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Abstract

Alternans occur prior to ventricular fibrillation and is a medical condition of heart that leads

to sudden cardiac death (SCD). The presence of the electrical alternans induces, through

the mechanism of the excitation-contraction coupling, an alternation in the heart muscle

contractile activity. This work provides a study on the cardiac alternans annihilation by

applied electrical and mechanical perturbation. In particular, we address annihilation of

alternans in medically relevant size heart tissue by considering modulation of ionic cur-

rents in Luo-Rudy-1 (LR1) cardiac cell model, in which the control algorithm involves

a combined electrical boundary pacing control and a spatially distributed calcium based

control which perturbs the calcium in the cells. A parabolic partial differential equation

(PDE) which is adapted from the ionic model is investigated to get an insight in terms of

the controllability and stabilizability of the tissue for the suggested control input. Compli-

mentary to this, we also address a novel mechanism of alternans annihilation which uses

a Nash-Panfilov model coupled with the stress equilibrium equations. The coupled model

includes an additional variable to represent the active stress which defines the mechanical

properties of the tissue and is utilized in the feedback algorithm as an independent input

from the pacing based controller realization in alternans annihilation.
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Chapter 1

Introduction

1.1 Motivation

Annually, about 30,000 - 40,000 of deaths occur due to sudden cardiac arrest (Billman,

2009). Ventricular fibrillation (VF) and ventricular tachycardia (VT) are types of arrhyth-

mias known to be one of the primary reasons in majority of deaths due to cardiac arrest

(Billman, 2009, Burke & Virmani, 2005). VF and VT are conditions associated with the

abnormal electrical activity in the heart. Studies suggest that alternans are precursors to

these life-threatening arrhythmias (Makarov & Komoliatova, 2010, Narayan, 2007, Pastore

et al., 1999a). Alternans is a phenomenon observed in cardiac cells, in which the cells ex-

hibit beat to beat alteration in the action potential duration (APD) when paced at short

pacing intervals. The cardiac cells exhibit alterations as long(L)-short(S)-long(L)-short(S)-

pattern in APD (see Fig.1.1). Under shorter pacing intervals these alternans sequentially

develop into discordant alternans, conduction block (a condition in which the excitation

induced beat that is unable to propagate in a cardiac tissue), reentrant propagation and ini-

tiating into a ventricular fibrillation (Pastore et al., 1999a). The action potential in cardiac

tissue is associated with the contractile properties of the tissue so that physically alternans

are manifested as an alteration in ability of the cardiac tissue to produce complete contrac-

tion and effectively push the ventricular blood volume in the body. Since alternans have

been associated with the onset of ventricular fibrillation, it is important to explore whether

spatiotemporal alternans in cardiac tissue can be annihilated in principle as the annihilation

can represent an effective strategy to stabilize heart arrhythmias in order to prevent sudden

cardiac death (SCD).
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Figure 1.1: Time evolution of transmembrane voltage showing alternans in a single cell
based on LR1 ionic currents.

1.2 The Control Problem

Currently, in order to correct pacing irregularities in heart and arrhythmias, electrical shocks

delivered by specialized devices. An artificial pacemaker is one such device that applies

an electrical shock, supporting the heart’s natural pacemaker. The pacemaker has elec-

trodes attached to a point in heart tissue that provides a low energy electrical shock with

a desired frequency to correct certain irregularities in heart beat like bradycardia. An im-

plantable cardiac defibrillator (ICD) is an advanced medical device used in patients prone

to recurrent VF. Fig.1.2 shows the typical placement and electrode positioning of ICD (or

pacemaker) unit in a human chest. An ICD is capable of delivering shocks of higher energy

(as compared to pacemakers) to deal with complex arrhythmias (VT and VF). These high

energy pulses delivered by an ICD last for very short time but are painful and possibly cause

damage to the tissue. Newly developed ICDs are incorporated with algorithms to include

anti-arrhythmogenic strategies. Hence, currently used ICD’s can be used to incorporate

strategies to annihilate alternans. This implies delivering lower energy shocks avoiding

2



Figure 1.2: Implantable Cardiac Defibrillators (ICD).

painful shocks and trauma to the patients. Currently developed algorithms to annihilate al-

ternans are based on electrical pacing that modulate the pacing interval at the boundary of

the tissue. Such an electrical or boundary pacing control can successfully annihilate alter-

nans in a single cell (Pastore et al., 1999a, Fox et al., 2002, Christini et al., 2006). However,

recent theoretical and experimental studies (Pastore et al., 1999a, Fox et al., 2002, Christini

et al., 2006, Echebarria & Karma, 2002) suggest that such electrical pacing control ap-

plied at the boundary of a cardiac tissue has finite controllability (≈ 1cm), and real time

alternans control realizations (Lin & Dubljevic, 2007, Dubljevic et al., 2008) cannot stabi-

lize alternans in cardiac tissues exceeding ≈ 1cm in length. Obviously, the stabilization of

single cell alternans is easily realized compared to the alternans annihilation in the cable

of cardiac cells or in the case of 2D or 3D tissue. Boundary pacing based control algo-
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rithms, are realized by pacing at the boundary of the cardiac tissue which modulates the

pacing interval based on the consecutive APDs at the pacing site (Christini et al., 2006).

This control algorithm’s failure to annihilate alternans completely in tissues exceeding 1cm

length, is due to the lack of information of the evolution of alternans away from the pac-

ing site to be effectively included in non-model based feedback algorithm. Moreover, the

perturbation of pacing cycle length has intrinsic limitation due to the possibility of a con-

duction block. This limitation with electrical boundary pacing based controllers emphasize

the need to look for electrical stimulus-independent techniques to annihilate alternans in

medically relevant cardiac size tissue.

In a cardiac cell, along with the electrical activity there is an associated mechanical

contraction and relaxation termed as the electro-mechanical or excitation-contraction cou-

pling. When a cell excited it undergoes depolarization, the [Ca
2+] ions are released via the

calcium induced calcium release (CICR) mechanism. This released [Ca
2+] ions binds with

contractile proteins, mainly troponin C to induce cell contraction (Fig.1.3). This forms

the features of electro-mechanical or excitation-contraction coupling. It has been shown

that there also exists a reverse interaction between mechanical and electrical activity of the

cardiac tissue (Kohl et al., 1999, Solovyova et al., 2004) wherein a mechanically induced

stretch affects the electrical activity in heart. Calaghan et al., 2003 have experimentally

shown that an axial stretch in the direction of the fibre causes the APD to prolong, show-

ing the effect of a mechanical perturbation on the electrical species in heart. To overcome

the limitation of finite controllability of controller algorithms based on electrical pacing

based techniques, a mechanical stimuli based algorithm that is completely independent of

electrical pacing has been investigated in this work.

Mechanical stimulus is usually applied to a cardiac cell in form of prod or a stretch.

Through the mehano-electric coupling this stimuli influences the electrical activity in the

cell which in turn affects the APD. In mechano-electric feedback system calcium is the

most important ionic species that modulates the coupling in the cardiac cells (Bers, 2002),

so that beat-to-beat variations in electric wave are linked to the alteration in the transient

calcium concentration in cell (Chudin et al., 1998). Muscle stretch or shortening affects

the myocardium which influences the shape and amplitude of the intracellular Ca transient

(Calaghan et al., 2003).
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Figure 1.3: Ca
2+ movement in the cell.

1.3 Thesis Contribution

Theoretical and experimental studies (Pastore et al., 1999b, Christini et al., 2006, Fox

et al., 2002) on alternans annihilation have used the cardiac cell ionic model in 1D tis-

sue and the associated small amplitude of alternans parabolic partial differential equation

(PDE) (Echebarria & Karma, 2002). The ionic model of 1D cardiac cells provides a realis-

tic model of a stripe of a cardiac tissue for control and stabilization alternans. A parabolic

PDE model of a 1D cardiac tissue is a reaction-diffusion model associated with the com-

plex ionic dynamics. With a parabolic PDE model it is possible to accurately determine the

stabilizability of the system by determining the controllability of unstable modes. The spa-

tial differential operator in the PDE system can be characterized by a spectrum that can be

partitioned into a finite slow component and an infinite dimensional stable fast complement
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(Friedman, 1976). Therefore, the control problem is reduced to, determine the controlla-

bility and further stabilization (if possible) of the unstable modes. The infinite dimensional

stable part remains invariant under the applied feedback structure. The PDE model can be

realized into a state space model for which a standard state feedback control structure using

pole placement and/or optimal control techniques can be employed to stabilize the system

(Curtain, 1982, Ray, 1981).

This work considers a control protocol involving mixed electrical boundary pacing con-

trol and a spatially distributed calcium based controller for stabilization of alternans in 1D

cardiac ionic model tissue. We demonstrate alternans suppression via mechano-electric

feedback in both the 1D cardiac cell ionic model and the associated amplitude of alternans

linearized parabolic PDE model. In this study we suggest a control method that employs a

spatial distributed calcium controller along with a electrical boundary pacing controller to

address the limited controllability of having only an electrical pacing controller in a medi-

cally relevant sized cardiac tissue. We discuss the annihilation of alternans by the suggested

control protocol both in a ionic and a PDE based model and show that results obtained from

both models are in close agreement with each other. Further to corroborate these results,

simulations are carried using simple three variable Nash-Panfilov model which has coupled

mechanical stress and strain variable. This model is investigated for alternans stabilizations

by employing direct mechanical perturbations in the feedback.

6



Chapter 2

Control of Alternans

In this chapter, the effect of proposed control protocol involving mixed electrical boundary

pacing and a spatially distributed controller on stabilization of alternans is investigated. To

determine the feasibility of such a control protocol experimentally, one needs a live cardiac

tissue and also the experimental costs are high. Hence, computer based models are used to

simulate a cardiac tissue and control techniques are applied. Two models are considered in

this study: 1) Luo-Rudy 1 (LR1) model which has the electrical properties dependent on

majority of relevant ionic currents flowing across a membrane of a real cardiac cell (Luo &

Rudy, 1991) and associated with cardiac cell ionic model and 2) A PDE model suggested

by (Echebarria & Karma, 2002, Shiferaw & Karma, 2006) which provides an analytical

and qualitative insight in terms of the alternans controllability in the tissue and control

algorithm ability to annihilate alternans.

2.1 Introduction to Ionic Models

A cardiac cell is a type of excitable medium. A cell is said to be excitable if a sufficiently

large applied stimulus causes the cell membrane to go through an upstroke in voltage called

the depolarization, which then repolarizes to the rest condition. The time length for which

the cell is excited is termed as the action potential duration (APD). In cardiac cells the rest

condition is termed as the diastole and the excited state as systole. Based on the formalism

introduced by Hodgkin and Huxley (Hodgkin, 1952) a cell membrane can be modelled as

a capacitor in parallel with an ionic current given as:

7



Cm

dV

dt
+ Iion(V, t) = 0 (2.1)

Depending on the current Iion complexity various models are developed.

2.1.1 FitzHugh-Nagumo Model (FHN)

The FHN model (FitzHugh, 1961) is a simpler form of the Hodgkin-Huxley model with

only two variables. The model separates the behaviour of Hodgkin-Huxley model into a

fast variable (ν) and slow recovery variable (w). The fast variable consists of a cubic null-

cline and the slow recovery variable has monotonically increasing nullcline. The governing

equations are given as:

Cm

dν
dt

= f (ν ,w)+ Istimulus (2.2)

dw

dt
=g(ν ,w)

where the nullcline f (ν ,w) = 0 is cubic shaped and g(ν ,w) is monotonically increasing.

f (ν ,w) = (a−ν)(ν −1)ν −w

g(ν ,w) = ε(βν − γw−δ )

where a, ε , β , γ and δ are constants.

2.1.2 Noble Model

The Noble model (Noble, 1962) is a modified version of the Hodgkin-Huxley model devel-

oped for Purkinje fibres. Purkinje fibres are specialized myocardial tissues that are located

below the endocardium in the inner walls of the heart that are responsible for propagation

of electric charge and heart contraction. Noble model was the first model to describe a

cardiac cell. The model suggests the Iion to be dependent on the sodium current INa, potas-

sium current IK and anion current IAn. Hence, the model consists of four variables: voltage

(V ) and currents INa, IK , IAn. The currents are further dependent on the respective ionic

8



conductances. At lower pacing rates the Noble model shows alternation in action potential

and the bifurcation in the restitution curve (see Section.2.2.1 for information on restitution

curve). It also predated the presence of calcium channels in cardiac cells.

2.1.3 Beeler-Reuter model

The Beeler-Reuter model (Beeler & Reuter, 1977) has been developed based on the ionic

currents Iion obtained from experimental work on a mammalian ventricular myocardium

tissue. These include the fast inward sodium current INa, secondary or slow inward current

Is carried mainly but not exclusively by calcium ions, time activated outward current Ix1

primarily due to potassium ions and time independent potassium current IK . The model

could indicate the importance of fast inward sodium current INa during the depolarization

phase or the initial upstroke in the action potential. Based on the experimental data, the

model could very well reconstruct features related to currents Is, IK and Ix1. The model

suggested that the repolarization of the action potential is due to the decrease in slow inward

current Is and increase in time-dependent outward current Ix1. In most cases, the dominant

factor is decrease in Is, however in repetitive fast pacing the build up of Ix1 is responsible

for the shortening of APD.

2.1.4 Luo-Rudy model phase 1(LR1)

The LR1 model (Luo & Rudy, 1991) is a modified version of the Beeler-Reuter model with

parameters determined on experimental findings based on availability of advanced voltage

clamp techniques. The model is capable of reconstructing the depolarization characteristics

in accordance with the experimental findings. The model describes the current INa to be

inactivated by two processes - fast and slow. Current INa is characterized by large channel

conductance resulting in a fast excitation or upstroke in action potential resulting into a

membrane rate of depolarization (V̇max = 400V/sec) which is three times larger than the

Beeler-Reuter model and is in good agreement with the experimental data from mammalian

ventricular cells. With a faster depolarization rate the model incorporates a slower INa

inactivation which ensures slower recovery from excitability. It also includes a potassium

channel that activates at higher potential and is incorporated in the current IK1. The model

describes the dependence of IK and IK1 on extracellular potassium concentration [K]o. Thus

9



LR1 model includes majority of the currents flows across a cell membrane and describes

the depolarization and repolarization characteristics that are in good agreement with the

experimental findings, at the same time the model is computationally not very complex as

compared to the models that followed it. Hence, for the scope of this study, LR1 model

is quiet appropriate. Fig.2.1 shows the electrical activity in a single cardiac cell simulated

using ionic currents as suggested in LR1 model. The figure shows two beats in a cardiac

cell due to the excitation by electrical stimulus provided.
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Figure 2.1: Time series plot showing the electrical activity in a single cardiac cell using
LR1 ionic model.

2.1.5 Luo-Rudy dynamic model-1 (LRd-1) and Luo-Rudy dynamic

model-2 (LRd-2)

LRd-1 (Luo & Rudy, 1994a) and LRd- 2 (Luo & Rudy, 1994b) are extensions of the LR1

model (Luo & Rudy, 1991). It includes a more detailed description of the processes regulat-

ing the intracellular Ca
2+ concentration. The process that regulate Ca

2+ concentration are

stated as Na
+−K

+ pump, Na
+−Ca

2+ exchanger, a non-specific Ca
2+ - activated current

10



a Ca
2+ pump in the sarcolemma, uptake and release of Ca

2+ in the sarcoplasmic reticulum

(SR) and buffering of Ca
2+ in myoplasm and SR.

2.2 Numerical Analysis and control of alternans in LR1

model of cardiac cell

First, we consider a computer simulated single cell control of cardiac alternans. Second, a

computer simulated cardiac tissue in one-dimension is considered to test the credibility of

the suggested control algorithm to suppress the alternans. Ionic currents suggested in LR1

model (described in Sec.(2.1.4)) are used to simulate the cardiac tissue numerically.

2.2.1 Alternans

As discussed earlier alternans is a condition when the width of the electric wave in the cells

alternates. The phenomenon of alternans itself is quiet robust, i.e. the cardiac tissue is

able to recover from alternans that are small in amplitude. But at a certain critical pacing

frequency or interval (CPI) sustained alternans are induced. If such sustained alternations

in a cardiac tissue are not controlled or suppressed they might lead to a conduction block

(Fig 2.9) and cardiac arrhythmias (VT and VF). To relate the alternans of the single cell to

the tissue behaviour, the effect of alternans can be described based on the Frank-Starling

mechanism or Starling’s law of heart which states that the output of the heart is equal to

and determined by the blood flowing into the heart, and may be increased or diminished

within very wide limits according to the inflow (Patterson, 1914, Starling, 1918). Increased

volume of blood stretches the ventricular wall, causing cardiac muscle to contract more

forcefully. Therefore, a strong beat leaves a small residual end-systolic volume reducing

the end-diastolic volume and hence a reduced force development. The end of an action

potential is followed by a finite time interval before the next action potential known as the

diastolic interval (DI), which is required by the ventricles to fill with blood (diastolic filling)

after a contraction, before the next activation. In case of the single cell and/or tissue, under

a CPI pacing, the cells of the ventricles due to lack of time, fill to a lower capacity volume

and hence leads to a short APD (refer Fig.1.3 and Fig.2.1). Thus, the action potential

duration is dependent on the diastolic time.
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APDn+1 = f (DIn) (2.3)
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Figure 2.2: Restitution Curve.

Above defined relationship is represented graphically by a restitution curve (Fig.2.2).

The S1S2 protocol is used to develop the restitution curve describing the APD and DI map

(refer Sec.2.2.1). From restitution curve, it can be seen that the APD is unaffected by the

change in DI for higher DI values with slopes approximately zero but for low DI (faster

pacing intervals) the curve becomes steeper. Hence, the APD has a increasing dependence

on DI at lower DI values and is constant at higher pacing periods. The presence of alternans

corresponds to the point on the curve where slope is equal to or greater than unity. The

unstable nature of alternans can be explained by the Cob-Web diagram (see Fig.2.3). On

the Cob-Web diagram the solid-blue line represents APDn+1 = f (APDn) and the dashed-

red as APDn+1 = APDn. The point of intersection of these two lines represent absence of

alternans in the cell i.e APDn+1 = APDn. When the slope of restitution curve is < 1 the

cardiac cell due its robust nature to stabilize alternans moves towards a stable point where

12



as, when the PCL is very short such that the slope of restitution curve is ≥ 1, the cardiac

cell looses its ability to stabilize by itself and shows sustained alternans with increasing

amplitude.
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Figure 2.3: Cob-web diagrams showing the nature of alternans. a) Shows the ability of a
cardiac cell to stabilize alternans by itself when the slope of restitution curve is < 1; b)
When the slope of the restitution curve is ≥ 1, the systems drives away from the point of
intersection (no alternans) to a unstable state.
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S1S2 protocol

The single cell is given an electrical stimuli at sufficiently large pacing cycle length (PCLS1)

for 50 beats, where the last in series is termed S1. This S1 is followed by a S2 stimuli having

a shorter PCLS2 than S1, which is able to produce an action potential. For a range of PCLS2

values that are shorter than PCLS1 the APD and DI measurements are made to generate the

restitution curve. Figure 2.4 shows beat number S1 and APD corresponding to stimuli S2

for varying PCLS2 values.

PCL = APD+DI (2.4)
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Figure 2.4: S1-S2 protocol.

As discussed in Sec.1.2, [Ca2+] is thought to be the inotropic state that is responsible

for the force of contraction, indicating that alternation in the contractility is dependent on

the concentration of Ca2+ ions. Lee et al. (Lab & Lee, 1990) in its experiments on isolated

ferret ventricular muscle showed that alternations in contractility of a cardiac tissue is re-

lated to alternations in Ca2+-transient peak concentrations (see Fig.2.5). Therefore, an

alternation in voltage APD necessarily imply alternations in Ca2+ peak values. But unlike

the voltage the Ca2+ is an intracellular concentration and does not diffuse or propagate

though the cells along the cardiac tissue.
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Figure 2.5: Time series plot showing alternations in Ca2+-transient peak in LR1 model.

2.2.2 Control of Alternans in single cell

A single cardiac cell is reconstructed numerically using ionic currents suggested in LR1

model. The cell is paced faster than critical pacing interval (CPI) so as induce alternans

(Fig.1.1). A control algorithm based on electrical pacing and the controlled pacing interval

Tn(ξ=0) is governed by the following equation:

Tn = τ +(−1)n
γ
2
(an) (2.5)

where the pacing interval τ = 300 for single cell, γ is the adjustable feedback gain for

control of APD alternation at the pacing site, the amplitude of alternans, an is given as:

an = APDn −APDn−1 (2.6)

The value of feedback gain that can suppress alternans completely in a single cell is

given as: (Echebarria & Karma, 2002)

1−1/ f
� < γ < 2/ f

� (2.7)

where f
� is the slope of the restitution curve. For LR1 model maximum slope is f

� =

2 therefore, 0.5 < γ < 1. For the purpose of simulations, value of γ was fixed at 0.6.
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APD measurements are done at −50 mV i.e time is noted when during depolarization the

voltage across the membrane crosses −50 mV in the upward direction and again during

repolarization in the downward direction for the same voltage. Fig.2.6 shows the control

of alternans in a single cell using the algorithm described as above. Beat numbers 1,2,3,4,5

and 6 clearly shows the development of alternans in a single cell. After beat number 6 a

pacing controller described by Eq.2.5 is applied. The action of the controller to stabilize the

alternans is shown by the beats following its initiation. The Cob-Web diagram in Fig.2.7

shows the stabilization of alternans due to the controller action. The solid-blue curve rep-

resents the nonlinear function f (APDn) that produces sustained alternans in a single cell.

The hatched-red curve represents the manipulated function f (APD,τ + δτ) which is due

the action of controller (Eq.2.9). The controller action forces the system to move toward

the point of intersection i.e. it successfully suppresses the alternans in the single cell for a

given feedback gain γ .

! "# "! $#
%"##

%!#

#

!#

&'()*+,&'-

.
/
0)
(
1
'
2,

3
4

!"#$#%$#&"'
&(')&"$*&++,*

Figure 2.6: Control of alternans in single cell.
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APDn+1 = f (APDn,Tn) (2.8)

Tn is defined as in Eq.2.5 and 2.6

APDn+1 = f (APDn,τn ±
γ
2
(APDn −APDn−1))

APDn+1 = f (APDn,τn ±δτ) (2.9)

where, δτ =
γ
2
(APDn −APDn−1) (2.10)

The fixed point in the system (APD
∗,Y ∗) has the property APD

∗ = Y
∗,

∴ APDn+1 = f (APDn,τn +
γ
2
(APDn −Yn)) (2.11)

Yn+1 = APDn (2.12)

The Jacobian of this system is:

J =




∂ f

∂APDn

− γ
2

∂ f

∂τ
γ
2

∂ f

∂τ

1 0



 (2.13)

The fixed point is stable provided that J has eigenvalues which fall inside the unit circle.

This condition is met for γ in the range given by Eq.2.7

2.2.3 Stabilization of Alternans in a one dimension cardiac tissue

In this section, we study the control of alternans in a 1D cable of length L = 6.25 cm. Luo-

Rudy-1 (LR1) (Luo & Rudy, 1991) ionic currents are used to simulate the cardiac tissue

numerically. LR1 is a mammalian ventricular cell based model which incorporates inter-

action between depolarization and repolarization and is a updated version of the Beeler-

Reuter model (Beeler & Reuter, 1977) which also accounts for the calcium dynamics in

cardiac myocyte. The 1D model of cardiac cell cable is given by the following nonlinear

parabolic PDE as:

∂V (ξ , t)
∂ t

= D
∂ 2

V (ξ , t)
∂ξ 2 − 1

Cm
Iion(ξ , t) (2.14)
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APDn+1
F(APD ),τ+δτ

APDn

Figure 2.7: Cob-web diagram showing stabilization of alternans due to the action of con-
troller.

Subject to boundary conditions,

∂V (0, t)
∂ξ

=
1

Cm

Ist ,
∂V (L, t)

∂ξ
= 0 (2.15)

where, Ist /Cm refers to the electrical stimulus applied at L = 0.025cm i.e the first cell of

the tissue. The constants, diffusion rate D = 1 X 10−3 cm2/ms and membrane capacitance

Cm = 1 µF/cm
2. The voltage evolution in the Eq.2.14 is calculated using finite difference

approximation with mesh size ∆ξ = 0.025. Standard explicit Euler integration scheme with

step size ∆t = 0.05 ms is applied. Due to the diffusive coupling term in Eq.2.14 this action

potential propagates along length of the tissue away from the pacing site. In the simulations,

APD is calculated between the voltage values −50mV . It is a well known fact that the

cardiac tissue will manifest electrical alternans when the slope of the restitution curve is

greater than unity at the critical pacing interval (CPI). This indicates that at lower DI, i.e at

sufficiently short PCL the cardiac cell shall undergo alternans, which are manifested by an

alternating pattern of long and short APDs. In a cardiac tissue two types of alternans can

be observed 1) Concordant and 2) Discordant. When the alternans in the tissue are in same
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phase then they are concordant in nature. These concordant alternans for shorter PCL,

due to increased instabilities develop discordant alternans wherein the phase of alternans

changes along the length of the tissue. The magnitude of instability also increases due

the length of the tissue and may demonstrate discordant alternans directly at CPI. Fig.2.8

shows the discordant alternans in a cardiac tissue simulated as discussed above and paced

at its CPI. The phase of alternans observed in Fig.2.8 is not the same along the tissue length,

the tissue at the initial 1cm and towards the end show a short(S)-long(L)-short(S)-long(L)

whereas middle section of tissue demonstrates an opposite pattern (L-S-L-S ).
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Figure 2.8: Transmembrane potential showing discordant alternans. A Long (L)-Short (S)-
Long(L)-Short(S) pattern can be seen approximately between [0 1.5] cm and [4.5 6.25] cm
whereas [1.5 4.5] cm of tissue shows S-L-S-L (discordant) pattern.

The amplitude of alternans , an(ξ ) for a 1D cardiac tissue is defined as:

an(ξ ) = APDn(ξ )−APDn−1(ξ ) (2.16)

Stabilization of such alternans in a long cable can be achieved by coupling traditional
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Figure 2.9: Transmembrane potential showing a conduction block.

electrical (at boundary) and spatially-distributed calcium feedback control. The bound-

ary applied electrical feedback controller can be characterized as difference in APD values

feedback at the pacing site similar to a pacing based controller in a single cell.

Tn(ξ=0) = τ + γ
2
(APDn(ξ=0)−APDn−1(ξ=0)) (2.17)

where feedback gain is same as in single cell (γ = 0.6), τ = 311 ms, slightly higher than

single cell. Previous works (Lin & Dubljevic, 2007, Dubljevic et al., 2008, Echebarria

& Karma, 2002) have shown that simple feedback gain at the pacing site can effectively

stabilize alternans only up to ≈ 1cm of length of tissue (see Fig.2.10). This limitation

reduces the practical value of a controller based solely on gain based modulation of pacing

interval. A pacing or electrical based boundary control successfully annihilates alternans

up to ≈ 1cm but beyond that the instabilities grow along the length of the tissue and the

tissue demonstrates concordant type of alternans but with higher amplitude which leads to

a conduction block. To overcome this limitation of pacing based boundary control several

such gain based pacing interval modulators can be placed multiple pacing sites but such a
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Figure 2.10: Schematic showing the transmembrane voltage(V) in a 1D tissue under elec-
trical boundary based control. At the boundary no alternation in APD is seen whereas along
the length alternation in APD increases.

control in a real heart adversely disrupts the normal voltage wave propagation across the tis-

sue. Instead, modulation of intracellular calcium levels over a short length of tissue is used

for the gain based spatially distributed control of alternans described by Eq 2.14. The cal-

cium based spatially-distributed actuator is motivated by recent studies (Bers, 2001, Chudin

et al., 1999, Kohl et al., 1999, Calaghan et al., 2003) which demonstrate that stretching of

the cardiac myocyte modulates the internal calcium dynamics of the cell. Manipulating

the calcium or mechanical properties of a cardiac cell affects the voltage APD (Calaghan

et al., 2003). Hence, a controller is designed, that perturbs the mechanical properties or

intracellular calcium in a cardiac cell so as to have a desirable effect on the APD to anni-

hilate alternans The spatially distributed Ca2+-controller acts after the electrical boundary

feedback controller stabilizes a finite part of the cable (≈ 1cm). The spatially distributed

Ca2+-controller utilizes the difference between a stabilized delayed [Ca]2+ at the pacing

site and [Ca]i over the length of area under spatially-distributed control. The difference is

used as input feedback correction term [Ca]error augmented with the cell calcium dynamics
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Figure 2.11: Time evolution of amplitude of alternans showing annihilation of alternans
using a calcium based controller.

in the LR1 model.

[ ˙
Ca2+]i(t) =−10−4

Isi +0.07(10−4 − [Ca]i)+ x[Ca
2+]err (2.18)

where the control action is restricted to,

x =

�
0.03, [Ca2+]err < 0
0, [Ca2+]err ≥ 0

where [Ca]pacer, [Ca]i,control are the intracellular calcium concentrations measured at the

pacing site and sites under spatially-distributed control respectively. The gain x in Eq.2.18

is the amount of full state feedback applied as proportional control. τd is the time delay

factor to account for the electrical wave propagation resistance along the cable length, i.e

the measured [Ca]pacer is compared with the [Ca]i,control taking into consideration the time

delay for the excitation of the i’th cell as compared to the excitation at the pacing site.

Control Algorithm with mixed boundary and spatially distributed calcium based con-

troller

In the numerical study of the model described by Eq.2.14 and ionic currents from the LR1

model, we use the control protocol that couples electrical boundary control and spatially
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distributed [Ca2+]-control to stabilize a tissue of length over 1 cm without inducing con-

duction block (see Fig.2.9). A medically relevant size cardiac tissue of length L = 6.25 cm

(a length necessarily greater than 1 cm) was considered. The tissue is initially paced at a

sufficiently large pacing interval for approximately 10-15 beats and then suddenly dropped

to a lower pacing interval such that there is no conduction block. The onsite pacing based

controller applied at the boundary is initiated at approximately n = 40. The pacing interval

for every beat is reduced by 1 ms until finally it drops τ= APD + DI = 307 ms, that induces

sustained alternans with increasing amplitude which if not controlled leads to a conduc-

tion block. In order to suppress these alternans the previously discussed control strategy is

employed to annihilate the instabilities. First electrical boundary pacing controller which

is based on the difference in amplitude of two consecutive APDs is applied around beat

number (n) ≈ 370. Applying such a control stabilizes the alternans along a finite length

of the tissue (≈ 1 cm) and the rest of the tissue manifests concordant alternans with an

increasing amplitude (see Fig. 2.11). The spatially distributed Ca based controller is ap-

plied at n ≈ 450 over a region [3, 3.5] cm, the actuator compares the calcium concentration

at the boundary [Ca2+]pacer with the calcium concentration of the cell to be controlled

([Ca2+]i,control) and generates a control signal to compensate for the error. The error sig-

nal is attenuated by a proportional controller gain, x = 0.03. At a given pacing interval

the Ca2+ transient peak is maximum in the alternans-free (or stabilized) cell. Therefore,

the Ca2+
pacer peak concentration is higher than the Ca2+ that experiences alternans. In

principle, the [Ca2+]-controller is based on this difference in the stable and unstable Ca2+

concentrations. A spatially-distributed stabilizing [Ca2+]-controller essentially operates

only when the [Ca2+]err is negative and its effect on calcium dynamics. The controller is

active in the refractory phase of the APD that causes the Ca2+-peak of the subsequent beat

to increase. This necessarily drives the unstable (lower) Ca2+-peak to an alternans free or

stable peak value ([Ca2+]pacer). Such a combined electrical boundary pacing based and

spatially distributed [Ca2+] based controller could successfully annihilate the amplitude of

alternans and avoid a conduction block coming from the non pacing end of the tissue.

Direct measurements of intracellular [Ca2+] concentrations is difficult. Hence imple-

mentation of the spatially distributed controller can be carried out in two ways i) using the

existing cardiac cell models to calculate the [Ca2+] from local voltage (V) measurements
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or ii) the controller can be based on a measurable quantity like mechanical deformations

(stress) in the tissue. Therefore, in the next section a numerical study showing the effect

of mechanical perturbations on cardiac alternans in a simple three variable Nash-Panfilov

model is discussed.

2.3 The Amplitude Equation

In this section, we develop a analytical approach to annihilate the alternans in a cardiac

tissue by applying the suggested control protocol. The spatiotemporal dynamics of small

amplitude alternans associated with Eq. 2.14 in 1D paced cardiac tissue can be expressed

in terms of the amplitude of alternans parabolic PDE developed by Echebarria and Karma

(Echebarria & Karma, 2002). Further, this equation is coupled to include the spatiotem-

poral evolution of amplitudes of alternans associated with Ca2+ as suggested by Shiferaw

and Karma (Shiferaw & Karma, 2006). A linear parabolic PDE exhibiting amplitude of

alternans is given the following form:

∂a(ξ , t)
∂ t

=D
∂ 2

a(ξ , t)
∂ξ 2 −w

∂a(ξ , t)
∂ξ

+σa+ηaCa (2.19)

daCa(ξ , t)
dt

=γa(ξ , t)+
p

∑
i=0

bCai
(ξ )uCai

(t)

Subject to boundary conditions:

∂a(0, t)
∂ξ

= a(0, t)+ub(t),
∂a(L, t)

∂ξ
= 0 (2.20)

where D = Da/τ , w = w/τ and σ = σ/τ , Da =
√

d ∗APDc and w = 2d/c, d is the dif-

fusion coefficient D given in Eq.2.14. In which APDc is APD evaluated at the bifurca-

tion point c is the propagation velocity along the length of the cable. The term ub(t)

refers to boundary applied input associated with the electrical pacing based controller,

while ∑p

i=0 bCai
(ξ )uCai

(t) refers to spatially distributed calcium based controller, where

bCai
(ξ − ξ

i
) = 1

2ε 1(ξ−ε,ξ
i
+ε)(ξ − ξ

i
) represent the location of point and/or spatially uni-

form actuators placed within domain and p is associated with the number of actuators em-

ployed on the length of the cable. The dynamics of voltage alternans (a(ξ ,t)), represented
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by a PDE in Eq.2.19 are coupled with the calcium alternans (aCa(ξ ,t)). The dynamics

of calcium alternans are represented by an ordinary differential equation (ODE). In the

expression for Ca2+ alternans the space (ξ ) is a parameter as calcium alternans do not

diffuse/propagate along the length of cable.

2.3.1 Identification of Amplitude Equation parameters

The amplitude equation parameters (σ , η and γ) are identified from ionic model (LR1)

simulations in the following way.

• The identification of linear term σ is done by evaluating the logarithm of the slope

of the restitution curve (refer Fig.2.2), period (τn) = APDn+ DIn. This DI is varied

to get the restitution curve. This is done by the S1S2-protocol

Measurements: DIn, APDn+1. σ = ln( f
�), where APDn+1 = f (DIn)

• The factor γ , Shiferaw & Karma, 2006 signifies the dependence of Ca2+
peak concen-

tration on DI (see Eq.2.19). A protocol similar to S1S2 is developed by which a

relationship between changes in Ca2+
peak and DI (the rest time interval before S2) is

established (Fig. 2.12). The minimum value for the slope of this curve is taken to be

the value of γ .

Measurements: transient- Ca2+ peakn, transient- Ca2+ peakn+1.

• For identification of η procedure similar to S1S2 is applied to produce a calcium

signature. But in this case the S1 is the last beat in the series of approx 50 beats

which are close to the bifurcation point just before the onset of alternans. Then

S2 is generated by increasing the pacing period τ immediately after the S1. The

calcium dynamics associated with this S2 beat is recorded as calcium signature. In

a separate simulation run, the cell is paced for approx 50 beats at period near to

the bifurcation point before onset of alternans. For the n+1 beat instead of natural

cell calcium dynamics the calcium signature is used to impose the calcium dynamics

(see Fig.2.13.a). η is given as the slope of the curve between APD and ∆ Ca-peak

(as shown in Fig.2.13.b).

Measurements: APDn, APDn+1, transient- Ca2+ peakn, transient- Ca2+ peakn+1.
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Figure 2.12: Effect of change in DI on Ca2+ peak.

2.3.2 Solution to the amplitude of alternans equation

An approximated delta function δ (ξ − ξ 0) =
1

2ε 1(ξ 0−ε,ξ 0+ε) ∈ L2(0,L), is inserted into

Eq.2.19. L2(0,L) is a space of square integrable function on the domain [0,L]. Utilizing

the approximated δ function, the boundary based input ub(t) in Eq.2.20 can be lifted to the

amplitude of electrical alternans PDE to give,

∂a(ξ , t)
∂ t

= D
∂ 2

a(ξ , t)
∂ξ 2 −w

∂a(ξ , t)
∂ξ

+σa+ηaCa +δ (ξ )ub(t) (2.21)

daCa(ξ , t)
dt

= γa(ξ , t)+
p

∑
i=0

bi(z)uCa(t) (2.22)

Subject to boundary conditions

∂a(0, t)
∂ξ

= a(0, t),
∂a(L, t)

∂ξ
= 0 (2.23)
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Figure 2.13: Determination of η a) Membrane potential showing change in action potential
dynamics due to the sudden change in Ca2+ concentration, b) Effect of change in Ca2+

dynamics on APD.

This system of equations is amenable to modal decomposition. Thus let us assume solution

to Eq.2.21 & Eq.2.22 is in the form:

a(ξ , t) =
∞

∑
n=1

an(t)φ n
(ξ ) (2.24)

p

∑
i=0

bCai
uCai

(t) =
∞

∑
n=1

bn(t)φ n
(ξ ) =

p

∑
i=0

bCai
uCai

(t)

�
∞

∑
n=1

bnφ
n
(ξ )

�
(2.25)

δ (ξ )ub(t) =
∞

∑
n=1

cn(t)φ n
(ξ ) = ub(t)

�
∞

∑
n=1

cnφ
n
(ξ )

�
(2.26)

implies that

∞

∑
n=1

bn(t)φ n
(ξ ) =

p

∑
i=1

bCai

∞

∑
n=1

cn(t)φ n
(ξ ) = δ (ξ ) (2.27)

A linear operator A can be defined as,

Aφ(ξ ) = (D
∂ 2

∂ξ 2 −w
∂

∂ξ
+σ)φ(ξ )

Applying a separation variables method around the spatially uniform unstable steady-

state a(ξ , t) = 0, one obtains the operator A which belongs to the class of Sturm-Liouville
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operators,

Aφ
n
(ξ ) =

�
D

∂ 2

∂ξ 2 −w
∂

∂ξ
+σ

�
φ

n
(ξ ) = λ nφ

n
(ξ ) (2.28)

Subject to

dφ
n
(0)

dξ
= φ

n
(0),

dφ
n
(L)

dξ
= 0 (2.29)

Multipling Eq.2.28 by 1
D

e
−wξ/D and rearranging terms

De
wξ/D

d

dξ

�
e
−wξ/D

dφ
n

dξ

�
+(σ −λ n)φ n

(ξ ) = 0 (2.30)

Comparing with the Strum-Liouville form:

L(.) =
1

ρ(ξ )
d

dξ
(p(ξ )d(.)

dξ
)+q(ξ )(.) = 0 (2.31)

we get,

ρ(ξ ) = 1
D

e
−wξ/D (2.32)

p(ξ ) =e
−wξ/D

q(ξ ) =(σ −λ n)

Thus, φ
n
(ξ ) is the system of eigenfunction and φ∗

n
(ξ ) = 1

D
e
−wξ/Dφ

n
(ξ ) is the adjoint

eigenfunction. The above Sturm-Louville problem can be simplified to the following tran-

scendental equation:

tan(
�

β
n
L) =

�
β

n

β
n
− w

2D

�
1− w

2D

� (2.33)

where β
n

is the solution to the above transcendental equation and the spectrum of eigen-

values of operator A are given as (see Fig.2.14),

λ n = σ −
�

β
n
+

w
2

4D2

�
(2.34)

In terms of the system eigenfunctions, the solution to Eq.2.34 is:

φ
n
(ξ ) = Bne

wξ/2D

�
cos

��
β

n
ξ
�
+
�

1− w

2D

� 1�
β

n

sin

��
β

n
ξ
��

(2.35)
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Figure 2.14: Spectrum of eigenvalues determined by for cable lengths (2 cm, 4 cm, 6.25
cm).

where Bn is chosen to make the eigenfunctions orthonormal to the adjoint eigenfunctions,

given as:

Bn =




�

L

0

�
cos

��
β

n
ξ
�
+
�

1− w

2D

� 1�
β

n

sin

��
β

n
ξ
��2

dξ




− 1

2

(2.36)

Finally, the modal form is obtained by projecting Eq.2.21 on the space of eigenfunction of

operator A though Galerkin’s method to yield:

dan

dt
=λan +ηaCan

+φ
n
(0)ub(t) (2.37)

daCan

dt
=γan +

p

∑
i=0

< bi(ξ ),φ n
> uCai

(t) (2.38)

Thus we have accomplished the exact modal decomposition, where the lumped system
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equations are given by Eqs.2.37 -2.38 which can be directly used in a control synthesis

scheme. The coefficients bn and cn are given from the orthogonality relations:

bn =
�

L

0
bCai

(ξ )φ
n
dξ =< bCai

(ξ ),φ
n
> n = 1,2,3, ... (2.39)

cn = φ
n
(0) = Bn n = 1,2,3, ... (2.40)

The output of the system given by Eqs.2.37 - 2.38 is given as:

Y =




<C(ξ )a(ξ , t),φ

n
>

<C(ξ )aCa(ξ , t),φ n
>



 (2.41)

Y =

� �
L

0 ∑∞
n=1 an(t)φ n

(ξ )C(ξ )φ
j
dξ 0

0
�

L

0 ∑∞
n=1 aCan

(t)φ
n
(ξ )C(ξ )φ

j
dξ

�
(2.42)

Considering that states a(ξ ,t)n and a(ξ ,t)Can
are fully measurable, hence C(ξ ) = 1 and:

�
L

0
φ

n
(ξ )φ

j
dξ =

�
1, if, j = n
0, else

Therefore, Eqs.2.37 - 2.38 can be represented in state space form as:
�

ȧn

ȧCan

�
=

�
λ n ηn

γ
n

0

��
an

aCan

�
+

�
φ

n
(0) 0
0 < bCai

(ξ ),φ
n
>

��
ub(t)
uCa(t)

�

Y =

�
1 0
0 1

��
an

aCan

�
(2.43)

so that, finally the A,B,C triplet is given by:

A =

�
λ n ηn

γ
n

0

�
, B =

�
φ

n
(0) 0
0 < bCai

(ξ ),φ
n
>

�

C =

�
1 0
0 1

�

where, n is the number of modes considered (or the number of eigenfunctions in Galerkin’s

method used to numerically simulate the system)

2.4 Controller synthesis

A state feedback control is applied on the state space model described in Eq.2.43. Simula-

tions were carried out in MATLAB. For a cable of length L = 6.25cm the operator A has
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two unstable modes and calcium amplitude equation has two unstable modes. The stability

analysis shows that these four eigen modes are stabilizable and hence the complete system

can be stabilized. The eigenvalues of stable modes remain invariant under the state feed-

back control structure.

0

1

2

3

4

5

6.25

0
500

1000
1500

−20

0

20

40

ξ (cm)

time (ms)

a
(
ξ
,
t
)

Figure 2.15: Boundary and spatially distributed Ca2+ control of instabilities given by
Eq.2.14: Stabilization of voltage alternans.

Input to the system is given as a full state feed back, U(t) =−kX(t), where

U(t) =
�

uCa(t) ub(t)
�

, X(t) =

�
an

aCan

�
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Figure 2.16: Boundary and spatially distributed Ca2+ control of instabilities given by
Eq.2.14: Stabilization of Ca2+ alternans.

and k is the gain matrix such that ub is the electrical boundary applied feedback controller

as discussed in Section.2.3 that can stabilize only a finite range of cable length(≈ 1cm).

To annihilate the alternans along the full length of the cable, a spatially distributed Ca2+-

controller is applied which compares the calcium concentration of the cells under control

with the calcium concentration at the boundary and generates an equivalent control signal.

Such spatially distributed Ca2+-controller actuators are placed at ξ
i

between ξ = 4.375cm

and ξ = 5.625cm.
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Usual pole placement or optimal control techniques can be applied to stabilize the above

system. Prior to such control techniques the system model can be reduced to a state space

realization that isolates the stable part of the system matrix and control can be applied to

only the unstable eigenvalues. In MATLAB, command balreal* was used to determine a

state transition matrix that yields the following state- space realization of the model de-

scribed in Eq.2.43.

�
Ẋ

�
=

�
Aunstable 0

0 Astable

��
X

�
+

�
Bunstable

Bstable

��
U(t)

�

Y =
�

Cunstable Cstable

�
X (2.44)

where,

X =

�
a

aCa

�

With this state space model and only the unstable eigenvalues to stabilize the care
† com-

mand in MATLAB is used to determine the unique stabilizing optimal controller-gain k.

Both voltage and calcium profiles show stabilization of the instability caused by alternans

given by Eq.2.14 with the application control protocol (see Fig.2.15 and Fig.2.16). A

comparative study of stabilization of alternans by 1) only electrical boundary based control

only and 2) boundary control with spatially distributed calcium control shows that ampli-

tude of boundary controller gain required in the latter case is much smaller and less oscil-

latory nature and hence have a higher possibility of application in a human heart tissue(see

Fig.2.17).

This analysis of linear parabolic PDE reveals that stabilization of alternans is possible

with a control structure that is realizable in a real heart tissue. Also the results obtained

from this model are in close agreement with those from the ionic model.

*Computes a balanced realization for the stable portion of the LTI model for both continuous and discrete
systems. In MATLAB, [ sysb, g] = balreal(sys), returns a state space realization sysb consisting of stable
modes. For stable systems, sysb is an equivalent realization for which the controllability and observability
gramians are equal and diagonal, their diagonal entries forming the vector G of Hankel singular values. Small
entries in G indicate states that can be removed to simplify the model. If sys has unstable poles, its stable
part is isolated, balanced, and added back to its unstable part to form sysb. The entries of g corresponding to
unstable modes are set to Inf

†computes the unique solution of the continuous-time algebraic Riccati equation
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Chapter 3

Mechano-Electric Feedback

3.1 Introduction to Electromechanical cardiac cell model

It is known that electric activity in the heart affects the mechanical properties of the heart.

The sudden rise in electric potential (depolarization) induces a cardiac cell to undergo me-

chanical contraction and relaxation during the diastolic interval (see Fig.3.1). This me-

chanical activity of the cardiac cell is attributed to the release of Ca2+ ions due to electric

potential and their binding and unbinding with contractile proteins, mainly Troponin C.

This effect of electrical activity on mechanical properties of a cardiac cell is termed as the

excitation-contraction coupling. Studies have also indicated that any manipulation in the

mechanical stress of cardiac cell subsequently affects the electrical properties of the tissue.

Experiments carried out Calaghan et al. (Calaghan et al., 2003) on guinea pig ventricular

myocytes concluded that a mechanical stretch in the direction of the fibre increased the

action potential duration (APD). Models described in Sec.2.1 do not take into consider-

ation this electrical and mechanical stress-strain relationship of a cardiac cell. The heart

cells usually contract to approx. 15-20% of their original length. To account for such

high deformations, stress-strain dynamics are based on finite deformation elasticity theory.

In literature various models (Nash & Panfilov, 2004, Niederer et al., 2006) describing the

electro-mechanical coupling are available. The purpose of this chapter is to validate the

suggested controller algorithm by showing that a mechanical based perturbation can affect

the electrical properties of a cardiac tissue and also stabilize alternans in the tissue.

The Nash-Panfilov model (Nash & Panfilov, 2004) is a simple three variable FitzHugh-

Nagumo (FHN) type model coupled with mechanical stress-strain properties for a cardiac
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Figure 3.1: Dependence of mechanical properties (length, L) on the electrical activity (volt-
age, V) in a single cell (Voltage and Length are dimensionless).

cell. The Nash-Panfilov (NP) model includes an additional third variable to the Aliev-

Panfilov model (Aliev & Panfilov, 1996) which is associated with the active tension in the

cell. This active tension which is a function of the electrical voltage in the tissue is further

linked to the mechanics model. The purpose of this chapter is just to study and annihilate

alternans via mechanical perturbations for which the exact shape of the action potential

is not necessary. Newly develop ionic models can reconstruct the action potential that is

equivalent to a realistic cardiac cell that are computationally complex and expensive. As

this part of the thesis neither requires an exact action potential shape nor description of

any chemical species a simple NP model is used to numerically reconstruct a cardiac cell

dynamics.

3.2 Cardiac tissue mechanics model

The cardiac tissue mechanical analysis is based on the the finite elastic deformation theory.

The finite deformation gradient tensor, F that transforms the undeformed cell geometry to
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a deformed is given as:

F
i

M
=

∂xi

∂Xm

, (3.1)

F =
∂x

∂X

where xi denote the deformed position of the particle, XM denote the reference (unde-

formed) material coordinates and i,M = 1,2,3. Therefore, F denotes a map that transforms

a material line segment from a undeformed geometry dX to a deformed geometry dx.

The Cauchy-Green deformation tensor C and Langrange-Green strain tensor E are defined

as

C =F
T

F, (3.2)

E =
1
2
(C− I), (3.3)

where I is the identity matrix.

The equilibrium conditions arise from the conservation of linear momentum following

Newtons’s laws of motion. For static equilibrium in the absence of body forces, the gov-

erning equations expressed in terms of second Piola-Kirchhoff stress components,

∂
∂Xm

(TMNF
i

N
) =0, (3.4)

∂
∂Xm

(SMN) =0, (3.5)

M,N = 1,2,3

where SMN is the first Piola-Kirchoff stress tensor and TMN is the second order Piola-

Kirchoff stress tensor given as:

TMN = T
passive

MN
+T

active

MN
(3.6)

The component T
active

MN
has components that are obtained from the electrophysiological

model and is responsible to for mechanical deformations. The individual components of
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T
passive

MN
and T

active

MN
are given as:

T
passive

MN
= T

W − p(CMN) (3.7)

T
W =

1
2

�
∂W

∂EMN

+
∂W

∂ENM

�
(3.8)

T
passive

MN
=

1
2

�
∂W

∂EMN

+
∂W

∂ENM

�
− p(CMN) (3.9)

T
active

MN
= TaCMN (3.10)

where ENM = (EMN)T , CMN = (CMN)−1, W is the strain energy function defined as

W =c1(I1 −3)+ c2(I3 −3) (3.11)

I1 = trC, I2 =
1
2
[(trC)2 − trC

2], I3 = detC

I1, I2 and I3 are the principal invariants of Cauchy-Green stress tensor, C, and trC is trace

of C given by the sum of principal diagonal elements.

3.3 Numerical Simulations using Nash-Panfilov (NP) model

Equations governing the electrophysiological parameters of NP model in one dimension

are described as follows:

Cm

∂V

∂ t
= D

∂
∂Xi

(
√

CC
MN

∂V

∂Xi

)− f (V ) (3.12)

∂ r

∂ t
= (ε + µ1

µ2 +V
)(−r− kV (V −a−1)) (3.13)

∂Ta

∂ t
= ε(V )(kTaV −Ta) (3.14)

∂
∂ t

(SMN) = 0 (3.15)

where f (V ) = kV (V − 1)(V − a)− rV − Ig, V is dimensionless transmembrane potential,

r is the recovery variable, Ta is the active stress and D is the diffusion constant. The elec-

trophysiological model described by Eqs.3.12 - 3.14 coupled with the cardiac mechanics

described by Eqs.3.1 - 3.11 together form the NP model. The term F(X) = ∂x/∂X in-

troduces non linearity in the system and requires rigorous numerical techniques to ensure

the stability. Hence, a linear approximation for F(X) is done and the model is simulated
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as a coupled system (Alvarez-Lacalle & Echebarria, 2009). With T
W as in Eq.3.9) the

mechanics equations for 1D can be reduces to

T
W = 2c1I (3.16)

S
W = T

W .F(X)

∴ S
W = 2c1.F(X) (3.17)

S
passive = S

W + pdet(F)F−1 (3.18)

The last term in Eq.3.18 maintains the isotropic conditions which is non zero in absence of

external forces also for incompressible materials det(F) = 1. From initial conditions when

F = 1 and forcing S
passive = 0 gives p = 2c1 = c̃. Hence, total S = S

passive +S
active

S = S
W − c̃ F

−1 +TaC
−1

F (3.19)

from Eq.3.15
∂

∂X

�
S

W − c̃ F
−1 +

Ta(X)

F(X)

�
= 0

∂
∂X

�
c̃ F− c̃ F

−1 +
Ta(X)

F(X)

�
= 0 (3.20)

Eq.3.20 when considered without the constant pressure term is given as:
∂

∂X

�
c̃ F+

Ta(X)

F(X)

�
= 0 (3.21)

Eq.3.21 when integrated and linear deformation approximation for deformation gradient,

F(X) = 1+u(X) with u � 1, gives:

c̃[1+u(X)]+Ta(X)[1−u(X)] = A (3.22)

F(X) = 1+u(X) =
(A−Ta(X))

c̃

where A is a constant of integration to be determined. Using the boundary conditions

[x(0) = 0 and x(L) = L] yields
�

L

0
F(X)dX = L (3.23)

∴ A = c̃+ T̄a, T̄a = avg(Ta(X))

F(X) = 1+
(T̄a −Ta(X))

c̄
(3.24)
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At any particular position when T̄a > Ta signifies that the tissue undergoes elongation

or stretch. Current Ig described in Eq (3.12) is active only when the cell stretches locally

and it is given as, Ig = (g/c̄)(V −1)(T̄a −Ta)2. For the purpose of numerical simulations,

Eq.3.12-Eq.3.15 are used to constitute the electromechanical model and Eq.3.24 gives the

mechanical deformation gradient. A one dimension cable of length L = 7cm is considered.

Eq.3.1 is evaluated numerically by semi implicit finite difference method as time integration

scheme with ∆t = 0.02 and ∆X = 0.1. The tissue is paced at the boundary to its critical

pacing length (PL) such that the APD alternates (Fig.3.2).
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Figure 3.2: Concordant alternans in APD in Nash-Panfilov model.

APD measurements are done when voltage crosses 0.4 units. Amplitude of alternans is

given by the difference between two APDs.

an(ξ ) = APDn −APDn−1 (3.25)

Under constant critical PL the amplitude of alternans grows (see Fig.3.3) finally ending

into a conduction block (not shown here). A spatially distributed mechanical based per-

turbations are carried out on the tissue to annihilate alternans. Basic full state feedback
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Figure 3.3: Amplitude of alternans - Nash Panfilov (NP) model.

algorithm which takes error e (see Eq.3.26) generated between two consequent APDs pro-

vides a control signal which is applied over the region 3-4.5 cm. The control signal is active

only when e < 0 due to which the controller only acts on the long-APD (see Fig.3.4 after

14000 ms, when the controller is activated) . Thus, Eq(3.14) is modified to incorporate the

spatially distributed controller by adding an error based controller that perturbs the active

tension in the cells, given as:

e = (APDn −APDn−1) (3.26)

∂tTa = ε(V )(kTaV −Ta)+βe (3.27)

From Fig.3.3 we see that the alternans developed in the cardiac tissue can be annihi-

lated by using a spatially distributed mechanical stress-strain based controller which was
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Figure 3.4: Shows the time evolution of the deformation variable xi. The change in the
shape of the curve after 14000 ms is attributed to the action of controller. The sudden ex-
pansion at the point of excitation is due to the linear approximation of deformation gradient,
F(X).

activated at 14000 ms. Finally, Fig.3.4 shows the action of controller over the region [3,

4.5] cm on the Long (L) - APD.

Thus using a model based on the cardiac mechanics as well as electrophysiology it

clearly shows that the electrical APD can be manipulated in order to suppress alternans by

using a mechanical based perturbations.

42



Chapter 4

Conclusions and future work

4.1 Conclusions

This work shows the effectiveness of a controller algorithm that is based on mechanical

stimuli along with a boundary pacing control in annihilation of cardiac alternans. The

control technique involves mixed algorithm consisting of a electrical based boundary pac-

ing and a electrical independent stimulus (mechanical stimuli) that is spatially distributed

along the tissue. Calcium dynamics being identified as the prime component in the electro-

mechanic and mechano-electric coupling, effect of its perturbation on alternans stabiliza-

tion was reported in Chapter.2.

For this study, Luo Rudy-1(LR1), a recently developed model that includes updated

currents to numerically reconstruct the depolarization and repolarization of a action po-

tential close to that of a realistic cardiac cell. The cable equation was considered for the

transmembrane potential for a tissue of length 6.25 cm with ionic currents as suggested in

the LR1 model. The tissue was paced at a frequency so as to induce alternans (discordant).

When a boundary pacing control was applied, alternans up to ≈ 1 cm of length were sup-

pressed but concordant alternans were developed with increasing amplitude towards the

end of the tissue which resulted in a conduction block. Under such a boundary pacing

control before the conduction block a spatially distributed calcium controller was initiated.

This combined effect of boundary pacing control and a spatially distributed calcium control

avoided a conduction block and also suppressed alternans successfully.

The ineffectiveness of a pacing or electrical based boundary control is due to the lack

of the information on the instabilities far from the pacing site. A spatially distributed con-
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troller actuators provides the controller with this information and aid in annihilation of

alternans. This can be explained by the parabolic PDE model discussed in the last section

of Chapter.2. The constants in the PDE model are adopted from LR1 ionic model. Analysis

on this PDE model provides information on the stable modes, unstable modes and control-

lability of the system. With longer cardiac tissues the number of unstable modes increases,

as in case of a tissue length of 6.25 cm two eigen modes are unstable. A boundary pacing

controller has limited controllability and can stabilize the system but only with very high

control input, having such a high controller gain is impractical in a real cardiac tissue. This

defines the stabilizability of alternans in a real sized cardiac tissue by the suggested control

algorithm.

Spatially distributed actuators perturb a chemical species (calcium) in the cells that in

effect suppresses the alternans. Calcium dynamics dominate the mechanical contraction

in cells. These calcium dynamics also hold the ability to change the APD when affected

by a mechanical stimuli. Suppression of alternans by directly manipulation of mechanical

stress was reported in Chapter.3. A cardiac tissue of 7 cm was simulated using a sim-

ple three variable Nash-Panfilov model with a linear approximation for the deformation

gradient. The active tension in the stress-strain model was actuated based on the differ-

ence in APD of two consecutive beat in a tissue manifesting alternans. With a change in

active tension the deformation gradient, F is affected which further influences the mem-

brane potential in two ways, as a diffusion term and as current Ig in the cable equation.

Suppression of alternans by perturbing mechanical stress in a model that consists of cou-

pled cardiac electrophysiology and cardiac mechanics supports the results for the controller

based on calcium dynamics. Thus the suggested control algorithm that consists of a com-

bined boundary pacing and a spatially distributed mechanical (or chemical species) based

controller can effectively annihilate alternans in a real sized cardiac tissue.

4.2 Future Work

In future, annihilation of alternans in a two dimensional NP model by mechanical per-

turbation can be considered with no approximations on the nonlinear deformation gradient

tensor, F. Currently, the procedure adopted in this study involves a linear approximation for
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F which limits the maximum contraction in cells to ≈ 8-10 % of the original length. A 2D

system of equations as suggested by Whiteley et al. that involves the voltage propagation

in two directions whereas the tissue deforms unidirectionally. The governing equations of

such a 2D system is given as:

F =




x
�
1(X1) 0

0 x
�
2(X2)



 (4.1)

E =
1
2




(x�1(X1))2 −1 0

0 (x�2(X2))2 −1



 (4.2)

C
−1 =




(2E11 +1)−1 0

0 (2E22 +1)−1



 (4.3)

The strain energy function in Eq.3.11 is defined in the pole zero form (Whiteley et al.,

2007). The strain energy function is defined in terms of the Green-Lagrange strain tensor

with the axes aligned with the fibre and fibre sheet, deformation in a direction due to forces

and deformation in other directions is affected.

W = k1
(E11)2

(a1 −E11)b1
+ k2

(E22)2

(a2 −E22)b2
(4.4)

The stress tensor T
passive

MN
is given as:

T
passive

MN
=





∂W

∂E11
− p

2E11+1 0

0 ∂W

∂E22
− p

2E22+1



 (4.5)

Though the system is two dimensional, the undeformed tissue is subjected to a unidirec-

tional force hence

T22 = 0 (4.6)

To ensure incompressibility of the tissue, detF = detC = 1, and hence the compressibility

constraint is given as:

(2E11 +1)(2E22 +1) = 1 (4.7)
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• Extension of tissue (E11 > 0, E22 < 0, ∂W

E22
= 0)

∴ T22 =
−p

(2E22 +1)
= 0, ∴ p = 0

T11 =
∂W

E11
= k1

(E11)2

(a1 −E11)b1

�
2+

b1E11

(a1 −E11)

�
(4.8)

• Compression of tissue (E11 < 0 , E22 > 0)

∂W

E22
− p

(2E22 +1)
= 0

k1
(E22)2

(a1 −E22)b1

�
2+

b1E22

(a1 −E11)

�
− p

(2E22 +1)
= 0 (4.9)

For a given value of E11, Eqs.4.7 and 4.9 can be solved for E22 and p to evaluate

T11 =− p

(2E11 +1)
(4.10)

Eqs.4.8 and 4.10 give the value of T
passive

MN
for two conditions, extension and conpression

of fibre which further can be used to evaluate the deformations. The deformations can be

found out by solving the equilibrium relation.

∂
∂XM

�
TMN

∂xN

∂XN

�
= 0 (4.11)

where xi and Xi are deformed and undeformed coordinates respectively. As deformations

are only in one direction M,N = 1. The electrophysiological model is same as the NP

model considered in Chapter.3. Performing simulations in a 2D tissue is a step further in

considering a 3D heart with tissue anisotropy.
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