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Abstract

We present two provably optimal differentially private algorithms for the stochastic multi-

arm bandit problem, as opposed to the private analogue of the UCB-algorithm (Mishra and

Thakurta 2015; Tossou and Dimitrakakis 2016) which doesn’t meet the recently discovered

lower-bound of Ω (K log(T )/ε) (Shariff and Sheffet 2018). Our construction is based on a

different algorithm, Successive Elimination (Even-Dar, Mannor, and Mansour 2002), that

repeatedly pulls all remaining arms until an arm is found to be suboptimal and is then

eliminated. We devise two private analogues of Successive Elimination. We also visit the

problem of a private stopping rule, that takes as input a stream of i.i.d samples from an

unknown distribution and returns a multiplicative (1±α)-approximation of the distribution’s

mean, and prove the optimality of our private stopping rule. One of our differentially private

versions of Successive Elimination leverages the private stopping rule algorithm that meets

both the non-private lower bound (Lai and Robbins 1985) and the above-mentioned private

lower bound, while the other variant relies on simpler techniques to achieve both the lower

bounds. We also compare empirically the performance of our algorithms with the private

UCB algorithm.
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Preface

This thesis is an original work by Touqir Sajed. Parts of it have been published in the

Proceedings of the 36’th International Conference on Machine Learning, ICML 2019, Long

Beach Convention & Entertainment Center, Long Beach, California, United States, June

10-15. (Sajed and Sheffet, 2019).

I intend to extend this work with the hope of a possible submission in the Journal of

Machine Learning (JMLR).
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You do not study mathematics because it helps you build a bridge. You study mathematics

because it is the poetry of the universe. Its beauty transcends mere things.

– JONATHAN DAVID FARLEY

Orono, Me., Aug. 25, 2011
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Chapter 1

Introduction

The well-known stochastic multi-armed bandit (MAB) is a sequential decision-making task

in which a learner repeatedly chooses an action (or arm) and receives a noisy reward. The

learner’s objective is to maximize cumulative reward by exploring the actions to discover

optimal ones (having the highest expected reward), balanced with exploiting them. The

problem, originally stemming from experiments in medicine (Robbins 1952), has applica-

tions in fields such as ranking (Kveton et al. 2015), recommendation systems (collaborative

filtering) (Caron and Bhagat 2013), investment portfolio design (Hoffman, Brochu, and Fre-

itas 2011) and online advertising (Schwartz, Bradlow, and Fader 2017), to name a few. Such

applications, relying on sensitive data, raise privacy concerns that may lead to the leakage

of subjects’1 private information.

Differential privacy (Dwork, McSherry, et al. 2006) has become in recent years the gold-

standard for privacy preserving data-analysis alleviating such concerns, as it requires that

the output of the data-analysis algorithm has a limited dependency on any single datum.

Differentially private variants of online learning algorithms have been successfully devised

in various settings (Smith and Thakurta 2013), including a private UCB-algorithm for the

MAB problem (details below) (Mishra and Thakurta 2015; Tossou and Dimitrakakis 2016)

as well as UCB variations in the linear (Kannan et al. 2018) and contextual (Shariff and

Sheffet 2018) settings.

More formally, in the MAB problem at every timestep t the learner selects an arm a out

of K available arms, pulls it and receives a random reward ra,t drawn i.i.d from a distribu-

1By subject, we refer to the individuals whose data are used for analysis
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tion Pa — of support [0, 1] and unknown mean µa. The Upper Confidence Bound (UCB)

algorithm for the MAB problem was developed in a series of works (Agrawal 1995; Berry and

Fristedt 1985) culminating in (Auer, Nicolò Cesa-Bianchi, and Fischer 2002), and is prov-

ably optimal for the MAB problem in the Lai and Robbins 1985 sense. The UCB algorithm

maintains a time-dependent high-probability upper-bound Ba,t for each arm’s mean, and at

each timestep optimistically pulls the arm with the highest bound. The above-mentioned

ε-differentially private (ε-DP) analogues of the UCB-algorithm follow the same procedure

except for maintaining noisy estimates B̃a,t using the tree-based “binary mechanism” (Chan,

Shi, and Song 2010; Dwork, Naor, et al. 2010) (see section 3.3). This mechanism con-

tinuously releases aggregated statistics over a stream of T observations, introducing only

poly log(T )/ε noise in each timestep. The details of this poly-log factor are the focus of this

work.

It was recently shown (Shariff and Sheffet 2018) that any ε-DP stochastic MAB algo-

rithm2 must incur an added pseudo regret of Ω(K log(T )/ε). However, it is commonly known

that any algorithm that relies on the tree-based binary mechanism must incur an added

pseudo regret of ω(K log(T )/ε). Indeed, the tree-based binary mechanism maintains a binary

tree over the T streaming observations, a tree of depth log2(T ), where each node in this tree

holds an i.i.d sample from a Lap( log2(T )
ε

) 3 distribution. At each timestep t, the mechanism

outputs the sum of the first t observations added to the sum of the log2(T ) nodes on the

root-to-tth-leaf path in the binary tree. As a result, the variance of the added noise at each

timestep is Θ( log3(T )
ε2

), making the noise per timestep ω(log(T )/ε). (In fact, most analyses45 of

the tree-based binary mechanism rely on the union bound over all T timesteps, obtaining

a bound of log5/2(T )/ε.) Thus, in a setting where each of the K tree-based binary mecha-

nisms (one per arm) is run over poly(T ) observations (say, if all arms have suboptimality

gap of T−0.1), the private UCB-algorithm must unavoidably obtain an added pseudo regret

of ω(K log(T )/ε) (on top of the regret of the UCB-algorithm). It is therefore clear that the

2In this work, we focus on pure ε-DP, rather than (ε, δ)-DP.
3Lap(b) denotes a Laplace distribution with mean of 0 and scale of b
4(Tossou and Dimitrakakis 2016) claims a O(K log(T )/ε) bound, but (i) rely on (ε, δ)-DP rather than pure-

DP and more importantly (ii) “sweeps under the rug” several factors that are themselves on the order of
log(T ).

5(Mishra and Thakurta 2015) achieves K log(T )3

ε extra pseudo regret

2



challenge in devising an optimal DP algorithm for the MAB problem, namely an algorithm

with added pseudo regret of O(K log(T )/ε), is algorithmic in nature — we must replace the

suboptimal tree-based binary mechanism with a different, simpler, mechanism.

Our Contribution and Organization. In this work, we present two optimal ε-differentially

private algorithms for the stochastic MAB-problem, which meet both the non-private lower-

bound of Lai and Robbins 1985 and the private lower-bound of Shariff and Sheffet 2018. Our

algorithms are DP variant of the Successive Elimination (SE) algorithm (Even-Dar, Mannor,

and Mansour 2002), a different optimal algorithm for stochastic MAB. SE works by pulling

all arms sequentially, maintaining the same confidence interval around the empirical average

of each arm’s reward (as all remaining arms are pulled the exact same number of times);

and when an arm is found to be noticeably suboptimal in comparison to a different arm,

it is then eliminated from the set of viable arms (all arms are viable initially). To design

a DP-analogue of SE we first consider the case of 2 arms and ask ourselves — what is the

optimal way to privately discern whether the gap between the mean rewards of two arms

is positive or negative? This motivates the study of private stopping rules which take as

input a stream of i.i.d observations from a distribution of support [−R,R] and unknown

mean µ, and halt once they obtain a (1 ± α)-approximation of µ with confidence of at

least 1− β. Note that due to the multiplicative nature of the required approximation, it is

impossible to straight-forwardly use the Hoeffding or Bernstein bounds; rather a stopping

rule must alter its halting condition with time. Domingo, Gavaldà, and Watanabe 2002

proposed a stopping rule known as the Nonmonotonic Adaptive Sampling (NAS) algorithm

that relies on the Hoeffding’s inequality to maintain a confidence interval at each timestep.

They showed a sample complexity bound of O
(

R2

α2µ2

(
log( R

β·α|µ|)
))

, later improved slightly

by Mnih, Szepesvári, and Audibert 2008 to O
(

R2

α2µ2

(
log( 1

β
) + log log( R

α|µ|)
))

whenever the

variance σ2 is large compared to the range 2R — in a minimax sense6. The work of Dagum

et al. 2000 shows an essentially matching sample complexity lower-bound.

Our work starts with the introduction of an ε-DP analogue of the NAS algorithm that

is based on the sparse vector technique (SVT), with added sample complexity of (roughly)

O(R log(1/β)
εα|µ| ). Moreover, we show that this added sample complexity is optimal in the sense

6A minimax bound refers to the worst bound amongst all instances
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that any ε-DP stopping rule has a matching sample complexity lower-bound. After we cover

the related background material in Chapters 2 and 3, we present ε-DP versions of NAS in

Section 4.1 along with the lower bound for stopping rules with differential privacy. We then

turn our attention to the design of a private SE algorithm, DP-SE, that runs in epochs with

the goal of removing suboptimal arms with suboptimality gaps at least as large as some

target threshold in each epoch. The objective is to exponentially decay the target threshold

such that all suboptimal arms can be removed after at most O(log(∆2)) epochs, where ∆2

is the suboptimality gap of the second best arm. Our theoretical analysis shows that this

simple strategy along with using private histograms for detecting suboptimal arms and using

fresh reward samples in each epoch is sufficient to attain the differentially private stochastic

K-MAB lower bound while only Laplace noise of scale 1/ε is needed to preserve ε-Differential

Privacy. Details appear in Section 4.1.

Our second differentially private MAB algorithm, DP-SE 2, whose main component is the

private stopping rule devised in Section 4.1, is constructed in Appendix A.1. Yet, straight-

forwardly applying K private stopping rules yields a suboptimal algorithm whose regret

bound is proportional to K2. Instead, we partition the algorithm’s arm-pulls into epochs,

where in each epoch we eliminate all arms of comparable gaps from the best arm; and since

each epoch must be at least twice as long as the previous epoch, we can reset (compute em-

pirical means from fresh reward samples) the algorithm in-between epochs while incurring

only a constant-factor increase to the regret bound. We also assess the empirical perfor-

mance of DP-SE and DP-SE 2 in comparison to the DP-UCB baseline and show that the

improvement in analysis (despite the use of large constants) is also empirically evident under

a wide range of parameters for both of our algorithms. The details of the experiments appear

in Chapter 6 and in Appendix A.2. Based on the experiments and theoretical analyses, it

can be safely said that DP-SE incurs the least pseudo regret amongst all three algorithms.

Lastly, future directions for this work are discussed in Chapter 7.

Discussion. Some may find the results of this work underwhelming — after all the improve-

ment we put forth is solely over poly log-factors, and admittedly they are already subsumed

by the non-private regret bound of the algorithm under many “natural” settings of param-

eters. Our reply to these is two-fold. First, our experiments show an improved performance

4



empirically, which is due to the different algorithmic approach. Second, as the designers of

privacy-preserving learning algorithms it is our “moral duty” to quantify the added cost of

privacy on top of the already existing cost, and push this added cost to its absolute lowest.

We would also like to emphasize a more philosophical point arising from this work. Both

the UCB-algorithm and the SE-algorithm are provably optimal for the MAB problem in the

non-private setting, and are therefore equivalent. But the UCB-algorithm makes in each

timestep an input-dependent choice (which arm to pull); whereas the SE-algorithm input-

dependent choices are reflected only in K−1 special timesteps in which it declares “eliminate

arm a” (in any other timestep it chooses the next viable arm). In that sense, the SE-algorithm

is simpler than the UCB-algorithm, making it the less costly to privatize between the two.

In other words, differential privacy gives quantitative reasoning for preferring one algorithm

to another because “simpler is better.” While not a full-fledged theory (yet), we believe

this narrative is of importance to anyone who designs differentially private data-analysis

algorithms.

5



Chapter 2

Background Material : Multi-Armed
Bandits and Stopping Rules

Readers who are familiar with Stochastic Multi-Armed Bandits and Stopping Rules may skip

this chapter.

2.1 Stochastic Finite Armed Bandits

In the Machine Learning literature, the term bandit commonly refers to a Casino’s slot

machine i.e. one-armed bandit. In a multi-armed bandit problem an agent is facing a finite

number of slot machines (or arms). The agent allocates a coin, in each round, on a slot

machine and earns some money (a reward) depending on the machine selected. Her goal is

to maximize the sum of money generated.

The Stochastic Multi-Armed Bandit problem was originally formulated by Robbins 1952,

where there are K arms and pulling the i’th arm at round t samples a reward rt, drawn i.i.d

from distribution Di with mean µi and a known support [0, 1]. The agent (algorithm) has

to pull an arm it at round t without knowing Di. The so called Exploration vs Exploitation

dilemma stems from the fact that Di is unknown to the algorithm. Ideally, a MAB algorithm

would like to maximize the sum of rewards by hoping to choose the best possible arm, i.e.

the arm with the highest µi. Since µi are unknown, the algorithm has to perform a cycle of

exploration and exploitation where at certain rounds (exploration) it pulls arms for which

it didn’t get the chance to observe many rewards, while at other rounds (exploitation) it

pulls arms that have given large rewards so far on average. Having run the algorithm for T

6



rounds, the commonly used performance metric is the expected or pseudo regret RT defined

as :

RT = max
i∈{1,...,K}

(
T∑
t=1

µi

)
−

T∑
t=1

µit (2.1)

We denote with ∆i the suboptimality gap of arm i with respect to an optimal arm, i.e

∆i = maxj∈{1,...,K} µj − µi. Pseudo regret bounds of Stochastic MAB algorithms come in

two flavors : (1) the instance dependent bound and (2) the instance independent minimax

bound. An instance dependent pseudo regret bound is a function of suboptimality gaps and

the number of rounds T that the algorithm has run for. On the other hand, the instance

independent minimax bound is a function of T and K that holds for all instantiations of

µ1, . . . , µK , allowing for an adversary to set each µi in a way that depends on T and K.

Subsequently, the overall pseudo regret bound of a stochastic MAB algorithm at round T

is the minimum of these two bounds. The well known asymptotic instance dependent lower

bound of Ω(
∑

i:∆i>0
log(T )

∆i
) was derived by Lai and Robbins 1985 while Auer, Nicolo Cesa-

Bianchi, et al. 2002 proved an instance independent minimax lower bound of Ω(
√
TK).

Throughout the chapter, we denote µ̄i as the average of all the rewards seen so far by pulling

arm i. In the following two sub-sections we describe the two commonly known stochastic

MAB algorithms — Upper Confidence Bound and Successive Elimination, both of which

attain the same asymptotic pseudo regret complexity.

2.1.1 Upper Confidence Bound

The Upper Confidence Bound is a family of stochastic MAB algorithms that are based on

the idea of Optimism in the face of Uncertainty. The work by Auer, Nicolò Cesa-Bianchi,

and Fischer 2002 was the first to introduce this idea by proposing the UCB1 algorithm. The

idea is simple: maintain a high probability upper bound, also known as the index, on all

the µi based on the respective empirical means and concentration bounds, and pull the arm

at each round with the maximum index, updating its index based on the immediate reward

observed. This simple-yet-effective approach attains the optimal asymptotic pseudo regret of

O(
∑

i:∆i>0
log(T )

∆i
). Unfortunately, all UCB algorithms that construct the indices based on the

standard Chernoff-Hoeffding bound incur an instance independent minimax pseudo regret of

O(
√
TK log T ) which is a

√
log T factor away from the lower bound. Note that there exists

7



more sophisticated algorithms such as the MOSS algorithm (Audibert and Sébastien Bubeck

2009) that attains the lower bound up to constants by using carefully constructed tighter

indices. Their analysis techniques are more complicated than the classical UCB algorithms

and are outside the scope of this thesis. Below we present a version of UCB along with its

pseudo regret analysis.

Algorithm 1 UCB

1: Input : T, K
2: Initialize t = 0, µ̄i = 0, ni = 0 ∀i ∈ {1, ..., K}
3: repeat
4: t← t+ 1
5: if t ≤ K then
6: Pull Arm t and receive reward rt
7: µ̄t ← rt
8: nt ← 1
9: else

10: Let i← argmaxj

(
µ̄j +

√
2 log t

nj

)
11: Pull Arm i and receive reward rt
12: Update µ̄i using rt // Updating empirical mean
13: ni ← ni + 1
14: end if
15: until t ≥ T

Fact 2.1.1. [Hoeffding’s Inequality] Let X1, . . . , Xt be i.i.d samples from a bounded dis-

tribution with mean µ, finite support [a, b], range R = b−a. Then the following concentration

bound for their average Xt :=

t∑
i=1

Xi

t
holds:

Pr[|Xt − µ| ≥ α] ≤ 2 exp

(
−2tα2

R2

)
(2.2)

Subsequently, the following bound holds with probability at least 1− β:

|Xt − µ| ≤ R

√
log(2/β)

2t
(2.3)

Lemma 2.1.2. Given β ≥ 0 and αi ≥ 0, ∀i ∈ {1, . . . , K}, such that
∑K

i=1 αi = N , it holds

that
∑K

i=1

√
αiβ ≤

√
NKβ.

8



Proof. Due to the concavity of square root function, Jensen’s inequality yields the following:

K∑
i=1

√
αiβ

K
≤

√√√√ K∑
i=1

αiβ

K
=

√
βN

K
. (2.4)

Hence, it holds that
∑K

i=1

√
αiβ ≤

√
NKβ

Lemma 2.1.3. Denote by i∗ any optimal arm such that µi∗ = µ∗, and fix any suboptimal

arm i : ∆i > 0. If the UCB algorithm pulls arm i in round t, then at least one of the

following holds:

1. µ̄t−1
i∗ ≤ µ∗ −

√
2 log t

nt−1
i∗

2. µ̄t−1
i ≥ µi +

√
2 log t

nt−1
i

3. nt−1
i ≤

8 log T

∆2
i

where nt−1
i denotes the number of times arm i has been pulled up till and including round

t− 1.

Proof. Suppose UCB selects arm i in round t. If (1), (2), (3) are all false, then we arrive at

the following:

µ̄t−1
i∗ +

√
2 log t

nt−1
i∗

> µ∗ [since (1) is false] (2.5)

= µi + ∆i (2.6)

> µi +

√
8 log T

nt−1
i

[since (3) is false] (2.7)

≥ µi +

√
8 log t

nt−1
i

(2.8)

> µ̄t−1
i +

√
2 log t

nt−1
i

[since (2) is false] (2.9)

which contradicts the fact that it = i.

9



Theorem 2.1.4. Fix a time horizon T . Then, for every t ≤ T , the pseudo regret Rt of UCB

is upper bounded by:

E[Rt] ≤ min

(
t, O

(√
Kt log t

)
, O

( ∑
i:∆i>0

log T

∆i

))
(2.10)

Proof. First since ∀i ≥ 1, ri ∈ [0, 1], the trivial bound of Rt ≤ t follows. Next, we prove an

instance dependent pseudo regret bound. Let i∗ be any optimal arm: µi∗ = µ∗. Fix any

sub-optimal arm i : ∆i > 0, and define Ti =

⌈
8 log T

∆2
i

⌉
. Then,

E[nTi ] = E
[ T∑
t=1

1(it = i)

]
(2.11)

= E
[ T∑
t=1

1(it = i, nt−1
i ≤ Ti) +

T∑
t=1

1(it = i, nt−1
i > Ti)

]
(2.12)

≤ Ti +
T∑

t=Ti+1

Pr(it = i, nt−1
i > Ti) (2.13)

Lemma:2.1.3

≤ Ti +
T∑

t=Ti+1

(
Pr

(
µ̄t−1
i∗ ≤ µ∗ −

√
2 log t

nt−1
i∗

)
+ Pr

(
µ̄t−1
i ≥ µi +

√
2 log t

nt−1
i

))
(2.14)

Next, we upper bound the two probability terms,

T∑
t=Ti+1

Pr

(
µ̄t−1
i∗ ≤ µ∗ −

√
2 log t

nt−1
i∗

)
1

≤
T∑

t=Ti+1

Pr

 t−1⋃
nt−1
i∗ =1

{
µ̄t−1
i∗ ≤ µ∗ −

√
2 log t

nt−1
i∗

} (2.15)

2

≤
T∑

t=Ti+1

1

t3
(2.16)

<
∞∑
t=2

1

t3
(2.17)

< 0.21 (2.18)

where
1

≤ is due to the fact that nt−1
i∗ is a random variable, hence we needed to use a union

bound over all events such that in an event nt−1
i∗ can take a unique value in {1, . . . , t − 1}.
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For any fixed t, i∗ and nt−1
i∗ , it holds that Pr

(
µ̄t−1
i∗ ≤ µ∗ −

√
2 log t

nt−1
i∗

)
≤

1

t4
due to Hoeffd-

ing’s bound and the union bound over the events such that nt−1
i∗ ∈ {1, . . . , t − 1} results in

inequality
2

≤.

Using the same arguments, it can be shown that:

T∑
t=Ti+1

Pr

(
µ̄t−1
i ≥ µi +

√
2 log t

nt−1
i

)
< 0.21 (2.19)

We have shown that : E[nTi ] < Ti + 0.42 ≤
8 log T

∆2
i

+ 1.42. The pseudo regret of UCB

thus is upper bounded as follows:

E[RT ] =
∑
i:∆i>0

E[nTi ]∆i (2.20)

<
∑
i:∆i>0

(
8 log T

∆2
i

+ 1.42

)
∆i (2.21)

= 8

( ∑
i:∆i>0

log T

∆i

)
+ 1.42

∑
i:∆i>0

∆i (2.22)

= O

( ∑
i:∆i>0

log T

∆i

)
(2.23)

Now we proceed towards an instance independent pseudo regret bound. Let E be the good

event such that ∀ni ≤ t, i ∈ {1, . . . , K} : |µ̄i−µ| ≤

√
2 log t

ni
. From the Hoeffding’s inequality

and a union bound over all arms i and ni, we get: Pr(E) ≥ 1−
2

t2
. Let at be the arm pulled

by UCB at round t. Then, it must be that: µ̄at +

√
2 log t

ntat
≥ µ̄a∗ +

√
2 log t

nta∗
. Since under

E : µat +

√
2 log t

ntat
≥ µ̄at and µ̄a∗ +

√
2 log t

nta∗
≥ µa∗ , the following chain of inequalities can be

derived:

µat + 2

√
2 log t

ntat
≥ µ̄at +

√
2 log t

ntat
≥ µ̄a∗ +

√
2 log t

nta∗
≥ µa∗ (2.24)

11



Hence, ∆at = µa∗ − µat ≤ 2

√
2 log t

ntat
. Since

∑
i:∆ai>0 n

t
ai
≤ t, under E we have:

Rt =
∑

i:∆ai>0

∆ain
t
ai
≤

∑
i:∆ai>0

√
8ntai log t

Lemma:2.1.2

≤
√

8Kt log t. (2.25)

We now convert a high probability bound on Rt to an expected bound:

E[Rt] = E[Rt|E ]× Pr(E) + E[Rt|E ′]× Pr(E ′) (2.26)

≤
((

1− 2

t2

)
×
√

8Kt log t

)
+
(
t× 2/t2

)
(2.27)

≤
√

8Kt log t+ 2 (2.28)

= O
(√

Kt log t
)

(2.29)

We complete the proof by taking the minimum of the instance dependent, instance inde-

pendent pseudo regret bound, and t.

2.1.2 Successive Elimination

The algorithm Successive Elimination (Even-Dar, Mannor, and Mansour 2002), in contrast

to the UCB class, is based on an even simpler idea of active arm elimination. The algorithm

proceeds in cycles n and in each cycle it pulls all arms from the set of active (viable) arms,

S, just once and renders a set of arms, Q, non-viable such that the high probability upper

bound on µi,∀i ∈ Q, is smaller than the high probability lower bound on µ of any other

arm in S. Once such a set of non-viable arms have been found, they are removed from S

and never pulled again. We present the algorithm below. Like UCB, Successive Elimination

is also instance dependent asymptotically optimal while it is near-optimal in the minimax

instance independent sense due to an extra multiplicative factor of
√

log T as shown in the

analyses below.

Theorem 2.1.5. Fix a time horizon T . Then, for every t ≤ T , the pseudo regret Rt of

Successive Elimination is upper bounded by:

E[Rt] ≤ min

(
t, O

(√
Kt log T

)
, O

( ∑
i:∆i>0

log T

∆i

))
(2.30)
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Algorithm 2 Successive Elimination

1: Input: T, K
2: Initialize t = 0, n = 0, S = {1, ..., K}, µ̄i = 0 ∀i ∈ S // n is the cycle count.
3: for all Cycles do
4: for every arm i in S do
5: Pull arm i and update µ̄i based on the observed reward.
6: t← t+ 1
7: HALT if t = T
8: end for

9: Remove all arms i from S s.t ∃j ∈ S : µ̄j − µ̄i > 2

√
2 log T

n
10: n← n+ 1
11: end for

Proof. Similar to the proof of Theorem 2.1.4, the proof is based on bounding the high

probability pseudo regret under the good event E and arguing that the pseudo regret under

the bad event is negligible. As before, we define the good event E such that ∀nti, t ≤ T, i ∈

{1, . . . , K} : |µ̄i − µi| ≤

√
2 log T

nti
. From the Hoeffding’s inequality and a union bound over

all arms i and nti, we get: Pr(E) ≥ 1 −
2

T 2
. In order to derive a bound on ∆i, it suffices to

notice that as long as an arm a remains viable, its confidence interval overlaps the confidence

interval of all other viable arms, including the best arm : µ̄a∗ − µ̄a ≤ 2

√
2 log T

nta∗
. Under E ,

it holds that −

√
2 log T

nta
−µa ≤ −µ̄a and µa∗ −

√
2 log T

nta∗
≤ µ̄a∗ . Thus, the following relation

is immediate since nta ≤ nta∗ ∀a 6= a∗:

∆a = µa∗ − µa ≤ 4

√
2 log T

nta
(2.31)

Consequentially, at round t, it must be that

nta ≤
32 log T

∆2
a

(2.32)

Thus for any round t and arm a 6= a∗, Successive Elimination algorithm never pulls arm

a more than
32 log T

∆2
a

times under E . Using the bound on ∆i and Lemma 2.1.2, we bound
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Rt under E :

Rt =
∑

i:∆ai>0

∆ain
t
ai
≤

∑
i:∆ai>0

√
32ntai log T

Lemma:2.1.2

≤
√

32tK log T = O(
√
tK log T ) (2.33)

The high probability instance dependent pseudo regret bound uses inequality 2.32:

RT =
∑

i:∆ai>0

∆ain
t
ai
≤

∑
i:∆ai>0

(
32 log T

∆2
ai

)
∆ai =

∑
i:∆ai>0

32 log T

∆ai

= O

 ∑
i:∆ai>0

log T

∆ai

 (2.34)

These high probability bounds can be converted to expected bounds using the same

technique used in the proof of Theorem 2.1.4. Taking the minimum of the instance dependent

bound, instance independent bound and t completes the proof.

2.2 Stopping Rules

In the stopping rule problem, the goal is to approximate the mean such that the approx-

imation error is dependent on the magnitude of the mean. Stopping rules have multiple

applications including Reinforcement Learning (Sajed, Chung, and White 2018). However,

to the best of our knowledge, our work is the first to use a stopping rule algorithm to develop

a multi-armed bandit algorithm. Formally, a stopping rule algorithm has access to a stream

of iid samples X1, X2, . . . , generated from an unknown distribution D with an unknown mean

µ, unknown variance σ2, and the algorithm only knows that ∀ Xi ∈ [−R,R] almost surely.

The goal of an (α, β) stopping rule, for α, β ∈ (0, 1), is to produce a mean approximation µ̂

that satisfies the following inequality requiring as little number of samples as possible :

Pr[|µ̂− µ| ≤ α|µ|] ≥ 1− β (2.35)

It is required that |µ| > 0. Since µ is not known, it is not possible to derive in advance T -

the number of samples required to produce such an approximation. Instead, at every round

t, stopping rule algorithms (Dagum et al. 2000; Domingo, Gavaldà, and Watanabe 2002;

Mnih, Szepesvári, and Audibert 2008) sample a new Xt and check a halting condition based

on a function of X1, . . . , Xt, α, and a threshold usually based on a concentration bound.

Once the halting condition is satisfied, the algorithm becomes certain that its estimation of

the mean satisfies equation (2.35) and releases the statistic. We measure the performance of
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a stopping rule algorithm based on T . It was shown in Dagum et al. 2000 that any stopping

rule algorithm requires at least Ω
(

max
(

σ2

α2µ2 ,
R
α|µ|

)
· log(1/β)

)
samples in expectation, and

in addition, they proposed an optimal stopping rule algorithm AA that meets this lower

bound. However, their algorithm only works when Xi are unsigned random variables. Later,

Mnih, Szepesvári, and Audibert 2008 proposed an algorithm that nearly meets the lower

bound with a sample complexity of O
(

max
(

σ2

α2µ2 ,
R
α|µ|

)
·
(

log 1
β

+ log log R
α|µ|

))
that works

even when Xi are signed RVs. We next describe a simpler algorithm known as Nonmonotonic

Adaptive Sampling Domingo, Gavaldà, and Watanabe 2002 that works for signed random

variables.

2.2.1 Nonmonotonic Adaptive Sampling (NAS)

Nonmonotonic Adaptive Sampling (NAS) was proposed by Domingo, Gavaldà, and Watan-

abe 2002. Given Xt is the average of X1, . . . , Xt and that Ht is the corresponding Hoeffding

bound for Xt, NAS checks the condition: |Xt| ≥ Ht(1 + 1
α

) at each round and releases Xt as

soon as the condition gets satisfied. How sample efficient is this algorithm when compared

to AA? It turns out that this simple approach is good enough for a range of instances.

NAS attains an expected sample complexity of O
(

R2

α2µ2 ·
(

log 1
β

+ log R
α|µ|

))
which is opti-

mal when σ2

α2µ2 ∈ Θ( R
α|µ|) and log R

α|µ| ∈ Θ(log 1
β
). Below, we present the pseudocode of NAS

along with the analyses.

Algorithm 3 NAS

1: Input: α, β
2: Initialize t← 0.
3: repeat
4: t← t+ 1
5: Get a new sample Xt and update the mean Xt.

6: Ht ← R
√

1
2t

log(4t2

β
)

7: until |Xt| ≥ Ht(1 + 1
α

)

8: return Xt

Theorem 2.2.1. The NAS algorithm is an (α, β) stopping rule.

Proof. At each round t, we allocate error probability of β/2t2 for the Hoeffding bound Ht

corresponding to Xt. Since the halting condition depends on Xi which are random variables,
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there is a non-zero probability that the algorithm runs for an infinite number of rounds.

Hence, we need to apply a union bound for all rounds to infinity. Doing so results in the total

error probability :
∑∞

t=1
β/2t2 = βπ2

12
< β. We denote the event under which ∀t : |Xt−µ| ≤ Ht

by E . Thus, it holds that Pr[E ] ≥ 1− β.

Once the halting condition of |Xt| ≥ Ht(1 + 1
α

) is satisfied, we establish the following

inequality from it: Ht ≤ α(|Xt| −Ht). As a result, under E , we arrive at : |Xt − µ| ≤ Ht ≤

α(|Xt|−Ht). Due to the reverse triangle inequality, it holds that
∣∣|Xt| − |µ|

∣∣ ≤ |Xt−µ| ≤ Ht,

implying that |Xt| −Ht ≤ |µ| and concluding the proof.

Theorem 2.2.2. With probability at least 1−β, NAS takes at most O
(

R2

α2µ2

(
log 1

β
+ log R

α|µ|

))
samples to halt.

Proof. Recall the event E as defined in the proof of Theorem 2.2.1. Under E , it holds that

||µ| − |Xt|| ≤ |µ−Xt| ≤ Ht which implies a lower bound : |Xt| ≥ |µ| −Ht. Thus, under E ,

NAS must halt by the earliest timestep t such that the condition |Xt| ≥ Ht(1 + 1
α

) becomes

true. Hence, it suffices to find the earliest round t that satisfies the following inequality

:|µ| − Ht ≥ Ht(1 + 1
α

). This reduces to solving the equation for t: |µ| ≥ Ht(2 + 1
α

) =

R
√

2
t

log(4t2

β
) + R

α

√
1
2t

log(4t2

β
):

|µ| ≥ Ht

(
2 +

1

α

)
= R

√
2

t
log

(
4t2

β

)
+
R

α

√
1

2t
log

(
4t2

β

)
(2.36)

Let t∗ = max(t1, t2) such that t1 satisfiesR
√

2
t1

log(
4t21
β

) ≤ |µ|/2 and t2 satisfies R
α

√
1

2t2
log(

4t22
β

)

≤ |µ|/2. It is easy to see that t∗ satisfies Equation 2.36. In order to find the smallest t1, we

use Fact 2.2.3 (See Appendix Section A.3 for proof) on R
√

2
t1

log(
4t21
β

) ≤ |µ|/2 which gives

t1 = 8R2

µ2

(
log 4

β
+ 4 log

√
8R
|µ|

)
. Similarly, we again use Fact 2.2.3 on R

α

√
1

2t2
log(

4t22
β

) ≤ |µ|/2 to

get t2 = 4R2

α2µ2

(
log 4

β
+ 4 log 2R

α|µ|

)
. Since α < 1, it must be that t∗ ≤ 12R2

α2µ2

(
log 1

β
+ 4 log R

α|µ|

+ log 324
)
, implying t∗ ≤ O

(
R2

α2µ2

(
log 1

β
+ log R

α|µ|

))
. Since the chain of argument is only

valid under E , our sample complexity bound holds with probability at least 1− β.

While Theorem 2.2.2 shows a high probability bound, one can show a bound of the same
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asymptotic complexity, that holds in expectation, by allocating a smaller error probability.

For example, at every round t = 1, . . . , it suffices to allocate an error probability of
β

1.21t3

to prove an expected sample complexity bound.

Fact 2.2.3. Fix any a ≥ 1 and any 0 < b ≤ 1
16

. Then for any e ≤ x ≤ log(a/b))/b it holds that

log (a · x)

x
> b, and for any x ≥ 2 log(a/b))/b it holds that

log (a · x)

x
< b.
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Chapter 3

Background Material : Differential
Privacy

3.1 Foundations

Readers who are familiar with the Foundations of Differential Privacy may skip this chapter.

Definition 3.1.1. Neighboring Datasets. We denote by X the space of all datasets. We

say that two datasets D,D′ ∈ X are neighbors if they differ in only one datum. In our

settings, we restrict all datasets to be a 1 dimensional array, i.e. a datum is a real number.

Definition 3.1.2. ε-Differential Privacy. A randomized algorithmM preserves ε - Differ-

ential Privacy if for all neighboring datasets D,D′ and for all sets of outputs O, the following

inequality holds:
Pr[M(D) ∈ O]

Pr[M(D′) ∈ O]
≤ exp(ε) (3.1)

Definition 3.1.3. Privacy Loss. The privacy loss of a mechanism1 M is defined as

max
O,D,D′

[
log
(

Pr[M(D)∈O]
Pr[M(D′)∈O]

)]
, hence the privacy loss of an ε-differentially private mechanism

is ε.

Next, we introduce the notion of Global Sensitivity which is crucial in selecting the scale

of the noise added to ensure differential privacy.

1We interchangeably use mechanism and algorithm
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Definition 3.1.4. Global Sensitivity. A query q : X → Rk has a Global Sensitivity of

∆q if for all neighboring datasets D,D′, it follows :

||q(D)− q(D′)||1 ≤ ∆q (3.2)

There are other measures of sensitivity used in the privacy literature but since we only

use the Global Sensitivity measure throughout the thesis, sensitivity is used interchangeably

with global sensitivity. Additionally, we use Y for denoting the output space of a differentially

private algorithm.

Post-Processing. Often times we are interested in analyzing the privacy guarantees of a

system that carries out a series of (possibly randomized) computations on the output of an ε-

Differentially Private Mechanism. Indeed, carrying out any series of computations on such a

private output preserves ε- Differential Privacy as long as the system does not interact with

any other non-private output. The following proposition formalizes this:

Proposition 3.1.1. (Post-Processing). Let M : X → Y be an ε - DP algorithm and let

f : Y → Y ′ be any (randomized) function. Then f ◦M : X → Y ′ is ε - differentially private.

Proof. We first show a proof for any deterministic function f . Fix two neighboring datasets

D,D′. Let T = {r ∈ R : f(r) ∈ S} for any output set S ⊆ Y ′. We then have:

Pr[f(M(D)) ∈ S] = Pr[M(D) ∈ T ] (3.3)

≤ exp(ε) Pr[M(D′) ∈ T ] (3.4)

= exp(ε) Pr[f(M(D′)) ∈ S] (3.5)

The proof can be generalized to randomized mappings by taking into account probability

marginalization over the output space Y ′.

Serial Composition. Many differentially private mechanisms are composed of multiple

private mechanisms that are run on the input dataset. Serial Composition is an important

property of all differentially private mechanisms that preserves (
∑k

i=1 εi)- differential privacy

whenever k differentially private computations are carried out with parameters ε1, . . . , εk

respectively. The theorem below summarizes Serial Composition for k=2.
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Theorem 3.1.2. LetM1 : X → Y1 andM2 : X → Y2 be independent ε1 and ε2 differentially

private algorithms respectively. Then their serial composition defined asM1:2 : X → Y1×Y2

by the mapping : M1:2(D) = (M1(D),M2(D)) is (ε1 + ε2)-Differentially Private.

Proof. Let D,D′ be neighboring datasets and fix any (y1, y2) ∈ Y1 × Y2. Then, due to the

independence of M1 and M2 over their randomness, we have that:

Pr[M1:2(D) = (y1, y2)]

Pr[M1:2(D′) = (y1, y2)]
=

Pr[M2(D) = y2|M1(D) = y1]

Pr[M2(D′) = y2|M1(D′) = y1]
· Pr[M1(D) = y1]

Pr[M1(D′) = y1]
(3.6)

≤ exp(ε2) · exp(ε1) (3.7)

= exp (ε1 + ε2) (3.8)

Parallel Composition. Earlier we showed the privacy guarantee under Serial Composition.

In the Parallel Composition, ε-differentially private algorithm(s) are run multiple times on

non-overlapping subsets of the input dataset. As shown below, Parallel Composition guar-

antees ε - differential privacy unlike Serial Composition.

Theorem 3.1.3. Fix an input dataset D ∈ X and decompose it into two partitions d1 and

d2 independent of D (namely, for every D the choice of which data entries fall into d1 and

which data entries fall into the complementary d2 is the same). Let M1 : X → Y1 and

M2 : X → Y2 be ε - differentially private algorithms. Then the composition of individual

private analyses by M1 on d1 and M2 on d2, denoted by M̃1:2(D) = (M1(d1),M2(d2)),

preserves ε-differential privacy.

Proof. Fix two neighboring datasets D,D′ and decompose D into 2 partitions d1, d2, and

similarly D′ into 2 partitions d′1, d
′
2. By definition, either d1 6= d′1 or d2 6= d′2. Denote

k ∈ {1, 2} as: dk = d′k and k′ ∈ {1, 2} as: dk′ 6= d′k′ . Additionally fix an output from the

parallel composition : (y1, y2). Then it follows:
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Pr[M̃1:2(D) = (y1, y2)]

Pr[M̃1:2(D′) = (y1, y2)]
=

Pr[(M1(d1),M2(d2)) = (y1, y2)]

Pr[(M1(d′1),M2(d′2)) = (y1, y2)]
(3.9)

=
Pr[Mk′(dk′) = yk′ |Mk(dk) = yk]

Pr[Mk′(d′k′) = yk′ |Mk(d′k) = yk]
· Pr[Mk(dk) = yk]

Pr[Mk(d′k) = yk]
(3.10)

1

≤ exp(ε) · 1 (3.11)

where
1

≤ follows from the fact that Mk′ is ε - differentially private and that dk = d′k.

If the output of Mk is dependent on the output of Mk′ , then it is also the case that
Pr[Mk(dk)=yk|Mk′ (dk′ )=yk′ ]
Pr[Mk(d′k)=yk|Mk′ (d

′
k′ )=yk′ ]

· Pr[Mk′ (dk′ )=yk′ ]
Pr[Mk′ (d

′
k′ )=yk′ ]

≤ exp(ε).

We denote the probability density function of a random variable x with PDF(x). Be-

fore introducing the Laplace Mechanism, we first provide the definition of Laplace random

variables along with a concentration bound for completeness below.

Fact 3.1.4. A Laplace r.v. X ∼ Lap(λ) is sampled from a distribution with PDF(x) ∝ e−|x|/λ.

It is known that E[X] = 0, Var[X] = 2λ2 and that for any τ > 0 it holds that Pr[|X| > τ ] =

e−τ/λ.

Laplace Mechanism. The Laplace mechanism is the de facto standard ε - differentially

private mechanism whenever the given query releases continuous outputs. Formally, let q(.)

be any query q : Rn → Rk with global sensitivity of ∆q. The Laplace mechanism M(D)

adds i.i.d centered 2 Laplace noises of scale ∆q/ε to the query q(D):

Sample X1, . . . , Xk
i.i.d∼ Lap(∆q/ε) (3.12)

Output M(D) = q(D) + (X1, . . . , Xk) (3.13)

Theorem 3.1.5. The Laplace Mechanism is ε - Differentially Private.

Proof. The proof illustrates the so-called sliding property of Laplace distributions. For any

output O ∈ Rk, the following relationship holds:

2A centered Laplace distribution has a mean of 0
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PDF[M(D) = O]

PDF[M(D′) = O]
=

PDF[(X1, . . . , Xk) = O − q(D)]

PDF[(X1, . . . , Xk) = O − q(D′)]
(3.14)

=
k∏
i=1

(
exp(− ε|Oi−q(D)i|

∆q
)

exp(− ε|Oi−q(D′)i|
∆q

)

)
(3.15)

=
k∏
i=1

exp

(
ε(|Oi − q(D′)i| − |Oi − q(D)i|)

∆q

)
(3.16)

1

≤
k∏
i=1

exp

(
ε|q(D)i − q(D′)i|

∆q

)
(3.17)

= exp

(
ε||q(D)− q(D′)||1

∆q

)
(3.18)

2

≤ exp(ε) (3.19)

The inequality
1

≤ is due to the triangle inequality and
2

≤ follows from the fact that

||q(D)− q(D′)||1 ≤ ∆q.

The following theorem gives a utility/accuracy guarantee for the Laplace Mechanism.

Theorem 3.1.6. With probability at least 1−β, the output of the Laplace MechanismM(D)

satisfies the following: ||M(D)− q(D)||∞ ≤
∆q ln(k/β)

ε

Proof. Due to Fact 3.1.4 and the union bound, it follows that:

Pr

[
||M(D)− q(D)||∞ ≥

∆q ln(k/β)

ε

]
= Pr

[
max
i∈1,...,k

|Xi|∞ ≥
∆q ln(k/β)

ε

]
(3.20)

≤ k · Pr

[
|Xi|∞ ≥

∆q ln(k/β)

ε

]
(3.21)

= k

(
β

k

)
(3.22)

= β (3.23)

Hence, the converse statement: ||M(D) − q(D)||∞ ≤
∆q ln(k/β)

ε
holds with probability

at least 1− β.
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3.2 Sparse Vector Technique

Oftentimes we are interested in finding out if the output of a query qi(D) passes some preset

threshold T . One such scenario arises in selecting the first candidate for a job position with

a high score (e.g candidate’s interview score qi(D) passes some high threshold T ). We can

preserve ε-differential privacy in this case using the Sparse Vector Technique (SVT). Namely,

the SVT mechanism asks for the first query in a sequence of queries q1, . . . , qt whether it

passes a threshold T in a differentially private manner, and halts as soon as one such query

has passed the threshold. The output is only composed of whether a query qi ∀i ∈ [1, . . . , t]

has passed the threshold T or not. Before delving into the privacy guarantee of the SVT

algorithm, we define accuracy in this streaming setting below.

Definition 3.2.1. (Accuracy). An algorithm which outputs a stream of answers o1, o2, . . . ∈

{0, 1}∗ in response to a stream of k queries q1, . . . , qk is (α, β)-accurate with respect to a

threshold T if with probability at least 1− β, the algorithm does not halt before qk, and for

all oi = 1:

qi(D) ≥ T − α (3.24)

and for all oi = 0:

qi(D) ≤ T + α (3.25)

Algorithm 4 SVT

1: Input: T,D, a sequence of queries q1, q2, . . ..
2: Sample B ∼ Lap(3∆q/ε).
3: Set T̂ = T +B
4: for all qi in sequence do
5: Ai ∼ Lap(3∆q/ε)
6: if qi(D) + Ai ≥ T̂ then
7: Release oi = 1 and Halt.
8: else
9: Release oi = 0 and Continue

10: end if
11: end for

Theorem 3.2.1. Assume that the queries qi all have sensitivity of ∆q. Then SVT algorithm

is ε - Differentially Private.
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Proof. Fix any two neighboring datasets D and D′. We denote by O the random variable

representing the output of SVT on D and denote by O′ the random variable representing

the output of SVT on D′. The outputs are of the form : 0, . . . , 0︸ ︷︷ ︸
k−1

but then ok = 1 for a

fixed k ≥ 1. The only two types of random variables internal to the algorithms are (1) the

noisy threshold T̂ and (2) A1, . . . , Ak. In the following analysis, we fix the arbitrary values

of A1, . . . , Ak−1 and take probabilities with respect to the randomness of Ak and T̂ .

We define with g(D) the maximum noisy value of any query q1, . . . , qk−1 evaluated on

D, eg. g(D) = maxi<k(gi(D) + Ai) and similarly g(D′) = maxi<k(gi(D
′) + Ai) for D′. We

denote the pdf of T̂ (similarly for Ai) evaluated at t by PDF[T̂ = t]. Additionally, let

o = [0, . . . , 0, 1︸ ︷︷ ︸
k

]. We have that:

Pr
T̂ ,Ak

[O = o] = Pr
T̂ ,Ak

[T̂ > g(D) and qk(D) + Ak ≥ T̂ ] (3.26)

= Pr
T̂ ,Ak

[T̂ ∈ (g(D), qk(D) + Ak]] (3.27)

= Pr
T̂ ,Ak

[(T̂ + g(D′)− g(D)) ∈ (g(D) + g(D′)− g(D), qk(D) + Ak + g(D′)− g(D)]]

(3.28)

= Pr
T̂ ,Ak

[(T̂ + g(D′)− g(D)) ∈ (g(D′), qk(D) + Ak + g(D′)− g(D)]] (3.29)

= Pr
T̂ ,Ak

[(T̂ + g(D′)− g(D)) ∈ (g(D′), qk(D
′) + Ak + g(D′)− g(D)− qk(D′) + qk(D)]]

(3.30)

which evaluates to the following:∫ ∞
−∞

∫ ∞
−∞

PDF[Ak = a+ g(D)− g(D′) + qk(D
′)− qk(D)] · PDF[T̂ = t+ g(D)− g(D′)]

· 1[t ∈ (g(D′), qk(D
′) + a]] da dt

(3.31)
1

≤
∫ ∞
−∞

∫ ∞
−∞

exp(
2

3
ε)PDF[Ak = a] exp(

1

3
ε)PDF[T̂ = t]1[t ∈ (g(D′), qk(D

′) + a]] da dt (3.32)

= exp(ε) Pr
T̂ ,Ak

[T̂ > g(D′) and qk(D
′) + Ak ≥ T̂ ] (3.33)

= exp(ε) Pr
T̂ ,Ak

[O′ = o] (3.34)

The inequality
1

≤ is due to the fact that |g(D)− g(D′) + qk(D
′)− qk(D)| ≤ 2∆q, |g(D)−
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g(D′)| ≤ ∆q and the sliding property of Laplace distribution as was also shown in the

privacy proof of the Laplace Mechanism (See Theorem 3.1.5). Next, we consider the case that

qi(D)+Ai never crosses the threshold T̂ , i.e o = [0, . . . , 0]. Let g(D) = maxi(gi(D)+Ai) and

similarly g(D′) = maxi(gi(D) + Ai). For the arguments below, we fix the random variables

∀i Ai and the take probabilities with respect to the randomness of only T̂ .

Pr
T̂

[O = o] = Pr
T̂

[T̂ > g(D)] (3.35)

= Pr
T̂

[T̂ + g(D′)− g(D) > g(D′)] (3.36)

=

∫ ∞
−∞

PDF[T̂ = t+ g(D)− g(D′)] 1[t > g(D′)] dt (3.37)

≤
∫ ∞
−∞

exp(ε/3) PDF[T̂ = t] 1[t > g(D′)] dt (3.38)

= exp(ε/3) Pr
T̂

[T̂ > g(D′)] (3.39)

= exp(ε/3) Pr
T̂

[O′ = o] (3.40)

We have thus shown that even for the case that the SVT never outputs 1, the privacy

loss is not greater than ε. This finishes the proof.

We quantify the accuracy guarantee of the SVT algorithm in the theorem below.

Theorem 3.2.2. For any sequence of k queries q1, . . . , qk such that |{i < k : qi(D) ≥

T − α}| = 0 (i.e. the only query close to being above threshold is possibly the last one),

SVT(D, {qi}, T, ε) is (α, β) accurate for:

α =
6(log k + log(2/β))

ε
(3.41)

Proof. Our main objective is show that with probability at least 1− β the following event E

occurs:

max
i∈[k]
|Ai|+ |T − T̂ | ≤ α (3.42)

Under E , for any oi = 1, we have:

qi(D) + Ai ≥ T̂ ≥ T − |T − T̂ | (3.43)
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which implies:

qi(D) ≥ T − |T − T̂ | − |Ai| ≥ T − α (3.44)

Similarly, for any oi = 0 we have:

qi(D) < T̂ ≤ T + |T − T̂ |+ |Ai| ≤ T + α (3.45)

We also have that for any i < k: qi(D) < T−α < T−|Ai|−|T−T̂ |, and so: qi(D)+Ai ≤ T̂ ,

meaning oi = 0. Hence, the algorithm does not halt before k queries are answered. Since

both {Ai} and B are laplace random variables with scale 3/ε, from the Laplace concentration

we have:

Pr
[
|T − T̂ | ≥ α

2

]
= exp

(
−εα

6

)
(3.46)

In order to set the above error probability to be at most β/2, α is required to be at least
6 log(2/β)

ε
.

Similarly, due to the union bound, we have that:

Pr

[
max
i∈[k]
|Ai| ≥

α

2

]
≤ k · exp

(
−εα

6

)
(3.47)

Likewise, in order to set the above error probability to be at most β/2, α is required to

be at least
6(log(2/β) + log k)

ε
.

Setting α to be the maximum of
6 log(2/β)

ε
and

6(log(2/β) + log k)

ε
finishes the proof.

3.3 Tree-based Binary Mechanism

What are some of the ways to continuously release private statistics computed from a data

stream as new datum comes that minimize the scale of noise required to preserve privacy?

The naive way is to keep on adding Laplace noise of scale T/ε to the updated statistics at

each timestep given that the horizon length is T . By serial composition, it follows that this
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approach preserves ε - differential privacy. But clearly since the cumulative standard devia-

tion of the Laplace noises scales like T/ε, this approach becomes infeasible for large horizon

length. To address this issue, we visit the tree-based Binary Mechanism that drastically

reduces the total noise magnitude from T/ε to poly log T/ε.

The tree-based Binary Mechanism was discovered independently by (Chan, Shi, and

Song 2010; Dwork, Naor, et al. 2010) in order to continuously release ε- differentially

private statistics(running sum) in an online fashion with an accuracy guarantee of only

O

(
(log1.5 T ) · log(1/β)

ε

)
. Let σ1, . . . , σT ∈ [0, 1] be the data stream that the algorithm sees

and denote by s[i, j] =
∑j

t=i σt the partial sum of datums from i’th timestep up till and

including the j’th timestep. The tree-based Binary Mechanism releases the partial sums

s[1, t] at all timesteps t : 1 ≤ t ≤ T , while preserving ε-differential privacy. Any partial sum

s[1, t] can be (non-privately) computed by adding together O(log2 t) number of partial sums

since any number t can be decomposed into a sum of powers of 2. For example, if t = 7, then

t = 22 + 21 + 20, hence s[1, 7] = s[1, 4] + s[5, 6] + s[7, 7]. The tree-based Binary Mechanism

ensures that these noisy partial sums are differentially private and reuses these private par-

tial sums to compute any partial sum of the form s[i, j] for i ≤ j. It is easy to see that each

σi can appear in at most dlog2 T e+ 1 power-of-2 sums, hence by serial composition it follows

that if the partial sums are each privatized with a Laplace noise of scale (dlog2 T e+1)/ε, the

tree-based Binary mechanism preserves ε-differential privacy. Since each partial sum can be

computed from at most dlog2 T e power-of-2 sums, only a maximum of dlog2 T e number of

Laplace noises have been added to any output till timestep T . The accuracy guarantee of

O

(
(log1.5 T ) · log(1/β)

ε

)
follows from the fact that the concentration bound of a sum of n

RVs sampled i.i.d from Lap(b) is O

(√
n log(1/β)

b

)
, where n = log T and b =

ε

log T
in this

case.

Theorem 3.3.1. The tree-based Binary Mechanism is ε-differentially private.

Proof. Since each σi can appear in at most dlog2 T e+1 power-of-2 sums, by serial composition

it follows that the tree-based Binary Mechanism is ε-differentially private.
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Algorithm 5 Tree-based Binary Mechanism

1: Input: T, ε, σ ∈ [0, 1]T

2: For each i ∈ {0, . . . , dlog2 T e}: Set αi ← 0, α̂i ← 0

3: ε′ ←
ε

(dlog2 T e+ 1)
4: for t← 1 to T do
5: Express t in binary form: t =

∑
j Bin(t) · 2j

6: Let i← min{j : Binj(t) 6= 0}
7: αi ←

∑
j<i αj + σ(t)

8: Zero all counters αj, α̂j for j < i
9: α̂i ← αi + Lap(1/ε′)

10: Ot ←
∑

j:Binj(t)=1 α̂j
11: Release Ot

12: end for

3.4 Differentially Private UCB

In the differentially private stochastic K-MAB problem, the dataset is composed of K streams

of rewards, where the i’th stream corresponds to rewards sampled i.i.d from the i’th arm’s

distribution. At round t, a private MAB algorithm gets to see the next reward sample in

the i’th stream once it pulls the i’th arm. In this problem, a datum refers to a single reward

sample of any arm and thus datasets D and D′ are neighbors if they only differ in just 1

reward sample.

The Differentially Private UCB algorithm (Mishra and Thakurta 2015; Tossou and Dim-

itrakakis 2016) is the first ε-differential private algorithm for the stochastic K-armed Bandit

problem. Firstly, DP-UCB computes a differentially private sum of the rewards of each of

the arms using the tree-based Binary Mechanism and then it uses a modified upper bound in

the arms’ indices, which takes into account the Laplace noises, for selecting an arm to pull.

The accuracy guarantee on DP-UCB’s pseudo regret of O
(∑

i:∆i>0
log2 T log(KT/β)

ε∆i

)
holds with

probability at least 1 − β (Mishra and Thakurta 2015). Shariff and Sheffet 2018 recently

showed a lower bound of Ω(K log(T )/ε) on the additional pseudo regret due to ε - DP incurred

by any MAB algorithm. Hence, the DP-UCB algorithm is suboptimal since the total pseudo

regret lower bound of any ε- differentially private algorithm is Ω
(∑

i:∆i>0
log(T )

∆i
+ K log(T )/ε

)
.

A similar algorithm was soon after derived by Tossou and Dimitrakakis 2016 which they
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claimed to meet the pseudo regret lower bound. However, their analysis (i) uses a weaker

notion of privacy called (ε, δ) - DP and (ii) “sweeps under the rug” additional log factors

since the analysis of the tree-based binary mechanism shows that its output’s standard

deviation is about log1.5 T
ε

. Hence, no ε - differentially private version of UCB based on the

tree-based Binary Mechanism will achieve an additional private pseudo regret bound better

than Ω
(
K log2.5(T )

ε

)
. This begs the question on the existence of any other technique that can

still ensure a private MAB algorithm by merely introducing noise of scale Θ(1/ε) to obtain

the additional regret bound of O(K log(T )/ε) due to privacy. Indeed, we present a simpler

novel algorithm (DP-SE, see Chapter 5), based on Active Arm Elimination and the Laplace

Mechanism, that achieves the above mentioned lower bound.

Algorithm 6 Differential Private UCB

1: Input: K,T, ε, β
2: Create an empty Treei with T leaves for each arm i ∈ {1, . . . , K}

3: Set Γ←
(log2 T ) · log

(
KT log T

β

)
ε

4: for t← 1 to K do
5: Pull arm t and observe reward rt
6: Insert rt into Treet via the tree-based Binary Mechanism with ε.
7: Set nt ← 1
8: end for
9: for t← K + 1 to T do

10: r̃i(t)← Privatized reward sum computed using Treei for all arms i.

11: Set a∗ ← argmax
i∈{1,...,K}

(
r̃i(t)
ni

+
√

2 log t
ni

+ Γ
ni

)
12: Pull arm a∗ and observe reward rt
13: Insert rt into Treea∗ via the tree-based Binary Mechanism with ε.
14: na∗ ← na∗ + 1
15: end for
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Chapter 4

Differentially Private Stopping Rule

4.1 DP-NAS

In this section, we derive a differentially private stopping rule algorithm, DP-NAS, which is

based on the non-private NAS (Nonmonotonic Adaptive Sampling). In order to make NAS

differentially private we use the Sparse Vector Technique, since the algorithm is basically

asking a series of threshold queries: qt
def
= |Xt| − ht

(
1
α

+ 1
) ?

≥ 0. Recall that the Sparse

Vector Technique adds random noise both to the threshold and to the answer of each query,

and so we must adjust the näıve threshold of 0 to some ct in order to make sure that Xt

is sufficiently close to µ. Lastly, since our goal is to provide a private approximation of

the distribution mean, we also apply the Laplace mechanism to Xt to assert the output is

differentially private. Details appear in Algorithm 7.

Theorem 4.1.1. Algorithm 7 is a ε-DP (α, β)-stopping rule.

Proof. First, we argue that Algorithm 7 is ε-differentially private. This follows immediately

from the fact that the algorithm is a combination of the sparse-vector technique with the

Laplace mechanism. The first part of the algorithm halts when |
∑t

i=1 Xi|−ht ·t( 1
α

+1)−ct ≥

At+B. Indeed, this is the sparse-vector mechanism for a sum-query of sensitivity of no more

than 2R. It follows that sampling both the threshold-noise B and the query noise At from

Lap(3 · 2
ε
·2R) suffices to maintain ε

2
-DP. Similarly, adding a sample from Lap( 2

tε
·2R) suffices

to release the mean with ε
2
-DP at the very last step of the algorithm.

Since
∑

t≥1 t
−2 < 2, under the assumption that all {Xt} are i.i.d samples from a distribu-

tion of mean µ, the Hoeffding-bound and union-bound give that Pr[∃t, |Xt−µ| > ht] ≤ β/4.
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Algorithm 7 DP-NAS

1: Set σ1 ← 12R/ε, σ2 ← 12R/ε, σ3 ← 4R/ε.
2: Sample B ∼ Lap(σ1).
3: Initialize t← 0.
4: repeat
5: t← t+ 1
6: At ∼ Lap(σ2)
7: Get a new sample Xt and update the mean Xt.

8: ht ← R
√

2
t

log(16t2

β
)

9: ct ← σ1 log(4/β) + σ2 log(8t2/β) + σ3

α
log(4/β)

10: until |Xt| ≥ ht(1 + 1
α

) + ct+B+At
t

11: Sample L ∼ Lap(σ3).
12: return Xt + L

t

Standard tail bound on the Laplace distribution gives that Pr[|B| > σ1 log(4/β)] ≤ β/4,

Pr[∃t, |At| > σ2 log(8t2/β)] ≤ β/4, and Pr[|L| > σ3 log(4/β)] ≤ β/4. It follows that w.p.

≥ 1− β none of these events happen, and so ∀t, ct ≥ |B|+ |At|+ |L|/α.

It follows that at the time we halt we have that

|Xt − µ|
Hoeffding

≤ ht (4.1)

≤ α(|Xt| − ht)−
α

t
(ct + At +B) (4.2)

(∗)
≤ α|µ| − α

t
(ct + At +B) ≤ α|µ| − |L|

t
(4.3)

where (∗) is due to

∣∣∣∣|Xt| − |µ|
∣∣∣∣ ≤ |Xt − µ| ≤ ht. Therefore, we have that |Xt + L

t
− µ| ≤

|Xt − µ|+ |L|
t
≤ α|µ|.

Rather than analyzing the utility of Algorithm 7, namely, the high-probability bounds

on its stopping time, we now turn our attention to a slight modification of the algorithm

and analyze the revised algorithm’s utility. The modification we introduce, albeit technical

and non-instrumental in the utility bounds, plays a conceptual role in the description of

later algorithms. We introduce Algorithm 8 where we exponentially reduce the number of

SVT queries using the standard doubling technique. Instead of querying the magnitude of

the average at each timestep, we query it at exponentially growing intervals, thus paying no

more than a constant factor in the utility guarantees while still reducing the number of SVT
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queries dramatically.

Algorithm 8 DP exponential NAS

1: Set σ1 ← 12R/ε, σ2 ← 12R/ε, σ3 ← 4R/ε.
2: Sample B ∼ Lap(σ1)
3: Initialize k ← 0 and t← 0.
4: repeat
5: k ← k + 1
6: repeat
7: t← t+ 1
8: Sample Xt and update Xt.
9: until t = 2k

10: At ∼ Lap(σ2)
11: ct ← σ1 log(4/β) + σ2 log(8k2/β) + σ3

α
log(4/β)

12: ht ← R
√

2
t

log(16k2

β
)

13: until |Xt| ≥ ht(1 + 1
α

) + ct+B+At
t

14: L ∼ Lap(σ3)
15: return Xt + L

t

Corollary 4.1.2. Algorithm 8 is a ε-DP (α, β)-stopping rule.

Proof. The only difference between Algorithms 7 and 8 lies in checking the halting condition

at exponentially increasing time-intervals, namely during times t = 2k for k ∈ N. The privacy

analysis remains the same as in the proof of Theorem 4.1.1, and the algorithm correctness

analysis is modified by considering only the timesteps during which we checking for the

halting condition. Formally, we denote E as the event where (i) ∀k, |X2k − µ| ≤ h2k , (ii)

|B| ≤ σ1 log(4/β), (iii) ∀k, |A2k | ≤ σ2 log(8k2/β), and (iv) |L| ≤ σ3 log(4/β). Analogous to the

proof of Theorem 4.1.1 we bound Pr[E ] ≥ 1− β and the result follows.

Theorem 4.1.3. Fix β ≤ 0.08 and µ 6= 0. Let {Xt}t be an ensemble of i.i.d samples from any

distribution over the range [−R,R] and with mean µ. Denote t0
def
=

R2 log((1/β) · log( R
α|µ|))

α2µ2
,

t1
def
=
R log((1/β) · log( R

α|µ|))

ε|µ|
, t2

def
=
R log(1/β)

εα|µ|
. Then with probability at least 1−β, Algorithm 8

halts by timestep tU = 2000(t0 + t1 + t2).

Proof. Recall the event E from the proof of Corollary 4.1.2 and its four conditions. We
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assume E holds and so the algorithm releases a (1 ± α)-approximation of µ. To prove the

claim, we show that under E , at time tU it must hold that |Xt| ≥ ht(1 + 1
α

) + ct+B+At
t

.

Under E we have that |Xt| ≥ |µ|−ht and ct+B+At
t

≤ 2σ1

t
log(4/β)+ 2σ2

t
log(8k2/β)+σ3

αt
log(4/β);

and so it suffices to show that |µ| ≥ ht(2 + 1
α

) + 24R log(4/β)
εt

+ 24R log(8k2/β)
εt

+ 4R log(4/β)
αεt

. In

fact, since α < 1 we show something slightly stronger: that at time tU we have |µ| ≥
3ht
α

+ 48R log(8k2/β)
εt

+ 4R log(4/β)
αεt

. This however is an immediate corollary of the following three

facts.

1. For any t ≥ 1000t0 we have log(4 log2(t)/β)
t

≤
(

α|µ|
2·3·3·R

)2

, implying |µ|
3
≥ 3ht

α
.

2. For any t ≥ 1000t1 we have log(4 log2(t)/β)
t

≤ ε|µ|
3·2·48·R , implying |µ|

3
≥ 2·48R log(4k/β)

εt
≥

48R log(8k2/β)
εt

.

3. For any t ≥ 48t2 we have |µ|
3
≥ 4R log(4/β)

αεt
.

where the first two rely on Fact A.3.2. It follows therefore that at time 1000(t0 + t1 + t2)

all three conditions hold and so, due to the exponentially growth of the intervals, by time

tu = 2000(t0 + t1 + t2) we reach some t which is a power of 2, on which we pose a query for

the SVT mechanism and halt.

4.2 Private Stopping Rule Lower bounds

We turn our attention to proving the (near) optimality of Algorithm 8. A non-private lower

bound was proven by Dagum et al. 2000, who showed no stopping rule algorithm can achieve

a sample complexity better than Ω
(

max{σ2,Rα|µ|}
α2µ2 log(1/β)

)
(with σ2 denoting the variance of

the underlying distribution). In this section, we prove a lower bound on the additional

sample complexity that any ε-DP stopping rule algorithm must incur. We summarize our

result below:

Theorem 4.2.1. Any ε-differentially private (α, β)-stopping rule whose input consists of a

stream of i.i.d samples from a distribution over support [−R,R] and with mean µ 6= 0, must

have a sample complexity of Ω (R log(1/β)/εα|µ|).

Proof. Fix ε, α, β > 0 such that α < 1 and β < 1/4, and fix R and µ > 0. We define

two distributions P ,Q over a support consisting of two discrete points: {−R,R}. Setting

PrP [R] = 1
2

+ µ
2R

we have that EX∼P [X] = µ. Set µ′ as any number infinitesimally below
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the threshold of 1−α
1+α

µ, so that we have (1 +α)µ′ < (1−α)µ; we set the parameters of Q s.t.

PrQ[R] = 1
2

+ µ′

2R
so EX∼Q[X] = µ′. By definition, the total variation distance dTV(P ,Q) 1

= |µ′−µ|
2R

< 2αµ
2R(1+α)

< αµ
R

.

Let M be any ε-differentially private (α, β)-stopping rule. Denote n = R log(1/β)
12αµε

. Let

E be the event “after seeing at most n samples, M halts and outputs a number in the

interval
[
(1−α)µ, (1+α)µ

]
.” We now apply the following, very elegant, lemma from Karwa

and Vadhan 2018, stating that the group privacy loss of a differentially privacy mechanism

taking as input n i.i.d samples either from a distributions D or from a distribution D′ scales

effectively as O(εn · dTV(D,D′)).

Lemma 4.2.2 (Lemma 6.1 from Karwa and Vadhan 2018). Let M be any ε-differentially

private mechanism, fix a natural n and fix two distributions D and D′, and let S̄ and S̄ ′

denote an ensemble of n i.i.d samples taken from D and D′ resp. Then for any possible set

of outputs O it holds that Pr
M,S̄∼Dn

[M(S̄) ∈ O] ≤ e6εn·dTV(D,D′) Pr
M,S̄′∼(D′)n

[M(S̄ ′) ∈ O].

And so, applyingM over n i.i.d samples taken from Q, we must have that PrM,S∼Qn [E ] ≤

β, since (1− α)µ > (1 + α)µ′. Applying Lemma 4.2.2 to our setting, we get

Pr
M,S∼Pn

[E ] ≤ e6εn·dTV(P,Q) Pr
M,S∼Qn

[E ] (4.4)

≤ β · exp(6εn · αµ
R

) (4.5)

= β · exp(
6εαµ

R
· R log(1/β)

12εαµ
) =

β√
β
<

1

2
(4.6)

since β < 1/4. Since, by definition, we have that the probability of the event E ′ “after seeing

at most n samples,M halts and outputs a number outside the interval
[
(1−α)µ, (1 +α)µ

]
”

over n i.i.d samples from P is at most β, then it must be that M halts after seeing strictly

more than n samples w.p. > 1− (1/2 + β) > 1/4.

Combining the non-private lower bound of Dagum et al. 2000 and the bound of Theo-

rem 4.2.1, we immediately infer the overall sample complexity bound, which follows from the

fact that the variance of the distribution P used in the proof of Theorem 4.2.1 has variance

of Θ(R2).

1The total variation distance dTV(P,Q) = sup
S

(∣∣PrX∼P [X ∈ S]− PrX∼Q[X ∈ S]
∣∣)
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Corollary 4.2.3. There exists a distribution P for which any ε-differentially private (α, β)-

stopping rule algorithm has a sample complexity of Ω
(
R2 log(1/β)
α2µ2 + R log(1/β)

εα|µ|

)
.

Discussion. How optimal is Algorithm 8? The sample complexity bound in Theorem 4.1.3

can be interpreted as the sum of the non-private and private parts. The non-private part

is Ω

(
R2

α2µ2

(
log(1/β) + log log R

α|µ|

))
and the private part is Ω

(
R

ε|µ|
(

log(1/β) + log log R
α|µ|

)
+
R log(1/β)

εα|µ|

)
. If we add in the assumption that log( R

α|µ|) ≤ 1/β we get that the upper-bound

of Theorem 4.1.3 matches the lower-bound in Corollary 4.2.3.

How benign is this assumption? We believe it is a very mild assumption. Specifically, in

the next section, where we deal with finite sequences of length T , we set β as proportional to

1/T . Since over finite-length sequence we can only retrieve an approximation of µ if |µ|
R
� 1

T
,

requiring R
|µ| < 2T is trivial. However, we cannot completely disregard the possibility of using

a private stopping rule in a setting where, for example, both α, β are constants whereas |µ|
R

is

a sub-constant. In such a setting, log( R
α|µ|) may dominate 1/β, and there it might be possible

to improve on the performance of Algorithm 8 (or tighten the bound).
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Chapter 5

Differentially Private Successive
Elimination

5.1 An Optimal Private MAB Algorithm

In this section, our goal is to devise an optimal ε-differentially private algorithm for the

stochastic K-arms bandit problem, in a setting where all rewards are within [0, 1]. We

denote the mean reward of each arm as µa, the best arm as a∗, and for any a 6= a∗ we refer

to the gap ∆a = µa∗−µa. We seek in the optimal algorithm in the sense that it should meet

both the non-private instance-dependent bound of Lai and Robbins 1985 and the lower bound

of Shariff and Sheffet 2018; namely an algorithm with an instance-dependent pseudo-regret

bound of O
(
K log(T )

ε
+
∑

a6=a∗
log(T )

∆a

)
. The algorithm we devise is a differentially private

version of the Successive Elimination (SE) algorithm (Even-Dar, Mannor, and Mansour

2002). Recall, SE initializes by setting all K arms as viable options, and iteratively pulls

all viable arms maintaining the same confidence interval around the empirical average of

each viable arm’s reward. Once some viable arm’s upper confidence bound is strictly smaller

than the lower confidence bound of some other viable arm, the arm with the lower empirical

reward is eliminated and is no longer considered viable. It is worthwhile to note that the

classical UCB algorithm and the SE algorithm have the same asymptotic pseudo-regret 1.

To design the differentially private analouge of SE, we can use our results from the previous

section regarding stopping rules 2. After all, in the special case where we have K = 2 arms,

1Both achieve the asymptotic bound of Lai and Robbins 1985 up to constants
2We rather present this algorithm, based on DP exponential NAS, in the Appendix A.1
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we can straight-forwardly use the private stopping-rule to assess the mean of the difference

between the arms up to a constant α (say α = 0.5). The question lies in applying this

algorithm in the K > 2 case.

Here are a few failed first-attempts. The most straight-forward ideas is to apply
(
K
2

)
stopping rules / SVTs for all pairs of arms; but since a reward of a single pull of any single

arm plays a role in K − 1 SVT instantiations, it follows we would have to scale down the

privacy-loss of each SVT to Θ(ε/K) resulting in an added regret scaled up by a factor of K.

In an attempt to reduce the number of SVT-instantiations, we might consider asking for

each arm whether there exists an arm with a significantly greater reward, yet it still holds

that the reward from a single pull of the leading arm a∗ plays a role in K SVT-instantiations.

Next, consider merging all queries into a single SVT, posing in each round K queries (one

per arm) and halting once we find that a certain arm is suboptimal; but this results in a

single SVT that may halt K − 1 times, causing us yet again to scale ε by a factor of K.

In order to avoid scaling down ε by a factor of K, our solution leverages on the combina-

tion of parallel composition and geometrically increasing intervals. Namely we partition the

arm pulls of the algorithm into epochs of geometrically increasing lengths, where in epoch

e we eliminate all arms of optimality-gap ≥ 2−e. In fact, it turns out we needn’t apply the

SVT at the end of each epoch but rather just test for a noticeably underperforming arm

using a private histogram. The key point is that at the beginning of each new epoch we nul-

lify all counters and start the mean-reward estimation completely anew (over the remaining

set of viable arms) — and so a single reward plays a role in only one epoch, allowing for

ε-DP mean-estimation in each epoch (rather than ε/K). Yet due to the fact that the epochs

are of exponentially growing lengths the total number of pulls for any suboptimal arm is

proportional to the length of the epoch in which it eliminated, resulting in only a constant

factor increase to the regret. The full-fledged details appear in Algorithm 9.

Theorem 5.1.1. Algorithm 9 is ε-differentially private.

Proof. Consider two streams of arm-rewards that differ on the reward of a single arm in a

single timestep. This timestep plays a role in a single epoch e. Moreover, let a be the arm

whose reward differs between the two neighboring streams. Since the reward of each arm
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Algorithm 9 DP Successive Elimination

1: Input: K arms, confidence β, privacy-loss ε.
2: Let S ← {1, . . . , K}.
3: Initialize: t← 0, epoch← 0.
4: repeat
5: Increment epoch← epoch+ 1.
6: Set r ← 0
7: Zero all means: ∀i ∈ S set µ̄i ← 0
8: Set ∆e ← 2−epoch

9: Set Re ← max
(

32 log(8|S|epoch2/β)
∆2
e

, 8 log(4|S|epoch2/β)
ε∆e

)
+ 1

10: while r < Re do
11: Increment r ← r + 1.
12: foreach i ∈ S
13: Increment t← t+ 1
14: Sample reward of arm i and update mean µ̄i.
15: end while

16: Set he ←
√

log(8|S|·epoch2/β)
2Re

17: Set ce ←
log(4|S|·epoch2/β)

Reε

18: foreach i ∈ S set µ̃i ← µ̄i + Lap(1/εr)
19: Let µ̃max = maxi∈S µ̃i
20: Remove all arm j from S such that:
21: µ̃max − µ̃j > 2he + 2ce
22: until |S| = 1
23: Pull the arm in S in all remaining rounds.

is bounded by [0, 1] it follows that the difference of the mean of arm a between the two

neighboring streams is ≤ 1/Re. Thus, adding noise of Lap(1/εRe) to µa guarantees ε-DP.

To argue about the optimality of Algorithm 9, we require the following lemma, a key

step in the following theorem that bounds the pseudo-regret of the algorithm.

Lemma 5.1.2. Fix any instance of the K-MAB problem, and denote a∗ as its optimal arm

(of highest mean), and the gaps between the mean of arm a∗ and any suboptimal arm a 6= a∗

as ∆a. Fix any horizon T . Then w.p. ≥ 1−β it holds that Algorithm 9 pulls each suboptimal

arm a 6= a∗ for a number of timesteps upper bounded by

min{T, O

(
(log(K/β) + log log(1/∆a))

(
1

∆2
a

+
1

ε∆a

))
}
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Proof of Lemma 5.1.2. The bound of T is trivial so we focus on proving the latter bound.

Given an epoch e we denote by Ee the event where for all arms a ∈ S it holds that both (i)

|µa − µ̄a| ≤ he and (ii) |µ̄a − µ̃a| ≤ ce; and also denote E =
⋃
e≥1

Ee. The Hoeffding bound,

concentration of the Laplace distribution and the union bound over all arms in S give that

Pr[Ee] ≥ 1−
(
β

4e2
+ β

4e2

)
, thus Pr[E ] ≥ 1− β

2

(∑
e≥1 e

−2
)
≥ 1−β. The remainder of the proof

continues under the assumption the E holds, and so, for any epoch e and any viable arm a

in this epoch we have |µ̃a − µa| ≤ he + ce. As a result for any epoch e and any two arms

a1, a2 we have that |(µ̃a1 − µ̃a2)− (µa1 − µa2)| ≤ 2he + 2ce.

Next, we argue that under E the optimal arm a∗ is never eliminated. Indeed, for any

epoch e, we denote the arm ae = argmaxa∈S µ̃a and it is simple enough to see that µ̃ae−µ̃a∗ ≤

0 + 2he + 2ce, so the algorithm doesn’t eliminate a∗.

Next, we argue that, under E , in any epoch e we eliminate all viable arms with subopti-

mality gap ≥ 2−e = ∆e. Fix an epoch e and a viable arm a with suboptimality gap ∆a ≥ ∆e.

Note that we have set parameter Re so that

he =

√
log (8|S|·e2/β)

2Re

<

√√√√ log (8|S|·e2/β)

2 · 32 log(8|S|e2/β)
∆2
e

=
∆e

8

ce =
log (4|S|·e2/β)

Reε
<

log (4|S|·e2/β)

ε · 8 log(4|S|e2/β)
ε∆e

=
∆e

8

Therefore, since arm a∗ remains viable, we have that µ̃max−µ̃a ≥ µ̃a∗−µ̃a ≥ ∆a−(2he+2ce) >

∆e(1− 2
8
− 2

8
) ≥ ∆e

2
> 2he + 2ce, guaranteeing that arm a is removed from S.

Lastly, fix a suboptimal arm a and let e(a) be the first epoch such that ∆a ≥ ∆e(a),

implying ∆e(a) ≤ ∆a < ∆e(a)−1 = 2∆e. Using the immediate observation that for any epoch

e we have Re ≤ Re+1/2, we have that the total number of pulls of arm a is∑
e≤e(a)

Re ≤
∑
e≤e(a)

2e−e(a)Re(a) ≤ Re(a)

∑
i≥0

2−i ≤ 2

(
32 log(8|S|·e(a)2/β)

∆2
e

+
8 log(4|S|·e(a)2/β)

ε∆e

)

The bounds ∆e > ∆a/2, |S| ≤ K, e(a) < log2(2/∆a) and K ≥ 2 allow us to conclude and in-

fer that under E the total number of pulls of arm a is at most log(K log(2/∆a)/β)
(

1024
∆2
a

+ 96
ε∆a

)
.
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Theorem 5.1.3. Under the same notation as in Lemma 5.1.2, for sufficiently large T and

β = 1/T , the expected pseudo regret of Algorithm 9 is at most O

(( ∑
a6=a∗

log(T )
∆a

)
+ K log(T )

ε

)
.

Proof. In order to bound the expected regret based on the high-probability bound given in

Lemma 5.1.2, we must set β = 1/T . (Alternatively, we use the standard guess-and-double

technique when the horizon T is unknown. I.e. we start with a guess of T and on time T/2 we

multiply the guess T ← 2T .) Thus, with probability at most 1
T

we may pull a suboptimal on

all timesteps incurring expect regret of at most 1 · T · 1
T

= 1; and with probability ≥ 1− 1
T

,

since each time we pull a suboptimal arm a 6= a∗ we incur an expected regret of ∆a, our

overall expected regret when T is sufficient large is proportional to at most∑
a6=a∗

(log(K/(1/T )) + log log(1/∆a))

(
∆a

∆2
a

+
∆a

ε∆a

)
=
∑
a6=a∗

(log(TK · log(1/∆a))

(
1

∆a

+
1

ε

)

≤

(∑
a6=a∗

3 log(T )

∆a

)
+

3 log(T )(K − 1)

ε

where the last inequality follows from the trivial bounds T ≥ K and T ≥ 1/∆a.

It is worth noting yet again that the expected regret of Algorithm 9 meets both the

(instance dependent) non-private lower bound (Lai and Robbins 1985) of Ω
(∑

a6=a∗
log(T )

∆a

)
and the private lower bound (Shariff and Sheffet 2018) of Ω (K log(T )/ε).

Minimax Regret Bound. The bound of Theorem 5.1.3 is an instance-dependent bound,

and so we turn our attention to the minimax regret bound of Algorithm 9 — Given horizon

bound T , how should an adversary set the gaps between the different arms as to maximize

the expected regret of Algorithm 9? We next show that in any setting of the gaps, the

following is an instance independent bound on the expected regret of Algorithm 9.

Theorem 5.1.4. (Instance Independent Bound) With β = 1/T , the expected pseudo regret

of Algorithm 9 is O
(√

TK log(T ) + K log(T )/ε
)
.

Proof. Throughout the proof we assume Algorithm 9 runs with a parameter β = 1/T ;

and since any arm a with ∆a < 1/T yields a negligible expected regret bound of at
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most 1, then we may assume ∆a ≥ 1/T . Thus, the bound of Lemma 5.1.2 becomes

min
{
T, C · log(TK)( 1

∆2
a

+ 1
ε∆a

)
}

for some constant C > 0. It follows that for any subopti-

mal arm a, the expected regret from pulling arm a is therefore at most min
{

∆aT, 2C log(T )( 1
∆a

+ 1
ε
)
}

(as K ≤ T ).

Denote by ∆∗ the gap which equates the two possible regret bounds under which all arms

are pulled T/K times, namely ∆∗ T
K

= 2C log(T )( 1
∆∗

+ 1
ε
). While deriving ∆∗ closed form

is rather hairy, one can easily verify that ∆∗ = Θ(max{
√

K log(T )/T , K log(T )
εT
}). First, note

that given T , in a setting where all suboptimal arms have a gap of precisely ∆∗, then the

cumulative expected regret bound is proportional to O
(√

TK log(T ) + K log(T )/ε
)

. We show

that regardless of how the different arm-gaps are set by an adversary, the expected regret of

our algorithm is still proportional to the required bound.

Suppose an adversary sets a MAB instance, and again we rearrange arms such that arm

1 is the leading arm and the gaps are increasing. We partition the set of suboptimal arms

2, 3, .., K to two sets: {2, 3, .., k′} and {k′ + 1, k + 2, ..., K} where k′ is the largest index of

an arm with a gap ≤ ∆∗. Since this is a partition, one of the two sets contributes at least

half of the expected regret. We thus break into cases.

– Each time we pull an arm from the former set, we incur an expected regret of at most

∆∗. Since there are T arm pulls overall, a crude bound on the expected regret obtained from

pulling arms {2, .., k′} is ∆∗T . Therefore, if it is the case that the regret from pulling arms

{2, 3, .., k′} is at least half of the expected regret, then the entire expected regret is at most

2∆∗T .

– Based on the above discussion, the upper-bound on the expected regret due to pulling

the arms in the set {k′ + 1, k′ + 2, ..., K} is at most

2C log(T )
K∑

a=k′+1

(
1

∆a
+ 1

ε

)
≤ 2C log(T )

K∑
a=k′+1

(
1

∆∗
+ 1

ε

)
= (K − k′)∆∗ T

K
≤ ∆∗T

Therefore, if it is the case that the regret from pulling arms {k′ + 1, k′ + 2, ..., K} is greater

than half of the expected regret, then the entire expected regret is at most 2∆∗T .

In either case, it is simple to see that the expected regret is upper bounded by O(∆∗T ) =
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O
(√

TK log(T ) + K log(T )/ε
)

.

Again, we comment on the optimality of the bound in Theorem 5.1.4. The non-private

minimax bound (Auer, Nicolo Cesa-Bianchi, et al. 2002) is known to be Ω(
√
TK) and com-

bining it with the private bound of Ω(K log(T )/ε) we see that the above minimax bound is

just
√

log(T )-factor away from being optimal.
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Chapter 6

Empirical Evaluation

Goal. In this section, we empirically compare the DP-UCB algorithm (Mishra and Thakurta

2015) and our DP-SE algorithm (Algorithm 9). Our goal is two-fold. First, we would like to

assert that indeed there exists some setting of parameters under which our DP-SE algorithm

outperforms (achieves smaller expected regret than) the DP-UCB baseline. After all, the

improvement we introduce is over poly log(T ) factors and does incur an increase in the

constants repressed by the big-O notation. Hence, our primary goal is to verify that indeed

the asymptotic improvement in performance is reflected in actual empirical performance.

Second, assuming the former is answered on the affirmative, we would like to see under

which region of parameters our DP-SE algorithm outperforms the DP-UCB baseline.

Setting and Experiments. By default, we set T = 5 × 107, ε = 0.25 and K = 5. We

assume T is a-priori known to both algorithms and set β = 1/T . We consider four instances,

denoted by C1, C2, C3, C4, where in all the settings the reward of any arm is drawn from a

Bernoulli distribution. In C1 all suboptimal gaps are the same, and the arms’ mean-rewards

are {0.75, 0.7, ...0.7︸ ︷︷ ︸
K−1

}; whereas in C2 the suboptimal arms’ gaps decrease linearly, where the

largest mean is always 0.75 and the smallest mean is always 0.25 (so for K = 5 the means are

{0.75, 0.525, 0.5, 0.375, 0.25}) 1. We considered C3 to compare the performances for the case

that a larger fraction of arms have large suboptimality gaps, hence we chose to use a quadratic

convex function of the form: µi = a(i−K)2 +c such that µ1 = 0.75, µK = 0.25 and a > 0 (so

1Constraining the means within [0.25, 0.75] ensures the variance of the arms are similar (upto a constant
of 4/3)
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for K = 5 the means are {0.75, 0.53125, 0.375, 0.28125, 0.25}). C4 was chosen to illustrate

the performance for the case that a larger faction of arms have small suboptimality gaps,

hence it suffices to use a quadratic concave function: µi = a(i− 1)2 + c such that µ1 = 0.75,

µK = 0.25 and a < 0 (so for K = 5 the means are {0.75, 0.71875, 0.525, 0.46875, 0.25}).

Using a∗ to denote the optimal arm, we measure the algorithms’ performances in terms of

their pseudo regret, so upon pulling a suboptimal arm a 6= a∗ each algorithm incurs a cost

∆a = µa∗−µa. For each setting, 30 runs of the algorithms were carried out and their average

pseudo regrets are plotted.

Under all four settings we conduct two sets of experiments. First, we vary ε ∈ {0.1, 0.25, 0.5, 1},

and the results in setting C1, C2, C3, C4, are given in the Figures 6.1, 6.2, 6.3, 6.4 respec-

tively. Then we vary K ∈ {3, 5, 10, 20}, and the results under ε = 0.25, 1 in setting C1, C2,

C3, C4 are given in Figures 6.5, 6.6, 6.7, 6.8 respectively.

Results and discussion. The results conclusively show that DP-SE outperforms DP-UCB.

Subject to the caveat that our experiments are proof-of-concept only and we did not conduct

a thorough investigation of the entire hyper-parameter space, we could not find even a single

setting where DP-UCB is even comparable to our DP-SE — in all settings we tested, DP-SE

outperform DP-UCB by at least 5 times. We also comment as to the difference in the shape

of the two pseudo-regret curves — while the DP-UCB curve is smooth (attesting to the fact

it pulls suboptimal arms even for fairly large values of T ), the DP-SE is piece-wise linear

(exhibiting the fact that at some point it eliminates all suboptimal arms).
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(a) ε = 0.1 and 0.25

(b) ε = 0.5 and 1

Figure 6.1: Under C1 with K = 5, T =
5× 107

(a) ε = 0.1 and 0.25

(b) ε = 0.5 and 1

Figure 6.2: Under C2 with K = 5, T =
5× 107
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(a) ε = 0.1 and 0.25

(b) ε = 0.5 and 1

Figure 6.3: Under C3 with K = 5, T =
5× 107

(a) ε = 0.1 and 0.25

(b) ε = 0.5 and 1

Figure 6.4: Under C4 with K = 5, T =
5× 107
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(a) K = 3

(b) K = 5

(c) K = 10

(d) K = 20

Figure 6.5: Under C1 with ε ∈ {0.25, 1},
T = 5× 107

(a) K = 3

(b) K = 5

(c) K = 10

(d) K = 20

Figure 6.6: Under C2 with ε ∈ {0.25, 1},
T = 5× 107
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(a) K = 3

(b) K = 5

(c) K = 10

(d) K = 20

Figure 6.7: Under C3 with ε ∈ {0.25, 1},
T = 5× 107

(a) K = 3

(b) K = 5

(c) K = 10

(d) K = 20

Figure 6.8: Under C4 with ε ∈ {0.25, 1},
T = 5× 107
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Chapter 7

Conclusion

7.1 Future Directions

While it seems this work “closes the book” on the private stochastic-MAB problem, we

want to point out a few future research directions. First, the MAB problem has actu-

ally multiple lower-bounds, where even low-order terms in the lower bound have been

devised under different settings (see for example Sébastien Bubeck, Perchet, and Rigol-

let 2013); so studying the lower-order terms of the bounds on the private MAB problem

may be of importance. Secondly, much of the work on stopping rules is devoted to the

case where the variance σ2 of the distribution is significantly smaller than its range —

Mnih, Szepesvári, and Audibert 2008 gave an algorithm whose sample complexity is actually

O
(

max{ σ2

α2µ2 ,
R
α|µ|}(log(1/β + log log(R/α|µ|))

)
. Note that the lower-bound in Theorem 4.2.1

deals with a distribution of variance Θ(R2), so by restricting our attention to distributions

with much smaller variance we may bypass this lower-bound. We leave the problem of de-

signing privacy-preserving analogues of the Bernstein stopping rule (Mnih, Szepesvári, and

Audibert 2008) as an interesting open-problem.

Also, note that our entire analysis is restricted to ε-DP. While our results extend to the

more-recent notion of concentrated differential privacy (Bun and Steinke 2016), we do not

know how to extend them to (ε, δ)-DP, as we do not know the lower-bounds for this setting.

Similarly, we do not know the concrete privacy-utility bounds of the MAB problem in the

local-model of DP. Lastly, it would be interesting to see if the overall approach of private

Successive Elimination is applicable, and yields better bounds than currently known, for
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natural extensions of the MAB, such as in the linear and contextual settings. Even-Dar,

Mannor, and Mansour 2002 themselves motivated their work by various applications in a

Markov-chain related setting. It is an interesting open problem of adjusting this work to

such applications.
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Caron, Stéphane and Smriti Bhagat (2013). “Mixing bandits: a recipe for improved cold-
start recommendations in a social network.” In: Proceedings of the 7th Workshop on
Social Network Mining and Analysis, p. 11.

Chan, T.-H. Hubert, Elaine Shi, and Dawn Song (2010). “Private and Continual Release
of Statistics.” In: Automata, Languages and Programming. Lecture Notes in Computer
Science, pp. 405–417.

Dagum, Paul et al. (2000). “An optimal algorithm for Monte Carlo estimation.” In: SIAM
Journal on computing 29.5, pp. 1484–1496.
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Appendix A

Appendix

A.1 DP-SE 2

In this section, we propose DP-SE 2 which is another differentially private version of the

Successive Elimination algorithm that matches the lower bound up to constants. The al-

gorithm DP-SE 2 is based on DP exponential NAS. After all, in the special case where we

have K = 2 arms, we can straight-forwardly use the private stopping-rule to assess the mean

of the difference between the arms up to a constant α (say α = 0.5). The question lies in

applying this algorithm in the K > 2 case.

Just like in the classical SE algorithm, we maintain empirical means of the rewards for all

viable arms and ask whether there exists an arm a with a significantly small empirical mean

compared to the largest empirical mean. These queries are asked using an SVT just like in

the case of DP exponential NAS. Once a query evaluates to be true, the SVT halts and in the

second step we use a private histogram over the empirical reward means and remove all arms

with a significant gap from some arm (one with the largest empirical mean), thus eliminating

not only arm a that caused the SVT to halt but also any other arm with empirical reward

mean comparable to it. Namely, the threshold in the SVT queries are set in such a way that

all arms a′ with ∆a′ ≥ ∆a/2 are eliminated in the second step. As a result, once we know

that the SVT halted and we are eliminating all arms with gaps fairly close to some gap ∆a,

we can infer that the next arms to be eliminated must have gap of no more than ∆a/2; by

the exponentiation of the interval lengths,1 this means that the number of arm pulls we need

1Note: The exponential growth in the intervals’ lengths isn’t actually required for this argument; but we
believe it simplifies the presentation greatly.
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in order to eliminate the next batch of suboptimal arms is proportional to the total number

of pulls made thus far. We thus leverage on this knowledge and rather than continuing with

the rewards accumulated thus far (which may cause the reward sampled on round 1 to play

a role in as many as K − 1 runs of the SVT), we nullify all counters and start completely

anew, with the remaining set of viable arms. We refer to these as epochs, where in each

epoch we start our reward counters completely fresh over a new set of pulls. By splitting

the stream of pulls into disjoint epochs, we make sure that each reward of a single pull plays

a role in a single epoch and therefore in a single SVT instantiation; and yet we only pay a

constant factor in the regret bound due to the above-mentioned reasoning. The full-fledged

details appear in Algorithm 10.

Algorithm 10 DP-SE 2

1: Input: K arms, confidence β, privacy-loss ε.
2: Let S ← {1, . . . , K}.
3: Initialize: t← 0, epoch← 0.
4: repeat
5: Increment epoch← epoch+ 1.
6: Set r ← 0, `← 0.
7: Zero all means: ∀i set µ̄i = 0
8: Sample B ∼ Lap(6/ε)
9: repeat

10: Increment `← `+ 1.
11: repeat
12: Increment r ← r + 1
13: foreach i ∈ S
14: Increment t← t+ 1
15: Sample reward of arm i, update mean µ̄i.
16: until r ≥ 2`

17: Sample Ar ∼ Lap(6/ε)

18: Set hr ←

√
log
(

16K|S|`2
β

)
2r

, and cr ← 6 log(4K/β)
ε

+
6 log(8K`2/β)

ε
+ 16 log(4K|S|/β)

ε

19: until maxi,j∈S (µ̄i − µ̄j) > 10hr + Ar+B+cr
r

20: foreach i ∈ S set µ̃i ← µ̄i + Lap(2/εr)
21: Let µ̃max ← maxi∈S µ̃i
22: Remove all arm j from S such that:
23: µ̃max − µ̃j > 2hr + 4 log(4K|S|/β)

εr

24: until |S| = 1
25: Pull the arm in S in all remaining timesteps.
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Theorem A.1.1. Algorithm 10 is ε-differentially private.

Proof. Consider two streams of arm-rewards that differ on the reward of a single arm in a

single time step t. This timestep plays a role in a single epoch, where during this epoch in

each round r in which we query the SVT the difference between that arm’s mean in the one

stream vs the alternative stream is at most 1/r. As a result, the sensitivity of the query

for the largest gap between any pairs of arms’ empirical rewards is at most 1/r. Thus,

adding Laplace noise proportional to 3 · 2
ε
· 1
r

to both the query value and the threshold

10hr + cr
r

asserts that the SVT is ε
2
-DP. Similarly, the difference in L1-norm to the mean

histogram of the |S| viable arms between the two streams is at most 1
r
, thus adding Laplace

noise proportional to 2
εr

to each of the empirical means assures ε
2
-DP. Altogether, we are

ε-DP.

To argue about the optimality of Algorithm 10, we require the following lemma, a key

step in the following theorem that bounds the pseudo-regret of the algorithm.

Lemma A.1.2. Fix any instance of the K-MAB problem, and denote a∗ as its optimal

arm (of highest mean), and the gaps between the mean of arm a∗ and any suboptimal arm

a 6= a∗ as ∆a. Fix any horizon T . Then w.p. ≥ 1− β it holds that Algorithm 10 pulls each

suboptimal arm a 6= a∗ for a number of timesteps upper bounded by

min{T, O

(
(log(K/β) + log log(1/∆a))

(
1

∆2
a

+
1

ε∆a

))
}

Proof of Lemma A.1.2. To bound the number of pulls of arm a by T is trivial; to provide

the bound that depends on the gap ∆a we bound the number of epochs in all rounds where

arm a is still viable. First we introduce some notations for convenience. We sort the arms in

terms of their true means in a descending order: µ1 ≥ µ2 ≥ ... ≥ µK , where µa is the mean

of the a-th arm. Hence, their corresponding suboptimality gaps are sorted in an ascending

order: ∆2 ≤ ... ≤ ∆K , where ∆a = µ1− µa, and we also denote ∆a,a′ = µa− µa′ . We denote

by µa the empirical average of each arm a, and denote the empirical gap by ∆a = µ1 − µa,

and similarly denote ∆a,a′ = µa − µa′ . Lastly, just like in Algorithm 10, we denote the

private estimation of an arm’s average by µ̃a (the empirical average with added Laplace

noise), and analogously denote ∆̃a = µ̃1 − µ̃a, ∆̃a,a′ = µ̃a − µ̃a′ . We refer to a sequence
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of pulls of all viable arms (arms in S) made by algorithm as a round, indexed by r. Just

like in the proof of Theorem 4.1.3, since we have at most K epochs and in each epoch |S|

viable arms, and since
∑

`≥1
1

2`2
≤ 1, then: (i) The Hoeffding bound gives that in all epochs

and in all rounds where we query the SVT and for all viable arms we have |µa − µa| ≤ hr

w.p. ≥ 1 − β
4
; (ii) Laplace concentration bounds give that in all epochs and in all rounds

where we query the SVT and for each of the |S| viable arms in an epoch, it must hold that

|B|+ |Ar| ≤
6 log(4K/β)+6 log(8Kl2/β)

ε
(under the same notation introduced in Algorithm 10) w.p.

≥ 1 − β
2
; and (iii) Laplace concentration bounds give that in all epochs and for each of the

|S| viable arms in an epoch we have |µa − µ̃a| ≤
2 log(4K|S|/β)

ε
w.p. ≥ 1− β

4
. We thus continue

assuming all three bounds hold. In particular at the end of each epoch, for all the |S| viable

arms in the respective epoch we get that |µ̃a−µa| ≤ |µa−µa|+ |µa− µ̃a| ≤ hr + 2 log(4K|S|/β)
ε

;

and so it follows that for any pair of arms a, a′ we have |∆̃a,a′ −∆a,a′ | ≤ 2hr + 4 log(4K|S|/β)
ε

.

Fix an epoch e, denote je = argmaxi∈S ∆i — the viable arm with the largest gap in this

epoch, and denote its gap as ∆e. Since Algorithm 10 applies in each epoch the private stop-

ping rule detailed in Algorithm 8 with α = 1/4, we can use the bound given in Theorem 4.1.3

and deduce that the epoch terminates within re ≤ 40000 (log(K/β) + log log(1/∆e))
(

1
∆2
e

+ 1
ε∆e

)
rounds. We show that Algorithm 10 eliminates arm je as well as any arm a ∈ S for which

∆a ≥ ∆e/2.

Let a1 and a2 denote the pair of arms whose large gap in empirical means causes the SVT

to halt. Namely, the arms such that ∆a1,a2 > 10hr + Ar+B+cr
r

> 10hr + 16 log(K|S|/β)
r

. Since

|∆a1,a2 − ∆a1,a2| ≤ 2hr it follows that ∆e ≥ ∆a1,a2 > 8hr + 16 log(K|S|/β)
r

. Now, consider any

arm a ∈ S such that ∆a ≥ ∆e/2 > 4hr + 8 log(K|S|/β)
r

. By the above discussion we have that for

the arm with the highest private mean estimation µ̃max it holds that µ̃max − µ̃a > µ̃1 − µ̃a >

∆a − 2hr − 4 log(4K|S|/β)
ε

> 2hr + 4 log(4K|S|/β)
ε

, and so the arm a is eliminated by the algorithm.

Also note that by the same bound, we have that µ̃max − µ̃1 ≤ 0 + 2hr + 4 log(4K|S|/β)
ε

so arm 1

(the leading arm) is never eliminated.

We leverage on the above to infer a bound on the number of pulls made on any suboptimal

arm a. Consider any suboptimal arm a and let e denote the last epoch in which this arm

was viable (the last epoch where a ∈ S), and note that it could be that e is the last epoch of

the algorithm and arm a is never eliminated. By definition, ∆a ≤ ∆e, and so the number of
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pulls of arm a in epoch e is at most re ≤
(

40000
∆2
a

+ 40000
ε∆a

)
(log(K/β) + log log(1/∆a)). Moreover,

arm a was pulled during epochs 1, 2, ...e − 1 as well, but by the above argument we have

that the largest gap in epoch e − 1 had to be at least 2∆e ≥ 2∆a, in epoch e − 2 — at

least 4∆e ≥ 4∆a, and so on until epoch 1 where the gap was at least 2e−1∆a. Thus the

total number of pulls of arm a is at most
e∑

m=1

rm ≤ (log(K log(1/∆a)/β))
e−1∑
m=0

(
40000

22m∆2
a

+ 40000
2mε∆a

)
≤

(log(K log(1/∆a)/β))
(

80000
∆2
a

+ 80000
ε∆a

)
, where the last inequality follows from a sum of a geometric

series.

Corollary A.1.3. Under the same notation as in Lemma A.1.2 and for sufficiently large T ,

the expected regret of Algorithm 10 is at most O

(( ∑
a6=a∗

log(T )
∆a

)
+ K log(T )

ε

)
.

Proof. Since Algorithm 10 and 9 have the same asymptotic sample complexity, the steps

used in Theorem 5.1.3 follow.

It is worth noting yet again that the expected regret of Algorithm 10 meets both the

(instance dependent) non-private lower bound (Lai and Robbins 1985) of Ω
(∑

a6=a∗
log(T )

∆a

)
and the private lower bound (Shariff and Sheffet 2018) of Ω (K log(T )/ε).

Minimax Regret Bound. The bound of Theorem A.1.3 is an instance-dependent bound,

and so we turn our attention to the minimax regret bound of Algorithm 10 — Given horizon

bound T , how should an adversary set the gaps between the different arms as to maximize

the expected regret of Algorithm 10? We next show that in any setting of the gaps, the

following is an instance independent bound on the expected regret of Algorithm 10.

Corollary A.1.4. (Instance Independent Bound) The pseudo regret of Algorithm 10 is

O
(√

TK log(T ) + K log(T )/ε
)
.

Proof. Again, similarly to Corollary A.1.3, since Algorithm 10 and 9 have the same asymp-

totic sample complexity, the steps used in Theorem 5.1.4 follow.

Again, we comment on the optimality of the bound in Theorem A.1.4. The non-private

minimax bound (Auer, Nicolo Cesa-Bianchi, et al. 2002) is known to be Ω(
√
TK) and com-

bining it with the private bound of Ω(K log(T )/ε) we see that the above minimax bound is

just
√

log(T )-factor away from being optimal. We believe that DP-SE 2 is the first stochastic

57



K-MAB algorithm that shows how one can leverage on a stopping rule algorithm for K-MAB

algorithmic construction which carries additional merit.

A.2 Empirical Evaluation of DP-SE 2

In this section, we empirically compare the DP-SE 2 algorithm vs DP-UCB (Mishra and

Thakurta 2015) and DP-SE algorithm (Algorithm 9). Our goal is two fold. First, we would

like to assert that indeed there exists some setting of parameters under which our DP-SE

2 algorithm outperforms the DP-UCB baseline. Just like in DP-SE, the improvement we

introduce in DP-SE 2 is over poly log(T ) factors and does incur an increase in the constants,

repressed by the big-O notation, which is larger than in DP-SE. Hence, our primary goal is to

verify that indeed the asymptotic improvement in performance is reflected in actual empirical

performance. Second, assuming the former is answered on the affirmative, we would like to

empirically assess the region of parameters under which our DP-SE 2 algorithm outperforms

the DP-UCB baseline. Third, we would like to understand how DP-SE 2 compares to the

DP-SE algorithm with better constant in the regret complexity.

In addition, we also experiment with a variant of DP-SE 2. Recall that Algorithm 10

sets the SVT mechanism to halt when the largest empirical reward is greater than 10 times

the Hoeffding bound (see line 18 of Algorithm 10), in order to have the worst-case guarantee

that all arms of substantial gap from the leading arm are removed. We thus consider a

modification of Algorithm 10 where the halting condition is

max
i,j∈S

(µ̄i − µ̄j) > 2hr +
Ar +B + cr

r

for cr = 6 log(4K/β)
ε

+
6 log(8Kl2/β)

ε
+ 4 log(4K|S|/β)

ε
and hr denoting the Hoeffding bound after r arm-

pulls. Such a condition assures w.h.p. that the worst viable arm is eliminated in each epoch

e, yet doesn’t guarantee all arms of noticeable gaps are removed. Moreover, such a halting

condition “evens the playing field” as the bounds in the DP-UCB algorithm also depend

solely on 2hr. We refer to this as the “modified DP-SE 2” algorithm in our experiments.

Setting and Experiments. By Default, we set T = 5 × 107, ε = 0.25 and K = 5. We

assume T is a-priori known to the algorithms and set β = 1/T . Just like before in Chapter
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6 we consider the instances C1, C2, C3, C4 (See Chapter 6 for further details). Let a∗ be the

optimal arm and we measure the performance in terms of their pseudo regret, so upon pulling

a suboptimal arm a 6= a∗ each algorithm incurs a cost ∆a = µa∗ − µa. For each setting, 30

runs of the algorithms were carried out and their average pseudo regrets are plotted.

Under all four settings we conduct two sets of experiments. First, we vary ε ∈ {0.1, 0.25, 0.5, 1},

and the results in setting C1, C2, C3, C4, are given in the Figures A.1, A.2, A.3, A.4

respectively. Then we vary K ∈ {3, 5, 10, 20}, and the results under ε = 0.25, 1 in setting

C1, C2, C3, C4 are given in Figures A.5, A.6, A.7, A.8 respectively.

Results and discussion. A few observations are immediately clear. First, in setting C1,

where all gaps are the same and quite small, the DP-SE 2 algorithm outperforms the DP-

UCB baseline when either ε is small (≤ 0.25 in our experiments) or for large values of

K (see Figure A.1 and A.5). In other words, the conditions for which DP-UCB is better

than DP-SE 2 are when ε is fairly large, the number of arms is moderate, and all arms

have identical and fairly small gaps. We would like to point out that in some of the plots,

there are overlappings between the curves. The setting C4 further adds mounting evidence

that naive DP-SE 2 can be outperformed by DP-UCB for small suboptimality gaps and

large values of ε (see Figure A.4 and A.8), only that slightly larger ε and smaller K can be

forgiving unlike in C1 due to the presence of some large suboptimality gaps. In all other

cases — and especially note the consistency throughout all experiments in setting C2 and

C3 — our naive DP-SE 2 outperforms the DP-UCB baseline. Moreover, in all settings the

modified DP-SE 2 outperforms DP-UCB, even though we cannot prove that the modified

DP-SE 2 algorithm eliminates all suboptimal arms of comparable gap from the leading arm.

We believe our experiments unequivocally show that the asymptotic improvement in the

analysis of the DP-SE 2 over DP-UCB is evident in actual, empiric performance.

We postulate that the reason for the improved performance across setting C2 is the fact

that under DP-UCB arms of large gaps remain effectively viable (i.e. are pulled relatively

frequently) for a longer period of time than under DP-SE 2, which eliminates noticeably

suboptimal arms early on. In other words, the large gaps play to the advantage of DP-SE 2.

Moreover, comparing the curves for DP-SE 2 and the modified DP-SE 2 in Figure A.2, we

see that standard DP-SE 2 eliminates all suboptimal arms not long after the modified DP-SE
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2 eliminates all suboptimal arms. This implies that in setting C2, the number of arm pulls

required to create a noticeable gap between arms is mostly due to the privacy-dependent gap

of O( log(T )
ε

) rather than the Hoeffding bound. Since in C3 there are more large suboptimality

gaps than smaller suboptimality gaps, similar reasoning should apply under C3 too.

In contrast, in setting C1 (see Figure A.1) we see drastic performance difference between

the standard DP-SE 2 and the modified DP-SE 2. Here the gap between arms is small

enough s.t. the key component in the decision to halt is the Hoeffding bound (unless ε is

quite small). Indeed, the modified DP-SE 2 algorithm, which sets the dependency on the

Hoeffding bound to be 5-times smaller than in the standard DP-SE 2 algorithm, also happens

to eliminate all suboptimal arms in (roughly) 1/5 of the time it takes the standard DP-SE 2

algorithm to eliminate all arms. We would like to also comment that one thing that plays

to the potential advantage of the modified DP-SE 2 algorithm is the use of exponentially

growing intervals. It is likely that the round r which is also a power of 2 under which the

modified DP-SE 2 halts is large enough to allow some slackness, that helps the algorithm

to overcome the random noise and assert that all arms of noticeable suboptimality gap at

round r are indeed eliminated.

We conclude by repeating the high-level message. Unless ε is large or there are many

arms with small suboptimality gaps, the added cost of privacy places a noticeable role in

the accumulated pseudo-regret, and so our DP-SE 2 algorithm outperforms the DP-UCB

baseline. Comparing DP-SE 2 and its variant with DP-SE we find that in all cases DP-SE

outperforms DP-SE 2 and most of the times it shows improvements over modified DP-SE

2, yet again illustrating the effect of theoretically better constants getting carried over to

empirical analysis.
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(a) ε = 0.1 and 0.25

(b) ε = 0.5 and 1

Figure A.1: Under C1 with K = 5, T =
5× 107

(a) ε = 0.1 and 0.25

(b) ε = 0.5 and 1

Figure A.2: Under C2 with K = 5, T =
5× 107
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(a) ε = 0.1 and 0.25

(b) ε = 0.5 and 1

Figure A.3: Under C3 with K = 5, T =
5× 107

(a) ε = 0.1 and 0.25

(b) ε = 0.5 and 1

Figure A.4: Under C4 with K = 5, T =
5× 107
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(a) K = 3

(b) K = 5

(c) K = 10

(d) K = 20

Figure A.5: Under C1 with ε ∈ {0.25, 1},
T = 5× 107

(a) K = 3

(b) K = 5

(c) K = 10

(d) K = 20

Figure A.6: Under C2 with ε ∈ {0.25, 1},
T = 5× 107
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(a) K = 3

(b) K = 5

(c) K = 10

(d) K = 20

Figure A.7: Under C3 with ε ∈ {0.25, 1},
T = 5× 107

(a) K = 3

(b) K = 5

(c) K = 10

(d) K = 20

Figure A.8: Under C4 with ε ∈ {0.25, 1},
T = 5× 107
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A.3 Missing Proofs

For completeness, we provide the proof of Fact A.3.1 and A.3.2 below.

Fact from Preliminaries.

Fact A.3.1. [Fact 2.2.3 restated]Fix any a ≥ 1 and any 0 < b ≤ 1
16

. Then for any

e ≤ x ≤ log(a/b))/b it holds that
log (a · x)

x
> b, and for any x ≥ 2 log(a/b))/b it holds that

log (a · x)

x
< b.

Proof. It is clear that the function f(x) = log(a·x)
x

is monotonically decreasing function for

x > e. Plugging-in x0 = log(a/b)/b we get

f(x0) =
log(a/b) + log log(a/b)

log(a/b)/b

= b · log(a/b) + log log(a/b)

log(a/b)
> b

Similarly, plugging-in x1 = 2 log(a/b)/b we get

f(x1) =
log(2) + log(a/b) + log log(a/b)

2 log(a/b)/b

= b · log(2) + log(a/b) + log log(a/b)

2 log(a/b)
< b

since b is sufficiently small. Again, using monotonicity, the claim follows.

Fact A.3.2. Fix any a ≥ 1 and any 0 < b ≤ 1
16

. Then for any e ≤ x ≤ log(a log(1/b))/b it holds

that
log (a log(x))

x
> b, and for any x ≥ 2 log(a log(1/b))/b it holds that

log (a log(x))

x
< b.

Proof. It is clear that the function f(x) = log(a log(x))
x

is a monotonically decreasing function

for x > e. Plugging-in x0 = log(a log(1/b))/b we get that

f(x0) =
log(a) + log log(log(a log(1/b))/b)

log(a log(1/b))/b

= b · log(a) + log log(1/b) + log log (log a+ log log(1/b))

log(a) + log log(1/b)
> b
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Plugging-in x1 = 2 log(a log(1/b))/b we get that

f(x1) =
log(a) + log log(2 log(a log(1/b))/b)

2 log(a log(1/b))/b

= b · log(a) + log log 2 + log log(1/b) + log log (log a+ log log(1/b))

2 log(a) + 2 log log(1/b)

< b · log(a) + log log(1/b) + log log (log a+ log log(1/b))

2 log(a) + 2 log log(1/b)

= b

(
1

2
+

log log (log a+ log log(1/b))

2 log(a) + 2 log log(1/b)

)
< b

And so due to monotonicity, the claim follows.
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