVA p-values are 0.03 (left), but also p > 0.05 (right).
For individual t-tests relative to unmodified SAC, small-bio (0.0002), SDMLP
(10−4), and wire (0.046) have p-values < 0.05 for AUC for quadruped, but the
final performance values are insignificant. For the AUC for humanoid, none
of the p-values with individual t-tests are below 0.05.

For effects on performance on the second task, used to assess the forward

and negative transfer, Figure 5.3 shows that small-bio significantly increases

performance on run following pre-training on walk for both quadruped as well

as humanoid, although only for the AUC for humanoid. As improvements in

performance were already seen in the first set of environments in Figure 5.2,

however, the increases in performance on quadruped-run in particular may be

through an extraneous factor and not through a mitigation in plasticity loss.

Figure 5.4 attempts to isolate mitigation of loss of plasticity, or negative

transfer, from possibly unrelated increases in performance; it also looks a

potential increases in forward transfer. Figure 5.4 shows the following:
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Figure 5.3: Performance on the second environment for quadruped and hu-
manoid. The shading is SEM, and there are 20 seeds per run. For the AUC,
the ANOVA p-values are 4 ∗ 10−7 (left), and 0.0006 (right). For final perfor-
mance at the end of training, the ANOVA p-values are 0.01 (left), but also
p > 0.05 (right). For quadruped, compared to regular, small-bio has a p-value
of 2 ∗ 10−5 for the AUC, and 0.007 for the final performance. For humanoid,
small-bio has a p-value of 0.003 for the AUC. The other p-values are not above
0.05

Norm. Eval. Return = (perf. with pre-training − perf. from scratch)

− (regular perf. with pre-training

− regular perf. from scratch)

(5.1)

That is, if pre-training causes less of a performance decrease with modified

runs than with regular SAC, the normalized evaluated return will be above

0. It would also be above 0 if the performance gain for a modification due to

pre-training is higher than with modified SAC. In Figure 5.4, for quadruped,

small-bio is the only modification that appears to mitigate a loss in plasticity.

Curiously, it also does not appear to increase positive transfer in humanoid,

despite increasing overall performance on humanoid-run in Figure 5.3. This

may suggest that humanoid, going from walk to run, does not suffer from any

losses in plasticity that would reduce forward transfer in the first place.
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Figure 5.4: Small-bio may be the only modification that is helping prevent
negative transfer (left). None of the modifications, including small-bio, appear
to help increase forward transfer (right). The plots show the difference between
pre-training vs from scratch performance for the modifications, minus that
same difference between the unmodified runs.

Figure 5.5: All four modifications decrease overfitting on three hammer-v2
tasks with separate task IDs. Left is training success, right is overall suc-
cess on three hammer-v2s. 20 seeds per run, and shading is SEM. For final
performance values, the ANOVA p-values are 0.046 (left), and 0.0005 (right).
small-bio relative to regular SAC has a p-value of 0.02 (right), but all the other
values relative to regular have a p-value > 0.05.
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Overfitting Overfitting is associated with generalization as well as loss of

plasticity (Lyle, Rowland, et al. 2022; Nikishin et al. 2022). Figure 5.5 shows

that all the modifications decrease overfitting relative to regular SAC on robot

arm tasks by showing comparable performance across training as well as global

success on one environment with different task IDs. However, for this analysis,

we are only qualitatively comparing the shapes of the curves.

We also performed significance testing for the final performances of the

modifications versus regular SAC, with an ANOVA and independent student t-

tests. small-bio shows significant performance increases in the global success

plot relative to unmodified SAC.

5.1.2 Catastrophic Forgetting

Figure 5.6: FTA may slightly slow down forgetting, although the ANOVA
p-value for the AUC values in the right plot is not significant (p = 0.051).
Forgetting of the first (left) and second (right) environment in the sequence of
faucet-close → window-close → faucet-close Metaworld robot arm tasks. The
shading is SEM, and there are 20 seeds per run.

In this section, we look at how slowly an environment is forgotten during

the learning of a subsequent task. We primarily expect the indexing modifica-

tions, FTA and SDMLP, to slow forgetting due to the expectation that they

decrease interference in weights between tasks. However, any actual improve-
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ments in remembering ends up being unclear.

Figure 5.6 qualitatively shows that FTA may slightly slows down forgetting

of window-close during the training of faucet-close, although the ANOVA

p-value for the AUC of that plot is not significant. Conversely, small-bio

may speed up forgetting for both faucet-close as well as window-close.

5.1.3 Summary

These data show that small-bio, wire, and SDMLP significantly increase

AUC-based performance for SAC in quadruped-walk. Following pre-training

on the respective walk, small-bio significantly increases the final performance

as well as AUC-based performance in quadruped-run as well as humanoid-run,

while the other modifications do not show significant improvements relative to

unmodified SAC. The performance increase by small-bio on quadruped-run

may be due to mitigating the loss of plasticity from the task switch for quadruped;

however, the performance increase in humanoid does not appear to be through

a mitigation in loss of plasticity, and possibly through some other mechanism.

All modifications additionally appear to decrease overfitting. The effects of

the modifications on catastrophic forgetting do not appear to be promising,

although FTA may potentially slow forgetting of window-close during the

learning of a subsequent environment.

5.2 Analysis of the Learned Representations

To help clarify the results of the previous section, this section shows an analysis

of the representations produced by the actor networks. We do not see notable

trends with the first three metrics, namely gradient orthogonality, gradient

sparsity, and disentanglement. However, we do see trends in a few other met-

rics, including the non-updated units and parameter norm, that may suggest

mechanisms behind increased plasticity and generalization with some of the

modifications.
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Figure 5.7: The gradient orthogonality measurements do not suggest a trend.
The measurements are for the actor’s final hidden layer.

5.2.1 Gradient Orthogonality

Orthogonal gradients between tasks are expected to decrease forgetting due

to less interference with prior knowledge, and have been used or linked to

succesful continual learning performance (Farajtabar et al. 2020; Mirzadeh et

al. 2022).

However, in Figure 5.7, we do not see a meaningful trend with the angles of

the gradients between tasks for the different modification; while FTA slightly

slowed down forgetting of window-close in 5.6, and its gradient orthogonality

may look a bit higher for faucet vs window, the differences appear negligible.

Moreover, small-bio, which has the fastest forgetting in 5.6, does not appear

to have the lowest gradient orthogonality. We similarly did not see a trend

with the critic networks (not shown).

Increased gradient orthogonality did not appear to be a mechanism in slow-

ing forgetting for FTA, or speeding up forgetting with small-bio. However,

the gradient angles are compared at the end of training for each task, and it

is possible that a decrease in interference between gradients for each task is

happening towards the beginning of training.

5.2.2 Gradient Sparsity

An increased gradient sparsity could also decrease catastrophic forgetting, as it

would imply that fewer parameters need to change between tasks (Mirzadeh et
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Figure 5.8: SDM maintains a high gradient sparsity, while small-bio and wire
maintain a low one. The gradient orthogonality and disentanglement (MIR)
measurements do not suggest a trend. The measurements are for the actor’s
final hidden layer.

al. 2022). A higher gradient sparsity would be particularly relevant for all tasks

after the first task. However, Figure 5.8 shows regular SAC having the highest

gradient sparsity, along with wire. Also surprisingly, the modifications with

the sparse activation functions, FTA and SDMLP, have the lowest gradient

sparsities.

5.2.3 Disentanglement

Figure 5.9: The disentanglement (MIR) measurements do not suggest a trend.
The measurements are for the actor’s final hidden layer.

Here, the mutual information ratio metric (MIR) attempts to measure how

many neurons are coding for only one factor of variation in the data (J. C. R.
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Whittington, Dorrell, et al. 2023).

Despite previously demonstrated increases in disentanglement with small-bio

using MIR (J. C. R. Whittington, Dorrell, et al. 2023), we do not see this with

small-bio applied to SAC. Figure 5.9 instead shows inconsistent results across

environments for different modifications, which may indicate MIR being a poor

metric for reinforcement learning data. However, the measurements of intrin-

sic dimensionality in the next section might support the measurements that

we are seeing with MIR.

5.2.4 Effective and Intrinsic Dimensionality

Figure 5.10: There appear to be no trends in measures of the effective dimen-
sionality of the data within the policy network. The measurements are for the
actor’s final hidden layer. We use the measure with an effective dimensionality
measure of n2, as described in (Del Giudice 2021)

The effective dimensionality is a descriptive measure of how many dimen-

sions in total are used to describe the data, while intrinsic dimensionality is

an attempt to measure how many ”important” features are being used (Del

Giudice 2021). For instance, despite potentially many pixels used in the rep-

resentation of images of nature, nature images actually have a low intrinsic

dimensionality (Pope et al. 2021). Datasets with a lower intrinsic dimension-

ality are also easier to learn, and lead to better generalization within models

(Pope et al. 2021), which can be beneficial for continual learning (Gallardo et

al. 2021).
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Figure 5.11: FTA greatly increases the intrinsic dimensionality of the data in
the actor’s final hidden layer. The plots show how many factors of variation
are used to describe 90% of the data.

We do not see any trends in the effective dimensionality in Figure 5.11.

However, we see that the intrinsic dimensionality is very high for FTA, sug-

gesting that the FTA function ”spreads out” the data in the neural network

layer that FTA is applied to.

A higher intrinsic dimensionality does suggest more entanglement, which

supports some of the MIR measurements; FTA appears to particularly lead to

more entanglement compared to regular SAC for quadruped and humanoid, for

which it also has the lowest disentanglement with the MIR metric in Figure 5.9.

We also see small-bio with similar measurements to regular SAC’s. However,

we also see the most potential disentanglement with SDMLP in Figure 5.11,

but no clear trend with it in Figure 5.9.

5.2.5 Stable Rank and Distance From Initialization

Figures 5.12 and 5.13 show that the most successful modification, small-bio,

maintains a high stable rank and a low distance from initialization, both of

which are beneficial for generalization (Nagarajan and Kolter 2019; Sanyal et

al. 2019).
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Figure 5.12: small-bio and FTA maintain an elevated stable rank across all
three sets of environments. The measurements are for the actor’s final hidden
layer.

Figure 5.13: small-bio and SDMLP in particular maintain a low distance from
initialization. The measurements are for the actor’s final hidden layer.

Figure 5.14: FTA and small-bio both decrease the percentage of non-updated
units. The measurements are for the actor’s final hidden layer.
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Figure 5.15: FTA and small-bio both decrease the l2 norm of the weights.
SDMLP inconsistently greatly increases the l2 norm for the first two environ-
ment sets, and decreases it for the third set. The measurements are for the
actor’s final hidden layer.

5.2.6 Non-Updated Units and Parameter Norm

Increases in non-updated units, sometimes called dead units (Lyle, Zheng,

Khetarpal, et al. 2024; Lyle, Zheng, Nikishin, et al. 2023), and in the norm

of the parameters are potential mechanisms of plasticity loss (Lyle, Zheng,

Khetarpal, et al. 2024). Consistently with this, Figures 5.14 and 5.15 show

both small-bio and FTA, with small-bio in particular, maintaining the

lowest percentage of non-updated units as well as parameters norms. Here,

the percentage of non-updated units is calculated from mini-batches of data

used for training; units are counted if they are inactive for all 256 points of

data at the respective training iteration. That is, given a layer size n, the

percentage of non-updated units is the following:

Non-updated units (%) = 100

∑n
i Inon−updated(uniti)

n
(5.2)

The indicator function Inon−updated returns 1 if the unit is non-updated, and

0 otherwise, as shown in the following equation:

Inon−updated(uniti) =

{
1, if uniti is non-updated

0, otherwise
(5.3)
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Each uniti within the given layer is considered non-updated if, for all inputs

j within mini-batch D, uniti does not have an activation hj
i ̸= 0.

Interestingly, small-bio also shows as well a decrease in non-updated units

and in the parameter norm with task switches in the faucet-window-faucet

set of environments.

5.2.7 Summary

The metrics in this section primarily corroborate the increase in plasticity

and decrease in overfitting potentially seen by the small-bio modification in

the performance plots of the previous section. However, the metrics do not

show an expected increase in disentanglement. Either the disentanglement

metric used is unsuitable, or the improvements in plasticity and generalization

are mainly through mechanisms other than disentanglement, such as a lower

parameter norm.
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Chapter 6

Discussion and Conclusion

This thesis presents an initial exploration of a few biologically-inspired modifi-

cations that have been understudied in continual RL. Although the modifica-

tions could benefit from more refined implementations, the modification with

energy constraints and non-negativity, which we refer to as small-bio, has

shown a particular promise for improving plasticity and generalization despite

its simplicity. Fuzzy tiling activations (FTA) has also shown a potential ben-

efit for slowing catastrophic forgetting, and all modifications suggest benefits

in reducing overfitting and increasing generalization.

This study has its limitations. A key limitation is that investigating fewer

methods more deeply might have yielded better insights. With modifications

that are better optimized to RL in particular, we may have a better under-

standing of their potential. For instance, the continual learning performance of

our implementation of the sparse distributed memory modification (SDMLP)

on SAC did not match the continual learning performance of the original

SDMLP implementation in a supervised learning environment (Bricken et al.

2023). Does this discrepancy show the inherent limitations of a GABA switch

activation function on a slowly changing RL dataset, which we suspect may

lead to the selection of less generalizable active GABA neurons compared to

those selected on a supervised learning image dataset - or would certain RL-

specific modifications have closed the gap? We do also note that we use a

relatively large k in our implementation, while a lower k has been shown to

increase remembering (Bricken et al. 2023).
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Notably, one potential reason for this gap may have been not at least

partially decoupling feature extraction from continual learning, as was done

with the original SDMLP (Bricken et al. 2023). We overall think that this on

its own is another biologically-grounded concept (Madireddy et al. 2023) that

could be fruitful to investigate in future works.

We unfortunately were also not able to verify increased compositional-

ity with the energy constraints. We did not see increased disentanglement

with small-bio with the MIR metric, despite energy and positive constraints

having provably been shown to lead to increased disentanglement (J. C. R.

Whittington, Dorrell, et al. 2023). As increased disentanglement is suspected

to lead to better generalization, which we did observe with small-bio, this

may simply be an indication that the MIR metric was not suitable for the

environments used in this thesis.

Additionally, we mainly investigated the representations generated by the

actor, and only on one hidden layer. As all of the modifications were at min-

imum applied to the actor’s hidden layer, this made the measurements more

comparable between the different modifications. However, a further explo-

ration of SAC’s networks may also have been informative.

Furthermore, while we wanted to examine the effects of the modifications

on challenging aspects of continual learning on their own, it would have been

interesting to combine the modifications with traditional continual learning al-

gorithms and observe the effect on their performance. We briefly implemented

elastic weight consolidation (Kirkpatrick et al. 2017) (EWC - not shown), and

despite not being able to observe the expected increase with remembering of

prior tasks with our EWC implementation, we did note that small-bio in

particular combined with EWC greatly exacerbated catastrophic forgetting.

We hope that this exploratory work encourages further investigations into

algorithms inspired by brain function within the context of continual reinforce-

ment learning.

In the long term, perhaps researchers will separate knowing (i.e., creat-

ing lasting representations that last following an initial external stimulus)

from thinking (working with those representations) in continually learning
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RL agents, and ultimately take inspiration from the default mode and theory

of mind networks (Davey et al. 2016; Raichle et al. 2001; Soares et al. 2023)

and allow machines to figure out their own place and motivations in an ever

changing world.
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