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ABSTRACT

For the past 20 vears, pulp and paper mills have invested i information technology with
the firm belief that having more information would indirectly improve milt operation.
Slave Lake Pulp Corporation (SLPC) in Alberta, Canada has installed o mull-wide
information management system, MOPS, deveioped by MoDo Chemctics. MOPS
collects and stores all the crucial process data points synchronously or asynchronously
from the DCS, bale handling system. power monitoring system, and manuai test entrics.
Operators use MOPS graphical displays to monitor quality, production, and chemical
consumption. MOPS helps operators to check the status of the mill quickly, make
decisions efficiently, and access the operating conditions for new production or repeated
grades. However, the mill operation still heavily relics on operator's experience. How to

apply intelligent system technology to solve the problem is the topic of this research.

This thesis describes the development of an Intelligent Matrix Simulation system (IMS).
a hybrid simulation system for the operational support of a BCTMP pulp mill. IMS
combines features from neural networks, casc based reasoning, rule-based and frame-
based intelligent systems and simulates the process behavior. The IMS knowledge basc is
organized using Meta-COOP frames. The BCTMP process is divided into smaller sub-
processes such that each sub-process can be represented in one frame. The inferencing in
IMS is dividvé into a number of local systems in terms of system functions and/or
process decomposition. Each local system integrates case based reasoning (CBRj),
numcy;2! calculation (NC), heuristic rules (HR), and necural networks (NN) to solve
individu: problems. IMS incorporates time-based historical process data from MOPS,
operation:: = ¢ knowledge from the relational database of Bale Quality Information

System (B{:'~. mathematical simulation models, and cxperts knowledge from the



proce . and operations. [t also serves as a knowledge base for on-line fault diagnosis and

emergencey handling in another module of TOMCS project.

IMS is an on-linc real-time intelligent system developed in a client - server environment
with a server being an Alpha Open VMS and clicats being the PC workstations running
Microsoft Windows 95 or Windows NT. The prototype of IMS system has been
successfully installed in the mill computers. It has been proven useful in assisting the
daily operation of the mill. The enhancement of the IMS system is continuing on-site

since the author is employed by the mill.
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Chapter 1

1. INTRODUCTION

In the 1990's. the world-wide movement to improve product quality and to protect
the environment has prompted pulp and paper companies to look for new technolopies
that can aid them in mecting the market and public demands, while remaining cost
competitive. The extensive applications of computer based information management
system is one of the major moves taken by pulp and paper companies. Currently, modern
pulp and paper mills have installed Distributed Control Systems (DCS) and mill wide

information management systems.

Slave Lake Pulp Corporation (SLPC) is utilizing the best available technology to
produce a high quality market pulp product. The mill has implemented the Mill-wide
OPtimization System (MOPS) [Chemetics 1995] , an integrated valuc-added information
system, and the Bale Quality Information and tracking System (BQIS) [Prime 1994].
These information systems collect over 2300 process data points per minute from many
different sources and store them in the databases. These information systems perform
such functions as meterial tracking, statistical process control, report automation and
analysis. MOPS helps operators and process engineers to check the status of the mill
quickly, and to make decisions efficiently. BQIS helps the marketing department to sell

and serve its customers cfficiently.

Product quality and production profits are influenced by many parameters from
process conditions to raw material supplies. The knowledge concerning the operation
includes complex technologies from different arcas. Using MOPS, however, the

operation still heavily relies on operators' expertise and experience |Frith et al. 1992].



Jraced with the vast amount of data from MOPS, even an experienced operator may find it
difficult o deal with some operations such as grade transition, process optimization and
trouble shooting. Typically, at any given time, there arc only two operators controlling
the process and handling the large amount of data |Farzadeh et. al., 1996]. The industry
has an urgent need for technology that can extraci useful and relevant knowledge from
the vast amount of available data to assist the mill operations. Process modeling.
simulation and process optimization are the important means to tackle the problem. The
next section will pive a brief overview of existing process modeling and simulation

techniques.

1.1 PROCESS SIMULATION

In pulp and paper, chemical, petrochemical, and petroleum industries, there is a wide
spread in the use of process modeling and simulation technology over the past two
decades at almost all levels of engineering activity, including process research,
development, and design as well as plant operation. Process modeling today still requires
significant skill to be carried out efficiently. The ultimate objective of any simulation is
to develop a computer program that is capable of simulating the response of engineering
facilities, that is the responsc of a real plant to control signals issued to the field devices
by operators or computers. The complexity of modern control systems and the potential
consequences of errors in those devices signals the deadly need for such kind of
simulators [Bozenhardt, 1990]. The common applications of process modeling and

simulation in process industries inc ude:

. Process design and development: Process design and development are the earliest
users of process simulation. Traditionally they use static mass and energy

balances for designing equipment and determining operating conditions. A



simulation can be used advantageously in the design of real plants to detect
bottlenecks or under-used units and to test the reaction of the system o non-
nominal production conditions. and thus to improve the original design. Using
only the static model. however, is not sufficient. Recently. as the more
sophisticated simulation tools became available, dynamic models are used for

improving the design.

Control system design or revision: Modern process industrics are controlled with
DCS and/or PLC systems. With a simulation model. control engincers have a test
bench for control schemes. A control scheme can be tested against plant
simulators before final installation, and the control system design and revision can
be safely done. One particularly interesting and worthwhile application arca is the
integration of process design and control since it is of utmost importance to

uncover potential control problems at an early stage of the process design.

High level operation support functions: The more sophisticated operation support
functions, such as operation optimization and trouble shooting, need a plant
simulator as its model base. The operators also need to simulate the control action

before finally issuing it.

Operator training: The process simulator can serve as a training tool for the new
operation personnel to familiarize them with the plant. There has been a growing
interest in the use of training simulators in the process industry. There are many
reasons behind it: a desire to increase overall productivity, the need to comply
with changes in safety and environmental legislation and, most importantly, the
wish to reduce the risk associated with human error. For example, because of
obsolescence, most production companies have upgraded or arc planning to

upgrade the control system to a DCS. However, there is usually concern among



many operating personnel about the control system conversion. Process operators
are reluctant to switch from their familiar pnecumatic board system to a "television
like" clectronic system. It becomes obvious that a thorough training program,
including hands-on experience, will be an essential clement of the control system
cffort.

° Maintaining and accumulating knowledge: Most of knowledge from the original
designers of the plant is separated and have never been updated. The knowledge
from the individual mill engineers and operatess that they acquired in real time
operation is seldom kept in official documents. Process simulators are the best
tool and technology 10 unite, maintain and accumulate the knowledge from the

original designers, mill engineers. and process operators.

1.1.1 NUMERICAL MODEL BASED PROCESS SIMULATION

A traditional sinwulation environment consists of simulation blocks linked with
cach other. The simulation blocks are second generation based programs (such as
FORTRAN-based subroutines) with hard-coded, pre-determined solution methods.
Inside the subroutines is usually a sct of differential equations. The solutions to
differential equations must be developed. The drawbacks of this kind of the methods are:

1) A simulation consist of hundreds of simulation blocks. This makes it very

difficult for the simulation to be extended beyond the original scope.

2) Since the influence of any part of the subroutine can not be isolated, substantial
effort is required when there is uny change in the process, such as feed-stock,
flow configuration, cquipment failure of transitions of flow, energy or mass

regime.



From an engincering point of view, one of the critical requirements of a pood
program is that users should only need to identify the engineering parameters associated
with each process component, and components relationship, i.e.. only to create a
database. No further programming i computer fanguages should be required. However,

the traditional simulation environments do not have such capabilitics.

To solve the problem. a modular approach has been employed for both steady state
simulation and dynamic simulations. In the modular approach, the units (equations
represcnting these units) are solved once at a time according to a pre-defined calculation
sequence. The modular approach have made the simulation more flexible. This method
is structured because it partitions the equations into smaller subsets which can be solved
separately or simultaneously. It is a mixed mode becausc it allows dynamic and non-
dynamic units in the same flow sheet as well as simultancous solutions ol steady-state
and dynamic simulation problems. Also, the steady-state model and dynamic model are
represented by the same set of equations, specified variables and state variables and the

equations are solved by the same numeric method.

The sequential modular approach has been proposed and vastly adopted in simulation
for process flow sheeting because of its robustness and reliability [Evans, 1981
Westerberg et al., 1979]. In this approach, the simulator consists of modules for cach kind
of equipment which compute the outlst streams given that the inlet streams and
equipment parameters are input data. Knowledge about the cquations involved in cach
module and its specific task permits te:”'ng of data, proper initialization, verification of
results, etc. When solving a steady state flow sheet, the solution from one module is used
as input to the following module in the sequence. Closed loops are solved by tearing
streams, and iterating until the tear streams converge. Examples of steady state sequential
modular simulators are FLOWTRAN [Rosen and Pauls, 1977] and Aspen Plus [Aspen,

1988]. In dynamic sequential modular simulators, the states and input stream values in



cach module are known at the beginning of each time step. The values at the following
timc step might be calculated explicitly from the states and input values at the present
time step. Another possibility is to calculate the values at the following time step
implicitly by scquential calculations. Here tie output values at the present time step from
the module carlier in the sequence, are *sed as input values to calculate both the states
and the output of the actual module. For both schemes each module might contain its own
integration routine, and the flow sheet calculation might be - combination of explicit and
implicit calculations. Examples of dynamic sequential modular simulators are DYFLO

[Frank, 1972] and CADAS [Eikaas, 1990].

However, this rigid problem formulation gives rise to some disadvantages: the nested
nature of the calculations. There is an iterative procedure to converge the tear streams;
cach onc of these interactions involves an iterative method to converge each module, and
finally each one of the last iterations involves an iterative procedure for physicochemical
calculations. As a result, the required CP'1 time is large. Besides, design and optimization
problems require a new iterative loop added at the top of the former nested loops. Two
alternative approaches has been proposed: equation-oriented and simultaneous-modular
simulators. In the equation oriented approaci, the equations describing all unit operations
arc pathered into one large equation system, representing the whole flow sheet. For the
stcady-state case, this is a set of nonlinear algebraic equations, represented by a spare
occurrence matrix with asymmetric blocks along the diagonal. Usually the equation set is
solved by a Newton like method. When the equation oriented approach is applied to
dynamic cases, the equation system is a sct of ordinary differential and algebraic
cquations (DAE), which is usually stiff, sparse and nonlinear. When solving stiff
equations, generally two solution strategies are applied to solve the equation set. One
strategy is to use a DAE solver directly on the set of equations. Another possible strategy

uses a two level solution scheme, employing an ODE solver to solve the ordinary



differential equations and an AE solver to solve the algebraic cquation {Moe and
Hertzberg, 1994]. Examples of equatien based dynamic simulators are Ascend 1 {FLocke
and Westerberg, 1983] and DynSim [Sorensen. 1990]. while SpeedUp {Perkins and

Sargent, 1982] is a combined steady state and dynamic simulator.

A way to overcome the difficulties of the sequential modular approac! while retaining,
its advantages is to remove the constraint requiring that strcams have the same logical
direction as in the physical problem. Associated with the process flow sheet is a directed
graph where the arcs have the same directions as material stcams. Diffcrentiating between
the material flow in the process and the logic flow in the resolution, the direction of the
streams is determined to ease the resolution and to take advantage of available
information. This new sirategy [Montagna, 1993] has been incorporated and used in the

process simulator SIMBAD [l.cone ct al., 1987, Motagna, 1993].

The simulation for batch plants is also an important rescarch topic. Specialty
chemicals are in most cases produced in small quantitics, and therefore flexible batch
plants are more economical for such production processes. In continuous flow plants, the
structure of the process is constant during normal operation. Adequate simulation models
therefore have a fixed structure. The model are constructed either by explicitly writing the
differential and algebraic equations in some programming languages, or, in more modern
systems, by graphically combining basic blocks which corresponding to individual unit
operations. The batch plants are characterized by the lack of a "stcady state”. Firstly, the
operation in the single process units are not stationary but characterized by a trajectory.
Secondly, depending on the actual use of the process units, the dynamics and the
couplings of the plant are different, not only in the sense of parameter variations but also
in their principal structure. In most cases, the sequence of batches in the plant is also
variable. Different products are produced in different quantitics and under certain

constraints (e.g. possible sequences in the variation of product propertics due to a non-



ideal separation of the batches), with variable urgency or time-pressure. Thus for a
complete analysis, orders as a temporal factor and the resulting scheduling of the process
units must be included if the operation of a plant is to be simulated. Engell and Wollhaf
[1994] proposed a structure of a simulation system for the operation of flexible batch
plants which includes both continuous and discrete dynamics. In the simulation system
there are two types of objects: "units of material” and "plant units" which both have
internal (continuous and discrete) dynamic states. According to the recipes and the
decisions on production sequences, dynamic processes are generated dynamically by the
combination of these two types of objects. A number of such process - interacting or not -
is simulated until a phase in one of the units is stopped. Then all related dynamic
simulations are stopped, the state variables of the material and the equipment are updated,
and the system is reconfigured according to the recipe for the next production phase.
Usually the dynamic simulation is thus embedded into a discrete-event system and is no
longer static but a dynamic element itself. The high-level controller is a purely discrete

dynamic system.

1.1.2 INTELLIGENT PROCESS SIMULATION

Intelligent process modeling, simulation and design require the intuition and
expericence that is not provided by flow sheet simulators. Sometimes, the rigid differential
cquations are difficult to obtain due to the non-linearity and lack of complete
understanding of process mechanism. Intelligent simulation have the potential to meet

the demands of process industry.

Intelligent system technology has rapidly gained applications in process simulation
since 1980. in the early 1980's, the first generation of Al tool emerged, such as OPSS,

Prolog and LISP. These systems provide capabilities such as data driven computation,



knowledge acquisition, and intelligent code generation. However, they were very diflicult
to integrate with existing syvstems and ran on specialized hardware. The second
generation of Al tools gradually replaced the first generation from 1980 to 1987, These
tools had the capability to model and prototype industrial systems. Representatives of
second generation systems arc KEE, ART and Nexpert. The major obstacles tor the
application of these systems [Ponton, 1991] are speed, performance and the development
time. Since 1987, the third generation of expert system tools have been developed., such
as Mercury KBE. The third generation systems arc large hybrid systems which possess
the knowledge of simulation experts, allowing the use of multiple representations of
mathematical models, and have "built in" techniques for dynamic simulation and
simultaneous solutions. These techniques are chosen. implemented and monitored
automatically by the expert system. The system has -+ wisc user interface to allow any
user unfamiliar with simulation and modeling technologies to generate and use rigorous
dynamic process simulations. We called the third generation of simulation tools
“intelligent simulation tools”. Intelligent simulation tools are a cross-linked ficld of

artificial intelligence and process simulation.

An important development of intelligent simulation was the design of DECADI
[Gallant, 1988], a prototype expert system for catalyst selection. DECADE contained
limited information concerning the Fisher-Tropsh reaction. This system was implemented
with Franz-Lisp, it+ extension SRL1.5, and OPSS, utilized a hybrid blackboard system
architecture. Within the knowledge sources, the knowledge base is represented by
production rules (OPS5), frames (SRL), and procedures (Franz-Lisp); and the inference
engines utilize recursive, depth-first search for classifying reactions and means-cnds
analysis for the proposal of reactions steps on surface of the metal. DECADE proved to
be capable of recommending materials that can lead to a specific product and suggesting

operating conditions in terms of temperature and pressure.

9



Since flow sheet simulation has been successfully applied in process simulations, a
broader approach for process simulation is to create an expert system environment for
flow sheet simulation. There are two methods to accomplish this objective: one is using
the same programming language for flow sheet simulator and expert systems; another is
using a different language for cach. An important issue for such intelligent simulation
environments is the integration of flow sheet simulators that are typically written in a
procedural language with expert systems that are commonly written in a symbolic
language [Biondo, 1992], a practical approach is 1o develop an intelligent front end for
flow sheet simulator. For example, PROCESS is a large FORTRAN program that runs in
batch-mode on large or medium scale computers. Fjellheim [1985] developed an
intelligent front end for the PROCESS flow sheet simulator using LISP and LOOPS. The
objective was to produce a knowledge based support system for creating and modifying
PROCESS flow sheets for oft-shore process plants. This knowledge based support
system provided assistance for PROCESS modeling that supported the engineer by

incorporating some of the modeling technology in a formal knowledge base.

Stephanospoulos [1987] developed a software support environment, namely
DESIGN-KIT, to aid process engineering activities, including the synthesis of
preliminary pi cess flow sheets, configuration of control loops for complete plants,
planning and scheduling of plant wide operations, and operational synthesis. DESIGN-
KIT was implemented on an Al workstation and used an equation-oriented approach for
flow sheet simulation. The prototype is operated in a single uniform programming
environment, utilizing SYMBOLICS' Common LISP Flavors to create panes, command
menus, and mouse actions and to represent other objects. DESIGN-KIT is embedded in
IntelliCorp's KEE frame to describe processing units, control loop components, process

operations, design methodologies, and production rules.

SALT is a flow sheet simulator written in PL/l. Biondo [1989] created an expert
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system environment for SAL'T and a knowledge based tront end for ANPEN/SE (written
in FORTRAN) with expert system shells written in Pascal. The environment integrated a
flow sheet simulator, statistical estimation models, and an expert system in a4 mainframe
environment to provide access by lavmen to a tool for estimating costs and predicting
performance of advanced technologies. Programs written in REXX were used to intertice

SALT with external routines in the Expert System Environment, a shell written in Pascal.

To solve the problems that arise from the lack of complete understanding of process
mechanism, qualitative simulation is proposed for handling incomplete knowledge about
dynamic systems. De Kleer and Brown [1984] and Kuipers [1989] proposed qualitative
differential equations for describing and handling incomplete knowledge about dynamic
systems. Their form is derived from the ordinary differential cquations of the process
with special qualitative quantities and deperdence functions. It is possible to perform
qualitative simulation using qualitative models to obtain predictions about the behavior of
a process. By replacing all qualitative terms in a qualitative differential equation by

formalized expressions, one can get a quantitative model and simulation as a limit.

"Object-oriented programming" is a technology which can address the requirements
for the simulation of modern process industries. In an Object-Oriented intelligent
simulation system, each object simulates one real-hardwarc components of the plant. The
bjects can be elementary or sophisticated. The LISP-based product of Artificial

Intelligence, Inc., named "Mercury KBE" is such kind of a tool.

In an intelligent object-oriented simulation system, each component is implemented
separately. The interactions among the components are defined by using an interface
which allows flexible simulations to communicate with different components without
sigaificant impact on the original system. The major advantage of the system is to
integrate the variety of functions, such as :

e equations of mass transfer



e cquations of heat transfer

e cquations of momentum transfer

o heuristics or rules

e intcgration of methods to solve differential equations
e database calls/scarches

e probabilistic calculation

¢ simultancous equation solver

e |cad/lag transfer functions

e cquipment performance characteristics
e instrumentation characteristics,

and so on.

The object-oriented approach is a modular approach to software development. There
are scveral desirable characteristics associated with building an intelligent simulation
system for industrial process. First of all, the underlying simulation methods and
modeling techniques can be data driven by the declarative compone=t of the knowledge
basc. That is, by changing the attributes of objects which are undergoing simulation
cases, the optimal simulation procedures are automatically configured and utilized. It
eliminates the need for either modification of the procedural code or running a sub-
optimal simulation. Secondly, the simulation has its intimate knowledge about the
domain. Each module or unit operation can be modeled independently by a uomain expert
and inserted into configuration without modifications to any other code. A well
developed intei y.nt simulation environment allows the user to easily install, use and
modify the system, without the requirement to know the details about computers and
simulation technology. However, the intelligent simulation system have the following
limitations:

1) Complex knowledge acquisition process: The knowledge acquisition has come

to be seen as a bottleneck in the process of building knowledge-based systems

(KBS).

2) Inability to learn: Most of the KBS's developed are fragile, and hence are
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unable to recognize the changes in the environment.  KBS's do not provide

robust learning strategics to update their knowledge eftectively.

3) Inability to handle the huge amount of data:  Current KBS's do not provide
cfficient management for large and distributed knowledge bases. This is mainly
due to the complex structure of the knowledge base entities required to tacilitate

the reasoning capabilitics.

4) Domain dependence and validity: The knowledge bases for many KBN's are
developed for the specific domains. Beyond these domains, the performance

degrades dramatically.

5) Slow execution speed: KBS's incorporate large data structures, and their search
strategies arc computationally expensive, thus resulting in slow execution

speeds.

1.1.3 NEURAL NETWORKS FOR PROCESS SIMULATION

Because of a lack of complete understanding of the process mechanism, differential
equations which describe the dynamics of the processes are very difficult to obtain. ‘Thus,
the knowledge base in intelliger: systems is also very difficult to develop. Because of
these problems, after two decade:  near eclipse, the technology of ncural networks has
been receiving a great deal of att.ution in process industry, especially in the ficld of
process modeling and simulation [Rehbein et al., 1992]. A ncural nctwork is an
information processing method that works better than traditional computing methods on
certain problems. As the name implies, neural networks are somewhat related o
biological systems — which can learn and adapt to changing crvironments. Neural

network technology borrows ideas and inspiration from biology, and some terms used 10



describe neural networks reflect the association.  Several factors motivate the use of

neural networks:

. They are capable of extracting essential characteristics from vast amount of data

which contain noisy and irrelevant information.

. They are able to lcarn from experience, whereas most other techniques relv on

pre-programmed algorithms.

. They have the capability to generalize new knowledge from previous examples.
. They exhibit a greater degree of robustness and fault tolerance.
. They can respond to sensor inputs quickly.

‘There are several opportunities for applying neural network technology in the process
industry. Process models can be developed for which first principle models are difficult to
produce. If adequate process history data is available, a sufficiently accurate neural
network model can be produced. Even in the case in which a first principle model is
available, a neura! network model can be built from the first principle model output.
With the neural network model, the product quality results, which typically require a time
delay to allow lab analysis, can be predicted on-line, allowing process corrections in a
more timely manner. Neural networks can .ctect failed sensors and provide failure
alarms. In addition, a reconstructed value can often be created by the neural network

model for use while the instrument is out of service for repair.

Presently. neural networks are only used for the modeling a single process unit. To
apply neural networks to the modeling and sir lation of plant wide system, the crucial
issue is to integrate neural networks with e 'vstem and conventional differential
cquation based system. The integration is dis....cd in several research papers in the

medical field [Hudson et al., 1990}, but there are very few applications reported in the
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process industry.

1.2 SCOPE OF THIS RESEARCH PROJECT

The above techniques all have their unique advantages and disadvantages. Most of
the existing process simulators either have complex and computationally extensive
heuristics to make them optimal and adaptive, or usc a single scheme at all times
resulting in performance degradation. The knowledge coded in the system is mostly
plant specific, not well developed and highly correlated with plant status. Clearly none of
the existing systems can meet the goals of a research project that is sponsored by industry
and government. Therefore, have analyzed the fundamentals of human behavior and

thinking patterns to develop a system which can emulate these human behaviors.

A way to improve the performance of process simulators is to incorporate the
human reasoning method in system design and to utilize the best features from all of the
above methods. Typical steps of human reasoning can be summarized as follows:

to create categories
to use specific rules
e rules can be cascaded
e "If AthenB"...
e "IfBthenC"
o A--->B--->C
e to use heuristics --- "rules of thumb"
o heuristics can be captured using rules
e heuristics represent conventional wisdom
e to use past experience --- "cases"
e particularly evident in precedence-based rcasoning
e store cases using key attributes
e pump may be characterized by: size of pump, manufacturer of
pump etc.
e 1o use "expectations”

In order to make the computer-based simulator perform reasoning similar to



humans, the computer models can be organized in the following way:

e [rames
e framc attributes called "slots"
e cach frame is a node in one or more "is a" hierarchies
e Computers use rules A--->B--->C
e Set of rules is called knowledge base or rule base
e Computers use cases
e Set of cases is called a case base
e Computers use pattern recognition/expectations

The integration of the different simulation methods in a harmonious environment
could enhance the capability and generality of process simulators. For example,
knowledge-based system (KBS) technology has been concentrating on the construction of
high performance programs specialized in limited domains. ANN’s can analyze the large
quantitics of data to establish patterns and characteristics in situations where rules are not
known and can deal with incomplete and noisy data. Case-based reasoning methods
(CBR) can utilize the previously available cases in the simulation program. Therefore,
KBS, CBR, and ANN can be integrated to solve tasks that require different problem
solving techniques. Such an integrated system can provide enhanced inferencing
functionality and dynamic architectural control to {cvelop approaches for traditional

problems such as pulp process modeling and simulation.

In an effort to solve the above problems, the Intelligence Engineering Laboratory
at the University of Alberta, MoDo Chemetics, Slave Lake Pulp Corporation, Perde
Enterprises, and Canada - Alberta partnership in forestry initiated this project to develop
an intelligent process simulator, called Intelligent Matrix Simulation System (IMS), to
be used for answering "what-if" types of scenarios in process operation and for training
inexperienced operators. IMS is based on the concept of integrated, distributed, intelligent
systems [Rao, 1991]. It is a knowledge integration environment that applies Artificial

Intelligence (AI) techniques to solve complex problem by combining independent
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specialized software packages. The key construct to this architecture is the Mela-COOP,
an expert system building tool developed at the Intelligence Engineering Laboratory.
Meta-COOP coordinates, integrates and communicates with the individual software

packages.

Based on symbolic inference and numeric models, IMS displays the relations of
process variables graphically for various operating conditions. The main functions are:
(1) ) Extraction and accumulation of process engineers/operators' private knowledge; (2)
process optimization; (3) on-line simulation of process operations; (4) operator training,.
IMS can also be used as a knowledge base for other modules such as trouble shooting.
Another important purpose of this project is to develop an cxpert system building shell in
the MOPS such that users can develop their own knowledge bases for different process

units. IMS is embedded in MOPS and increases the “intelligence” of MOPS.

The thesis is organized in the following manner: the first chapter is this
introduction, which covers the general objectives and motivation of the project. Chapter 2
presents the background about Bleached Chemical Thermo Mechanical Pulping
(BCTMP) and existing Mill Information Systems in Slave Lake Pulp Corporation
(SLPC). Chapter 3 describes the system architecture of IMS. Chapter 4 presents the
knowledge integration. In chapter 5 the integration of IMS with MOPS and BQIS is

described. Chapter 6 presents the conclusions.
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Chapter 2

2. DESCRIPTION OF BCTMP PROCESS AND MOPS

Using the BCTMP (bleached chemi-thermo-mechanical) process, Slave Lake Pulp
Corporation, (SLPC) produces market bleached pulp from aspen or mixtures of
aspen/softwood. The BCTMP process combines thermal energy, chemical pre-treatment,

mechanical refining energy and hydrogen peroxide bleaching.

2.1 BCTMP PROCESS

The process includes three-stage pressurized refining equipment, two stages of
peroxide bleaching, and low-temperature flash drying. The first bleaching stage is an
interstage configuration between the primary and secondary refiners. The process flow
diagram is shown in Figure 2.1. Aspen roundwood is delivered in treelength form,
offloaded by portal crane and either placed on the log feed deck or into log storage. The
storage arca accommodates up to four months storage. Aspen roundwood is debarked
using mechanical ring debarkers, and then fed to a 117-inch chipper. The manufactured
aspen chips are fed to a storage pile of nominal 10 days storage capacity. The aspen
component represents the majority of the wood supply and the remainder is supplied as
by-product from sawmills. The softwood is brought to the mill by chip truck and stored

in a scparate chip pile.

The chips are fed from storage by stoker-type reclaimers. The reclaimers are fed
by a mobile chip loader. A metering conveyor from each of the stoker reclaimers delivers

the hardwood and softwood chips in a pre-set mix to a belt conveyor which feeds the chip
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screening system. Accepted chips are discharged to the main chip conveyvor teeding the

pulp mill's No. | atmospheric pre-stcaming bin.
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A

Figure 2.1.

Process flow diagram at SLPC
2.1.1 CHIP WASHING AND CONDITIONING

A 30-minute atmaspheric pre-stcaming bin (APS 1) with screw-type discharger is
followed by a metering screw discharge conveyor and down-chute to a scrap separator
and chip transfer tank from which the washed chips are pumped to a double-screw drainer
feeding the Chemical Impregnation Plant. From the chip drainer, the chip slurry water is
removed and directed to a sidehill screen to a separate chip fines and other floatable

material.
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A sand settling tank with driven scraper collects chip-conveying water from the
chip drainer sidehill screen and the preheater screw conveyor. The clarified water from
the sand separator is cleaned and re-used for dilution in the chip transfer tank and the
scrap separator. The sand separator rejects are discharged to the effluent treatment plant
sludge handling system, and the chip washer/scrap separator rejects go to the rejects
serew thickener and bunker. From the bunker, they are conveyed by front end loader to
the waste wood incinerator. The drained chips are screw-conveyed to the chemical
impregnation chip surge bin (APS 2). From the chip drainer, the entire chip flow can
bypass the Chemical Impregnation Plant to feed the primary refiner preheater directly.
Drained chips are conveyed to the APS 2 bin having a storage capacity of 15 minutes at

85% full.

From the APS 2 bin discharger, chips are fed to a plug screw feeder, compressing
the chips to approximately 50 to 80 % consistency to remove resins, extractives, and air
before being released into the atmospheric impregnation vessel. The chips are vertically
conveyed through an impregnation solution, then discharged after three to five minutes
retention, and transferred by screw conveyor to the reaction chip bin (APS 3) with 20
minutes storage capacity. From No. 3 APS bin, chips are conveyed to the primary refiner

conveyor system,

2.1.2 REFINING

Chips from the No. 3 APS bin are discharged to the primary refiner system
comprising a plug screw feeder, pressurized refiner and discharge blow line to a
pressurized pulp cyclone. Recompression of the chip mass in the plug screw provides
further removal of resinous material and also ensures a uniform feed rate to the refiner

which is designed for a maximum working pressure of approximately 450 kPa. The plug
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screw ieeder also provides a pressure scal for the refiner which may be operated at a

diffe: cnt pressure than adjacent process elements.

Thne primary refiner is equipped with a 23,000 HP synchronous motor to drive the
single rotating disc unit. Pulp fibre developed in the primary refiner is discharged
through blow lines to a pressurized pulp cyclone at a consistency of 48 - 50 percent
dryness. Cyclone operating pressure is 170 kPa or higher, controlled by pressure
regulating valves on the cyclone vent lines. An outlet device on the bottom of the pulp
cyclone provides the pressure seal between the unit and its pulp discharge conveyor.
Pulp from the discharge conveyor of the primary cyclone is fed to an inter-stage
bleaching system comprising stock dilution chest, wash presses, and medium consistency
bleach tower. From the bleach tower, pulp stock is diluted and conveyed to second stage

washers which thicken the fibre to the required feed consistency for seccond stage

refining.

Partially refined pulp from inter-stage bleaching is screw-conveyed to the single
secondary refiner through a metering screw conveyor and a plug screw feeder. The
second unit, also equipped with a 23,000 hp synchronous motor, also discharges pulp via
blow lines to a pulp cyclone, with generated steam vented to the heat recovery system.
The refined pulp discharge from the secondary cyclone is released to atmospheric
pressure via an outlet device to an agitated latency chest of approximately 30 minutes

storage capacity, to remove curl from the pulp.

The diluted stock from the latency chest is pumped to the suction of the primary
screens fan where a pump feeds the two primary screens in series. The primary screens
accepts are discharged to the suction of the primary cleaners fan pump, located at the
cloudy white water chest, while the rejects from these screens are discharged to the

suction of the secondary screen fan pump, also located at the cloudy white water chest.
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The aceepts from the secondary screen are returned to the pump suction et the primiry
screen fan pump, with the rejects from this screen discharged to the rejects collecting
tank. From the rejects tank, ieject stock is thickened on a sidehill scieen, thern

transferred to the transfer chest or the dilution zone of the interstage bleach tower.

Screened stock is diluted with cloudy white water and pumped to the piimary
cieaner bank. The accepts from the primary cleaners are thickened on: a disc tilter and
discharged through a thick stock pump to a semi-bleached high density storage tank of
eight hours pulp storage capacity. The cleaner rejects are pumped to the secondary
cleaners, the rejects from which will be processed through tertiary cleaners, while the
secondary accepts are re-introduced to the primary cleaners feed. Rejects fron: the
tertiary cleaners are further trcated to remove clean stock in fourth and fifth stage
cleaners. Rejects from the fifth stage cleaners are discharged to the effluent treatment

sludge handling system.

2.1.3 BLEACHING

Pulp from the refiner plant semi-bleached high density storage tank is diluted to
5% consistency in a conventional dilution zone and centrifugally pumped to the third
stage of washing. Two double wire presses wash and thicken the stock to 35%
consistency before it is fed to high consistency mixers where peroxide bleach chemical is
added. From the mixers, stock is discharged by gravity to the second stage peroxide
bleach tower, with a nominal retention capacity of three hours. From the second stage
bleach tower, the fully bleached pulp is withdrawn by a discharger and fed to a dilution

chest for pumping to the Dewatering Plant.

The Bleach Plant, comprising refiner inter-stage bleaching and second stage high

consistency bleaching, as described above, is capable of achieving 85 degrees brightness
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on aspen pulp. Efficient washing and the recycle of bleach liquor contributes to the

bleaching cost economy.

From the dilution chest of the second stage bleach tower, pulp is pumped at 3%
consistency to the final stage of washing and dewatering to 50% consistency. Dewatered
pulp is conveyed to a one-hour capacity bleached high density tower or directly to the
two pulp fluffers, located in the Flash Drying Plant. The conveyors from the dewatering
presses are the reversing type, to permit pulp production to be re-routed to a repulper and
broke tank, in the event there is a short-term curtailment of production in the downstream

processes.

Both strong and weak pressate from the wash presses are collected in separate
pressate tanks and re-introduced to the process in a counter-current flow to maximize

wash efficiency.

2.1.4 FINISHING

The flash dryer is a two-stage unit with a cooling stage. The dryer is a low-
temperature type, and operating temperature is limited to approximately 60°C in the first
stage cyclone. The second stage drying tower is operated at approximately 50°C.
Emissions from the dryer are designed to meet standards set by Alberta Environmental

Protection.

Dried pulp discharged from the second stage cyclone enters the cooling stage
transport fan for conveying to the cooling stage cyclone located above the slab press in
the bale finishing line. Air supply to the cooling stage is controlled to approximately
35 C using a mixture of fresh air, slab press exhaust return air and interior mill ambicnt

air.
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The dried pulp is finished in a baling line, consisting of slab press, bale press, bale
moisture meter, top and bottom wrapper dispenser, tyer, folder. jet printer, and scale. The
finishing line provides for maximum flexibility and security of bale finishing operations,
including exit/re-entry points and storage conveyors off the finishing line. A moisture
meter is installed in the baling line for continuous measurement and recording of weight

and moisture content. The moisture sensing equipment is located in the bale press plate.

2.2 MILL WIDE INFORMATION MANAGEMENT SYSTEM

The key indicators used by analysts to define the global pulp and paper industry
are per capita consumption of paper, total tonnage produced and cost per tonne. One of
the most impressive statistics on the global industry is that of making more product with
lower cost. One major reason is that the industry is blessed with suppliers which are
spending money on research and development to produce new technologies that will
enhance both productivity and quality. However, today's technology still requires mill
operators to determine what they need and how they will use it to get the most out of their
equipment. To unleash the power of new technology requires more than just installing it

at a mill.

2.2.1 MOPS

The MOPS management system is divided into two basic inodules: MOPS core
programs and MOPS workstation. The core program is written in C and C++ and resides
in a Digital Alpha server 1000 running Open VMS operating system. The workstation
program, called WinMOPS, written in Microsoft C++ resides in any PC running
Microsoft Windows NT or Windows 95. All of the displays have a static background

against which dynamic data is displayed. These graphs can display every kind of data
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that MOPS can receive as well as trend curves. tables, bar graphs, alarm lists and logicals
(Figure 2.2).

o5°C

LOT 26
BALE 331

Figure 2.2. Sample MOPS screen

MOPS. Mill wide information and OPtimization System, collects data from pulp
processes and stores it in database. As cach value is entered into the database, the current
date and time are stored with it. MOPS also provides tools for analyzing and viewing the
stored data. Sources of Data include Distributed Control Systems (DCS). Programmable
Logic Controllers (PLC), supervisory computers. laboratory instruments, and others.
Data stored by MOPS include process measurements, targets, outputs, test results,

equipment run/stop status, as well as any calculated values and logical states. Figure 2.3



shows how data flows from the process, through MOPS,; to the users.
2.2.1.1 SOURCES OF DATA
MOPS collects the data in one of three ways: by capturing data from other

systems, by accepting manual entry of data, and by calculating data from captured or

manually-entered data.

Fisher Provox

0CcsS Manual Input

Bale Finishing] |Power Monitor
FORTE PAWS
| ]

DISPLAYS | Input | DISPLAYS
TRENDS | PR . | REPORTS
$PC MP’S; B‘I | QuALITY
REPORTS | ppeelienny | COSTING
MATERIALS | CVD HDB RDB | BALE INVEN,

Figure 2.3. Architecture of Information Management System

1. Data is collected through links to other systems, which may be a real-time
process control system such as a Distributed Control System (DCS), or an off-
line system such as a laboratory analyzer with a built-in link to external
computers. Usually, such data is transferred to MOPS automatically at regular
intervals; however. the transfer may also be initiated manually when the data
becomes available (for example, at the end of a laboratory test, or when the
cost of a chemical changes). The important point is that the data already
exists in the memory of another system, and MOPS gets a copy directly from

there.

26



2. Manually entered data. Some data can't be captured directly from another
information system. but must be keved into MOPS manually.  For example,
the per-unit cost of a chemical may be available only from a printed catalog or

an invoice. Other data may result from laboratory tests pertormed manually.

3. Calculated Data. Often, data that is cssential to MOPS users can't be obtained
anywhere in the required form. but it can be calculated from other data to
which MOPS does have access. For example, the cost of production
chemicals per tonne of pulp can be calculated from various flows, densities,
temperatures, tank levels, composition analyses and supplicers' bulk prices.
Similarly, the energy efficiency of a process can be determined from its input

power.

2.2.1.2 THE DATABASES

Most of the mills in Alberta built recently have advanced digital control systems.
These mills have already developed a standard for numbering the components of their
control systems, normally called tag names. MOPS allows uscrs to choose these tag
names or External Point Names (EPN's) as an identification name to store data in the

database.

A database is a collection of data organized in such a manner that the data can he
retrieved easily. The MOPS database is divided into two sections: Current Valu

Database (CVD) and Historical Data-Base (HDB).

CVD contains only the most recent value for cach point from which MOPS is
collecting data. MOPS collects the data and stores it in this database. When a new value
arrives, it replaces with the old value. The previous value gets stored to a predefined

location in HDB using "trend loggers"
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HDIB contains all the previous values for every point for which MOPS is storing
historical data. HDJ uses a predefined logic to store various data. The HDB is divided
into two major scctions: synchronous and asynchronous. For points in the synchronous
DI, the trend logger stores one value whenever a predefined unit of time passes. This
structure is not efficient since many points do not change for a long period of time.
‘Therefore, to minimize the disk storage space, points are usually stored in the HDB
asynchronously. MOPS uses a data compression technique to store only the values that
would preserve its resolution as it ages. This compression is very simple, but effective,
cach point has a dead band or tolerance limit and if the value is within this limit, it stores

the beginning value and its time and discards all the remaining values.

2.2.2 BQIS

Bale Quality Information System (BQIS) is being developed to provide a tool for
employees at 'l levels of the plant to have direct access to information organized
primarily on a per lot basis. It is developed using a 4GL tool from Cognos, called

PowerHouse [Cognos, 1994]. BQIS consists of the following four modules (Figure 2.4).

. Production and quality management: Information on a completed bale on the
finishing line is immediately available within the system with a “tentative” flag
which needs to be approved and confirmed by a mill authority. This is normally
done after all the lab test results becomes available after the lot is completed. This
module then collects all the quality and costing data from MOPS and Forte and
assigns to each lot. The system is capable of compensating for the rejected and

off-grade bales.

. Inventory management: This module is used for assigning bales / lots into orders

and attaching other cost such as transportation or remote warehouse cost.
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Order processing: Main function of this module is customer invoicing.

o Order management: This section includes modules for customers, order tracking,
and shipping.
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Chapter 3

3. SYSTEM ARCHITECTURE

This chapter presents the system design for the Intelligent Matrix Simulator
(IMS). IMS is a software system integrated with several cxisting applications including
MOPS and BQIS. IMS is an innovative system for graphical data simulation, knowledge
cxploration and analysis. It helps engineers and operators visualize and analyze data
relationships so they can better understand and control the underlying processes. IMS is
mainly implemented in C++ for the server running under the Open VMS operating
system, while some of the user interface is written in Microsoft Visual Basic for client

PCs running Windows 95.

IMS is a knowledge integration environment which consists of a symbolic
reasoning system, numerical computation programs, database management system,
computer graphics packages, and multimedia interfaces. Two supervisory units fulfill the
selection, coordination, operation and communication of the independent software
systems. This integrated software environment allows execution of programs written in
different languages, and the application of multiple knowledge bases in the system. One
of the main objectives of IMS is the integration with existing MOPS and BQIS systems

[Farzadeh et. al., 1996] as shown in Figure 3.1.

The main function of MOPS is to collect data from various sources and to present
them to users in a graphical form. The Bale Quality Information System (BQIS) captures
data from the MOPS databases and the finishing line system (FORTE), and stores them in
a relational database. It relates each bale of pulp to process operating conditions,

warchouses, and customers. Using BQIS, a user can get the production and raw material
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cost of a given bale of pulp, and determine the warchouse location or the customer it has
been shipped to. IMS simulates the process variables on-line to suggest the optimal
operating conditions, considering the minimum consumption of’ chemicals, power and
raw materials. Therefore. IMS complements the tunctions of MOPS and BOIS by giving
predicted values to operators for achieving the on-grade bale of pulp. Table 3.1 presents

the relations of the cxisting information systems with IMS.

Table 3.1 IMS relationship with MOPS aund BQ!S

MOPrS BQIS IMS
Purnose Collect data and store Collect data and store in | Capture data from MOPS, BQIS, i
p in a time based a Lot based relationship | LOGBOOK and simulate the
relationship relutionships between these data
Database CVD, HDB RDB RDB, CVD, HDB
Process MOPS, Sales and MOPS, BQIS. Process Engineers,
Knowledge

marketing, management | Operators

From the systems designer point of view, IMS consists of three modules:

. Knowledge capture
. Data storage
. Simulation and Reporting

Knowledge acquisition and organization is the major bottleneck in intelligent
system development. To capture and update the heuristic knowledge continuously, we
have developed an on-line knowledge acquisition system called, Logbook. All the
process operators, shift supervisors use Logbook to enter the newly encountered
operating conditions of the mill into the system. A module in IMS scans these entries

and then adds or updates its knowledge base.

Historical and current data of the process are stored respectively in HDB and

CVD databases which were developed by MoDo Chemetics. CVD) and HDB databases



are optimized for the storage space and the access speed. All the BQIS data resides in a
commercial database RDB. developed by Digital Equipment Corporation (DEC). RDB is
based on an object-oriented model that stores and manages complex objects and their
behavior. RDB provides standard based implementation of SQIL. (standard Query
Language) for both data definition and data manipulation languages. CVD and HDB
data can be extracted using application programming interfaces (API), however, these
databases do not support Microsoft’s open data base connectivity (ODBC) calls.
Therefore, all the IMS data resides in RDB with full access to CVD and HDB databases.
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Figure 3.1. IMS integration with MOPS

The simulated values from IMS are presented to users by integrating the available
commercial tools. Crystal, a Seagaie sofiware company, has developed an industry
standard report writer called Crystal Reports [Seagate, 1995]. This report writer can
access data from other databases, including financial systems and generate reports using

ODBC drivers. These pre-formatted reports are then displayed within IMS by using
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dynamic link library (DLL) calls.

3.1 NETWORK ARCHITECTURE

The objective of this section is to show the data flows from process to systems

and from systems to users. Figure 3.2 shows the hardware ayout at SLPC. The mill
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Figure 3.2. SLPC Hardware Layout

information systems collect data from four distinct resources: Fisher Provox DCS, Torte,
Paws and manual input. The process instruments are controlled by Programmable Logic

Controllers (PLC). Fisher Provox DCS first broadcasts the PLC data in its highway. All
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the computers on this highway have access to these data, including 3 operator consoles
and a Micro VAX 3400. The MicroVAX 3400 is the buffer between DCS and the mill
information systems. The MicroVAX 3400 multi-casts all the data to the Digital Ethernet
I.ocal Network Interconnect (DELNI) unit. DELNI is an electronic device which permits
devices to communicate by using the Ethernet network transmission system. DELNI
delivers these data to an Ethernet multiport repeater (DEMPR). The DEMPR in turn re-
times, amplifies, and repeats all signals received on one coaxial cable segment and then
passes the signal on to the bridge module of the Chipcom HUB. This bridge module is a
high performance bridge that transparently interconnects off-site Ethernet networks to
form a single extended LAN. The main function of this module is to isolate the local
traffic through dynamic and permanent packet filtering from process control traffic. All
the office computers, Alpha Workstation 3000, Alpha Server 1000 and PC file/print

server are connected to Chipcom module.

The overall network is structured such that users have access to information from
many different locations. The data traffic is controlled in the Chipcom HUB using a
bridge between process data and office users. The majority of the process information
comes from Fisher Provox Distributed Control System (process data), Forte (data from
finishing line) and PAWS (Power monitoring system). Fisher Inc. has deveioped a VMS
based hardware and software combination which makes DCS data available to external
programs such as MOPS. MOPS stores these data in its CVD and HDB database. BQIS
uses a data manager (developed by MoDo Chemetics) to store bale quality information in
Oracle RDB™. Forte data gets stored in CVD and RDB using ForteLink routine via an
RS-232 line. The core of the IMS system resides on a Digital Alpha 3000 workstation
running Open VMS version 1.5. IMS uses two different routines to communicate with
users; some of the user interactions are done through MOPS user program routines while

wnost of the communication is achieved using a C++ routine, called IMS server. IMS
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server uses TCP/IP in an Ethernet environment to achicve interaction with its other
counter part in PCs, called IMS Client. Mill Information Systems (MOPS, BQIS) and all
their databases reside on a Digital Alpha Server 1000, running Open VMS 6.1, These
two Alpha machines communicate with cach other using Deenet. AH of the hard disks
are accessible to both Alpha's using VAX Cluster software. The Microsoft Windows N'T
Server is used as a file/print server. All the programs relatung to IMS, MOPS, BOIS on
the PC side reside on this server, thus, it is possible to restrict access to these files to

authorized personnel.
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Figure 3.3. System architecture of IMS

IE - Inference Engine
DB - Data Base

The Forte and Paws systems do not support ethernct networks, but using a DEC
Server 200, these data are converted from RS-232 cables to Ethernet and then transported
to Alpha Server 1000. The FORTE (PC based hardware and softwarc combination) bale

moisture measuring system performs on-line measurements. As the bale is moved



through the conveyor system, the moisture and weight are read by the system. These data
are transferred to the Alpha Server 1000 and stored in RDB, CVD, HDB and Forte’s
propriety database. PAWS is a system to control the energy usage in the main equipment
of the mill, such as refiners. Thus, operators have three combined means of managing the
process (DCS, Forte, and PAWS). All the process control and instrument set points need
to be controlled by these three separate computer systems. However, there are only two
operators to monitor these equipment. Therefore, it is necessary to develop an on-line

mill information system to enhance the decision making for the process operators.

3.2 IMS ARCHITECTURE

Process simulation for operation support is a complex task. Some knowledge is
available in the form of strict mathematical models. Some is available only in heuristic
production rule form. Some other is hidden in the vast amount of process data. Figure 3.3
represents the systern architecture of IMS. It can be seen that the global system is divided
into a number of local systems in terms of system functions and/or process
decomposition. Each local system integrates case based reasoning (CBR), numerical
calculation (NC), heuristic rules (HR), and neural networks (NN) to solve individual
problems. The real-time relational database (DB), knowledge-base (KB) and inference
engine (IE) modules are the key components in the system. The real-time database stores
the most important data required for simulation. The knowledge base stores numerical
models and heuristic rules. The inference engine module provides the general inference
mechanism, such as backward chaining control strategy (goal-driven) and forward
chaining (data-driven). The IMS server handles all the calls from external programs and
tcdirects them to local systems. The IMS server also enables these local systems to
request data from external systems such as BQIS. On the workstation side, the IMS

client handles the user request and sends messages to the IMS server. For example, when
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a user requests a simulation. THE IMS client sends all the ¢« - 270 etion vanables
to the IMS server. Then, the IMS server uses a predefined query to call on SQL routine to
extract all the actual process outputs from previous operations, this operation is called
case-based reasoning (CBR). The IMS server stores all the matching results from CBR in
its memory. Concurrently, inference engine collects all the facts and rules for cach object
from the knowledge base and passes them to the IMS server.  IMS evaluates all the

collected cases, rules, numerical calculations, modecls and sends the best results to the

IMS client.

3.3 CASE BASED REASONING

Case based reasoning (CBR) is used in IMS to learn how to focus on problems
and narrow them down to likely hypotheses and simulations in a way that is similar to the

human experts’ reasoning during operation.

Case-based reasoning is a problem solving paradigm that in many respects is
fundamentally different from other major Al approaches. Instcad of relying solely on
general knowledge of a problem domain, or making associations along generalized
relationships between problem descriptors and conclusions, CBR is able to utilize the
specific knowledge of previously experienced, specific problem situations (cases). A new
problem is solved by finding a similar past case, and reusing it in the new problem
situation. A second important feature is that CBR also is an approach to incremental,
sustained learning, since the new experience is retained cach time when a problem has
been solved. making it immediately available for future problems. A very important
feature of case-based reasoning is its coupling to learning. The driving force behind case-
based methods has to a large extent come from the machine learning community, and
case-based reasoning is also regarded a sub-field of machine learning. Thus, the notion of

case-based reasoning does not only denote a particular reasoning method, irrespective of
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how the cases are acquired, it also denotes a machine learning paradigm that enables
sustained learning by updating the case base after a problem has becn solved. learning in
CBR occurs as a natural by-product of problem solving. When a problem is successfully
solved, the experience is retained in order to solve similar problems in the future. When
an attempt to solve a problem fails, the reason for the failure is identified and
remembered in order to avoid the same mistake in the future.

Case-based reasoning favors learning from experience, since it is usually easier to
learn by retaining the concrete problem solving experience than to generalize from it.
Still, effective learning in CBR requires a well worked out set of mecthods in order to
extract relevant knowledge from the experience, integrate a case into an existing

knowledge structure, and index the case for later matching with similar cases.

3.3.1 CASE BASED REASONING IN IMS

The primary problem for a CBR system is determining what past situations are
“similar” to the current case. The relevant past solutions need to be organized in the
database so that the descriptions of input problems can be used to retrieve them. The
relevance is often determined not by the obvious features of the input problem, but by
abstract relationships between features. IMS uses an indexing algorithm to retrieve
relevant solutions from the case base, given new action variables from the user. At the
highest level of generality, an IMS based CBR cycle is described by the following five

processes:
1) RETRIEVE the most similar case or cases

2) REUSE the information and knowledge in that case
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3) EVALUATE the new casc using other intelligent reasoning modules
4) REVISE the proposed result variables based on the evaluation

5) RETAIN the parts of this experience likely to be usetul for future problem

solving and store in the IMS

A new problem is solved by retricving one or more previously experienced cases,
reusing the case in one way or another, revising the solution based on reusing a previous
case, and retaining the new experience by incorporating it into the existing knowledge-
base (case-base). The five processes each involve a number of more specific steps, which

will be described in the task model (Figure 3.4 illustrates this cyclc).

K( Learnt Case New Case

Retrieved
Case

New Case

Proposed
Case

Figure 3.4. The CBR cycle

An IMS server request for simulation defines a new case. This new case is used to
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RETRIEVE a case from the collection of previous cases. A generic algorithm within
cach object’s KB calls a predefined routine for retrieving previous case(s). At this point,
the algorithm has all the action variables of the IMS. Querying the database for all the
constraints and then generating an SQL statement makes this algorithm very fast and
cificient for finding the previous case or cases. The retrieved case is combined with the
new case - through REUSE - into a proposed case. A proposed solution to the initial
problem which gets EVALUATED against simulated results from neural network model,
heuristic rules and numerical calculations. At this point, IMS has all the case values and
cach object calls the routines for simulating the object. Through the REVISE process,
this solution is tested for success by applying to the process environment and evaluating
against the actual result variables as well as repairing if failed. During RETAIN, useful
experience is retained for future reuse, and the case base is updated by a new learned

case, or by modification of some existing cases.

3.4 ARTIFICIAL NEURAL NETWORKS

An Artificial Neural Network (ANN) is used in IMS to simulate the action
variables against result variables of individual objects. Neural networks can analyze large
uantities of data and establish patterns and characteristics in situations where rules are
it known. Neural networks can deal with the incomplete and noisy data. These
capabilities have proven too difticult for traditional symbolic reasoning systems. ANN
have been defined [Kohonen, 1988] as follows: "Atrtificial neural networks are massively
parallel interconnected networks of simple elements and their hierarchical organizations
which are intended to interact with the objects of the real world in the same way as

biological nervous systems do."
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The idea of building an artificial neural network was originated from an attempt to
model the biophysiology of human brain. Artificial neural networks are composed of
highly interconnected simple processing clements in parallel. Due to its structural and
functional resemblance to biological ncural networks. an ANN cxhibits o number of
characteristics of the human brain. ANN's, like human brain. can learn from the past
experience by modifying its behavior in response to its new environment, can peneralize
from the previous examples to new ones as a result of its structure and abstract essential
characteristics of a set of inputs containing related data. The specific characteristies ot an
ANN are a result of the network paradigm utilized. This paradigm is specified by the

network architecture and the neurodynamics.
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Figure 3.5. Artificial neuron with activation function

The network architecture defines the arrangement of processing clements and
their interconnections. It defines what neurons or processing elements are interconnected
as shown in Figure 3.5. The interconnection scheme specifics how inputs from and
outputs to the processing elements are arranged as well as what the information flow
direction will be. Whereas, the neurodynamics specify how the inputs to the neurons are
going to be combined together and what type of function is going to be used te develop
the output, as well as defining how the adaptive elements or weights are going to be

modified. There are two basic types of neural networks [Caudill, 1990]: supervised and
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unsupervised:

Supervised networks  build models  which classify  patterns, make
predictions, or make decisions according to other patterns of inputs and
outputs they have "learned.” They give the most reasonable answer based
upon the variety of learned patterns. In a supervised network, you show
the network how to make predictions, classifications, or decisions by
giving it a large number of correct classifications or predictions from
which it can learn.

Unsupervised networks can classify a set of training patterns into a
specified number of categories without being shown in advance how to
categorize. The network achieves this by clustering patterns. It clusters
them by their proximity in N dimensional space where N is the number of
inputs. The user tells the network the maximum number of categories and
it usually clusters the data into that number of categories. However,
occasionally the network may not be able to separate the patterns into

distinct categories.

Neither type of networks is guaranteed to always give an absolutely "correct"
answer, especially if patterns are in some way incomplete or conflicting. In this regard,
the technology is similar to biological neural functioning after it was designed, and
differs significantly from all other conventional computer software. Neural networks
may not work at all with some applications. Some problems are well suited for the
pattern recognition capabilities of a neural network and others are best solved with other

methods.

The spectrum of different paradigms is extensive. The computational features

eanibited by a network are dependent on the paradigm developed.
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3.4.1 THE BACKPROPOGATION PARADIGM

The network used in this research project is the popular backpropogation
algorithm (supervised network). The backpropogation algorithm [Rumelhart and
McClelland, 1986] learns adequate internal representations using deierministic units to
provide a mapping from input to output. This procedure involves the calculation of a set

of output vectors O using the current weights W (a set composed of all matrixes Wy,,,
where m=2 ... 1, Where W would be the matrix of weights between the input and the
first hidden layer and W; the matrix of weights between the last hidden layer and the

output layer) and the input vectors X. The error is estimated by comparing O with the
target vector T and using an error function. This error function is defined for a specific

Xp and Tp as follows;

1
EI' =_2_Z(t1—0i1)2 (3’1)

where the index p represents an input vector target output relationship that
conforms the input vector set T, i represents the output nodes of the output layer in the

network, and I is the total number of the layers. t; is the targeted output for the ith output
node and oj] is the response obtained from the ith output node using the corresponding
Ip. The learning procedure minimizes Ep by performing steepest descent and therefore

obtaining an appropriate W.

The net input to a neuron is:  »net,, = ZWijm 0y +0,, (3-2)
!

where Wijm represents the weight between the jth unit of layer m-1 and the ith

unit of layer m. @y, represent the bias for the ith unit of layer m. The activation function
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utilized is the logistic function given by: o,

The overall objective of this algorithm is to minimize the error, Ep, and to
achieve a convenient W. Hence, it is necessary to make adjustments to previous W
obtained until the error toleranie imposed by the final desired mapping accuracy is

achicved. By establishing:

Aw, = o and (3-4)
im (21)”’“
(3'1(31“"
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then the partial derivative of Ep with respect to the weights could be expressed as:

(7EI’ _( aEI' ) E;_hetuu 3 7
(}'vi/'m B {310’[:1' (31’11”1 ( ) )
and

Lr . g 3-8
(% et - " ( - )

m

The variable Q is calculated by backpropogating the error through the network
starting with the output layer where the partial derivative of the error fo the output is

defined as:

—L=—1,-0,) (3-9)
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the output layer Qj) is Q, = (r, -0, )(),,(l -~ o,,) (3-10
the adjustments are Aw,, = AQ 0, (-t

where A is the learning rate or the step size of the steepest decent.

For the lower layers, Q can be expressed as {fullows:

Qim = Z (Qjmﬂ Wiims1 )0"" (l - oim) (3' 12)

)

the adjustments -t Awjjy, is; Aw,, = AQ,,0 (3-13)

ijm m” jm-\

The standar. ¢ st decent methods tend to converge very slowly. A number of
more efficient learning algorithms have been developed based on the steepest decent
approach. In this thesis, we have employed one of the often used heuristics to speed up
the convergence. This common heurisiics utilizes the momentuin factor, f3, that weights

the contribution of the past AW. Therefore the updating is modified as follows:
w”.m(t) =w,, (- )+ paw,, (1) (3-14)

The availability of many commercial neural networks allow us to choose a neural
network system which is compatible with our project objectives. After evaluating many
different NN softwares, we chose Neuroshell from Ward Systems {1994]. This system is

functionally very rich and offers a routine to integrate with IM3 system.

3.4.2 NEUROSHELL

Neuroshell is a commercial ANN software developed by Ward Systems [Ward,
1994]. It offers several main menu options which enable users to develop on-line
applications. Figure 3.6 shows the main menu of the module. The order of operations is

to work fromn left to right. Developers may not have to use all of the icons that appear on
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a screen in order to create a working neural network module for IMS.

After collecting all the data, and using a filter module to validate them (Pre
network module), the developer chooses options from the main menu of NeuroShell to
train the network (Build and training modules). Figure 3.7 shows the network
architecture with multiple hidden slabs and different activation functions in Neurosheli
system. After training the network, contribution factors allow fine tuning of the input
variables. A contribution factor is a relative measure of the importance of a specific
action variable on predicting the network's output. The higher the number, the more the

variable is contributing to the prediction.

Advanced Neural Ne
e o

A pre-processing module is used to obtain the training data set by filtering the
noisy and invalid data. The developer uses the Rules module to post-process the
network's predictions. When creating rules in NeuroShell to process the data, the basic

rule structure is shown as the following:

IF (possibly followed by And, Or)
THEN (possibly followed by And)
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ELSE (possibly followed by And)

Using production rules of the module, we can normalize and reorganize the data
to give a better distribution. The variable graph module allow developer to graph one or
more of the network's vanables in many different ways. When putting data into the
network, creating a scatter plot of variables insures that the training patterns are

representative of the entire problem domain.

Thiee Hidden Slabs, Different Activation Functions

Application of Neuroshell in this project requires some customization to

overcome the following deficiencies:

) Process variables are well tuned in the desired values and have little variations

and poor distribntions. Neural networks can not be trained properly based on these

data only.
o There are the significant time delays between action and result variables.
. Neuroshell is a stand alone package that nceds to be integrated with other IMS

modules and to use the data in MOPS and BQIS.

o Evaluating the network performance with Neuroshell is limited to root mean
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square {RMS) error only.

To soive these problems. an integrated environment is developed for data pre-
processing, NN model traning. nost-processing and evaluation based on Neuroshell (as
shown in Figure 3.2). This environment is integrated to IMS for data accessing and

knowledge sharing with other IMS niodules.

Training Trained Acceptable
data Network Network
Process

data i icti Quality prediction
Data. Training Evaluation P(edlctnqn/ Y -
Preparation Simulation [l Suggestion

Figure 3.8. Neuroshell implementation

3.5 EXPERT SYSTEMS

An expert system is used to emulate the expert in a defined field. Expert systems
are capable of symbolic processing, inferencing using heuristic rules, and explaining.
Representation of the knowledge of experts lends itself well to production rules in the
form "IF premise 'A', THEN conclusion 'B". Another form of knowledge representation
is the frame structure. A frame is a data structure with fields, or slots, describing the
properties of the component or rule represented by the frame. Slots may contain
information such as a variable name, value, or type, as weli as any other pertinent
information relevant to the object described in the frame. Slots may contain information

about the relationship of a frame to other frames.

IMS uses a frame based intelligent system developed by the Intelligence
Engineering Laboratory at University of Alberta. It is a C-based expert system, called

Meta-COOP [Rao, 1991].
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3.5.1 META-COOP

Meta-COOP is a development environment for knowledge systems that use
object-oriented programming [Rao, Wang and Cha, 1992]. The basic object within the
Meta-COOP environment is called the Unit (also called Frame or Object). All items,
concepts, and abstractions of the problem area are represented as units. Each uni ™as an
arbitrary number of "slots," in which the attributes of the unit are described. Each slot
represents one attribute of the unit and has several "facets,” in which the attribute is
specified in more detail. The Figure 3.9 illustrates the relationships between unit, slots,

and facets.

|

[Facet]

Figure 3.9. Relationships between unit, slots, and
facets.

Each slot has its own atiributes, which are called facets. Facets can control the
specific means by which inheritance is implemented for that particular slot. In some
cases, local values override inherited values, and in other cases local values are appended
to inherited values. A slot can also contain other facets which can be used to specify, for
example, the value range for the slot value, or whether multiple values are permitted. The
number of possible values in slot is called Cardinality. The facet Cardinality.Min

spa:ifies it'e lower limit, Cardinality.Max specify the upper limit.
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There are two types of units: class units and member units. Member units
describe the individual objects. On the other hand, class units group several objects with
common attributes into a single class. Therefore, member units are the instances of the
class unit. They are specific examples of the general concepts expressed by class units.
Class units can be arranged in a hicrarchy, i.c., one class can be defined as a subclass or

superclass of unother.

The arrangement of classes in a hierarchy, in which the more general classes are
the superclasses of more narrowly defined classes, is imy -ant for the mechanism called
inheritance. Inheritance means that the slots in a class unit & < autom::ically copied to
its lower class and its member units. Therefore, a knowledge base can be buut v..- 1 ver;
cifectively when several objects in a problem area have the same attributes. Cr: the other
hand, there is no point of inheriting an attribute which is valid only for the class unit for
which it was defined. The inheritance of this slot by subclasses or instances are
prevented by designating it as an Ownslot. In contrast, inheritable slots are called
Memberslots. Therefore, a member unit contains only Ownslots, since member units, by

definition, can not have subclasses or instances. The rules have the following format:

RULE <number>
FACT <condition>
AND <condition>
OR <condition>
THEN <conclusion>

When representing the <conditions> within facts, "AND" and "OR" can be used
together or separately or not used at all. Since rules in Meta-COOP are nothing more
than member units, the rules can also be grouped by means of class formation. Thus, it is
possible to segment the rule base of a large expert system, and activate only the group of

rules which are needed at the moment. This enhances the speed of execution for the
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expert system and helps to keep knowledge bases manageable. The basic operations of an
application are performed when an instance or unit recei-es a message.  Also, using the
message sending facility, Meta-COOP communicates with its knowledge base by the
following syntax:

send_message("KEYWORD", "INSTANCE OF 4 UNIT"),

Communication among different units (and between Meta-COOP and the
knowledge base) is accomplished by a special slot which has a value METHOD. Whec.. a
message is sent to an instance, the system searches to find the handler which is a unit or
instance that defines the method that corresponds to the message being sent.  Then, the
method gets executed and any result gets returned to the object which had sent the
message. A method can be defined as either a procedure or a rule. If the method
represents heuristic knowledge, then usually rule gets used, however, if a method

represents strategic knowledge, then a procedure should be used.

The original version of Meta-COOP was designed for off-line expert system
applications in a standalone host. It is executed only in UNIX and DOS environments.
To satisfy the on-line real-time requirements of this project, have modified the system.
The main modification is to deal with the reasoning speed and the memory management.
Also, we have added many new functions to integrate it into the IMS system. Thesc
added functions include modules to retrieve daia from CVD, HDB and RDB. Mecta-
COOP is a server based expert system building shell that communicates with external

world via IMS SERVER.

3.6 HYBRID INTELLIGENT SYSTEM ARCHITECTURE

The diversity and complementary strength of advanced computing technologies,



such as case-based rcasoning, neural networks, expert systems suggest numerous and
fruitful integration. Resecarchers have attempted to combine these systems to a hybrid
system in a number of ways [Myers, 1990]. A hybrid architecture allows these
independent systems to communicate through messages while expert system knows most

of the internal workings of the other systems.

s
DATA Handler

ODBC  IMS SERVER

1 B
L] Toe L],
WINMOPS IMSWIN

Figure 3.10. Hybrid architecture of IMS

As a hybrid intelligent system, IMS has three different knowledge bases and
problem solving techniques: Case-bases reasoning (CBR) for previous operating
conditions, neural network (NN) models and object based rules. These three knowledge
bases have different accuracy and complement each other. NN solution is not necessarily
accurate and requires a second opinion from CBR or production rules. Since CBR cases
are based on previous similar operating conditions, the suggested solution from CBR is

considered more accurate. However, not all the possible simulation scenarios are
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available in CBR. In this case. we have the production rules to validate NN results,

IMS system first obtains requested data and objects from user interface and gets
corresponding data from MOPS and BQOIS through a system interface (as shown in Figure
3.10). These data are passed through the CBR cycle and the closest match to the case at
hand is passed to the inference engine. The inference engine retricves all the rules related
to the object (process object such as REF1) and evaluates them with the CBR cases. 1t
there are any other successful solutions from rules, they arc compared to the retrieved
case from CBR. If the solutions from rules are within tolerable level of CBR, then the
rule Lased solution is passed to the user as the answer. Otherwisc, IMS requests the NN
model to simulate for the given object. The NN model’s solution is compared to CBR
case and numerical mode! (if there is one). The best solution is sent to the operator and all

the modulc .. ate their learning modules to update their knowledge.

3.7 INTERFACE WITH MILL INFORMATION SYSTEMS

Interfacing IMS with existing systems is the fundamental requirement for the
success of this project. First of all, the data from MOPS and BQIS must be available for
IMS. Secondly the common user interface is achicved by integrating these systems,

which increases the acceptance of IMS among its users.

3.7.1 IMS INTERFACE WITH MOPS

MOPS data is supplied to the WinMOPS program via a connection to a MOPS
Server. The key features of WinMOPS [Chemetics, 1995] are:

o Provide multiple windows where each window will display a picture defined to be
a combination of static and basic dynamic data. Windows can be tiled, maximized

or minimized.
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Static and dynamic data types provided are those currently in MOPS (line, circle,

arc, rectangle, bargraph, trend, text).

Static data attributes provided are color, scale, font and size, dashed lines and
background color. All objects can be controlled from MOPS database such as x/y

position, size etc.

Users can create, save, load and modify a basic display on a network PC file

scrver.

Users can request or search document (picture, trend) from library by using index

and name. Multiple selections can be used to search on area and category.

Support of a user environment for each user containing such items as default

library area, colors, directories.
Support for TCP/IP communication protocol.
OLE 2.0 object support

External data handler (API) on Server side provides an application framework to

speed development and provide 'consistency' in user program applications.

Using MOPS user program modules in Open VMS environment, have developed

routines within IMS to access data from the MOPS Current Value Database (CVD) and

Historical Data Base (HDB). These routines enable IMS to receive/send data from/to

WinMOPS clients. The IMS server is executed as 2 detached process in the Alpha 3000

and gets activated when there is a call from its clients within MOPS.

By adding two function routines to Meta-COOP, have implemented IMS

communication with the Alpha 3000 computer. The first function is called "getdata",

which is responsible for gettiny requcsted data from the MOPS database. The second
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function is called "putdata", which is responsible for putting the requested data to the

MOPS database. These are the steps taken to embed the IMS into the MOPN:

1. IMS Server sleeps until it is requested by the user, then the matdsp routine gets

activated, following with a pseudo-code of behavior.

2. MOPS displays the static part of the display and rceturns the control to IMS by

executing usinit function.

3. IMS gets all the required information from MOPS and BQIS database with wusgepn
and SQL routines.

4. IMS does its inferencing (CBR, NN, NC, HR), then uses usput to put the values in
MOPS database and informs MOPS with uscomp routine.

5. MOPS sends the dynamic part of the IMS to PC.

6. IMS waits for a new user request using usgfcm command until user closes IMS

screen. If the screen is closed then go to step 1, else go to step 2.

3.7.2 IMS INTERFACE WITH FORTE

The FORTE bale moisture measuring system performs on-linc measurements. As
the bale is moved through the conveyor system, the moisture and weight are read by the
system. The parameters for the selected grade are used in performing the calculations for
the current bale when it reaches the bale marking statiorn. When the current lot is closed,
a lot report is produced which is a listing of all the bales in chronological order followed

by lot totals.

We have installed a dedicated RS232 line between the PC based finishing linc
system (FORTE) and the Alpha computers and developed a program to translate the

received lines of text into their respective tags. A definition file is used to send the data
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into CVD, HDB, and RDB. This file consists of a combination of TABLE. INS, and
MAILBOX statements as explained in the the following:
TABLE "namec" tabletype,'id","trigger"

e “name” is the table name. up to 16 characters. For identification purposes only.

e The tabletype- integer value, not presently used.

e period- number of seconds allowed between stores of trend data. This parameter specifies to
the link that even if the number of trend data arrived is not equal to the number to be
buffered, the data is to be trended any ways. This is to prevent loss of data in the event of
link stoppage.

e idstring from FORTE to identify the table, "B" for bale report, "L" for lot report, etc.

trigger- a MOPS CVD reference. ‘This value is retrieved from the CVD every time the table is

processed. If its value has changed since the last scan, the link will go through the table looking
for all INS with a trend flag of ASYNCHRONOUS (value 1) and trend them using PUTATR.

INS "epn", trendtype, trendsize, startchar, numchars, instype

e cpn- any valid MOPS tag. The value of this field is stored to the EPN in CVD when table is
processed.

trendtype- 1 = asynchronous, 2 = synchronous, trended every time a value is received.
trendsize- number of trend values to buffer before storing.

startchar- start character of this field within the FORTE report.

numchars- length of the INS field in FORTE record.

instype- identifies the datatype of the INS.

MAILBOX "mbxname',size,nummessages

Specifies a mailbox to send data of the preceding INS to.

e "mbxname"- valid VMS mailbox name.

e size- number of bytes per mailbox message.

e nummessages- maximum number of messages this mailbox can store.

When this link receives the following line: B11/16/9010:23:100121001222187, it

causes the following values to be stored in the database:

TIME = "11/16/9410:23:10
GRADE-PV = 12

LOT-PV = 1001
BALENO-PV =222
BALEGW-PV= 187

Using MOPS material tracking system, we attach proces. cperating conditions

such as chemical / energy consumption and action variables setpoints to each bale and
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store them together in HDB and RDB. The RDB databasc contains a cost table for all the
important raw materials. A unit within IMS calculates the teral consumption for

producing an individual bale of pulp and attaches it to the respective bale.

3.7.3 IMS INTERFACE WITH BQIS

The objective of this module is to ensure that all the necessary data gets stored
into both databases. In many cases such as lab test results, the data is not immediately
available and needs to be manually entered into the system. In such cases, we must

implement an interface to acquire lab test results into the system and to link it to the

corresponding finished product.

<< MiIcios ot Arcass elact Query 1ML 21 F1ROBDATA]

Figure 3.11. Table organization of BQIS / IMS in RDB

Meta-system frames handle all the data interaction between MOPS, BQIS and
Matrix Simulator modules. A back propagation neural network from Neuroshell systems
is used for generation of heuristic simulation results for prediction of the process

variables with no known rules or mathematical formulas. NcuroShell network extracts
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the real time on-line data from MOPS historical database (HDB) or its own relational

datakase which resides in Oracle RDB using Microsoft ODBC drivers.
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Chapter 4

4. KNOWLEDGE INTEGRATION

The modular design of IMS is based on the main steps in the application of
intelligent systems tecnnology to real time pulp process operations. It was originally
stimulated by the needs of iat:grating current mill information systems with knowledge
intensive systems. The software design is divided into the unique arcas of the mill based
on personnel expertise. There are experts in the wood harvesting and hauling, chipping,
refining, bleaching, and finishing line. They work relatively independently of each other
with a common goal to produce the highest quality pulp with the lowest possible cost.
One of the main sources for interdepartmental communication is MOPS and DCS. They
extract the needed information from MOPS for smooth operation of the mill. However,
MOPS function is to collect and store data in its databases. Process operators use MOPS
trending ::nd graphics modules to visually correlate the data. MOPS can display up to 8
tags in the same trend and has the capability of shifting each individual tag forward or
backward in time. This MOPS function is used for visually extracting the relationships
between process tags, but the user must know the time difference among trended tags.
The time it takes for pulp to travel from one piece of equipment to another in the process
varies significantly, depending on the process operating conditions. such as production
rate and desired grade. Therefore, to use MOPS =ffectively, a user must have extensive
knowledge of the process. Another alternative would be to capture the process knowledge

from the different operation departments and integrate it with MOPS.

IMS has the capability to simulate system behavior under various conditions, such

as grades and production ranges. It is designed as depicted in Figure 4.1.



An IMS object is described in terms of result and action variables. All process
variables are classified into these two groups. The action variables are usually the
operating conditions such as temperatures and chemical adding rates. The result variables

are often the quality variables and those measuring the operation optimality.

CONSTRAINTS

RESU'T

l VARIABLES

Figure 4.1. IMS Object

The IMS knowledge base is organized «cing. Meta-COOP frames. The process is
divided into smaller sub-processes such that cach sub-process can be represented in one
frame. Each one of these sub-processes has its action variables fed from foregoing sub-
process’s result variables. In order for IMS to select the correct relations for different
situations, operating conditions are defined as the constraints to knowledge. The
operating conditions include grades and production ranges. A grade defines the final
quality of a particular product. The production range is used to refine the change of

operating conditions under the same grade.

To meet these objectives with a high degree of consistency, knowledge is grouped

into the following three categories and incorporated into the representation scheme of

each frame.

1) knowledge about process bei.avior, i.e., modeis and data which describe the

process;

2) knowledge about relationship between processes, such as the relation between
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washing and bleaching stages;

3) problem solving knowledge.

4.1 KNOWLEDGE REPRESENTATION

Using the features of the Meta-COOP, have built the object oriented knowledge
representation describing all the properties, states, and behavior of the SLPC process. The
process have been separated into a number of modules such as refining, bleaching and
drying as shown in Figure 4.2. This separation is based on the material flow and hardware

layout of the process.

CHIP IMPREG REF1 ) WASH1 BLEACH1 WASH2 REF2

\ 4

PULP DRYING HHD PRESS |« WASH4 BLEACH2 WASH3 | REF3

Figure 4.2: Sequential process representation

Each one of the modulcs are further separated into nodes to reflect the actual
operation of the mill. Figure 4.3 shows only a simplified hierarchical model of the inter
stage bleaching plant (BLEACHI1). Since each node in the hierarchy is a physical
component, the behavior model for each node is developed and connected into the whole
process model. There are many pieces of equipment which are used in more than one
location at the process. We have created a library of objects containing their common
behaviors and use the object cloning feature of Meta-COOP. To understand the approach,
consider the impregnation stage, as shown in Figure 4.3. There arc 3 APS bins, 3
discharge conveyors, and 3 pumps which are functionally identical to cach other. The
same kinds of devices are also used in other stages of the mill, there are over 60 pumps,

and 20 discharge conveyors used at different stages of the process. Therefore, developing
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an object model for cach class of equipment has a very fast payback in the system.

‘The knowledge used to represent the process characteristics is stored using Mcta-
COOP frames. These frames are organized in a hierarchical structure according to the
process decomposition shown in Figures 4.2 and 4.4. For example, a frame is designed to
represent the knowledge for BLEACHI. Under this frame, there is a number of sub-
frames (subclasses) to describe the various nodes in BLEACHI1, such as TRANSFER
CHEST. Each frame contains a number of member slots to describe the properties of
these nodes. The member slots in the above representation update their values from
MOPS database. In order to simulate the process dynamics on-line, we have made the

extensive use of the material tracking features of MOFS.

Chip bLrainer

| EiEs T )

Pump

Conveyor

Scrap
sapatatos

chap sump W

4
TO_REF} ’

Figure 4.3: Process layout at Impregnation module

All the refevant process values in each stage get time stamped. Figure 4.5 shows
the amount of time (retention time) for a given bale of pulp to pass through an equipment

or travel from one location of the process to another. Retention time depends on many
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factors such as the production rates, tank levels, cousistency and so on. In our system, we
use an approximate formula to calculate the retention time based on the current
production rate, nominal production rate. and equipment capacity with the assumotion
that the operating conditions would be close to the nominal conditions. For some
equipment, the calculations have been enhanced by incorporating the pulp consistency.
Here is a formula for retention time calculation of APS bin #1, where 611LCT02 is the
percentage level of the bin, PCO1 is the BDMT production rate per day, 355 and 30 are

the nominal production rate and retention time under nominal conditions respectively

pemep DISCHARGE CONVEYOR

—>( CONVEYOR  )rmewmmie—edp PULP CONVEYOR

= SHREDDER CONVEYOR

PRESS 1A
e TWIN WIRE PRESS HEADBOX
PRESS 1B

PULP SUPPLY

PUMPS CSF
SENSORS CONSISTENCY
AGITATORS ISO

VALVES

BLEACH 1 f-’ feefp{ TRANSFER CHEST Jmesmmmmenn

W

fepp{ P1 BLEACH TOWER )

CHEMICAL MIXER
2 MIXER DOUBLE SHAFTED
STATIC MIXER

Figure 4.4: Inter-stage bleaching representation in IMS

611LC102 355

APSt = =T % T00

30 minutes 4.1)

Since all the important equipment have an object or unit representation within our
system, we can simulate any of the "what if" type of scenarios within that equipment and
pass the simulated results to the next object. For example, if we want to know the

consequences of an increasc in primary refiner power to the final quality of the pulp, ther.
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we get a snap shot of the operating conditions at the primary refiner at that time; simulate
the effect of the specific energy increase in that stage; pass on the simulated results to
next object with its retention time using messaging feature of the Meta-COOP. As an
example of message passing and its simulation procedures. suppose a message tells the
system that the press 1A’s status has been changed. As soon as the member slot value of
the press 1A is placed in the knowledge base, the system activates a method that finds all
influcnced objects, beginning from the lowest level of the hierarchy, and starts the
simulation. The outcomes of such a message are therefore available to the reasoning

process, increasing the speed of simiilation.

Tiotd Co-nida=oi 1l oo

e I
BOR Pt

This object oriented approach provides us with the capability for system

extensibility. For example, if there is a change in process hardware, in the knowledge
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representation only the aftected nodes need to be moditied. This has proven very usetul
since SLPC have been going through a de-bottlenccking project and we  have
incorporated this into the knowledge structure already. Also. this hicrarchical
decomposition approach allows us to simulate the process models very quickly since we
only need to activate the models or rules of only affected sub-processes. We do not need
to waste time on searching other sub-hicrarchies at the same level. 1t is the main reason

why we car improve the simulation efficiency by using this structure model.

Figure

Conventional rule based programs try to find correct solutions with the help of a
system’s observed behavior, whereas our model-based simulation system evaluates
events based on the system’s observed and predicted behavior. A problem solving model

is a specific translation from component’s physical description to a sct of rules.

4.2 PROBLEM SOLVING [FIODELS

SLPC currently produces about 25 unique grades of pulp, which range from very

65



high to low brightness pulp. Typically, there is a grade change every two days. Operation
of the process is very much dependent on the grades and production rates. As shown in
Figure 4.6, the operation of the sccondary refiner and the tertiary refiner depends on the
grades, and operating conditions of primary refiner such as the age of the plate. If the
produced grade requires a lower freeness, then all three refiners must operate in order to
achicve the desired quality. Otherwise, one or even both of the secondary and tertiary
refiners can be bypassed. Figure 4.6 shows a grade change values where the secondary
refiner is bypassed. The retention time, rejection rate, and chemical charge also play very
important roles. The remainder of this chapter shows how knowledge is incorporated in

IMS.

Chip.Product

Refinel KWH

Refine2. KWH
linpreg NaOH Refine3. KWH
Bleach! Silicate Impreg.NaOH
Bleach!.NaOH Bleachl Silicate
Bleach? Silicate Bleachl NaCH
Bleach2.NaOH

Bleach2 Silicate

Chip Softwood

e -

" gure 4.7: Relationship between result and action variables

Each fra. - = is associated with a table in the RDB which contains all the process
data for that frame These tables are used by CBR for retrieving the previous cases, NN
for training and predicting, and production rules for getting the current values and
constraints of the process in that frame. The primary refiner object (REF1) is the simplest
frame in terms of process dependencies, hence has fewer fields in its table. These process

values are stored along with equipment retention times, MOPS material tracked values
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from previous frames, and production time. Storing material tracked values allows us to

consider the dynamic behaviour of the process.

As indicated, process variables are divided into two types: action variables and
result variables. Figure 4.7 is a simplified representation of the model structure in terms
of action variables, result variables and their corresponding relationship between the
frames for re-ult variables. For example, the scattering cocfficient is directly aftected by
the chemical addition rates at the bleaching and impregnation stages. It is also dependent
on result variables and, freeness at the three refiners. The freeness at cach refiner is
affected by quality such as tree age, outside temperature and percentage of chip mixture

(softwood to hardwood ratio). In this way, we connect all the relevant frames together

for simulation.

__— Brightness ~——_

Silicate

Peroxide

/ A\ Reaction Time

Residuals Concentration DTP

Production Temperature
Chip Species i i

Freeness
Enere / | |

Figure 4.8: Brightness and freeness dependency relations

In a BCTMP mill, brightness and freeness are the most influential result variables
in terms of mill efficiency, production, and cost. Many of the other result variables such
as bulk, tear index are based on these two variables. Figure 4.8 shows a relationship

between brightness and freeness and their corresponding action variables. Frecness at

67



cach frame is interdependent on brightness and vice versa by having the common action

variables.

‘We have obtained the mathematical models for the brightness and freeness
calculation. The following sections will introduce these models and show hcw they are

implemented in IMS.

4.2.1 BRIGHTNESS CALCULATION

In a BCTMP mill, the bleaching process is the most important stage for achieving
on-grade pulp. Most of the chromophores are eliminated in the two stages of bleaching.
Many different action and result variables in the bleaching process have a direct impact
on chromophore content. The brightness is dependent on fiber surface condition and color

content. Mathematically it can be represented by the following equation:

. k k' _k
Brightness =1+—— | ¥ +2—
s s s

(4.2)

Where s is specific light scattering coefficient describing the fiber surface. It is a
variable describing the ability of the fiber to reflect incoming light. & is specific light
absorption coefficient describing the fiber chromophore content. It is a variable
describing the color content in the fiber. During the peroxide bleaching the chromophores
arc eliminated and peroxide is consumed. The empirical equation describing the k
calculation is :

k= EXP[LN(kh ~ ko)~ A(gﬂ+l)]+ko

B (43)

Where kb is the amount of chromophore in the raw material coming into process;
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k() is the amount of chromophore that can not be removed during bleaching: CPX s the

consumed peroxide in the process: A and B are the correction factors. Normally . the more
peroxide that is added, the higher the brightness would be. However, il too much
peroxide is added to the process, it has a negative effect on brightness by reacting to other
chemicals such as DTPA, this consumption is modeled by B. lactors determmning the
amount of peroxide consumed in each tower are:

alkali amount charged: more alkali makes chemicals react faster
reaction time: longer time increases consumption
reaction temperature: an increase in temperature speeds up reaction

pulp consistency: higher pulp consistency means less dilution and more
concentrated chemicals
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Figuré 49 Relbationship bétweeh s and the freeness
The specific ligi. -« + :* . coefficient, s is a number that describes the ability of
the fiber (sheet) sw @.- . - .. .r (reflect) incoming light. This cocfficient is mainly
related to the raw ma...iar such as wood specic, freeness (fines material) and alkali
amount added in the process. The relationship between s and the freeness and alkali is
depicted in Figure 4.9. We have developed a number of rules to represent the knowledge

contained in Figure 4.9 and have implemented them in the IMS s calculation.
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4.2.2 FREENESS CALCULATION

The following relationship has been obtained for freeness calculation, which is
valid at all three stages of the refining process:

esf = EXP(K, = K, * KWiT) = K, *(CAUSTIC - K.) + K,

Where KWH is the specific energy consumption at the refiner; CAUSTIC is the
amount of caustic added to the pulp before entering the refiner; K is dependent on the
incoming freeness to the refiner; Kl’ K2, K4, K5 are dependent on production rate, grade,

chip quality, concentration, plate age, and plate gap. Figure 4.10 shows the dependency of
freeness on KWH and caustic under normal operating conditions.
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Figurc 4.10: Specific Energy relationship to freeness

The calculation of the coefficients Kl’ }{2, K 4 and K5 under various operating

conditions has been formulated into heuristic rules and implemented into IMS.
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4.3 NEURAL NETWORK MODEL

Because of the complexity of the pulp process. not all the resuli variables have
mathematical formulations available.  For those available mathematical tormulations,
there exist a few unknown constant cocfficients that depend on many factors such as
operating conditions. These factors are usually caleulated using the experimental data
obtained under normal operating conditions. When the operating conditions change from
the nominal situation, the mathematical formulation accuracy may degrade. Considering

this problem, we have also developed neural network models for a few important quality

variables.
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Figure 4.11: Scattering plot of actual versus predicted freeness

Figure 4.11 Shows the prediction accuracy of the freeness at REF1 using the
neural network models. For this neural network model, we have used 28 action variables
that influence the freeness. We sclected 3200 data for the above 28 tags (ignoring all the
other quality requirements) and trained the system It can be seen that the neural network
model gives very accuratc predictions.  Figure 4.12 presents the accuracy of the

brightness model at inter-stage bleaching. The accuracy is also satisfaciory.
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Figure 4.12: Scattering plot of actual versus predicted brightness

The use of neural network models for process simulation is illustrated by Figure
4.13. First of all. IMS collects all the relevant data from the MOPS CVD. IMS has
heuristic knowledge to find out the list oi the action variables for the frame. According o
the MOPS material tracking. then. IMS reorganizes the data set to incorporate the
retention time. Constraints, such as the pulp grade and the production range are used to
select a specific neural network niodel from the available models. The reorganized data
set is then applied to the selected neural network model and the simulation for the current
frame is exccuted. A message, along with the predicted result variable values, is sent to
the frame in the downstream (for example frem REF1 to WASH1). As this continues, the
message is finally sent to the last frame required for the simulation and this gives the final

simulation results.

As presented above. IMS applies knowledge with various techniques including
heuristic rules, mathematical models. past production cases and the ncural network
models.  The heuristic rules are mostly used for models sclection and evaluation. For
some frames. there is only one model available. Whereas for other trames, there may be

two or more models available for the same result variables. This raises a potential
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problem of selecting the right (most accurate) model for simulation.
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Figure 4.13: Flowchart of NN simulation

In IMS, different forms of models are implemented in different ways. For
example, mathematical models are installed in the Meta-COOP as shown in Table 4.1.
Meta-COOP is capable of impleme=t:- & " =ical calculations in the CONCLUSION
portion of the production rules ana .. the MET1:)D. It can automatically call the action

variables from other frames. This implementation is simple and efficient.

Neural network models are far more complex and are thus not easy to implement
in Meta-COOP. We thus treat each neural network model as an external DLL call.
Whenever an NN model is required for simulation, Mcta-COOP sends a message o
activate this method in its corresponding frame. Each frame contains a member slot with
a valueclass of METHOD which has all the information needed to activate its

corresponding NN model.

The past production cases are stored in a RDB table. Lach table represents the
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process knowledge in terms of action variables and result variables. If the values of the
action variables of o new situation matches a past case in the RDB table, the values of the
result variable is assumed to be the simulation result. This knowledge is readily available

in the mill production databases.

Table 4.1: Rule-based model

Memberslot: burst_tear rule from FINAL
Valueclass: RULES
Values: { rule 403
if WASH 4.CSF > 85 und FINAL BULK >1.0
then FINAL.BURST:=3.0/FINAL.BULK + 0.05*CHIP.SOFTWOOD/100;
and FINAL. TEAR:=2.2*FINAL.BULK + CS/100 };

The reasoning process for solving a simulation problem can be summarized as
follows: as soon as the simulation problem is defined, IMS identifies the first affected
frame and checks the RDB table of that frame for a result. If a past case in the table
matches the current siiuation, the result variables will be retrieved as the simulation
results for the frame; then a method in the current frame uses the heuristic rules to find
the next frame for siraulation and sends a message along with the obtained results. If no
past cases are matched, IMS checks the availability of other simulation models, such as
mathematical models or NN models. If oniy one model is available, IMS executes the
model and gets the simulation results as well as sends a message to the next frame. If two
models are available, both of them are triggered and the results from both models are
compared and evaluated using a method in Meta-COOP. The better one will be taken as
the simulation result and passed on to the next frame. As indicated above, this
simulation-message sending process is continued until the final frame is reached and the

results from the final frame is the simulation result we require.

Our practice shows that it is easy and natural ‘o apply the features and the

capability of Meta-COOP for integrating hyoiid knowledge for simulation.
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Chapter S

5. IMS INTERFACE AND DEMONSTRATION

The IMS user/developer interface is menu driven and customizedd based on the
mill applications and integrated with MOPS and RQIS. The customization involves
addition of new functions to MOPS user intertace, creation of Knowledge acquisition
system, integration with third party commercial neural network and expert systems. Some
of these customizations arc done on the server side, such as addition of all database
communication with HDB and RDB, but most of the integration was done on the chient
PCs. Meta-COOP source code has been modified to be aware of all the added features:

these features are also available to other modules within IOMCS project and MOPS.

In addition to Windows NT network security check, we have added a LOGIN
window. The user name is used to check the access privileges of the user to various

modules and databases.

-y
i

Figure 5.1 IMS login window
In crder to make the overall mill information system casily accessible, we were
required to develop a general organizer to incorporate all the frequently used applications
in one window as shown in Fig-:re 5.2. All of the applications shewn in Figure 5.2 have

been integraied with each other using Microsoft’s OLE concept, ‘The remainder of this

chapter will concentrate on IMS module only with some external function calls and



communication.
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Figure 5.3. Shift entry display

5.1 KNOWLEDGE ACQUISITION SYSTEM

Knowledge acquisition and organization is the major bottleneck in intelligent
system development. The knowledge engineer is usually ignorant of the domain

knowledge [Luger and  Stubblcfield. 1989]. To capture the domain knowledge
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continuously, we have developed an on-line system called, LOGBOOK. Operators, shift
supervisors use this module to enter the operating conditions of the mill into the system.
At the beginning of the shift, an operator selects his crew and shift supervisor tor that
crew, system gets grade and production from MOPS, user confirms the entries (Figure

5.3).

lfvm/\(_denv‘v_ .

After selecting the initial information for the shift, the user enters all the incidents
of process operation which are deviations from production recipes Technical department
makes a recipe for operating the process and grade transitions, bi.t sometimes operations
need to deviate from a given recipe to achieve on-grade pulp. These deviations are stored
in Loghook and used as a knowledge base (Figure 5.4). Logbook 1s attached to the RDB
database for quick and easy accessing. This system also has features such as reporting the

total production loss for a given period of time due to a specified equipment malfunction.
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5.2 DEVELOPER INTERFACE

When developing the IMS interface, it was decided that the system would allow
the developer to train and test knowledge bases off-line. However, in order to use the
same system on-line, we had to connect the system to the process then capture history
from RDB, CVD, and HDB and train it off-line. Therefore, all the developer options of
the system are available from the end user interface. It can run within WINMOPS or as a

standalone program as shown in Figures 5.5 and 5.11.

Figure 5.5: IMS Developer Interface

The FILE option is used ior opening previously saved knowledge bases and
neural network models. Engineers ::ve this menu for modifying the knowledge base as
shown in Figure 5.6. When the “Open Knowledge base” option is selected, the system
activates an external file transfer protocol [Walker Richer & Quinn, 1994]. This protocol
automatically logs on to the server and allows the user to select the knowledge base to "
modified. After the modification is done, a trigger in RDB table of the seleti:
knowledge causes the compiling module of the IMS server to compile the knowleds.
base. If there are any errors during compilation, users have a chance to make correction: .
This knowledge base goes on-line and is used for simulation. The compiled module
monitors the process operation using the data from MOPS databases and stores the
operating conditions in its relational database (RDB). These stored data are used for
building more cases in the logbook to be called by CBR. The graphics interface allow
user to display graphically the actual outcomes of the result variables against their

predicted values from the knowledge base. This can be used for graphing and further fine
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tuning of the knowledge. Within the knowledge base, we have developed functions which
gets the data from databases. One of the functions is called MC Cvdput as shown in
Figure 5.6. MC_Cvdput is used for putting the simulated results into MOPS databases.
Other functions include reading from CVD and HDB and writing to CVD and HDB

databases.

IMS Developer Interface

end slot;

Memberslot: CSF_KWH_lHl. from START;
Inheritance: GUERRIDE .UALUES;
Valueclass: Real;
Cardinality.Min:

Cardinality.Max: 1; i)
| Yalues: Unknown; NI INPUT.FRA:T
@end slot; . HINPUT.LI
f{liemberslot: find_method from START; . ERE
Inheritance: METHOD; o i
VUalueclass: HETHODS;
Cardinality.Min: 1;
Cardinality.Max: 1;
Values: solve_method;
end slot;
MEMBERSLOT: H202_RULES FROM START;
Inheritance: Override.VUalues;
Valueclass: RULES;
Cardinality.Min: 1;
Cardinality.Max: 1;
Values:{
RULE 200 fact MSH202>58 AND MSH202<59
then

. TN NN

¥ S~ ee Y,

Figure 5.6: Knowledge base modification facility

When “Open NN” from FILE menu option is selected, the client program
activates a customized Neuroshell development environment. We have developed a data
retrieval module which feeds the requested process data into Ncuroshell. It uses the
Dynamic Link Library (DLL) to extract data from CVD, HDB, and RDB [Maxis Inc.
1995}. Sampie DLL calls from MGi'S databases are shown in Table 5.1.
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Table 5.1: Data retrival routine from MOPS

Declare Function Mops_Init Lib "ANTMOPS.DLL" (ch As Long, BvVal inifilename As String) As Long

Declare Function CVD_Read Lib "ANTMOPS.DLL" (ByVal ch As L.ong, ByVal tag As String, ByVal buffer As String, cvdsts As _
Integer, meecode As Long) As Long

Declare Function CVD_Write Lib "TANTMOPS.DLL" (ByVal ¢h As Long, ByVal tag As String, By Val buffer As String, cvdsts As _
Integer, meecode As Long) As Long

Declare Function HDB_Read Lib "ANTMOPS.DLL" (ByVal ch As Long, ByVal ptdesc As String, mcests As Long, numvalues As_
I.ong, hdbsts As Any, values As Any, timestamps As Any, epndesc As Any) As Long

HDB_ReadPoint(ch, ptdesc, meecode, numvals, hdbsts(1). realvalsi(l, 1), timestamps(1), hdbdesc)

Declare Function Mops_Uninit Lib "TANTMOPS DLL" (ch As Long) As Long

The Mops_Init function establishes a connection to databases, CVD_Read and
HDB_Read functions read the values from current value database and historical databases
respectively. CVD_Write puts back the results into current value database and
Mops_Uninit detaches the module from databases. CVD_Read can get values from CVD
for up to 1000 points in one call. Data is returned in the buffers argument and the CVD
status word, if any, is returned for each point in the cvdsts array argument. mcests
contains the MOPS status code corresponding to each tag requested. epndescs is an array
of structures containing information pertinent to each tags data, e.g. datatype, number of
clements, and point handle. Both data and CVD status words are automatically translated
into the local nodes representation from that on the remote MOPS system. After calling
this routine, a 4 byte signed ANT status longword antsts indicating the result of the call is
returned. Possible values of antsts are:

1) ANT SUCCESS: Client application successfully connected to ANTCVD
server and the read request was performed. This alone does not guarantee that
valid data was obtained. Caller should also check the individual mcests return
value of each point for MCE_SUCCESS before interpreting the buffer, cvdsts,

and epndesc arguments.
2) ANT INVPARAM: Handle is invalid. Make sure Mops_Init was called.
3) ANT_INITFAIL: Client application was not properly initialized.

4) ANT_CONNFALIL: Failed to establish connection to ANTCVD server.
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5) ANT_OUTOFBND: The value of the numtags argument is out of bounds.

6) ANT READERR: Read error encountered while communicating with the
MOPS CVD server.

7) ANT WRITEERR: Write error encountered while communicating with the

MOPS CVD server.

Table 5.2: Sample routine to retrieve CVD value from IMS Client

sub CVDRead()

Dim antsts, tempsts, numtags mcecode, realptr As Long
Dim tagname As String

Dim temptag As Tag

Dim index, cvdsts, i As Integer

Dim epndcesc As cvdepndesc

Dim cvd_reals(1 To C_MAXCVDVALUES) As Single
Dim cvd_in2s(1 To C_MAXCVDVALUES) As Integer
Dim cvd_intds(1 To C_MAXCVDVALUES) As Long
Dim strvalue As String * 100

tagname = TagBox.text
index = VBStringToAsciz(temptag, tagname)
realptr = CreatePointer(cvd_reals(1))
numtags = 1
CVD_Read(g_ch, numtags, temptag, realptr, cvdsts, ::.vecode, epndesc)
* generic buffer was used for CVDRead so now copy emory to appropriate datatype array
Select Case epndesc.datatype
Case TINT2
tempsts = CopyMemory(cvd_int2s(1), cvd_reals(}.. 2 * epndesc.numelements)
DataBox.text = cvd_int2s(1)
Casc TINT4
DataBox.text = cvd_int4s(!)
Case TREAL4, TSCALED
DataBox.text = cvd_reals(l)
Case TASCII
DataBox.text = strvalue
End Select
End Sub

Table 5.2 is visual basic code of a sample client routinc which rcads a tag name
and returns the corresponding CVD value to NN applicatic  The following are some of
the important function arguments of CVD_Read

1) ch: Handle to the ANTCVD servers returned to the caller by the Mops_Init

function.
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2) numtags: Number of tags to be retrieved. Valid range is 1 to 1000.

3) tags: Array of null-terminated ASCII strings of the tags to be retrieved from the
CVD. These can be any valid MOPS tag such as tag{0] = 631ENER1-CV-CAL.

4) buffers: Array of pointers to buffer variables to receive the return data.
5) cvdsts: Array of MOPS CVD status words.

6) mcests: Array of MOPS status codes.

e om0 trvre et R RN IR Saa

Figure 5.7: Main display of Neuroshell

7y epndescs: Array of EPN descriptor structures. If the corresponding mcests
equals MCE_SUCCESS, this descriptor contains fields describing the datatype,
number of elements, datalength of each element, and the point handle for the

tag.

The Neuroshell based NN module is a software program that mimics the human
brain's ability to make predictions or decisions based upon past experience. Just like the
brain, however, neural networks are not guaranteed to always give an absolutely "correct”
answer, especially if patterns are incomplete or conflicting. IMS has a module developed
using Meta-COOP to evaluate the prediction results from various modules, such as

Neuroshell and model-based modules. The prediction results with the highest confidence
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factor are then presented to users. Figure 5.7 is the development tools wcons of

Neuroshell.

This module ofters several main menu options which enable the developer to
work with real time process data within Neuroshell. The order of operations is to work
from left to right. If icons appear in the same column. work from top to bottom. The
developer may not have to use all of the icons that appear on a screen in order to create a

working neural network module for IMS.

| i |
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Figure 5.8: Production rules facility in Neuroshell

Af2r ~oll=cting all the data from databases, the next step is data validation. This

task h 1to two distinct functions: one is data selection and the other is data
filt ection task is fulfilled on the server using the production rules

The recipe table in RDB contains all the valid ranges of the

'is tacle, in conjunction with grade table in RDB, is used by

acting the data. The logic in this data sclection is simple:

... grade and the ranges of the operating conditions, we discard all

Pro.woo uata that do not fit in the predefined range. After collecting all the data from



databases the next main step is the filtering. We need to have a way of filtering out the
nvalid data before training the neural network. This bottleneck can be overcome by using
the production rules facilitics of Neuroshell as shown in Figure 5.8. After having the data
and using a filter module to validate them, the developer chooses options from main
menu of Neuroshell to train the network. Figure 5.9 shows the Network architecture..

available within Neuroshell system.

{5 Network Architecture Options

» OLL Server Pumur \\IV\NGEH(IMS\NN\HEFI NNFIG

Fure5.10: DLL server facility in Neuroshell

The DLL Server of Neuroshell is used for integrating the system with other
modules. This capability allows the user to execute a trained Neuroshell network from
Visual Basic, C, Excel, or Meta-COOP. The DLL Server gives the means of saving the
network in a corresponding object within IMS so it can later be accessed via a Dynamic

Link Library (DLL). Before any trained network can be exccuted by the DLL, a .DEF file
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for that network must be created by the Neuroshell DLL Primer which is pa.t of the

Runtime facilities, as shown in Figure 5.

Execution of a trained network is just the process of feeding an array of inputs to
the network and receiving back the appropriate array of outputs (the predicted results).
Once a DEF file is created, three DLL functions are needed to execute the neural

network.

7
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1. OpenNet - This function reads the .DEF file and sets up the network. It gives a
network number which is used for future reference to the network. It also gives the

number of inputs the network expects and the number of outputs with which it will
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respond. Normally, the develer  already know the number of inputs and outputs

anyway.

2. FireNet - Once the network is opened with OpenNet, use FireNet to pass inputs to the

network and receive back outputs.

3. CloseNet - Execute this when program no longer need to exeente the network. 1t will
release all space taken by the network. The next time program needs to execute the

network it will have to start from OpenNet again.

The above three functions allows Neuroshell to infegrate with other modules in

IMS.

5.3 USER INTERFACE

The main IMS user screen (Figure 5.11) consists of seven buttons and six menu
items. The menus are mainly used for development and buttons are for end users. Using
Windows NT server’s user access rights for validation of user login, all the restrictions to

menus get determined automatically.

The screen is divided into six matrices (columns), which represents the niain
stages of the process. The influential action variables are displayed on the top rows and
the bottom rows show the result variables for each of the matrices. For example, the
REFI object only influences three result variables: brightness, freeness and consistency.
Clicking on the MORE button displays the action variables and their current process
values. Using FREEZE button, user can stop the system from updating the data then
change any of the action variables. In REFI object, there are 28 action variables which
determines the outcome of the 3 result variables. Clicking on the SIMULATE button
sends a message to the IMS SERVER in alpha which in turn activates its communication

interface. This interface triggers the CBR function, which scarches the knowledge base
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for known facts or rules. and activates neural network module, then simulates the known
maodels based on the user entered data for solution. Meta-COOP collects all the results
from different models and compares them to the closest fit data from previously run

process cases. Meta-COOP then. sends a message along with simnlated values (o the user.

The GRAPH function is used for displaying the relevant plots from either
previously wollected process data, or neural network models. Figure 5.12 shows the
outputs of aciual and simulated values for consistency at the end of REF1 object using

600 actual lab tested data versus IMS simulated values.
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Figure 5.12: Sxmulated versus Lab test graph for Freeness

Selecting SHOW CASES from the run menu connects the user to the RDB
database where all the pravious cases are stored. The Open DataBase Connectivity
(ODBC) tool developed by Oracle is used to connect to the RDB database. All the reports
have been created using Crystal Reports [Crystal, 1995]. This allows users to view all the
previous cases as shown in Figure 5.13. IMS user interface can be activated from MOPS

as shown in Figure 5.14.

The help menu in main IMS display gives all the test procedures, mill operations,

and grade guidelines. All the manuals are written in a hypermedia system developed by
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Forefront technologies Ine. [ForeHelp User's Manual, 1993]0 As skown in Figure 5,135,

all the process knowledge help is available through this on-line manual as well.
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Figure 5.13: Report of previous cases in RDB database

The integrated developer interface makes it casy for mili engineers to modify and
update process knowledge in IMS. The graphics user interface improves the acceptability

of IMS to eperators.
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Chapter 6

6. CONCLUSIONS

The key factors used by analysts to evaluate the global pulp and paper industry are
per capita consumption of paper, total tonnage produced and cost per tonne. An important
trend in pulp and paper industry is making more and better product at lowest cost. One
way of doing this 1s by empowering the decision makers during process operation by
giving them the tools they need to make decisions on-line quickly and efficiently.
Intelligent Matrix Simulation System (IMS) is such a tool developed for Slave Lake Pulp
corporation. It is a user friendly graphical tool that models and displays the relationships

between the action variables and the resuit variables for a given operating condition.

IMS is a knowledge integration environment which consists of a symbolic
reasoning system, numerical computation programs, database management system,
computer graphics packages, and muitimedia interfaces. Two supervisory units fulfill the
selection, coordination, operation and communication of thce independent software
syvstems. This integrated software environment allows exccution of programs written in
different languages, and application of multiple knowledge bases in the system. IMS is so
integrated that it combines several individual software packages into a coordinated
knowledge environment. The integration involves symbolic reasoning, neural networks,
and case based reasoning; heterogeneous hardware platforms (Alpha server and Personal

computer); and heterogeneous operating systems (Open VMS and Windows 95).

6.1 ACADEMIC CONTRIBUTIONS

Process models obtained from traditional methods such as system identification
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arc usually lineir pproximations about chosen steady  state  operating  condition.
Howcever, the charactenistics of BCTMP equipment are highly nonlincar and very
complex. Because of a lack of complete understanding of the process mechanism.
differential equations which describe the dynamics of the processes are very difticult to
obtain. On the other hand, most of the nowadays pulp and paper companies have applicd
distributed control systems and information management systems. They have vast amount
of historical process data charting the system. In IMS, the historical data combined with
the domain knowledge is used to develop a model that describe the input-output
bchaviour of the process. Alfter modeling the process in IMS knowledge base, we have

developed algorithms to simulate the process behaviour on-line.

The BC'TMP process is a new process with very few experts available. Although
SLLPC has been in operation since December 1990, there are still many operating
conditions which the mill have not encountered yet. We have used advance Al techniques
to develop on-line learning algorithms. Using the on-line CBR, IMS can learn new cases
and reuse the learnt cases as needed; also, ANN is used for extracting new relationships

for given operating conditions and making them available on-line for prediction.

From system designer’s point of view, we have developed an integrated
intelligent system which is embedded into the existing systems such as MOPS and BQIS.
Also, rather than using conventional sequential programming approach, IMS uses matrix

simulation methodology to organize its knowledge base.

The prototype of IMS system has been developed and approved by the company.
The implementation of IMS in several key process areas has been completed. Operating
results have shown that IMS is very useful in reducing operator’s working burden and

improve the efficiency of operation decision making.
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6.2 FUTURE RESEARCH

Though IMS has performed cflectively in process operation, turther rescarch is

required to further improve the performance and enhance the functionality of IMS. Arcas

of {uture research include:

)]

3)

4)

Generic Model: The hierarchical IMS models are process specitic. In order to
improve the portability of the IMS, it is necessary (o use a generie model
structure. The model of each process component is treated as a module. By
connecting the modules or changing the specification and definition of the

modules, users can easily build models for a new application.

Process Optimization: The models built into NS are the basis for process
optimization. A new system will be developed to fulfill this task. When the
process operation drifts from its desired conditions. the process optimization tasks
will call the models in IMS. In return, IMS will perform simulations and use
optimization to find a new operating condition that will result in desired quality.

less raw material and chemical consumption and high production rate.

Engineering Interface Improvement: Currently the engineering interface of the
system is not uniform among different modides of INS. A universal engineering
interface will be developed. This interface will enable mill engincers, who may
not have much knowledge about intelligent system, to casily enter new models

and build new applications.

System Extension: IMS is now implemented in sceveral key process arcas. More
models will be built and more knowledge will be acquired in the following ycars.
Our ultimate objective is to cxtend IMS to a mill-wide application. As one
important part of the IOMCS system, IMS is being continuously improved to

satisfy the requirements from other modules of [OMCS, such as fault-diagnosis.
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