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Abstract 

 Earth’s changing climate poses a number of potential issues for people around the globe. 

It has become increasingly important for researchers to have the ability to collect good data and 

build accurate, robust climate models that can help influence the direction of policy makers to 

mitigate the effects of climate change on as many people as possible. One important 

measurement pertaining to climate modelling is above ground biomass (AGB), for its ability to 

describe the amount of carbon stored within living vegetation, such as trees. Measuring AGB 

directly requires that trees be destructively sampled and weighed. An alternative to this method 

is to use allometric equations that are based on other, more easily measurable tree attributes as a 

way of estimating AGB. Advances in technology and the emergence of laser scanning 

technology has allowed for fast, highly detailed tree measurements. In the first chapter, this 

thesis explores the importance of developing accurate AGB models to measure the amount of 

carbon stored in forest ecosystems, and the ways laser scanning technology has changed the way 

researchers are able to measure the tree attributes needed for these equations. The research 

questions and hypotheses of this thesis are then posed based on the emergent uses of these 

technologies, and the needs for biomass mapping. 

 In the second chapter, Terrestrial Laser Scanning (TLS) was used to develop point clouds 

of plots of small black spruce (Picea mariana L.) trees in the Taiga plains ecozone of the 

Northwest Territories. Tree attributes were measured to build allometric models to estimate 

individual tree AGB. The measurements used as predictor variables in the allometric equations 

created in this thesis were crown area, crown diameter, height, individual tree volume from a 

quantitative structure model (QSM), minimum bounding box volume of individual tree point 

clouds, diameter at breast height (DBH), and the products of crown area and height, crown 
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diameter and height, and DBH and height. Multiple forms of these equations were created using 

both ordinary least squares (OLS) and weighted least squares (WLS) regressions, with either tree 

height or ground-measured biomass determining how much weight each tree received in the 

models. Model predictions were cross validated and ranked by average tree error, average RMSE 

and average adjusted R2. The best model was then tested against other established models to 

determine its viability. This thesis uses TLS point clouds to explore the applicability of tree 

attributes that can also be easily measured from airborne platforms such as airborne- and UAV 

laser scanners (ALS and ULS respectively) and provides the allometric equations that can be 

used for a common species found in a typical peatland environment in the Taiga Plains ecozone. 

A preliminary experiment to assess if the models using crown size and height could have the 

potential to be used with point clouds created by airborne methods was conducted. To simulate 

the decreasing point densities that are generally seen in ALS and ULS point clouds, rasters of 

varying cell size looking down on the trees were used to measure crown attributes such as crown 

area and crown diameter. A sensitivity analysis was then done to show how the AGB estimates 

given by equations provided by the best models using these tree attributes were affected as the 

raster cell size increased.  

 The third chapter of this thesis examines the significance of the models created in 

Chapter 2, and comments on the implications of the results obtained. Potential future studies, 

including the possibility of flying scanning missions and using the AGB models from this thesis 

are also discussed.  
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Chapter 1 -- Introduction 

1.1 Carbon, Biomass, and the Climate System 

Climate change is one of the biggest global threats to the health and well-being of 

humanity. Changes in local weather patterns have been observed and linked to the warming 

climate, with many regions around the world showing increased precipitation (Westra et al., 

2013). A 12% increase in record-breaking rainfall events was observed globally from 1980-2010 

compared to what would be expected in a situation where the climate remained stable (Lehmann 

et al., 2015). These increases in precipitation are projected to lead to an increase in the frequency 

of flood events, affecting millions of people even if the average global temperature increase is 

held to 2°C (Hirabayashi et al., 2013). Warm summers in the Arctic have been linked to slower-

moving weather systems in the Northern Hemisphere, increasing the risk of more persistent 

extreme weather events such as heatwaves (Kornhuber & Tamarin-Brodsky, 2021), which are 

also becoming more frequent in recent years (Coumou et al., 2013; Sun et al., 2014). Higher 

average global temperature affects the oceans as well, through processes of thermal expansion, 

changes in terrestrial water storage, and melt water from glaciers and the Antarctic and 

Greenland ice sheets (Frederikse et al., 2020). These processes can cause the average sea level 

(ASL) to rise, which poses not only a physical threat to coastal cities and countries around the 

world (Dasgupta et al., 2009), but a financial one as well. A recent study by Abadie (2018) 

predicted the potential cumulative damages associated with sea level rise due to climate change 

to be in the trillions of US dollars for many of the world’s largest coastal cities by the year 2100. 

The potential impacts of climate change, both in terms of human lives and financial costs, 

highlight the importance of having a strong and intimate knowledge of all components of the 

climate system. Such knowledge would allow for better predictions of future climate scenarios 

that can be used to create policies to best mitigate these costs and develop adaptive strategies to 

deal with the climate impacts anticipated in the coming decades.  

One such component that plays a critical role in the Earth’s climate system is the carbon 

cycle, which exists as multiple interlinked reservoirs, where carbon is able to flow from one 

reservoir to the next (Ciais et al., 2013). In the atmosphere, carbon is found in two of the three 

main drivers of climate change: carbon dioxide (CO2) and methane (CH4) (Ciais et al., 2013). 

These gases are called greenhouse gases, because they absorb outgoing infrared radiation from 
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the Earth, and then reemit it in a random direction, meaning that some of the radiation is sent 

back towards the Earth (McFarland et al., 2007). It is this greenhouse effect that makes the Earth 

capable of supporting liquid water (McFarland et al., 2007), but as atmospheric greenhouse gas 

concentrations increase, so too does the average global temperature. CO2 is a particularly 

prevalent greenhouse gas, accounting for ~76 % of global greenhouse gas emissions (IPCC, 

2014) and contributing ~80% of the increase in radiative forcing since 1990 (Butler & Montzka, 

2021). Atmospheric greenhouse gas concentrations have been rising for hundreds of years since 

The Industrial Revolution. In 1750, the atmospheric CO2 concentration was around 278 ppm 

(Ciais et al., 2013), but has since increased to nearly 420 ppm in 2021 (NASA Global Climate 

Change, 2021). The current concentration is higher than at any other point in the last 800,000 

years (Ciais et al., 2013). This rapid increase can be primarily attributed to human activity, such 

as fossil fuel burning and changing land use (Bandh et al., 2021; Ciais et al., 2013), which 

releases carbon that was previously stored in other reservoirs like the biosphere and lithosphere 

into the atmosphere.  

Fortunately, processes exist within the carbon cycle to remove carbon from the 

atmosphere. One of the most important processes for doing this comes from the interactions 

between the atmosphere and the biosphere. Vegetation removes carbon dioxide from the 

atmosphere through the process of photosynthesis, in which carbon dioxide, water and energy 

from sunlight is converted into oxygen and glucose, which can be stored in plant tissue as starch 

(Gibbs & Latzko, 1979). In this way, large vegetated areas, like forests, can act as carbon sinks 

(Annighöfer et al., 2016; X. Chen et al., 2018; Reichstein & Carvalhais, 2019; Vashum, 2012) 

storing carbon in vegetative tissue and preventing it from contributing to the greenhouse effect. 

Globally, it is estimated that forests contain roughly 660 Pg of carbon, of which almost 300 Pg is 

stored in living biomass (FAO, 2020). Carbon makes up roughly half of the dry biomass (Brown, 

1997; X. Chen et al., 2018; Houghton, 2008; Vashum, 2012), making biomass a vital quantity in 

the monitoring of carbon stocks. This is pertinent to forests which make up between 70 and 90% 

of the planet’s terrestrial biomass (Houghton, 2008; Lucas et al., 2015; Reichstein & Carvalhais, 

2019). 

 

1.2 Uncertainties in Climate Modelling and Biomass Modelling 
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Unfortunately, there are still many uncertainties in the carbon cycle that can propagate 

through to the climate models. These models depend on inputs from many different components 

such as the atmosphere, biosphere, and hydrosphere that are also linked to one another 

(Gettelman & Rood, 2016). Carbon can flow between these components, and small changes in 

one process can propagate through to other processes where they can become magnified or cause 

unforeseen feedbacks (Bonan, 2008). This means it is critical to understand the exchange 

processes between the different components with a high degree of certainty so a complete picture 

of the carbon cycle and its adaptive capabilities can be built (Gettelman & Rood, 2016). Because 

of the vast extent of Earth’s forests (roughly a third of the land surface (Reichstein & Carvalhais, 

2019)) and their role in removing CO2 from the atmosphere, the carbon exchange between the 

atmosphere and forests is particularly important (Bonan, 2008).  

It is also important to consider that while vegetation plays a major role in storing carbon, 

it cannot do so indefinitely. When trees die and decompose, or are burned, the carbon that was 

previously stored within the plant tissue is once again released into the atmosphere, turning them 

from sinks into sources of CO2 (Fearnside, 2000; Zhao et al., 2021). What happens to the carbon 

and the amount of biomass that is subject to burns is another area of uncertainty within climate 

modelling (Fearnside, 2000), which further indicates the need for accurate, real-time biomass 

estimation methods so that carbon released in wildfires can be properly accounted for. The 

vegetation residence time for carbon is still not well understood either, and is a significant 

contributor to the uncertainty of many climate models (Friend et al., 2014). Developing methods 

to estimate biomass quickly and accurately over large areas could be a significant step towards 

understanding these residence times, as it would allow for higher temporal resolution 

observations to monitor changes in biomass and, by extension, carbon stocks.  

It is known that carbon fluxes are tightly linked to vegetation biomass stocks on a decadal 

scale, as plants will adjust to the amount of CO2 in the air around them to a certain extent, but 

depending on the methods used for modelling global vegetation carbon stocks, predictions may 

vary from observed amounts by up to 27% (Reichstein & Carvalhais, 2019). Accurate biomass 

measurements are needed to accurately estimate carbon stocks, but it can be difficult and time-

consuming to measure biomass directly, because this requires physically weighing the trees, 

which can only be done by harvesting them first (Brown, 1997; Picard et al., 2012; Sah et al., 

2004). Instead, allometric equations are commonly used to quantify the relationship between 
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biomass and other, more easily measured variables like diameter at breast height (DBH) and 

height (Annighöfer et al., 2016; Hyyppä et al., 2020; Navar, 2010; Picard et al., 2012). There are 

two kinds of allometric biomass models: Generic and species-specific. Generic models are used 

to predict the biomass of multiple different species of trees, such as all coniferous trees or all 

broadleaf trees in an area, but they have been shown to be less accurate in their estimations than 

species-specific models (Annighöfer et al., 2016; Buech & Rugg, 1989; Martinez et al., 2020; 

Sah et al., 2004). Although species-specific models may be preferred in many cases, the ones 

that exist tend to favour larger, merchantable trees, as opposed to younger, smaller trees which 

can contribute a notable portion of biomass, particularly when considering regions that are 

recovering from disturbances (Annighöfer et al., 2016). As such, there is a need for species-

specific biomass equations for small trees. While many allometric equations have been shown to 

predict above ground biomass (AGB) with considerable accuracy, they often require DBH as an 

input variable (Abich et al., 2019; Puc-Kauil et al., 2020). Recent studies have shown, however, 

that incorporating crown size into these equations can lead to more accurate estimates of AGB 

(Forrester et al., 2021; Jucker et al., 2017). This suggests that it is possible to estimate AGB of 

trees using estimates of height and crown size without the need for measuring DBH at all, which 

could be particularly useful when using airborne measurement methods.  

 

1.3 The Role of Technology in Forestry and Biomass Estimation 

 New technologies have had a large impact on the methods used to estimate biomass in 

forest inventories. One of the most significant technological advances comes in the form of laser 

scanners. The types of laser scanning most commonly used in forestry studies include airborne- 

(ALS) (Holopainen et al., 2013; Mielcarek et al., 2020; Vauhkonen et al., 2014), Unmanned 

Aerial Vehicle- (ULS) (Colomina & Molina, 2014; Hyyppä et al., 2020), terrestrial- (TLS) 

(Holopainen et al., 2013; Liang et al., 2016, 2018), mobile- (MLS) (Holopainen et al., 2013; 

Liang, Hyyppä, et al., 2014), and personal- (PLS) (S. Chen, Liu, et al., 2019; Liang, Kukko, et 

al., 2014; Stal et al., 2021) laser scanning systems. These machines measure the time it takes for 

a laser pulse emitted by the scanner to travel to a reflective object, and return to a sensor on the 

device (also known as a time-of-flight measurement) (Beraldin et al., 2010). For ALS, ULS, and 

MLS, a Global Navigation Satellite System (GNSS) and an inertial measurement unit (IMU) are 

necessary to properly position obtained data (S. Chen, Liu, et al., 2019; Holopainen et al., 2013; 
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Hyyppä et al., 2020; Vauhkonen et al., 2014). Using the known speed of light in air, it is then 

possible to calculate the distance between the scanner and the reflective object. The end result 

from these scans is a 3D digital representation of the scanned area in the form of a point cloud 

(Beraldin et al., 2010). 

Of the five methods listed, ALS has been used in forestry the longest, with ties to the 

profiling LiDAR used in the 1980’s (Lim et al., 2003). In the 1990’s ALS was used to measure 

plot level attributes before being adapted to measure individual tree attributes in 1999 

(Vauhkonen et al., 2014). One of the main strengths of ALS is its ability to scan large areas of 

land in a relatively short period of time, with minimal ground truth data required (Brede et al., 

2017; Vosselman & Maas, 2010). This allows for more potential remote data collection than 

ground-based methods. Point densities of the resultant point clouds tend to be lower than the 

other methods (generally between 1 and 10 pts/m2) (Brede et al., 2017) however, and because 

scans are conducted from above the trees, dense multistory canopies can prevent the laser pulses 

from hitting the ground and understory (Vosselman & Maas, 2010). This effect is known as 

occlusion, and it occurs when the laser pulse is fully reflected by one object preventing anything 

behind the initial object to be seen. Being unable to visualize the lower portions of the trees 

makes it difficult to measure DBH directly and in situations where it is possible to measure from 

above the methods required need higher point densities than those typical of ALS point clouds 

(Harikumar et al., 2017). This is a significant drawback as DBH has historically been one of the 

most important tree attributes in forestry (Liang et al., 2016).  

ULS is similar to ALS in that it is often used to scan from above the tree canopy, 

meaning understory and lower portions of trees are often highly occluded, although recent 

studies have shown that it is possible to scan below the canopy as well (Hyyppä et al., 2020). 

While these methods show promise, one of the major challenges faced with below canopy flights 

is that the GNSS signal is inconsistent, making it unreliable for measuring the scanner’s position 

(Hyyppä et al., 2020). To overcome this a simultaneous localization and mapping (SLAM) 

system that builds a self-contained map to allow for accurate positioning of data points is needed 

(Hyyppä et al., 2020). ULS often results in higher point densities than ALS, and there has been 

some success in recent studies evaluating the possibility of using ULS to directly measure DBH  

(Brede et al., 2017; Jaakkola et al., 2017). These studies required high point density point clouds 
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and less accuracy was observed in the direct measurements when compared to TLS scans, 

indicating further study is needed to develop these methods.  

TLS technologies were first used for forest inventory studies in the early 2000s and have 

since become one of the most common methods of laser scanning used in forestry (Liang et al., 

2016). This system uses a ground-based scanner mounted on a tripod and usually has a range of 

100-300 m (Liang et al., 2016) meaning that the coverage is considerably smaller than ALS. The 

tradeoff is that TLS provides a higher level of detail than any other laser scanning method 

available to date (Wang, Pyörälä, et al., 2019), with millimetre-level ranging precision (Liang et 

al., 2016, 2018). Instead of the time-of-flight ranging method described above that uses a discrete 

laser pulse, some TLS systems emit a continuous signal and use a phase shift sensor to measure 

the reflected waves and estimate the range for out-of-phase return signals (Calders et al., 2020). 

Although the phase shift method is fast and the sensors that employ it are lightweight and 

provide high resolution data, they also have a lower signal to noise ratio than their time-of-flight 

counterparts, thus the time-of-flight TLS systems are more commonly used when studying 

forests and vegetation (Calders et al., 2020). Many studies have shown the ability of TLS to 

accurately measure specific tree attributes like height and DBH (Cabo et al., 2018; Ghimire et 

al., 2017; Liang et al., 2018; G. Liu et al., 2018). One method often used with TLS point clouds 

is to create a quantitative structure model (QSM) that fits cylinders over structural shapes 

detected in the point cloud. These QSMs can be used to estimate a tree’s volume, which can also 

be a useful predictor of biomass (Calders et al., 2015; S. Chen, Feng, et al., 2019). This has been 

shown to be effective for large structures on large trees (e.g. stems) but varying results have been 

reported as the diameter of the structures (e.g. branches) decreases (Hackenberg et al., 2015; Lau 

et al., 2018; Takoudjou et al., 2018). This indicates that more research is necessary to determine 

the extent to which QSMs can accurately model small tree structures. Like the other types of 

laser scanners, one of the biggest challenges facing TLS is occlusion. The accuracy of attribute 

measurements and tree detection decreases with younger, smaller trees, particularly in dense 

plots, where physical characteristics like DBH are smaller, and therefore more likely to be 

missed by the scanner due to occlusion effects (Liang et al., 2018). Furthermore, because the 

scanner operates near the ground surface, the lower portions of trees are often better measured 

than the canopy where branches and foliage may prevent the laser pulses from reaching treetops, 

leading to underestimated heights (Holopainen et al., 2013; Liang et al., 2018). Tree stems and 
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lower branches can create occlusion in the horizontal plane on trees located farther away from 

the scanner, so it is often a good practice to scan from multiple locations to mitigate occlusion 

effects (Liang et al., 2018).  

MLS systems consist of a 3D scanner, camera, GNSS receiver, and IMU mounted on a 

mobile platform (Wang, Chen, et al., 2019), allowing for greater mobility than a TLS system 

(Liang, Hyyppä, et al., 2014). When GNSS is available, they can produce point clouds with 

centimetre-level positioning accuracy (W. Liu et al., 2020). As such, they are often used in urban 

studies where the signal is likely to be strong and where terrain poses few obstacles (Liang et al., 

2014). In forests, canopy cover can cause the satellite signal to be intermittent and unreliable, 

and terrain is often rough (S. Chen, Liu, et al., 2019; Liang, Hyyppä, et al., 2014). In recent 

years, however, methods have been developed for improving positioning accuracy when GNSS 

signal is unavailable (Kukko et al., 2017; W. Liu et al., 2019, 2020; Mao et al., 2015; Shao et al., 

2020), potentially making MLS a more attractive option for future forestry studies. 

PLS is another relatively new technology that has shown potential for use in forestry over 

the last decade (S. Chen, Liu, et al., 2019; Gollob et al., 2020a, 2020b; Liang, Kukko, et al., 

2014). These systems use SLAM technology to accurately position data points and provide 

higher registration accuracy than MLS, which requires a clear GNSS signal (S. Chen, Liu, et al., 

2019). Furthermore, they are lightweight and their mobility makes them an attractive option over 

the other, bulkier ground-based scanners (TLS and MLS) (S. Chen, Liu, et al., 2019; Liang, 

Kukko, et al., 2014), but TLS still provides more precise estimates of tree attributes (Gollob et 

al., 2020b). PLS is still a new technology and there are few studies examining its usability in a 

forestry context, but the early results suggest that while more study is needed, it has high 

potential to become an important and accurate ground-based measurement tool in forestry in the 

future (Gollob et al., 2020b).  

 

1.4 The Canadian Boreal Forest 

 Having these new technologies available in Canada is valuable because of the country’s 

vast expanse of boreal forest. Boreal forests are known to play a major role in global carbon 

storage, accounting for roughly a third of terrestrial carbon stocks (Zhao et al., 2021) and they 

make up the second largest forest biome in the world at 27% of the global forest area (FAO, 

2020). They form a band circling the planet across northern latitude countries in Asia, North 
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America, and Europe and are characterized by their extensive coniferous forests, bogs, fens, 

lakes, and wetlands (Zhang, 2019). The temperature at these latitudes is highly variable 

throughout the year, ranging from as low as -50°C in the Winter to ~20°C in the Summer. 

Canada is home to 24% of the world’s boreal forests (Zhang, 2019), stretching across 270 

million hectares from the Yukon Territory to Newfoundland (Natural Resources Canada, 2013). 

Only 54% of this forest is managed, however, and it is estimated that the managed portion stores 

28 Pg of carbon, while the amount of carbon stored in unmanaged forest is currently unknown 

(Kurz et al., 2013). Roughly a quarter of Canada’s boreal forest is peatland (Wieder et al., 2006), 

and there has been significant research done showing that peatlands are important carbon sinks 

(Alexandrov et al., 2020; Treat et al., 2019). The majority of the carbon stored in peatlands can 

be found in the soil (Kurz et al., 2013; Magnan et al., 2020; Tarnocai et al., 2009), but the 

contribution from AGB should not be ignored because it has a high interannual variability due to 

disturbances like wildfire and insect infestation, and it can provide insight into the sustainability 

of forestry practices in an area (Kurz et al., 2013). Additionally, it is predicted that as the climate 

warms and dries out peatland soil, more carbon will be stored in trees (Magnan et al., 2020), 

once again implying the need for easily obtained biomass estimates for these regions to monitor 

these changes.  

The most common tree species in peatland environments across the Canadian boreal 

forest is black spruce (Picea mariana, L.) particularly in nutrient poor peatlands where they are 

often the only tree species present (Smith et al., 2007). In these regions, the black spruce’s height 

is often stunted (Smith et al., 2007), making it important to have accurate biomass estimation 

models for these smaller trees. Current models for estimating the AGB of black spruce require 

DBH as an input variable (Alemdag, 1983; Bhatti et al., 2006; Ung et al., 2008) or are not 

recommended for small trees (Singh, 1984). Models that can accurately estimate the AGB of 

small black spruce trees in peatland environments using tree variables that can be easily 

measured by the airborne scanners mentioned above (e.g. ALS, ULS) can help to provide better 

and more up-to-date biomass inventories for these regions. 

 

1.5 Hypotheses and Objectives 

 With the background information laid out, it is clear that forest biomass modelling (and 

by extension, carbon storage) will play an important role in future climate studies as humanity 
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attempts to understand and mitigate the effects of climate change over the next century. 

Advances in technology will surely be instrumental for expanding this knowledge, and in 

particular, the rise of laser scanners has opened many doors for new methods to study forests. As 

these technologies improve and become cheaper, faster, more accurate and more mobile, the 

results obtained from them will improve as well.  

TLS currently provides the highest quality laser scanning data (Wang, Pyörälä, et al., 2019) 

and it can be used to develop high quality point cloud estimates than can be used as the 

foundation for models to predict AGB for individual trees. Based on the importance of biomass 

estimates for carbon stock calculations and climate studies, as well as the fact that black spruce is 

a dominant tree species found in peatlands across the Canadian boreal forest, it is necessary to 

focus on building robust biomass estimation models that can predict AGB of this tree species 

accurately and quickly while taking advantage of advances in technology. Therefore, this thesis 

examines the following hypotheses: 

1. TLS scans produce highly detailed point clouds that can be used to measure tree 

attributes with a high level of accuracy. These measurements can then be used to develop 

allometric equations to accurately estimate the AGB of black spruce between 1.3 and 5 

metres tall in boreal peatland environments. 

2. Allometric models that use crown size and height as predictors will provide comparable 

performance for trees between 1.3 and 5 metres tall to the model currently used by 

Canada’s National Forestry Inventory that relies on DBH and height. 

 

Based on these hypotheses, the following objectives were established: 

1. Evaluate the ability of TLS to measure multiple tree attributes of small black spruce in 

peatland environments.  

2. Develop allometric models to estimate AGB using the TLS-derived measurements 

obtained in the first objective, and determine which predictors lead to the best performing 

models.  

3. Assess the ability of the developed equations to estimate AGB by comparing their 

estimations to those of other established models. 

This research will provide significant insight into the predictors used in allometric equations 

and the role that new technology has in obtaining measurements of those predictors by fitting 
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and testing models using multiple variables measured using TLS point clouds. Specifically, the 

models in Chapter 2 that are fitted using predictors that can also potentially be measured by ALS 

and ULS could have important implications on methods used to estimate AGB in the future 

without ever having to set foot on the ground. This study also provides a significant case study of 

the use of TLS to measure small trees, because while TLS has been used to accurately measure 

many tree attributes on larger, merchantable trees (Cabo et al., 2018; Ghimire et al., 2017; Liang 

et al., 2018; G. Liu et al., 2018), the accuracy of these measurements decreases as the trees get 

smaller (Liang et al., 2018). In situations where it is no longer possible to measure these 

attributes accurately, this thesis provides the framework for developing alternative methods to 

overcome this obstacle. Finally, by focusing on black spruce trees in peatland environments, this 

study provides valuable insight on the most prominent tree species found in a common 

ecosystem across Canada. The equations presented in this thesis could be a valuable tool for 

forest biomass inventory, while also laying the foundation for further studies to fully utilize 

technology that has rapidly become an intrinsic part of forestry research.  
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Chapter 2 -- Using TLS-measured Tree Attributes to Estimate Above Ground Biomass in 

Small Black Spruce Trees 

 

Abstract: Terrestrial laser scanning (TLS) has become a useful tool for modelling forest structure 

and estimating tree parameters such as above ground biomass (AGB). Allometric equations are 

often used to estimate individual tree AGB as a function of height and diameter at breast height 

(DBH), but these variables can often be laborious to measure using traditional methods. The main 

objective of this study was to develop allometric equations using a variety of TLS-measured 

variables and compare their estimation accuracy to other established equations that rely on DBH 

and height. The study focusses on small black spruce trees (1.3 – 7 m) located in peatland 

ecosystems of the Taiga Plains Ecozone in the Northwest Territories, Canada, where the dry 

weight of nearly 100 small trees sampled in 10 plots were destructively sampled. We fitted power-

, quadratic-, and multiple regression power models to estimate AGB using tree attributes derived 

from TLS including DBH, crown diameter, crown area, height, tree volume and bounding box 

volume. The equations given by our best models outperformed those obtained from established 

AGB equations that rely on DBH, even though ours do not require DBH. Our equations lay the 

groundwork for rapid ground estimation of AGB density (t/ha) for a prominent tree species in the 

most common ecosystem (treed peatlands) of North America’s boreal forest, as well as providing 

a potential framework for using airborne LiDAR to obtain extensive and accurate AGB reference 

data in the future.  

 

Keywords: Terrestrial laser scanning; biomass; black spruce; allometric equations. 

 

2.1 Introduction 

As Earth’s climate changes and governments around the world look for the best ways to 

meet these changes, the importance of a thorough understanding of the climate system becomes 

apparent. Greenhouse gases, like carbon dioxide, absorb outgoing infrared radiation from the 

Earth and reemit it in a random direction, effectively trapping some of this radiation within the 

atmosphere and warming the surface of the planet (McFarland et al., 2007). The atmospheric 

content of greenhouse gases has been increasing since 1750, leading to increased average global 
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temperatures (Ciais et al., 2013). As regional weather patterns change, new socioeconomic 

challenges pertaining to disaster prevention and mitigation, water availability and population 

migration will likely become more prevalent for policy makers (Ferguson et al., 2018; Thomas, 

2017; Zanhouo & Nana, 2019). The climate models that policy makers rely on to make informed 

decision rely on known physical laws and processes (like the carbon cycle) to predict future 

climates based on different scenarios (Gettelman & Rood, 2016). Thus, understanding the 

interactions between different components of the climate system is necessary to reduce 

uncertainty in the models (Gettelman & Rood, 2016). Because carbon has such a major influence 

on the climate system (Ciais et al., 2013), intimate knowledge of the carbon cycle is needed for 

these climate models. Forests play a major role in the interactions between the atmosphere and 

biosphere and are some of the most important carbon sinks on Earth because trees absorb carbon 

dioxide through the process of photosynthesis (Gibbs & Latzko, 1979). This removes carbon 

from the atmosphere and it stored as biomass (Lorenz & Lal, 2010), which prevents it from 

contributing to the greenhouse effect.  

Roughly half of a tree’s above ground biomass (AGB, the dry weight of trees excluding 

their roots) is made of carbon (Chen et al., 2018; Houghton, 2008; Vashum, 2012), making 

forests an important component of the climate system because they act as significant sinks of 

atmospheric carbon (Novotný et al., 2020; Rencz & Auclair, 1978). Canada’s boreal forest is one 

such important region. It covers 270 million hectares (Natural Resources Canada, 2013) and is 

estimated to contain a third of the world’s terrestrial carbon stocks (Zhao et al., 2021) and more 

than 208 billion tonnes of carbon  (Carlson et al., 2009; Wells et al., 2020). Monitoring changes 

in carbon stocks within forest vegetation means that AGB needs to be monitored accurately. 

Calculating AGB often involves the use of allometric equations that rely on other tree attributes 

as predictors (Alemdag, 1983; Chen et al., 2018; M. Disney et al., 2019; Lau et al., 2019; 

Vashum, 2012). Calibration of these equations is often expensive as they require dozens if not 

hundreds of harvested trees that need to be processed and weighed, but once calibrated, one can 

use those tree attributes in the equations to obtain AGB estimates. In Canada, large country-wide 

efforts have taken place to develop allometric AGB models, such as those put forth by Lambert 

et al. (Lambert et al., 2005) which were later updated by Ung et al. (Ung et al., 2008). These are 

the equations currently used by the Canadian National Forest Inventory for individual tree AGB 

estimation and they rely on height and diameter at breast height (DBH) (Ung et al., 2008). These 
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are the most commonly used attributes for similar AGB equations in other areas of the world 

(Calders et al., 2018; Chen et al., 2018; M. Disney et al., 2019). 

In recent years, new technologies like Terrestrial Laser Scanners (TLS) have been 

incorporated into forestry studies and have proven to be effective at measuring tree parameters in 

forest inventory plots (Kalwar et al., 2021). Scanning with TLS produces highly-detailed, 3D 

point clouds (Chen et al., 2018) that can be used to locate trees within the plot and measure a 

number of their attributes with high accuracy (Liang et al., 2016, 2018; Shruthi Srinivasan et al., 

2015; Tansey et al., 2009; Y. Wang et al., 2019; Watt & Donoghue, 2005). The resultant point 

clouds consist of a myriad of points that correspond to a recorded return from a laser pulse 

emanating from the scanner that reflects off the surface of an object. These point clouds also 

enable researchers to virtually return to the plot at any point to better interpret field data or check 

for errors and outliers. Despite the many benefits of TLS, there are some drawbacks as well. 

Scanning equipment can be expensive and heavy, and the scans themselves can be time 

consuming (White et al., 2016). Point clouds can sometimes contain data gaps, particularly in 

dense forests where branches and stems block the laser beam emitted by the scanner from 

reaching anything behind it (Watt & Donoghue, 2005). This occlusion is one of the biggest 

concerns when using TLS, often compromising the data’s usefulness (Watt & Donoghue, 2005). 

It can, however, be partially remedied with properly planned scan stations at multiple positions 

in and around the plot (Abegg et al., 2017; Watt & Donoghue, 2005) or, when considering 

occlusion effects on leaf area density, by using a multistep process called kriging that creates 

estimators based on spatial information for regions of the point clouds where data does not exist 

(Soma et al., 2020). An example of how occlusion can affect data can be seen when measuring 

DBH. While the DBH of large trees has been accurately measured using TLS in many cases 

(Ghimire et al., 2017; Heinzel & Huber, 2017; Liu et al., 2018), when parts of the tree stems are 

occluded, TLS-based DBH measurements become less accurate (Moskal & Zheng, 2011).  

One alternative is to use allometric models that do not rely on DBH, and recent studies have 

shown the potential of crown parameters, such as crown diameter, to accurately estimate AGB 

(Jucker et al., 2017; Lau et al., 2019). Crown parameters also have the important advantage of 

being measurable using airborne laser scanning (ALS) assuming high enough point density, 

whereas measuring DBH in this manner is difficult and requires higher point densities than are 

normally seen in ALS point clouds (Harikumar et al., 2017). ALS can cover large areas of land 
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quickly (Malek S et al., 2019), making models that use ALS-obtainable parameters as predictors 

very attractive for obtaining extensive AGB reference datasets without setting foot on the 

ground. As such, these models could be particularly useful in ecosystems that are widespread and 

common across the Canadian boreal forest, like peatlands.  

Peatland ecosystems make up around 24% of boreal forests worldwide (R. Wieder et al., 

2006) and are prominent in Canada where they cover 13% of the country’s land surface 

(Tarnocai et al., 2011; Warner & Asada, 2006). Black spruce (Picea mariana L.)  is a dominant 

species in boreal peatlands (Lieffers, 1986; Rencz & Auclair, 1978), and roughly 70% of black 

spruce biomass is above ground (Rencz & Auclair, 1978). While AGB makes up only a small 

portion of the total carbon stored in black spruce peatlands (~3% of the total soil carbon 

according data from Bona et al. (Bona et al., 2018) and using the mean estimates from the model 

given in Bona et al. (Bona et al., 2020), the large extent of these ecosystems (over 100 million 

hectares of Canada’s boreal forest) (Thompson et al., 2016) and the fact that black spruce is a 

dominant species in boreal forest peatlands (Lieffers, 1986; R. K. Wieder et al., 2006), makes 

their AGB an important carbon sink. Furthermore, of all the carbon pools in Canada’s boreal 

forest, AGB is the most spatially variable, and the one that fluctuates the most due to its 

vulnerability to wildfires and other disturbances (Kurz et al., 2013). For example, an 

experimental fire in an Albertan black spruce peatland resulted in 100% tree mortality with 

around 25% of biomass being combusted and the remainder being added to dead wood carbon 

pool, compared with the loss of only ~1% of the peat (Thompson et al., 2020). This variability 

highlights the need for methods that can provide accurate AGB estimates for black spruce in 

peatlands.  

In this study, we develop allometric equations specific to individual black spruce trees 

shorter than 5 m tall in peatlands of the Taiga Plains ecozone using various model forms and 

TLS-measured tree attributes, and assess which combinations of predictor variable and model 

form led to the best estimates of AGB. Of particular interest to us were the models that rely on 

predictors that can also be measured by ALS (assuming high enough point density). We also 

assess the use of quantitative structure models (QSMs) for measuring tree attributes like DBH, 

height, and volume of small black spruce trees as this has been successfully done for mature 

deciduous trees (Brede et al., 2019; Calders et al., 2015; Lau et al., 2018). Finally, we compare 

the AGB estimates made by our best models to those made using the equations given by Ung et 
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al. (Ung et al., 2008) and to those given in Bhatti et al. (another set of equations based on 

unpublished data specifically for black spruce less than 3 m tall) (Bhatti et al., 2006) to see if 

ours represent a suitable alternative for accurate AGB estimation. 

 

2.2 Materials and Methods 

 

2.2.1 Study Area 

This study was conducted in boreal forest peatlands located in the Northwest Territories in 

between Hay River, NWT and Fort Simpson, NWT (Figure 1). The study area lies within the 

mid-boreal Taiga plains ecoregion (Environment and Natural Resources, n.d.), which has 

average annual temperatures between 1°C and 4.5°C, and mean annual precipitation between 

400-460 mm (mostly summer precipitation) (Ecosystem Classification Group et al., 2009). 

Peatlands in this ecoregion are in the form of flat-topped, peat-rich areas elevated from the 

surroundings by underlying ice-rich permafrost (peat plateaus), smaller mounds of peat with 

permafrost and minerals in their cores (palsas), wetlands with parallel rows of peat material 

(northern ribbed fens), and wetlands with uniformly spread peat material (horizontal fens) 

(Ecosystem Classification Group et al., 2009).  

We selected 10 circular plots that represented a variety of tree heights and densities typical 

of black spruce peatlands in the study area (Figure 1). Plots were 7.98 m in diameter (50 m2) and 

contained anywhere from 23 to 115 trees per plot, most of which were black spruce, but with 

several (20 out of 606) tamarack (Larix laricina (Du Roi) K. Koch) as well.  

 

2.2.2 Plot Characteristics 

All trees within the plot were flagged with orange flagging tape and trees on the edge were 

flagged with pink. Their heights and DBHs were measured using a Haglof Vertex IV and 

Transponder T3, and a diameter tape, respectively. Ten black spruce trees representing the range 

of heights found in the plot were then selected for destructive sampling. To identify sample trees, 

reflective tape was wrapped around the trunk near 1.3 m, blue flagging tape was added to the 

branches, and a reflective pole with a number from 0-9 was placed next to the trunk. The trees 

selected for destructive sampling were also measured for their distance and bearing from the centre 

of the plot to help us locate them in the resultant point clouds later.  
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2.2.3 Scanning the Plots  

All plots were scanned using a Leica C10 Terrestrial Laser Scanner from five different 

stations: One at the centre of the plot and four at points corresponding to the corners of a square 

that encompassed the plot. This follows the findings of Abegg et al. (2017) that the plot centre 

provides the best visibility in a plot, and additional scan locations placed evenly around the plot 

will reduce occlusion. The C10 can produce colourized point clouds, for which the C10 camera 

was set to medium image resolution (960 x 960 px). The scan rate for the C10 laser instrument is 

50,000 pts/sec, and it has a footprint diameter of 4.5 mm at 50 m range. Scan angles were set to 

360° horizontally, and from -45° to 90° vertically. Five TLS targets were placed around the plot 

so they could be seen from each scan station. These targets were used to align the five scans 

during the process of registration, where all the scans are combined into a single point cloud of 

the entire plot. Finally, the plots were photographed by the C10 and by a 360° GoPro from each 

scan location, as well as from above using a drone to provide extra assistance in locating the 

destructively sampled trees in the point clouds later. 

 

2.2.4 Destructive Sampling and Biomass Measurements 

After each plot was scanned and photographed, the 10 trees selected for destructive 

sampling were cut down as close to the ground as possible. The trees were then cut into smaller 

pieces and put in bags marked with the tree’s information (plot and tree number) for 

transportation. Some of the bags were brought to Edmonton, Alberta and were left to dry in a 

storage area at 60°C until there were no significant differences in weight measurements from day 

to day, with a minimum sitting time of at least one week. The remainder of the bags were 

measured in Hay River, NWT and were dried at 65°C for at least 1 week. The trees were then 

separated into main stem, branches, needles, lichens, and cones and weighed to the closest 100th 

of a gram. These components will be used in a future study. The total weights of these 

components were added up to produce the reference values of AGB for each tree.  

 

2.2.5 Point Cloud Processing, Tree Extraction, and Height Measurements 

Registration of the point clouds was performed in Leica’s Cyclone software (Leica Cyclone 

3D Point Cloud Processing Software, n.d.). Each scan was imported into the software and the 

targets were used as anchor points for combining the individual scans. We required the 
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difference in target location to be less than 6mm when combining two scans, otherwise the 

constraint for those two targets was disabled for the purposes of registration. Once the scans 

were registered, the resulting point cloud was imported into CloudCompare (CloudCompare 

(v2.11.1), n.d.) (an open-source point cloud editing software) for further analysis.  

In CloudCompare, each plot point cloud was thinned using the cloud subsampling tool 

(CloudCompare (v2.11.1), n.d.), with the minimum distance between points set to 1 cm to reduce 

file size and increase computing speed. The point cloud was then cropped at the plot’s 

circumference. To eliminate any points created by atmospheric debris or false returns, a 

statistical outlier filter (CloudCompare (v2.11.1), n.d.) was applied, computed as:   

T = µd + nsigma ∙ σd  (1) 

where T is the threshold for removal, µd is the mean average distance from each point to its 10 

nearest neighbours, nsigma is the standard deviation multiplier (we used nsigma = 1.00), and σd 

is the standard deviation of the average distances of all points in the plot point cloud. Points with 

an average distance to their 10 nearest neighbours exceeding the threshold (T) were removed. 

The trees that were selected for destructive sampling were then identified in the point cloud 

using the numbered reflective marker sticks and the distance and bearing measurements taken in 

the field as guides. When these clues were not sufficient to identify the tree, the GoPro images 

were also consulted to search for the blue flagging tape on selected trees. These trees were 

manually clipped from the plot point cloud, cleaned so that only points from the selected tree 

remained, and saved as individual tree point clouds for further analysis. The tree point clouds 

were manually straightened (i.e., the stem was aligned to the z axis when the tree was leaning) 

and, following Calders et al. (2015), the tree height was measured as the distance between the 

maximum and minimum z-coordinates of all the points in each individual point cloud.  

 

2.2.6 Crown Diameter and Crown Area Measurements  

Initially, we estimated crown diameter as the mean of two orthogonal pseudo-diameters, 

but because the crowns of these small trees are irregular, we decided to use a method that relied 

on 2D rasters to measure crown area and from that, derive crown diameter. We chose 1 cm as the 

size for the raster cells because it is the minimum distance between points after the point cloud 

thinning outlined in section 2.2.5. We then created a count raster where the digital number (DN) 

in each cell was the number of points inside the square vertical prism represented by the cell. An 
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initial estimate of the crown area was then obtained as the sum of the areas of non-empty cells in 

that raster. To reduce crown area overestimation caused by cells along the crown perimeter with 

very few points, non-empty cells were then sorted in ascending order by DN, and the first 1% of 

cells in the ordered list were set to DN=0 in the count raster. While this had little to no effect at 

the 1 cm cell level, it became more important when we analyzed the effect of raster cell size in 

the experiment outlined in section 2.2.10. For the purposes of precisely calculating crown area 

and the uncertainty of this measurement, we determined which cells were on the perimeter and 

which were inside the crown by looking at each cell’s 4-neighbours (neighbouring cells above, 

below, and on either side of the cell, but not diagonally adjacent). If the DN ≠ 0 in all four 

neighbouring cells, the cell was classified as an inner cell, otherwise it was classified as a 

perimeter cell. Then crown area was estimated as follows: 

CA = (p ∙ 0.5a) + (i ∙ a),  (2) 

where p is the number of perimeter cells, i is the number of inner cells, and a is the area of a 

single cell.  

The uncertainty of this measurement comes from not knowing whether the points in a 

perimeter cell are evenly distributed horizontally or if they are situated only on the side of the 

cell closest to the rest of the crown. Assuming the points were located at the centre of the cell, 

we can account for this uncertainty as follows: 

δCA = ± (p ∙ 0.5a).  (3) 

Finally, we calculated crown diameter as the diameter of a circle of area equal to CA:    

CD = 2√𝐶𝐴/𝜋,  (4) 

and deriving the uncertainty of this measurement as: 

δCD = (δCA∙CD)/(2∙CA∙π).  (5) 

 (N.B. Uncertainty propagation for all predictor measurement uncertainties and model 

parameters is explained in the Appendix.) 

 

2.2.7 TreeQSM Estimates of Height, DBH and Volume 

To evaluate the ability of QSMs to derive estimates of allometric variables, we used 

TreeQSM (Raumonen et al., 2013), an open source Matlab package that can be used to build 
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QSMs from point cloud data. TreeQSM provides measurements for height, DBH (as the 

diameter of the cylinder fitted to the point cloud from 1.1 to 1.5 m) and volume in its output. 

Each tree point cloud was run through the script five times to mitigate the random nature of the 

resulting QSMs created by the program, following the practices of other studies that generated 

multiple QSMs of individual trees to obtain more accurate measurements of tree attributes (M. 

Disney et al., 2018; Gonzalez de Tanago et al., 2017). The attributes were averaged from the five 

QSMs and their uncertainty measurements were calculated to give a final measured value for 

each of these attributes. These estimates were then used as predictors in some of the AGB 

models we tested. Information on the input parameters used for this step can be found in Table 1. 

 

2.2.8 Bounding Box Volume 

Bounding box volume was measured as the volume of the smallest box that encompasses 

the entire tree point cloud. This was done to expand on the work done by Flade et al. who 

developed methods to use bounding box volume as a predictor for peatland shrub AGB (Flade et 

al., 2020). The dimensions of the bounding box can be found by calculating the difference 

between the maximum and minimum coordinates on each axis. This is done automatically in 

Cloud Compare (CloudCompare (v2.11.1), n.d.), so we used the box dimensions given within the 

program. 

 

2.2.9 Fitting and Testing the Models 

Our measurements gave us values for several different variables that could be used as 

predictors for our AGB models. The 9 variables (or products of variables) used in our models 

were: 

1. Crown area; 

2. Crown diameter; 

3. Height (measured by TLS) 

4. The product of crown area and height; 

5. The product of crown diameter and height; 

6. DBH from QSM; 

7. The product of DBH and height; 

8. Volume from QSM; 
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9. Volume of the bounding box of the tree point cloud. 

Measurement uncertainties were recorded for each of these variables and combined with 

model uncertainties using the linear approximation and error propagation formulas outlined in 

the Appendix. Confidence intervals for the models were measured at the 95% confidence level. 

Correlation coefficients were also calculated between all individual predictors and lab-measured 

AGB. 

All models were fitted using R’s lm() function (R Core Team, 2020) and equations 

representing three different types of model for each of the predictors (Table 2). The input 

formula for power models was log(y) ~ log(x) and the resulting coefficients were algebraically 

converted to fit the power function seen in Table 2. Similarly, multiple regression power models 

used the input formula log(y) ~ log(x1) + log(x2). Quadratic models also required a log 

transformation of both x and y values before being fit into the lm() function using the formula y ~ 

x + x2. Estimates were made using the resulting coefficients and then back-transformed to give 

an estimate of AGB. To account for bias in the back-transformed models, the estimates were 

multiplied by a correction factor of ε = eMSE/2 where MSE is the mean squared error of the fitted 

models with log-transformed variables (Baskerville, 1972; Flade et al., 2020; Mascaro et al., 

2014). 

Models were fitted using both ordinary (OLS) and weighted (WLS) least squares methods 

and OLS models were tested for heteroskedasticity using the Breusch-Pagan test (Breusch & 

Pagan, 1979; Zeileis & Hothorn, 2002). For the weighted methods, the weight of each tree i was 

inversely proportional to the number of trees ni with dry biomass within 1 kg of that tree: 

Wi = (N – ni) / ∑(N-ni),  (6) 

where N is the total number of trees in the sample. Doing this allowed us to give more weight to 

bigger trees in the sample, which are less represented than smaller trees. Weights were also used 

to reduce heteroskedasticity in the residuals of some of our OLS models.  

We assessed which of these fitted models performed the best using a 10-fold cross 

validation (Nwanganga & Chapple, 2020) with each plot acting as a fold to create a scenario 

analogous to using the model in a non-sampled location (Wenger & Olden, 2012). This method 

used the trees from 9 out of 10 plots to fit the model, and then tested it on the trees of the left-out 

plot. We then fit the model again using a different combination of 9 fitting plots and tested on a 
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different plot than the previous iteration(s). The process was repeated until each plot was used 

for testing once. During each iteration, we recorded the following model performance metrics,  

• Mean average error (MAE); 

• Adjusted R2; 

• Root mean squared error (RMSE). 

We then used the average of each of these metrics from the completed cross validation to 

rank the models from 1-42. We also noted the coefficient of variation in RMSE to provide 

insight on the robustness of the model when it is exposed to new data from different areas of 

peatland. We then selected the top model for each of the nine predictors above for further 

analysis. 

To assess how our top model fares compared to the published equations of Ung et al. (Ung et 

al., 2008) and Bhatti et al. (Bhatti et al., 2006) for commercial and small black spruce, 

respectively, the individual AGB of each tree harvested in this study between 1.3 and 3 m tall (as 

the Bhatti equations are only applicable to trees shorter than 3 m) was estimated using lab 

measurements of height and DBH and those equations. These estimates were compared with lab-

measured AGB and the resulting RMSE and coefficient of determination were calculated and 

compared to those from the leave-one-plot-out cross validation of our top model. That is, to 

allow for a fair comparison, our predicted value for each of the trees ≤ 3 m tall came from the 

version of our top model that was fitted using all plots except the one where the tree was 

harvested from. There are also AGB equations specific to black spruce in the Northwest 

Territories, but they are only suited to trees with DBH > 6 cm (Singh, 1984), and therefore were 

not used in this study.  

 

2.2.10 Surrogate Point Density Sensitivity Analysis 

To assess how decreasing point density would reduce the accuracy of the AGB estimates in 

a scenario where the point clouds used for tree measurements come from ALS instead of TLS, an 

exploratory sensitivity analysis was performed using the cell size of the rasters as a proxy for 

point density of first returns. In addition to the 1 cm cell rasters, we created rasters with cells of 

increasing size at 5 cm steps up to 50 cm, which assuming 1 point per cell, would act as a 

surrogate for point densities ranging from 10000 pt/m2 to 4 pt/m2. Crown area and crown 

diameter were determined for each raster using the methods outlined in section 2.6 for the 1 cm 
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cell rasters. Recomputing tree height for decreasing point densities is not as straightforward and 

would require real ALS or UAV data (Peng et al., 2021), so we decided to forego the assessment 

of the impact on tree height. 

We then calculated the crown area of each tree for each raster cell size, and used the 

equations provided by the best model for the product of crown area and height to estimate AGB 

and compared the results to the lab-measured AGB. We recorded the RMSE and the coefficient 

of determination to see how these metrics would behave with decreasing point density. 

 

2.3 Results 

In total we fitted 42 models to our data using different combinations of TLS-measured 

predictor variables, model forms, and model fitting methods to estimate AGB. Of the 100 trees 

harvested in this study (10 in each of the 10 plots), 89 were used in the fitting and final analysis 

of our models (Table 3) and resulted in an average AGB of 1.63 kg with a range of 0.11 kg to 

9.31 kg (full details on all variables collected using TLS can be found in Table 4). Details of the 

trees that were excluded from modelling and the reasons for their removal can be found in Table 

5. Occlusion was the most common issue that led to trees being removed from the analysis. 

Figure 2 shows examples of occluded and unoccluded point clouds. 

 

2.3.1 Effect of Weights on Final Models 

In our sample, 73 trees had a lab-measured AGB of less than 2.50 kg (Figure 3), meaning 

larger trees were underrepresented when fitting the models. Giving more weight to larger trees in 

the WLS estimation of model parameters saw our model fits either improve or remain constant 

(adjusted R2 and RMSE) across the board (see Figure 4 for one example). In this model (the 

bounding box volume power model), the p-value of the Breusch-Pagan test for the residuals in the 

OLS method was 0.14, indicating that the residuals are homoscedastic. However, adding weights 

to give each interval of the AGB range equal influence on the model resulted in an improved 

adjusted R2 (0.89 for WLS, 0.86 for OLS), and a constant RMSE (0.66 kg for both). 

 

2.3.2 QSM Effectiveness 

Each of the 89 trees in our study was also run through the TreeQSM script (Raumonen et 

al., 2013) as outlined in section 2.6. Our average measurement uncertainty for total tree volume 
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was 1.27 L, roughly 9% of the average total volume. Similar relative uncertainties were observed 

for DBH (8%) and stem volume (10%). DBH estimation proved unreliable when compared to 

lab-measured results. The coefficient of determination for observed (lab-measured) vs predicted 

(QSM) DBH was 0.58, with an RMSE of 2.7 cm, and the bias was +2.0 cm (relative to the mean 

observed DBH, this is 115% and 86% respectively). Height estimation from the QSMs was more 

reliable than for DBH, but still not as good as the simple max(z) – min(z) calculation. QSM-

obtained heights returned a coefficient of determination of 0.97 and an RMSE of 0.20 m, while 

the max-min method returned a coefficient of determination of 0.97 and an RMSE of 0.18 m. In 

terms of AGB, estimates given by our best model (crown area and height multiple regression 

power model, outlined in section 3.3) gave an average adjusted R2 value of 0.94 and an average 

RMSE of 0.34 kg (21.0% of the average AGB of the sample), whereas the same model using 

QSM-measured height instead of TLS-measured height gave an average adjusted R2 of 0.94 and 

an average RMSE of 0.35 kg (21.4% of the average AGB of the sample).  

 

2.3.3 Model Rankings 

The multiple regression power models that used the product of crown size (either crown 

area or crown diameter) and height yielded the best results (Table 6). A graphical representation 

of the fitted model using the product of crown area and height can be seen in Figure 5. Because 

crown diameter was a parameter derived from crown area, these two power models returned the 

same results. The same is true for the two multiple regression models that use the products of 

crown area and height and crown diameter and height. The fact that they use a separate exponent 

for each factor makes for a closer fit than in the normal power models where a single exponent 

applies to the completed product of the factors.  

Model parameters and standard errors are reported for the best combination of model type 

and variable in Tables 7 (multiple regression power models), 8 (power models), and 9 (quadratic 

models). The standard errors were combined with the recorded measurement uncertainties and 

plotted as error bars in predicted vs observed AGB scatterplots which can be found in the Figures 

6-14). Full rankings for each model type can be seen in Tables 10 (multiple regression power 

models), 11 (power models), and 12 (quadratic models). Methods and equations for estimating 

the uncertainty of estimates appear in the Appendix.  
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2.3.4 Comparisons with Other AGB Estimation Methods 

We used a subset of 64 trees to compare our top model’s estimates to those made using 

equations from Ung et al. (Ung et al., 2008) and Bhatti et al. (Bhatti et al., 2006). We could not 

use the whole sample for this comparison because the equations in Bhatti et al. are only 

recommended for trees less than 3 m in height (Bhatti et al., 2006), and because four trees from 

our sample had no lab-measured DBH due to their reconstructed lab-measured heights being less 

than 1.3 m. Our best model (crown area and height WLS multiple regression power model) 

outperformed both the other models, even though it does not use DBH. Our estimates had the 

lowest RMSE of the tested methods at 0.21 kg or 24% of the average biomass of this subset of 

trees, compared to 0.31 kg (36%) for the Ung estimates, and 0.35 kg (40%) for the Bhatti 

estimates (Figure 15). The crown area and height model also performed better than another 

multiple regression WLS model fitted using lab-measured DBH and height as well (not shown).  

We also compared the results from the cross validation of the crown area and height 

multiple regression power model with the estimates given by the equations of Ung et al. (Ung et 

al., 2008) for the subset of all trees with lab-measured height and DBH (85 of the 89 in the 

sample). The average RMSE of the crown area and height model in this test was 0.39 kg (23% of 

the average AGB of this subset) compared to 0.51 kg (30%) in the estimates made using Ung et 

al.’s equations (Ung et al., 2008). The R2 also favoured the crown area and height model for this 

subset, with an R2 of 0.96 compared to 0.93 for Ung estimates. 

Of the predictors used in this study, bounding box volume (r = 0.93), lab-measured DBH 

(r = 0.90) and TLS-derived height (r = 0.90) were most strongly correlated with AGB, while 

crown area (r = 0.81) and QSM-measured DBH (r = 0.67) showed the weakest correlation with 

AGB (Figure 16). 

 

2.3.5 Crown Area Sensitivity Analysis 

The simulation of decreasing point density revealed that the AGB estimation errors in the 

crown area and height multiple regression power model remain low at nominal densities above 

16 pts/m2 (Figures 17 and 18). While both RMSE and R2 show some worsening over the full 

range of nominal point densities tested, most of this occurs for lower point densities. The RMSE 

of the AGB estimates increases from 0.36 kg when using 10000 pts/m2 to 1.26 kg when using 4 

pts/m2, but only 17% of this increase is seen between 10000 and 16 pts/m2. A similar pattern is 
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also observed for R2. As explained in section 2.10, the impact of decreasing point density on 

height estimation was not considered in this simulation. Notwithstanding, the threshold we found 

is consistent with the one suggested in a recent study focused on height estimation of coniferous 

trees using drone-based lidar point clouds of different point densities, which found that height 

accuracy worsens at around 17 pts/m2 (Peng et al., 2021).  

 

2.4 Discussion 

2.4.1 Effect of Weights on Final Models 

The residuals of most OLS models did not show heteroskedasticity in a Breusch-Pagan test 

(Breusch & Pagan, 1979; Zeileis & Hothorn, 2002) (the only exception being the power model 

of the product of crown area and height), but we did notice slightly larger residuals for trees in 

the higher end of our lab-measured AGB range. A possible reason for this is that there are more 

trees with low AGB (< 2.5 kg) than there were trees with high AGB (> 2.5 kg). While more 

smaller trees than larger trees is to be expected in any treed peatland (Lieffers, 1986), it does not 

translate well to model fitting, because if each point is given the same weight and more points 

are at the lower end of the range, then the model will tend to fit those points more, leading to 

larger residuals for the taller trees. 

 

2.4.2 QSM Effectiveness 

At the outset of the study, we expected that the QSMs could be used to reliably estimate 

AGB. Because the trees were small and frequently clustered together, there was often occlusion 

which caused anomalies in the final QSMs. Stem reconstruction was partial and noisy for most 

of the trees, making DBH estimates unreliable with a relative RMSE of more than 100% of the 

average field-measured DBH, which propagated through to the QSM volume estimates. The 

latter was still used as a single predictor in one of the models, but it was outperformed by other 

TLS models that also used only single predictors, namely bounding box volume and height. 

The QSMs did not provide the kind of consistent results other authors obtained for mature 

deciduous trees (Calders et al., 2015; Gonzalez de Tanago et al., 2017). This can be seen in the 

uncertainties resulting from averaging the five iterations of the QSM for each tree, particularly in 

total tree volume and DBH (see section 3.2). Occlusion played a large role in this as well, as the 

QSMs rely on the ability to fit cylinders to structural segments of the point cloud (Raumonen et 
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al., 2013), and when the stems of trees were occluded it made it difficult for TreeQSM to 

accurately fit cylinders to the stem and get DBH measurements. It should be noted that QSMs 

produce best results in leaf off conditions (Burt et al., 2013; Zhouxin Xi et al., 2018). We were 

unable to remove points corresponding to needles effectively, as they are often easily confused 

with woody structure (D. Wang et al., 2020; Wu et al., 2020). Therefore, we had to run our 

QSMs with the needles still on in the point cloud, which likely also contributed to the poor 

results. The AGB estimation error for models that relied on QSM-measured predictors may not 

be directly related to needles, but the thick branching and foliage created significant occlusion of 

the stem. Hence, we do not recommend the use of QSMs for AGB estimation of small black 

spruce trees.  

 

2.4.3 Model Rankings 

The best TLS models were the multiple regression power models of crown area (or 

alternatively, crown diameter) and height, where the two predictors are multiplied, and each has 

a different exponent. The power models that assigned a single exponent to the product of 

multiple variables still performed well, but not as well as these models (Table 13). The strength 

of the multiple regression models comes from their ability to be more flexible when fitting the 

curve to the data, leading to smaller residuals than the models using only a single exponent. We 

found that within the multiple regression power models, the crown area and height model 

performed better than lab-measured DBH and height model, which was unexpected because 

DBH correlates more strongly with AGB than crown area. A possible explanation for this is in 

the correlation between predictors. In our sample, crown area and height are less correlated than 

DBH and height (Figure 16) (r = 0.65 to r = 0.96 respectively), which is the likely reason why a 

model using those two variables would be better able to explain the variance in AGB. These 

findings are consistent with other studies showing that crown size can improve the predictive 

capabilities of AGB allometric equations in other ecosystems (Forrester et al., 2021; Goodman et 

al., 2014; Jucker et al., 2017; Lau et al., 2019).  

Quadratic models performed slightly worse than power models in most situations except for 

the QSM-derived DBH. This was, however, the worst performing of all our top models (Table 

6), which likely stems from the issues we had getting accurate DBH measurements from the 

QSMs. When the same model was fitted using lab-measured DBH it had an RMSE of 0.43 kg, 
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68% lower than the QSM-derived DBH model (this comparison was done using the subset of the 

85 trees that had lab-measured DBHs). An important consideration for quadratic models is that, 

unlike power models, the regression line does not intercept the y axis at y = 0. This means that it 

is entirely possible to predict negative AGB for small trees. It is possible to force the regression 

to have an intercept at y = 0, but because our intercepts were generally quite small, we found that 

doing this caused the model to predict worse for the trees that fell in the range of our sample, so 

we used the unconstrained models instead. 

Although our study included trees between 1.3 and 7 m tall, in practice there were fewer 

tall trees than short trees in these plots, and the tallest trees that were used in our dataset where 

slightly over 5 m tall. As such, we recommend that our equations only be used for black spruce 

trees that are 1.3 to 5 m in height. 

The cross-validation methods we used helped prevent the models from being overfitted to 

the sample data. They were fitted using trees from nine plots and then tested on the final plot, 

meaning that the performance metrics used to rank the models were obtained based on AGB 

estimates for trees that had no impact on the fitting of the models. The low coefficients of 

variation for RMSE in the cross validation (Table 13) provide evidence that the models presented 

here performed consistently for all the plots between Hay River and Fort Simpson, NWT. As 

such, we believe that they should work equally well in other boreal peatlands (Wenger & Olden, 

2012), however further work is needed to support this assumption. 

The model based on bounding box volume ranked third in the final rankings of TLS models 

(Table 6). Unlike in QSMs, where volume is calculated using an array of cylinders to represent 

the stem and branches of a tree, bounding box volume is easily computed from the maximum 

and minimum point coordinates in each axis. We selected this predictor following Flade et al. 

(Flade et al., 2020) who found that bounding box volume can predict the AGB of boreal shrubs 

with relative RMSE of 76% when compared to the average AGB of shrubs in their sample. We 

expand on this idea by applying it to small black spruce trees and show that bounding box 

volume can be a useful predictor for estimating tree biomass as well, with a relative avg RMSE 

of 40% and an R2 of 0.87. Bounding box volume could be useful in situations where the point 

cloud is not dense enough to reliably estimate crown area, but where there is ancillary high-

resolution imagery that can identify the individual small black spruce within the bounding box.  
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The model based on TLS-measured height was fourth in the ranking, outperforming the 

models that used QSM-derived attributes, as well as the models that used only crown size as a 

predictor. The fact that they perform better than the single predictor models based on crown size 

indicates that height is the more important factor in the top two models, with crown size being a 

secondary piece of information that can improve on the models built using height alone.  

 

2.4.4 Comparisons with Other AGB Estimation Methods 

We found that our best models (using crown size and height as predictors) outperform the 

other existing model for small black spruce (Bhatti et al., 2006). The mean RMSE from the 

leave-one-plot-out cross validation of our crown area and height model for the subset of trees 

shorter than 3m tall was 0.21, compared to 0.35 for the Bhatti equations, even with the latter 

using lab-measured DBH and height. Furthermore, our best models also outperform the DBH 

and height model from Ung et al. (Ung et al., 2008) for our sample and therefore could be a 

preferred alternative when DBH is not available or is hard to measure from TLS, such as where 

there are many small trees close together. When the AGB is estimated using Ung et al.’s (2008) 

equations with lab-measured height and DBH, the RMSE is 0.51 kg, 30% of the average AGB. 

In comparison, the average RMSE of our best model is 0.39 kg, 23% of the average AGB. Our 

best model requires that the point clouds can be correctly segmented and classified; something 

that has been shown for tall trees (Budei et al., 2018; Harikumar et al., 2021; Modzelewska et al., 

2020), and with some success for small trees and shrubs when they are not part of an understory 

(Prošek & Šímová, 2019; Reese et al., 2014). The accuracy of our models combined with their 

potential to estimate AGB without setting foot on the ground (when using high density ALS 

instead of TLS) makes them an excellent tool to estimate the AGB of individual small black 

spruce in boreal forest peatlands. 

 

2.4.5 Crown Area Sensitivity Analysis 

The sensitivity analysis with increasing raster cell sizes as a proxy for decreasing point 

density suggests that our best models could perform similarly using ALS data instead of TLS, 

provided that point density is greater than 16 pts/m2 in the ALS point cloud. The threshold we 

found is consistent with the one suggested in a recent study for height estimation of coniferous 

trees using drone-based lidar point clouds of different point densities, which found that height 
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accuracy worsens at around 17 pts/m2 (Peng et al., 2021).  However, the observed accuracy loss 

could start at higher point densities in a real scenario because we assumed no effect on tree 

height and uniform horizontal distribution of laser pulses. We also used only tree points for the 

analysis, but true ALS data has both ground and tree points. As such, the point density of the tree 

point clouds obtained from ALS would likely be considerably lower than the overall point 

density. While this analysis provides some preliminary insight as to how the crown area 

component of our best model is affected by decreasing point densities, it is by no means 

extensive and further analysis using actual airborne data is needed.  

 

2.5 Conclusion 

Our best models produced estimates of AGB for black spruce that are comparable in 

accuracy to estimates derived from widely-used allometric equations first published in Lambert 

et al. (Lambert et al., 2005) and then updated in Ung et al. (Ung et al., 2008), which require time-

consuming field measurements of DBH and height. They have the advantage of not being reliant 

on DBH, which cannot be reliably measured from the air (Chen et al., 2018; Jucker et al., 2017; 

Malek S et al., 2019). It can also be difficult to measure from the ground using TLS when the 

trees are compact and close to each other. Instead, our models use predictors that have the 

potential to be measured from the air using high-density point clouds, from UAV or airplane, 

photogrammetry or LiDAR. Our best model uses predictors of tree height and crown size 

(expressed as either crown area or crown diameter). As such, the model equations presented here 

could provide a valuable tool for estimating the individual tree AGB of a common species of tree 

in a prominent ecosystem of the boreal forest. They set the stage for further study on the effect of 

point density from ALS and UAV scanning on these estimates and in future studies, it could be 

possible to scale the models up from individual trees to plot level estimates and assess the use of 

our models to estimate AGB density (t/ha) in blacks spruce peatlands using an area-based 

approach. 
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2.6 Tables 

Table 1. 

Input Value 

inputs.PatchDiam1 1 

inputs.PatchDiam2Min 0.001 

inputs.PatchDIam2Max 0.008 

inputs.lcyl 1 

inputs.FilRad 4 

inputs.BallRad1 inputs.PatchDiam1 + 0.075 

inputs.BallRad2 inputs.PatchDiam2Max + 0.02 

inputs.nmin1 3 

inputs.nmin2 1 

inputs.OnlyTree 1 

inputs.Tria 1 

inputs.Dist 1 

inputs.MinCylRad 0.001 

inputs.ParentCor 1 

inputs.TaperCor 1 

inputs.GrowthVolCor 0 

inputs.GrowthVolFac 2.5 
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Table 2. 

  

Model Type Equation 

Quadratic y = exp(αx2 + ωx + β) ∙ ε 

Power y = β∙xα ∙ ε 

Multiple Regression Power y = β ∙ x1
α ∙ x2

ω ∙ ε 
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Table 3.  
 

Plot 

name 

# of 

Black 

Spruce 

in Plot 

Height 

for all 

trees 

(m) 

DBH 

for all 

trees 

(cm) 

# of Black 

Spruce 

used in 

Study 

Height for 

sample 

trees (m) 

DBH for 

sample 

trees (cm) 

Avg AGB 

for sample 

trees (kg) 

V2B006 52 2.6 ± 

1.0 

(1.3; 

5.7) 

2.9 ± 

1.5 

(0.5; 

7.1) 

10 2.6 ± 1.0 

(1.6; 5.0) 

2.8 ± 1.3 

(1.5; 6.0) 

1.55 ± 1.50 

(0.41; 5.42) 

V2B009 47 2.4 ± 

1.0 

(1.3; 

5.4) 

2.4 ± 

1.4 

(0.3; 

6.2) 

10 2.7 ± 1.1 

(1.4; 5.1) 

2.9 ± 1.5 

(1.1; 6.2) 

1.93 ± 1.95 

(0.37; 6.78) 

V2B011 31 2.7 ± 

1.3 

(1.3; 

6.2) 

2.9 ± 

1.8 

(0.3; 

6.5) 

10 2.7 ± 1.2 

(1.3; 4.7) 

2.9 ± 1.6 

(0.3; 5.1) 

1.85 ± 1.19 

(0.46; 4.14) 

V2B012 23 3.4 ± 

1.7 

(1.4; 

7.7) 

3.7 ± 

2.4 

(0.6; 

9.7) 

8 3.4 ± 1.5 

(1.5; 5.6) 

3.7 ± 2.1 

(0.9; 6.7) 

3.80 ± 3.40 

(0.60; 9.31) 

V2B015 44 2.0 ± 

0.7 

(1.4; 

4.6) 

2.0 ± 

1.0 

(0.3; 

5.9) 

8 2.2 ± 0.9 

(1.6; 4.4) 

2.3 ± 1.2 

(0.3; 4.7) 

1.02 ± 1.06 

(0.11; 3.68) 

V2B016 32 3.0 ± 

1.2 

(1.3; 

5.8) 

3.1 ± 

1.7 

(0.4; 

6.6) 

7 2.9 ± 1.4 

(1.3; 5.5) 

2.8 ± 1.6 

(0.5; 5.4) 

1.72 ± 1.52 

(0.28; 5.07) 

V2B019 92 2.3 ± 

0.7 

(1.3; 

5.0) 

1.9 ± 

1.1 

(0.3; 

5.7) 

9 2.4 ± 0.8 

(1.4; 3.8) 

2.1 ± 1.0 

(0.7; 4.1) 

0.93 ± 0.69 

(0.24; 2.48) 
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V2B022 25 2.3 ± 

0.7 

(1.5; 

4.7) 

2.3 ± 

1.3 

(0.6; 

6.3) 

10 2.4 ± 0.9 

(1.5; 4.7) 

2.4 ± 1.5 

(1.0; 6.3) 

1.50 ± 1.73 

(0.51; 6.58) 

V2B023 112 2.2 ± 

0.8 

(1.3; 

7.1) 

2.1 ± 

1.2 

(0.3; 

6.9) 

9 2.5 ± 1.1 

(1.5; 4.8) 

2.3 ± 1.4 

(0.7; 4.8) 

1.10 ± 1.24 

(0.15; 4.28) 

V2B026 115 2.0 ± 

0.6 

(1.3; 

4.6) 

1.8 ± 

1.1 

(0.3; 

5.2) 

8 2.2 ± 0.6 

(1.6; 3.7) 

2.3 ± 1.2 

(1.2; 5.2) 

0.95 ± 0.81 

(0.34; 2.95) 

Total 573 2.3 ± 

1.0 

(1.3; 

7.7) 

2.3 ± 

1.4 

(0.3; 

9.7) 

89 2.6 ± 1.1 

(1.3; 5.6) 

2.6 ± 1.5 

(0.3; 6.7) 

1.63 ± 1.83 

(0.11; 9.31) 
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Table 5. 

  

Tree Reflector 
Number 

Plot Height (m) DBH (cm) Reason for Removal 

1 V2B012 1.6 0.6 Missing bags for ground 

truth measurements. 

7 V2B012 2.3 2.0 
Overly occluded point 

cloud of tree. 

7 V2B015 1.6 2.8 
Missing bags for ground 

truth measurements. 

8 V2B015 1.4 0.6 
Overly occluded point 

cloud of tree. 

3 V2B016 4.8 3.9 
Tree in tight clump, 

could not accurately 

segment. 

6 V2B016 1.8 1.6 
Tree in tight clump, 

could not accurately 

segment. 

7 V2B016 3.5 4.5 
Overly occluded point 

cloud of tree. 

5 V2B019 2.2 1.6 
Could not find tree in 

plot-level point cloud. 

7 V2B023 2.6 2.4 
Could not find tree in 

plot-level point cloud. 

5 V2B026 1.7 1.0 
Could not find tree in 

plot-level point cloud. 

7 V2B026 1.8 1.1 
Overly occluded point 

cloud of tree. 
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Table 6.  

 

Model 

Type Model Predictors* Avg MAE 

Avg RMSE 

(kg) 

Avg Adj 

R2 

Final 

Ranking 

Multi 

Pwr CAxH and CDxH 0.22 0.34 0.94 1 

Pwr V (Bounding Box) 0.40 0.59 0.89 2 

Pwr H 0.45 0.63 0.88 3 

Multi 

Pwr DBHxH 0.46 0.64 0.88 4 

Pwr V (QSM) 0.50 0.70 0.82 5 

Pwr CA and CD 0.67 0.95 0.71 6 

Quad DBH 0.84 1.19 0.62 7 

*All models in this table were weighted least squares. 
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Table 7.  

 

x1 x2 β 

β std 

err α α std err ω ω std err ε 

CA H 0.73 0.13 0.54 0.06 1.68 0.09 1.00 

CD H 0.64 0.10 1.07 0.11 1.68 0.09 1.00 

DBH H 0.16 0.02 0.06 0.07 2.19 0.14 1.00 
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Table 8.  

 

X β β std err α α std err ε 

V (Bounding 

Box) 1.35 0.05 0.97 0.04 1.00 

H 0.16 0.02 2.29 0.09 1.00 

V (QSM) 0.23 0.03 0.76 0.04 1.00 

CA 14.64 2.40 1.29 0.09 1.00 

CD 10.73 1.55 2.57 0.18 1.00 
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Table 9.  

 

X β β std err α α std err ω ω std err ε 

DBH (QSM) -0.97 0.13 0.40 0.08 0.25 0.15 1.00 
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Chapter 3 -- Conclusions 

 The object of this thesis was to develop models that could estimate the above ground 

biomass (AGB) of small black spruce trees in peatland environments of the Canadian boreal 

forest. While multiple allometric biomass equations exist for many tree species around the world, 

including black spruce, they often rely on diameter at breast height (DBH) and height as 

predictors (Alemdag, 1983; Bhatti et al., 2006; Ung et al., 2008) or are not suitable for the small 

trees that are often found in boreal forest peatlands (Singh, 1984). The Northwest Territories is 

home to many peatlands that offer a good representation of the boreal ecosystems we were 

interested in estimating AGB for across the Taiga Plains ecozone that was focused on in Chapter 

2. In this thesis, 42 models were fitted using tree attributes measured in Terrestrial Laser 

Scanning (TLS) point clouds as predictors of AGB. The best performing models are not only 

comparable to the methods currently being used by the National Forest Inventory to predict AGB 

for black spruce but outperform them for small trees in peatland environments. Included in the 

best performing models are ones that use crown size (crown area or crown diameter) and height 

as predictors, removing the necessity of DBH measurements altogether. These models help 

improve the understanding of how TLS can be used to measure the AGB of small trees and they 

lay the framework for testing with airborne- and UAV- laser scanning systems (ALS and ULS 

respectively). The end result is the creation of models that have the potential to create high-

quality, accurate AGB data for individual trees over large peatland areas using airborne scanning 

methods. 

 

3.1 Significance of Findings 

The objectives of this thesis were to: 

1. Assess how well TLS point clouds can be used to measure tree attributes for small black 

spruce trees.  

2. Fit AGB estimation models using the predictor variables measured by TLS.  

3. Compare the fitted models to already established models using ground truth data to 

determine if the models presented in this thesis represent a viable alternative for AGB 

estimation. 

To address the first objective, this thesis showed that there are both advantages and 

disadvantages to using TLS to measure physical attributes of small trees. Quantitative structure 
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models (QSMs) have been shown to be valuable tools for measuring attributes of larger trees that 

can be used to estimate AGB, including DBH, height, and volume (Brede et al., 2019; Calders et 

al., 2015; Takoudjou et al., 2018). This did not translate well for the trees used in the study 

presented in this thesis, however, likely because of their relatively small DBHs and the fact that 

many of the plots used in the study were densely populated, creating occlusion not just from 

other tree stems, but from lower branches around 1.3 metres high as well. Because QSMs rely on 

the accuracy of the cylinders being fit to the points of the point cloud, the inaccuracies present in 

the DBHs measured by QSM were propagated into the volume estimates. As a result, we found 

that models using QSM-derived volume as a predictor of AGB in small black spruce trees did 

not perform as well as some of the other predictors used. These findings are significant because 

they provide further evidence that the performance of QSMs is limited by the size of the 

structures being measured and provide further evidence that measurement accuracy for structures 

with a diameter smaller than 7 cm (the largest DBH used in Chapter 2) can be unreliable. As 

such, this thesis provides a case study for why QSMs should not be recommended to estimate 

DBH and volume for small, coniferous trees. Although the QSMs did not provide the kind of 

accuracy seen in other studies that used larger trees, other TLS measurements performed quite 

well. The work done in Chapter 2 shows that height can be measured to a high degree of 

accuracy for small trees using TLS. It has already been shown that as trees grow larger and 

stands become more densely populated, occlusion of treetops becomes more likely, which can 

lead to underestimation of tree height (Holopainen et al., 2013; Liang et al., 2018), so this is 

important information that reinforces the notion that tree height estimation from TLS is more 

accurate for smaller trees.  

Exploring the second objective required the fitting of models for multiple different 

predictors and combinations of predictors, as well as using different types of model (quadratic-, 

power-, and multiple regression power models). Analyses were performed to assess which 

models performed the best, based on three commonly used model performance metrics: RMSE, 

adjusted R2, and mean average error. The cross-validation methods used to obtain these metrics 

provide confidence in the transferability of these models to be used in any similar peatland 

environments found through the boreal forest. As part of the model fitting and tree attribute 

measuring processes, this thesis also provides methods for calculating crown area using TLS that 

are scalable for varying point densities by simply adjusting the cell size of the rasters used to 



  

95 

 

reflect the average space between points in the point cloud being used. The best performing 

models in Chapter 2 used crown area values measured with these methods (or crown diameter 

values derived from the crown area) and height as predictors. Because crown area and height are 

both attributes that can be measured from above the tree canopy, these models could represent a 

substantial step towards biomass estimation methods that have the potential to be applicable with 

point clouds acquired using ALS and ULS. Individual-tree-based forest inventory practices in 

particular could benefit from the findings presented in this thesis. They use ALS to measure tree 

height, crown size, and species before deriving measurements of other tree attributes like DBH 

based on the directly measured attributes (Hyyppä et al., 2008; Yu et al., 2010). By eliminating 

the need to derive other tree attributes to fit existing AGB models, uncertainties in the final AGB 

estimations can be reduced. 

The third objective involved comparing the best models created in this thesis to other 

established methods. Comparisons between AGB estimates from the best models presented here 

and those given using the methods in Ung et al. (2008) and Bhatti et al. (2006) showed that the 

new models produce slightly better estimates than the previously established ones. They also do 

not require DBH measurements, making them potentially usable with ALS and ULS data, which 

is a significant advantage over the models currently used. 

Beyond the main objectives, there are other things to consider regarding the models 

presented here. They are specific to a species of tree that is abundant in one of the most common 

ecosystems of the Canadian boreal forest. While it is true that these models have only been tested 

using data in one portion of the boreal forest, the cross-validation methods used indicate that they 

should perform consistently in peatlands of different locations. Further testing must be conducted 

to confirm this, but due to the widespread distribution of peatlands in Canada (roughly a quarter 

of the Canadian boreal forest, (Wieder et al., 2006)) it could represent a significant contribution 

to the scientific literature surrounding biomass estimation and monitoring in boreal forests. 

Furthermore, when these models were compared to other established models, such as those in 

Ung et al. (2008) and Bhatti et al. (2006), the established models used lab-measured attributes to 

make AGB estimates, while our models used TLS-derived measurements of tree attributes. The 

fact that the TLS-based models outperform the ones that used lab-based measurements further 

demonstrates TLS’s ability to create high quality data that can be used for the accurate 

estimation of tree parameters and AGB. 
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3.2 Future Work 

The work done in this thesis lays the foundation for many other potential future studies. 

The most important of these is to assess how well these models can be used with ALS and ULS 

point clouds. The best models in chapter 2 have been shown to perform well with high density 

TLS point cloud data while focusing on attributes that have the potential to be directly measured 

from above. Although preliminary tests were performed to allow for some speculation on their 

usability with ALS and ULS data, due to budget and time constraints, flights were not performed 

and could not be included in this study. As such, a future mission to scan small black spruce 

plots in peatland environments with ALS and ULS being flown at varying heights and speeds to 

obtain a range of point densities is necessary. This would show how well the models are able to 

translate to airborne scanning methods and could help to determine the true point density at 

which attribute measurement accuracy decreases for crown area and height. Few models exist 

that use the directly measurable tree attributes of crown size and height to estimate biomass, with 

most models requiring DBH as well, so showing that these models can be applied to data 

acquired with ALS and ULS while still predicting AGB with a high level of accuracy would 

represent a significant advance in biomass measurements methods using these kinds of laser 

scanners.  

All the models created in Chapter 2 fall into the individual tree-based measurement 

method category, but area-based approaches can effectively estimate biomass over large areas as 

well (Lim & Treitz, 2004; Zolkos et al., 2013). Scaling up from individual tree AGB to an area-

based approach could allow the models to be more applicable when point density is too low to 

allow for sufficient individual tree measurements. This would also allow for comparisons 

between the two approaches to made. Individual tree-based methods are more expensive than 

area-based approaches, but they have many advantages such as being able to use species-specific 

models for AGB estimation, as well as the ability to monitor forests in finer detail (Yu et al., 

2010). Using point clouds with multiple point densities obtained from flights at various heights 

could provide valuable insight into the conditions needed for each method to perform better than 

the other, and at what point the preferred method changes. 

Finally, the best models presented in this thesis performed well for the trees used in the 

study, but it is important to note that only a portion of the boreal forest was represented by the 
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sample. All plots were located in the Northwest Territories, between Hay River and Fort 

Simpson, (a distance of approximately 430 km). While this does provide some variation in the 

peatlands used for plot selection, it does not cover the entirety of boreal forest peatland 

environments. By applying the equations given by the models presented here on small black 

spruce found in similar peatland environments located across the boreal forest it could be 

possible to confirm their transferability. 

 

3.3 Final Remarks 

 This information presented in this thesis is beneficial in the short term and could have 

significant implications on future studies. The best models presented here estimate AGB more 

accurately for the trees used in Chapter 2 than the established DBH and height models currently 

being used by the Canadian National Forest Inventory. This study offers an excellent case study 

of how AGB can be measured accurately using measurements of crown size and height as 

predictors and not requiring DBH at all. Future studies building upon the work done in this thesis 

could have far-reaching implications on the kinds of variables used in allometric AGB equations 

in the future. There is also much to be explored about how these models can be used in point 

clouds made by laser scanning platforms other than TLS, and the conditions necessary to obtain 

the best results. The work here offers an important contribution in terms of the crown area and 

height models given for small peatland black spruce trees, but also provides a starting point for 

other subsequent studies with potential to markedly increase the base of knowledge in Earth 

sciences and forestry fields.      
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Appendix 

Uncertainty Propagation 

Final AGB estimates from the models are subject to uncertainties that stem from the model 

coefficients as well as from the instruments used to measure the variables being used as 

predictors in the model. These uncertainties can be seen as errorbars on the model estimates in 

Figures 6-14. These uncertainties were calculated using error propagation formulas as outlined 

below. When predictors consisted of the product of two variables (ie. x = y ∙ z where x is the 

predictor and y and z are the two variables used), measurement uncertainties for y and z were 

measured and combined using equation 7 for propagating errors through multiplication by 

maintaining the uncertainty percentages of each variable: 

δx= |x|√(
𝛿𝑦

𝑦
)

2

+ (
𝛿𝑧

𝑧
)

2

. 
 
(A1) 

In the power models, which follow the form AGB = β xα, where α and β are model 

coefficients with standard error values of δα and δβ. The uncertainty of the AGB estimates are 

represented by equation (7), where y is replaced by β, δy is replaced by δβ, δz is replaced by δxα 

and z is replaced by xα. In order to do this we need to determine the uncertainty of the term xα 

which can be done by adding the linear approximations of x and α in quadrature. The linear 

approximation of x can be calculated as 

δxα
1 = α ∙ xα-1 ∙ δx,  (A2) 

and the linear approximation of α can be calculated as 

δxα
2 = xα ∙ ln(x) ∙ δα.  (A3) 

These are then added together as 

𝛿𝑥𝛼 =  √(𝛿𝑥1
𝛼)2 + (𝛿𝑥2

𝛼)2  (A4) 

 The same process can be done for the multiple regression power models by expanding 

equation 7 to encompass a third term (equation 11) 
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δx = |x|√(
𝛿𝑚

𝑚
)

2

+ (
𝛿𝑦

𝑦
)

2

+ (
𝛿𝑧

𝑧
)

2

. 

 

(A5) 

Both terms with variables and coefficients are calculated as described using equations 8, 9, and 

10. 

Quadratic models follow a similar concept where we compute the uncertainty of each term 

from the model equation which takes the form 

AGB = exp(αx2 + ωx + β),  (A6) 

where α, ω, and β are model coefficients, and x is the predictor variable. The uncertainty in the 

first term, αx2, comes from the model uncertainty in α (δα) and the measurement uncertainty in x2 

(δx2). The measurement uncertainty in x2 can be determined using the linear approximation of x2 

and the measurement uncertainty of x (δx) as shown in equation 12: 

δx2 = 2x ∙ δx.  (A7) 

The δx2 and δα terms can then be combined in the same fashion as outline in equation 7 to get 

δαx2. Similarly, the δω and δx uncertainties that apply to the second term can be combined in the 

same way. These uncertainties are then added in quadrature (equation 13) to get the total 

uncertainty for the measurements inside the brackets of equation 11. 

δT = √(𝛿𝛼𝑥2)2 + (𝛿𝜔𝑥)2 + (𝛿𝛽)2.  (A8) 

Finally, the uncertainty of the AGB estimates can be found using equation 14: 

δAGB = AGB ∙ δT.  (A9) 

 


