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Abstract

Using young clusters and giant molecular clouds (GMCs), we constrain timescales

and distances involved in the star formation process in the Triangulum (M33) and

Andromeda (M31) galaxies. The young star clusters come from the PHATTER cat-

alogue, with 1214 clusters in M33 and the PHAT catalogue, with 1249 clusters in

M31. These cluster catalogues have the ages of their members measured using colour-

magnitude diagram fitting. In M33, we compare these clusters to 444 GMCs identified

from an ALMA 12CO(2-1) survey with 35 pc resolution. In M31, we compare the clus-

ters to 251 GMCs identified from a CARMA 12CO(1-0) survey with 20 pc resolution.

By comparing the separations between clusters and their nearest GMC, we find that

younger clusters are preferentially located near GMCs, while older clusters have sep-

arations consistent with a random distribution. Performing two-point correlation on

our clusters and GMCs reveals that younger clusters are likely to be found at small

separations from other young clusters. In M33, where the cluster catalogue contains

younger clusters, we find through cross-correlation analysis that GMCs and clusters

≤10 Myr are statistically associated. This association between GMCs and clusters

decreases until the clusters are ≈ 18 Myr, where the clusters and GMCs then appear

randomly distributed for older clusters. This transition to a more random distribution

can be explained by a simple drift model where the clusters have a velocity dispersion

of 5-10 km s−1 with respect to the surrounding gas. By finding the number of spa-

tially overlapping young clusters and GMCs in M33, we estimate that clusters spend

4-6 Myr emitting feedback into their parent GMC. We then estimate that GMCs in

M33 have a total lifetime of 11-15 Myr.
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Chapter 1

Introduction

1.1 Motivation

The Universe is filled with galaxies, which are teeming with stars. These stars produce

a majority of the optical light emitted from galaxies, which results in galaxies being

observed primarily by their starlight. However, we know that galaxies began with

gas and dust without stars. Therefore, understanding how this gas transformed into

stars and the distribution of these stars, which defines galactic structure, is intimately

linked with the star formation process. Understanding this star formation process that

converts gas into stars is essential to understand galaxy evolution as it creates the

stars we observe and shapes the gas that will birth the future generations of stars

(Mo et al., 2010).

1.1.1 Giant Molecular Clouds

The star formation process is facilitated by gravitational collapse. First, the hot,

low-density gas that filled the early Universe and much of present galaxies must

coalesce. As the gas condenses, it can also cool more efficiently, which reduces outward

thermal pressure and allows collapse to continue. Many cooling processes require

other particles. The simplest example is collisional excitation, where some of the

kinetic energy of one particle is transferred to another through a collision putting

this particle in an excited state. Then when this particle naturally decays to the
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ground state, the emitted photon has a chance of escaping the region, which will

lower the total kinetic energy of the particles. Another example is Bremsstrahlung

radiation, where two charged particles pass near each other. This passage can cause

one of the particles to decelerate, which releases photons and again reduces the total

kinetic energy of the region. Both of these cooling processes happen more frequently

when the density is higher, and are why cooling is more efficient in higher-density

regions. As the gas that makes up the interstellar medium (ISM) gets denser and

colder, it transitions from ionized to neutral atomic, and then into molecules (Kwok,

2007). Star formation occurs primarily in the densest regions of the ISM, which are

collections of molecular gas known as molecular clouds. In particular, giant molecular

clouds (GMCs) host a majority of observed star formation (e.g., Wong & Blitz, 2002;

Kennicutt et al., 2007; Leroy et al., 2008; Bigiel et al., 2008).

Compared to most of the gas in galaxies, GMCs are extremely cold and dense.

Molecular gas in the ISM is very sensitive to the ultraviolet (UV) radiation produced

by high-mass stars. This sensitivity is why, even though gravity wants to increase

the density of the gas, most of the gas in the ISM is in the neutral atomic state.

Therefore, for GMCs to exist, they require many layers that shield the molecules

from UV radiation. This multi-layering leads to reservoirs of molecular gas that

are 10 – 100 pc across, have masses 103 – 106 M⊙, and are surrounded by atomic

gas (Krumholz, 2015). Similar to the mass distribution of stars, there seem to be

more low-mass than high-mass GMCs. However, the exact GMC mass function is

difficult to obtain due to incomplete samples of lower mass GMCs (Roman-Duval

et al., 2010). While these GMCs are cold, they are also turbulent with typical gas

velocity dispersions of a few km s−1 (e.g., Rosolowsky et al., 2003; Gratier et al.,

2014). Larson (1981) was the first to note that many GMC properties are related.

Now known as Larson’s laws which are one, GMCs have typical surface densities of

∼ 100 M⊙ pc−2. Two, the velocity dispersion is proportional to the radius of the

GMC. Three, GMCs are roughly in virial equilibrium or αvir ≈ 1, Section 1.1.2 will
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define this quantity in more detail and Section 1.1.4 will discuss how these GMCs are

detected and how some of these properties are measured.

1.1.2 From Gas to Clusters

Star formation occurs in the densest, 100 – 1000 cm−3, and coldest, ∼10 K, regions

of GMCs. This is because the main force driving star formation is gravitational

collapse. As gravity tries to collapse the gas, thermal pressure, magnetic fields, and

turbulence resist the collapse. The exact effects of magnetic fields and turbulence on

star formation are difficult to quantify (Lada & Lada, 2003). However, just looking at

the simplest case where there is only gravitational energy, W , and thermal energy, T ,

we can see how increasing density leads to collapse following a simplified derivation

from Krumholz (2015). With only these two forces, the virial theorem can be written

as

1

2
Ï = 2T +W , (1.1)

where Ï is the double time derivative of the moment of inertia, which determines if

the cloud is expanding (positive value) or contracting (negative value). Therefore,

the virial parameter αvir, where

αvir =
2T
|W|

, (1.2)

is often used as a simple way of defining whether a system is bound by gravity. For

a cloud with mass M and radius R that is governed only by thermal pressure and

gravity

T =
3

2
Mc2s (1.3)

and

W = −a
GM2

R
, (1.4)

where cs is the sound speed and a is a constant based on the density profile. Since a

negative Ï means collapse, the condition for collapse is

GM2

R
≳ Mc2s, (1.5)
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and with some manipulation and dropping factors of order unity, we get

R ≳

√︄
c2s
Gρ

. (1.6)

This equation defines the scale of perturbations that would lead to collapse. There-

fore, for increasing density, smaller perturbations can lead to collapse. Once the gas

is dense enough that random perturbations from turbulence or outside forces lead to

collapse, stars begin to form from this collapsing gas.

Only some of the gas that makes up GMCs will collapse into stars. Most of the

gas that makes up GMCs is eventually dispersed back into the interstellar medium

(Chevance et al., 2022a). By surveying large populations of GMCs and measuring

the star formation rate, one can obtain τd, the depletion time. The depletion time is

the time it would take for all of the molecular gas in GMCs to be converted into stars

and is on the order of a Gyr (Leroy et al., 2008). Individual stars form more quickly

than this; on the order of τff , the free-fall time given by

τff =

√︃
3π

32Gρ
. (1.7)

The free-fall time determines the time it would take for a cloud to collapse with

negligible resistance. Efficiency is found by comparing these two timescales

ϵff =
τff
τd
. (1.8)

Both simulations (e.g., Semenov et al., 2016; Grisdale et al., 2019; Kim et al., 2021b)

and observations (e.g., Evans et al., 2014; Leroy et al., 2017; Schruba et al., 2019)

have converged on efficiencies of ≈ 0.01, which means only a tiny fraction of the gas

is converted into stars per free-fall time. The stars created by GMCs are responsible

for dispersing the gas through stellar feedback and supernovae (Kim et al., 2018;

Chevance et al., 2022b).

Since star formation occurs in limited environments, stars typically form very near

to other stars. It is also important to note that fragmentation is common. When a
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large mass of gas begins to collapse, the density will increase, which leads to perturba-

tions on smaller scales being unstable to collapse (Equation 1.6), and the large-scale

cloud is thus fragmented into smaller clouds. Therefore, 70 – 90% of stars form in

clusters (Lada & Lada, 2003). These clusters can then begin dispersing the sensitive

molecular gas, returning it to the ISM as atomic gas. By the time the gas is dis-

persed, only ∼10% of stars remain in gravitationally bound clusters, where Lada &

Lada (2003) define a bound cluster as a cluster with αvir < 1 or total energy that

is negative. Most clusters lose members and eventually dissolve through outside and

internal interactions (Krumholz et al., 2019). Therefore, the amount of stellar mass

contained in bound clusters, known as the cluster formation efficiency Γ, changes

with stellar age. However, the reason most clusters are quickly destroyed is not fully

understood. One leading theory is that in the densest regions of GMCs, there is a

local increase in efficiency leading to a bound cluster. In contrast, clusters formed in

lower-density areas are primarily held together by the surrounding gas, so when the

gas is cleared away, the cluster is no longer bound (Kruijssen, 2012; Grudić et al.,

2021).

The clusters that remain gravitationally bound are important laboratories. The

stars that make up clusters are formed nearly simultaneously, under the same con-

ditions, and in the same location in a galaxy, which means their properties can be

analyzed with minimal complications. With knowledge of stellar evolution, these

simple stellar populations can be age dated. Over their lifetime, stars of different

masses trace different paths on colour-magnitude diagrams. Therefore, the members

of clusters trace unique distributions on colour-magnitude diagrams based on their

age and mass. These unique distributions allow the age and mass of clusters with

resolved members to be measured accurately (Krumholz, 2015). This makes clusters

one of the most direct measurements of star formation history in a galaxy (Mo et al.,

2010).

Clusters inherit many properties from the gas they are formed in. GMCs are
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confined tightly to the planes of galaxies. Therefore, young clusters begin very close

to the planes of galaxies and are distributed in the same way as GMCs. However,

clusters also inherit the turbulent gas’s random velocities, allowing them to drift.

The turbulent velocities in a GMC are on the order 10 km s−1 (Rosolowsky et al.,

2003), and this measurement is made using the methods discussed in Section 1.1.4.

To see evidence of how clusters have inherited velocities Soubiran et al. (2018) found

that young clusters in the Milky Way have similar velocity dispersions based on

measurements of proper motion and radial velocity from Gaia. This random drift

means that clusters move toward randomly distributed as they get older (Soubiran

et al., 2018). Therefore, young clusters should be the closest to where they were

created.

To understand how the stellar populations and the gas in galaxies evolve, it is

essential to constrain the timescales involved in these processes. Some of the impor-

tant timescales that characterize galaxy evolution are the lifetime of the GMCs, the

cluster feedback time, and the timescales over which the cluster distributions evolve.

The lifetime of the GMCs are vital for understanding the cycling of gas in galaxies

and will add constraints on the physics involved in the star formation process. The

feedback time (i.e., the measure of time it takes for clusters to clear away their natal

gas) is required to understand why most clusters are disrupted by the end of this

time. The rates at which the clusters integrate into the larger stellar distribution of

the galaxy will add to the understanding of how stellar populations evolve.

1.1.3 Correlation Analysis

One way to begin characterizing these timescales is through spatial correlation anal-

ysis. Over time the spatial structure of clusters and clouds will change. This change

is due to the random velocities of the clusters. Therefore, by using the cluster ages

and analyzing the spatial structure, many timescales can be determined. The sim-

plest way of analyzing spatial correlation is finding the typical separations between
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objects. However, a more formal way to characterize spatial correlation is using the

two-point correlation function, also known as the autocorrelation function. The two-

point correlation function finds the excess probability, ξ(r), that a distribution is more

clustered than a random distribution at a scale r. Thus, the probability of finding an

object at a distance r from another object in a volume dV is given by

dP = n[1 + ξ(r)]dV, (1.9)

where n is the number density. For a distribution that is more clustered than random,

1+ ξ(r) > 1, while 1+ ξ(r) = 1 and 1+ ξ(r) < 1 represent random and anticorrelated

distributions, respectively. Typically the random distribution that is compared to is

a Poisson distribution such as a radial exponential to represent the disk of a galaxy.

However, in some cases, a different random distribution is used to represent a different

structure. The two-point correlation function describes the clustering of a distribution

made up of one type of object. To find the clustering between two types of objects,

the cross-correlation function is used. The cross-correlation finds the probability

that a distribution is clustered with another distribution compared to two random

distributions (Peebles, 1980).

The two-point correlation function was first used in astronomy to understand how

galaxies are distributed in the Universe. Galaxies are distributed in three-dimensional

(3D) space. Therefore, the ideal correlation function would find the separations of

galaxies, r in 3D space, which can then be compared to a random distribution (Pee-

bles, 1980). Unfortunately, accurate distance information for galaxies is difficult to

obtain. This difficulty has led to most measurements of the correlation of galaxies be-

ing estimations based on angular separations. The excess probability ω(θ) of finding

objects separated by an angle θ is

dP = N [1 + ω(θ)]dΩ, (1.10)

where N is the surface density and dΩ is the solid angle. One popular estimator from

Landy & Szalay (1993) finds the excess probability, ω(θ), by comparing the number
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of real object pairs to random object pairs in an angular distance bin θ + dθ. This

estimator is given by

ω(θ) =
1

RR

[︄
DD

(︃
NR

ND

)︃2

− 2DR

(︃
NR

ND

)︃
+RR

]︄
, (1.11)

where ND and NR are the total numbers of real and random objects, and DD, RR,

and DR are the number of real, random, and real-random pairs in the bin.

More recently, various forms of spatial correlation analysis have been applied to

clusters and GMCs in nearby galaxies. For example, in the Antennae galaxies, Zhang

et al. (2001) used correlation analysis on a small number of clusters and the molecular

gas. Zhang et al. (2001) found through the two-point correlation function that young

clusters exist in a clustered distribution and through the cross-correlation function

that young clusters are linked with the molecular gas. In the Large Magellanic Cloud

(LMC), Kawamura et al. (2009) used the spatial overlap of clusters with GMCs to

show that as clusters get older, the typical separation between clusters and GMCs

increases. These two examples were among the first to find that young clusters

correlate with each other and GMCs, but this correlation decreases with time. This

correlation is expected to decrease because, as noted above, clusters have random

motions and, therefore, will drift toward a random distribution over time.

With improvements in observations, more work has been done with larger numbers

of resolved clusters and GMCs in galaxies more distant than the LMC. Grasha et al.

(2018, 2019) used the two-point correlation function to understand the distribution of

large numbers of clusters in NGC 7793 and M51, respectively. They found that young

clusters ≤ 10 Myr are correlated with each other, while clusters > 10 Myr are con-

sistent with a random distribution. Turner et al. (2022) expanded this methodology

to 11 nearby galaxies, finding similar results using the two-point correlation function.

They also used the cross-correlation function to find that young clusters are correlated

with GMCs, but older clusters are not. These initial results are promising, but they

suffer from looking at a limited number of distant galaxies where star clusters and
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GMCs are poorly resolved. By studying nearer galaxies, we have the opportunity to

use correlation functions as a probe of GMC and cluster evolution.

1.1.4 Observational Methodology

Giant Molecular Clouds – Measuring the molecular gas is an essential aspect of

understanding the star formation process. Ideally, we want to measure H2, the most

abundant molecule in the ISM. Unfortunately, the energy levels of H2 are quite far

apart, with the lowest excited state at ≈ 500 K above the ground state. Therefore, H2

is not readily excited in the cold temperatures found in GMCs which makes H2 difficult

to detect. However, CO, the second most abundant molecule, is readily excited in

the conditions of GMCs. These excitations make CO much easier to detect, and it is

the most common tracer of molecular gas in the ISM (Krumholz, 2015). The lowest

energy transitions for molecules are rotational transitions indicated by a J. The most

frequent CO transitions J=1-0 (≈115 GHz), and J=2-1 (≈ 231 GHz) are observable

by some of the most powerful radio telescopes in operation (e.g., the Atacama Large

Millimeter/submillimeter Array, ALMA).

Many of the properties of GMCs can be derived from observations of CO. The

first step to deriving the properties of GMCs is to identify the boundaries of the

GMCs. While the boundaries of GMCs are not always clear (Chevance et al., 2022a),

many algorithms attempt identifying individual clouds from molecular gas emission.

Examples of these algorithms are the CLUMPFIND algorithm (Williams et al., 1994),

which identifies clouds using contours of constant flux, and the SCIMES (Colombo

et al., 2015) algorithm, which identifies clouds using graph theory. Once individual

GMCs are identified, the total amount of CO emission can be used to find the mass.

However, since most of the mass is actually made up of H2 a conversion between CO

brightness and H2 needs to be made, which is a function of metallicity and has been

the subject of much research (e.g., Arimoto et al., 1996; Leroy et al., 2011; Bolatto

et al., 2013). The typical conversion is done using XCO with typical values in the
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Milky Way of ≈ 2 × 1020 cm−2 (K km s−1)−1. Accurso et al. (2017) find that the

conversion factor is related to metallicity by

XCO ∝ Z1.6, (1.12)

where Z is the metallicity. From the width of the CO emission line, the velocity

dispersion of the gas can be found. This is due to the Doppler effect, as particles

emitting photons at different speeds will emit slightly shifted frequencies (Kwok,

2007).

Star Clusters – Clusters are most easily identified in the optical. In nearby galax-

ies, clusters have primarily been identified using the Hubble Space Telescope (HST ).

It is difficult to automate the process of identifying clusters in the crowded discs of

galaxies. Therefore, most catalogues of clusters are identified by eye (e.g., Whit-

more et al., 2021). One way to identify clusters in large optical surveys is to employ

the power of citizen scientists. For example, Johnson et al. (2015) and Johnson

et al. (2022) recruited members of the public to identify clusters in PHAT (M31) and

PHATTER (M33) surveys. Then DOLPHOT is used to identify individual cluster

members. DOLPHOT fits the unique point spread function of each filter to the images

to extract photometry for each star. Then the age and the mass of the cluster can be

found by plotting the photometry of the cluster members on a CMD and comparing

with simulated clusters (Wainer et al., 2022).

1.2 Thesis Objectives

The galaxies M31 and M33 are ideal targets for extending work on the relationship

between clusters and GMCs. M31 and M33 are the nearest true spiral galaxies, which

allows for studies of star formation at excellent resolution while avoiding the problems

present in Milky Way studies. These problems include distance ambiguity, line-of-

sight blending, and very large surveys to get representative samples. M31 and M33
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are both at a single known distance, so all clusters and GMCs within them are also at

a single distance. M33 is especially desirable because its low inclination and smaller

size allow for clear lines of sight and extensive surveys. M31’s inclination and size

make surveys more difficult compared to M33, but still more manageable than the

Milky Way.

With the recent HST and molecular gas surveys in M31 and M33, we can analyze

the distribution of clusters and GMCs at unprecedented resolutions. In M31, the

high-resolution surveys of CO were obtained by the Combined Array for Research in

Millimeter-wave Astronomy (CARMA) (Caldú-Primo & Schruba, 2016; Leroy et al.,

2016; Schruba et al., 2019) along with clusters from the PHAT survey (Johnson et al.,

2015). In M33, we have an ALMA survey of CO (Koch et al. in prep) and clusters

from the PHATTER survey (Johnson et al., 2022). These cluster surveys have suf-

ficient resolution to identify individual cluster members, yielding extremely accurate

ages and masses. These accurate ages allow us to find the two-point correlation be-

tween the clusters and the cross-correlation between clusters and GMCs, in terms of

age. Analyzing the correlations over time enables the characterization of many of the

timescales involved in the star formation process.

1.3 Thesis Outline

The following chapter of this thesis will describe how I use the high-resolution surveys

of GMCs and clusters to constrain several timescales in the star formation process.

These timescales are found using the spatial correlations of these clusters and GMCs

first in M33 and then in a more limited capacity in M31. Specifically, I begin by

finding the separations between the clusters and GMCs. Then I measure the two-

point correlation of the clusters. Finally, I calculate the cross-correlation between the

clusters and GMCs. All of these correlations are made using a variety of similarly

aged cluster samples across a wide range of cluster ages, which is then used to deter-

mine when the clusters and GMCs are no longer statistically correlated, the feedback
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timescale, and the lifetime of the GMCs in M33. I then develop a simple drift model

to find the drift velocity that erases the correlation over the correct timescale.

The final chapter of this thesis provides some concluding remarks and points to

future work.
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Chapter 2

Paper 1

This is a copy of the paper, published in Monthly Notices of the Royal Astronomical

Society, vol. 522, issue 4, 6137–6149, which has been adapted for formatting, but

otherwise remains unchanged.

Abstract

We use young clusters and giant molecular clouds (GMCs) in the galaxies M33

and M31 to constrain temporal and spatial scales in the star formation process.

In M33, we compare the Panchromatic Hubble Andromeda Treasury: Triangulum

Extended Region (PHATTER) catalogue of 1214 clusters with ages measured via

colour–magnitude diagram (CMD) fitting to 444 GMCs identified from a new 35 pc

resolution Atacama Large Millimeter/submillimeter Array (ALMA) 12CO(2–1) sur-

vey. In M31, we compare the Panchromatic Hubble Andromeda Treasury (PHAT)

catalogue of 1249 clusters to 251 GMCs measured from a Combined Array for Re-

search in Millimeter-wave Astronomy (CARMA) 12CO(1–0) survey with 20 pc reso-

lution. Through two-point correlation analysis, we find that young clusters have a

high probability of being near other young clusters, but correlation between GMCs

is suppressed by the cloud identification algorithm. By comparing the positions, we

find that younger clusters are closer to GMCs than older clusters. Through cross-

correlation analysis of the M33 cluster data, we find that clusters are statistically
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associated when they are ≤10 Myr old. Utilizing the high precision ages of the clus-

ters, we find that clusters older than ≈18 Myr are uncorrelated with the molecular

interstellar medium (ISM). Using the spatial coincidence of the youngest clusters and

GMCs in M33, we estimate that clusters spend ≈4-6 Myr inside their parent GMC.

Through similar analysis, we find that the GMCs in M33 have a total lifetime of

≈11-15 Myr. We also develop a drift model and show that the above correlations can

be explained if the clusters in M33 have a 5-10 km s−1 velocity dispersion relative to

the molecular ISM.

2.1 Introduction

The essential heavy elements around us are evidence of the cycling process between

gas and stars in the Universe. Molecular gas in the interstellar medium (ISM) forms

high-mass stars and clusters that, in their evolution, will disrupt the surrounding

gas. This star formation and resulting disruption rely on the interplay of gravity,

turbulence, stellar feedback, magnetic fields, chemistry, and thermal regulation. The

processes that play the most significant role in regulating star formation remain areas

of active research (McKee & Ostriker, 2007; Chevance et al., 2022a).

Constraining the time-scales associated with the various phases of the star for-

mation process can help constrain which physical processes are at play. This has

motivated a number of studies that attempt to infer the evolutionary time-scales of

the molecular ISM, in particular, lifetimes of giant molecular clouds (GMCs) or the

time-scale over which feedback destroys the GMCs. GMCs are massive collections of

molecular gas that are the primary sites of star formation. Early attempts to measure

the lifetimes of GMCs led to a range of results with some estimates converging to long

lifetimes (107.5−108 yr; Bash et al., 1977; Scoville & Hersh, 1979) and others to shorter

lifetimes (< 107.5 yr; Blitz & Shu, 1980; Blitz, 1993). Lifetimes that are 107.5 yr or

longer require GMCs to survive much of a galactic rotation period with forces that

prevent gravitational collapse. Some recent analyses of gas distribution still point to
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long GMC lifetimes (Koda et al., 2012, 2016, 2020). However, there are also many

approaches that point to short lifetimes. Kawamura et al. (2009) used the spatial

coincidence of GMCs and young clusters to determine that GMCs live for 20-30 Myr

in the Large Magellanic Cloud (LMC). Numerical simulations have also suggested a

short molecular cloud lifetime, for example, 4-25 Myr in Dobbs & Pringle (2013) and

13-20 Myr in Jeffreson et al. (2021). Using the “tuning fork” measurements of the

decorrelation between star formation tracers and molecular gas developed in Schruba

et al. (2010, see also Onodera et al. 2010), Kruijssen & Longmore (2014) and Krui-

jssen et al. (2018) developed their “uncertainty principle” formalism to measure a

short (10 Myr in NGC 300 Kruijssen et al., 2019) lifetime for molecular clouds. This

methodology has now been replicated in simulations (Semenov et al., 2021) and ap-

plied to broader samples of galaxies (Chevance et al., 2022b; Kim et al., 2021a, 2022).

Chevance et al. (2022b) argued for short lifetimes and contended that GMCs are

dispersed quickly after the onset of star formation. They suggest that pre-supernova

feedback mechanisms play a key role in disrupting clouds.

While the details of some of the measurements can be quite sophisticated, these

measurements are usually framed around our näıve model for star formation in molec-

ular clouds. The model starts with overdense turbulent complexes of molecular gas

that can be divided into individual GMCs. However, the boundaries between GMCs

and the outside ISM are not always clear (Chevance et al., 2022a). These GMCs then

begin forming clusters that inherit the clustered structure of their progenitor clouds

(Grasha et al., 2018, 2019; Turner et al., 2022). After the cluster spends some time

inside their progenitor clouds they will disrupt the cloud through a combination of

supernovae and stellar feedback (the significance of each effect is still debated; Kim

et al., 2018; Chevance et al., 2022b). We define the lifetime of a GMC as the time

between when the cloud can first be detected and when it can no longer be detected

because of this disruption. The disruption of the dense gas occurs before most of the

gas can be converted into stars, leading to very long depletion times and inefficient
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star formation (Chevance et al., 2022a). After the clusters have dispersed the gas, the

correlated structure of the clusters will be erased by random drift velocities inherited

from the turbulent motions of the gas.

Many of the approaches to characterize the evolutionary time-scale of the molecular

ISM rely on tracers of star formation (Hα, ultraviolet, and mid-infrared) that do not

directly measure the ages of a stellar population. Instead, they trace the integrated

radiation from a stellar population in a given waveband; for example, Hα traces the

ionizing photon radiation that comes from short-lived O-stars. Using an assumed

model of the initial mass function, these measurements can then be translated back

into star formation rates and characterize the time-scale for evolution of molecular

clouds, providing a narrow window into the star formation history (Kennicutt &

Evans, 2012). These tracers are typically restricted to only a portion of the star

formation process. Hα, for example, requires high-mass stars and is thus restricted

to star formation events that host massive star formation.

Alternatively, the ages of simple stellar populations provide a robust method to

establish evolutionary time-scales and provide a long view into the star formation

history of a galaxy. Stellar clusters represent close approximations of simple stellar

populations, which Kawamura et al. (2009) leveraged for their measurement of cloud

evolution. Such studies cannot be carried out in the Milky Way for large samples

because of line-of-sight blending and extinction. Therefore, comparing clusters and

GMCs has been limited only to the nearest galaxies (e.g. the LMC) or limited to

unresolved cluster candidates in galaxies like M33 (Corbelli et al., 2017). However,

with recent Hubble Space Telescope (HST ) surveys and interferometer observations,

resolved clusters can be compared to GMCs in nearby galaxies like is done in Grasha

et al. (2018, 2019) and Turner et al. (2022).

In this work, we take advantage of new, high-quality data to measure the relation-

ship between cluster and molecular cloud populations in the two largest star-forming

galaxies in the Local Group: M31 and M33. Clusters were identified in these galax-
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ies using the wide-area HST surveys, Panchromatic Hubble Andromeda Treasury

(PHAT; Dalcanton et al., 2012) in M31 and Panchromatic Hubble Andromeda Trea-

sury: Triangulum Extended Region (PHATTER; Williams et al., 2021) in M33. In

addition, high-resolution surveys of 12CO, obtained by the Combined Array for Re-

search in Millimeter-wave Astronomy (CARMA) in M31 (Caldú-Primo & Schruba,

2016; Leroy et al., 2016; Schruba et al., 2019) and the Atacama Large Millimeter/-

submillimeter Array (ALMA) in M33 (Koch et al. in prep), allow for the analysis

of GMCs at sub-cloud scales. M31 is about three times the diameter (Vaucouleurs

et al., 1991) and 23◦ more inclined (Koch et al., 2018; van der Marel et al., 2019)

than M33. In M33, the surveys thoroughly cover the central part of the galaxy and a

majority of the star-forming spiral arms (Williams et al., 2021). Because of its incli-

nation and large area on the sky, the HST surveys in M31 are more limited and only

cover a quadrant of the galaxy. Despite the limitations in M31, these high-resolution

surveys and the relative proximity of M31 and M33 allow for colour–magnitude di-

agram (CMD) fitting of the clusters, which yields robust age and mass estimates.

These accurate ages and the relatively deep mass completeness limits allow for an

unprecedented study of molecular gas and star formation.

We focus on the correlation structure between the GMCs identified in the 12CO

surveys and the clusters identified in the HST surveys. Previous studies have shown

that very young clusters are typically near GMCs (Kawamura et al., 2009; Whit-

more et al., 2014; Corbelli et al., 2017; Grasha et al., 2018, 2019). It has also been

shown that the two-point correlation is stronger for younger clusters than older clus-

ters (Grasha et al., 2015, 2017; Menon et al., 2021). Finally, the cross-correlation

function has been used to show that young clusters are more correlated with GMCs

than old clusters (Turner et al., 2022). However, Li & Barmby (2021) have noted

that applying correlation functions to non-homogeneous populations may produce

spurious correlation signal. While the more sophisticated ways of interpreting corre-

lation, like spatial-point processes, have their benefits, they are difficult to interpret
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Table 2.1: Adopted Parameters for M33 and M31.

M33 M31

Distance (kpc) 859a 776b

Orientation i=55◦c, PA=201◦c i=78◦d, PA=38◦d

Central positione RA=23.46204◦ RA=10.68479◦

DEC=30.66022◦ DEC=41.26907◦

SFRe (M⊙/yr) 0.32 0.39

Stellar Masse (M⊙) 2.63×109 5.37×1010

ade Grijs et al. (2017); bSavino et al. (2022); cKoch et al. (2018); dvan der Marel
et al. (2019); eLeroy et al. (2019)

and implement. Therefore, we have decided to address some of the concerns with

correlation functions by building in the overall effects of galactic structure by using

random cluster distributions that contain the same non-homogeneous structure.

The details of the M33 surveys and the more limited M31 surveys are presented

in Section 2.2. Because of the limitations of the M31 data, Section 2.3 focuses on

the main results found in M33. These results include an analysis of the correlation

between clusters and GMCs, a comparison of cluster and GMC properties, and es-

timations of GMC timescales. Section 2.4 is a partial parallel analysis on M31. In

Section 2.5, we develop a simple model to estimate the drift velocity of the clusters

and discuss the effects of completeness. Finally, a summary of the work is presented

in Section 2.6.

2.2 Observations

2.2.1 M33

We trace GMCs in M33 using a new CO survey carried out using the ALMA Atacama

Compact Array (ACA). The ALMA ACA survey covers a section of M33 shown in

Figure 2.1 as a dark blue outline and is described in more detail in Koch et al. (in

prep). The ACA survey is centred on the 12CO J=2-1 transition at 230.538 GHz
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with a bandwidth of 154 MHz ≈ 200 km s−1. The synthesized beam size of ≈ 8.′′5

corresponds to a physical size of ≈ 35 pc at the distance of M33 from Table 2.1. The

data have a noise level of 45 mK in a 0.7 km s−1 channel. Koch et al. (in prep) applied

the Spectral Clustering for Molecular Emission Segmentation (SCIMES) algorithm

(Colombo et al., 2015) to the ACA data to obtain a catalogue of 444 GMCs. These

GMCs are shown in Figure 2.1 as blue diamonds. An integrated intensity map for

one of these GMCs is shown in Figure 2.1 in the bottom zoomed-in frame.

The PHATTER survey (Williams et al., 2021) is composed of observations in six

HST filters and covers a region of M33 shown in Figure 2.1 as a red outline. The top

zoomed-in panel of Figure 2.1 shows a portion of the PHATTER survey (in the F475W

filter for HST ), illustrating the resolution is sufficient to identify individual stars and

clusters. Using a crowd-sourced visual search, Johnson et al. (2022) identified 1214

clusters from the PHATTER survey that are believed to be long-lived. These clusters

are marked in Figure 2.1 as orange circles. The ages and masses of the clusters were

identified using CMD fitting as described in Wainer et al. (2022). This catalogue of

optically identified clusters is distinct from the catalogue of 630 young star cluster

candidates (YSCCs) in Corbelli et al. (2017) found using Spitzer Space Telescope

24 µm images (Verley et al., 2007). These infrared YSCCs, originally identified by

Sharma et al. (2011), are thought to be young (≤10 Myr) embedded objects. However,

Johnson et al. (2022) found that at least 30% of the YSCCs cannot be embedded

young clusters because of the lack of visual extinction. Because of the potential

contamination of non-cluster objects, we will only use this YSCC catalogue from

Corbelli et al. (2017) for comparison in Section 2.3.2 and 2.3.3.

2.2.2 M31

A portion of M31 was surveyed using CARMA, PI A. Schruba, which includes short

spacing data from Nieten et al. (2006). These data have appeared in Caldú-Primo &

Schruba (2016), Leroy et al. (2016), and Schruba et al. (2019) with description and
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PHATTER

ALMA ACA

Figure 2.1: The data used to study the clusters and GMCs in M33. The background
is a B band image from the 4-m Mayall telescope (Massey et al., 2006). The red
outline shows the footprint of the PHATTER survey, while the dark blue outline
shows the footprint of the ALMA ACA survey. The top zoomed-in frame shows the
resolution of the PHATTER data. The bottom zoomed-in frame shows a GMC in
the same area identified from the ALMA ACA data. The orange circles show the
locations of the clusters identified from the PHATTER data. The GMCs identified
from the ALMA ACA survey are shown as blue diamonds.
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images of the data in those papers. Figure 2.2 shows the area surveyed in the CO

survey. With a synthesized beam size of ≈ 5.′′5 and at the distance of M31 from Table

2.1, the physical resolution is ≈ 20 pc. The data have a noise level of 190 mK in a

2.5 km s−1 channel. We do not match the CARMA resolution to the ALMA ACA

resolution because we want to utilize the highest resolution possible, and most of our

analysis will be done at scales larger than the resolution.

We then applied the SCIMES algorithm (Colombo et al., 2015) to the CARMA

data, which yielded a catalogue of 251 GMCs. We use the same default algorithm

parameters as were used in Koch et al. (in prep) for signal identification and cloud

decomposition. These GMCs are shown in Figure 2.2 as blue diamonds. Figure 2.2

also shows an integrated intensity map of one of the clouds in the bottom zoomed-in

frame.

We use the stellar cluster catalogue generated from the PHAT survey (Dalcanton

et al., 2012), the predecessor to PHATTER. PHAT covers a quadrant of M31’s star-

forming disc in six HST bands. Figure 2.2 shows an area that is smaller than the

PHAT survey, with a small portion shown in the top zoomed-in panel. Using a crowd-

sourced visual search, Johnson et al. (2015) identified 2753 clusters from the PHAT

survey. Age and mass estimates are derived from CMD fitting, and a subsample of

1249 clusters with ages between 10-300 Myr were reported in Johnson et al. (2016).

These clusters are shown in Figure 2.2 as orange circles.

2.2.3 Completeness

Throughout the analysis, we will use all of the clusters identified in Johnson et al.

(2022) and Johnson et al. (2016) to use the greatest number of sources. However, our

results will depend on the completeness properties of the cluster and GMC catalogues.

For the clusters in both PHATTER and PHAT, the visual search for clusters included

injected synthetic clusters of known mass and age (Johnson et al., 2015, 2022). These

synthetic clusters allow for thorough completeness analysis. In M31, the cluster cat-
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Figure 2.2: The data used to study the clusters and GMCs in M31. The background
is a far-ultraviolet image from the Galaxy Evolution Explorer (Gil de Paz et al., 2007).
The dark blue outline shows the footprint of the CARMA survey. The top zoomed-in
frame shows the resolution of the PHAT data. The bottom zoomed-in frame shows
a GMC in the same area identified from the CARMA data. The orange circles show
the locations of the clusters identified from the PHAT data. The GMCs identified
from the CARMA survey are shown as blue diamonds.
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alogue at 100 Myr is 50% complete down to Mc,50 ≈500 M⊙ (Johnson et al., 2015).

The completeness is better for younger clusters since they are more likely to have

bright young stars. However, the oldest clusters in the catalogue (100-333 Myr) are

50% complete down to Mc,50 ≈1000 M⊙ (Johnson et al., 2015). The completeness

in M33’s cluster catalogue is worse than in M31 with a 50% completeness limit of

≈1000 M⊙ at an age of 100 Myr (Johnson et al., 2022). This difference in complete-

ness in M31 and M33 comes from the higher degree of crowding in M33, which makes

identifying clusters more difficult (Johnson et al., 2022). Therefore, more crowded

regions of each galaxy will also lead to lower completeness in these regions. Another

property that has an impact on cluster completeness is extinction. The very youngest

(<3 Myr) deeply embedded clusters will be difficult to identify due to optical extinc-

tion (Johnson et al., 2022). The very young embedded stars should be visible with

recent observations from the James Webb Space Telescope (JWST), which can see

with eyes unclouded by the optical extinction of GMCs (Peltonen et al., in prep).

For M33 and M31, we measure the 50% completeness limit for molecular cloud

identification as MGMC,50 = 1.3× 104 M⊙ and MGMC,50 = 3.0× 104 M⊙ respectively,

based on the artificial cloud recovery test method presented in Rosolowsky et al.

(2021). This approach inserts GMCs of known brightness and properties into the

data and tests whether they are recovered in the cloud identification algorithm. This

value is approximately 40× the 1σ noise level in a single synthesized beam. Our

estimate assumes a Galactic CO-to-H2 conversion factor (Bolatto et al., 2013) and a

CO(2-1)/CO(1-0) line ratio of R = 0.7 (Leroy et al., 2022).

Another issue to consider is not the absolute mass limit of the cloud and cluster

catalogues independently, but possible mismatches between these two limits. In other

words, could small clusters be undetectable when hosted by the lowest mass of the

GMC sample, or conversely, could the host GMC of a low-mass stellar cluster be

undetectable in the CO observations? The mass of the GMC completeness limit is 15

to 30 times larger than the corresponding cluster mass completeness limit (typically
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103 M⊙ as above), suggesting these two catalogue limits are well-matched as long

as the efficiency of a GMC forming a cluster (by mass) is ∼0.03-0.06. If the true

efficiency is lower (i.e., a given GMC can only host a smaller maximum-mass cluster),

then some catalogued GMCs may host clusters that couldn’t actually be detected,

and the cluster catalogue would be incomplete with respect to the GMC catalogue.

If the efficiency is higher, then the converse is true and some low mass stellar clusters

may actually live in GMCs that are too low mass to have been detected, and the

GMC catalogue would be incomplete with respect to the stellar cluster catalogue.

We can compare the “matched” catalogue of efficiency of 0.03-0.06 to current con-

straints on the efficiency of stellar clusters forming in GMCs. Estimates suggest that,

on the scale of individual clouds, up to 30% of the cloud mass may be converted

into stars (Krumholz et al., 2019). This is a much higher efficiency, suggesting that

the lowest mass stellar clusters in our samples may in fact be hosted by undetected

GMCs, but that every cataloged GMC that hosts a stellar cluster should have the

cluster detected. In other words, the cluster catalogue is complete with respect to the

GMC catalogue, but the GMCs are not complete with respect to the cluster catalogue.

We can also look at global, ensemble estimates of the efficiency, by multiplying the

efficiency of turning molecular gas into stars on large (kpc) scales (f⋆) by the fraction

of the overall star formation that produces stellar clusters (fclust). Current estimates

of these quantities are f⋆ ∼ 0.03 (Utomo et al., 2018; Chevance et al., 2022a; Kim

et al., 2022) and fclust ∼ 0.1 (Krumholz et al., 2019), giving an overall efficiency of

f⋆fclust ∼ 0.003. This is much lower than our ideal “matched” catalogue efficiency,

which would imply that some GMCs in our catalogue may actually host undetectable

stellar clusters, but that every stellar cluster should have its host GMC detected. In

this case, the strength of our cross-correlation signals would be lower limits since the

presence of more clusters correctly matched near progenitor cloud structures should

enhance the cross-correlation amplitude.

We can also assess whether there is additional low mass incompleteness in the
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stellar cluster catalogue by constraining the population of embedded clusters using

the 24 µm-derived YSCC catalogue from Corbelli et al. (2017) to assess whether there

are infrared sources without associated CO emission, which would imply our survey

misses clouds hosting embedded cluster formation. We find that 188/244 = 77% of

sources in the survey area overlap with CO clouds. Since up to 30% of these infrared

sources could be interlopers (Johnson et al., 2022), the degree of spatial coincidence

suggests our cloud catalogue is sufficiently deep to include most of the cluster-forming

cloud population.

Finally, we note that both cloud catalogues rely on CO as a tracer of molecular gas

and our mass estimates above rely on assumptions about the CO-to-H2 conversion

factor in these galaxies. Moreover, these two studies use two different line tracers (J =

2− 1 for M33 and J = 1− 0 for M31), so the catalogues inherit potential biases from

relying on CO emission as a proxy for star forming gas. Our study, however, relies

primarily on the locations of the CO emission and not on its brightness, so concerns

about conversion factor variations (Leroy et al., 2011) will manifest as uncertainties

in the mass completeness limit. Similarly, systematic variations in the CO line ratios

with galaxy and environment (e.g. Koda et al., 2020; den Brok et al., 2021; Leroy et al.,

2022) may represent a caution for comparing the M33 and M31 results. Our analysis

relies on whether a given cloud is detected or not, so such concerns will manifest as

changes in the true completeness limits relative to those determined by false source

injection of CO sources. Given the magnitude of these variations observed in the

literature, we expect that the typical change in completeness limit would be about

0.2 dex, though these variations are typically measured in more massive systems than

M33. This effect is relatively small compared to the range of cloud masses probed

(∼ 2 dex) so is not likely to dramatically change the results.

Despite careful measures of completeness for both the clouds and clusters, the lack

of constraints on the mass fraction of stars found in bound clusters (fclust) and the

relationship between cloud mass and cluster mass (Krumholz et al., 2019) precludes
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a clear answer to how tightly the two populations relate to each other. We proceed

assuming the populations are comparable and our later results do not contradict this

assumption.

2.3 The Cloud-Cluster Population in M33

Utilizing the high-quality data of clusters (PHATTER) and GMCs (ALMA ACA)

in M33, we determine how these clusters and GMCs are correlated. First, we find

the separations between the clusters and clouds and determine if they correlate with

the cluster’s age, as would be expected in the standard model of cloud and cluster

evolution. We then refine this measurement with a two-point correlation analysis

of the individual objects and a cross-correlation analysis of the clusters and GMCs.

This cross-correlation analysis indicates the degree to which clusters are statistically

associated with GMCs. We then look at how the properties of the clusters are related

to the properties of the associated GMC, with a particular focus on the angle at which

the clusters leave their associated clouds. Finally, we determine the lifetime of the

GMCs in M33 by using the method of Kawamura et al. (2009), which is based on the

spatial overlap of young clusters. These results depend on the completeness limits of

the contributing catalogues, which we discuss in more detail in Section 2.2.3.

2.3.1 Cloud-Cluster Spatial Offsets

To compare the properties of the GMCs and clusters, we must first find their locations

in the plane of M33’s disc. As seen in Figure 2.1 the clusters (from PHATTER) and

the GMCs (from ALMA ACA) cover different areas. Therefore, we only consider

GMCs and clusters in the overlapping survey areas, resulting in a sample of 444 GMCs

and 934 of 1214 clusters. Here we treat the SCIMES molecular clouds and PHATTER

clusters as point sources. We use the centres of the clusters as the point source

location. For the molecular clouds, we use the location of the brightest CO emission

(CO peak) as the location of the point sources. Using the orientation parameters
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from Table 2.1, we convert celestial coordinates into galactocentric coordinates for

each object and measure distances in the plane of the galaxy.

We then compare the azimuthally averaged radial distributions and generate ran-

dom distributions that match the radial distributions of the different objects. We use

these random distributions to assess the significance of our results. Figure 2.3 shows

the radial distribution for the GMCs and the clusters split into three age categories.

We choose three age categories that have distinct relations to the GMCs. The 60

youngest clusters have ages ≤ 107 yr, the 93 medium-aged clusters have ages between

107 yr and 107.5 yr, and the 781 oldest clusters are > 107.5 yr old.

We assume that GMCs and clusters both follow an exponential distribution for

surface density, so that the number in a given radial bin is:

N ∼ 2πR∆R exp

(︃
− R

Rd

)︃
, (2.1)

where R is the radial distance from the galactic centre and ∆R is the width of the

radial bin. The different cluster age bins and the GMCs have different scale lengths,

Rd, that can be seen from the shapes of each radial distribution. We then generate

random exponential distributions, selecting the same number of sources (934) in the

same overlapping survey area. We generate 100 of these random distributions at

each scale length for a range of scale lengths. Then we compared these random

distributions to our real distributions and found the real-random distribution pair

with the lowest chi-square value. We find a best-fitting scale length of 1.6 kpc for the

youngest clusters, 3.2 kpc for the medium-aged clusters, 5.8 kpc for the oldest clusters,

and 2.5 kpc for the GMCs. These scale lengths differ from M33’s molecular gas scale

length of ≈ 2.1 kpc (Druard et al., 2014) and stellar scale length of ≈ 1.55 kpc (Verley

et al., 2009). The averaged random distribution fitted to the oldest clusters (5.8 kpc)

is shown in Figure 2.3 as a red line. This random distribution based on the oldest

clusters is used as our standard reference, but we use the other distributions for our

correlation analysis.
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There are many possible explanations for the differing scale lengths. The young

clusters have a scale length consistent with the stellar scale length (Verley et al.,

2009), and the GMCs have a scale length reasonably close to M33’s molecular gas

scale length (Druard et al., 2014). However, the medium-aged and oldest clusters

have longer scale lengths than the stellar scale length indicating fewer clusters at

smaller radii, which is clear from Figure 2.3. Therefore, there might be something

preventing the older clusters from being identified in the central region of M33. One

possible explanation that is discussed in more detail in Section 2.2.3 is that clusters

with young bright stars are easier to visually identify in the crowded central region

(Wainer et al., 2022). However, this trend has also been observed in the Milky Way

(Soubiran et al., 2018) and in simulations (Roškar et al., 2008). Therefore, the more

likely explanation is due to clusters being destroyed in the crowded central region and

from clusters migrating to larger radii.

We expect that the youngest clusters will be closer to their parent GMCs (e.g.

Kawamura et al., 2009; Corbelli et al., 2017; Grasha et al., 2018, 2019), which can

be shown by comparing cluster age and cluster-cloud separation. We find the closest

GMC to each cluster using the galactocentric coordinates. We then measure the

physical separation between the centre of each cluster and the nearest molecular

cloud CO peak. Figure 2.4 shows the result of creating a box plot with the separation

versus cluster age. Clusters of all ages have typical separations far greater than the

35 pc resolution of the ALMA ACA survey. The youngest clusters have the lowest

median separation of 90 pc and the smallest interquartile range (IQR) of 60 pc. With

a median separation of 100 pc, the medium-aged clusters are further from GMCs

and have an IQR of 80 pc, larger than the youngest clusters. The oldest clusters

comprised of three bins in Figure 2.4 are all quite similar, with medians of 120 pc and

IQRs of 100-120 pc consistent with random. The random median (120 pc) and IQR

(120 pc) shown in Figure 2.4 is from the oldest random distribution (Rd=5.8 kpc).

Using the other random distributions shifts the median and IQR by ≈ 10 pc, which
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Figure 2.3: The normalized count per area of the clusters, GMCs, and the generated
random clusters. The count is found in galactocentric radial bins and then divided by
the area contained in the overlapping survey region in that radial bin. The clusters
are split into the three age categories youngest (green squares), medium-aged (blue
triangles), and oldest (yellow tri-points). The GMC radial distribution (dark pink line
with crosses) is found from the coordinates of the CO peak of each cloud. The random
cluster distribution (red line) results from averaging 100 exponential distributions
with a scale length fitted from the oldest clusters. The random distribution traces a
similar distribution to the oldest clusters in M33.
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is still most consistent with the oldest clusters. As expected, the clusters start close

to a GMC and drift towards randomly distributed as they age.

2.3.2 The Two-Point Correlation Function

We now further analyze the spatial properties of our distributions using the two-

point correlation function that quantifies the amount of clustering on different spatial

scales (Peebles, 1980). In general, the two-point correlation function describes the

probability of finding an object in two volume elements separated by r. The two-

point correlation of a real data set can then be compared to the two-point correlation

of a random distribution to find the excess probability of spatial correlation (Peebles,

1980). We use a slight variation on the two-point correlation function since we are

working in the plane of the disc. Therefore, we use ω(r) to indicate the excess

probability that an object will be found at a distance r from another object of the same

type compared to a random distribution. 1 + ω = 1 indicates a random uncorrelated

distribution, 1+ω > 1 indicates a correlated distribution, and 1+ω < 1 indicates an

anti-correlated distribution. ω(r) is calculated in radial bins separated by log10(r) =

0.2. For each radial bin, we count the number of real catalogue pairs DD, random

catalogue pairs RR, and pairs of one real and one random object DR. Then we use

the Landy & Szalay (1993) estimator in the same form as Turner et al. (2022):

ω(r) =
1

RR

[︄
DD

(︃
NR

ND

)︃2

− 2DR

(︃
NR

ND

)︃
+RR

]︄
, (2.2)

where NR is the total number of objects in the random catalogue, and ND is the

total number of objects in the real catalogue. This process is repeated for each

object type using their respective 100 random exponential distributions. Figure 2.5

shows the average two-point correlation function for the GMCs and the three cluster

age categories. The standard deviation in two-point correlations from the random

distributions is shown in Figure 2.5 as error bars.

The youngest and medium-aged clusters are correlated at separations smaller than
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Figure 2.4: The separation between the clusters and the GMCs based on the age
of the clusters in M33. The boxes show the span of the first and third quartiles
(interquartile range or IQR) for each age bin that are 100.5 yr wide, with the medians
marked with red lines. The error bars extending from the boxes indicate the minimum
and maximum values in each bin, excluding the outliers. The outliers, marked with
circles, are defined as points outside of 1.5 times the IQR. The separation between
clusters with random positions and the GMCs have their median (white line), and
IQR (blue shaded region) plotted. The youngest clusters have a shorter median and
a smaller IQR than random clusters. Clusters older than 107.5 yr have medians and
IQRs consistent with the random distribution.
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Figure 2.5: The two-point correlation function, 1+ω, at radial separations, r in M33.
The two-point correlation is shown for the GMCs as a dark pink line with crosses. The
two-point correlation is also shown for the youngest clusters (green line with squares),
medium-aged clusters (blue line with triangles), and the oldest clusters (yellow line
with tri-points). These two-point correlations are calculated with respect to the
100 random cluster distributions and averaged. The error bars show the standard
deviation of 100 two-point correlations. The black line marks uncorrelated. This plot
shows that the youngest and medium-aged clusters are correlated, and the GMCs are
anti-correlated at small radii. At larger radii, all the groups become uncorrelated.
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∼ 100 pc. The oldest clusters are uncorrelated at all scales. GMCs show anticor-

relation on small (< 50 pc) scales, which we attribute to the object identification

algorithm. When the SCIMES algorithm defines the local maxima of GMCs, it re-

quires a minimum spatial separation between the maxima, which is set to 50 pc (Koch

et al. in prep). As the radial separation increases beyond 100 pc, all catalogues tend

toward 1+ω = 1, which indicates they are uncorrelated on large scales. The youngest

clusters show modest anticorrelation on medium scales (200 pc) and are uncorrelated

at larger scales. This anticorrelation is likely the consequence of strong correlation at

small scales (< 100 pc). Not shown in Figure 2.5 is the two-point correlation of the

YSCCs from Corbelli et al. (2017) because we find no significant correlation at any

scale.

We also tried to test the effects of completeness by removing clusters below a certain

mass. We removed the clusters below 103.5 M⊙ where the cluster catalogue is ≈90%

complete. This high level of completion should eliminate the effects of difficulty

identifying older clusters and in crowded regions. There are fewer clusters which

makes the correlation structure less consistent. However, the trend for decreasing

correlation strength with age is still apparent. Therefore, we assume the change in

completeness due to crowding and cluster ageing will not significantly impact our

results. Performing a similar test for the GMCs, removing the GMCs below 3.6 ×

104 M⊙ leaving only the GMCs that are ≈90% complete. Removing these lower-mass

clouds has very little effect on the two-point correlation of the GMCs. Grasha et al.

(2018, 2019) found that removing lower mass clusters and GMCs resulted in higher

correlation magnitudes. We see this effect with the clusters but not with the GMCs.

The results of our two-point correlation analysis are consistent with what other

studies have found. Grasha et al. (2018, 2019) and Turner et al. (2022) all found that

young clusters (<10 Myr) have stronger correlation than the older clusters. While the

main results are consistent, there are two major differences between our results and

previous studies. In NGC 7793, Grasha et al. (2018) found the two-point correlation
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using a catalogue of 293 clusters using the same estimator. However, Grasha et al.

(2018) find a larger magnitude of correlation and the clusters remain correlated until

separations of approximately 1000 pc instead of 100 pc. Grasha et al. (2019) and

Turner et al. (2022) found the same difference in magnitude and scale in the galaxy

M51 and 11 PHANGS galaxies, respectively. This difference likely comes from the

inherent clustering of stars in a galaxy that we have tried to account for by using

exponential random distributions fitted to our clusters.

Another important result that is consistent between our results and Grasha et al.

(2018, 2019) and Turner et al. (2022) is that the GMCs are much closer to a random

distribution than the clusters. If each GMC produced only a single cluster it would be

expected for the correlation structure of the GMCs and young clusters to match. The

strong correlation seen in the youngest clusters and the lack of correlation in GMCs

could suggest that GMCs produce multiple clusters. However, we find that none of our

GMCs are overlapping with several of the youngest clusters, which does not fully rule

out this possibility since clusters drift. Another possible solution is that enough GMCs

are quickly destroyed by young clusters that the correlation structure of the GMCs is

erased. Finally, a more mundane solution would be to attribute the lack of correlation

to the cloud identification algorithm, which suppresses the correlation structure in

the molecular clouds at short scales (Figure 2.5) by forcing them into discrete, well

separated units. The resolution of the ALMA ACA survey could prevent the cloud

identification algorithm from distinguishing between a complex of smaller clouds and

one large cloud. We will address this possibility by analyzing the correlation of all of

the 12CO emission without cloud decomposition in Peltonen et al. (prep).

2.3.3 The Cloud-Cluster Cross Correlation

We want to understand how cluster distributions are related to the GMC distribution

at different scales, which can be shown using the cross-correlation function. The

cross-correlation function, ζ(r) indicates the excess probability that two data sets
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are jointly clustered more than two random data sets at a distance r. As with the

two-point correlation function, 1+ ζ = 1 marks the boundary between correlated and

anti-correlated. We use the cross-correlation function to find the correlation between

GMCs and clusters in the three age categories. To estimate this cross-correlation,

we use the three random cluster distributions and the random GMC distributions.

Then by repeating this process with all 100 respective random distributions, we find

an average cross-correlation. For each radial bin, we find the number of real cluster

GMC pairs DscDgmc, real cluster random GMC pairs DscRgmc, random cluster real

GMC pairs RscDgmc, and random cluster random GMC pairs RscRgmc. Again, we

use the Landy & Szalay (1993) estimator in the same form as Turner et al. (2022):

ζ =

(︃
NRscNRgmc

NDscNDgmc

DscDgmc

RscRgmc

)︃
−(︃

NRsc

NDsc

DscRgmc

RscRgmc

)︃
−
(︃
NRgmc

NDgmc

RscDgmc

RscRgmc

)︃
+ 1,

(2.3)

where NDsc is the number of real clusters, NDgmc is the number of real GMCs, NRsc

is the number of random clusters, and NRgmc is the number of random GMCs. Fig-

ure 2.6 shows the result of finding the average cross-correlation between the GMCs

and the clusters of the three age categories. The standard deviations of the 100

cross-correlations are shown in Figure 2.6 as error bars. The youngest clusters are

correlated with GMCs at small radial separations. The medium-aged and oldest clus-

ters are uncorrelated at most separations. In the first bin, the medium-aged clusters

are anti-correlated. However, this could be explained by the large standard devia-

tions, smaller number of sources at small separations, and extinction from the GMCs.

The older clusters would be less subject to the extinction since older clusters have

larger scale heights. The youngest clusters are likely also affected by this extinction.

The correlation at small scales is expected to be quite strong, which could be partially

overcoming the extinction, and the missing embedded clusters would likely amplify

the correlation strength at these small separations. Removing the clusters and GMCs

below the 90% completeness limits slightly reduces the correlation magnitudes. How-
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ever, the overall shape of the correlations remains unchanged and our conclusions are

the same.

The correlation between the Corbelli et al. (2017) YSCCs in our survey area (244

out of 630) and the GMCs is similar to our youngest clusters. We have found this

correlation with respect to a random distribution with a scale length of 2.9 kpc,

which was found in the same way as the other random exponential distributions.

The YSCCs become uncorrelated at a smaller scale than our youngest clusters. The

YSCCs also have a greater magnitude of correlation at the smallest scale. This

increased correlation could be due to the very young ≤3 Myr clusters that cannot be

identified in the optical.

Fewer studies have analyzed cross-correlation than two-point correlation. However,

our results appear consistent with what Turner et al. (2022) found for a sample

of 11 PHANGS galaxies. There is some variation over the 11 galaxy sample, but

Turner et al. (2022) find that clusters younger than 10 Myr have similar correlation

magnitudes to what we have found. There is still a difference in random catalogues,

but Turner et al. (2022) find that older clusters are typically much less correlated with

GMCs, similar to our analysis. This correlation between young clusters and GMCs

allows for two possibilities. The first possibility is that clusters are still nearby to their

parent GMC, which means that the cluster has not had sufficient time to fully destroy

the progenitor cloud. The second possibility is that the cluster has destroyed its true

progenitor cloud but, is still associated with a nearby GMC. As discussed in Section

2.3.2 our cloud identification algorithm might be identifying complexes of multiple

GMCs as a single larger GMC which would erase the two-point correlation of the

GMCs. Therefore, it would be difficult to distinguish between these two possibilities

using these methods. We note that, unlike the real GMC catalogue, objects in our

random GMC catalogue are not required to be separated by 50 pc. Therefore, the

random GMC catalogue is more correlated at small scales, which could decrease the

cross-correlation magnitudes at these small scales.
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Figure 2.6: The cross-correlation function, 1 + ζ, at radial separations, r between
the clusters and GMCs in M33. The cross-correlation is shown for GMCs correlated
with the youngest clusters (green line with squares), medium-aged clusters (blue line
with triangles), and the oldest clusters (yellow line with tri-points). The blue dotted
line with circles shows the cross-correlation between the Corbelli et al. (2017) YSCCs
and GMCs. These cross-correlations have been found with respect to the 100 random
cluster and GMC distributions and averaged. The error bars show the standard
deviation of 100 cross-correlations. The black line marks uncorrelated. This plot
shows that the youngest clusters are correlated with the GMCs at small radii.
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We now determine at what age clusters transition from correlated to uncorrelated

with GMCs. Figure 2.7 shows the cross-correlation at specific radial bins broken

into smaller, overlapping age groups. The age groups are logarithmically spaced

with a width of 0.5 dex, starting with 106.5 − 107 yr and increasing by a factor of

0.1 dex. We choose overlapping age bins to increase the number of sources and

reduce noise. The radial bins used (second, third, and fourth bins from Figure 2.6)

are where the youngest clusters are correlated with GMCs and the medium-aged

clusters are not anti-correlated. To find the scale length of the random distribution

for each overlapping bin we assume the scale length increases linearly with age. Figure

2.7 shows that the clusters begin with being correlated with GMCs at these small

separations, and then at ≈ 18 Myr, all bins are consistent with being uncorrelated.

The three radial bins in Figure 2.7 behave similarly before 107 − 107.5 yr, but with

different amplitudes of correlation. The longest radial bin (100 pc to 158 pc) trends

directly to uncorrelated at ≈ 18 Myr while the shorter bins become anti-correlated.

This anti-correlation could be due to the larger correlation at younger ages or from

extinction from GMCs.

2.3.4 Properties Of Associated Clusters

Since the molecular cloud population is the site of star formation, the resulting star

formation properties and cluster population should depend on the properties of the

progenitor clouds (Kruijssen, 2012; Krumholz et al., 2019). We look at the properties

of the clusters younger than 10 Myr that are likely still correlated with GMCs. We

find, similar to other studies (Corbelli et al., 2017; Grasha et al., 2018, 2019), that

the properties of the nearest cloud (like mass, radius, and surface density) have no

significant correlation with the mass of the clusters produced. This lack of correlation

could mean cluster properties are not determined by the properties of the cloud.

However, this lack of correlation can also be explained by the evolution of GMCs. It

has been suggested that GMCs continually accrete additional gas throughout their
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lifetimes (Fukui et al., 2009; Gratier et al., 2012). Then once the GMC has produced a

sufficient number of stars, the GMC is dispersed through stellar feedback. Therefore,

the properties of GMCs are not constant, and the properties of the nearest GMC to

a cluster are unlikely to be the same as the progenitor cloud’s properties at the time

of formation.

One property that will be more difficult to erase via feedback is the direction

a cluster leaves its progenitor cloud. If a cloud forms multiple clusters or clouds

exist in complexes, the direction of the correlated young cluster (≤10 Myr) will be

preserved. However, if the progenitor cloud is destroyed and there are no GMCs near

the progenitor cloud then the direction will not be preserved. We select the nearest

young cluster-cloud pairs and find the angle from the cloud to the cluster. We define

the angle to start from 0◦ pointing from the molecular cloud to the galactic centre and

with 90◦ pointing in the direction of galactic rotation. The histogram in Figure 2.8

shows this cloud to cluster angle broken into 20◦ bins. We then found the angles from

our molecular clouds to the 100 random young cluster distributions (Rd=1.6 kpc).

The 100 angle distributions are then averaged, which is shown in Figure 2.8 as a red

line. The red shaded region in Figure 2.8 shows the standard deviation in the 100

random angular distributions. Young clusters are marginally more likely to be at 90◦

(in the direction of galactic rotation) and 270◦ (in the opposite direction of rotation).

We recognize that the significance of this result is weak, but we find it notable that

the peaks in the real angular distributions lie in the 90◦ and 270◦ directions, though

nothing in the analysis favours these directions. Even after varying the bin positions

and widths, the peak at 270◦ is persistent. However, the strength of the peak at 90◦

is diminished in some variations of binning.

2.3.5 Molecular Cloud Lifetimes

Using our cluster ages, we make an estimate of the total molecular cloud lifetime

following a similar procedure as used in Kawamura et al. (2009). If we assume clusters
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Figure 2.8: The angular distributions of real and random young clusters (≤10 Myr)
in M33. The green histogram shows the distribution of angles between pairs of young
clusters and their nearest GMC. The angle is defined from the GMC to the young clus-
ter with 0◦ pointing towards galactic centre. The mean random angular distribution
from the 100 random young cluster positions is shown as a red line. The red shaded
region shows the standard deviation in the 100 random angular distributions. The
angular bins are 20◦ wide. The vertical dashed lines indicate 90◦ and 270◦. The real
angular distribution of the young clusters is slightly different from random clustering.
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are formed at a constant rate, the fraction of clusters in a phase represents the time

spent in that phase. We divide cloud lifetime into two stages: τdark where a cloud

shows no association with any potential disrupting cluster and τfb where a stellar

source could be providing feedback. Then, τGMC = τdark + τfb.

To determine the length of τfb we only use the young clusters (≤10 Myr) from

Johnson et al. (2022) that are believed to be long-lived. We find the fraction of

our youngest clusters overlapping with their parent GMC. We use this fraction of

association to estimate how long clusters spend with their GMC. This fraction of

10 Myr will be known as τfb, the feedback phase. We find that Noverlap = 23 out of

Ntotal = 60 young clusters are associated with molecular clouds. Based on the fraction

of associated young clusters, we have

τfb = 10 Myr

(︃
Noverlap

Ntotal

)︃
≈ 4 Myr. (2.4)

However, due to visual extinction, we are likely missing some clusters younger than

3 Myr. If we assume we are missing every deeply embedded cluster < 3 Myr (≈30%),

then τfb ≈ 6 Myr. Therefore, we estimate the feedback phase to be 4-6 Myr.

We can now estimate the total lifetime of the GMCs by finding the fraction of

GMCs in the feedback phase. This fraction of GMCs must include not only the long-

lived clusters but also other sites of high-mass star formation that are visible but not

classified as clusters in Johnson et al. (2022) (e.g., OB associations). Then we have:

τfb
τdark + τfb

=
NGMC,fb

NGMC

(2.5)

where NGMC,fb is the total number of GMCs experiencing feedback. Koch et al. (in

prep) identified 217 GMCs associated with recent high-mass star formation through

a visual inspection which includes many of the clusters from Johnson et al. (2022).

However, this inspection was done without the Wainer et al. (2022) ages for the

long-lived clusters. We visually inspect the 217 GMCs with visible clusters and find

that 56 contain only an old cluster (>107yr). These clusters that are much older
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than τfb are likely not in the same plane as the GMC and do not represent a GMC

in the feedback phase. The Koch et al. (in prep) GMCs without the old clusters

leave NGMC,fb = 161 out of NGMC = 444 GMCs in the feedback phase. Therefore,

the feedback phase represents ≈35% of the total lifetime of GMCs in M33, giving

a lifetime of τGMC = τdark + τfb = NGMCτfb/NGMC,fb =11-15 Myr. However, this

lifetime estimate is sensitive to the visual cluster identification and the removal of

older clusters. If the old clusters are not removed, the lifetime estimate would be

8-12 Myr. Regardless of this sensitivity, our GMC lifetime estimate is consistent with

the short lifetimes found by previous studies (e.g. Kawamura et al., 2009; Blitz et al.,

2007; Miura et al., 2012; Corbelli et al., 2017; Kruijssen et al., 2019; Chevance et al.,

2020; Kim et al., 2021a; Pan et al., 2022; Kim et al., 2022).

2.4 Cloud-Cluster Population in M31

We now analyze the clusters (PHAT) and GMCs (CARMA) in M31 and compare these

results to those found in M33. However, the different conditions of M31 only allow

for certain results to be compared. M31 has a greater inclination (Table 2.1) than

M33, making photometry more complex and limiting the age estimates for clusters.

In addition, the limited survey area and the more defined rings of M31 make creating

random catalogues more difficult. Despite these differences, we find the separations

between the clusters and GMCs in M31 and compare them to M33’s separations,

which depend on cluster age. We then find the two-point correlation of the individual

objects, which can confirm some of the properties of our methods. Finally, we find

the cross-correlation between the clusters and GMCs in M31 to confirm that cross-

correlation depends on cluster age.

2.4.1 Cloud-Cluster Spatial Offsets

Similar to M33, in section 2.3.1, we want to find the positions of the clusters and

GMCs on the disc where the survey areas overlap. Including objects where PHAT
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and CARMA data overlap leaves 480 of 1249 clusters and all 251 GMCs. We can

then use the orientation parameters of M31 from Table 2.1, to convert the celestial

coordinates to galactocentric coordinates.

The radial distribution of M31 in Figure 2.9 looks very different than the radial

distributions of M33 (Figure 2.3). The GMCs and the clusters split into age categories

follow a double peak structure offset from zero. The double peak comes from the odd

shape of the CARMA survey area and because the survey area is centred on the

star-forming rings of M31. It is also notable that M31 is much larger than M33.

Therefore, the clusters and GMCs span a much larger area. The analysis of cluster

ages in M31 restricted age values to be between 107 yr and 108.5 yr. Therefore, we

choose only two age groups the 96 medium-aged clusters have ages ≤ 107.5 yr and

the 384 oldest clusters with ages > 107.5 yr. This more limited age range prevents a

completely parallel analysis of M33.

Generating random distributions in the same way as M33 by fitting an exponential

distribution to the clusters in the survey area yields a flat distribution (Rd = ∞).

This is likely a consequence of the defined ring structure present in the survey area.

A flat distribution does not replicate the observed radial distributions of our clusters.

To create a random distribution that matches the defined rings, we must sample a

distribution with a similar structure. Therefore, we use the full-galaxy 22µm image

constructed by Leroy et al. (2019) using data from the Wide-field Infrared Survey

Explorer (WISE) satellite (Wright et al., 2010). We azimuthally average the emission

in the WISE filters to create a distribution that can be sampled. The filter W4

(22 µm) produces random distributions that best match the radial distributions of

the clusters and GMCs in M31. The mean of 100 distributions produced from W4 is

shown in Figure 2.9 as a red line.

Now that we have the positions of the clusters and GMCs in M31, we find the

typical separations between clusters and GMCs. Figure 2.10 shows the separations

between the centre of clusters split by age and the CO peaks of the nearest GMC
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Figure 2.9: The normalized count per area of the clusters, GMCs, and the generated
random clusters. The count is found in galactocentric radial bins and then divided by
the area contained in the overlapping survey region in that radial bin. The clusters
are split into the two age categories medium-aged (blue triangles) and oldest (yellow
tri-points). The GMC radial distribution (dark pink line with crosses) is found from
the coordinates of the CO peak of each cloud. The random cluster distribution (red
line) results from averaging 100 distributions generated from WISE. The random
distribution traces a similar distribution to the clusters in M31.
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presented in the same way as Figure 2.4. In this section, we split the medium-aged

clusters into two smaller age groups since this analysis is less sensitive to the number

of objects than the two-point correlation and cross-correlation. The clusters ≤ 107.2 yr

have the lowest median separation of 210 pc and the smallest IQR of 160 pc. The

clusters > 107.2 yr and ≤ 107.5 yr have a median separation of 280 pc closer to random

(270 pc) but with a smaller IQR of 180 pc than random (280 pc). The oldest clusters

have median separations of 270-290 pc and IQRs of 260-300 pc, similar to random.

Even with a more limited cluster age range, the same trends are visible in M31 that

are seen in M33. We find that the younger clusters are closer to GMCs and the oldest

clusters are similar to a random distribution. However, the scale of the separations

is larger in M31 because there are fewer objects in a larger area. In M31, the clusters

have a density of ≈ 3 kpc−2 and the clouds have a density of ≈ 1 kpc−2. While in

M33, the density of clusters is ≈ 36 kpc−2 and the density of clouds is ≈ 17 kpc−2.

2.4.2 Two-Point Correlation and Cross-Correlation in M31

We calculate the two-point correlation of the clusters and GMCs in M31. The two-

point correlation is found in the same way described in section 2.3.2, showing the

excess probability of clustering compared to 100 random distributions. The two-

point correlation in different radial bins is shown in Figure 2.11 for the GMCs and

the clusters in their age categories. The GMCs are anti-correlated at small scales

(< 50 pc) due to the decomposition algorithm. The GMCs are then correlated until

≈ 1000 pc. The oldest clusters have a small amount of correlation until they become

uncorrelated at ≈ 1000 pc. The medium-aged clusters have large correlation magni-

tudes at small separations that decrease until becoming uncorrelated at ≈ 1000 pc.

Similar to what we found in M33 we see that the younger clusters have greater cor-

relation magnitudes than the older clusters. The two-point correlation in M31 differs

from M33 because the clusters become uncorrelated at much larger scales (≈ 1000 pc

compared to ≈ 100 pc in M33). The two-point correlation in M31 looks more similar
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Figure 2.10: The separation between the clusters and the GMCs based on the age
of the clusters in M31. The boxes show the IQR for each age bin, with the medians
marked with red lines. The error bars extending from the boxes indicate each bin’s
minimum and maximum values, excluding the outliers. The outliers, marked with
circles, are defined as points outside 1.5 times IQR. The age bins correspond to the
youngest clusters (107 yr-107.2 yr), medium-aged clusters (107.3 yr-107.5 yr), and two
bins for the oldest clusters both 100.5 yr wide. The separation between clusters with
random positions and the GMCs have their median (white line) and IQR (blue shaded
region) plotted. The youngest clusters have a shorter median and a smaller IQR than
random clusters. Clusters older than 107.5 yr have medians and IQRs consistent with
the random distribution.
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to NGC 7793 (Grasha et al., 2018), where objects become uncorrelated at 1000 pc,

and the GMCs have small magnitudes of correlation. These two differences could

indicate that our random distribution generated from WISE has failed to account for

additional large-scale correlation present in M31’s defined ring structure. Therefore,

WISE W4 may not be the best representative of the full cluster population.

As we did for M33, we find the cross-correlation between clusters and GMCs in

M31. The methods for finding cross-correlation are the same as presented in section

2.3.3, finding the excess probability that the clusters are associated with GMCs com-

pared to 100 random distributions. The results of the cross-correlation analysis for

M31 are shown in Figure 2.12 for the medium-aged clusters and the oldest clusters.

There is no significant correlation for clusters at any age, which could be explained

by the lack of clusters < 107 yr. Similar to what we find in M33 and consistent with

Turner et al. (2022), there is no correlation for clusters > 107 yr.

2.5 Discussion

2.5.1 Cluster Drift Speed Estimates

Our timescale measurements support the idea that the star-formation process occurs

rapidly. Once a cluster is formed, it will spend ≈4-6 Myr emitting radiation into

its parent GMC. Our results also show that GMCs will only survive approximately

11-15 Myr. Therefore, a GMC will experience feedback from clusters for a signifi-

cant fraction of its lifetime. Our correlation analysis shows that young clusters are

correlated with GMCs for ≈ 18 Myr. This loss of correlation likely comes from the

original cloud being dispersed and the clusters drifting.

Based on the timescales from our correlation analysis, we can estimate the drift

speed, which represents the speed at which the young cluster population decouples

from its birth molecular gas. From Figure 2.6, we see that the correlation of the

youngest clusters and GMCs is no longer present at a scale of 200 pc. Then, from
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Figure 2.11: The two-point correlation function, 1 + ω, at radial separations, r for
M31. The two-point correlation is shown for the GMCs as a dark pink line with
crosses. The clusters have their two-point correlation shown for the medium-aged
clusters (blue line with triangles) and the oldest clusters (yellow line with tri-points).
These two-point correlations have been found with respect to the 100 random cluster
distributions and averaged. The error bars show the standard deviation of 100 two-
point correlations. The black line marks uncorrelated. This plot shows that medium-
aged clusters are correlated at small radii. At larger radii, all the groups become
uncorrelated.
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Figure 2.12: The cross-correlation function, 1+ζ, at radial separations, r between the
clusters and GMCs in M31. The cross-correlation is shown for GMCs correlated with
the medium-aged clusters (blue line with triangles) and the oldest clusters (yellow line
with tri-points). These cross-correlations have been found with respect to 100 random
cluster and GMC distributions that are both from WISE W4. The error bars show
the standard deviation of 100 cross-correlations. The black line marks uncorrelated.
This plot shows that there is no significant correlation for clusters of any age in M31.
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Figure 2.7, the correlation between clusters and GMCs disappears at an age of ≈

18 Myr. Simply dividing this spatial scale by the temporal scale gives a velocity

of ≈10 km s−1. It’s important to note that this estimate assumes that the lack of

correlation at 200 pc is purely due to cluster drift. In reality, this lack of correlation is

likely due to a combination of cluster drift and cloud destruction. If a cluster destroys

its progenitor cloud, it may still be associated with a more distant GMC in the same

complex, which would increase the spatial correlation scale. Therefore, this estimate

of drift velocity should be seen as an upper limit.

We can refine our simple drift model by trying to match the two-point correlation

structure seen in M33. We start with a desired correlation model matching the two-

point correlation of the young clusters in Figure 2.5. A power spectrum can then be

generated from Fourier transformation of the model correlation using the relation

P (k) ∝
∫︂
R2

ω(r)eik·rdr, (2.6)

where k is the wave vector, r is the correlation scale, and ω(r) is the model correlation

at that scale. We then calculate the Fourier transform of the density field as

A(k) ∝
√︁

P (k)eiϕ(k) (2.7)

where ϕ(k) is a uniformly distributed random phase factor. The density field is then

generated and normalized so that, when sampled, it produces a cluster population

with a similar correlation structure to the observations. These clusters are then given

drift velocities drawn from three different velocity dispersions. These three velocity

dispersions (measured in the 2D plane of the galaxy) are 20 km s−1, 10 km s−1, and

5 km s−1. There is about 10 Myr between our youngest and medium-aged clusters

and about 100 Myr between our youngest and oldest clusters. Therefore, we let the

clusters drift for 10 Myr and 100 Myr and found the two-point correlation for each

time and velocity dispersion. This process is repeated 100 times for each velocity

dispersion. Figure 2.13 shows the average two-point correlation for each time and
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velocity dispersion. The 10 Myr drift should have a similar two-point correlation to

the medium-aged clusters from Figure 2.5, and the 100 Myr drift should be similar

to the oldest clusters. All three velocity dispersions seem to replicate the correlation

structure of the oldest cluster. However, the magnitude of the correlation of the

medium-aged clusters in M33 falls between the 5 km s−1 and 10 km s−1 models.

Therefore, this simple model predicts a dispersion velocity of 5-10 km s−1 in M33,

which is comparable to the upper limit from the simple model inferred from the age

argument above.

In order to further test the effects of completeness, we assigned masses to our model

clusters. We then removed clusters after 10 Myr and 100 Myr of drifting to simulate

decreasing completeness for older clusters. The clusters were removed based on the

completeness fits from Johnson et al. (2022). Including this simulated completeness

has no noticeable effect on correlation magnitudes. Therefore, we conclude that it is

cluster drift and not completeness that results in decreased correlation with cluster

age.

Soubiran et al. (2018) measured the velocities of open clusters in the Milky Way

and found that young clusters (log(age)<7.8) have a velocity dispersion of 10.6 km s−1

among the clusters. This velocity dispersion in the Milky Way increases with age,

so this dispersion is consistent with our drift velocity estimation. In M33, Chandar

et al. (2002) find that the velocity dispersion of clusters increases with cluster age

and for a small sample of clusters <108.1yr find a velocity dispersion of 17 km s−1.

Therefore, for our larger sample of younger clusters, a lower velocity dispersion than

17 km s−1 is expected.

Interpreting the physical meaning of this drift velocity can be complicated. Part of

this motion represents the random motions of clusters as they are born in a turbulent

medium. If the cluster velocity comes from the turbulent motions of the gas, then the

dispersion velocity of the gas should be similar to the drift velocity. Koch et al. (in

prep) find that the typical line of sight velocity dispersion of CO in molecular clouds
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to be σv,1D ∼ 3 km s−1 (see also Rosolowsky et al., 2003; Gratier et al., 2014), which

in 2D assuming isotropy would equate to σv,2D ∼ 2σv,1D ∼ 4.5 km s−1, lower than but

of a consistent scale than the drift speed inferred from correlation structure.

2.6 Conclusion

In this paper, we analyze the correlation structure between clusters and GMCs in

M33 and M31. We use the PHATTER cluster catalogue from Johnson et al. (2022)

with measured CMD ages from Wainer et al. (2022) for M33. In M31, we have the

PHAT cluster catalogue from Johnson et al. (2015) with measured CMD ages from

Johnson et al. (2016). We use the SCIMES algorithm to find GMCs in the 35 pc

resolution ALMA ACA 12CO survey (Koch et al. in prep) in M33 and the 20 pc

resolution CARMA 12CO survey in M31 (Caldú-Primo & Schruba, 2016; Leroy et al.,

2016; Schruba et al., 2019). We then generate random catalogues of clusters and

GMCs that match the radial distributions of the real clusters and GMCs. Using a

random catalogue that matches the radial distribution of clusters and clouds removes

the spurious signal from large-scale correlations in the cloud-cluster analyses.

In M33 and M31, we find that younger clusters (≤10 Myr) are found at a shorter

distance from the nearest GMCs when compared to older clusters (Figures 2.4 and

2.10). We also find that clusters older than ≈ 30 Myr have separations from GMCs

that matches a random distribution similar to what was found by Grasha et al.

(2018, 2019) and Turner et al. (2022). As seen in Figure 2.8, we find that clusters are

marginally more likely to drift in the direction of galactic rotation and in the opposite

direction of galactic rotation.

The two-point correlation analysis for M33 shows that younger clusters (< 107 yr)

are correlated with each other at small scales (< 200 pc) but older clusters are not

(Figure 2.5). The same correlation analysis in M31 shows similar but weaker trends

due to the more limited cluster age information in M31 (Figure 2.11). The younger

clusters likely show a stronger correlation because they have not had sufficient time
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Figure 2.13: Model two-point correlation function, 1+ω, at radial separations, r. The
two-point correlation of the model clusters to match the youngest clusters in Figure
2.5 is shown as a green line with squares. The different lines show the average two-
point correlation of the different velocity dispersions given to the model clusters. The
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marks uncorrelated. Our real two-point correlation in M33 falls between the model
with a 5 km s−1 and a velocity 10 km s−1 dispersion.
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to drift from other young clusters formed in nearby GMCs. Once the clusters are

≈18 Myr old, they no longer show correlation with GMCs. Because of the limited

cluster ages, we find no cross-correlation between clusters and GMCs in M31. By

comparing the 18 Myr temporal scale to our 200 pc spatial scale, we estimate the

drift velocity of the clusters to be 10 km s−1. This is consistent with the drift velocity

of 5-10 km s−1 found from comparing our two-point correlation structure to a simple

drift model applied to mock data.

We estimate the time the clusters spend overlapping with GMCs (feedback phase)

to be 4-6 Myr in M33. This estimate comes from finding the fraction of the youngest

clusters (≤10 Myr) that overlap with GMCs. By finding the fraction of GMCs in the

feedback phase, we estimate the total lifetime of GMCs to be 11-15 Myr in M33.
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Chapter 3

Conclusions & Future Work

3.1 Conclusions

In this thesis, I measured the spatial and temporal relationship between star clusters

and GMCs in the galaxies M33 and M31. To compare the distributions of clusters

and GMCs, I first developed a series of random distributions that matched the ra-

dial distributions of the different objects. For M33, an exponential distribution with

varying scale lengths produces a similar radial distribution to the GMCs and clusters

of different ages. M31, however, has a much different radial distribution from its

defined rings, and thus I azimuthally averaged WISE data to produce random distri-

butions. Equipped with these random distributions, I showed that younger clusters

(< 10 Myr) are typically found and have smaller separations from GMCs than older

clusters, which more closely resemble the random distributions. Using the two-point

correlation function, I found that younger clusters are likely to be near other young

clusters, while older clusters and GMCs more closely resemble random distributions.

I also showed that this effect for clusters becoming uncorrelated as they age can be

reproduced when they have velocities 5-10 km s−1 in a simple drift model. Then using

the cross-correlation function, I found that younger clusters are more correlated with

GMCs and that this correlation disappears at an age of ≈18 Myr, which is faster

than the timescale over which two-point correlation functions of older clusters began

to become uncorrelated. The cross-correlation being erased at younger ages is likely
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a result of cluster drift and GMCs being destroyed by clusters. Finally, I determined

two important GMC timescales in M33. The feedback time where clusters overlap

with GMCs was found to be 4-6 Myr, and the typical lifetime of GMCs in M33 was

found to be 11-15 Myr.

3.2 Future Work

The major limiting factor in this thesis was the available data. First, the resolution

of the CO surveys limited the effectiveness of the cloud identification, which likely

influenced the structure of the correlation functions at small scales. Utilizing data

from all of ALMA instead of just data from the ACA could greatly improve the

resolution of the CO data in M33. M31 is unfortunately not observable with ALMA,

but a larger survey area that matches the PHAT footprint could greatly increase

the quality of the statistics. Second, the lack of high-resolution infrared surveys

resulted in possibly missing the youngest clusters. However, with new JWST data

(GO program 2128) in M33, we can now identify star formation at earlier phases

and determine if missing clusters are a concern. The high quality of the JWST data

should also allow for individual stars to be observed forming, which will lead to even

more direct measures of spatial and temporal timescales in star formation.
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