
University of Alberta

DEPARTMENT OF COMPUTING SCIENCE
The University of Alberta
Edmonton, Alberta, Canada

Enterprise User's Manual
Version 2.4

Paul Iglinski
Steve MacDonald

Chris Morrow
Diego Novillo
Ian Parsons

Jonathan Schaeffer
Duane Szafron

David Woloschuk

Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1

{duane, jonathan}@cs.ualberta.ca

Technical Report TR 95-02
January 1995

Enterprise User Manual, V2.4 - 2 - Technical Report TR95-2

Enterprise User's Manual
Version 2.4

Paul Iglinski
Steve MacDonald

Chris Morrow
Diego Novillo
Ian Parsons

Jonathan Schaeffer
Duane Szafron

David Woloschuk

Department of Computing Science
University of Alberta
Edmonton, Alberta
Canada T6G 2H1

{duane, jonathan}@cs.ualberta.ca

Abstract

This document is a user's manual for version 2.4 of the Enterprise parallel programming

system. Enterprise is an interactive graphical programming environment for designing, coding,

debugging, testing and executing programs in a distributed hardware environment. Enterprise

code looks like familiar sequential code because the parallelism is expressed graphically and is

independent of the code. The system automatically inserts the code necessary to correctly handle

communication and synchronization, allowing for the rapid construction of distributed programs.

1. Introduction

One of the design goals of the Enterprise project has been to provide an environment where

parallel/distributed programming is as close to the sequential model as possible. Enterprise has no

extensions to the C programming language, nor does it require the user to insert system or library

calls into their code. All information describing the parallelism of a program is contained in a

diagram (asset diagram). The user's code is standard C, with the system automatically inserting

the additional code necessary to implement the parallel semantics based on the information

provided in the asset diagram. This programming model requires new parallel semantics for some

familiar sequential constructs and, for implementation convenience or performance considerations,

Enterprise User Manual, V2.4 - 3 - Technical Report TR95-2

imposes a few (minor) limitations. This document provides an introduction to programming with

Enterprise.

Section 2 describes the assumptions about the execution environment in which Enterprise

programs run. Section 3 describes the semantics of writing C code in Enterprise (the programming

model). Section 4 describes the techniques for specifying parallelism in an application using asset

diagrams (the metaprogramming model). Section 5 describes the user interface by constructing a

complete application. Section 6 describes debugging in replay view. Section 7 describes the

differences between sequential C and Enterprise C. Some restrictions in the current

implementation of the model are outlined in Section 8, and Section 9 outlines some deficiencies in

the model. Section 10 gives a number of performance tips for getting the best runtime performance

for Enterprise applications.

2. The Execution Environment

Enterprise programs are assumed to run on a homogeneous network of workstations with

distributed memory1. They currently cannot take advantage of shared memory. Consequently,

each process has its own address space, and does not have access to any other process' data.

Thus, when one process calls another, the caller must provide all the information necessary

(through parameters) for the callee to execute the assigned task.

A networked file system is also assumed. Any files used by an Enterprise program should

be accessible from any machine taking part in the computation.

3. The Programming Model

In a sequential program, components of a program exchange information through

procedure/function calls. The calling procedure, A, contains a call to a procedure, B, that includes

a list of arguments. When the call is made, A is suspended and B is activated. B can make use of

the information passed as arguments. When B has finished execution, it communicates its results

back to A via side-effects to the arguments and/or by returning a value (if it is a function). In

Enterprise, procedure calls can be made between processes. Since processes are called assets (for

reasons described in Section 4), procedure calls between processes are called asset calls. The

semantics of an Enterprise asset call are almost identical to function calls.

As with sequential procedure and function calls, it is useful to differentiate between

Enterprise asset calls that return a result and those that do not. Asset calls that return a result are

called f-calls (function calls) and asset calls that do not return a result are called p-calls (procedure

1 This is a temporary restriction due to the different representation of scalar and structures between different
architecture and/or operating systems.

Enterprise User Manual, V2.4 - 4 - Technical Report TR95-2

calls). Conceptually, there is no difference between a sequential procedure call and an Enterprise

asset call except for the parallelism.

Assume A and B are Enterprise assets executing on different processors. When A calls B, A

is not suspended. Instead, A continues to execute. However, if the call to B was an f-call, then A

would suspend itself when it tried to use the function result, if B had not yet finished execution. In

Enterprise, an f-call is not necessarily blocking. Instead, the caller blocks only if the result is

needed and the called asset has not yet returned. Consider the following example:

result = B(data);
/* some other code : A & B executing in parallel */
value = result + 1;

When this code is executed, the arguments of B (data) would be packaged into a message and sent

to B (wherever B happens to be running). A would continue executing in parallel with B. When A

tries to access the result of the call to B (value = result + 1), it blocks until B has returned its result.

If B is defined as a function, but used as a procedure (i.e. the return value is not used), the result is

thrown away. This deferred synchronization is called a lazy synchronous call. Assuming that B

does not modify anything through side-effects, the execution semantics of A calling B is identical

in the sequential and parallel cases.

The p-call in the statement:

B(data);
/* some other code : A & B executing in parallel */

is non-blocking, so that A continues to execute concurrently with B. Of course in this case, B

does not return a result to A. This form of parallelism is called purely asynchronous. Again,

assuming no side-effects for B, sequential and parallel execution of this code has the same

semantics.

The previous examples are intended to illustrate the similarity between programming

sequentially in C and in parallel with Enterprise. This close relationship makes it easier to

transform sequential programs to parallel ones and allows the user to change parallelization

techniques using the graphical user interface, often without making any changes to the code.

3.1. Parameter Passing

Enterprise assets can accept a fixed number of parameters of varying types. All calls to an

asset must have the same number and type of parameters. Arrays and pointers are valid as

parameters but they must be immediately followed by an additional size parameter2 that specifies

the number of elements to be passed (unnecessary in sequential C). Unfortunately, this restriction

2 Enterprise expects the caller to allocate sufficient space for the number of values passed or returned. The size
parameter is considered a scalar. As such, it is not updated upon return of the asset call.

Enterprise User Manual, V2.4 - 5 - Technical Report TR95-2

is needed because it is not always possible to statically determine the size of the array to be passed.

This feature allows users to pass dynamic storage as well as parts of arrays. The data being passed

cannot itself contain pointers (which would be meaningless because of the distributed memory).

Enterprise defines three macros for the parameter passing of pointers. The IN_PARAM()

macro specifies that a pointer should have its values sent from the caller A to the callee B, but not

returned. The macro OUT_PARAM() specifies a parameter with no initial value3, but one that gets

set by B and returned to A. The INOUT_PARAM() macro copies the parameter from A to B on

the call, and copies its value back from B to A on the return. For brevity in the text, the parameter

passing mechanisms will be referred to as IN, OUT and INOUT, respectively.

Consider the following code fragment illustrating an INOUT parameter:

void A()
{

int data[100], result;
. . .
result = B(&data[60], INOUT_PARAM(10));
/* some other code : A & B executing in parallel */
value = result + 1;

}

int B(int * data, int size)
{

int i, sum;

for(sum = i = 0; i < size; i++)
{

data[i] *= data[i];
sum += data[i];

}
return(sum);

}

A would send the 10 elements 60..69 of data to B. When B finishes executing, it copies back to A

10 elements, overwriting locations 60..69 of data, as well as returning the sum. Enterprise makes

copies of the passed data so that from B 's point of view, there is no distinction between a

sequential procedure call and a parallel Enterprise call.

If IN, OUT or INOUT is not specified, IN is assumed. It is important to observe that this

does not preserve the correct semantics of C. In sequential C, INOUT is the default since changes

to locations that a parameter points to will be visible to the calling routine. It would be a simple

matter to modify Enterprise to preserve the C semantics. However, this difference is explicitly

there to make users more aware of the cost of INOUT parameters. INOUT requires parameters to

be sent to and from the asset; IN and OUT require only one-way communication. In effect,

3An important point about OUT_PARAM variables is that the caller must allocate sufficient space for the OUT
parameter. The callee return values will be copied into the caller’s address space.

Enterprise User Manual, V2.4 - 6 - Technical Report TR95-2

INOUT causes data to be transmitted twice, increasing the overhead at runtime. Thus IN and OUT

parameters are to be preferred whenever possible.

OUT and INOUT data implement parameter side-effects. Thus they can also be considered

part of the return value of the function. In the above example, if A accessed data[65] before it

accessed result, it would have to block until B returned, just as it would for the result of the call.

Consequently, only p-calls without OUT and INOUT parameters are purely asynchronous; all

other p-calls and all f-calls are lazy synchronous. In the rest of the document, the return value of

an asset will refer to the function result or any OUT/INOUT parameters.

Enterprise assumes a distributed memory environment; thus there is no shared memory. All

data needed by an asset must be passed to it via parameters. This is the area where most programs

will require some conversion effort.

3.2. Replication

Enterprise allows users, through the asset diagram, to specify that a procedure or function

(asset) can be executed in parallel and replicate it as often as needed (make multiple copies).

Although discussion of this feature properly belongs in Section 4, it is mentioned here so that the

scope of the examples in this section can be expanded.

If an asset is replicated, then Enterprise creates multiple copies of the process, subject to

minimum and maximum constraints supplied by the user. Each call to that asset is queued by

Enterprise and sent to the first available idle instance of that asset. In the following code, assume

Square is an asset and it has been replicated 3 times:

void SumSquares()
{

int i, a[10];
...
for(i = 0; i < 10; i++)
{

a[i] = Square(i);
}
...

}

Since the calls to Square are f-calls, execution continues until a return value of Square is

accessed. In this case, SumSquares will loop 10 times and invoke 10 concurrent calls to Square.

Since there are only 3 copies of Square, the first 3 calls are immediately sent to be processed, while

the remaining outstanding calls are automatically queued. As a Square asset completes its work, it

is immediately assigned new work, if available.

This example illustrates that a poor replication factor can affect parallel efficiency. If we

simplistically assume that each call to Square takes the same amount of time, then with 3 copies we

Enterprise User Manual, V2.4 - 7 - Technical Report TR95-2

would expect one to get 4 pieces of work, and the other two to get 3. The loop is complete once

the last piece of work is done, meaning we have to wait for 4 pieces of work to be done. This

represents a 10/4 = 2.5-fold improvement over the sequential program. However, if the

replication factor is 5, then each process gets 2 pieces of work and the parallel improvement is 10/2

= 5. Thus, increasing the number of assets from 3 to 5 doubles the performance.

3.3. Unordered Assets

When an asset is called, the caller blocks when the return value (function result and/or

OUT/INOUT parameter) is accessed, if the asset has not yet completed. This implies that the

program sees the results of asset calls in the order that the program accesses them. This is the

default ordered semantics and preserves the semantics of C. Enterprise also supports assets whose

results are accessed in the order that they are completed (unordered). Consider the following

example, where Square is an asset that simply returns the square of its argument:

void SumSquares()
{

int sum, i, a[5];

for(i = 0; i < 5; i++)
{

a[i] = Square(i);
}
sum = 0;
for(i = 0; i < 5; i++)
{

sum += a[i];
printf("a[%d] = %2d: sum is %2d\n", i, a[i], sum);

}
}

With ordered semantics, each sum += a[i], will block until that particular a[i]'s value has

been obtained, with the following output:

a[0] = 0: sum is 0
a[1] = 1: sum is 1
a[2] = 4: sum is 5
a[3] = 9: sum is 14
a[4] = 16: sum is 30

If the goal of the computation is to compute the sum, then it does not matter in what order the

terms are added; the sum will be same since addition is commutative. Assume that Square has

been replicated and there are five copies of it running. SumSquares will make five calls, without

blocking, to Square, and only block when it accesses the first return result. With unordered

semantics, the sum += a[i], will block only until the first a[i] result is available, even if it is not the

one specified by the code. In other words, a[0] will be assigned the value of the first call to Square

that returns. A sample output might be the following:

Enterprise User Manual, V2.4 - 8 - Technical Report TR95-2

a[0] = 4: sum is 4
a[1] = 0: sum is 4
a[2] = 16: sum is 20
a[3] = 9: sum is 29
a[4] = 1: sum is 30

Note that the output of this program will vary from run-to-run, depending on the timing of when

results are returned. However, the final answer (sum = 30) will always be the same.

Unordered assets result in non-deterministic results, but increased performance since less

blocking occurs. The user should carefully consider the tradeoffs of using ordered versus

unordered asset calls. They are dangerous to use if you do not fully understand the possible side-

effects. Ordered calls are the default.

3.4. Terminating calls

When an Enterprise asset call returns, all outstanding Enterprise calls made by that asset are

canceled4. For example, consider asset A making several calls to asset B. Perhaps one of the

results returned by B means that A has now completed its task and it returns. If there are any calls

that have been made to B that have not yet returned, a message is sent to B to stop the work. A

will ignore the result returned.

Consider the following simplified AlphaBeta tree searching program:

int AlphaBeta(int lowerbound, int upperbound)
{

int branch, result;
...
for(branch = 0; branch < treewidth; branch++)
{

result = AlphaBeta(lowerbound, upperbound);
if(result > lowerbound)

lowerbound = result;
if(lowerbound >= upperbound)

break;
}
return(lowerbound);

}

The branches are searched sequentially, and when one of the searches returns a value as large as

the upperbound, search at this node is complete (a cutoff has occurred).

Consider searching all the branches in parallel. The code won't have any parallelism, since

the return value of AlphaBeta (result) is immediately accessed after the call. To introduce

parallelism, we have to force each asset call to save its result in a different location:

4 The current implementation of Enterprise has the asset waiting for the other assets to reply to the outstanding
work before returning its value. Later implementations will address the problem of interrupting arbitrary user code.

Enterprise User Manual, V2.4 - 9 - Technical Report TR95-2

int AlphaBeta(int lowerbound, int upperbound)
{

int branch, result[treewidth];
...
for(branch = 0; branch < treewidth; branch++)
{

result[branch] = AlphaBeta(lowerbound, upperbound);
}

for(branch = 0; branch < treewidth; branch++)
{

if(result[branch] > lowerbound)
lowerbound = result[branch];

if(lowerbound >= upperbound)
break;

}
return(lowerbound);

}

In the first loop, treewidth asset calls to AlphaBeta are made, and only in the second loop are the

results of the asset calls examined, possibly causing the program to block.

When a cutoff occurs in the parallel version, the routine returns. There may be several

outstanding calls to AlphaBeta. Since their results are now irrelevant (the search has been cutoff),

Enterprise informs those assets to discontinue their work. These assets are now ready to be called

again with other work.

There are a few items of interest in this example:

(1) The function is computing a maximum within the range of values lowerbound to

upperbound. Since this computation is commutative, unordered assets could be used to

increase the concurrency. Note that this might cause a different value to be returned by the

parallel version than the sequential one. If more than one branch can cause a cutoff, it is non-

deterministic which one will cause the routine to exit.

(2) This code benefits from a parallel implementation, but the improvement can be hard to

predict. Consider two cases of nodes where a cutoff occurs. In the first case, the cutoff

occurs with the first branch. The sequential program will only examine this branch, find the

cutoff and return. The parallel version will start all branches in parallel and only stop when a

cutoff has been found. Most of the parallel work is wasted, since only one branch had to be

evaluated.

In the second case, assume that the cutoff occurs with the last branch. The sequential version

will look at all branches and only find the cutoff at the very end. Since the parallel version

considers all branches in parallel, it will find the cutoff when the search of the last branch

returns. There is the possibility for super-linear speedup here, since the other branches can

be immediately terminated and less work will have been done than in the sequential case.

Enterprise User Manual, V2.4 - 10 - Technical Report TR95-2

(3) The sequential program calls AlphaBeta with the latest version of lowerbound. Although it is

not shown in the code fragment given, the lowerbound can be used to reduce tree size. Since

the parallel calls to AlphaBeta all start their computation with the initial lowerbound, they may

end up doing more work than the sequential program.

The parallelism is obvious in this simple example. Predicting the performance of the parallel

program is a difficult task.

4. The Metaprogramming Model

Enterprise's analogy between program structure and organizational structure eliminates

inconsistent terminology (pipelines, masters, slaves) and introduces a consistent terminology based

on assets in an organization. Currently Enterprise supports the following asset types: enterprise,

individual, line, department, division, service, receptionist and representative. Receptionists and

representatives are parts of assets that are automatically inserted by Enterprise. Figure 4.1 shows

the assets and their icons in Enterprise. Asset icons are used to draw diagrams that specify the

parallelism in an Enterprise program.

Enterprise Individual Receptionist Representative

Department Line Division Service

Figure 4.1 Enterprise asset icons.

Each asset represents a commonly-used parallelization technique. The user draws an

organizational chart that contains assets. The user can expand and collapse composite assets such

as lines and departments to show the desired level of abstraction in a hierarchical diagram. A few

points about drawing asset diagrams:

(1) Assets can be combined hierarchically. Wherever it is legal to have an individual, Enterprise

allows you to replace it with a composite asset (line, department or division).

(2) Developers can replicate assets so that more than one process can simultaneously execute the

code for the same asset. The interface allows the programmer to specify a minimum and

Enterprise User Manual, V2.4 - 11 - Technical Report TR95-2

maximum (possibly unbounded) replication factor, and Enterprise dynamically creates as

many processes as possible, one asset per processor, up to the maximum. Users can

explicitly replicate all assets except receptionists, enterprises and the child asset of an

enterprise asset.

(3) The Enterprise compiler checks to make sure that all assets calls are consistent with the user-

specified asset diagram. For example, if A, B and C are in a line, the compiler enforces the

rule that A must contain a call to B (and not C) and B must call C (and not A). The only

exception to this is a service asset; no asset is required to call a service.

The following sections describe each of the asset types.

4.1. Enterprise

An enterprise represents a program and is analogous to an entire organization.

Every enterprise asset contains a single component, an individual asset by default,

but a developer can transform it into a line, department or division. When

Enterprise starts, the interface shows a single enterprise asset which the developer

can name and expand to reveal the individual asset inside.

4.2. Simple Assets

Simple assets are building blocks for any Enterprise program. There are three simple assets

— individual, representative, and service. They have slightly different semantics which reflects

their functionality.

Each asset has code associated with it. The code includes a routine with the same name as

the asset; calling this routine is the only way to communicate with this asset. For example, an asset

called Worker has associated code that includes a routine called Worker(). Other assets can make

subroutine calls to Worker but, because it is an asset, these calls will be invoked in parallel.

4.2.1 Individual

An individual is analogous to a person in an organization. It does not contain

any other assets. In terms of Enterprise's programming component, it represents a

procedure that executes sequentially. An individual has source code and a unique

name, which it shares with the asset it represents. When an individual is called, it

executes its sequential code to completion. Any subsequent call to that individual must wait until

the previous call is finished. If a developer entered all the code for a program into a single

individual, the program would execute sequentially. Individual assets may call other assets.

Enterprise User Manual, V2.4 - 12 - Technical Report TR95-2

4.2.2. Representative

A representative is a specialized individual that is used in a division (Section

4.3.4). A representative should contain a call to itself. The representative is

where the recursive nature of the algorithm switches from parallel recursion to

sequential recursion. The receptionist is considered the leaf node of a division.

The receptionist and representative asset in a division share the same code. A

representative can only be coerced into a division.

4.2.3. Service

A service asset is analogous to any asset in an organization that is not

consumed by use and whose order of use is not important. A clock on a wall is

an example of a service. Anyone can query it to find the time, and the order of

access is not important. A service cannot contain any calls to other assets, but any

non-service asset can call it. That is, the asset is fully connected to all other assets.

With service assets, it is possible to simulate shared memory. The following code

corresponds to part of Figure 4.5. The service asset, SharedMem, accepts two types of calls: one

to set the value in shared memory and the other to retrieve the value. Any asset can call

SharedMem to set/get the value. Of course, SharedMem could be modified to perform a more

complicated function. For example, a service could be used to queue requests to a shared

resource, such as a printer, guaranteeing mutual exclusion for the requests.

void AnyAsset()
{

usertype value;
...
/* Set the value */
SharedMem(SET, &value, IN_PARAM(1));
...
/* Get the value */
SharedMem(GET, &value, OUT_PARAM(1));
...

}
void SharedMem(int access, usertype *value, int size)
{

static usertype SharedValue;

if(access == SET)
SharedValue = *value;

else if(access == GET)
*value = SharedValue;

else printf("SharedMem: illegal access\n");
}

Enterprise User Manual, V2.4 - 13 - Technical Report TR95-2

Figure 4.5 Simulating shared memory with a service.

4.3 Composite Assets

Composite assets are assets that contain other assets — parallel templates. The user coerces

individual assets to composite assets. The code that was associated with the individual is now

placed in the receptionist asset which forms the entry point into and out of the composite asset.

The composite asset consists of one receptionist and one or more child assets.

Depending on what type of parallelism is desired, the appropriate asset is selected. To

change to another composite asset, the steps involved are: First, coerce the composite asset to an

individual and then to the desired asset.

4.3.1. Receptionist

A receptionist is the entry point to a composite asset such as a line,

department, or division. The name of the receptionist corresponds to the name

of the associated composite asset. This specialized individual asset contains

user’s code and should contain calls to the various child assets. A receptionist

receives messages from assets up the hierarchical chain and sends messages

down the chain.

Enterprise User Manual, V2.4 - 14 - Technical Report TR95-2

4.3.2. Line

A line is analogous to an assembly or processing line (usually called a

pipeline in the literature). It contains a fixed number of heterogeneous assets in a

specified order. The assets in a line need not be individuals; they can be any legal

combination of Enterprise assets. Each asset in the line refines the work of the

previous one and contains a call to the next. For example, a line might consist of an individual that

takes an order, a department that fills it, and an individual that addresses the package and mails it.

The first asset in a line is the receptionist. A subsequent call to the line waits only until the

receptionist has finished its task for the previous call, not until the entire line is finished. If the line

is an imbedded asset (inside a composite asset), only the leaf (last) node in a line calls out to the

next asset .

Consider a graphics program that animates several cartoon characters. For each frame it

computes the position of the characters in the animation frame (Animation), converts the image to

polygons (Polygon) and renders it (Render), before finally writing it to disk. The code looks

similar to the following:

void Animation()
{

int numbcharacters;
positiontype * characters;

numbcharacters = InitialPosition(characters);
for(frame = 1; frame <= maxframes; frame++)
{

Polygon(frame, characters, IN_PARAM(numbcharacters));
MovePosition(characters, numbcharacters);

}
}

void Polygon(int frame, positiontype characters,
 int numbcharacters)

{
int numbpolygons;
polygontype * polygons;

/* Render each character producing polygons */
numbpolygons = MakePolygons(characters, numbcharacters,

 polygons);

Render(frame, polygon , IN_PARAM(numbpolygons));
}

void Render(int frame, polygontype polygons, int numbpolygons)
{

/* Render the image and write to disk */
}

Enterprise User Manual, V2.4 - 15 - Technical Report TR95-2

Animation does not need to wait until Polygon has completed its computations on the first

frame to start its work on the second. Similarly, Polygon does not need to wait for Render. The

program can be converted to a line with 3 individuals. Figure 4.2 shows the Enterprise asset

diagram for this program. In this program, the Polygon and Render assets are good candidates for

replication, to improve performance.

Figure 4.2 Animation program as a line.

4.3.3. Department

A department is analogous to a department in an organization. It contains a

fixed number of heterogeneous assets and a receptionist that directs each incoming

communication to the appropriate asset. Consider the following department

example: a customer going to a bank to request a loan. A receptionist listens to the

customer's query and, based on the information provided, directs the customer to the appropriate

loans officer: mortgages, car loans or business loans. All the bank officials work in parallel. One

customer may be served by a mortgage officer while another customer is served by a business loan

officer. Of course if a customer wants a mortgage and the mortgage officer is busy, the customer

must wait until the mortgage officer is free, unless there are multiple mortgage officers (the

mortgage officer is replicated).

Enterprise User Manual, V2.4 - 16 - Technical Report TR95-2

As a programming example, consider a program that solves a series of linear equations.

There are many different techniques for solving sets of equations, depending on the properties of

the matrix. In the following code, several matrices are read in and MatrixProperty determines the

appropriate routine to use.

void Linear()
{

matrix * m;
int property, dimension;
...
for(; ;)
{

dimension = GetMatrix(m);
if(dimension == 0)

break;
property = MatrixProperty(m, dimension);
switch(property)
{
 case SPARSE:

Sparse(m, dimension);
break;

 case TRIDIAGONAL:
Diagonal(m, dimension);
break;

 default:
Gauss(m, dimension);
break;

}
}

}

There are three Enterprise solutions to this problem:

(1) We can enter the code as an individual, Linear, with local procedure calls. Enterprise

compiles it and runs it sequentially.

(2) Linear can be transformed into a department asset, containing the individuals Sparse,

Diagonal and Gauss (see Figure 4.3). Linear acts as a receptionist, deciding which asset is

going to solve each system of equations. When a call is made to one of these individuals,

say Sparse, it will execute in parallel with Linear. Since these routines do not have return

values or OUT/INOUT parameters, they are p-calls and do not block when there is a

subsequent reference to any of their parameters. In the next loop iteration, if Gauss is called,

it executes concurrently with Sparse and Linear. However, if in a subsequent iteration of the

loop another call is made to Sparse, the second call waits until the outstanding call has

completed.

Enterprise User Manual, V2.4 - 17 - Technical Report TR95-2

Figure 4.3 Linear as a department of individuals.

(3) To reduce the time spent waiting, we can replicate Sparse, Diagonal and/or Gauss to increase

the concurrency. If the replication is specified with no maximum replication factor, then

Enterprise dynamically assigns all the available processors, as needed, to maximize

concurrency.

To have the program run as a department, the user must change the parameters to the matrix

solving routines, such as:

Diagonal(m, IN_PARAM(dimension*dimension), dimension);

The matrix m is a pointer, and in an asset argument list it must be followed by the number of

elements that are to be passed to the asset (dimension * dimension). The IN_PARAM designation

is not needed, since this is the default parameter passing mechanism. The matrix solving routines

could be modified so that the last parameter is not needed.

It requires only a simple code change to convert the sequential Linear individual asset to use

departments. No code changes are needed to convert the program from a department of individuals

to a department of replicated individuals. Most of the designer's effort is spent deciding on the

best asset diagram, and not modifying the source code.

Enterprise User Manual, V2.4 - 18 - Technical Report TR95-2

4.3.4. Division

A division contains a hierarchical collection of individual assets among which

the work is distributed. Developers can use divisions to parallelize divide-and-

conquer computations. When created, a division contains a receptionist and a

representative, which represents the recursive call that the receptionist makes to the

division itself. Divisions are the only recursive asset in Enterprise. Programmers can increase a

division's breadth by replicating the representative. The depth of recursion can be increased by

replacing the representative with a division. The new division will also contain a receptionist and a

representative. The tree's breadth at any level is determined by the replication factor (breadth) of

the representative or division it contains. This approach lets developers specify arbitrary fan-out at

each division level.

Divisions are a combination of sequential and parallel recursive calls. In the following

example, assume QuickSort is defined as a division asset.

void QuickSort(int * a, int size)
{

int pivot;
if (size > threshold) {

pivot_index = partition(a, size);
QuickSort(&a[0], pivot_index);
QuickSort(&a[pivot_index+1], size - pivot_index);

} else {
SequentialSort(a, size);

}
}

For this program, the division should be defined with a breadth of two (since the code

contains two recursive calls to QuickSort) and we will assume a user-defined depth of two, as

shown in Figure 4.4. The first call to QuickSort will divide the list in half. Since each half of a is

independent of the other half, the recursive calls to QuickSort can be done in parallel. The

processes associated with the recursive calls have no division children, which means they will be

done sequentially. In other words, the calls to QuickSort are done either in parallel or sequentially,

depending on the resources available at runtime. Adding another level to the division in Figure 4.4

means that there would be two levels of parallel recursion before switching to sequential execution.

Since Enterprise inserts code that allows both the parallel and sequential recursive calls to be made,

the user can change the breadth and depth of the division without needing to recompile.

Enterprise User Manual, V2.4 - 19 - Technical Report TR95-2

Figure 4.4 QuickSort using a division asset.

5. The User Interface

This section contains an example of building a distributed program using Enterprise.

Parallelizing an application using Enterprise involves the following main steps:

(1) Divide the problem into assets and select one of Enterprise's parallelization techniques for

each asset.

(2) Build the asset graph.

(3) Enter the source code for the assets.

(4) Compile the assets and fix any syntax errors.

(5) Run and debug the program, fixing any logic errors

(6) Tune the program's performance.

5.1. The Problem

Consider a program called AlphaBeta that builds a search tree in a recursive, depth-first

manner to a prescribed depth. A user-defined distribution assigns random values to leaf nodes in

Enterprise User Manual, V2.4 - 20 - Technical Report TR95-2

the tree. The parallel version uses the principal variation splitting algorithm, which recursively

descends the leftmost branch of the tree, searches the siblings of the leftmost branch in parallel,

and backing up the minimax result to the root of the tree.

The complete source for AlphaBeta can be found in the Enterprise release in the subdirectory

Examples/AlphaBeta. A simplified version of the program is presented here. The program has

four major procedures: AlphaBeta, Pvs, Nsc, and Draw. They have the following functionality

and pseudo-code:

The main procedure, AlphaBeta, loops calling Pvs while there are searches to be performed.

Draw is used to graphically display the progress of the search.

AlphaBeta()
{

while(do_search)
{

Draw(INIT);
Pvs(0, -INFINITY, +INFINITY, searchdepth);

}
}

Pvs (Principal Variation Splitting) recurses down the left-most branch of the search tree,

doing it sequentially and the remaining width-1 branches in parallel.

Pvs(branch, alpha, beta, depth)
{

/* Recurse until it no longer pays to do things in
 parallel. Switch to Nsc to search the tree sequentially */

if(depth <= granularity)
return(Nsc(branch, alpha, beta, depth));

/* Move down the tree */
Descend(branch);
Draw(NEW_DEPTH, depth, branch);

/* Find out the children of this node */
width = Generate(branches);

result[1] = -Pvs(branches[1], -beta, -alpha, depth-1);
if(result[1] > alpha)

alpha = result[1];
if(alpha >= beta)
{

Ascend(branch);
Draw(FINISHED_DEPTH, depth, branch);
return(alpha);

}

/* Search remaining branches in parallel. */

Enterprise User Manual, V2.4 - 21 - Technical Report TR95-2

for(i = 2; i <= width; i++)
{

Draw(PARALLEL_BRANCH, depth, i);
result[i] = -Nsc(branches[i], -beta, -alpha, depth-1);

}

/* Find the maximum of the values returned */
for(i = 2; i <= width; i++)
{

value = result[i];
Draw(PARALLEL_RETURN, depth, i);
if(value > alpha)

alpha = value;
}

/* Move back up the tree */
Ascend(branch);
Draw(FINISHED_DEPTH, depth, branch);
return(alpha);

}

Nsc, sequential alpha-beta search uses the negascout enhancement. First, it searches the first

move with the full (alpha, beta) window, and then, the successor moves with a minimal window

(alpha, alpha+1). Since the first branch is best most of the time, this allows us to prove a branch

inferior with less cost. In the event that the search returns a score > alpha, then this branch is

better and we have to research it to get its true value.

Nsc(branch, alpha, beta, depth)
{

/* Calls to Draw are not shown */
/* Move down the tree */
Descend(branch);

if(depth == 0)
{

/* Evaluate this node - get its deterministic random number */
result = Evaluate();
Ascend(branch);
return(result);

}

/* Find out the children of this node */
width = Generate(branches);

for(i = 1; i <= width; i++)
{

if(i == 1)
/* First child is special - search with the full window. */
result = -Nsc(branches[1], -beta, -alpha, depth-1);

else
/* Search with a minimal window (bounds differ by 1). */
result = -Nsc(branches[i], -(alpha+1), -alpha, depth-1);

Enterprise User Manual, V2.4 - 22 - Technical Report TR95-2

if(result > alpha && result < beta)
/* Result is outside the window; re-search to get the

correct value. */
result = -Nsc(branches[i], -beta, -result, depth-1);

/* Improved the bound? */
if(result > alpha)

alpha = result;

/* Cutoff? */
if(alpha >= beta)

break;
}

/* Move back up the tree */
Ascend(branch);
return(alpha);

}

Draw writes current search activity to a separate program which will graphically display the

search tree. A separate program, Pixel, is used to avoid conflicts between X windows event loops

and communications kernel message passing. (The code and associated makefile for Pixel is found

in the subdirectory, Examples/AlphaBeta/Draw in the distribution.)

Draw(type, parameters)
{

if(FIRST_TIME)
{

/* create X process */
}
/* Send information to display */

}

5.2. Selecting a Parallelization Technique

Examining the structure of the AlphaBeta program reveals two places where large quantities

of work may be generated. The first place is the loop in Pvs which calls Nsc, the second is the

loop in AlphaBeta.

Pvs uses Nsc to calculate results. Inside of the main loop in Pvs, no dependencies exist

between calls to Nsc. This means that the calls to Nsc can be made in parallel. This structure is

easily expressed by a department asset. Pvs is the receptionist inside of the department, and Nsc is

the other asset inside of the department. The Nsc asset is replicated to allow for parallel calls to the

Nsc function.

AlphaBeta calls Pvs. Pvs or Nsc will then eventually call Draw. Calls to Pvs from

AlphaBeta are required to be sequential to simulate a game playing environment. However, there

is no reason why AlphaBeta has to wait for Pvs to return before starting the next iteration of the

loop. A similar relationship exists between the Pvs/Nsc and Draw. Pvs or Nsc do not have to

Enterprise User Manual, V2.4 - 23 - Technical Report TR95-2

wait for Draw to finish before starting the next iteration of the loop inside of Pvs. This kind of

relationship is called a pipeline in the literature, and represented by a line asset in Enterprise.

5.3. Building the Asset Graph

Building the asset graph is done from the Enterprise user interface. When Enterprise is

installed, there either a stand-alone image created for all users or a single-user image and changes

file that a user must copy to their home directory. Check with the installer or read the appropriate

file in the distribution tar file. To run Enterprise using the stand-alone image, the user starts a

Smalltalk interpreter using the stand-alone enterprise image (enterprise.im). If the single user

image is used, the user must evaluate the expression 'Enterprise open'. This can be done by

typing it into a workspace, selecting it, and then selecting doit from the middle mouse button

menu. In either case, the user interface will then appear as shown in Figure 5.1.

Before we proceed with this section, some conventions used in this document need

explanation. When the mouse pointer is inside the scope of a Smalltalk window, a context-

sensitive menu is popped up by holding down the middle mouse button (the <operate> button).

Moving the mouse so that it points to different items or areas in the window results in different

menus being popped up. To select a menu item, move the mouse up and down while continuing to

press the middle button. The right mouse button will popup a Smalltalk system menu. This

document will not discuss Smalltalk system menus. To select an item, say in a list, use the left

mouse button (the <select> button) to highlight the item. This is true as well when selecting a

button in a dialog display. We use a different typeface, This is an example, to indicate menu or

items (buttons or list views) in a window or dialog view.

Figure 5.1 A new Enterprise program.

Enterprise provides several views of an application. The Design View is used for drawing

the asset diagram, editing, compiling and running a program. The Animation View (discussed in

Section 5.9) allows the user to view a completed program execution as an animation of asset calls

Enterprise User Manual, V2.4 - 24 - Technical Report TR95-2

and returns. The Replay View (Section 6) allows the user to deterministically replay an execution

run and invoke some debugging tools.

This Design View initially contains a new enterprise asset. The user has two options

available in the menu5 , Open and Quit. Selecting Open either creates a new program or opens

an existing Enterprise program. We wish to create a new program — select Open.

Figure 5.2 The program selection dialog.

Figure 5.2 shows the Open window. Enterprise programs are shown in bold face while

other directories are shown in plain text. To move up or down in the directory tree select the Up or

Open buttons. A short-cut is available by directly typing in the Path text field. To create a new

program in the current directory, press the Create button. A dialog box opens for you to type in

the new program name. The resulting Enterprise program directory will be created in the current

directory defined by the Path text field. Typing the name AlphaBeta into the dialog box and

pressing <ENTER > names the program, with the result shown in Figure 5.3.

When a new Enterprise program is created, a directory structure is automatically set up to

organize the files associated with the application. More details can be found in Section 7.1. For an

application, such as AlphaBeta, the following directories are maintained by Enterprise:

5 There is a third option in the single-user image (Make standalone) which creates the stand-alone image. This is
not discussed in this document.

Enterprise User Manual, V2.4 - 25 - Technical Report TR95-2

Graph Various files for the compiling, running, and recording events of Enterprise binaries are

kept here.

Assets Source code for all the assets (using a ".e" suffix on the file names).

Src The Enterprise precompiler preprocesses ".e" files to produce ".c" files that are placed in

this directory.

User Enterprise puts other user-application code (such as support routines) here.

Obj The Src/*.c and User/*.c files are compiled and placed in Obj.

Include Enterprise puts all include files (".h") in this directory.

Tmp Used for temporary Enterprise files.

Bin Each architectural binary produced by Enterprise is placed in Bin. Only one binary per

architecture is produced.

Data This is a convenient location of data files. This directory is intended to be a consistent

logical location regardless of which processor the binary is running on.

Out Contains the standard output (stdout) from a program execution for all the assets.

Err Contains the standard error (stderr) from a program execution for all the assets.

Figure 5.3 A program named AlphaBeta

When the mouse is pointing on the AlphaBeta asset icon and the middle mouse button is

pressed an asset-specific menu will appear. In this case, the menu choices Name, Expand, and

Expand fully are available to the user. Selecting Expand from the menu will expand the

enterprise asset to reveal the single individual it contains, giving the view shown in Figure 5.4.

Note that the individual has been given a default name of asset1. If the asset contains a more

complicated structure, Expand fully will expand all assets in the hierarchy.

Enterprise User Manual, V2.4 - 26 - Technical Report TR95-2

Figure 5.4 An enterprise containing one individual.

Selecting Line from the asset menu for the individual will change the individual to a line.

Naming the line AlphaBeta by selecting Name from the line's asset menu gives the view shown in

Figure 5.5. The icon now represents a line, and the numeral 2 indicates that the line currently

consists of a receptionist and one individual (this is the default).

Figure 5.5 A program containing a line.

The line can be expanded by selecting Expand from its asset menu. Doing this reveals a

receptionist named AlphaBeta and an individual named asset2 as shown in Figure 5.6.

Enterprise User Manual, V2.4 - 27 - Technical Report TR95-2

Figure 5.6 An expanded line asset.

As discussed earlier in this section, menus are context-sensitive. Here is an example of this.

The double line represents the enterprise, the dashed line represents the line, and the icons

represent the receptionist and individual. Clicking inside the double-line enterprise rectangle but

Figure 5.7 A three asset line. Figure 5.8 A line asset containing a
department asset.

Enterprise User Manual, V2.4 - 28 - Technical Report TR95-2

outside the dashed-line rectangle will display the asset menu for the enterprise asset. Clicking

inside the dashed-line rectangle but outside either of its component's icons will display the asset

menu for the line. Clicking on the icons for the receptionist or individual will display their

respective asset menus. Clicking outside the double-line enterprise rectangle will display the

Design View menu.

The second component of the line can now be named Pvs by choosing Name from its asset

menu. A third component can then be added by selecting Add After from Pvs's menu. The new

individual can then be named Draw using its own asset menu. The resulting graph is shown in

Figure 5.7.

Fig 5.9 Asset graph for AlphaBeta.

The Pvs asset can be changed from an individual asset to a department asset by choosing

Department from its asset menu. The result is shown in Figure 5.8. The Pvs asset can now be

Enterprise User Manual, V2.4 - 29 - Technical Report TR95-2

expanded by choosing Expand from its asset menu. This will show a department with a

receptionist called Pvs and an unnamed individual. The individual can be renamed to Nsc in the

normal manner using its asset menu. The final asset graph for the program is show in Figure 5.9.

5.4. Entering and Editing the Source Code

Enterprise includes an integrated editor for editing asset source code. The editor can be one

selected by the user, or it can be the one provided by Enterprise. When the system starts up, the

ENTERPRISE_EDITOR environment variable is checked. If it is set to Smalltalk, then the internal

Smalltalk editor is used. If it has some other value, that editor is started in an xterm. If it is not set,

the EDITOR environment variable is checked and used if set. If EDITOR is not set, then the Smalltalk

text editor is used.

To invoke the editor, the user selects Code from the asset menu for an asset. If source code

already exists for the asset, the file is read into the editor, otherwise a new file is created. There

can be several editors open at the same time.

The code for an asset can contain many subroutines, but it must contain a subroutine with the

same name as the asset. Procedures that are common to several assets should be placed in a

separate file that will be automatically compiled and linked with the asset code. This is done by

selecting Edit user file from the Design View menu and selecting or giving the name of the file to

edit.

For this example, existing code needs to be organized into files for AlphaBeta, Pvs, Nsc and

Draw. For each of the assets, we select Code from its menu to display an editor. Then we read

in the original sequential code and distribute it to the appropriate assets. Note that there is no code

associated with a composite asset (line, department or division) so there is no Code action in its

asset menu.

5.5 Setting Asset Options

There are several options that can be set by the user. If they are set in the Design View, they

apply to the entire program. If set at the asset level, they apply only to that asset and any other

assets lower down in its hierarchy (children) unless specifically overridden. What is usually done

is to have the options set globally (see, for example, compilation in Section 5.6).

A dialog box for setting compilation and runtime options of assets can be opened by selecting

options from an asset's menu. Figure 5.10 shows an asset options dialog box. The Debug or

Optimize toggle buttons and the CFLAGS text field specify options for compiling an asset6.

6 Typically, asset-specific defines or include directives are placed here. Some compiler flags (-o, -O, -g, and -c) are
not allowed. Enterprise automatically fills these in at compile time.

Enterprise User Manual, V2.4 - 30 - Technical Report TR95-2

The CFLAGS inherit their values from assets up the graph (parents) unless explicitly

overridden. The user is given a chance to continue the inheritance when pressing the Accept

button when something is present in the CFLAGS field. Otherwise, inheritance is defeated until

the user puts in an empty string.

If Output Windows or Error Windows toggle buttons are set to on, then windows will be

opened at runtime to display standard out (stdout), and standard error (stderr), respectively. The

Include list view is used to specify a list of machines which this asset must run on. The Exclude

list view specifies a list of machines which this asset must not run on. The list of active machines,

Available Machines, contains the list of machines7 that can be selected for either the Include or

Exclude lists. To add, delete, or modify the active machine list, the user must open the Run dialog

box (see Section 5.7.1).

To add a machine to either the Include or Exclude list view, move the mouse pointer into

Available Machines list view and select one or more machines. Then, press the middle mouse

button to popup a menu. This menu contains two menu items — Include and Exclude. Selecting

Include will move the selected machines from the Available Machines to the Include list.

Similarly, the Exclude menu option moves the selected machines to the Exclude list. To remove

machines from either the Include or Exclude list, select the machine name(s) and then press the

middle mouse button. The resultant popup menu has one choice, Remove. Selecting this menu

option moves the chosen machine(s) from the current list view to the Available Machines list.

The Accept button commits the current settings to this asset and closes the dialog view. The

Revert button restores the last saved values, while the Close button closes the dialog box without

saving the current setting.

If the asset is a composite asset, then the options specified apply to all assets contained in that

asset. If a component asset has options specifically set for it, its options override the options

specified in the composite asset that contains it.

In the Asset Options dialog box for AlphaBeta shown in Figure 5.10, the Output

Windows radio button was set to on by clicking with the left mouse button. This will cause an

output window to appear at execution time for AlphaBeta and all assets that are contained in

AlphaBeta. When the desired options are selected, press the Accept button to accept and

remember the options.

7The Available Machines list is created by taking the current active machine list (see running an Enterprise
program, Section 5.7.1) and removing any machine names in either the Include or Exclude list views for this
particular asset.

Enterprise User Manual, V2.4 - 31 - Technical Report TR95-2

Figure 5.10 Asset options dialog box.

5.6. Compiling Assets and Fixing Syntax Errors

The next step is to compile the code and fix any syntax errors. When the assets are

compiled, the Enterprise precompiler inserts the parallelization code, then invokes a standard C

compiler and linker to produce the executable program. A compile dialog box can be opened by

selecting Compile from either the Design View menu or from an asset menu. If it is started from

an asset menu, only the asset is compiled and the linker is not run. If the asset is a composite

asset, then all of its components are also compiled. If the compiler is started from the Design View

menu, the entire program is compiled and linked. The system contains a built-in "make" facility,

so only those assets that have changed since the last compilation will actually be compiled8. Only

one compilation can be active at a time.

The compile dialog box consists of several fields:

• A scrollable text field which will contain the output from a compilation, including any error

messages and warnings,

 8 For this version of Enterprise, this is true only if the asset or user's source code has been modified. If any include
files are modified, the dependent source files will not be updated!

Enterprise User Manual, V2.4 - 32 - Technical Report TR95-2

• A toggle switch, Verbose, which determines how much compilation output should be

displayed,

• Toggle switches, Debug and Optimize, to specify the type of executable desired,

• A CFLAGS text field to specify global compiler flags9,

• A Libraries text field which supplies the list of user libraries and their locations for the

program,

• The Compile button to initiate a compilation of the program,

• The Clean button "cleans" up the account by removing any temporary Enterprise files as well

as all object and executable files,

• The Abort button stops the compilation that is in progress,

• The Revert button allows the user to recover the stored preset values for all the fields in this

window, and

• The Close button closes this window.

Figure 5.11 shows a compile dialog box.

If there are errors, the user can leave the compiler window open, invoke editors on the

assets, and fix the errors. When the program is being re-compiled, it will use the same compiler

window. If there are no errors, the window can be closed to conserve screen space.

9 Typically, asset-specific defines or include directives are placed here. Some compiler flags (-o, -O, -g, and -c) are
not allowed. Enterprise automatically fills these in at compile time.

Enterprise User Manual, V2.4 - 33 - Technical Report TR95-2

Figure 5.11 A compile dialog box.

5.7. Running the Program

Enterprise programs can be run by selecting Run from the Design View menu. A run dialog

box consists of several fields:

• A scrollable text field for displaying runtime output,

• A scrollable list for displaying the names of active or inactive machines to use while running,

• A toggle switch labeled Create event log for enabling logging of events (used for

performance monitoring and execution replay, see Section 5.9),

• A toggle switch labeled Run sequentially for executing the program sequentially (parallel

asset calls become sequential subroutine calls),

• A toggle switch labeled Debug Mode that causes all future accesses and asset calls to be

printed to the standard output for the process,

• Text fields labeled Input file and Output file for specifying input and output files,

• A text field labeled Args for specifying runtime command line arguments,

• A Run button for starting a run,

Enterprise User Manual, V2.4 - 34 - Technical Report TR95-2

• An Abort button for aborting a running program,

• A Revert button for recalling the previous run dialog settings, and

• A Close button for closing the run dialog.

A run dialog box is shown in Figure 5.12. In this window, event logging is enabled and the

program will be run with command line arguments of "Data/in". For the AlphaBeta program, the

argument is the name of the input file.

Figure 5.12 A run dialog box.

5.7.1 Machine List

Before the compiled program can be executed, the system must be told which machines it can

use. The list of available machines is shown in the scrolling list in the bottom left hand corner of

the dialog. Machine names with a number character (#) in front of them are not used during a run

(inactive). The other machines are considered to be the active machine list. To modify the list of

Enterprise User Manual, V2.4 - 35 - Technical Report TR95-2

machines, click the middle mouse button inside of the scrolling list to get the machine list editor

menu.

To include an excluded machine, select a machine name with a # in front of it using the left

mouse button, then choose Include from the machine list editor menu. The # should disappear

from the front of the machine name.

To exclude a machine already in the machine list from the list of available machines to run on,

select a machine name with the left mouse button, then choose Exclude from the machine list

editor menu. A # should appear in front of the machine name.

To add a new machine to the list of machines, select Add from the Machine File list editor

menu. The Add Machine dialog will pop-up as shown in Figure 5.13. The dialog has a text field

for the name of the machine, and a series of radio buttons to select the type of machine. Only the

valid architectures supported by Enterprise are displayed10. Click the Add button in the dialog to

add the values in the text field to the machine list. Click Close to dismiss the dialog.

Figure 5.13 An Add Machine dialog.

To remove a machine from the list of machines, select the machine name with the left mouse

button, then choose Remove from the machine list editor menu.

To save the values in the machine list choose Save in the Machine list editor menu. This has

the side effect of modifying the Include and Exclude options in the Asset Option view. Each asset

is checked to see if the Include or Exclude lists contain inactive machines. If so, the inactive

machine names are removed from the Include or Exclude list.

To revert the values in the Machine File list editor to the previously saved values, choose

Revert in the machine list editor menu. When the program is run, the current list of machines is

saved.

10 Currently, only the Sun OS 4.1.3 (SUN4), IBM AIX (RS6000), and Silicon Graphics Release 5 (SGI) operating
systems are supported.

Enterprise User Manual, V2.4 - 36 - Technical Report TR95-2

5.7.2 Running an Enterprise Program

Once the machines have been specified, the program can be executed. This is done by

clicking on the Run button in the run dialog. Note that when we set the options in Section 5.5, we

elected to have output windows opened for each asset. This means that when the program is run, a

window will be created for each asset that will contain any output the asset writes to its standard

output. After the run, the windows are left open until explicitly closed by the user. Note that on

some systems, the program output displayed in these windows may lag behind the execution.

Figure 5.15 shows a sample output from running AlphaBeta. Included is a window created

by the Draw routine showing the search tree built by the program.

Figure 5.15 Running the AlphaBeta program

5.8. Specifying Logged Parameters

The Design View contains a facility for specifying which parameters of an asset call are to be

logged during program execution. This information is used in the Animation and Replay Views to

allow a program execution to be recreated later. These tools are useful for debugging and

performance tuning.

Enterprise User Manual, V2.4 - 37 - Technical Report TR95-2

When a program is run with event logging enabled, an event file is created. Enterprise

knows the number and type of all asset parameters and return values. Each is given a default

logging specification. The user can increase or decrease the amount of information gathered.

 The default specification is to log all scalars11 on asset calls and scalar return values when

the asset returns. All vectors of scalars also have their first three and last two values logged on an

asset call. The first asset in a program, however, has no logged parameters. The current version

of Enterprise has, as yet, no facility for logging structures or pointers to data types other than

scalars. This deficiency will be addressed in the future.

The user can modify the default settings for parameter logging by selecting Parameter

Logging from the pop-up menu for an asset while in the Design View. Such customization can be

done only after the asset has been compiled. The interface then displays a dialog box containing a

list view of the parameters and their logging specifications, together with a specification editing

facility. Figure 5.16 illustrates a Parameter Logging Editor for an asset named Square, which

has two parameters (i and y) and a return value (^). The asset is identified by name in a read-only

field at the top of the dialog box. The Logging Specification list view on the left provides the

current logging specification for all the parameters and the return value. Some parameters may

appear in two lines, one for input logging and another for output. When an entry is selected,

pressing the ‘Operate’ button in the list view pops up a menu for changing the logging specification

for the highlighted selection. This context-sensitive menu only shows the relevant menu choices.

The possible choices are:

Log on input

Log on output

Do not log

11 Scalars refers to the fundamental built-in C types: char and the int types, signed and unsigned, and the floating-
point types.

Enterprise User Manual, V2.4 - 38 - Technical Report TR95-2

Figure 5.16. Parameter logging editor

These menu choices change the log code for the parameter. The log code, appended to the

parameter entry, indicates if logging is performed on the parameter when the asset is called (I, for

in), when the asset returns (O, for out), or not at all (X, for exclude). If a parameter is logged on

both in and out, then the parameter must be given two separate specifications. This situation does

not occur with scalars but can occur with arrays. Scalar parameters are by definition input

parameters only, so they can only be logged on input. Return values (^) can naturally only be

logged on output. Each parameter entry consists of the parameter name, followed by its type, size

in bytes, and a description of logged ranges for arrays. Scalars are designated by a %d (integer),

%f(float), or %c (char). Arrays of scalars, designated by a %P followed by a d, f, or c, can be

logged on input and/or output. As mentioned earlier, more complex structures, identified as %R,

cannot currently be logged. A collection of ranges is shown in square brackets [] for arrays of

scalars being logged. Each range is either a single integer or a pair of integers separated by a space

and enclosed in parentheses (). Following the C convention, 0 refers to the first element in an

array. Negative integers denote elements at the end of an array. Thus, -1 refers to the last element

of an array. The range (0 -1) denotes that the entire array is logged. For readability, if no range is

logged, it is displayed with ellipses as [. . .].

When an array of scalars is selected in the Logging Specification list, as in Figure 5.16, the

Ranges list view on the right becomes active and displays the ranges in a list form. The Range

Definer fields in the lower right can then be used to specify a Begin and End point for a new

logging range. If the Begin and End points are the same, or if only a Begin point is specified, a

Enterprise User Manual, V2.4 - 39 - Technical Report TR95-2

single element will be added to the Ranges list. A context-sensitive pop-up menu can be accessed

in the Ranges list. The possible selections are:

Add range

Delete range

Add range performs the function of adding the range specified in the Range Definer to the

Ranges list. A notifier appears if the range is illegal or not yet specified. After a range has been

added, the Range Definer resets to 0 0. The added range appears at the end of the list if no entry

in the Range list was selected. If an entry was selected, the new range will be added immediately

above the selection, in accord with Smalltalk conventions. Delete range removes the selected

range from the list. The Logging Specification list automatically updates when changes occur in

the Ranges list.

Figure 5.16 shows a parameter y, which is an array of integers (%Pd4), each consisting of 4

bytes. On input, the first three elements (indexed 0, 1, and 2), the sixth element (indexed 5), and

the last two elements (indexed -2 and -1) are to be logged. On output, the entire array (indexed

from 0 to -1) is to be logged.

When logging specification changes have been made, the Accept button, initially grayed out,

becomes active. When the Accept button is clicked, the new specification is saved and the dialog

box closes. If the Cancel button is clicked, the dialog box closes without modifying the original

logging specification.

It should be stressed that the probe effect of event logging is increased by the additional

logging requirements specified for parameters. Keeping this fact in mind, the user should avoid

logging unnecessary information. On the other hand, reducing the logging information reduces the

control potential of the debugging facilities (Section 6) and requires the user to rely on sequential

debuggers for examining parameter information. There is no additional probe effect during

execution replay, regardless of the amount of breakpoint analysis being performed, since the replay

is fully deterministic.

5.9. Performance Tuning Using Animation

When we set the global compile and run options in Section 5.7, we turned on the event

logging flag. This caused the program to capture events while it ran and logged them to an event

file so the execution can be animated. The Animation View allows us to see if there are any

performance bottlenecks and observe if the program is making full use of its resources.

The Animation View is obtained by selecting Animate from the Design View menu. After

changing views, the program appears as in Figure 5.17. The animation view is similar to the

Enterprise User Manual, V2.4 - 40 - Technical Report TR95-2

Design View in Figure 5.9, but the state of each asset is displayed and there is space to display

message queues above the assets and reply queues to their right.

Figure 5.17 The animation view of the sample program.

The menus that appear are different as well. Clicking in the Animation View, outside of the

assets displays the main animation menu.

The choices are:

Start

Step

Set options

Design view

If we select Start from the menu, the program execution will be displayed, showing

messages and replies moving between assets and updating asset states. Eventually, the messages

build up in Nsc's input queue as shown in Figure 5.18 To stop the animation, select Stop from

the Animation View menu while the animation is running. Depending on the animation options

selected, this may take some time. During an animation, selecting the Stop menu causes the

animation menu to change. Start is removed with Reset and Resume added. Selecting Reset

Enterprise User Manual, V2.4 - 41 - Technical Report TR95-2

ends the animation and the menu reverts back to the original Animation View. Selecting Resume

continues the animation.

Figure 5.18 A point in the animation.

Step lets the user single step through the animation through one event. Design view

returns the user back to the Design View. Set options opens a dialog box with five parameters

the user can set to speed up or slow down animation. Figure 5.19 shows the dialog box.

Enterprise User Manual, V2.4 - 42 - Technical Report TR95-2

Figure 5.19 Animation options dialog box

The user has three buttons along the bottom of the dialog. Ok stores the current option

settings displayed; Revert restores the options to the previously saved values; Close exits this

window. The toggle button, Show events in Transcript, which appears only in single-user

mode, writes Enterprise logged events as they are animated in the Transcript window.

Time Scale is intended to map the virtual time to the real-time scale. If there is a large time

difference between messages, setting this number larger will allow the animation to progress

quickly. Setting this value lower will slow down the animation. Currently, this value is not used.

Events Per Loop determines the number of events that are processed for one animation

cycle. This cycle cannot be interrupted by the user. Setting the number high is good if an overall

view of the program performance is needed. If a more detailed look at the performance is needed,

set the number lower. Note, not all Enterprise events are animated. For example, if an assets goes

from busy to idle and back to busy in one cycle, this change is not seen.

Move Increment set the number of pixels the message will move along its delivery path.

Between messages sets the number of pixels between consecutive messages along a delivery

path.

If the middle mouse button is pressed while the cursor is over a message queue, the context-

sensitive menu will display the single entry, List messages. Selecting this entry opens an

inspector window on the message queue as shown in Figure 5.20. Selecting one of the messages

in the queue displays the values of the logged parameters in the C procedure call to Nsc.

Enterprise User Manual, V2.4 - 43 - Technical Report TR95-2

Figure 5.20 A message inspector

Nsc can't keep up with the amount of work being sent to it by Pvs. We can try to improve

the performance by replicating Nsc. To do this, we end the animation by selecting Stop from the

animation view menu, then switch back to the Design View by selecting Design view. Once we

Figure 5.21 The replication dialog box.

are in the Design View, we select Replicate from Nsc's asset menu, causing the replication dialog

box to appear as shown in Figure 5.21.

Enterprise User Manual, V2.4 - 44 - Technical Report TR95-2

Figure 5.22 Animation view after replicating Nsc

We replicate Nsc three times by clicking on the up arrow until the maximum replication factor

becomes 312. Now we can close the box, and re-execute the program13. When we switch to the

12 Only the maximum replication factor is currently used. Later implementations of Enterprise will allow dynamic
process replication. That is, start off with, say, one replica and as demand increases, add more replicas to the
maximum allowed. In this case, three.
13 The current implementation requires a recompilation of the program only if changing the replication factor from
one to replicated or replicated to one. Typically, this is very fast as none of the user’s code is recompiled.

Enterprise User Manual, V2.4 - 45 - Technical Report TR95-2

animation view after re-executing the program, we can see the replicas of Nsc. This time when we

display the run, we see that all assets keep busy. The resulting animation is shown in Figure 5.22.

6. Debugging in the Replay View

The Replay View allows controlled replay of a program from an event file. It is entered from

the Design View main menu by selecting Replay. The Replay View is nearly identical in

appearance to, though different in functionality from, the Animation View. While the Animation

View allows for the "simulation" of a program's execution, the Replay View provides the means to

actually perform an identical re-execution. Like the Animation View, replicated assets are fully

expanded, message passing is animated, and message queues can be monitored.

Although logic errors in a program can sometimes be debugged by post-mortem examination

in the Animation View, there are times when it becomes necessary to actually re-execute the

program deterministically along the path captured in the event log. This is possible assuming that

there are no non-deterministic constructs in the sequential code of the assets themselves. This

forced replay facility combined with a message-level breakpoint facility and selective access to

standard sequential debuggers all together constitute the Enterprise debugger.

6.1. Non-Determinism

Although the opportunities for non-determinacy are fortunately reduced in the Enterprise

model, the phenomenon still occurs. Within the Enterprise model, there are three identified

circumstances where critical race conditions can develop. The most common situation involves the

Receive Message event. If the receiving asset is connected to only one sender, as in a simple Line

or simple Department, the behavior of the receiver is deterministic. The communication manager

guarantees a first-in-first-out protocol on the pipe connecting the two assets. Moreover, messages

cannot get lost, assuming there is no hardware malfunction or system software error. However, if

the receiving asset is connected to more than one sender, as is the asset Draw in the AlphaBeta

program, a race condition can develop. In such a situation, each of the assets in the Department

Pvs could non-deterministically send messages to Draw, potentially impacting the end result of the

computation.

Another non-deterministic situation involves a manager sending a message to its replicated

assets. A message might go to replica 1 during one execution, but to replica 2 on another.

Although all the replicas execute the same code, the use of static variables, which retain their values

between calls, could alter the results of a computation depending in the sequence of replica calls.

A third non-deterministic situation occurs when an asset receives a reply from an unordered

replicated asset. When an asset is designated as unordered, the futures associated with return

Enterprise User Manual, V2.4 - 46 - Technical Report TR95-2

values from that asset can be used by the calling asset in any order. This unpredictable ordering

could easily produce differing results if the unordered option is used inappropriately.

6.2. Main Menu

The main pop-up menu in the Replay View is activated while the cursor is anywhere outside

the program view boundary. The menu choices are dependent upon the current state of the system.

The possible choices are as follows:

Start Selecting Start launches a re-execution of the program according to the event
file's sequence of events. Upon launching, the Run Box is raised to the
foreground, or created if one does not already exist. The initialization
messages for the program and any standard output appear in the text collector
view of the Run Box.

Stop This is the single choice available when replay is running. When selected, the
replay and animation pause between discrete events.

Resume Once a replay has begun but has been stopped by a triggered breakpoint, the
Stop option, or after stepping, the choices Resume and Reset replace Start.
Resume allows the replay to continue from where it was paused.

Reset This choice sends an abort message to the Enterprise executive, which
terminates all the program's active processes. The Replay View is reset to its
initial state. Reset and Resume are then replaced as menu choices by Start.

Step Step can be used from the initial state to start a replay. The program will be
launched and then stopped before the first Send Message event is processed.
If used when a replay has been stopped (paused), the next event in the event
queue will be processed. If this is a message-passing or Die event, the
interface will send a replay message to the Enterprise executive to execute it.

Set Option This is identical to the Set Options command in the Animation View. The only
difference to point out is that the number of events to process in each animation
loop in the Replay View is defaulted to 1, while the default in the Animation
View is 5. For the breakpoint facility to exercise full control over replay, it is
necessary to limit each animation loop to one replayable event.

Breakpoint
Browser

This option will open a Breakpoint Browser, described below.

Aside from the main pop-up menu in the Replay View, there are specialized menus for assets

and message queues.

6.3. Asset Menu: Sequential Debuggers

The pop-up menu that appears for an asset has a single option, Sequential Debugger, to

attach a sequential debugger. This option appears only after a program has been started and then

stopped. Moreover, it is necessary for the program to have been compiled with the debug option

on. Sequential debuggers can only be attached to codable assets. Managers, which do not execute

Enterprise User Manual, V2.4 - 47 - Technical Report TR95-2

any user-defined code, cannot be debugged sequentially using the interface. The debugger is not

directly associated with the user's original code, but rather with the code generated by the

Enterprise pre-compiler containing modifications of the user's code. The intermingled Enterprise

code and user-defined code is potentially confusing for the novice user. However, with a modest

effort the user can effectively utilize the sequential debugger to locate difficult to find errors.

Currently, it is necessary for the user to execute the command xhost + machineName at the

console to get remote debuggers to display. Or, if using Xauthority, have the .Xauthority file

exported to remote file systems. Enterprise does export the DISPLAY environment variable from

the local processor to all processes. However, the user is responsible for ensuring the DISPLAY

value contains sufficient information to allow remote processors to resolve the location of the

display. The user can specify a sequential debugger in the environment variable ENTER-

PRISE_DEBUGGER. If no debugger is specified, gdb is the default. To get the debugger

window to pop up, it is necessary to Step the replay once. The relevant process halts when a

debugger is attached. A breakpoint can then be set, say, on the function bearing the asset name.

The debugger must be given the command to continue before the process will resume execution.

6.4. Event Breakpoints

Breakpoints can be set only at a high level, in terms of message-passing events. These

breakpoints can be either unconditional for a particular event type at a particular asset grouping or

conditional upon the values of any parameters which have been captured in the event file. When a

set breakpoint is triggered, the guided replay stops just before the event is executed. It is then a

simple operation for the programmer to single step through the event, examine the complete

contents of a logged message, or attach a sequential debugger to any process for lower-level

debugging.

A largely text-based Breakpoint Browser is coordinated with the graphical representation of

the program while it is animating and replaying in the Replay View. This visualization technique is

in accord with a core goal of Enterprise: to provide an intuitively comprehensible interface to an

inherently complex and potentially confusing parallel architecture.

A breakpoint is defined for an individual codable asset, or for an arbitrary group of replicas

of a codable asset. Composite assets, such as Departments, Lines, and Divisions, which have no

code directly associated with them, cannot have breakpoints. Thus, a single breakpoint could be

associated with two replicas of an asset, but not with two assets having different base names.

There are only four types of message-passing events relevant to breakpointing: a Send

Message Event, a Receive Message Event, a Send Reply Event, and a Receive Reply Event. Every

breakpoint is associated with one, and only one, of these event types, but not all event types are

Enterprise User Manual, V2.4 - 48 - Technical Report TR95-2

meaningful for a particular asset. For example, the first asset in a program cannot receive

messages or send replies.

The assets that a given asset communicates with are its collaborators. For a Send Message or

Receive Reply event type, an asset's collaborators lie below it in the asset diagram; for a Receive

Message or Send Reply event type, the collaborators lie above the asset. A breakpoint must have

one or more collaborators associated with it. As was the case with a breakpoint's assets, a

breakpoint's collaborators must share the same base name.

Once a breakpoint's assets, event type, and collaborators are selected (as described below), a

listing of logged parameter names and types is available from the system. A breakpoint's

conditions can be any conjunction of conditional relationships between these parameters and user-

supplied constant values. The conditional relationships supported by the system are '==' (equal),

'!=' (not equal), '>' (greater than), '<' (less than), '>=' (greater than or equal), and '<=' (less than

or equal). For instance, for a logged parameter y we could set the two conditions: y >= 0 and y <

10. The breakpoint would then be encountered when both these conditions were satisfied for the

specified assets, event type, and collaborators.

Finally, a breakpoint is not necessarily triggered each time it is encountered. The user can

specify the number of encounters before a breakpoint is triggered. The default is to break on the

first, and only on the first, encounter. If the user wishes to break on every encounter, an Always

Break option can be checked. If the user wishes to break on the fifth encounter, the number of

encounters can be set to 5. If the user desires to break on every fifth encounter, both the above

settings can be made.

6.5. The Breakpoint Browser

The integrated tool for managing breakpoints is the Breakpoint Browser (Figure 6.1). Its

overall design is similar to the Smalltalk System Browser. The top portion of the Browser consists

of four hierarchically dependent list views for navigating through the breakpoint system. The

bottom portion contains the mechanism for actually defining, editing, and accepting breakpoints.

The Breakpoint Browser can be enlarged with proportional enlargement of the list views. It cannot

be resized smaller.

Enterprise User Manual, V2.4 - 49 - Technical Report TR95-2

Figure 6.1 Breakpoint Browser

The first of the list views in the top portion of the Breakpoint Browser is the Assets list.

This view always contains an alphabetical list of all the assets in the Replay View using their

animation names. An asset's animation name is its base name, with an appended numerical suffix

if the asset is a replica. These animation names are unique, regardless of replication nesting, and

correspond to the names that appear in the Replay View. Multiple selections can be made from the

list by clicking the <select> button when the cursor is over a list item. Selected assets are preceded

by a check mark (√). Only assets with a common base name can be multiply selected. A warning

appears if an incompatible multiple selection is attempted. Figure 6.1 shows a Breakpoint Browser

with the assets Square1 and Square2 selected in the Assets list.

While the cursor is in the Assets list view, there is a pop-up menu for breakpoint deletion

and asset selection. These menu options are context-sensitive, varying with the existence of

breakpoints and the current selection of assets. The possible menu options are:

Remove all breakpoints

Remove all selected breakpoints

Deselect all

Select all replicas

Enterprise User Manual, V2.4 - 50 - Technical Report TR95-2

Remove all breakpoints will remove all the set breakpoints for all the assets in the system. If

there are no breakpoints in the system, this menu option will not appear.

Remove all selected breakpoints will remove all the set breakpoints for all the currently

selected assets. If no assets are currently selected or if the selected assets have no

breakpoints, this menu option will not appear.

Deselect all deselects all the currently selected assets. Alternatively, clicking on a selected asset

with the select button individually deselects it. The Deselect all option does not appear if

no asset is currently selected.

Select all replicas will select all the replicas of a currently selected asset. This option will appear

only when an asset is currently selected and replicas of the selected asset are currently

unselected.

The Event Type list, immediately to the right of the Assets list, is empty if no asset is

selected in the Assets list. If an asset is selected, the Event Type list will display the types of

message-passing events possible for the selected asset. In other words, an event type that yields

no potential collaborators would not be displayed. For example, a Service asset can only have a

Receive Message or Send Reply event type; the first asset in a program can only have a Send

Message or Receive Reply event type. This event type determination is solely based upon the

program's Enterprise design as reflected in the asset diagram, not upon the program code or the

events actually logged in the event file.

The Event Type list is a list view that allows a single selection. If an unselected item is

clicked on, it becomes selected (displayed in reverse video), and any previously selected item

becomes deselected. Clicking on a selected item deselects it. The Breakpoint Browser in Figure

6.1 has Send Reply selected in the Event Type list.

The context-sensitive menu for this pane contains only two possible options:

Remove all breakpoints

Remove all selected breakpoints

The behavior of these operations is analogous to that of the Assets list menu options.

Removal affects all breakpoints for the selected assets and the pertinent event type(s), irrespective

of collaborators.

The Collaborators list, situated immediately to the right of the Event Type list, is empty

until an asset and event type have been selected. When an event type has been selected in the

Event Type list, all the potential collaborating assets are displayed in the Collaborators list. The

rules for collaboration are as follows:

Enterprise User Manual, V2.4 - 51 - Technical Report TR95-2

(1) For a Line, each asset, except the last, can send a message to the next asset in the Line. The

last asset can send a message out of the Line if the Line is embedded in another Line with

more assets remaining.

(2) For a Department, the Receptionist can send a message to all the other Department assets. All

the assets in a Department, including the Receptionist, can send a message out of the

Department if the Department is embedded in a Line with remaining assets.

(3) For a Division, the Receptionist can send a message to its Representative or Division

component. All the assets in a Division can send messages out of the Division if the Division

is embedded in a Line with remaining assets.

(4) All Receptionists, Individuals, and Representatives can send messages to all Services.

(5) If a message-receiving asset is a replicated asset (represented by a manager), the receivers of

the message are taken to be all the replicas, rather than the replicated asset itself.

(6) If the receiving asset is a composite asset, the collaborator of a Send Message event is the

Receptionist of the composite.

(7) If a receiving asset is an Individual, Representative, or Service, it becomes a collaborator of

the Send Message event.

(8) The collaborators for a Received Reply event are the same as those for a Send Message

event.

(9) The collaborators for a Send Reply event or a Receive Message event are the inverse of those

of a Send Message event. That is, if AssetB is a Send Message collaborator for AssetA,

then AssetA is a Send Reply collaborator and a Receive Message collaborator for AssetB.

At the time a message is sent to a replicated asset, it is not known which replica will

ultimately receive the message. Although the ultimate destination could be determined in a replay

situation by searching ahead through the event file, it is intuitive and logical to simply list the base

name of the replicated asset, rather than all of the replicas individually. Selecting the replicated

asset's name then effectively selects all the replicas as collaborators for the purpose of defining a

breakpoint.

Like the Assets list, the Collaborators list is a multi-selection list view. All the selection

operations and menu choices are identical to those in the Assets list. Breakpoint removal behavior,

though not identical, is analogous. Figure 6.1 shows CubeSquare selected in the Collaborators

list.

The Breakpoints list, the rightmost breakpoint navigation tool, is empty until a collaborator,

or set of collaborators, is selected. Once the collaborator selection is made, an abbreviated list of

Enterprise User Manual, V2.4 - 52 - Technical Report TR95-2

breakpoints appears in the Breakpoints list if breakpoints exist for the chosen assets/event-

type/collaborators selection. A breakpoint is identified and labeled by the first condition in its set

of conditions. A breakpoint with no conditions is labeled as Unconditional. When a breakpoint is

selected from this list, its full specification is displayed in the lower portion of the browser. This

specification can then be edited as described below.

The selection mechanism and menu options are similar to those in the other multi-selection

list views. Any number of breakpoints can be selected concurrently. However, if more than one

is selected, the information in the lower portion of the browser reverts to the default settings, not a

representation of any of the selected breakpoints. Multiple selection is only useful for quick

selective removal of set breakpoints. Figure 6.1 illustrates a Breakpoint list with one unselected

breakpoint.

There is a subtle feature regarding the removal of breakpoints involving replicas of assets or

collaborators. If, for instance, a breakpoint is set for all replicas of an asset and all replicas of a

collaborator, it will appear in the Breakpoints list for any sub-group of those replicas of assets

and collaborators. If removal is then initiated through the Breakpoint list, the breakpoint will be

removed only with regard to the selected assets and collaborators. It will still exist in the system

for any unselected assets and collaborators left in its specification. If a breakpoint contains no

assets or no collaborators in its specification, it is no longer in the system.

The lower portion of the Breakpoint Browser contains the breakpoint definition tools. These

allow the user to specify the conditions for breaking and the number of times those conditions must

be encountered before the breakpoint is actually triggered.

The field labeled Break at Encounter specifies the number of times this breakpoint's

conditions must be satisfied before the breakpoint is triggered. The default setting is 1. The

Encounters Pending field is read only. It is automatically set equal to the value of the Break at

Encounter field when the breakpoint is accepted. During replay, when this breakpoint is

encountered, the Encounters Pending field counts down by one. When Encounters Pending

reaches zero, the breakpoint is triggered.

Once Encounters Pending reaches zero, the breakpoint is no longer active unless the user

checked the box Always Break at the time the breakpoint was created. Checking Always Break

automatically resets the Encounters Pending to its initial value after the breakpoint has been

triggered and passed. Since the breakpoint is triggered and the replay stopped before the triggering

event is replayed, the system must allow that breakpoint event to actually get replayed when replay

is resumed. Therefore, to prevent deadlock, Encounters Pending is not re-initialized until after

the event is executed.

Enterprise User Manual, V2.4 - 53 - Technical Report TR95-2

As previously indicated, a breakpoint need not have any conditions attached to it. Such a

breakpoint, labeled as Unconditional in the Breakpoints list, will be triggered on the nth

encounter of an event involving the selected assets, event type, and collaborators, where n is the

value set for Break at Encounter.

A breakpoint can have any number of breakpoint conditions attached to it. Each condition is

described by selecting a parameter from the Logged Parameter list, selecting an operator from

the Operators radio buttons, entering an appropriate value in the Value field, and, if necessary,

entering an integer index in the Index field.

The parameters logged in the event file for the event type in question are listed in the Logged

Parameter list using (1) the parameter's name from the argument list of the called asset, (2) a

description of the parameter's logged elements, if the parameter is an array, and (3) a description of

the parameter's type. The return value of an asset call, which is unnamed, is identified by the caret

symbol (^). The logged elements notation for arrays describes the indices of the array values

which have been logged, as described above in Section 5.8. Following the C convention, the first

element of an array is indexed by 0. Negative index values denote elements referenced from the

end of the array. Thus, -1 refers to the last element; -2, the next to last. A range can be

represented by a pair of indices in parentheses (). The logged elements notation allows any

number of single indices and ranges to be included within square brackets []. For example,

y[(0 2) 5 (-3 -1)] array of int

denotes that the logged elements (integer values) of the array y are namely the first three elements,

the sixth element, and the last three elements. The notation

y[(0 -2)] array of char

could be used for logging a character string in C, omitting the terminating null byte, assuming that

y is dynamically allocated to be the size of the string it contains.

To reference a value in an array, the user can enter an integer in the Index field. If an index

is entered for a scalar, or if the index entered for an array is incompatible with the logged elements

notation, attempting to add the condition to the list of conditions will generate an error warning.

The invalid condition will not be added to the list. Since arrays can be dynamically allocated and of

variable length, there is no way to check if an index is out of bounds when any of the logged

elements or the index itself is referenced from the end of the array.

The relational operators (==, !=, >, <, >=, and <=) appear as radio buttons. Only one

operator can be selected at a time.

To construct a valid condition, the programmer must make a valid entry in the Value field.

If the type of the selected parameter is int, an integer (no decimal point) must be entered. For a

Enterprise User Manual, V2.4 - 54 - Technical Report TR95-2

float, the decimal point is optional. Scientific notation can also be used. For a char, the user can

enter a printable character or the decimal ASCII code preceded by a backslash (\). If the logged pa-

rameter is a single range of array of char, a string of characters can be entered in the Value field.

This string may contain non-printable characters written as a backslash followed by three digits

representing decimal ASCII code. A backslash character in a string is represented by two

backslashes. (See Section 8 for restrictions)

This mechanism of constructing a condition through list view selection, radio button

selection, and input field validation makes it simple for the user to quickly create legitimate

breakpoints. The possibility of introducing errors is minimized.

Once a condition has been constructed, it can be added to the breakpoint's conditions by

clicking on the Add Condition button in the Breakpoint Browser. If the condition is completely

and validly constructed, it will be added to the list view labeled Break when Otherwise, an

appropriate warning message appears. Any number of conditions can be added in this manner.

All the conditions in the list view are logically ANDed. If an OR relationship is required, separate

breakpoints can be set up to achieve this relationship. This requirement is not restrictive: logically,

any combination of ANDs and ORs can be reduced to disjunctive normal form, a disjunction of

conjunctions of elementary conditions.

If a condition added to the Break when . . . list is not desired, it can be removed by selecting

it and then clicking on the Remove Condition button in the browser.

After all the desired conditions have been added and the encounter setting made, the

breakpoint can be accepted by clicking on the Accept Breakpoint button. When a breakpoint is

accepted, three things occur: (1) the first condition of the breakpoint (or Unconditional) will

appear unselected in the Breakpoints list; (2) the breakpoint settings in the Browser will revert to

the defaults; and (3) an icon of a stop sign will appear beside the appropriate asset icons in the

graphical replay view.

A breakpoint does not become an active part of the system until the Accept Breakpoint

button is clicked.

When a single set breakpoint is selected in the Breakpoints list, the particulars of the

breakpoint are displayed for editing. The encounter setting can be changed and conditions may be

added or removed. When an edited breakpoint is accepted, the operation is equivalent to removing

the previously set breakpoint and accepting the currently defined breakpoint.

As pointed out above, when multiple breakpoints are selected from the Breakpoints list, the

breakpoint definition portion of the browser reverts to default values. Breakpoint acceptance is not

Enterprise User Manual, V2.4 - 55 - Technical Report TR95-2

allowed in this circumstance. All breakpoints in the Breakpoints list should first be deselected

before defining and accepting a new breakpoint.

A breakpoint can be deactivated, rather than removed, by setting the Break at Encounter

field to 0, ensuring that the Always Break box is not checked, and then accepting the breakpoint.

This results in retaining the breakpoint and all its conditions in the system, but the breakpoint will

never be triggered. Such a deactivated breakpoint can easily be reactivated by again editing the

Break at Encounter field and accepting the modified breakpoint.

6.6. Graphical Display of Breakpoints

The management of breakpoints is simplified by the coordination among the display in the

Replay View, the contents of the Breakpoint Browser, and the breakpoint state of the underlying

model.

Any time a breakpoint is set, its existence in the system is portrayed as a red (black in

monochrome displays) stop sign icon at a corner of the asset icon with which it is associated. The

relative position of the breakpoint icon and a directional arrow in its center identify the type of

event to which the breakpoint is responsive:

Send Message (lower left corner of asset icon)

Receive Message (upper left corner of asset icon)

Send Reply (upper right corner of asset icon)

Receive Reply (lower right corner of asset icon)

The presence of a stop sign icon indicates that one or more breakpoints of that particular

event type are associated with the particular asset.

When an asset is selected in a Breakpoint Browser, its icon is highlighted with a wide red

(black in monochrome) border in the Replay View. The zones for the breakpoint icons, which

correspond to valid event types for a highlighted asset, are also outlined with a fine black line.

Figure 6.2 shows Square1 and Square2 selected as assets.

Enterprise User Manual, V2.4 - 56 - Technical Report TR95-2

Figure 6.2 Replay View of CubeSquare with assets selected.

When a event type is selected, the breakpoint icon zone associated with that event type is

highlighted with a wide black line. The unselected breakpoint icon zones lose their outlines.

Figure 6.3 shows the replicas of Square with the Send Reply event type selected.

Figure 6.3 Replay View of CubeSquare with assets and event type selected.

When a collaborator is selected, a wide red (black in monochrome) line appears between the

selected asset's breakpoint icon zone and the collaborator, suggesting the message path that would

be followed from asset to collaborator, or vice versa. Multiple selections of assets or collaborators

Enterprise User Manual, V2.4 - 57 - Technical Report TR95-2

are displayed accordingly. Figure 6.4 illustrates this next step with CubeSquare selected as the

collaborator for a breakpoint setup.

Figure 6.4 Replay View of CubeSquare with assets, event type, and collaborator selected

Figure 6.5 shows a program displaying the highlighting that corresponds with the selections

in the Breakpoint Browser in Figure 6.1. To illustrate the different breakpoint icons, breakpoints

have been set for various assets using all four types of message-passing events. CubeSquare

has breakpoints set for Send Message and Receive Reply events. The Square replicas have

breakpoints set on Send Reply events, and the Cube replicas on Receive Message events.

Figure 6.5 Replay View with breakpoints set.

Enterprise User Manual, V2.4 - 58 - Technical Report TR95-2

Browser selections can be controlled by selecting icons in the Replay View, rather than items

in the browser's navigation tools. An asset can be selected by clicking the select mouse button

when the cursor is over the asset icon. Multiple asset selections are made by holding down the

SHIFT key while making the selection.

The event type can then be selected by clicking in the appropriate outlined breakpoint icon

zone. Finally, any number of collaborators can be selected by holding down the CTRL key while

making the selection.

Any breakpoint that is set in the system can be selected by clicking on its associated

breakpoint icon. If more than one breakpoint is associated with an icon, the user can repeatedly

click on the icon to cycle through all the set breakpoints. As each breakpoint is selected, all its

associated assets and message paths to collaborators are appropriately highlighted and selected in

the browser's list views.

The system allows any number of Breakpoint Browsers to be opened simultaneously. But

only one browser is considered active at any moment. The active browser is the last browser to be

opened or the last to have had any selection made in its navigation list views or any of its action

buttons pressed. Only the active browser has its state reflected in the display of the Replay View.

Any time a selection is made in the replay view, it will be reflected in only the active browser. If

an active browser is closed, the oldest remaining browser becomes the new active one. If no

browser is active when a selection is made in the Replay View, a new browser will automatically

be created.

6.7. Breakpoint Triggering

When a program is being replayed, each message-passing event in the event file is examined

against the set breakpoints before the Enterprise executive is instructed to execute the event.

Replay is initiated by selecting Start or Step from the Replay View menu. Step will process

only one event from the event file. If this event is a Start Event, Die Event, or message-passing

event, it will result in an instruction to the executive to proceed until another Die Event or message-

passing event is imminent. If however an active breakpoint has all its conditions satisfied and its

Encounters Pending is 1, the breakpoint will trigger and the event will not execute. Upon

triggering, the responsible breakpoint will be highlighted in the Replay View, the active Breakpoint

Browser will pop to the foreground (or be created if necessary), and the triggering breakpoint's

specification will be displayed in it.

If the event type is Receive Message or Receive Reply, the specific message which triggered

the breakpoint is still in the asset's input or reply queue. The user can open a Message Queue List

on the appropriate message queue (select on the message queue icon) and then select the relevant

Enterprise User Manual, V2.4 - 59 - Technical Report TR95-2

message from the list view in the top pane of the Message Queue List. The message's logged

parameters will then all be displayed in the text view located in the lower pane.

If the event type is Send Message or Send Reply, the user can single step through the

triggering event, allowing the triggering message to enter its appropriate message queue. Once

there, it can be examined in detail.

In the event that unlogged message parameters or local process state information is desired,

the programmer may open a sequential debugger on an asset's process by selecting Sequential

Debugger from the menu associated with the target asset.

7. Programming Notes

Programming in C with Enterprise is almost the same as sequential C programming. This

section details the differences. Some of these are implementation restrictions that could be

eliminated at a future date. In the following, assume Compute is an Enterprise asset call.

(1) Pointer parameters in asset calls must be followed by an additional size field indicating the

number of elements to pass (not the number of bytes). The size field can be enclosed in one

of the macros IN_PARAM, OUT_PARAM or INOUT_PARAM, with IN_PARAM being

the default. It is the user's responsibility to ensure that these sizes are correct. For example,

the following calls are legal:

int a[10], * p;
struct example s;
. . .
p = (int *) malloc(100 * sizeof(int));
. . .
result = Compute(a, 10, p, 25, &s, 1);
result = Compute(a, 10, p, INOUT_PARAM(100), &s, 1);

All of array a and structure s are passed to Compute as IN parameters. The first call to

Compute passes 25 elements of p as an IN parameter, while the second call passes all 100

elements as an INOUT parameter. It is legal to vary the number of elements passed and the

type of the parameter passing mechanism.

(2) Asset calls cannot have a variable number of parameters. The number and type of each

parameter is fixed at compile time.

(3) The register designation for variables and parameters is ignored (most compilers ignore it

already).

Enterprise User Manual, V2.4 - 60 - Technical Report TR95-2

(4) Asset calls can only appear as procedure calls or simple assignment statement function calls.

They cannot be part of an expression or a parameter list. For example, the following code

two statements are not allowed:

sum = Compute(x) + 3;
printf("answer is %d\n", Compute(x));

In both cases no parallelism is achieved, since the return value of Compute must be

immediately used. The Enterprise compiler will not allow these constructs as a warning to

the user that they are probably using the model incorrectly.

(5) Enterprise does not recognize aliasing. Consider the following code fragment:

int data[100],
result, *r, *s, b, c;
. . .
r = &result;
s = &data[55];
. . .
result = Compute(&data[50], OUT_PARAM(10));
. . .
b = *r;
c = *s;

In this example, *r is an alias for result and *s is an alias for data[55]. When *r or *s is

referenced, the program should stop and wait for Compute to return. To do this properly

would require checking all pointer references to see if they are the object of an Enterprise call

or an OUT/INOUT parameter. The compiler could be modified to do this, but the cost of

correctly handling this is too high at the implementation level and, more importantly, may

have a significant impact at runtime.

(6) A valid Enterprise program cannot have an asset named main.

(7) The first asset in a program must have argc/argv declarations. The asset looks as follows:

FirstAsset(int argc, char **argv)
{

. . .
}

Currently this is not enforced, but you will discover it (painfully) at runtime.

Enterprise User Manual, V2.4 - 61 - Technical Report TR95-2

(8) References to results from asset calls are not allowed in do, while or for loop statements.

This restriction is not necessary, but is imposed so that users do not accidentally create an

inefficient construct. Consider the following loop:

int b[100];
...
for(b[i] = 0; b[i] < 100; b[i]++)
{

...
a = Compute(b, INOUT_PARAM(100));
...

}

There is no way for the Enterprise compiler to determine whether b[i] in the for loop

expression is influenced by the asset call to Compute. Each time through the loop, all

references to b[i] will have to be checked to see if a result from an asset call is pending that

will modify it. Since this can add an unacceptable overhead to the cost of the loop, it is not

allowed.

(9) It is not recommended that either exit() or abort() function calls be used in an Enterprise

program. These functions conflict with the Enterprise program properly shutting down the

other processes and communication system that compose the distributed parallel application.

That is, it is non-deterministic whether or not the program will shutdown cleanly. One of the

major irritations of parallel programs is cleaning up the multiple processes on multiple

processors by hand. Using these functions raises the probability for experiencing such

irritation. Later versions of Enterprise will include suitably modified replacements for these

functions. Currently, the inclusion of either of these functions results in a compiler warning.

7.1 Enterprise directory structure

An Enterprise program is maintained as a directory of the program name and a series of

subdirectories. Sometimes it is necessary to leave the interface to handle certain problems or make

external processes. For example, the Mandelbrot and AlphaBeta demonstration applications have

separate display programs. The user must build these applications in the Enterprise directory

structure.

There are four important directories for the user to develop applications. They are Assets,

User, Include, and Data. The Assets directory contains the source code for each asset in the

Enterprise graph. An asset file has the file extent .e instead of .c. The User directory contains the

user’s source code that supports the asset code but is not parallelized directly. The Include

directory contains the header files for both the asset and user source code files. The Data directory

is used to store data files for the application.

Enterprise User Manual, V2.4 - 62 - Technical Report TR95-2

Enterprise requires several directories to build the parallel application. They are Graph, Src,

Tmp, Obj, and Bin. The Graph directory contains the various files used by the interface, including

the textual representation of an Enterprise asset graph (the graph file, *.graph), the machine list

used to spawn the processes (_ENT_MachineFile), logging format files (*.fmt), and event files

(*.ev). The Src directory contains the modified asset code. This modified code is the parallelized

asset code and will be eventually compiled to a specific machine architecture. The Tmp directory is

used by Enterprise compiler for keeping the various scratch files. The Obj directory has

subdirectories for each architecture where each compiled object file from the Src and User

directories is stored. The Bin directory contains the executable code produced by the linker for

each architecture. If a communication system requires the location of the executable in other than

this directory, the executable is copied to the appropriate location14.

At run-time the Out and Err directories contain the output of stdout and stderr for each

process that Enterprise creates. Note, currently there is no stdin available for any Enterprise

process.

8. Version 2.4 Restrictions

This section details a number of items that either are not working or have been disabled in

this version:

(1) Replicated assets are not dynamic. Currently only the specified maximum replication factor

is used.

(2) When changing the replication of an asset from one to many, or from many to one, the asset

must be recompiled. This is not a time-consuming task since the user’s code is not affected.

(3) Currently, a homogeneous network of Sun 4, IBM, or SGI workstations must be used.

(4) When a function returns, all asset calls that are outstanding are ignored. They should be

canceled.

(5) String and char values in the Breakpoint Browser are not yet implemented. There is no error

checking on entries for value and index.

(6) Futures are not allowed in the loop control statements for, while, and do...while. The reason

is obvious; every time through the loop a (costly) check would be required to see if the future

has returned. For example, if data is a future, then the following loop will not be allowed:

while(data[i] > 0)

However, control statements such as, if, switch, or return do allow futures.

14The default location for PVM binaries is $(HOME)/pvm3/bin/$PVM_ARCH where PVM_ARCH is a PVM
environment variable.

Enterprise User Manual, V2.4 - 63 - Technical Report TR95-2

(7) Futures are not allowed to have side-effects. Our compiler can handle most side effects in

futures correctly, but rather than possibly introduce an error in a program, we have decided

to disallow all side effects. For example, if data is a future, then

i = data[++i];

is not allowed.

(8) There is no stdin available for the distributed processes.

9. Model Deficiencies

A number of deficiencies exist in the current Enterprise model:

(1) There is no way to test if an asset has returned. When you access its return value, you either

continue (because the value is available) or block (because it has not yet returned); there is no

intermediate state.

(2) New asset types are needed, such as one to support mesh communication, or one to support

peer-to-peer communication.

(3) There is no virtual shared memory. All data must be passed through asset calls. The user

can simulate shared memory using service assets.

10. Performance Tips

This section provides a number of programming suggestions for improving the performance

of an Enterprise application. In the examples given, assume Compute is an asset.

(1) Carefully consider the method used to pass all pointer parameters. At runtime, IN is the least

expensive parameter passing mechanism, while INOUT is the most expensive. Always try

to use the least expensive method possible.

(2) Ensure that asset calls do enough work to offset the overhead of the parallelism (have enough

granularity). A good rule of thumb is that assets (other than services) should execute for at

least one second per call.

(3) Reduce the number of references to asset return values in your program. If a variable is part

of an asset's return value, restrict its usage. All references to asset return values must be

checked to see if the asset call has completed, even in obvious cases where no check is

needed. The Enterprise compiler does not do flow control analysis to eliminate unnecessary

checks. Consider the following code:

int i, array[10];
...
for(i = 0; i < 10; i++)

Enterprise User Manual, V2.4 - 64 - Technical Report TR95-2

{
array[i] = 0;

}
i = Compute(array, INOUT_PARAM(10));

In this example, array is part of the return value of Compute. The compiler generates code so

that all occurrences of array are checked to see if the asset call has returned. It is obvious in

this example that the usage of array in the for loop has no relation to the usage of array in the

call to Compute, however the compiler does not detect this. The solution is simple - use

array only for the purposes of the call to Compute and references to the return value, and use

another name for array in the for loop. For example, the following would work:

int i, * a, array[10];
...
a = array;
for(i = 0; i < 10; i++)
{

a[i] = 0;
}
i = Compute(array, INOUT_PARAM(10));

(4) The previous point implies that if a member of an array is returned by a function, or is an

OUT/INOUT parameter, Enterprise must generate code for all references to that array to see

if they are accessing a returned result. Consider the following example:

int data[100], result[10];
. . .
for(i = 0; i < 10; i += 2)
{

result[i] = Compute(&data[i*10], OUT_PARAM(10));
}
. . .
a = result[j];

The reference to result[j] might refer to the result of any one of the calls to Compute,

depending on the runtime value of j. Enterprise must keep track of all addresses that a call to

an asset can modify. Again, minimize references to return values.

(5) Always call assets with the minimum size of data needed. For example, when passing an

array to an asset, rather than pass all the elements of the data structure, only pass the range of

values that are actually needed.

(6) To maximize the benefit of having an asset run in parallel, the user should ensure that

sufficient computing is performed between the asset call and the time the return value from

the asset is accessed. The following example illustrates what not to do:

int a;
...
a = Compute();
printf("Answer is %d\n", a);

Enterprise User Manual, V2.4 - 65 - Technical Report TR95-2

In this case, the user might as well have not used any parallelism, since the calling asset must

immediately block and await the return from Compute.

(7) Two lazy synchronous calls that modify the same memory locations cannot be active at the

same time. For example, the following code is legal but would be executed sequentially:

int i, data[100], result[10];
. . .
for(i = 0; i < 5; i++)
{

result[i] = Compute(&data[i*10], INOUT_PARAM(20));
}

Each iteration through the loop has the side-effect of modifying overlapping regions of data.

Since the sequential semantics of this loop impose the ordering constraints that the second

call to Compute would use the copy of data returned from the first call, Enterprise cannot

execute the calls in parallel.

(8) Ensure that the parallelism that you expect in your program is the parallelism that is actually

occurring. Use the animation tool to view the parallelism and compare it with your

expectations.

11. Feedback

We would appreciate any feedback that you have on the Enterprise environment. We can be

reached electronically at: enter@cs.ualberta.ca. However, if you would like to report a bug, you

can do this automatically by selecting Report Bug from the Design View menu. This menu item

will email us your message.

