
 

 

Intelligent and Automatic Inspection, Reconstruction and Process 

Planning Methods for Remanufacturing and Repair 

by 

Yufan Zheng 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy 

 

 

 

 

Department of Mechanical Engineering 

University of Alberta 

 

 

 

© Yufan Zheng, 2020



ii 

 

 

Abstract 

Nowadays, it is critical to explore methods for dealing with worn and damaged 

components because of rising concerns over escalating emissions, resource depletion, and 

other environmental issues. Remanufacturing and repairing have been considered 

environmentally friendly manufacturing strategies to resist the increase in waste 

production. However, these processes are lacking automation support because compared 

to the manufacturing process, stochastic returns of used parts and their uncontrollable 

quality condition results in a high degree of uncertainty for the remanufacturing and 

repairing process. To fix these issues, the research proposed aims to automate and optimize 

the processes by improving the research areas in three perspectives: damage inspection 

(identification and localization), nominal volume reconstruction and process planning. The 

developed methodology features (a) an intelligent inspection to support automated 

classification and localization of damages from the end-of-life part; (b) an efficient 

geometric reconstruction of the damaged part to support the damaged volume extraction; 

(c) cost-driven and collision-free process planning that support hybrid remanufacturing 

processes. 

From the perspective of intelligent damage inspection, the RGB images and depth images 

are acquired by a depth camera. Then, the deep learning neural network segments and 

classify the damage. With that result, the spatial position of the damaged area is calculated 

by the integration of damage segments and the point clouds. In the damage volume 

extraction view, an efficient and precise nominal model reconstruction method is 
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developed, which includes the processes of StepRANSAC surface fitting, SDM refitting, 

modelling, damage volume localization, and extraction. The result of reconstruction 

significantly facilitates the repairing process because it does not require prior information 

on the nominal CAD model. For hybrid remanufacturing, two hybrid manufacturing 

strategies are explored separately in developing the collision-free and cost-driven process 

planning. In both systems, the level of automation of hybrid processes is strongly increased. 

Finally, the conclusion, discussion and future work are followed. The proposed research 

can be extended to investigate damage quantification, freeform surface-based model 

reconstruction, process planning for complicated cases in future work.  
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Chapter 1: Introduction  

1.1 Background 

From the World Bank report, currently, about 2.01 billion metric tons of municipal solid 

waste is produced annually worldwide (reported in 2018) and it estimates overall waste 

generation will increase to 3.40 billion metric tons by 2050 [1]. Therefore, annual global 

waste production will increase by 70% if current conditions persist. The increasing 

economic developments and over-exploitation of resources have been the principal cause 

of the increase in waste production [2]. The pressure for the environment from the 

increased waste production can be summarised in three perspectives [3]:  

1. It results in the permanent loss of materials and energy; 

2. As the current landfill sites are filling up, and it leads to the use of new sites; 

3. The waste left in landfill sites leads to the increase of air, water and air pollutions.  

To resist this change, the modern industry is required to invest in environmental 

protection measures and create environmentally friendly manufacturing concepts [4–8].  

Figure 1.1 illustrates a conceptual diagram of the product circulation that can be used 

in environmentally friendly manufacturing. Repair is the most logical approach to extend 

the product’s life while closing the product life cycle. The process is the correction of 

specified faults or restoring its original form of the product. Remanufacturing also called 

“reincarnation”, is defined as being able to fabricate new products directly from the end-

of-life product by enabling the material to be effectively used resulting in reduced waste 

[9]. It is reported that, compared to conventional manufacturing, the remanufacturing and 

repairing process reduces cost up to 50%, energy consumption up to 60%, material usage 

up to 70% and air pollution up to 70% [2,10].  
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Figure 1.1: The concept of the product life cycle (modified from [3]). 

It is worth to mention that, the terms “repairing” and “remanufacturing” have been used 

as exchangeable words with the burred definitions [3]. In this thesis, to avoid any potential 

confusion, remanufacturing and repairing processes are distinguished, as repairing 

rebuilds the part to its original shape, whereas remanufacturing upgrades the part to have 

new functional features.  

1.2 Motivation 

Although significant benefits can be gained from remanufacturing and repair, there are 

still numerous challenges to implement them in the industry. One of the reasons is that, 

compared to the manufacturing process, stochastic returns of used parts and their 

uncontrollable quality condition result in a high degree of uncertainty for the 

remanufacturing/repairing process [6]. The uncertainty surrounding the return of the parts 

complicates the process. To handle these uncertainties, remanufacturing is initialized by 

inspections to determine the damage type (e.g. crack, dent, scratch, abrasion), damage 

location and damage degree.    The current visual or manual inspection methods require 

extensive human intervention, and the quality of the process is hard to be stable. Besides, 

extraction of the damaged volume is an essential work for remanufacturing. However, 

research focusing on solving this problem is lacking, especially for a general situation in 

which the nominal computer-aided design (CAD) model is missing.  Another issue is that 

the computer-aided process planning software tools are lacking support for automation. 
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For example, feature extraction for hybrid manufacturing (HM) relies heavily on manual 

operations that lack algorithm support; and the process planning results are non-unique 

and the quantitative evaluation mechanism is missing to support decision making (e.g., 

cost-driven decision making). In order to address these problems, this thesis will explore 

the perspectives of inspection, damaged volume extraction and process planning for 

remanufacturing and repair.  

1.3 Thesis Objectives 

The objectives of this research are outlined as follow: 

• O1: Develop an intelligent inspection method to support the automated detection of 

damage features, and localization of the defects from the damaged part.   

• O2: Develop an efficient geometric reconstruction method for the damaged part to 

support the damaged volume extraction;  

• O3: Develop a cost-driven process planning method for hybrid additive-subtractive 

remanufacturing processes. 

1.4 Methodology 

The proposed methodology aims to automate and optimize the remanufacturing and 

repairing processes. The current remanufacturing and repairing processes can be improved 

in terms of damage inspection, damage volume extraction, and process planning. The 

contributions of this study in damage inspection are beneficial to both remanufacturing 

and repairing processes. The contribution of damage volume extraction is aiming to 

improve the current repairing process. The framework of process planning is focusing on 

remanufacturing. An overview of the methodology is illustrated in Figure 1.2 and 

explained next.  
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Figure 1.2: Overview of the Methodology. 

With the input of the end-of-life part to the system, outputs are following the thesis 

objectives listed in Section 1.3. The proposed methodology can be divided into three 

research gaps with proposed solutions, as damage inspection, damage volume extraction 

and process planning. The more descriptions are given as follows: 

• In damage inspection, the end-of-part is processed with the intelligent damage 

inspection system, and the results are beneficial for process planning in 

remanufacturing and damage volume extraction in repair. The damage inspection 

system is proposed under the integration of deep learning-based image recognition and 

spatial localization methods. 

• The results of the damage inspection are transiting into the damage volume extraction. 

This module outputs the reconstructed nominal model of the damaged part to support 

the damaged volume extraction for the repairing process. The proposed nominal model 

reconstruction method is based on a novel proposed surface fitting approach. 

• The module of process planning is specifically designed for a hybrid additive-

subtractive process in the remanufacturing context. The result of the damage 

inspection is the starting point of this module and it outputs a cost-driven and collision-

free system for hybrid remanufacturing process planning. The methods proposed in 

this module are including automated additive-subtractive feature extraction, HM rules, 
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feature-based cost estimation and precedence-constrained operation sequencing 

optimization. 

The outputs of the proposed methodology conform to the three research objectives 

presented in Section 1.3, listed as follows: 

• Intelligent damage inspection for remanufacturing/repairing; 

• Efficient and precise nominal model reconstruction for repairing; 

• Cost-driven and collision-free process plans for hybrid remanufacturing. 

 

1.5 Thesis Outline 

Chapter 1 provides the background of remanufacturing/repairing and their relations to the 

product life cycle. The motivations are summarised from challenges related to the current 

remanufacturing/repairing technologies.  A brief statement on the objectives of this thesis 

and the overview of the proposed framework are also presented in this chapter. 

 Chapter 2 is a general state of the art summary on the main topics covered in this thesis, 

including defect detection, damaged volume reconstruction and hybrid additive-

subtractive for remanufacturing/repairing. 

Chapter 3 presents a deep learning-based damage inspection and localization method 

for the remanufacturing/repair process. The proposed approach is divided into two stages: 

(1) damage recognition and classification; (2) spatial localization for the damaged area. 

The case study validated the efficiency and precision of the proposed method. 

In Chapter 4, a geometric reconstruction method for the damaged model is proposed to 

address the nominal model missing issues of the damaged part in the repairing process. 

The proposed method features a novel primitive-based surface fitting approach. This 

technique combines the StepRANSAC (step random sample consensus) surface fitting and 

SDM (squared distance minimization) refitting, and this combination shows advantages in 
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precision and robustness compared with the traditional RANSAC method. Four case 

studies were conducted to validate the effectiveness of the proposed method. 

 Chapter 5 describes a cost-driven process planning method for hybrid computer 

numerical control machining (CNC) and powder bed fusion (PBF) in the remanufacturing 

context. An automated additive–subtractive feature extraction method is developed, and 

the process planning task is formulated into a cost-minimization optimization problem to 

guarantee a high-quality solution. Specifically, an implicit level-set function-based feature 

extraction method is proposed. Precedence constraints and cost models are also formulated 

to construct the hybrid process planning task as an integer programming model. Numerical 

examples demonstrate the efficacy of the proposed method. 

Chapter 6 proposed a cost-driven and collision-free process planning method for hybrid 

CNC and direct energy deposition (DED) for remanufacturing. The feature extraction 

method is developed under the level set framework, can extract optimal and collision-free 

additive-subtractive features. A case study was conducted, and the results confirm the 

correctness and effectiveness of the proposed method. 

Finally, Chapter 7 summarizes the work done in this thesis. The limitations and future 

works are discussed. 
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Chapter 2: State of the Art 

Remanufacturing and repairing have been attracting attention as an emerging field due to 

their contributions to the increasing in green manufacturing industries. They have been 

already been applied to different products such as automobile parts [11], aerospace turbine 

blades [12,13], printer cartridge [14], machinery [15]. The concept of 

remanufacturing/repairing is clearly distinguished from recycling and reuse. Recycling is 

the use of raw materials which is obtained by dissolving or disassembling the end-of-life 

products. Reuse is defined to use the product again after some simple repairs and cleaning, 

without a manufacturing process [6]. Remanufacturing/repair is defined as an alternative 

manufacturing process that allows the end-of-life products to be re-commercialized as new 

products. In this study, repairing and remanufacturing are clearly distinguished, as 

repairing rebuilds the part to its original form, whereas remanufacturing upgrades the part 

to have new functional features. 

Summarized from the literature [16–18],  the major steps of remanufacturing/repairing 

processes can be summarized as defect detection, damaged volume reconstruction and HM 

(see Figure 2.1). The following sections in this chapter are providing comprehensive 

surveys for each step.  

 

Figure 2.1: The main procedures of remanufacturing/repairing. 

2.1 Defect Inspection 

The main purpose of defect inspection is to detect the damage type, damage location and 

damage degree, since these three factors play a key role in process planning construction 

for remanufacturing and repair [2]. However, defect inspection is a challenging task for a 

human operator, especially when dealing with small defects that are not at all visible to 
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the naked eye. Therefore, after digitalization the physical used part by data acquisition, 

quickly and accurately detection damaged area from the digital data could be considered 

as the starting point for the remanufacturing/repairing process. 

There are two categories of damage detections given in recent publication, through 

collecting point clouds or images from the damaged component. The related works of these 

two classes of methods are reviewed and summarized as follows.  

2.1.1 Defect Inspection from Point Clouds 

To transform from the physical world to the digital world, reverse engineering starts with 

geometric information acquisition by collecting the points on the surface of the part. The 

accumulation of these points is point clouds, that explicitly describing the surface 

geometric information of the part. In the recent three decades, diverse technologies and 

systems have been employed in point cloud acquisitions, such as coordinate measuring 

machine (CMM),  triangulation, structured light and stereo scanning [19]. These 

technologies are gradually replacing manual measurement and facilitating the process of 

remanufacturing/repairing for accurate and quick collection of the geometric information 

of the used part. For remanufacturing/repair, as the point clouds of the used part are 

obtained, it is important to detect and segment the damaged area from the point clouds.  

Of the methods surveyed, most defect inspection approaches from point clouds are 

based on the point cloud segmentation methods. A recent comprehensive review for point 

cloud segmentation methods is generally categorized them into five classes: edge-based 

methods, region-based methods, attributes-based methods, model-based methods and 

graph-based methods [20] (Figure 2.2). Edge-based methods [21–23] detect the 

boundaries of different regions from the point clouds to segment regions. The principle of 

these methods is finding the target points which have rapid change in the intensity. Edge-

based methods allow fast segmentation, but they have accuracy issues since they are very 

sensitive to noise and point cloud density unevenness, which usually happens point cloud 

data [20]. In region-based methods [24–26], neighbourhood information is utilized to 
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combine nearby points that have similar characterizations to isolate regions and 

consequently distinguish different regions. Region-based methods are not that sensitive to 

noise as the edge-based method, however, they have problems with over or under 

segmentation [20]. Attributes-based methods [27–29] are based on clustering attributes of 

point cloud data. The limitation of these methods that the quality of derived attributes is 

highly required. Model-based methods [30–32] use primitives (e.g. plane, cylinder, sphere 

and cone) for grouping point based on RANSAC (RANdom Sample Consensus) [33] 

surface fitting. These methods are robust with outliers, but it is inaccurate in dealing with 

different point cloud sources. Graph-based methods consider the point clouds in terms of 

a graph, and each point is corresponding to the vertex in the graph. Graph-based methods 

[34–36] have better results with complex point clouds include noise and outliers, compared 

to other methods. However, the main limitation of this kind of method is difficult in 

running in real-time [20]. 

 

Figure 2.2: Taxonomy of 3D point cloud segmentation methods (from academic research 

[20]). 

Researches have devoted efforts in defect detection from point cloud data by 

implementing these generic surface segmentation methods. Hitchcox and Zhao [37] have 

developed an graph-based point cloud segmentation method for interactive defect 

segmentation from unorganized 3D point cloud data with application to aerospace repair. 

The algorithm is an adaptation of random walks [38] from image segmentation, and the 

implementation automatically labels disconnected graph components, which allows for 

interactive and intuitive use directly on point clouds. This method provides a full pipeline 

for extracting and quantifying a wide range of surface defects from the complex surface, 
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such as the aerospace turbine blade. Jovančević et al. [39] introduced a novel automatic 

defect inspection method by analyzing 3D data collected with a 3D scanner. Firstly, the 

point cloud is pre-processed to remove the errors and outliers. Then, this segmentation 

algorithm identifies the defects and their positions. This algorithm is based on estimating 

the differences of curvature and normal information at every point from the neighboring 

point clouds to identify undesired defects as dents, protrusion or scratches. Borsu et al. [40] 

developed an integrated method for automated surface deformations detection and 

marking on automotive body panels. It extracts the damaged region from input point 

clouds by estimating the standard deviation of the surface normal vector as a metric, which 

removes uniform surface and remains the patches containing shaper variations of their 

normal orientations. The positions of the surface defects are provided to support a robotic 

marking system that handle pose and motion estimation of the part on an assembly line. 

3D point clouds-based damage inspection technologies have been also widely applied 

in other areas such as civil and plant facilities. Kashani & Graettinger [41] introduced a 

clustering-based feature segmentation method for light detection and ranging (LiDAR) 

point clouds and applied in detection damages for building roofs. Shinozaki et al. [42] 

developed an automatic detection method to find scaffolding and wearing on furnace walls 

from large-scale point clouds.  

2.1.2 Image-based Damage Inspection 

Computer vision sensors have presented an alternative for data acquisition by collecting 

images from the physical part. Therefore, another damage detection method is based on 

analyzing the input data of images from the damaged components.  

The feature-based inspection method has been widely implemented for extracting the 

properties of images, including colour, shape and texture [43]. An expert system can be 

built for further classification based on the extracted features. Iglesias et al. [44] introduced 

an automated inspection system based on feature extraction and studying the trait and 

characterization of slat slabs. In [45], a distinct man-made “light and shadow” feature was 
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developed to extracted to identify weld defects. Aminzadeh and Kurfess [46] proposed a 

new approach for the threshold selection method to find the threshold value at the 

boundary of the intensity ranges of defects and background by comparing the histogram 

modes of the background and defective areas. For the feature-based defect inspection 

methods, the feature quality heavily relies on the experiences of the system designer. 

Moreover, the designed feature extractors are constrained to the application scenario, 

which means ones the scenario changes, the designed feature extractor may not be suitable 

[43].  

Template matching is another methodology applied to defect detection, by matching 

the images of the defect-free reference and the defective part. In [47], a fast normalized 

cross-correlation (NCC) computation was used for defect inspection. Crispin and Rankov 

[48] proposed an improved template-matching approach for defect identification and the 

search for a template position was conducted by using a genetic algorithm. Kong et al. [49] 

introduced a unified framework for detecting defects in planar industrial products based 

on the template matching method through a robust geometric alignment method between 

the template and test images. The template matching-based methods have shown the 

efficiency in detecting defects for the products with the prior knowledge of a template or 

reference image. It has significant potentials to be applied to quality controlling in 

production. However, this type of method has an intrinsic weakness for defect inspection 

in the remanufacturing/repairing context, due to the lack of template images. 

Deep learning techniques have achieved substantial development in object detection 

and classification from images in recent years, which uses a series of layers of nonlinear 

activation functions. With such structure, it enables to integrate feature extraction and 

classification by optimization, and outputs expected label in the last layer.  Benefiting from 

this effective method, some researchers have been implementing deep learning-based 

algorithms in defect inspection problems. Masci et al. [50] presented a Max-Pooling 

Convolutional Neural Network (CNN) method for the classification of 7 different steal 

defects; however, their work was limited to a shallow neural network. In a modern 
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implementation of a CNN in image classification, Wang et al. [43] presented a CNN-based 

vision inspection method to identify and classify defective product with high accuracy. 

However, image classification cannot achieve all goals of defect inspection, lacking 

finding the position of the defect area.  Many state-of-the-art object detection methods 

have been developed using the region-based CNN (R-CNN) architecture. Mask R-CNN 

as an extension of R-CNN enables simultaneously object detection and instance, 

segmentation [51]. It has two stages: 1. Images are scanned, and the object proposal 

(bounding box to determine the objects) is generated; 2. The proposal is classified, and the 

bounding box and mask are generated. Instance segmentation features the potentials to 

address the localization problems of the defective area in a two-dimensional (2D) aspect. 

Ferguson et al. [52] introduced an automatic defect detection method to identify casting 

defects in X-ray images, based on the Mask R-CNN architecture. Zhang et al. developed 

a vehicle-damage-detection segmentation algorithm based on transfer learning and an 

improved Mask RCNN. However, their method can only find the damaged area from the 

images directly in 2D which has a huge error matching to its position in the real world.  

With the development of the techniques of RGB-Depth sensors, the semantic 

segmentation has a great achievement in indoor scenes [53]. By adding the depth map, the 

RGB-D image gives information about the distance of the objects to the camera. Besides, 

the RGB and depth map have the corresponding relations in pixels. Gupta et al. [54] 

developed a two-step method to apply different neural networks to RGB and depth map 

separately to extract the corresponding features separately and classify by support vector 

machine in the end. Song and Xiao [55] adopt a directional Truncated Signed Distance 

Function encoding method to train the RGB-D data in the CNN directly and outputs 3D 

object bounding boxes.  

2.1.3 Summary of the Existing Defect Inspection Methods 

Over the comprehensive review of the current publications, defects inspection methods 

from point clouds can offer accurate results based on surface segmentation techniques. 

However, there are still some limitations of those methods, such as lacking a generalized 
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algorithm to detect defective regions for all applications, disallowing to classify different 

classes of damages, performing at low speed due to the computational expense. 

In terms of the image-based damage detection methods, the issues of damage detection 

from point cloud data can be addressed through the deep learning architecture. However, 

the existing methods mainly focus on object detection or semantic segmentation in 2D 

senses. The spatial localization of the damaged area is a crucial task in the 

remanufacturing/repairing process. With the development of the RGB-D hardware 

technologies and 3D semantic segmentation methods which are more promising to classify 

objects, it is important to employ these methods for a damage inspection. However, most 

of the 3D semantic segmentation methods are applied for indoor objects. The great 

performances of these methods rely on large RGB-D training data [56]. Therefore, 

developing a deep learning-based damage detection method from RGB-D data is urgently 

demanded.  

2.2 Damaged Volume Reconstruction 

Damage volume reconstruction is an essential process for the repairing process, as it 

generates the deposition tool-path for restoring the damaged components to original 

geometries. There are two categories of damage volume reconstruction methods from 

recent publications, depending on whether the nominal CAD model is available for the 

repairing process.  

When the nominal CAD model is available, the principle of methods is reconstructing 

the damaged volume by guidance from the nominal model. In [12], the reconstruction 

process is conducted by employing point-to-surface-best-fitting technology that puts the 

point clouds of the damaged part into the nominal CAD model coordinate system. Zhang 

et al. [57] developed a damage volume extraction method based on aligning the point 

clouds of a nominal and damaged model and finding the intersection by casting the ray 

with the nominal and damaged model. In [58], a four steps best-fitting method was 

proposed to reconstruct the missing volume. However, in the most general case, the 
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original CAD model is not available because of confidentiality issues, and occasionally, 

the CAD model may not correspond exactly to the real part [59]. Therefore, the 

reconstruction of the damaged part is an important step for CAD source-free repairing. 

Some research works have been witnessed on reconstruction for CAD source-free 

repairing. He et al. [60] introduced a curved surface extension approach to reconstruct the 

missing volume based on continuous curvature for blade repairing. Gao et al. [61] 

proposed a reverse engineering-based surface extension method to reconstruct the blade 

tip. The reconstruction method in [62] resolves this issue by sweeping a surface across the 

defective region. In [13,63,64], a novel algorithm was developed to reconstruct a model 

of a defective region of a turbine blade. The algorithm implemented the concept of a 

sectional gauss map to extract prominent cross section (PCS) from a meshed model.  Then, 

the extracted PCS information was used for semi-automated reconstruction of the 

geometries for the turbine blade. Li et al. [18] extended the PCS algorithm for 

reconstruction of other industrial parts, such as a worn gear bracket. The accuracy of this 

method is strongly dependent on the geometry completeness and will reduce with a larger 

damaged area.  

From the review of the current nominal model reconstruction approaches, it can be 

concluded that they are heavily relying on the surface fitting techniques to construct a 

nominal surface to fit the point cloud of the damaged area. Therefore, a comprehensive 

review of surface fitting techniques is given in the following section. 

2.2.1 Surface Fitting 

Surface fitting is still an unresolved problem in reverse engineering and computer graphics 

[19]. Many research efforts have been devoted to addressing this problem in the last two 

decades. This section briefly reviews some methods that are related to the proposed 

algorithm. The surface fitting can be considered as an optimization problem that searches 

the optimal surface shape and location parameters by minimizing its overall distance to a 

collection of points. Therefore, the formulation of the distance-based objective function is 



15 

 

 

critical, which is mainly categorized into four types: (1) algebraic distance; (2) point 

distance; (3) tangent distance; (4) squared distances [65]. Algebraic distance is 

straightforward which substitutes the measured points in the corresponding implicit 

function of the target surface and then calculates the summation of errors. The algebraic 

distance is unable to reflect the accurate distance, but the calculation speed is fast. Point 

distance is to calculate the shortest Euclidean distances from the measured points to the 

target surface. The point distance is popular in computer graphics applications [66] and 

reverse engineering [67] because the equation is simple and straightforward [65]. 

However, the convergence is relatively slow, and the result is highly dependent on the 

quality of the initial guess. The tangent distance-based curve or surface fitting is very 

popular in the computer vision community due to the faster convergence than the point 

distance-based method. In terms of squared distance, Wang et al. [68] originally 

introduced the SDM for B- spline curves, and Wang and Yu [65] applied this method for 

quadratic curves and surfaces. SDM is a curvature-based quadratic approximation of the 

squared distances from the point cloud to the target surface. Compared with other distance 

measurements, the squared distance method can faithfully measure the geometric distance 

between the points to the target surface. Moreover, the convergence of SDM is more stable 

and faster than the other mentioned methods. 

This non-linear optimization for surface fitting is widely used for reverse engineering. 

However, it is still a challenge to deal with the noise and outliers in realistic scanning [69]. 

Additionally, the quality of surface fitting is highly dependent on the results of 

segmentation and has a high requirement on the initial guess. Fischler and Bolles [70] 

firstly introduced the basic RANSAC which later became one of the most well-known 

algorithms to detect surfaces from the data sets that contain noise and outliers. It is an 

iterative process that randomly samples a subset from the data points in each iteration to 

estimate the corresponding model parameters. Schnabel et al. [71] developed the seminal 

paper for applying the RANSAC method in the surface fitting. Li et al. [31] and Le and 

Duan [72] developed the GlobFit method and the global 3D segmentation, respectively, to 

improve the robustness of the original RANSAC method by coupling local and global 
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aspects of the fitting problem. Even though RANSAC has been extensively developed, it 

is unable to reach high accuracy compared with the non-linear optimization methods.  

2.2.2 Summary of the Current Damaged Volume Reconstruction 

Methods 

Based on the literature review, it is concluded that the existing reconstruction methods 

mainly focus on turbine blades or some other specific cases. In most of the available 

reconstruction methods, the damaged region is assumed to be a regular shape, which might 

not be true in reality. Accordingly, a damage reconstruction approach for 

remanufacturing/repairing, including identification of defects and reconstruction of the 

original model, which is compatible with different types of damage, is urgently needed. 

2.3 Hybrid Manufacturing for Remanufacturing/Repairing 

In the past decade, additive manufacturing (AM) has gained significant attention and has 

revolutionized the manufacturing paradigm. It is now a sophisticated process for 

functional metal part fabrication [73–76]. AM has demonstrated various benefits, 

including greatly enhanced design freedom [77], simplified supply chain management 

[78], efficient raw material usage, and reduced environmental impact [79]. However, AM 

techniques have certain limitations, such as long production time, poor dimensional 

accuracy, and low surface quality [80]. Comparatively, subtractive manufacturing (SM) 

(usually machining), as a traditional manufacturing process, is still indispensable for 

producing parts with high surface quality and tight tolerance requirements, even though 

its capacity for complicated part manufacturing is quite restricted. Therefore, HM has 

emerged from a mixture of AM and SM to provide a more flexible, capable, and efficient 

manufacturing approach, which makes full use of the individual processes’ advantages. At 

the same time, HM raises the capability of remanufacturing to a higher level, since features 

can be flexibly added and removed. 
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2.3.1 AM for Remanufacturing and Repair 

As an AM technique, Directed Energy Deposition (DED) has been extensively used for 

repairing. Different aspects of it have been widely explored, such as laser parameters (e.g., 

laser power, feed rate, and traversing speed) [81], damaged geometry reconstruction 

[58,63], energy and environmental impact analysis [8,13], and microstructure and 

mechanical property analysis [74,82,83]. The PBF technique has also been applied for part 

repairing [84–86]. In comparison with DED, the capability of PBF for remanufacturing is 

restricted because of smaller build envelopes and the limited accessibility of new material 

deposition. For instance, the material can only be deposited on a flat surface but not inside 

a concave structure. Some of the studies have investigated the feasibility of PBF-based 

AM technologies for building new features on an existing part [73,84,87]. They have found 

that new features have fine microstructures and the interfaces between new features and 

the existing part have good metallurgical bonding. Therefore, part repairing with DED and 

PBF has both demonstrated high potentials [88].  

 However, because of the poor dimensional accuracy and reduced surface quality of 

additively manufactured components, SM is commonly implemented as a post-processing 

operation to help repaired parts meet tolerance requirements. Recently, HM, combining 

AM and SM for repairing or remanufacturing, has been actively investigated. Jones et al. 

[89] reported progress toward an HM machine that integrates laser cladding, machining, 

and in-process 3D scanning for flexible and lean remanufacturing of turbine blades. Zheng 

et al. [90] proposed a 3D reconstruction and a ray or triangle intersection algorithm to 

identify areas of a broken turbine blade that need repairing through HM. Li et al. [18] 

developed a part repairing method which integrates the functions of 3D scanning, model 

reconstruction, fine registration, and selection of the repairing method to restore a worn 

component. Hascoët et al. [59] proposed a method to automate the repairing process of 

metallic parts partially. In their method, defects were machined into a surface cavity and 

the cavity was refilled by laser metal deposition with the aid of an inspection system. 

Newman et al. [9] and Zhu et al. [91] put forward a remanufacturing framework that 
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consisted of fused filament fabrication, CNC machining, and inspection. The method 

enabled the remanufacturing of an existing part or even a recycled and legacy part by 

reincarnating it into a new part with enhanced structural features. Le et al. [88] extended 

the idea of remanufacturing through a combined (i.e., hybrid) AM–SM strategy. This work 

focused on HM process planning based on feature extraction and knowledge interpretation. 

In a subsequent study [79], they investigated the environmental impact of the proposed 

remanufacturing strategy compared with traditional approaches (material recycling, 

casting, and machining). Liu et al. [92] developed a design-for-remanufacturing method 

under a level-set framework, which provides a solution for upgrading broken parts. 

2.3.2 Process Planning for Subtractive, Additive and Hybrid 

Manufacturing  

Design and manufacturing are two critical phases for product development, and process 

planning plays an important role in the link between design and manufacturing processes. 

Process planning accomplishes the tasks of a selection of operation processes, 

determination the sequence of operations. Most process planning systems for machining 

are based on feature techniques [93]. The feature-based techniques examine the topology 

and geometry of a part and determine its definitions under the feature concept. To achieve 

this, a design model of lower-level entities (lines, points, etc.) is transformed into a feature 

model of a higher-level entity (holes, pockets, etc.). It leads a machining operation to be 

an intermediate or final state of a machining feature. In order to perform process planning, 

several skills are required from process planners, such as understanding the requirements 

for the manufacturing parts, the interactions between part, manufacturing, quality and cost, 

knowing machine tools [94]. However, in the modern manufacturing industry, it is very 

challenging to find a skilled labour force in process planning. Based on this motivation, 

the automated process planning in machining has been developed in the last three decades 

[93–100],  with typical studies lying on tool selection [98,101,102], setup and fixture 

planning [103–105], selection of and sequencing operations [94,95,99], and determining 

machining precedence [100]. 
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Process planning for AM has been concentrated on recently. Unlike the machining 

process, the AM process generally is a single operation with building part layer-by-layer. 

Therefore, the issues including tool selection and sequencing in the machining process are 

not existing in the AM process. The AM process does not require skills for the operator in 

terms of planning as a machining process. Whereas, with the involvement of support 

structures, the building direction and tool-path planning are more crucial in the AM 

process, which has a significant effect on building time and building quality. Most AM 

process planning research has focused on build direction optimization [106–108] and tool-

path planning [109,110].  

Recently, HM has gained significant attention, which combines AM’s advantages of 

building complex geometries and SM’s benefits of dimensional precision and surface 

quality. HM is creating huge opportunities in the design and manufacture of the finished 

part, and also in remanufacturing and repairing of high-value components [111]. It has the 

ability to add and remove materials that help to address different geometrical challenges, 

such as internal and overhanging structures, and the part with a high ‘buy-to-fly’ ratio 

[112]. 

Table 2.1: Commercial hybrid machines from industry. 

Product Company 
Additive 

process 

Subtractive 

process 
Ref. 

AmbitTM 

Hybrid 

Manufacturing 

Technologies 

Directed 

energy 

deposition 

5-axis CNC 

milling 
[113] 

LASERTEC 

65/125/4300 

3D hybrid 

DMG MORI 

5-axis direct 

energy 

deposition 

5-axis CNC 

milling 

[114–

116] 

INTEGREX i-

400S AM 
Mazak 

Directed 

energy 

deposition 

5-axis CNC 

milling and 

turning 

[117] 

VC-500A/5X 

AM HWD 
Mazak 

5-axis hot wire 

deposition 

5-axis CNC 

milling 
[118] 
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CybaCast 

Hybrid 

Cybaman 

Technologies 

6-axis laser 

powder 

deposition 

6-axis CNC 

milling 
[119] 

WFL Millturn 
WFL Millturn 

Technologies 

Laser powder 

deposition 

5-axis CNC 

turning 
[120] 

MPA 40 Hermle 

5-axis laser 

powder 

deposition 

5-axis CNC 

milling 
[121] 

OPM250 Sodick 
Laser metal 

sintering 
CNC milling [122] 

LUMEX 

Avance-25/60 
Matsuura 

Powder bed 

fusion 
CNC milling [123,124] 

Table 2.1 lists the commercial hybrid additive-subtractive machines from the industry. 

It worth to mention that only integrated hybrid machine in a single platform is discussed 

here and the HM processes which are performed in sperate machines are more common in 

the industry [111,125]. The HM configurations from academic research are summaries 

from [111] (see Figure 2.3). The figure shows that SM operations are limited to CNC 

machining. Similar to industrial machines, the DED process dominates the AM processes, 

with a small case of PBF and material extrusion. From an academic perspective, it can be 

witnessed that these systems are largely built upon the existing commercial CNC machine 

tools, with adaption in the form of DED technologies integration.   

HM hardware technologies are striding ahead, however, the process planning tools to 

support their incredible potential are falling behind [126]. Some commercial process 

planning software has already been used in industrial hybrid systems, such as Siemens NX 

used in DMG MoriSeiki, LaserTec 65 3D, and hyperMill used in Replicator and Cybaman 

[111]. The major limitation of these commercial tools is the poor support for automation. 

For example, AM and SM feature recognition is manually conducted that highly relies on 

the user’s knowledge. The consequence is that the process planning of complex 

remanufacturing problems is very tedious, and the quality of the derived process plan can 

hardly be evaluated. Therefore, the HM rules are not integrated into these software tools. 
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Figure 2.3: A breakdown of the hardware configuration (from academic research [111]).  

In recent years, researches have drawn attention to process planning for the HM process.  

Manogharan et al. [127] introduced an HM process planning method that integrated a 

visibility analysis of machining, sacrificial fixturing technology for electron beam melting, 

and tool-path planning. Joshi & Anand [128] presented a novel method for decision-

making among AM, SM, and HM, along with optimal part decomposition, where the 

objective is to minimize manufacturing complexity. Chen et al. [129] observed that 

complex AM components might have the tool accessibility issue, in which the cutter 

cannot access the part’s interior. They then developed an optimization algorithm for HM 

process planning, which derived the optimal HM process plan of an arbitrary geometry 

that was free of machinability issues. Kerbrat et al. [130] developed a new design-for-

manufacturing approach, combining AM and SM in a hybrid modular vision. In their work, 

manufacturability indices were evaluated from the design parameters (geometry, 
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dimensions, material information, and specifications) of the part CAD model. These 

indices led to the decision on the structural features to be manufactured by AM or SM.  Zhu 

et al. [131,132] and Newman et al. [9] presented a hybrid process planning tool entitled 

iAtractive, combining CNC machining, fused filament fabrication, and inspection process 

for complex plastic components including internal structures. The inspection was 

integrated with the AM and SM operations to provide a closed-loop for the in-situ process 

plan update. Behandish et al. [126] developed an HM process planning approach that 

formulated HM processes through logic representations. The method could enumerate all 

the possible sequences of processes to find the optimal process plan. Recently, ElMaraghy 

& Moussa [133] presented a method of process planning for HM that included manual 

feature extraction, product platform design, and process determination.  

An increasing level of development in research on HM-based repairing technology has 

been witnessed by those publications. However, in terms of remanufacturing, there are 

comparatively fewer studies. In comparison with repairing, remanufacturing requires more 

decision-making support since the process planning result is not unique, and AM and SM 

feature extraction relies on algorithms for the automation process. Among the few reported 

efforts, Newman et al.  [9] and Zhu et al. [91] features a remanufacturing framework that 

consisted of fused filament fabrication, CNC machining, and inspection. The method 

enabled the remanufacturing of an existing part or even a recycled and legacy part into a 

new part with new functional features. Le et al. [88] proposed an HM process planning for 

remanufacturing based on feature extraction and knowledge interpretation. In a subsequent 

study, they have extended the process planning framework by discussing the 

environmental impact of the proposed remanufacturing strategy compared with traditional 

approaches (material recycling, casting, and machining). Liu et al. [134] developed a novel 

design-for-remanufacturing method under a level-set framework, which provides a 

solution for upgrading broken parts. 



23 

 

 

2.3.3 Feature modeling for Hybrid Manufacturing 

Feature-based technologies have been used successfully for years in computer-aided 

process planning (CAPP) for the machining process [93]. Feature-based technologies play 

an important role to bridge CAD and computer-aided manufacturing (CAM). This section 

offers a review of feature-based implementation in process planning for HM. 

Geometric representation modelling is an essential task for feature-based modelling 

since it stores geometric information of the model. In geometric modelling, constructive 

solid geometry (CSG) and boundary representation (B-rep) are widely adopted. With CSG 

modelling, a physical object can be decomposed into multiple primitives and a sequence 

of Boolean operations. With the B-rep method, the solid is bounded by a set of closed and 

directional faces, which are bounded by edges and vertices. CSG modelling has the merits 

of supporting efficient Boolean operations and topology optimization [135]. The B-rep 

format model is dominant in the machining feature recognition field because it uniquely 

defines the faces and their topological patterns [136]. However, it has issues to deal with 

numerical calculations between two solid parts by adopting B-rep models. CSG format 

shows its potentials in the calculation in multiple solid models. However, to the author’s 

best knowledge, no research works are having to explore the implementation of CSG 

models for feature extractions for HM or HM in remanufacturing. 

The concept of feature-based technology-aided process planning for HM has emerged 

in recent years [9,88,130,137,138]. Since SM removes material from the part in essence, 

the definition of SM feature in HM process coincides with the machining feature. In term 

of AM, from [88], the AM feature is defined as a geometrical shape with associating 

attributes including geometrical form and dimensions, build directions, starting surface, 

material, and tolerance. Further, manufacturing rules were applied to associate AM and 

machining (SM) features to generate the process planning for HM, which is illustrated in 

Figure 2.4. AM and SM features could also be distinguished to improve manufacturability. 

Kerbrat et al. [139] developed a hybrid and modular approach to achieve the explicit 

separation, shown in Figure 2.5. In their research, a CAD model is decomposed into 
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subtractive and additive modules which is associating with attributes with the dimension, 

operation direction, and also manufacturability. On top of that, the cost model [140] and 

the environmental impact model [79] were also investigated to enrich AM and SM features 

in HM. With the seminal works of proposing the concept of AM and SM in HM, the 

process planning for HM are becoming similar to the framework of CAPP in the machining 

process. However, unlike the scenario in machining, process planning for HM is still 

lacking the algorithm's support for the automation process. Although  Le et al. [137,138] 

proposed the feature extraction method for HM in a remanufacturing context, the approach 

is highly relying on human intervention. Besides, the collision issues in HM 

remanufacturing are rarely discussed in the previous studies. In CAPP for machining, 

feature recognition is an important process of reinterpreting a design model for automating 

manufacturing operations [136]. Previous works on feature recognition/extraction in 

machining process planning have been developed for three decades [136,141]. However, 

it is very challenging to implement these prosperous techniques in the HM or HM for 

remanufacturing. The main research gap is that the geometrical representation which is 

widely utilized in machining is difficult to apply in the framework of HM for 

remanufacturing. 

 

Figure 2.4: Process planning for HM by AM and SM feature-based method: (a) machining 

features (MFs) and AM features (AMFs) extraction; (b) associations between MFs and 

AMFs (from academic research [88]). 
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Figure 2.5: Explicit separation of additive and subtractive modules in reducing 

manufacturing difficulties (from academic research [130]). 

2.3.4 Summary of the Hybrid Manufacturing for 

Remanufacturing/Repairing 

HM leverages AM’s strengths of forming complex geometries and SM’s benefits of 

dimensional precision and surface quality control. This technology shows great potential 

to support repairing and remanufacturing processes. parts or remanufacture them to new 

features and functionalities. However, process planning for hybrid remanufacturing is still 

a challenging research topic. This is because current methods require extensive human 

intervention for feature recognition and knowledge interpretation, and the quality of the 

derived process plans are hard to quantify. Besides, other than addressing the process 

planning rules, little effort has been spent on critical decision-making in the variety of 

feasible process plans (e.g., finding out the most economical solutions). The concept of 

AM and SM features was proposed recently, whereas the automation algorithm for feature 

extraction is missing. Also, the geometric representations are rarely explored for HM or 

HM in the remanufacturing context.    
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Chapter 3: A Novel Deep Learning-based Damage 

Detection and Localization for Remanufacturing and 

Repairing  

3.1 Overview 

Although significant benefits can be gained from remanufacturing/repair, there are still 

numerous challenges to implement it in the industry. The main reason is that, compared to 

the manufacturing process, stochastic returns of used parts and their uncontrollable quality 

condition result in a high degree of uncertainty for the remanufacturing and repairing 

process [6]. The uncertainty surrounding the return of the parts complicates the 

remanufacturing process. Recently, significant efforts have been devoted to the 

remanufacturing process plan optimization with uncertainties [2,7]. These optimization 

frameworks are initialized with characterized and quantified fault features (e.g. crack, dent, 

scratch, abrasion). The visual or manual inspection determines the fault feature 

characterization, which indicates damage type, damage location. These two factors play a 

key role in generating an optimal process plan with different additive operations and 

subtractive operations with heuristic algorithms. The current visual or manual inspection 

methods require extensive human intervention, and the quality of the process is hard to be 

stable. Therefore, an automated inspection approach for remanufacturing/repairing is 

urgently demanded. For this reason, an increasing level of interest in research on the 

automated or semi-automated inspection for remanufacturing or repair has been witnessed 

over recent years, which are reviewed in Section 2.1. By summarizing these research 

results, to the best of the author’s knowledge, an automatic approach that enables damage 

recognition and spatial localization simultaneously for remanufacturing/repairing has not 

been discovered. In this chapter, a deep learning-based damage recognition and spatial 

localization method is introduced, which can classify different damage features and 

localize in the global three-dimensional coordinate. The localization results show 10% 

errors and much faster speed compared with the traditional 3D scanning method. The 
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proposed method provides a promising application with a hybrid image and 3D scanning 

method which can roughly localize the damage and the 3D scanner can approach the target 

area to acquire a fine scanning result, which will strongly reduce the time for acquisition 

of point clouds of the damaged area. 

3.2 Methodology 

The main objective of this study is to automatically detect damages from a damaged part. 

The study proposes a detection strategy based on a deep-learning technique to recognize 

and localize damages. The flowchart is shown in Figure 3.1. There are three main steps of 

the process: (1) Data acquisition for the RGB image and depth data by a depth camera; (2) 

the damage recognition and segmentation using a Mask-RCNN method, providing damage 

segments with recognized damage type; (3) the localization of the damage determined by 

the integration of damage segments and a point cloud from the depth data. 

 

Figure 3.1: The flowchart of the proposed method. 

3.2.1 Damage Recognition and Classification 

In this study, the damage recognition and segmentation method is based on a Mask-RCNN 

architecture [51]. The proposed damage recognition and segmentation method is 

illustrated in Figure 3.2. As shown, it is composed of four modules: (1) Input the original 

image to be processed into a pre-trained convolutional backbone to extract features and to 

obtain a feature map; (2) the region proposal network (RPN) proposes region of interest 

(RoI) in the feature map with a set of rectangular object proposals; (3) each RoI generates 

a fixed-size feature map by RoIAlign layer; (4) the fixed-size feature map goes through 
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two branches of layers for objective classification, frame regression and pixel 

segmentation. 

 

Figure 3.2: The neural network architecture of the proposed damage recognition and 

segmentation method. 

The convolutional backbone is composed of a series CNN to extract feature maps from 

the image. The properties of a neural network backbone are characterized by the selection 

and arrangement of different layers. Deeper networks generally allow to extract more 

complicated features from the input image, meanwhile stacking more layers will result in 

issues for training, due to the degradation problem. The residual network (ResNet) was 

designed to address this problem in deeper neural networks (up to 152 layers) [142] by 

reformulating its layers as residual learning function regarding the layer input.  

Generally, the Mask RCNN model adopts ResNet101 as the backbone. It is a very deep 

network with 101 layers and approximately 27 million parameters. In this study, because 

the damage category is simple and the dataset is limited, a smaller backbone ResNet50 is 

used to improve the running speed for training. Feature pyramid network (FPN) [143] uses 

a top-down architecture with lateral connections to build an in-network feature pyramid, 

which addresses the multi-scale object recognition problem. Overall, this study uses the 

combination of ResNet50 and FPN as the backbone for feature extraction. 

The second module in the proposed damage detection and recognition is RPN. The 

original image passes through the ResNet50 and FPN convolutional network and outputs 

a set of convolutional feature maps. In this study, the algorithm uses nine different sizes 
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of anchors as (128*128, 256*256, 512*512) with aspect ratios of (1:1, 1:2, 2:1). Positive 

or negative anchors are computed by considering the interest-over-union (IoU) between 

the analyzed anchor and ground-truth bounding boxes on the image. The IoU is calculated 

by Equation (3-1). In this research, positive anchors are those that have an IoU is greater 

or equal to 0.7 in any ground-truth object, and negative anchors are those that have IoU is 

smaller or equal to 0.3. The anchors with IoU between 0.3 and 0.7 are not considered for 

the training objective. The positive anchors are then processed to the proposal 

classification.  

IoU =
𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑢𝑛𝑖𝑜𝑛
 (3-1) 

where 𝐴𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is the area of overlap and 𝐴𝑢𝑛𝑖𝑜𝑛 is the area of union. 

The multi-tasking loss function of the Mask-RCNN training process is defined in 

Equation (3-2), where 𝐿 is the total training loss; 𝐿𝑐𝑙𝑠 is the classification loss, 𝐿𝑏𝑜𝑥 is the 

bounding-box loss, and 𝐿𝑚𝑎𝑠𝑘 is the mask loss.  

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘  (3-2) 

The variables for 𝐿𝑐𝑙𝑠 and 𝐿𝑏𝑜𝑥 are defined in [144], as shown in Equation (3-3). Each 

training RoI is labelled with a ground-truth class 𝑢  and a ground-truth bounding-box 

regression target 𝑣. 

𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 = 𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 𝜆[𝑢 ≥ 1]𝐿𝑙𝑜𝑐(𝑡
𝑢, 𝑣) (3-3) 

where 𝑢 is the label of each training RoI with a ground-truth class; 𝑣 is a label of each RoI 

with a ground-truth bounding-box regression target; 𝑡𝑢 = (𝑡𝑥
𝑢, 𝑡𝑦

𝑢, 𝑡𝑤
𝑢 , 𝑡ℎ

𝑢) specifies a scale-

invariant translation and log-space height/width shift relative to 𝑢 class; p = (𝑝0, … , 𝑝𝐾) 

represents the probability distribution over K + 1 categories; [𝑢 ≥ 1] denotes the Iverson 

bracket indicator function that evaluates to 1 when 𝑢 ≥ 1 and 0 otherwise. 



30 

 

 

The bounding-box regression 𝐿𝑙𝑜𝑐(𝑡
𝑢, 𝑣) is shown in: 

𝐿𝑙𝑜𝑐(𝑡
𝑢, 𝑣) = ∑ smooth𝐿1(𝑡𝑖

𝑢 − 𝑣𝑖)

𝑖∈{𝑥,𝑦,𝑤,ℎ}

 (3-4) 

where:  

smooth𝐿1(𝑥) = {
0.5𝑥2

|𝑥| − 0.5
       

if |𝑥| < 1 
otherwise

 (3-5) 

The 𝐿𝑚𝑎𝑠𝑘 is calculated by taking the average cross-entropy of all pixels on the RoI, as: 

𝐿𝑚𝑎𝑠𝑘 = −
1

𝑁
∑[𝑦𝑖ln𝑎𝑖 + (1 − 𝑦𝑖)ln(1 − 𝑎𝑖)] 

(3-6) 
𝑦𝑖 = 1/(1 + 𝑒

−𝑥𝑖) 

𝑎𝑖 = 1/(1 + 𝑒
−𝑏𝑖) 

where 𝑥𝑖  and 𝑏𝑖 are the prediction value and true value of the i-th pixel in the positive RoI, 

respectively, 𝑁 indicates the number of pixels in the positive RoI. 

3.2.2 Spatial Localization 

Spatial localization of the damaged area is achieved by finding the mapping relations 

between the 2D coordinates in the image and 3D spatial coordinates by the depth sensor 

model, as shown in Equation (3-7).  

z𝑐 [
𝑢
𝑣
1
] =

[
 
 
 
 
𝑓𝑥
𝑑𝑥

0 𝑢0

0
𝑓𝑦

𝑑𝑦
𝑣0

0 0 1 ]
 
 
 
 

[𝑅𝑧𝑅𝑦𝑅𝑥 𝑇] [

𝑋
𝑌
𝑍
1

] (3-7) 

where: 
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𝑅𝑥 = [
1 0 0
0 cos𝜃𝑥 −sin𝜃𝑥
0 sin𝜃𝑥 cos𝜃𝑥

] 

(3-8) 

𝑅𝑦 = [

cos𝜃𝑦 0 sin𝜃𝑦
0 1 0

−sin𝜃𝑦 0 cos𝜃𝑦

] 

𝑅𝑧 = [
cos𝜃𝑧 −sin𝜃𝑧 0
sin𝜃𝑧 cos𝜃𝑧 0
0 0 1

] 

𝑇 = [𝑡𝑥 𝑡𝑦 𝑡𝑧]T 

 

Figure 3.3: An illustration of the mapping of depth and RGB image coordinate to xyz 

coordinate. 

𝑢 and 𝑣 are the 2D image coordinates; 𝑢0 and 𝑣0  are the origin of the 2D coordinate 

system; 𝑓𝑥 and 𝑓𝑦 are the focal length along 𝑥 and 𝑦 direction, respectively; 𝑑𝑥 and 𝑑𝑦 are 

scale factors on x and y direction; 𝑅𝑧𝑅𝑦𝑅𝑥 and 𝑇 are the rotation matrix and translation 

matrix from the camera coordinate system to the global coordinate system, 𝑋 , 𝑌 , 𝑍 are 
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the 3D coordinates under global coordinate. 𝐌 and 𝐦 represent the location of the pixel 

in 3D global coordinate and image, respectively. 𝑧𝑐 is the distance of the image to the 

camera. The illustration is shown in Figure 3.3. 

To simplify this problem, the study coincide the camera coordinate system and the 

global coordinate system and Equation (3-9) can be derived as: 

z𝑐 [
𝑢
𝑣
1
] =

[
 
 
 
 
𝑓𝑥
𝑑𝑥

0 𝑢0

0
𝑓𝑦

𝑑𝑦
𝑣0

0 0 1 ]
 
 
 
 

[
1 0 0 0
0 1 0 0
0 0 1 0

] [

𝑋
𝑌
𝑍
1

] (3-9) 

Then, the 3D coordinates of the damaged area can be calculated as: 

𝑋 =
(𝑢 − 𝑢0)𝑧𝑐𝑑𝑥

𝑓𝑥
; 𝑌 =

(𝑣 − 𝑣0)𝑧𝑐𝑑𝑦

𝑓𝑦
; 𝑍 = z𝑐  (3-10) 

3.3 Experimental Results and Analysis 

3.3.1 Transfer Learning 

Deep learning requires a large number of input images as training data, but for some 

applications, it is very difficult to find enough images. Transfer learning provides an 

alternative strategy to address this problem. It is possible to reuse a pre-trained CNN 

weight as a starting point for another training task, instead of building a CNN from scratch. 

In this study, the training model was initialized using the weights from a ResNet-101 

network, which was trained on the COCO dataset [145]. COCO dataset has 330K images 

with 1.5 million object instances for 80 object categories. Therefore, a good performance 

pre-trained model can be obtained from this dataset. Using migration learning from the 

pre-trained model can increase the efficiency of training significantly than starting from 

scratch.  
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3.3.2 Dataset Building 

The images with damaged pipes were collected by a GigE DFK 33GD006 image sensor 

with TCL 3520 5MP lens with a 35 mm focal length, and the setup is shown in Figure 3.4. 

The entire dataset includes training, validation and testing datasets with the resolution of 

1920*1080 images. The dataset is collected from 30 damaged pipes and each pipe has 3 

portions of damage with different sizes. The experiment collected 220 images (160 for the 

training dataset, 40 for validation dataset and 20 for testing dataset). The training and 

validation images were annotated according to their damaged areas by polygon shapes 

using the free annotation software VGG Image Annotator [146]. It labelled the images 

with the JSON file which contains a class of damage and damage region. Figure 3.5 gives 

examples of annotated images. 

 

Figure 3.4: Dataset acquisition setup. 

 

a 

 

b 

Figure 3.5: Annotation of damaged areas by polygon shapes. 
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3.3.3 Experimental Environment 

The experiments were conducted using Mask-RCNN, Matlab2019a, CUDA 10.0, 

TensorFlow 1.14.0, CuDNN 6.5 on a desktop computer equipped with an Intel Core i5-

8600K 3.60 GHz CPU, 16 GB DDR4 RAM, Nvidia GTX 1060 with 6 GB video ram GPU, 

under an operating system of Ubuntu 16.04 64 bit. The pre-defined parameters for the 

damage detection and classification model are shown in Table 3.1. 

Table 3.1: The pre-defined parameters for damage detection and classification. 

Parameter Value 

Batch size 30 

Learning rate 0.01 

Learning Momentum 0.9 

Mask pool size 14 

Pool size 7 

Step per epoch 200 

Detection minimum confidence 0.9 

Number of classes 2 

epoch 30 

In this study, Microsoft Kinect V1 was used as the depth camera for testing. The 

technical specification of it is presented in Table 3.2. It outputted RGB image (640*840*3) 

and depth image (640*840), as shown in Figure 3.6. 

Table 3.2: The pre-defined parameters for damage detection and classification. 

Kinect V1 Specifications 

Max. resolution of the colour sensor 1280*960 

Max. resolution of the depth sensor 640*480 

Viewing angle 43° vertical x 57° horizontal 

Vertical tilt range ±27° 

Frame rate 30 frames per second (FPS) 
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a b 

Figure 3.6: RGB image (a) and depth image (b). 

By implementation of the Equation (3-9), the point cloud data (defined as pointcloud) 

was calculated from the RGB image and depth image, as shown in Figure 3.7. The data 

structure of pointcloud includes Location (480*640*3), Color (480*640*3), Count 

(positive integer), XLimits (1*2), YLimites (1*2), ZLimites (1*2). In the data of Location, 

each entry specifies the x, y, and z coordinates of a point in the 3D coordinate space. 

Therefore, each pixel in the RGB image can be mapped to the pointcloud.Location to find 

their x, y, z coordinates in the 3D space. 

 

Figure 3.7: Point cloud dataset. 
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3.3.4 Results and Analysis 

For the damaged area detection and classification algorithm, after 30 epochs of training, 

the convergence history of the model loss for both training and validation samples are 

plotted in Figure 3.8. It can be observed that the loss for training and validation achieved 

0.1612 and 0.5744, respectively. The accuracies in this study were in segment-wised 

evolution. The average precision had achieved 99.57% and 87.61% for training and 

validation datasets. Considering the size of the training dataset, the validation accuracy is 

acceptable. Different hyperparameters have been tried in this study such as batch size, 

learning rate, and the activation function to improve the performance of the model but 

achieved limited benefit. Therefore, in this study, increasing the size of the training dataset 

would be the most effective method to improve the accuracy further. Some examples from 

the damaged area detection algorithm are shown in Figure 3.9. 

The performance of the 3D localization in the proposed method was tested by 

calculating the centroid position of the damaged area. The localization error is defined as 

follows: 

∆= √(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 + (𝑧𝑖 − 𝑧)2 (3-11) 

where  𝑥𝑖, 𝑦𝑖 and 𝑧𝑖 are the coordinate of the estimated centroid position; and 𝑥, 𝑦 and 

𝑧 are the coordinates of centroid position from manual measurements. 

The average relative error is defined as: 

𝜎 =
∑ ∆𝑖
𝑛
𝑖=1

𝑛√𝑥2 + 𝑦2 + 𝑧2
 (3-12) 
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a b 

Figure 3.8: Convergence histories for loss (a) and accuracy (b) after 30 epochs. 

  
a b 

  
c d 

Figure 3.9: Example detections of the damaged area from the pipes. 

By conducting measurements for five samples, the manual measurement of the centroid 

point, estimation of the centroid position by the proposed method were recorded. For each 

sample, the estimation of the centroid position was calculated by ten times. The results are 

presented in Table 3.3. From [18], the proposed had achieved higher error than the 

traditional damage localization method (around 5 mm). However, the traditional damage 

localization approach costs a few hours in scanning and around 2000 s for registration. 

Therefore, the proposed method represents a much higher efficiency than the traditional 

method. The resolution of the depth sensor impacts the accuracy of the results strongly. 

High-accuracy 3D depth sensor (such as 2540*1600) can be easily used in this study to 
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acquire a lower error of the damage area localization, which will be revealed in the future 

work. 

Table 3.3: Results of experiments for the 3D localization. 

#  Manual measurement 

(cm) 

Average estimation 

(cm) 

Average 

speed (s) 

Average 

Error 

(cm) 

Maximum 

Error (cm) 

Relative 

error (%) 

1 (8.2, 2.2, 20.1) (8.8, 2.4, 20.8) 1.45 0.943 2.211 4.322 

2 (20.6, 6.8, 20.7) (19.2, 6.0, 22.2) 1.48 2.202 4.131 7.344 

3 
(10.2, 4.2, 23.2) (12.2, 4.8, 25.2) 1.42 2.891 

3.681 11.253 

 

4 (16.3, 2.3, 33.2) (16.5, 2.3, 35.2) 1.48 2.010 4.212 5.424 

5 (10.4, 20.2, 18.8) (11.4, 21.8, 19.8) 1.47 2.135 3.068 7.244 

3.4 Conclusion 

Remanufacturing/repairing has been considered a green manufacturing strategy since it 

reduces cost, energy, material consumption and air pollution significantly compared to 

traditional manufacturing. Damage detection is the primary step in remanufacturing to 

decide a remanufacturing strategy. However, the current damage detection method relies 

heavily on manual operations which is time-consuming. The motivation of this study is 

developing a novel damage detection approach, which performs damage classification and 

3D localization simultaneously.   

To address these problems, this study proposes an efficient deep learning-based damage 

detection and localization method. In the first step, the RGB image and depth image are 

acquired by a depth camera. Then, training data and validation data are collected to train 

the Mask-RCNN-based model to obtain optimized weight. The RGB image acquired 

processed in the damage recognition and segmentation algorithm, providing damage 
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segments with recognized damage types.  In the last, the 3D position of the damage is 

determined by the integration of damage segments and a point cloud from the depth data. 

The accuracy of the damage detection can be improved by increasing the training data 

size. And, the error of damage localization can be reduced by implementing a high-

accuracy depth sensor, which will be the focus of future work.  

The current remanufacturing/repair industry relies on visual inspection to determine the 

damage type, damage location and damage degree to schedule the process plans. The study 

has the potentials to perform damage detection to output the damage type, and location. In 

future work, a systematic method to determine the damage degree can be investigated. 
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Chapter 4: A Primitive-based Damaged Model 

Reconstruction Method for Repairing processes 

4.1 Overview 

In the AM-based repairing process, a critical preparing step is to localize the defect region 

and determine the repair volume. The localization can be performed by comparing the 

scanned 3D digital model with the nominal CAD model. However, a general situation is 

that the nominal CAD model is not available due to confidentiality issues [59]. This makes 

the reconstruction of the broken part back to the original status quite non-trivial, and there 

are a few publications in this aspect [13,18]. Therefore, a novel reconstruction method is 

proposed in this chapter based on primitive surface fitting. This reconstruction is focused 

on mechanical components that are composed of only primitive features (e.g., plane, 

cylinder, sphere, cone) because 95% of mechanical components are able to be 

approximated by primitive features [147]. These involve multiple procedures of this 

reconstruction. 3D scanning is performed first to acquire the point cloud data of the broken 

part. Then, the point cloud is modified by identifying and eliminating the points from the 

damaged regions. The modified point cloud data is fitted by different primitive surfaces 

using the proposed surface fitting algorithm so that the damaged area can be restored into 

a primitive surface. Therefore, the reconstruction is completed by deriving a primitive 

feature-based CAD model as the outcome. The defective volumes can then be trivially 

localized and quantified by registering the reconstructed CAD model and the defective 

point clouds. The main contribution of this chapter lies in the new method to reconstruct 

complex geometric models with defects. This chapter proposes a novel StepRANSAC 

algorithm integrated with a SDM to improve the precision and robustness of surface fitting. 

The novel method for surface fitting performs the main direction determination and 

primitive segmentation by StepRANSAC to increase the robustness compared with the 

basic random sample consensus (RANSAC) method, especially for the incomplete 
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scanning data. Meanwhile, the accuracy of surface fitting is strongly enhanced by using 

SDM algorithm for refitting. 

4.2 Methodology 

A flowchart of the method is illustrated in Figure 4.1. This research is focusing on external 

damage on the damaged component, and the method will not work for the internal surface 

damage where lighting cannot approach. The used part is scanned by 3D scanner to acquire 

point cloud. Then, points inside the damage region are identified and removed from the 

point cloud. For the remaining points, a novel StepRANSAC algorithm is designed to 

efficiently and accurately make the segmentation and initial surface fitting. The SDM 

refitting method is applied to obtain precise parameters of the surface primitives. Finally, 

modelling operations are performed based on the topological relationship among the 

primitive surfaces to construct a CAD model. Details about these procedures will be 

presented in the following sections. 
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Figure 4.1: A systematic flowchart of the proposed reconstruction method 

4.2.1 Damage Surface Identification 

With the help of 3D scanning techniques, the point cloud is acquired from the used part. 

Because the defective surface is not smoothly continuous, its Gaussian curvature suddenly 

increases or decreases in the defective area. Therefore, the damaged region can be 

identified on the basis of the change of Gaussian curvatures. In this method, the classical 

principal component analysis (PCA) is adopted for Gaussian curvature estimation [148]. 

Firstly, the point clouds could be meshed as stereolithography tessellation language (STL) 

by using commercial CAD software. The curvature of a patch has a difference compared 

with the curvatures of neighbouring patches. If the absolute value of the difference is 

higher than a pre-defined threshold, the patch is identified as a defective surface and its 

corresponding points are recognized as defective points. The defective points are stored in 

the data set and they are updated through the elimination of the defective points for 

following the reconstruction process. Figure 4.2 gives an example of defective surface 

identification from a damaged model. 

  
(a) (b) 

Figure 4.2: (a) A defective model; and  (b) surface identification results (the defective 

surface is distinguished by blue, red and green colour, the intact surface is yellow). 



43 

 

 

4.2.2 StepRANSAC 

The RANSAC-based method presents its convenience in its fast calculation in the 

primitive surface fitting. In the proposed method, a StepRANSAC method is adapted as a 

prior segmentation and initial estimation for the following refitting. Most of these 

primitives have their orientations (e.g., normal of plane, axis of cylinder/cone). The 

orientations have parallel or orthogonal relations with each other, which are called global 

relations. This main direction confirmation is able to improve the precision of the 

RANSAC-based method and increase its robustness in noise or incomplete data, especially 

in the remanufacturing process. In addition, it provides opportunities to decrease the 

computational expense due to reducing degrees of freedom. StepRANSAC is developed 

in this method to consider the main directions of a mechanical component. The original 

RANSAC-based method will be reviewed briefly. Then, after conducting an error analysis 

of direction estimation for the plane and quadratic surfaces, it can be concluded that error 

for the plane is much less than that of the quadratic surface. By investigation of the error 

analysis of the plane and quadratic surface, it could be concluded that the estimation of the 

normal plane is more reliable for the cylinder/cone axis. Therefore, the planes are detected 

to estimate the normals. The main directions are determined by solving an optimization 

problem from normal. Finally, the main directions are employed to guide the cylinder/cone 

surface fitting. 

4.2.2.1 RANSAC-based Method 

The pseudocode of the RANSAC-based method is presented in Figure 4.3. The input of 

the algorithm is a point cloud, 𝑷 = {𝑝𝑖 ∈ ℝ
3, 𝑖 = 1,… ,𝑚}. The output 𝑩𝑺 is a set of 

parameters of the best shape that is detected, e.g., for cylinder {𝑝∗, 𝑎, 𝑟}, where 𝑎 is the 

direction of the axis of the cylinder, 𝑝∗ is a point on the axis, 𝑟 is the radius. 

In the first step, points with minimal numbers that can construct the target shape are 

randomly selected from the point cloud 𝑷. These points construct the target shape as a 

candidate shape. The parameters of the candidate shape are stored in 𝑪𝑺. In the second 
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step, algebraic distance (see Equation (4-1)) is calculated as the distance between point 

clouds and target shape. Then, the number of valid points that have distances is less than 

the pre-defined threshold 𝑇 is counted and is stored in 𝐵. From step 3 to step 6, the better 

candidate means which have more valid points are accepted in iterations and the best 

candidate for target shape remains until reaching the maximum iteration times. The 

parameters of best shape are stored in 𝑩𝑺 and the valid points for the best candidate remain 

in 𝑽𝑷. It is worth mentioning that the RANSAC-based method has the capability to filter 

the noises and outliers because only points that have distance below the threshold remain 

in the process (Figure 4.4). 

𝐷 =∑𝐹2(𝒑𝑘)

𝑚

𝑘=1

 (4-1) 

where 𝐹 is the left-hand side of the implicit representation 𝐹(𝑝) = 0 of the fitting surface; 

𝒑𝑘 ∈ 𝑷. 

 

Figure 4.3: The pseudocode for RANSAC-based surface fitting. 
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a b c 

Figure 4.4: (a) RANSAC-based method surface in cylinder fitting; (b) cone fitting; (c) 

sphere fitting. Valid points (yellow dots) remain and outliers (red stars) are removed in 

this process. 

4.2.2.2 Candidate Error Analysis 

From the principle of the RANSAC-based surface fitting method mentioned above, point 

clouds are randomly selected to generate the candidate shape. Then, the distance between 

the point cloud and the candidate shape is calculated. If the distance falls in the pre-defined 

threshold, the candidate is determined as a valid shape. The position error is the difference 

between the real part and scanned point clouds during 3D scanning. Therefore, in the 

RANSAC-based method, the error is accumulated in shape candidate generation. For 

different primitive shapes, the quantities of reconstruction errors are not the same. 

The position error in measurement of a point 𝒑𝑖(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) is ∆𝑖(𝑥∆, 𝑦∆, 𝑧∆); error of the 

normal vector 𝒏𝑖(𝑛𝑥𝑖 , 𝑛𝑦𝑖 , 𝑛𝑧𝑖) for this point is ∆𝑖𝑛(𝑥∆, 𝑦∆, 𝑧∆); The errors in different 

primitive shapes (plane, cylinder, and cone) construction are investigated in the following 

sections. 

a. Plane surface candidate error analysis: the parameters of a plane can be determined 

by three points 𝒑1, 𝒑2 and 𝒑3.The point on the plane: 

𝒑𝑝 = (𝒑1 + 𝒑2 + 𝒑3)/3 (4-2) 

The normal vector of the plane: 
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𝒏𝑝 = (𝒑1 − 𝒑2) × (𝒑1 − 𝒑3) (4-3) 

The candidate error of plane surface candidate consists of point position error ∆𝑝  and 

normal error ∆𝑛. The point position error: 

∆𝑝= ( ∆1 + ∆2 + ∆3)/3 (4-4) 

The normal error: 

∆𝑛=
∆1 − ∆2
‖𝒑1 − 𝒑2‖

×
∆1 − ∆3
‖𝒑1 − 𝒑3‖

 (4-5) 

The ‖𝒑1 − 𝒑2‖, ‖𝒑1 − 𝒑3‖ ≫ ∆𝑖; thus ∆𝑖≈ 0. 

b. Cylinder surface error analysis: the parameters of a cylinder can be determined by 

two points 𝒑1, 𝒑2 and their normal vectors 𝒏1, 𝒏2. 

The direction of axis: 

𝒏𝑐 = 𝒏1 × 𝒏2 (4-6) 

The point 𝒑𝑐  is the intersection of two parametric lines  

𝒑1 + 𝑡𝒏1, and 𝒑2 + 𝑡𝒏2 projected onto 𝒏𝒄 ∙ 𝒑1 plane. The radius 𝑟𝑐  of the cylinder is the 

distance between 𝒑𝑐  and 𝒑1 on the plane. The candidate error of cylinder surface candidate 

consists of point position error ∆𝑝 and normal error ∆𝑛. 

∆𝑝= (∆1 + 𝑟𝑐∆1𝑛) + (∆2 + 𝑟𝑐∆2𝑛) (4-7) 

∆𝑛= ∆1𝑛 × ∆2𝑛 (4-8) 
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From these analyses, the normal vector error in cylinder candidates is significantly 

larger than the normal vector errors in plane candidates. The similarity could be found in 

cone surface generation. 

In Figure 4.5a, the cylinder (height, 800 mm; radius, 100 mm) is supported by 800 

points; distances of these points to the cylinder are zero. In Figure 4.5b, the plane (length, 

300 mm; width, 630 mm) is generated by 800 points; distances between the points and 

plane are zero. The density of the two sets of points is the same. With 0.05o deflection on 

the axis of the cylinder and normal of the plane, there are 59.53% of points of cylindrical 

point clouds that have the distances between the deflected cylinder lower than 0.05 mm. 

In terms of the plane, 37.5% points have distances lower than 0.05 mm. Therefore, in the 

same condition of normal errors, there are higher chances to generate the incorrect 

cylinder/cone surfaces. It could be concluded that, in the RANSAC-based surface fitting 

method, the normal direction obtained from the plane surface has much higher precision 

than the axis direction calculated from cylinder/cone surface fitting. 

  

a b 

Figure 4.5: Deviation analysis under 0.05o deflection for (a) cylinder and (b) plane. 

4.2.2.3 Main Direction Estimation 

A mechanical part has a common property of having limited primitives or regular shapes, 

and the axes of these primitives are either parallel or orthogonal. The axes of the primitives 

reside can be merged as main directions of the mechanical model. In the RANSAC-based 

method, it is significantly important to consider the global relations of each primitive to 

increase the precision of surface fitting [31,72]. Therefore, the main direction estimation 
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is helpful to provide a global view for leading a robust primitive surface fitting. Moreover, 

information of main directions can highly rise computation efficiency in cylinder/cone 

fitting because their degrees of freedom reduces if their axes are confirmed. As mentioned 

before, the normal estimation in plane fitting is much more reliable. Based on that 

conclusion, the main direction estimation method is developed from the normal of planes.  

The process of the proposed method is represented in Figure 4.6. The original 

RANSAC method is adopted to calculate normal axes of planes from point clouds, 𝒏𝑖 ∈

ℝ3, 𝑖 = 1, . . . , m. These normal axes are classified based on the angles 𝜃𝑖𝑗 = 𝑐𝑜𝑠(|𝒏𝑖 ∙ 𝒏𝑗|). 

If 𝜃𝑖𝑗 ≤  𝜋/4, then normal 𝒏𝑖 and 𝒏𝑗 are determined as a parallel relation and classified in 

a group 𝑵1; else, they have an orthogonal relation and classified in another group 𝑵𝟐. In 

the proposed method, in order to simplify the problem, the number of main directions is 

restricted to three 𝑴𝑫𝟏,𝑴𝑫𝟐 & 𝑴𝑫𝟑, so that there are three groups of normal sets 𝑵𝟏 =

{𝒏1,𝑖 ∈ ℝ
3, 𝑖 = 1, . . . , 𝑚}, 𝑵𝟐 = {𝒏2,𝑖 ∈ ℝ

3, 𝑖 = 1, . . . , 𝑛} & 𝑵𝟑 = {𝒏3,𝑖 ∈ ℝ
3, 𝑖 = 1, . . . , 𝑙} .  

It is trivial to expand the main direction numbers by the proposed method in future work. 

Then, the estimation of the main direction can be converted to an optimization problem 

shown as follows:  

Objective function: 

𝑓 =∑𝑴𝑫𝑘

3

𝑘

∙ 𝑵𝑘 (4-9) 

Subject to: 

𝑴𝑫1 ∙ 𝑴𝑫2 = 0 

(4-10) 𝑴𝑫1 ∙ 𝑴𝑫3 = 0 

𝑴𝑫2 ∙ 𝑴𝑫3 = 0 
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The linear objection function with quadratic conditions can be solved in the Lagrange 

method. 

a b 

c d 

Figure 4.6: The process of main direction determination in the proposed method: (a) plane 

detection by basic RANSAC; (b) normal extraction from detected planes; (c) main 

direction optimization; (d) main direction interpolation in the model. 

4.2.2.4 Cylinder and Cone Surface Fitting 

The optimized main directions are used for guiding the following cylinder/cone fitting. 

For cylinder fitting, the algorithms of the fitting process are shown as follows: 

Table 4.1: the algorithm for cylinder fitting. 

a Randomly select three points 𝒑1, 𝒑2, 𝒑3from point clouds 𝑷 =
{𝒑𝑖 ∈ ℝ

3, 𝑖 = 1, . . . , 𝑚} with corresponding normals are 𝒏1, 𝒏2, 𝒏3; 
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b Determine the axis from main directions 𝑴𝑫1,𝑴𝑫2 & 𝑴𝑫3 by calculating 

the dot product between point normals and three main directions separately, 

𝒄𝒚𝒍𝒂𝑖 = 𝒏1 ∙ 𝑴𝑫𝑖 + 𝒏2 ∙ 𝑴𝑫𝑖 + 𝒏3 ∙ 𝑴𝑫𝑖. The main direction 𝑴𝑫𝑖 which 

has lowest 𝒄𝒚𝒍𝒂𝑖 value is determined as the axis for cylinder; 

c Project 𝒑1, 𝒑2, 𝒑3 on the plane which is orthogonal to 𝑴𝑫𝑖 and use these 

projected points to generate a circle. The center of the circle is the point on 

the axis of the cylinder and the radius of the circle is the radius of the 

cylinder. Now, candidate cylinder is constructed; 

d Calculate the algebraic distance of each point from point cloud to the 

candidate cylinder and record the number of valid points which is defined as 

the point that has distance less than the threshold to the candidate. Find the 

best candidate after serval iterations, which have the greatest number of 

valid points; 

e Use SDM refitting to optimize the cylinder parameters from segmented valid 

points. 

The processes of cone fitting are similar to cylinder fitting, which are presented as in 

Table 4.2. 

Table 4.2: the algorithm for cone fitting. 

a Randomly select three points 𝒑1, 𝒑2, 𝒑3from point clouds 𝑷 =
{𝒑𝑖 ∈ ℝ

3, 𝑖 = 1, . . . , 𝑚} with corresponding normals are 𝒏1, 𝒏2, 𝒏3; 

b Determine the axis from main directions 𝑴𝑫1,𝑴𝑫2 & 𝑴𝑫3 by calculating 

𝒄𝒐𝒏𝒂𝑖 = |𝒏1 ∙ 𝑴𝑫𝑖 − 𝒏2 ∙ 𝑴𝑫𝑖| + |𝒏1 ∙ 𝑴𝑫𝑖 − 𝒏3 ∙ 𝑴𝑫𝑖| +
|𝒏2 ∙ 𝑴𝑫𝑖 − 𝒏3 ∙ 𝑴𝑫𝑖|.The main direction 𝑴𝑫𝑖 which has the lowest 

𝒄𝒐𝒏𝒂𝑖 value is determined as the axis for cone. The angle of the cone is 

𝑎𝑟𝑐𝑐𝑜𝑠(|𝒏1 ∙ 𝑴𝑫𝑖|); 

c Set define planes 𝒑𝒍1, 𝒑𝒍2, 𝒑𝒍3 include a point respectively from 𝒑1, 𝒑2, 𝒑3 

and along its normals 𝒏1, 𝒏2, 𝒏3. The apex of the cone is the intersection 

point of the planes. Now, the candidate cone is constructed; 

d Calculate the algebraic distance of each point from point cloud to the 

candidate cone and record the number of valid points, which is defined as 

the point has distance less than the threshold to the candidate. Find the best 
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candidate after serval iterations, which have the greatest number of valid 

points; 

e Use SDM refitting to optimize the cone parameters from segmented valid 

points. 

4.2.3 SDM Refitting for Quadratic Surface 

The RANSAC-based method is barely able to meet the industrial tolerance requirement. 

In the proposed method, the SDM fitting approach is used for refitting after RANSAC 

detection. Outliers and noise are efficiently removed, which provide an appropriate 

condition for non-linear optimization surface fitting. The remaining valid points without 

outliers are input for the refitting process and the obtained parameters are utilized as the 

initial value for the iterative process. 

The surface fitting problem is converted to an optimization problem as minimizing the 

objective function of a distance error between the point cloud and fitting shape. As 

mentioned before, SDM not only measures the distance between the fitting object and 

point clouds accurately but also leading a faster and more stable convergence in 

optimization. The objective function of SDM is initialized with the valid points VP and 

the set parameters v for the best shape BS obtained from StepRANSAC as the initial value.  

Then, we discuss the SDM process for each point from point clouds. For a given surface 

𝜙 ⊂ ℝ3, 𝒑𝑖 is a point from a set of point clouds 𝑷 = {𝒑𝑖 ∈ ℝ
3, 𝑖 = 1, . . . , 𝑚}. The squared 

distance 𝑑2 is defined as the square of its distance d from this point to its closest point s 

on surface ϕ. The surface fitting problem is considered as optimization by minimizing the 

sum of squared distances between the fitting shape and point clouds.  

The Frenet frame of surface ϕ two vectors 𝒏1, 𝒏2 to determine the principal curvature 

directions and 𝒏3 to determine the normal direction. The principal curvatures 𝑘𝑗, 𝑗 = 1,2 

are in the principal curvature direction 𝒏𝑗 and the corresponding curvature radii is 𝜌𝑗. For 

each point 𝑝𝑖 , the second-order Taylor approximant F of the squared distance 𝑑2 is: 
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𝐹𝑖 =
𝑑𝑖

𝑑𝑖 − 𝜌1𝑖
[𝒏1𝑖 ∙ (𝒑𝑖 − 𝒔𝑖)]

2 +
𝑑𝑖

𝑑𝑖 − 𝜌2𝑖
[𝒏2𝑖 ∙ (𝒑𝑖 − 𝒔𝑖)]

2

+
𝑑𝑖

𝑑𝑖 − 𝜌3𝑖
[𝒏3𝑖 ∙ (𝒑𝑖 − 𝒔𝑖)]

2 

(4-11) 

By summation the squared distance of all points, the objective function F is shown as 

following: 

𝐹 =∑∑𝛼𝑗𝑖
𝑘{𝒏𝑗𝑖

𝑘 ∙ [𝒑𝑖 − 𝒔𝑖(𝒑𝒗
𝑘+1, 𝒔𝒗𝑖

𝑘)]}
2

3

𝑗=1

𝑚

𝑖=1

 (4-12) 

where 𝛼1𝑖 =
𝑑𝑖

𝑑𝑖−𝜌1𝑖
 , 𝛼2𝑖 =

𝑑𝑖

𝑑𝑖−𝜌2𝑖
 , 𝛼3𝑖 = 1. 

In Equation (4-12) , 𝒔𝑖  is the closest point on the fitting surface related to point 𝒑𝑖 

Here, 𝒔𝑖 consists of parameter vector 𝒑𝒗 and state vector 𝒔𝒗. And 𝒑𝒗 indicates parameter 

vector of surface 𝜙, 𝒑𝒗 = {𝒑𝒗𝑖 ∈ ℝ, 𝑖 = 1, . . . , 𝑛}. For cylinder, 𝒑𝒗cyl = {𝑥0, 𝑦0, 𝑧0, 𝑟}, 

where (𝑥0, 𝑦0, 𝑧0) is a point of the axis of cylinder and r is the radius. For cone, 𝒑𝒗con =

{𝑥0, 𝑦0, 𝑧0, ϑ}, where (𝑥0, 𝑦0, 𝑧0) is apex cone and ϑ is the semi-opening angle of the cone 

surface. For sphere, 𝒑𝒗sph = {𝑥0, 𝑦0, 𝑧0, 𝑟}, where (𝑥0, 𝑦0, 𝑧0) is the center and r is the 

radius of the sphere surface. 𝒔𝒗𝑖 is the state vector of the quadratic surface from parametric 

representation, and it determines the i-th point on the surface.  

Setting the first-order derivative of F to zero and solving the linear equation system is 

to obtain an updated quadratic surface, as: 

𝐷𝐹 = [
𝜕𝐹

𝜕𝑝𝑣1
,
𝜕𝐹

𝜕𝑝𝑣2
, . . . ,

𝜕𝐹

𝜕𝑝𝑣n
] = 𝟎 (4-13) 

The parameters of fitting shape are updated by new parameters from solving the set of 

linear equations. When the surface 𝜙 is updated to a new parameter vector 𝒑𝒗𝑘+1, the 

squared distance error is computed again for all data points in Equation (4-12) as the next 
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iteration. By repeating the steps until a pre-defined incremental change is reached, the 

parameter vector of the final adapted quadratic surface is obtained. The proposed SDM 

refitting has strongly increased the fitting precision, and it is evaluated in case studies.  

4.2.4 Modelling Operation 

The void model is obtained after the surface fitting process. A model operation is 

required to convert the void model to a solid model. A solid model is composed of different 

solid features. In the conventional modelling method, CAD systems provide functions to 

create primitive solids such as block, cylinder, cone, sphere, torus and wedges. The 

parameters of surfaces obtained in the surface fitting process are used to generates their 

corresponding primitive solids. The solid model could be constructed by combining these 

primitive solids by basic Boolean operations.  

4.2.5 Damaged Volume Localization for Remanufacturing/Repairing 

The damaged volume can be localized by registering the reconstructed model and 

defective model (Figure 4.7). The defective volume could be extracted by a Boolean 

operation. CAD/CAM software can be used for the generation of tool paths for 

remanufacturing. By applying post-processing on tool paths, G-code can be produced to 

drive machines for an actual repair process which includes a sequence of machining and 

AM [18,90]. 
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Figure 4.7: Identified damaged space (covered by blue) and intact space (covered by 

yellow). 

4.3 Case Studies and Discussion 

All algorithms described are implemented in C++. Four tests have been conducted for the 

validation of algorithms. For comparison purposes, a proven RANSAC-based method [71] 

is applied for surface fitting on the same data. For the surface fitting quality analysis in 

case study I, the average surface fitting error and maximum surface fitting are defined as 

presented in Equation (4-14) and (4-15), respectively. For the reconstruction quality 

analysis in case study II to IV, the error for each parameter of surface is comparing with 

the corresponding surface parameter in the nominal CAD model. 

Errorave = √
1

𝑚
∙∑‖𝒑𝑖 − 𝒔𝑖‖2
𝑚

𝑖=1

 (4-14) 

Errormax = max (√‖𝒑𝑖 − 𝒔𝑖‖2) (4-15) 

4.3.1 Case Study I 

The first experiment was conducted to test the performance of the basic RANSAC surface 

fitting and proposed method in the cylinder, cone, and sphere separately. For fitting quality 
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analysis, the fitting error is defined as the average of distances of each point to the target 

shape as shown in Equation (4-14). The proposed method and basic RANSAC were 

evaluated on the cylinder, cone, sphere fitting from 0% noisy point clouds and 10% noisy 

point cloud.  

Table 4.3 gives the comparison results of cylinder fitting from the proposed method 

and RANSAC. The relative improvement of the proposed method over the RANSAC is 

averagely less 82% error for 0% noisy point cloud and less 68% for 10% noisy point clouds.  

Figure 4.8 presents the fitting results of the cylinder in the proposed method.  

In terms of cone surface fitting, from Table 4.4, a similar conclusion can be drawn the 

proposed method shows higher precision than the RANSAC method because the fitting 

error of the proposed method is 96% less in 0% noisy point clouds and 70% less in 10% 

noisy point clouds. Figure 4.9 and Figure 4.8 shows the fitting results of the cone in the 

proposed method.  

Table 4.5 shows the fitting results of the sphere fitting in the proposed method and 

RANSAC. It is important to mention that, because the sphere has no axis parameter, the 

StepRANSAC cannot provide the accurate axis for sphere fitting. However, the proposed 

method consistently has better performance than basic RANSAC, where shows 92% less 

error and 79% less error in 0% and 10% noisy point cloud, respectively. From these results, 

it can be concluded that the SDM refitting process in the proposed method has a great 

contribution to improving the precision of surface fitting. 

Table 4.3: Performance comparisons of the proposed method and RANSAC in cylinder 

surface fitting 

Data 0% noisy point clouds 10% noisy point clouds 

Fitting 

method 

Proposed 

method 
RANSAC 

Proposed 

method 
RANSAC 

Point on axis 
(3.0082, 

5.0145,0) 

(2.3892, 

5.2327,0) 

(2.9801, 

5.0241,0) 

(3.1232, 

4.9717,0) 
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Axis 

orientation 
(0,0,1) 

(0.0608, 

0.0118, 

0.9981) 

(0,0,1) 

(0.0106, 

0.0275, 

0.9996) 

Radius 8.1323 7.8701 8.1178 7.8701 

Ave. fitting 

error (mm) 
0.0461 0.2686 0.0851 0.2660 

Max. fitting 

error (mm) 
0.2201 1.209 0.5372 1.5581 

Ave. 

improvement 
82% 68% 

 

  

a b 

Figure 4.8: cylinder fitting results by the proposed method from (a) 0% noisy point clouds;  

(b) 10% noisy point clouds. 

 

Table 4.4 Performance comparisons of the proposed method and RANSAC in cone surface 

fitting. 

Data 0% noisy point clouds 10% noisy point clouds 

Fitting 

method 

Proposed 

method 
RANSAC 

Proposed 

method 
RANSAC 
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Apex 

(2.9106, 

5.0301, 

7.0013) 

(2.3892, 

5.2327, 

7.1321) 

(2.9983, 

4.9997, 

7.0347) 

(3.4513,  

5.7896,  

7.5347) 

Axis 

orientation 
(0,0,1) 

(0.0092, 

0.0021, 

0.8532) 

(0,0,1) 

(0.1118, 

0.0197, 

0.9935) 

Angle 30.0108 32.1251 30.1042 29.1523 

Ave. fitting 

error (mm) 
0.0101 0.2871 0.0450 0.1514 

Max. fitting 

error (mm) 
0.3607 2.129 0.4532 1.9101 

Ave. 

improvement 
96% 70% 

 

 
 

a b 

Figure 4.9: Cone fitting results by the proposed method from (a) 0% noisy point clouds; 

(b) 10% noisy point clouds.  

Table 4.5: Performance comparisons of the proposed method and RANSAC in sphere 

surface fitting. 

Data 0% noisy point clouds 10% noisy point clouds 

Fitting method 
Proposed 

method 
RANSAC 

Proposed 

method 
RANSAC 
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Central point 

(2.9956, 

4.9876, 

7.0018) 

(2.7292, 

5.1327, 

7.1321) 

(2.9946, 

4.9802, 

7.0756) 

(2.8102, 

5.6128, 

6.9321) 

Radius 6.0436 5.946 6.0742 6.1051 

Ave. fitting 

error (mm) 
0.0170 0.2021 0.0502 0.2376 

Max. fitting 

error (mm) 
0.1415 1.7818 0.2175 1.3299 

Ave. 

improvement 
92% 79% 

 

  

a b 

Figure 4.10: Sphere fitting results by our method from (a) 0% noisy point clouds; (b) 10% 

noisy point clouds. 

4.3.2 Case Study II 

In the second experiment, the proposed method is validated through a synthetic model 

(Figure 4.11a) which is composed of planes, cylinders and cones. A damaged structure is 

constructed from this model (Figure 4.11b). In order to simulate the data acquisition 

process, the defective model was scanned to point clouds in a scanning simulation software 

(Blensor) (Figure 4.11c). The uniform scanning data is integrated with Gaussian noise (σ 

=0.4). The surface fitting results of the traditional RANSAC method and the proposed 
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method are shown in Figure 4.12 and Figure 4.13 respectively. In these figures, grey is for 

plane, green is for cylinder, and purple is for cone. From Figure 4.12, the surface fitting 

deviation with the traditional RANSAC-based method can be observed in the naked eye.    

Table 4.6 gives the comparison results of the error in the proposed method and the 

RANSAC method. By comparing two methods, one can observe that the relative 

improvement of the proposed method over the basic RANSAC method is averagely less 

81%, 91%, 90.6% for the plane, cylinder, cone fitting respectively. It can strongly prove 

that the proposed method is accurate. The reconstructed CAD model is shown in Figure 

4.13c.  

  
 

 

a b c 

Figure 4.11: (a) Original model, (b) defective model, (c) point clouds from defective model. 

  

a b 

Figure 4.12:Traditional RANSAC surface fitting result:  (a) view 1; (b) view 2. 
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a b c 

Figure 4.13: Our method surface fitting result: (a);view 1; (b) view 2;  (c) The 

reconstructed CAD model. 

Table 4.6: Error analysis of the proposed method and RANSAC method synthetic model 

fitting results. 

Plane fitting #planes 
Normal 

error 

Distance 

error 
Ave. improv. 

Proposed 

method 
13 0.0156 0.1232 

82% 

RANSAC 13 0.0526 2.2861 

Cylinder fitting #cylinder 
Axis 

error 

Central 

point 

error 

Radius 

error 

Ave. 

improv. 

Proposed 

method 
6 0.1451 0.1007 0.0212 

91% 

RANSAC 6 1.4459 1.2107 0.3105 

Cone fitting #cone 
Axis 

error 

Apex 

error 

Angle 

error 

Ave. 

improv. 

Proposed 

method 
3 0.0208 0.1121 0.0286 

90.6% 

RANSAC 3 0.3208 0.8021 0.4270 

 

4.3.3 Case Study III 

In the third experiment, a virtual damaged bracket (Figure 4.14a) is tested. The defective 

model was scanned to point clouds with Gaussian noise (σ =0.4) in a scanning simulation 

software (Blensor) (Figure 4.14b). From Table 4.7, the relative improvement of the 

proposed method over the basic RANSAC method is averagely less 62%, 80.6% for the 
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plane, cylinder fitting respectively, providing strong evidence that the proposed method is 

promising in the primitive surface fitting. The reconstructed bracket model is presented in 

Figure 4.16b. 

  

a b 

Figure 4.14: Bracket models: (a) defective model; (b) point clouds from the defective 

model. 

 

Figure 4.15: Traditional RANSAC surface fitting result for the bracket. 
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a b 

Figure 4.16: (a) The proposed surface fitting result for the bracket ; (b) reconstructed CAD 

model. 

Table 4.7: Error analysis of the proposed method and RANSAC method bracket model 

fitting results. 

Plane fitting #planes 
Normal 

error 

Distance 

error 
Ave. improv. 

Proposed 

method 
17 0.0626 0.0816 

62% 

RANSAC 17 0.0912 1.2089 

Cylinder fitting #cylinder Axis error 

Central 

point 

error 

Radius 

error 

Ave. 

improv. 

Proposed 

method 
9 0.0751 0.0907 0.1205 

80.6% 

RANSAC 9 1.2195 0.9333 0.3001 

 

4.3.4 Case Study IV 

In the fourth case study, a damaged bracket (see Figure 4.17) was used in the evaluation 

of the proposed method. An OKIO-E non-contact 3D scanner was employed in this study 

to acquire the point clouds of the surface of the object (as shown in Figure 4.18). The 

parameters of the scanner are found in Table 4.8. 

Before scanning, one crucial step was to spray an imaging agent on the object since its 

surface is very reflective. To determine the position of each scan, 34 monochrome paper 
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mark points were attached to the object randomly. Then, the position and distance of the 

scanner from the object were adjusted to make the object to be located in the center of the 

view. For each scan to be valid, a minimum of four mark points needs to be in the scanning 

view. To minimize the effect of uncertainty of point clouds, the number of measurements 

for the object had been determined to 3 after a series of experiments. The scanned point 

clouds of the object were 2,760,000. These scanned points were imported into Geomagic 

Wrap to be processed. After a set of processing steps, the point clouds of the object can be 

exported. 

 

   

a b c d 

Figure 4.17: A damaged bracket, (a) overall view; (b) damage in bottom; (c) damage in 

rib; (d) damage in cylinder holder. 

 

Figure 4.18: The digitalization process of the bracket by the 3D scanner. 
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Table 4.8: Parameters of the 3D scanner 

Measurement Range 400*300mm2—100*75mm2 

Measurement Resolution 0.035mm—0.015mm 

Average Distance of Samples 0.31mm—0.07mm 

Pixels 1.3 Mega 

Scanning Time ≤5s 

Scanning Mode Non-contact，Camera-based 

Splice Mode Automatic splicing based on mark points 

Output Format ASC, STL, etc. 

After obtaining the digital model of the damaged bracket, the proposed algorithms are 

applied in the model. Figure 4.19a and Figure 4.19b represent the surface fitting results of 

the RANSAC method and the proposed method, respectively. For fitting quality analysis, 

the fitting error is defined as the average of distances of each point to the target shape. 

From Table 4.9, the relative improvements of the proposed method over the basic 

RANSAC method are on average 79% and 80% for the plane and cylinder fitting 

respectively. It proves that the proposed method is also robust and precise in the real case 

study. 

  

a b 

Figure 4.19: (a) The proposed surface fitting result for the bracket ; (b) reconstructed CAD 

model. 
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Table 4.9: Error analysis of the proposed method and RANSAC method damage bracket 

model fitting results. 

Plane fitting #planes 
Normal 

error 

Distance 

error 
Ave. improv. 

Proposed 

method 
63 0.0931 0.1216 

79% 

RANSAC 63 0.3012 1.3019 

Cylinder fitting #cylinder Axis error 

Central 

point 

error 

Radius 

error 

Ave. 

improv. 

Proposed 

method 
12 0.1223 0.2007 0.2015 

80% 

RANSAC 12 1.0213 1.2032 0.7021 

 

4.4 Conclusion and Perspectives 

Reconstruction of the nominal CAD model of a damaged part from the incomplete 

scanning data is a critical technique for the repairing process. So far, most of the related 

publications have been focusing on applications of turbine blades with prior information 

such as it is a continuous and closed freeform surface, while the reconstruction of general 

mechanical components which consists of varies types surfaces is much less concentrated. 

Therefore, to fill this gap, this chapter demonstrates a successful reconstruction method 

which includes processes of 3D scanning, damage surface identification, StepRANSAC 

surface fitting, SDM refitting, modelling, damage volume localization, and extraction. As 

for the main contribution, the remanufacturing does not require a priori information of the 

nominal CAD model. Additionally, the combination of StepRANSAC and SDM has 

proven a 60–90% improvement in precision compared with the traditional RANSAC 

method. 

On the other hand, this work is still incomplete since free-form surface reconstruction 

is not involved. Given the fact that free-form surfaces are playing an increasingly more 

important role in mechanical design, this aspect will be highly focused in the future. 
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Chapter 5: A Cost-driven Process Planning Method for 

Hybrid CNC-PBF Remanufacturing 

5.1 Overview 

From the literature review in Section 2.3, an increasing level of interest in research on 

HM-based remanufacturing has been witnessed over recent years. By summarizing these 

research results, it can be identified that a few challenging problems that have rarely been 

addressed. For example, AM and SM feature extraction relies heavily on manual 

operations that lack algorithm support; the process planning result is non-unique, and a 

quantitative evaluation mechanism is missing to support decision-making (e.g., cost-

driven decision-making). Therefore, addressing these two challenging issues is the 

primary motivation of this chapter. Specifically, the study in this chapter is focusing on 

the hybrid technologies of using CNC and PBF in sperate machines. Under this 

environment, a cost-driven process planning method for HM is proposed. It features 

automated AM–SM feature extraction. A precedence-directed graph is used to represent 

the process sequences and an integer programming model is formulated to derive the 

optimal process plan that minimizes the overall remanufacturing cost. 

5.2 Methodology 

In this study, an “end-of-life” part (or an existing part) is used as the raw workpiece for 

fabricating the new part with HM technology. With AM, metal materials are deposited on 

the workpiece to create new features; with SM, redundant features of the existing part are 

removed through the subtractive process. Because of the flexibility of combining 

processes, HM-based remanufacturing can be performed with different process plans to 

achieve an identical effect; therefore, optimizing the process plans on the basis of global 

objectives (such as cost or environmental impact) to find the optimal solution would be 

necessary, which is also a challenging task. Therefore, a significant innovation of this 
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study is to develop a cost-based optimization algorithm to find the most economical HM 

process plan. 

 

Figure 5.1: A framework of the proposed cost-driven decision system for hybrid 

remanufacturing process planning. 

This study focuses on the PBF process for AM and three-axis CNC machining for SM, 

and 2.5D features are investigated. A framework of the proposed method is presented in 

Figure 5.1. It can be assumed that several used parts can potentially be used for 

remanufacturing. (1) Based on the geometric information of the new part, a feature 

extraction algorithm is implemented to recognize the AM and SM features. Here, one point 

to mention is that an automated feature extraction algorithm has been developed in this 

work based on the level-set method. (2) With the manufacturing feature information and 

HM process planning rules, a partially determined process plan is determined for each 

used part. The undetermined sequences can be decided through a solution calculated by an 

integer programming model. The process plan for each scenario is then optimized locally. 

(3) The most economical scenario can easily be selected by comparing the manufacturing 

costs among each optimized scenario. (4) Finally, the HM process follows the most cost-

effective process plan. 
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5.2.1 Additive and Subtractive Feature Extraction 

Feature recognition and extraction for machining processes have been extensively studied. 

In machining, automatic feature recognition and extraction of a 3D part is an essential step 

of process planning. However, these algorithms cannot be directly applied in 

remanufacturing or HM processes because the B-rep format model is dominant for the 

machining feature recognition [136]. Nevertheless, B-rep has difficulty dealing with 

numerical calculations involving two solid parts. Moreover, based on our extensive review, 

the existing feature extraction methods for HM rely heavily on manual operations that lack 

algorithm support. Therefore, in this research, an implicit level-set function-based method 

is developed to represent the 3D parts, which automated feature extraction for 

remanufacturing and fully addressed the manufacturing constraints of PBF technology.  

The idea of the additive feature (AF) and subtractive feature (SF) extraction method is 

inspired by [137,138], which is illustrated in Figure 5.2. There are three main steps of this 

process: (1) intersection part extraction, (2) intersection part modification, and (3) feature 

extraction. In this study, a systematic flowchart of the proposed level-set function-based 

method is given in Figure 5.3, wherein the steps with referencing equations are 

demonstrated in detail. Firstly, the modeling history is extracted from the CAD models 

and Constructive Solid Geometry (CSG) of the used part and the final part are modeled 

via the level-set function-based method. The intersection volume is then obtained by 

optimally overlapping the used part and the final part. The intersection part is then 

modified on the basis of the AM constraints. Finally, the subtractive feature group (SFG) 

can be extracted through subtraction of the modified intersection part from the used part. 

Similarly, the additive feature group (AFG) is obtained by subtracting the modified 

intersection part from the final part. Individual SF and AF are then identified from their 

corresponding feature group by feature recognition algorithms. 
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Figure 5.2: An illustration of the feature extraction process. 

 

Figure 5.3: A systematic flowchart of the proposed feature extraction method. 
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5.2.1.1 Feature Modeling 

Before implementing feature extraction, the specific feature modeling approach needs to 

be determined. CSG and B-rep are the two most commonly used solid modeling 

approaches. With CSG modeling, a physical object can be decomposed into multiple 

primitives and a sequence of Boolean operations. With the B-rep method, the solid is 

bounded by a set of closed and directional faces, which are bounded by edges and vertices. 

CSG modeling has the merits of supporting efficient Boolean operations and topology 

optimization. B-rep is dominant in feature recognition areas because it uniquely defines 

the faces and their topological patterns [136]. Currently, many commercial CAD modelers 

have a hybrid data structure, using both CSG and B-rep at the same time to facilitate CAD 

and CAM integration [149]. In this work, both CSG and B-rep are adopted to represent 

features, leveraging both methods’ strengths. The specifications of the two methods are 

presented in the following sections. 

CSG modeling   

In this work, CSG models are built with level-set functions to represent the features in 

an implicit form (i.e., the part is implicitly represented by the level set function Φ). For 

the readers’ convenience, the level-set function for implicit geometric modeling is shown 

in Equation (5-1) : 

{

Φ(𝐗) > 0,   𝐗 ∈  Ω/𝜕Ω

Φ(𝐗) = 0,   𝐗 ∈  𝜕Ω      
Φ(𝐗) < 0,   𝐗 ∈  𝐷/Ω   

 (5-1) 

The areas with a positive sign represent the material domain Ω/𝜕Ω, the areas with a 

negative sign represent the void 𝐷/Ω , and the zero-contour represents the structural 

boundary 𝜕Ω.For example, the level-set functions for a cube and sphere in ℝ3  can be 

represented by Equation (5-2) and Equation (5-3) respectively. 
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Φcube(𝐗) = min {
𝐻𝑥

2
− (𝑥 − 𝑥0),

𝐻𝑥

2
+ (𝑥 − 𝑥0),

𝐻𝑦

2
− (𝑦 − 𝑦0),

𝐻𝑦

2

+ (𝑦 − 𝑦0),
𝐻𝑧

2
− (𝑧 − 𝑧0),

𝐻𝑧

2
+ (𝑧 − 𝑧0)} 

(5-2) 

Φsphere(𝐗) = 𝑅
2 − [(𝑥 − 𝑥0)

2 + (𝑦 − 𝑦0)
2 + (𝑧 − 𝑧0)

2] (5-3) 

in which (𝑥0, 𝑦0, 𝑧0) are the center coordinates of the cube, (𝐻𝑥,𝐻𝑦,𝐻𝑧) is the length on 

the x,y,z axis; (𝑥0, 𝑦0, 𝑧0) are the center coordinates of the sphere, and 𝑅 is the radius. 

The overall geometry can be constructed through Boolean operations on the individual 

level-set functions [135], as follows: 

Unite: Φ1 ∪Φ2 = max(Φ1, Φ2)  

Intersect: Φ1 ∩Φ2 = min(Φ1, Φ2)  

Subtract: Φ1 ∖ Φ2 = min(Φ1, −Φ2) 

(5-4) 

The parametric level-set presentation can be numerically discretized onto a fixed 

Cartesian mesh. The model can be visualized by distinguishing the solid and void areas. 

An example of CSG modeling is shown below. The CAD model is composed of four 

primary solids (spheres, cones, cylinders, and cubes) combined by a union operation. The 

example of implicit level-set function representation is given in  Figure 5.4 and Table 5.1. 

  

Figure 5.4: An example of a discrete level-set representation. 
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Table 5.1: The discrete level-set functions. 

Φ = Φsphere ∪ Φcone ∪ Φcylinder ∪ Φcube 

Φcube = min{75 − 𝑥, 𝑥 − 75,75 − 𝑦, 𝑦 − 75,60 − 𝑧, 𝑧 − 10}; 

Φsphere = 30
2 − (𝑥 − 150) 2 − (𝑦 − 150) 2 − (𝑧 − 150) 2; 

Φcone = min{(𝑧 − 150) 
2 − (𝑥 − 150) 2 − (𝑦 − 150) 2, 130 − 𝑧, 𝑧 − 110}; 

Φcylinder = min{37
2 − (𝑥 − 150) 2 − (𝑦 − 150) 2, 110 − 𝑧, 𝑧 − 60}. 

B-rep modeling 

B-rep data records both the surface geometry and the topological relationships among 

these surfaces. The B-rep information can be directly read from the CAD model or 

reconstructed from the 3D point cloud. The former is trivial but the latter method includes 

the steps of (1) primitive surface extraction [150]; (2) determination of the relationships 

among all the extracted geometric primitives [151]; (3) B-rep construction by combining 

information from the two previous steps. The process is illustrated in Figure 5.5. 

 

Figure 5.5: Illustration of the B-rep reconstruction method: Step 1: primitive extraction; 

Step 2: wire construction; Step 3: B-rep construction. 

5.2.1.2 Intersection Part Extraction 

For a given pair (𝑃𝑢, 𝑃𝑓) where 𝑃𝑢 represents the used part and 𝑃𝑓 represents the final part 

to manufacture, the first step is to identify the relative position between 𝑃𝑢  and 𝑃𝑓  to 

prepare for feature extraction. The principle is to maximize the overlapping material 
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volume; the cost of AM is severely affected by the volume of the new material to deposit; 

see Equation (5-5): 

max.   𝑉(𝑃𝑖 = 𝑃𝑢 ∩ 𝑃𝑓) (5-5) 

In Equation (5-5), 𝑃𝑖  represents the intersection part and 𝑉 is the material’s volume. A 

geometric optimization problem is formulated, where the orientation and spatial positions 

of 𝑃𝑢 and 𝑃𝑓 will be optimized. 

It can be assumed that Φ𝑢 and Φ𝑓 are the implicit representations of the used part and 

the final part, respectively, within the global coordinate system 𝐗 = (𝑥, 𝑦, 𝑧). �̃� is the local 

coordinate system attached to the used part. Through Equation (5-6), an optimization 

problem can be formulated to find out the translation (𝐓) and rotation (𝛉) of the local 

coordinate system (�̃�) needed to maximize the overlapping volume between Φ𝑢 and Φ𝑓.  

[�̃�
1
] = [

𝐑𝒛𝐑𝒚𝐑𝒙 𝐓

𝟎 1
] [
𝐗
1
] (5-6) 

where 𝐑𝒙 = [
1 0 0
0 𝑐𝑜𝑠𝜃𝑥 −sin𝜃𝑥
0 sin𝜃𝑥 𝑐𝑜𝑠𝜃𝑥

] ; 𝐑𝒚 = [

𝑐𝑜𝑠𝜃𝑦 0 𝑠𝑖𝑛𝜃𝑦
0 1 0

−𝑠𝑖𝑛𝜃𝑦 0 𝑐𝑜𝑠𝜃𝑦

] ; 𝐑𝒛 =

[
𝑐𝑜𝑠𝜃𝑧 −sin𝜃𝑧 0
sin𝜃𝑧 𝑐𝑜𝑠𝜃𝑧 0
0 0 1

]; 𝐓 =  [

𝑡𝑥
𝑡𝑦
𝑡𝑧

]; and 𝑡𝑥, 𝑡𝑦 , 𝑡𝑧 are the translations in the x, y, z directions, 

respectively; 𝛉 =  [

𝜃𝑥
𝜃𝑦
𝜃𝑧

]; and 𝜃𝑥, 𝜃𝑧 , 𝜃𝑦  are the rotation angles around the x, y, z axes, 

respectively.  

The used part Φ𝑖(𝐓, 𝛉) has a translation variable and a rotation variable. The final part 

is fixed by Φ𝑓. The intersection part (Φ𝑖) is the intersection of the used part and the final 

part, given as:  
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Φ𝑖(𝐓, 𝛉) = Φ𝑢(𝐓, 𝛉) ∩ Φ𝑓 = min(Φ𝑢(𝐓, 𝛉),Φ𝑓) (5-7) 

Therefore, the optimization problem of maximizing the intersection part can be 

mathematically formulated by optimizing 𝐓  and 𝛉  by minimizing the volume of 

intersection part with a negative sign, as shown in Equation (5-8): 

min.   𝑓 = −∫ H(Φ𝑖(𝐓, 𝛉))
Ω

𝑑Ω (5-8) 

where Φ𝑖(𝐓, 𝛉) = Φ𝑢(𝐓, 𝛉) ∩ Φ𝑓 . Note that H() means the Heaviside function, which is 

defined as: 

{
H(Φ) = 1    Φ ≥ 0
H(Φ) = 0    Φ < 0

 (5-9) 

The sensitivity is a part of the gradient for a single variable. For example a sensitivity 

𝜕𝑓

𝜕t𝑥
 of the objective function is derived through Eq. (5-10); others can be calculated 

similarly.  

𝜕𝑓

𝜕t𝑥
= −∫

𝜕H(Φ𝑖(𝐓, 𝛉))

𝜕Φ𝑖Ω

𝜕Φ𝑖

𝜕t𝑥
𝑑Ω = −∫ 𝛿(Φ𝑖(𝐓, 𝛉))

Ω

𝜕Φ𝑖

𝜕t𝑥
 𝑑Ω (5-10) 

𝛿() is the Dirac delta function, which is defined as: 

{
𝛿(Φ) = 0    Φ ≠ 0
𝛿(Φ) = +∞    Φ = 0

                 ∫ 𝛿(Φ)
+∞

−∞
𝑑Φ = 1 (5-11) 

This problem can be solved with a gradient-based optimization solver; the algorithm 

for this is shown in Table 5.2. 

Figure 5.6 demonstrates an example of the intersection part extraction. The used part 

and the final part are represented by its level set function Φ𝑢  and Φ𝑓  respectively. 
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Equation (5-8) helps to find the optimal transformation to transform  Φ𝑢 to Φ̃𝑢 with the 

optimized rotation angle ( 𝜃𝑥 = −90
𝑜 , 𝜃𝑦 = 0𝑜 , 𝜃𝑧 = 0𝑜 )  and translation ( 𝑡𝑥 =

−20.1, 𝑡𝑦 = −110.7, 𝑡𝑧 = 15). The intersection part Φ𝑖 (Figure 5.6c) can be obtained by 

Φ̃𝑢 ∩Φ𝑓. 

Table 5.2:Algorithm of the intersection part extraction problem. 

1. Start 𝐓 = [0,0,0]T and 𝛉 = [0,0,0]T as initial values and set a convergence value; 

2. Calculate the sensitivity information 
𝜕𝑓

𝜕t𝑥
,
𝜕𝑓

𝜕t𝑦
,  
𝜕𝑓

𝜕t𝑧
,  
𝜕𝑓

𝜕𝜃𝑥
,  

𝜕𝑓

𝜕𝜃𝑦
,  
𝜕𝑓

𝜕𝜃𝑧
 at current point by 

Eq.(5-10); 

3. Update each variable, as tx
(k+1) = tx

(k) − 𝜂
𝜕𝑓

𝜕t𝑥
 , where η is the step; 

4. Check for convergence. If none, go back to Step 2. 

 

 

Figure 5.6: An illustration of the intersection part extraction: (a) the original used part Φ𝑢 

and final part Φ𝑓; (b) the transformed used part Φ̃𝑢 and final part Φ𝑓 ; (c) the intersection 

part Φ𝑖. 

5.2.1.3 Intersection Part Modification for Collision-free Remanufacturing 

The next step is to manufacture 𝑃𝑢 into 𝑃𝑖 subtractively and then deposit new materials on 

top to form 𝑃𝑓. However, with the PBF process, the build surface must be flat to avoid 

collisions between powder recoater and the part. As shown in Figure 5.7, 𝑃𝑖 should be 

adjusted to form a new 𝑃�̅� that provides a large enough flat platform to support complete 
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material deposition from 𝑃�̅� to 𝑃𝑓. The principle is to minimize the perturbation on 𝑃𝑖 to 

maintain the largest reusable material volume; see Equation (5-12). 

min.   𝑉(𝑃𝑖 ∖ 𝑃�̅�) (5-12) 

 

   

a b c 

Figure 5.7: An illustration of intersection part modification: (a) the yellow areas are 

building faces derived by directly intersecting 𝑃𝑢 and 𝑃𝑓 ; (b) the red volume is removed 

for intersection part modification; (c) modified intersection part 𝑃�̅� with a flat build surface. 

For SM and AM, assuming that the principal axis of the cutter or the laser head can 

only be aligned in the ±𝑥,±𝑦,±𝑧 directions within the global coordinate system, so that 

the feature recognition can be conducted within reasonable computation time. With this 

assumption, Equation (5-12) can be reformulated by optimizing 𝑧, 𝑧, 𝑦, 𝑦, 𝑥, 𝑥  by 

maximizing the bounding plane on ±𝑥,±𝑦,±𝑧 directions. The constraint ensures that the 

volume of subtracting the final part by intersection part in the boundary is less than  ℇ: 

min.   𝑔 = − (𝑧 − 𝑧 + 𝑦 − 𝑦 + 𝑥 − 𝑥) 

s. t.   ∫ ∫ ∫ 𝐻(Φ𝑓/Φ𝑖)
𝑧

𝑧

𝑦

𝑦

𝑥

𝑥

𝑑Ω ≤ ℇ 
(5-13) 

where 𝑧, 𝑧, 𝑦, 𝑦, 𝑥, 𝑥 indicate the coordinate bounds of the modified intersection part. ℇ is 

defined as a very small positive number to improve numerical robustness.  
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Lagrange formulation of the optimization problem is defined in Equation (5-14): 

𝐿 =  −(𝑧 − 𝑧 + 𝑦 − 𝑦 + 𝑥 − 𝑥)

+ 𝜆 [∫ ∫ ∫ 𝐻 (min(Φ𝑓 , −Φ𝑖))
𝑧

𝑧

𝑦

𝑦

𝑥

𝑥

𝑑𝑥𝑑𝑦𝑑𝑧 − ℇ] 
(5-14) 

The gradient of the Lagrange formulation is given as: 

𝛁𝐿 =  [
𝜕𝐿

𝜕𝑧
,
𝜕𝐿

𝜕𝑧
,
𝜕𝐿

𝜕𝑦
,
𝜕𝐿

𝜕𝑦
,
𝜕𝐿

𝜕𝑥
,
𝜕𝐿

𝜕𝑥
,
𝜕𝐿

𝜕𝜆
  ]

𝑇

 (5-15) 

where 
𝜕𝐿

𝜕𝑧
 and 

𝜕𝐿

𝜕𝜆
 are calculated in Equations (5-16) and (5-17). The other directions of the 

gradient can be easily obtained, as these have similar forms to Equation (5-16). 

𝜕𝐿

𝜕𝑧
= −1 +  𝜆 [∫ ∫ 𝐻 (min(Φ𝑓 , −Φ𝑖)) 𝑑𝑥𝑑𝑦

𝑦

𝑦

𝑥

𝑥

]

𝑧=𝑧

 (5-16) 

𝜕𝐿

𝜕𝜆
= ∫ ∫ ∫ 𝐻 (min(Φ𝑓 , −Φ𝑖))

𝑧

𝑧

𝑦

𝑦

𝑥

𝑥

𝑑𝑥𝑑𝑦𝑑𝑧 − ℇ (5-17) 

The variables 𝑧, 𝑧, 𝑦, 𝑦, 𝑥, 𝑥, 𝜆  can be solved with a gradient-based optimization 

algorithm (Table 5.3). 

Table 5.3:Algorithm of the intersection part modification problem. 

1. Select the boundary of Φ𝑖  as the starting point for  𝑧, 𝑧, 𝑦, 𝑦, 𝑥, 𝑥 

, and select an initial value for 𝜆. 

2. Calculate the sensitivity information at the current point by Eq. (5-15). 

3. Update each variable, as 𝑧
(𝑘+1)

= 𝑧
(𝑘)
− 𝜂

𝜕𝐿

𝜕𝑧
 , where η is the step. 

4. Check for convergence. If none, go back to Step 2. 



78 

 

 

 

After the optimal 𝑧, 𝑧, 𝑦, 𝑦, 𝑥, 𝑥 have been obtained, the modified interaction part Φ̃𝑖 

can be represented by: 

Φ̃𝑖 = Φ𝑖 ∩Φ𝑏 

Φ𝑏 = min { 𝑥 − 𝑥, 𝑥 − 𝑥 , 𝑦 − 𝑦 , 𝑦 − 𝑦 , 𝑧 − 𝑧 , 𝑧 − 𝑧} 
(5-18) 

Figure 5.8 demonstrates the process of modifying the intersection part in Figure 5.6. In 

this case, 𝑧 is the only variable being updated during optimization and the optimal 𝑧 is 20 

mm. The level-set function of the optimized intersection part is Φ̃𝑖 = min{ Φ𝑖, 180 −

𝑥, 𝑥 ,120 − 𝑦 , 𝑦 ,20 − 𝑧 , 𝑧}. 

 

Figure 5.8: An example of modifying the intersection part. 

5.2.1.4 Feature Extraction 

A subtractive manufacturing feature group (SFG) and an additive manufacturing feature 

group (AFG) can be obtained by Boolean subtraction of the modified intersection part (Φ̃𝑖) 

from used part (Φ𝑢) and final part (Φ𝑓) respectively, via Equation (5-19). 
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ΦSFG = Φ𝑢 ∖ Φ̃𝑖 

ΦAFG = Φ𝑓 ∖ Φ̃𝑖  
(5-19) 

Individual features then need to be recognized and extracted from their feature groups. 

Machining feature recognition comprises a large body of the literature [136].  Hence, this 

research does not focus on developing new machining feature recognition technology. 

With the help of B-rep data, the SFs can be decomposed from the SFG by a graph-based 

feature recognition method that is implemented in most commercial feature recognition 

systems; see Equation (5-20). 

ΦSFG → {SF1, SF2, SF3, . . . SF𝑛} (5-20) 

AFG is composed of both AFs and SFs. Because of the limitations of AM, it is 

necessary to leave sufficient over-thickness for the finishing operation to meet the 

tolerance and surface roughness requirements. The over-thickness is defined as the extra 

offset value for each deposition layer of the profile for AM process, which is left for 

finishing operation of SM process to meet the tight tolerance requirement and surface 

roughness. The over-thickness value is estimated by the required specifications of the final 

feature, the surface roughness generated by the AM processes and the machining 

conditions [88]. As a result, the modified additive feature group (AFG) is updated by 

considering over-thickness. The AFG  can be derived via Equation (5-21), where t 

represents the over-thickness value. The residual subtractive feature group (SFG)  is 

obtained via Equation (5-22). Similarly, the individual SFs could be recognized by a 

graph-based feature recognition method by Equation (5-23). 

ΦAFG = (ΦAFG + t) ∖ Φ̃i  (5-21) 

ΦSFG = ΦAFG  ∖ ΦAFG (5-22) 
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ΦSFG → {SF𝑛+1, SF𝑛+2, SF𝑛+3, . . . SF𝑛+𝑚} (5-23) 

5.2.2 Precedence Constraints 

A large group of AM and SM features can be extracted from the feature recognition 

algorithm; however, the sequences of some operations are forced because of the 

topological relationship among features and also the hybrid process planning rules. 

Therefore, this part of deciding the process sequence is fixed without any degrees of design 

freedom, which should be formulated as precedence constraints in the global process 

sequence optimization problem. A list of rules needed to form the precedence constraints 

can be summarized from [88,100] and this list is given in Table 5.4. 

Table 5.4: Manufacturing rules for HM. 

Rule 1: “Opens-into” relationships between an 

additive feature and a subtractive feature 

 

If a subtractive feature is embedded in an additive 

feature, the process should have the precedence 

constraint of AF first and then SF. 

 

 

Rule 2: Two additive features interact with a 

subtractive feature 

 

The building and finishing sequences are related 

to precedence relations between two AFs and one 

SF. As an example, AF1  interacts with the SF, 

and the SF interacts with AF2 . Because of 

machining tool accessibility, the SF needs to be 

created after building AF1  and before building 

AF2. 
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Rule 3: “Opens-into” relationships between two 

subtractive features 

 

If a subtractive is nested in another feature, the 

top (nesting) feature should be machined before 

the bottom (nested) feature. 
 

Rule 4: Building collision 

 

This constraint controls the sequence between an 

SF and AF. For the PBF process, the build 

surface must be flat to avoid collision between 

the powder recoater and the part. Thus, AF needs 

to be made after SF. 

 

Rule 5: Hole deburring 

 

This constraint controls the quality of a machined 

hole. After drilling a hole, burrs may remain after 

the operation. If the hole feature interacts with 

another subtractive feature, the burrs can be 

removed after machining. If a hole feature SF2 

interacts with a pocket feature SF1, then the hole 

feature should be machined first. 

 

Rule 6: Instability caused by an SF 

 

If the process of an SF causes instability of the 

part in the setup of the AM operation, then the SF 

must be machined after the AF process.  

Rule 7: Tight tolerance constraint between two 

SFs 

 

If SFs (SF1 , SF2 ) are constrained by a tight 

tolerance relationship, they should be arranged in 

the same setup to eliminate system fixture errors. 

If this is impossible, the setup of SF1 

(respectively SF2) requires the machine surfaces 
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of SF2 (respectively SF1) to be used as locating 

surfaces to position the part. 

 

5.2.3 Cost Model Estimation 

So far, some process sequences are still undetermined. Therefore, to facilitate global 

process sequence optimization and decision-making to choose the most economical hybrid 

process plan, a cost model for each feature is proposed. In this section, the cost model is 

divided into the cost of SF, cost of AF and cost of change. 

5.2.3.1 Cost of subtractive feature 

The cost of SF aims to investigate the cost of each subtractive operation (e.g., roughing, 

finishing). The cost includes operation cost and tool cost as follows: 

CSF = Chs  ∗  tSF + Ctool  ∗  ntool (5-24) 

where CSF is the total cost of an SF, Chs is the hourly operation cost for the machining 

process, tSF is the machining time for the SF, Ctool is the cost of each cutting tool, and 

ntool is the number of tool changes. 

The machining time is determined based on the material removal rate (MRR) which is 

highly dependent on the cutting parameters. The cutting parameters under roughing and 

finishing are different. Roughing operations aim to remove the bulk materials rapidly to 

shape the workpiece approximately towards the finished form. Finishing operations are 

executed after roughing or AM to improve surface quality or to meet tolerance and surface 

finish requirements. Moreover, milling and drilling operations have different equations for 

calculating the MRR. The following equations are proposed for machining time with 

constant cutting parameters: 
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tSF  =
VSF
MRR

 

MRRm  =  
ap ∗ ae ∗ vf

60 ∗ 103
 

MRRd  =  
(π ∗ D2/4) ∗ vf
60 ∗ 103

 

(5-25) 

where V𝑆𝐹  is the volume for the SF, ap is the axial depth of the cut, ae is the radial depth 

of the cut, vf is the feed rate of machining, D is the diameter of the cutting tool, and MRRm 

and MRRd are the material removal rates for milling and drilling, respectively.  

5.2.3.2 Cost of additive feature 

Out of the many AM technologies, the AF cost model in this article is proposed for 

PBF technology. Generally, PBF processes can be divided into material deposition and 

post-processing. For remanufacturing, the separation process can be eliminated, since the 

part is not built on top of a substrate. Therefore, the post-processing cost can be ignored. 

The study only need to consider the cost of building and of material consumption for an 

AF, as shown below:  

CAF = Cha ∗ tAF + Cm−AF (5-26) 

where CAF is the total cost of an AF, Cha is the hourly operation cost for the AM process, 

tAF is the building time of the AF, and Cm−AF is the cost of material consumption. Instead 

of adopting a build time estimator integrated with commercial AM software, this study 

uses a generic formula for calculating build times by using a linear regression model [152], 

as shown in Equation (5-27). 

tAF = a0 + a1 ∗ NL + a2 ∗ VAF + a3 ∗ SAF 

NL =
HAF
TL

 
(5-27) 
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where NL is the number of layers built, HAF is the height of the AF, TL is the pre-defined 

layer thickness, and VAF and SAF are the volume and surface area for the AF, respectively. 

The material cost is calculated by the material consumed for building the AF part and its 

support structure, as: 

Cm−AF = (VAF𝜌 + VAF−s𝜌)Cmaterial
unit  (5-28) 

where, VAF is the volume of the AF, 𝑉AF−s is the volume of the support structure for the 

AF part, 𝜌 is the material density, 𝜌 is the material density of the support structure, and 

Cmaterial
unit  indicates the price per unit of metal powder. 

5.2.3.3 Cost of Change 

The cost of change is incurred by machine changes, orientation changes, or tool changes 

between two consecutive operations. The machine, candidate orientation, and candidate 

tool information for each operation are given in advance to enable estimation of the change 

costs between any two operations. CM, CS and CT indicate the machine change cost, the 

re-orientation cost, and the tool change cost respectively, and the details are given below:  

Machine change cost: 

 When the machine needs to be changed between two consecutive operations, the 

machine setup of the subsequent operation is required. For a PBF machine, the setup 

process consists of uploading the building file to the machine, setting the process 

parameters, and filling the machine with argon gas. For a CNC machine, the setup process 

includes tool loading, workpiece fixing, and warming up the machine. The machine 

change costs for PBF and CNC are formulated as follows: 

CMPBF = Cha  ∗  tPBF−setup + Cargon 

CMCNC = Chs  ∗  tCNC−setup 
(5-29) 
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where Cha is the hourly operation cost for the PBF process, tPBF−setup is the setup time 

for the PBF machine, Cargon is the argon gas cost, Chs is the hourly operation cost for the 

CNC process, and tCNC−setup is the setup time for the CNC machine. 

In the proposed method, a machine set p ∈ P = {1,2, . . . , P} (p indicates the index of 

the machines) is mapped to a set of machine change costs (CM) and the element (CMp) 

represents the setup cost of the pth machine. The machine change set can be represented as 

follows: 

CM = [CM1 ⋯ CMp], where p ∈ P = {1,2, . . . , P} (5-30) 

For example, a CNC machine (index 1) and a PBF machine (index 2) are used in a 

hybrid process. CM1 represents the cost incurred in the PBF machine’s setup, which is 

$180. CM2 is $12.5, which is the cost of setting up the CNC machine. In this case, the 

machine set is P = {1,2} , and the machine cost set is  

CM = [180 12.5].  

Re-orientation cost: 

A re-orientation change occurs when the orientation of the workpiece is switched within 

the same machine. The re-orientation for a PBF machine also requires machine setup 

processes, so it incurs the same cost as a machine change. For a CNC machine, the re-

orientation requires workpiece fixing (see Equation (5-31)).  

CRPBF = CMPBF 

CRCNC = Chs  ∗  tCNC−re 
(5-31) 

where tCNC−re is the re-orientation time for the CNC machine. Similarly, the re-orientation 

cost for different machines can be calculated via Equation (5-32). 

CR = [CR1 ⋯ CRp], where p ∈ P = {1,2, . . . , P} (5-32) 
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Suppose that a CNC machine (index 1) and a PBF machine (index 2) are used in a 

hybrid process. CR1 represents the cost incurred by the PBF machine’s setup, which is 

$180. CR2 is $4, which is the cost of setting up the CNC machine. Therefore, the re-

orientation cost set is CR = [180 4].  

Tool change cost: 

Tool changes happen between two adjacent operations with the same SM machine and 

the same orientation. It is worth noting that, tool changes never happen in a PBF machine. 

In order to keep the optimization formulas consistent, the tool change cost is set as an 

infinite value. It can avoid processing invalid tool changes in the PBF machine during 

solving the optimization problem. For CNC machining, the tool change cost is formulated 

as: 

CTCNC = Chs  ∗  tCNC−tc (5-33) 

where tCNC−tc is the tool change time for the CNC machine. The tool change cost set is 

formulated as the following equation: 

CT = [CT1 ⋯ CTp], where p ∈ P = {1,2, . . . , P} (5-34) 

For instance, a CNC machine (index 1) and a PBF machine (index 2) are used in a 

hybrid process. CT1 represents the tool change cost, which is represented as a very large 

positive number. CR2 is $4, which is the cost of the CNC machine’s tool change. Therefore, 

the tool change cost set is CR = [∞ 4]. 

5.2.4 Sequence Optimization 

The global process sequence optimization problem is formulated as an integer 

programming model. A general formulation of the precedence-constrained operation 

sequencing problem (PCOSP) [99] is modified in the proposed method to optimize the 

HM process sequence.  The definitions of parameters and decision variables in the model 

are given in Table 5.5. 
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Table 5.5: Definitions used in sequence optimization. 

Parameters: 

N The feature set i, j ∈ N = {1,2, . . . , N} 

P The machine set p ∈ P = {1,2, . . . , P} 

Q The tool set q ∈ Q = {1,2, . . . , Q} 

R The TAD set r ∈ R = {1,2, . . . , R} 

F The feature set, where i, j ∈ F = {1,2, . . . , F} in any feasible sequence 

M𝑝 The machine operation cost index; for example, M𝑖
𝑝

 indicates machine 

operation cost for feature 𝑖 using machine p 

T𝑞 The tool cost index; for example, T𝑖
𝑞
 indicates tool cost for feature 𝑖 using tool 

𝑞 

CM The machine change cost set  

CR The re-orientation cost set  

CT The tool change cost set  

Decision variables: 

m𝑖
𝑝
 Selected machine for the feature; for example, 𝑚𝑖

𝑝 = 1 if machine 𝑝 is used 

for feature 𝑖 and 𝑚𝑖
𝑝 = 0 otherwise 

t𝑖
𝑞
 Selected tool for the feature; for example, t𝑖

𝑞 = 1 if tool 𝑞 is used for feature 

𝑖; t𝑖
𝑞 = 0 otherwise 

d𝑖
𝑟 Selected TAD for the feature; for example, d𝑖

𝑟 = 1 if TAD 𝑞 is used for feature 

𝑖; t𝑖
𝑞 = 0 otherwise 

x𝑖𝑗 Process sequence between features; for example, x𝑖𝑗 = 1 if feature 𝑖 is 

operated before feature 𝑗; x𝑖𝑗 = 0 otherwise 
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In the objective function, f1 represents the total machine cost and tool cost. Specifically, 

for AFs, the powder consumption during the building process is counted and added in the 

tool cost. f2 is the total cost of changing machines. f3 formulates the total setup cost caused 

by changing the orientation of the workpiece in the CNC and PBF machine. f4 calculates 

the total cost of changing the cutting tool. 

Objective function: 

min.   C = f1 + f2 + f3 + f4 

f1 =∑∑Mi
p
mi
p

P

p=1

+∑∑Ti
q
ti
q

Q

q=1

N

i=1

N

i=1

 

f2 =∑∑∑(CMpmj
p
) xij

P

p=1

(1 −∑mi
p
mj
p

P

p=1

)

N

j=1

N

i=1

, i ≠ j 

f3 =∑∑∑(CRpmj
p
) xij

P

p=1

(1 −∑mi
p
mj
p
∑di   

r dj
r

R

r=1

P

p=1

) , i ≠ j

N

j=1

N

i=1

 

f4 =∑∑∑(CTpmj
p
) xij

P

p=1

(1 −∑mi
p
mj
p
∑ti

q
tj
q

Q

q=1

P

p=1

) , i ≠ j

N

j=1

N

i=1

 

(5-35) 

Constraints: 

xij + xji ≤ 1;     ∀i, j ∈ N  (5-36) 

∑m𝑖
𝑝 = 1;∑ t𝑖

𝑞 = 1;

𝑄

q=1

∑d𝑖
𝑟 = 1;     ∀i ∈ N

𝑅

r=1

𝑃

p=1

 (5-37) 

∑xij

𝑁

j=1

= 1;∑xji

𝑁

j=1

= 1;     ∀i ∈  N (5-38) 
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𝑥𝑖𝑗 + 𝑥ji = 1;     ∀i, j ∈ F  (5-39) 

xij = (1,0); m𝑖
𝑝 = (1,0); t𝑖

𝑞 = (1,0), d𝑖
𝑟 = (1,0)     ∀i, j ∈ N; ∀p ∈

P; ∀q ∈ Q; ∀r ∈ R 
(5-40) 

Equation (5-36) means that there is, at most, one operation between two features. 

Equation (5-37) stipulates that one operation in a process plan should be performed with 

only one machine, one TAD, and one tool. Equation (5-38) indicates that one operation is 

performed before or after a feature. Equation (5-39) ensures the precedence relationships 

given by the HM rules.  Equation (5-40) limits the variables to integer values only.  

With this mathematical formulation, the PCOSP can be solved through branch and 

bound, linear programming, and dynamic programming as exact approaches.   

5.3 Case Study and Discussion 

In this section, the proposed method is illustrated with a remanufacturing case study. As 

shown in Figure 5.9, there are two used parts, one of which will be selected to build the 

final part. Two scenarios for the used part A and B are generated as two remanufacturing 

process plans. The proposed cost-driven decision system is applied to optimize the process 

plans of both scenarios and facilitate the final decision. Specifically, the pocket (p1) and 

the surfaces (s1 to s3) require high surface precision. Surfaces (s1 to s3) are constrained 

with the tolerances of the dimensions X1 and X2. The dimension of pockets (p1) is 

constrained with X3, the position of it is constrained with X4.  
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Figure 5.9: Test parts: (a) the used part A and (b) the used part B, and (c) the final part, (d) 

the top view of the final part and some important dimensions discussed in the case study. 

The CSG for two used parts and final part are built by discrete level set functions on a 

design domain 𝐷 (150*150*50) with grid size ∆𝑥 (0.5mm) in Figure 5.10, Figure 5.11 and 

Figure 5.12. 

Used part A: Φ𝑢1 = min(Φcube1, −Φcube2, −Φcube3, −Φcube4) 

 

Figure 5.10:  Discrete level-set representations of the used parts in Scenario A. 

Used part B: Φ𝑢2 = min{max(Φcube1, Φcube2),−Φcube3} 
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Figure 5.11:  Discrete level-set representations of the used parts in Scenario B. 

Final part: Φ𝑓 = min {

max(Φcube1, Φcube2, Φcube6) , −Φcube3,
−Φcube4, −Φcube5, −Φcube7,
−Φcyl1, −Φcyl2, −Φcyl3, −Φcyl4

} 

 

Figure 5.12:  Discrete level-set representations of the final part. 

In order to maximize the intersection volume, the intersection part extraction algorithm 

is implemented for the used parts. The results of optimizing the translation and rotation 

vectors of the used parts in Scenario A and Scenario B are listed in Table 5.6 and the 
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optimal intersection parts are shown in Figure 5.13. Their convergence histories are 

presented in Figure 5.14.    

Table 5.6: The optimal translation and rotation for test parts. 

 Translation (mm) Rotation (°) 

𝑡𝑥 𝑡𝑦 𝑡𝑧 𝜃𝑥 𝜃𝑦 𝜃𝑧 

Scenario A: 4.07 4.21 8.33 0 0 0 

Scenario B: -20.18 10.17 4.32 0 0 180.02 

Next step, the intersection parts are modified with respect to the constraints of the PBF 

process. The results for the optimal variables and the modified intersection parts are given 

in Figure 5.15. Specifically, in Scenario A, 𝑧 is the only variable which has non-zero 

sensitivity, so the result of the modified intersection part is bounded by  Φ𝑏 =

(48 − 𝑧)/∆𝑥  . In Scenario B, both 𝑧  and 𝑥  have sensitivities in optimization, and the 

intersection part is updated with bound of Φ𝑏 = min (67 − 𝑧, 209 − 𝑦)/∆𝑥 . The 

convergence histories of this optimization problem are presented in Figure 5.16. 

  
a b 

Figure 5.13: Optimal intersection parts in (a) Scenario A and (b) Scenario B. 
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a b 

Figure 5.14: Convergence histories of the intersection part maximization problem of (a) 

Scenario A and (b) Scenario B. 

  

a b 

  

c d 

Figure 5.15: Boundaries for modifying the intersection part in (a) Scenario A and (b) 

Scenario B; the results of the modified intersection part in (c) Scenario A and (d) Scenario 

B. 
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a b 

Figure 5.16: Convergence histories of the intersection part modification problem of (a) 

Scenario A and (b) Scenario B. (the units of the objective y-axis are mm). 

With the modified intersection parts, the SFG and AFG are obtained and individual SFs 

and AFs are extracted from their corresponding group. The results of feature extraction 

are presented in Figure 5.17. In the case of Scenario A (Figure 5.17), there are two AFs 

(AF1 and AF2) and ten SFs (SF1 to SF10). There are two points to notice: SF7 and SF9 

remove the support structures of AF1 and AF2 respectively; AF1 and AF2 should not be 

combined in a single AM process, since s1 of the final part (see Figure 5.9) requires a high 

surface quality, which can be achieved through a finishing process (SF10). In Scenario B 

(Figure 5.18), there are four AFs (AF1 to AF3) and eleven SFs (SF1 to SF11). AF1 and AF2 

have different building directions from AF3 and AF4, which will cause a re-setup to switch 

the build direction of the workpiece in PBF. Another point worth mentioning is that SF9 

and SF10 need for surface finishing to meet the precision requirement of p1 in the final 

part (see Figure 5.9). 
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Figure 5.17: The SFG, AFG, and individual SFs and AFs for Scenario A. 

 

Figure 5.18: The SFG, AFG, and individual SFs and AFs for Scenario B. 
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The precedence constraints are expressed by the precedence-directed graphs in Figure 

5.19. The black links indicate the precedence relations between features and red links 

represent the tolerance constraints between features. For Scenario A (Figure 5.19a), the 

precedence constraints of AF1 → SF6,  AF1 → SF7, AF1 → SF8, AF1 → SF10, and AF2 →

SF9, follow Rule 1. The precedence relationships of AF1 → SF10 → AF2 follow Rule 2, 

which avoids collisions between the cutter and AF2. SF1 → AF1 is a result of following 

Rule 4. SF5  is required to be machined before SF4 , which reduces the hole-deburring 

issues described in Rule 5. According to Rule 7, SF7 should have the same machining 

setup of  SF6 . In the process plan for Scenario B (Figure 5.19b), the precedence 

relationships AF4 → SF10, AF2 → SF11 are constrained by Rule 1.  The relationships for 

AF1 → SF8  → AF1  follow Rule 2. SF2 → AF1  and SF1 → AF1  follow Rule 4 to avoid 

building collisions. Rule 6 is applied in SF10 → SF9. SF7 must have the same setup of SF4 

due to Rule 7. 

 
 

a b 

Figure 5.19: The precedence-directed graphs for (a) Scenario A, and (b) Scenario B. 

The operation costs and change costs are formulated according to the proposed cost 

models. Several parameters are used in these cost estimations, which are shown in Table 

5.7. The manufacturing resources, including the available tools and machines, are listed in 

Table 5.8. 

The PCOSP can be solved by LINGO with a branch-and-bound solver. The optimized 

process plans of Scenario A and Scenario B are presented in Table 5.9 and Table 5.10, 

respectively. The minimum HM costs are $ 2421.29 and $ 1272.15 for Scenario A and 
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Scenario B, respectively. Therefore, in this case study, it can be determined that it is more 

economical to apply Scenario B in remanufacturing according to the optimized process 

plan. 

Table 5.7: Data used for cost modeling. 

Parameter Value 

Chs 25$/h 

Ctool 5 $ 

Cha 100 $/h 

TL 0.05 mm 

𝜌 4.42 ∗ 10−6 𝑘g/mm3 

𝜌/𝜌 0.4 

a0 -1.29 h 

a1 4.53 ∗ 10−3 h/mm 

a2 1.8 ∗ 10−4 h/mm3 

a3 −1.33 ∗ 10−4 h/mm2 

Cmaterial
unit  450 $/kg 

tPBF−setup 1.5 h 

Cargon 20 $/h 

tCNC−setup 0.5h 

tCNC−re 0.33 h 

tCNC−tc 0.17 h 

 

Table 5.8: Manufacturing resources. 

Tool ID Tool type Diameter (mm) Length of cut 

(mm) 

T1 End mill 20 50.8 

T2 End mill 10 38 

T3 End mill 5 21 

T4 Drill 5 26 

T5 Drill 10 47 

T6 PBF - - 

Machine ID Machine type   

M1 CNC machine   

M2 PBF machine   
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Table 5.9: Optimal process plan for Scenario A. 

Scenario A 

Sequence Features Machine TAD Tool 

1 SF1 M1 +z T1 

2 SF2 M1 +z T1 

3 AF1 M2 +z T6 

4 SF10 M1 +z T2 

5 AF2 M2 +z T6 

6 SF9 M1 +y T3 

7 SF5 M1 +y T4 

8 SF8 M1 +x T4 

9 SF3 M1 +x T4 

10 SF6 M1 +y T2 

11 SF7 M1 +y T3 

12 SF4 M1 +y T3 

 

 

Table 5.10: Optimal process plan for Scenario B. 

Scenario B 

Sequence Features Machine TAD Tool 

1 SF2 M1 +z T1 

2 SF1 M1 +z T2 

3 SF8 M1 +z T2 

4 AF3 M2 -y T6 

5 AF1 M2 +z T6 

6 AF4 M2 +y T6 

7 SF4 M1 +y T2 

8 SF7 M2 +y T3 

9 SF3 M1 +x T2 

10 SF6 M1 +x T5 

11 SF5 M1 +x T6 

12 AF2 M2 +z T6 

13 SF11 M2 +y T3 

14 SF10 M2 +y T5 

15 SF9 M2 +y T3 
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a b 

Figure 5.20: The optimal plans for (a) Scenario A, and (b) Scenario B. 

Although the primary focus of this study is on the process planning of HM in a 

remanufacturing context, it is valuable to discuss the cost of production with other 

manufacturing strategies. The hybrid solution is needed to be compared with other 

solutions if the final part is manufactured from raw material rather than used parts via AM 

and SM.  

With the single PBF or CNC processes, the costs for each process needed to produce 

the final part are listed in Table 5.11. It is obvious that the manufacturing cost of PBF is 

much higher than the cost of the remanufacturing strategy. By contrast, the CNC process 

seems to be a more economical solution. However, the CNC process  is difficult to form 

complex geometries (Figure 5.21a) or internal structures (Figure 5.21b). In addition, 

remanufacturing is more environmentally friendly than the conventional strategy, wherein 

the existing part is recycled instead of the polluting disposal [79].  

Another worth discussion point is that to decide the feasibility of the proposed 

remanufacturing process, not only cost but quality and productivity should be considered. 

In the PBF process, many process parameters can affect the porosity, microstructure and 

mechanical properties of the built part, such as scanning speed, layer temperature, power, 

layer height, etc. In addition, the selection of material is critical to determine the quality 

of the AM part. For the different quality requirements of the AM part, the variations of 



100 

 

 

process parameters and materials can change the cost. In machining, surface roughness 

plays an important role in the evaluation of machining accuracy. Machining parameters 

including spindle speed, feed rate, depth of cut and selection of cutting tool affect surface 

roughness. This study is only focusing on the cost of PBF and machining processes with 

fixed parameters. However, to implement the proposed method in a real application, the 

determination of parameters of PBF and machining processes will be studied for the 

quality requirement in the industry.  

Table 5.11: Manufacturing cost for the single PBF and CNC process. 

PBF 

process 

Setup 

time 

(h) 

Argon 

gas cost 

($) 

Build time 

(h) 

Material 

cost ($) 

Building 

cost ($) 

1.5 30 21.15 1918 2121 

CNC 

process 

Setup 

time (h) 

Stock 

cost ($) 

Machining 

feature 

number 

Re-

orientation 

time (h) 

Machining 

cost ($) 

0.5 353 8 0.66 30.42 

 

  

a b 

Figure 5.21: (a) A part with complex geometries (from academic research [92]) and (b) a 

part with internal structures (from academic research [131]).  
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5.4 Conclusions 

Modern HM has emerged through mixing AM and SM to provide a more flexible, 

productive, and capable manufacturing approach. Since it makes full use of the individual 

advantages of AM and SM to add or remove features flexibly, HM increases the ability to 

remanufacture to a higher level. However, there are still some research gaps in HM-based 

remanufacturing. The motivation of this study is to address two challenging problems, 

namely that AM and SM feature extraction relies heavily on manual operations that lack 

algorithm support, and that the process planning result is non-unique and a quantitative 

evaluation mechanism is missing to support optimal decision-making.  

In order to address these two issues, this study proposes an efficient cost-driven 

decision-making method for hybrid additive–subtractive remanufacturing. The main 

contribution of this study consists of the automated AF and SF recognition process and the 

cost-driven HM process plan optimization. The level-set based geometry representation 

and the detailed procedures and algorithms used to conduct the feature recognition process 

have been illustrated. The HM rules are formulated into a precedence-directed graph as 

constraints. With the carefully developed HM cost model, the process planning job is 

converted to a PCOSP and is solved by a branch-and-bound solver. The best scenario for 

remanufacturing can be determined accordingly.  
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Chapter 6: Collision-free Process Planning of Integrated 

CNC-DED System for Remanufacturing 

6.1 Overview  

HM system synergistically integrates AM and SM processes within a single 

workstation (see Figure 6.1), has gained a lot of attention from academia and industry 

[111]. HM can capitalize on the strengths of independent techniques, whilst minimizing 

their disadvantages. At the same time, it has the potentials to enable remanufacturing 

technologies to achieve further improvement because it can to remove and add features 

flexibly. From Section 2.3, the integrated HM systems are reviewed in industrial and 

academic perspectives. It can be concluded that most of the single platform workstations 

for HM processes are integrating subtractive CNC machining and additive DED. However, 

these machines indicate rare support for the automation process planning for hybrid 

operations. The HM hardware technologies are striding ahead, whereas the process 

planning software to support their incredible capabilities are falling behind. For this reason, 

an increasing level of interest in research on process planning for HM has been witnessed 

over recent years, which is listed in Section 2.3. From these research results, it can be 

identified that SM is mostly playing a role as post-machining for AM in the HM process. 

Therefore, it is complicated to be applied directly in the remanufacturing, since SM is not 

only post-machining but also including geometric forming as AM process in 

remanufacturing. In addition, in remanufacturing context, the collision of the DED nozzle 

and workpiece is a critical issue because the deposition platform is not a simple geometry 

during remanufacturing. 
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Figure 6.1: The configuration of the workstation for the hybrid machine (from 

academic research [153]). 

This chapter is aiming to develop a method that provides automated feature extraction 

and cost-driven process planning for an integrated DED-CNC machine. The main 

contributions in this chapter are list as follows: 

• Both primitive and free-form features are modelled in level set-based representations 

for the automated feature extraction which facilitate the process planning for HM 

remanufacturing; 

• A collision-free DED-CNC process planning method is developed, resulting in the 

minimal cost in HM remanufacturing process; 

• The defect and damaged area of the used part are considered to form a pre-machining 

feature in the process planning, which is an issue rarely addressed in the previous 

studies of process planning for remanufacturing.  
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6.2 Additive and Subtractive Feature Extraction 

In this work, the level set function method is implemented to describe models with 

primitive and freeform surfaces. The flowchart of the additive and subtractive feature 

extraction method is proposed in Figure 6.2. 

 

Figure 6.2: The flowchart of the proposed AF and SF extraction method for the 

remanufacturing process. 

6.2.1 Level Set Function Representation for the CAD Model 

Level set function Φ(𝐗) (𝑅𝑛 → 𝑅) describes the geometry in an implicit form, as shown 

in Equation (6-1). 
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{

Φ(𝐗) > 0,   𝐗 ∈  Ω/𝜕Ω

Φ(𝐗) = 0,   𝐗 ∈  𝜕Ω      
Φ(𝐗) < 0,   𝐗 ∈  𝐷/Ω   

 (6-1) 

where Ω/𝜕Ω is the material domain, 𝐷/Ω is the void, 𝜕Ω is the structural boundary. 

In the level set function-based modelling approach, the 3D model is constructed by 

bounding the boundary surfaces, as: 

Φ(𝐗) = min{Φ1, Φ2, Φ3, … , Φ𝑛} (6-2) 

As an example, the cube with (𝑥0, 𝑦0, 𝑧0) as the center coordinates and (𝐻𝑥,𝐻𝑦, 𝐻𝑧) 

as the lengths on the x,y,z axis can be represented by bounding six planer surfaces of Φ1 =

𝐻𝑥

2
− (𝑥 − 𝑥0) = 0,Φ2 =

𝐻𝑥

2
+ (𝑥 − 𝑥0) = 0,Φ3 =

𝐻𝑦

2
− (𝑦 − 𝑦0) = 0,Φ4 =

𝐻𝑦

2
+ (𝑦 −

𝑦0) = 0,Φ5 =
𝐻𝑧

2
− (𝑧 − 𝑧0) = 0,Φ6 =

𝐻𝑧

2
+ (𝑧 − 𝑧0) = 0, as shown in Figure 6.3. 

 

Figure 6.3: An example of a discrete level set representation for a cube. 

This work focus on the level set function modelling for freeform geometries. From 

Equation (6-2), it can be manifested that finding the implicit forms for boundary surfaces 

is the most crucial work for the level set-based modelling approach. Algebraic techniques 
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based on elimination theory enable the conversion of parametric expression to its implicit 

expression Φ(𝐗) = 0. Elimination theory investigates the conditions under that the sets of 

parametric expressions have common roots. The vanishing of the resultant is a necessary 

and sufficient condition for the parametric expressions to have a common non-trivial root. 

The implicitization of parametric geometry is based on the construction of these resultants.  

A freeform 2.5D geometry can be constructed by extruding its freeform profile. As an 

example, in this study, the Bezier curve is implemented to represent the freeform profile. 

The parametric form of the Bezier curve is shown as: 

𝑭(𝑢) =∑𝐵𝑖,𝑛(𝑢)�̅�𝑖

𝑛

𝑖=0

 (6-3) 

where 𝑭(𝑢) = [𝑓𝑥(𝑢), 𝑓𝑦(𝑢)], �̅�𝑖 = [�̅�𝑖
𝑥, �̅�𝑖

𝑦
] , 𝐵𝑖,𝑛(𝑢) = 𝐶(𝑛, 𝑖)𝑢

𝑖(1 − 𝑢)𝑛−𝑖 , 𝐶(𝑛, 𝑖)  is 

the binomial coefficient: 𝐶(𝑛, 𝑖) =
𝑛!

𝑖!(𝑛−𝑖)!
 , n is the degree of the curve, and i is the number 

of control points, �̅�𝑖𝑥 and �̅�𝑖𝑦 are x and y coordinates of the control point.  

By following elimination theory, the implicit form of the Bezier curve Φcurve(𝐗) can 

be obtained by eliminating the parameter u between the parametric expressions in Eq. (6-3) 

by letting the resultant of them to be equal to zero.  

As an example, a cubic Bezier curve is constructed by three control points: �̅�0 =

(0,0), �̅�1 = (40,220), �̅�2 = (200,40) and �̅�3 = (0,0). By implementing the elimination 

theory, the implicit form for the Bezier curve can be obtained and the contour figure is 

shown in Figure 6.4a. Then, the 2.5D freeform shape can be modelled by Φ(𝐗) =

min (Φcurve, Φtop, Φbottom) , where Φtop = 157.5 − 𝑧  and Φbottom = 𝑧 − 122.5 . see 

Figure 6.4b.  
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a b 

Figure 6.4: An example of a level set representation for 2.5D Bezier curve shape: (a) the 

contour of the Bezier curve in the level set form (note: the value is divided by 10e7); (b) 

2.5D Bezier curve shape. 

The parametric Bezier surface is extended from Bezier curve to u and v directions, as 

follows:  

𝑭(𝑢, 𝑣) =∑∑𝐵𝑖,𝑛(𝑢)𝐵𝑗,𝑚(𝑣)�̅�𝑖,𝑗

𝑚

𝑗=0

𝑛

𝑖=0

 (6-4) 

where 𝑭(𝑢, 𝑣) = [𝑓𝑥(𝑢, 𝑣), 𝑓𝑦(𝑢, 𝑣), 𝑓𝑧(𝑢, 𝑣)] and �̅�𝑖,𝑗 = [�̅�𝑖,𝑗
𝑥 , �̅�𝑖,𝑗

𝑦
, �̅�𝑖,𝑗

𝑧 ]. 

Analogously, the elimination theory can help to find the implicit form for the parametric 

expression in Equation (6-4). A Bezier surface is modelled by 3*3 control points; the level 

set form of this surface is shown in Figure 6.5a. The Bezier shape is bounded with planar 

surfaces Φ1 = 𝑥 − 200,Φ2 = 600 − 𝑥,Φ3 = 𝑦 − 200,Φ4 = 600 − 𝑦, see Figure 6.5b. 
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a  b 

Figure 6.5: An example of a level set representation for (a) Bezier surface; (b) Bezier shape 

with boundaries. 

The complex geometry can be constructed through Boolean operations on the level-set 

functions. However, this representation will cause non-differentiable problems in 

numerical calculation. R-functions can combine level functions of a complex structure into 

a new smooth level set function by operations of R-conjunction ⋀ and R-disjunction ⋁ , 

which are equivalent to Boolean operations ∩ and ∪ [154]. The operations of R-functions 

are defined as: 

Unite: Φ1 ∪ Φ2 = max(Φ1, Φ2) = Φ1 + Φ2 +√Φ1
2 +Φ2

2 

Intersect: Φ1 ∩ Φ2 = min(Φ1, Φ2) = Φ1 + Φ2 −√Φ1
2 +Φ2

2 

Subtract: Φ1 ∖ Φ2 = min(Φ1, −Φ2) = Φ1 − Φ2 −√Φ1
2 +Φ2

2 

(6-5) 

6.2.2 Level Set Function Representation for Point Clouds 

For a given used part, data acquisition is the first step to digitalize the part to point clouds. 

Therefore, the other situation is that we have the point cloud as the geometry input. To 

converting the point cloud data to the level set function model, the surface fitting 

techniques can be applied to obtain the parameters of surfaces and these parameters are 

used to forming the level set function representations. In this study, random sample 

consensus (RANSAC) surface fitting [71] is employed for surface fitting. The pseudocode 

for the forming level set function representation of the point clouds is given in Table 6.1. 



109 

 

 

Figure 6.6 provides two examples of the surface fitting for cylindrical surfaces and sphere 

from point clouds. The colour scale bars indicate the distance of each point to the fitted 

surface. The parameters of fitted surfaces are utilized for forming the level set functions 

through the proposed algorithm.  

Table 6.1: Pseudocode of the forming level set function representation of point clouds. 

Input: point clouds of the used part P 

Set the max distance and max angular variation for fitting 

i = 1  

Remaining points Pm,i ← P 

For the plane fitting, cylinder fitting, cone fitting, sphere fitting, free-form surface 

fitting: 

            While there are enough points for supporting surface fitting in Pm,i: 

                       Parametric surface parameters Si ← surface fitting from Pm,i 

                       Converting the parametric surface to implicit function: Φi ← Si 

                       i = i + 1 

                       Remove the points Si which fit from remaining points to form new 

remaining points Pm,i 

Forming the level set function representation from collected implicit functions by 

Boolean operations: Φu ← {Φ1, … ,Φm} 

End 

Output: level set function representation of the used part Φu 

For construction level set functions for freeform surface, the surface fitting for freeform 

surface techniques can be employed. For example, the non-uniform rational basis spline 

(NURBS) surface fitting from point clouds has steps as: (a) parameterization of knot 

vectors; (b) determination of boundary condition; (c) calculation of control points; (d) 

construction of NURBS surface. Since the surface fitting for freeform surface is a well 

developed area and it is not the contribution in this study; the method used for NURBS 

surface fitting is presented in Appendix. 



110 

 

 

  

Φcylinder = 8.13
2 − (𝑥 − 3.008 )2 − (𝑦 − 5.014) 2 Φsphere = 6.0432 − (𝑥 − 2.995)2 − (𝑦 − 4.987)2

− (𝑧 − 7.002 )2 

a b 

Figure 6.6: (a) Cylindrical surface fitting result and level set function; (b) Sphere fitting 

result and level set function. 

6.2.3 Extraction of Pre-Machining Feature 

In the repairing process, the defects on the damaged part need to be machined into a surface 

cavity. This cavity is to be refilled by the deposition of materials to recover the local 

geometry of the part. Equivalently, in terms of the remanufacturing process, it is necessary 

to carve out defects from the damaged part to eliminate the perturbation for the 

remanufacturing process planning caused by the defects. This study define the machining 

feature to carve out defects as a pre-machining feature since it has a similar concept as the 

pre-machining in the traditional machining process to remove the imperfections of the 

stock. 

To construct the pre-machining feature, the first step is to segment surface defects from 

3D scan data. In this work, random walks for unorganized point cloud segmentation [37] 

is adopted, since it does not rely on strong assumptions made on the characteristics of the 

expected defect or the geometry of the surrounding area. The algorithm segments defect 

areas on a weighted, undirected k-nearest neighbour graph (k-NNG) defined by local 

changes in point cloud properties. An example of the defect segmentation from point 

clouds by the random walks algorithm is shown in Figure 6.7. In the figure, the blue points 

indicate the points without defects and red points refer to the points on the defective area. 
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Figure 6.7: An example of defect segmentation from point cloud by the random walks 

algorithm. 

  

a b 

Figure 6.8: (a) Hole; (b) Rectangular pocket. 

Different machining features can be applied to carve out the defect area. This study 

only investigates two basic machining features for the sake of simplicity. It is trivial to 

extend the method for other machining features. The hole and rectangular pocket are 

shown in Figure 6.8, and the level set function to represent these features is presented in 

Equation (6-6). 

Hole: Φ = min {[𝑅2 − (𝑥 − 𝑥0)
2 − (𝑦 − 𝑦0)

2],
𝐻

2
− (𝑧 − 𝑧0),

𝐻

2
+

(𝑧 − 𝑧0) } 

Rectangular pocket: Φ = min {
𝐻𝑥

2
− (𝑥 − 𝑥0),

𝐻𝑥

2
+ (𝑥 − 𝑥0),

𝐻𝑦

2
−

(𝑦 − 𝑦0),
𝐻𝑦

2
+ (𝑦 − 𝑦0),

𝐻𝑧

2
− (𝑧 − 𝑧0),

𝐻𝑧

2
+ (𝑧 − 𝑧0)} 

(6-6) 
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where (𝑥0, 𝑦0, 𝑧0) are the center coordinates of the feature, (𝐻𝑥,𝐻𝑦,𝐻𝑧) is the length on 

the x,y,z axis, 𝐻 is the height of the hole. 

It is worth investigating the type and parameters of the machining feature, which leads 

to minimal materials being carved out. Meanwhile, the machining feature must remove all 

the defects. The problem can be mathematically formulated as a constrained optimization 

problem. For a given machining feature, the optimization problem is solving the optimal 

parameters. The objective function is minimizing the volume of the given machining 

feature by integrating d𝑥d𝑦d𝑧 in the material domain, referred to as Equation (6-7).  

min.   𝑓(𝒂) = ∫ H(Φ(𝐗, 𝒂))
Ω

d𝑥d𝑦d𝑧 (6-7) 

where H() is the Heaviside function,  Φ() is the level set function for the given machining 

feature, 𝐗 = (𝑥, 𝑦, 𝑧) , 𝐚 = (𝑎1, … , 𝑎𝑛)  which indicates the parameters for the given 

machining feature. 

To satisfy the condition that all defects are removed, the defective points need to be 

enclosed by the machining feature. Assuming there are defect points (𝒑1, 𝒑2, … , 𝒑𝑀), 

series of constraints are formulated as in Equation (6-8) and the schematic plot is presented 

in Figure 6.9. 

s. t.  𝑔𝑖(𝒂) = Φ(𝒑𝑖, 𝒂) ≥ 0, 𝑖 ∈ {1,… ,𝑀} (6-8) 

Lagrange formulation of this problem is written as: 

ℒ(𝑎1, … , 𝑎𝑛, 𝜆1, … , 𝜆𝑛, 𝜂1, … , 𝜂𝑛)

= 𝑓(𝑎1, … , 𝑎𝑛) −∑𝜆𝑖

𝑀

𝑖=1

{𝑔𝑖(𝑎1, … , 𝑎𝑛) − 𝜂𝑖
2} 

(6-9) 

where 𝜆𝑖 is the i-th Lagrange multiplier and 𝜂𝑖 is the i-th slack variable.  
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The sensitivity 
𝜕ℒ

𝜕𝑎1
 of the Lagrange formulation is derived through Equation (6-10); 

others can be calculated similarly.  

𝜕𝑓

𝜕𝑎1
= ∫

𝜕H(Φ(𝐗, 𝒂))

𝜕ΦΩ

𝜕Φ

𝜕𝑎1
𝑑Ω = ∫ 𝛿(Φ(𝐗, 𝒂))

Ω

𝜕Φ

𝜕𝑎1
 𝑑Ω (6-10) 

where 𝛿() is the Dirac delta function. 

This problem can be solved with a gradient-based optimization solver by updating the 

variables 𝑎1, … , 𝑎𝑛, 𝜆1, … , 𝜆𝑛, 𝜂1, … , 𝜂𝑛 with their corresponding sensitivity.  

 

Figure 6.9: Schematic plot: the defective points are enclosed by the boundary of the pre-

machining feature 

Examples of the optimal parameters of a hole and a rectangular pocket features are 

illustrated in Figure 6.10. From the two pre-machining features, the minimal volume of 

the feature can be determined. In this example, the hole feature has a volume of 

3.657 mm3 and rectangular pocket has the volume of 4.3665 mm3. Therefore, the hole 

feature is optimal for pre-machining.  
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Figure 6.10: Examples of hole and rectangular features for defective points. 

6.2.4 Intersection Part Extraction 

As the level set function of the used part and final part are formulated, the relative position 

needs to be identified between two solid models to prepare for feature extraction. The 

objective is to maximize the overlapping material volume because the cost of AM is 

strongly affected by the volume of the new material to deposit. 

Φ𝑢 and Φ𝑓 are the level set functions of the used part and the final part, respectively, 

within the global coordinate system 𝐗 = (𝑥, 𝑦, 𝑧). �̃� is a local coordinate system attached 

to the used part. Through Equation (6-11), an optimization problem can be formulated to 

figure out the translation and rotation of the local coordinate system ( �̃� ) needed to 

maximize the overlapping volume between Φ𝑢 and Φ𝑓.  

[�̃�
1
] = [

𝐑𝒛(𝜃𝑥)𝐑𝒚(𝜃𝑦)𝐑𝒙(𝜃𝑧) 𝐓(𝑡𝑥, 𝑡𝑦, 𝑡𝑧)

𝟎 1
] [
𝐗
1
] (6-11) 

where 𝐑𝒙 ,  𝐑𝒚, 𝐑𝒛  are the rotation matrix along x,y,z direction with the variables of 

𝜃𝑥, 𝜃𝑧 , 𝜃𝑦, 𝐓 is the translation matrix with the variables of 𝑡𝑥, 𝑡𝑦, 𝑡𝑧. 
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The used part Φ𝑖(𝜃𝑥, 𝜃𝑧 , 𝜃𝑦, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧) has translation variables and rotation variables. 

The final part is fixed by Φ𝑓. The intersection part (Φ𝑖) is the intersection of the used part 

and the final part, given as:  

Φ𝑖(𝜃𝑥, 𝜃𝑧 , 𝜃𝑦, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧) = Φ𝑢(𝜃𝑥, 𝜃𝑧 , 𝜃𝑦 , 𝑡𝑥, 𝑡𝑦, 𝑡𝑧) ∩ Φ𝑓

= min(Φ𝑢(𝜃𝑥, 𝜃𝑧 , 𝜃𝑦, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧),Φ𝑓) 
(6-12) 

The maximization optimization problem can be formulated of maximizing the 

intersection part by optimizing the variables 𝜃𝑥, 𝜃𝑧 , 𝜃𝑦, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 : 

min.   𝑓(𝜃𝑥 , 𝜃𝑧 , 𝜃𝑦 , 𝑡𝑥, 𝑡𝑦, 𝑡𝑧)

= −∫ H(Φ𝑖(𝐗, 𝜃𝑥, 𝜃𝑧 , 𝜃𝑦, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧))
Ω

𝑑Ω 
(6-13) 

The sensitivity 
𝜕𝑓

𝜕t𝑥
 of the objective function is derived through Equation (6-14); others 

can be calculated similarly.  

𝜕𝑓

𝜕t𝑥
= −∫

𝜕H(Φ𝑖(𝜃𝑥, 𝜃𝑧 , 𝜃𝑦, 𝑡𝑥, 𝑡𝑦 , 𝑡𝑧))

𝜕Φ𝑖Ω

𝜕Φ𝑖

𝜕t𝑥
𝑑Ω

= −∫ 𝛿(Φ𝑖(𝜃𝑥, 𝜃𝑧 , 𝜃𝑦 , 𝑡𝑥, 𝑡𝑦, 𝑡𝑧))
Ω

𝜕Φ𝑖

𝜕t𝑥
 𝑑Ω 

(6-14) 

This problem can be solved with a gradient-based optimization solver. In the gradient-

based optimization algorithm, the (𝜃𝑥, 𝜃𝑧 , 𝜃𝑦, 𝑡𝑥, 𝑡𝑦, 𝑡𝑧)=(0,0,0,0,0,0) is set as the initial 

values. Generally, to prevent a local optimum issue, a multi-start strategy is suggested, i.e., 

to parallelly run the optimization program with a different initial guess of variables. 

6.2.5 Intersection Part Modification for Collision-Free Remanufacturing 

The geometry of intersection part geometry is not generally acceptable for AM processes. 

Figure 6.10 illustrates collision problems in the DED process, and the material deposition 
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nozzles may have collisions with the intersection part. Therefore, it is crucial to modify 

the intersection part by analyzing the tool accessibility constraints of the DED process. 

 

Figure 6.11： DED nozzle induced collisions. 

Initially, the intersection part and DED nozzle are formulated as Φ𝑖  and Φ𝑛  by the 

level-set representation, respectively. In addition, the deposited material volume by AM is 

represented as Φ𝑑 = Φ𝑓/Φ𝑖, as shown in Figure 6.12. The voxel representations for  Φ𝑖, 

Φ𝑛 and Φ𝑑 are computing by applying Heaviside functions 𝑉𝑖 = H(Φ𝑖), 𝑉𝑛 = H(Φ𝑖), and 

𝑉𝑑 = H(Φ𝑑), separately.  

  
a b 

Figure 6.12. Representations in the DED nozzle collision problem: (a) The level-set 

representations for DED nozzle, deposition material and intersection part; (b) 3D voxel 

representation for DED nozzle 

As far as the collision detection is concerned, the collision-free rigid motion of the DED 

nozzle in rigid motion needs to be calculated. In this study, dilation as a morphology 

operation is adopted to analyze the spatial planning of the DED nozzle. As one of the basic 

operations in mathematical morphology, dilation operation ⊕ is defined as: 
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𝐴⊕ 𝐵 =⋃𝐴𝑏
𝑏∈𝐵

 (6-15) 

where 𝐴𝑏 represents the solid 𝐴 transformed by a rigid transformation 𝑏, 𝐵 is a structuring 

element, which is termed filters. For level set function represented models, the dilation 

operation is expressed as: 

Φ𝐴⊕Φ𝐵 = ⋃ Φ𝐴
Φ𝐵(𝑏)≥0

(𝑏) (6-16) 

For the DED process, the materials are deposited on the deposition volume layer by 

layer, which indicates that the tip of the deposition nozzle requires going through each 

point of the deposition volume (Figure 6.13a). It is crucial to mention that in a practical 

case, the vertical distance between the tip of the DED nozzle and the deposition area is not 

zero. The vertical distance is assumed to be zero for the sake of simplifying in explaining 

the proposed method. The technical implantation of the approach will be discussed with 

considering the vertical distance later in this section. It is meaningful to explore all motions 

of the DED nozzle to deposit the materials in the deposition volume. In the proposed 

method, the motions of the DED nozzle during deposition is calculated by dilating the 

deposition volume by the DED nozzle: Φ𝑚 = Φ𝑛⊕Φ𝑑, and the this study define Φ𝑚 as 

motion space of the DED nozzle, as presented in  Figure 6.13b. 

  
a b 
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c d 

Figure 6.13. (a) Motions of the DED nozzle during deposition; (b) motion space of the 

DED nozzle; (c) motions space and original intersection part; (d) modified intersection 

part. 

Theorem: 

The modified intersection part Φ̃𝑖 can be derived from: Φ̃𝑖 = Φ𝑖 ∖ Φ𝑚 = Φ𝑖 ∖ (Φ𝑛⊕

Φ𝑑), which leads no collision with the DED nozzle in operation, as shown in Figure 6.13d. 

Proof: 

In the condition of no collision occurring during deposition, Φ̃𝑖 ∩ Φ̃𝑚 = ∅  is required 

to be satisfied, where Φ̃𝑚 is the new motion space derived from the modified intersection 

part Φ̃𝑚 = Φ𝑛⊕ Φ̃𝑑. Φ̃𝑚 can be expanded into: 

Φ̃𝑚 = Φ𝑛⊕ (Φ𝑓\Φ̃𝑖) = Φ𝑛⊕ (Φ𝑓 ∩ (−Φ̃𝑖))

= Φ𝑛⊕(Φ𝑓 ∩ (−(Φ𝑖 ∩ (−Φ𝑚)))) 
(6-17) 

where Φ𝑓 indicates the level set function of the final part. According to the associativity, 

commutativity of Boolean operation and distribution of dilation, Eq. (6-17) can be 

rearranged as: 

Φ̃𝑚 = (Φ𝑛⊕Φ𝑑) ∩ (Φ𝑛⊕Φ𝑚) (6-18) 

Therefore, no collusion condition is derived as: 
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Φ̃𝑖 ∩ Φ̃𝑚 = Φ𝑖 ∩ (−Φ𝑚) ∩ (Φ𝑛⊕Φ𝑑) ∩ (Φ𝑛⊕Φ𝑚)   (6-19) 

Since Φ𝑛⊕Φ𝑑 = Φ𝑚  , (−Φ𝑚) ∩ (Φ𝑛⊕Φ𝑑) = ∅ . So, Φ̃𝑖 ∩ Φ̃𝑚 = Φ𝑖 ∩ ∅ ∩

(Φ𝑛⊕Φ𝑚).  Due to the annihilator law for ∩, Φ̃𝑖 ∩ Φ̃𝑚 = ∅. 

The study develops an algorithm to implement the proposed method for discrete level 

set function representations, also considering the vertical distance (d) between the nozzle 

tip and deposition area. The pseudocode for the proposed algorithm is presented in Table 

6.2. An example of the implantation of the proposed method is shown in Figure 6.14. 

Figure 6.14a presents the original intersection part and Figure 6.14b  shows deposition 

volume derived from the original intersection part by Φ𝑓\Φ𝑖. The motion space calculated 

from Equation (6-16) is shown in Figure 6.14c and Figure 6.14d gives the modified 

intersection part Φ̃𝑖. 

Table 6.2：Pseudocode of the algorithm. 

Input: discrete level set function Φ𝑛, Φ𝑑 and Φ𝑖; vertical distance d 

Φ𝑚 ← 0 with size of Φ𝑑 

[x, y, z] = index of Φ𝑑 > 0 in x,y,z directions 

The position of the tip is obtained from Φ𝑛 as x_tip, y_tip, z_tip 

For i = 1 to size of x direction: 

            Move on x direction Mx = x (i) - x_tip 

            Move on y direction My = y (i) - y_tip 

            Move on z direction Mz = z (i) - z_tip + d 

            New position of DED nozzle Φ�̃� = translating the Φ𝑑 over Mx, My, Mz 
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            Φ𝑚 = Φ𝑚 ∪Φ�̃� = max (Φ𝑚, Φ�̃�) 

End 

Output: discrete level set function of modified intersection part Φ̃𝑖 = Φ𝑖\Φ𝑚 =

min (Φ𝑖, −Φ𝑚) 

 

  

a b 

  

c d 

Figure 6.14. An example for the intersection part modification method: (a) original 

intersection part; (b) deposition volume; (c) motion space; (d) modified intersection part. 
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6.2.6 Individual Feature Extraction 

As the modified intersection part has been calculated, a subtractive feature volume (SFV) 

and an additive feature volume (AFV) can be calculated in their level set function 

representations as: 

ΦSFV = Φ𝑢 ∖ Φ̃𝑖 

ΦAFV = Φ𝑓 ∖ Φ̃𝑖  
(6-20) 

Individual features are required to be recognized and extracted from SMV and AMV. 

The research of CSG-based feature recognition has been developed from the 1990s, but 

this technique did not go far primarily due to the non-uniqueness of CSG trees [136]. 

Recently, there are some research efforts have been devoted to address non-uniqueness 

problems in CSG and show the strength in recognize sophisticated machining features by 

3D convolution neuron network [155,156]. Therefore, developing a new machining 

feature recognition method is not a contribution to this study. The level set function 

representation of SFV is converted into 3D voxel grid information VSFG  by Heaviside 

function  H() , and then SFs can be extracted by any CSG-based feature recognition 

techniques; see Equation (6-21).  

VSFV = H(ΦSFV) → {SF1, SF2, SF3, . . . SF𝑛} (6-21) 

AFV comprises both AFs and SFs. In the AM process, leaving a sufficient over-

thickness to have a finishing operation is vital for meeting the tolerance and surface 

roughness requirements. The over-thickness value is estimated by the required 

specifications of the final feature, the surface roughness generated by the AM processes 

and the machining conditions. With considering over-thickness, the modified additive 

feature volume (AFV) is modified. The level set function representation of  AFV can be 

derived via Equation (6-22), where t represents the over-thickness value. The residual 
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subtractive feature volume (SFV) is obtained via Equation (6-23). Similarly, the individual 

SFs could be recognized by a CSG-based feature recognition method by Equation (6-24). 

ΦAFV = (ΦAFV + t) ∖ Φ̃i  (6-22) 

ΦSFV = ΦAFV  ∖ ΦAFV (6-23) 

H(ΦSFV) → {SF𝑛+1, SF𝑛+2, SF𝑛+3, . . . SF𝑛+𝑚} (6-24) 

6.3 Cost-driven Process Planning for Remanufacturing 

The number of AFs and SFs are obtained from the proposed feature extraction method. 

Each feature represents an operation in the AM or SM process. Under considering the 

topological relationship of different features, the sequences of some operations are forced. 

Therefore, precedence constraints between operations are required to formulated to respect 

the hybrid additive-subtractive manufacturing rules. The precedence constraints are 

comprehensively summarized in Section 5.2.2. 

Although precedence constraints are formulated, some residual process sequences are 

still undermined. To develop the process planning problem into a process sequence 

optimization, the cost for each operation/feature is required to be estimated. With 

precedence constraints between features and cost model for each feature, an integer 

programming model is formulated to calculate the optimal process plan that minimizes the 

overall remanufacturing cost.  

6.3.1 Cost Estimation for Hybrid CNC-DED process 

The motivation of the cost estimation for this study is approximating the cost models for 

the integer programming model to determine the optimal process plan, rather than 

exploring the precise cost for each operation. Although there are numbers of publications 

are relevant to cost estimation for the SM and AM process [157–159], few researchers 

focus on the constructing cost model for integrated hybrid CNC-DED manufacturing 
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system, explicitly considering the change cost between two different operations. Therefore, 

in this section, rough and fast estimations are given for SFs and AFs, and the change costs 

between various features are also introduced. 

6.3.1.1 Cost of subtractive feature  

The total cost comprises operation cost and tool cost as: 

CSF = Chh  ∗  tSF + Ctool  ∗  ntool (6-25) 

where CSF is the total cost of an SF, Chh is the hourly operation cost for HM machine 

operation, tSF is the machining time for the SF, Ctool is the cost of each cutting tool, and 

ntool is the number of tool changes. Most commercial CAM software systems can estimate 

the machining time  tSF by dividing the tool path in the milling process by the programmed 

feed rate. 

6.3.1.2 Cost of additive feature 

The cost of AF is determined by the machine cost and material consumption cost, see 

Eq.(6-26).  

CAF = Chh ∗ tAF + Cm−AF (6-26) 

where CAF is the total cost of an AF, Chh is the hourly operation cost for HM machine 

operation, tAF  is the building time of the AF, and Cm−AF  is the cost of material 

consumption.  

The cost of material consumption in DED process is approximately calculated from the 

volume of the feature and its support structure, as: 

Cm−AF =
(VAF𝜌 + VAF−s𝜌)

𝜇
Cmaterial
unit  (6-27) 

where, VAF and 𝑉AF−s refer to the volume of the building part and support structure, 𝜌 is 

the material density, 𝜌  is the material density of the support structure, and Cmaterial
unit  
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indicates the price per unit of material. In the DED process, complex gas flow leads a 

diffusion of powder distribution, which results in low powder efficiency because some 

powder cannot reach the meltpool. Powder efficiency rate 𝜇  varies between different 

machines, and in this research the value is 70%. 

For the DED process, the building time tAF estimation adopted an analytical build time 

model which is proposed in [160], and the general equation is shown in Eq.(6-28). This 

model uses G-code of the part as input and an algorithm extracts the kinematic 

characteristics of the nozzle to estimate very accurate build time results since the 

acceleration and deceleration of the machine head are considered. 

tAF = Deposition Time + Rapid Movements Time (6-28) 

  

6.3.1.3 Cost of Change 

For the hybrid additive-subtractive system, the AM/SM operations are switching by 

changing different tools.  It is crucial to discuss the cost of change between two 

consecutive operations since it is costly due to frequent tool changing. Besides the tool 

change cost, the re-orientation of the workpiece also results in costs. In this study, CR and 

CT represent indexes of the re-orientation cost, and the tool change cost, respectively. The 

details of the calculation are given below. 

  Re-orientation cost: 

While the orientation of the workpiece is switched in the HM machine, a re-orientation 

change occurs that requires workpiece fixing and laser calibration. 

CR = Chh  ∗  tre (6-29) 

For the index of feature i, j ∈ F = {1,2, . . . , F},  the index of cost for orientation CR is 

formed by grouping the cost of orientation between any two features.  
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Tool change cost: 

For HM machine the tool change cost is formulated as: 

CT = Chh  ∗  ttc (6-30) 

Similarly, the index of tool change cost CT is constructed by grouping the cost of tool 

change cost between any two features. 

6.3.2 Sequence Optimization 

As the cost model for each feature, change cost, and precedence constraints are obtained. 

The process sequence optimization problem is formulated as an integer programming 

model and solved by branch and fathoming algorithm [94]. In a directed graph 

visualization of the model, a node represents a feature/operation and the cost model, and 

the directed line indicates the precedence relation between two features/operations and the 

change costs. As an example, AFs (AF1 and AF2) and SFs (SF1, SF2, SF3) are extracted 

from the proposed feature recognition method. The cost for each node is calculated and 

the change cost between any two nodes is formulated. The precedence constraints are 

applied to these nodes initially as dash lines (Figure 6.15a). With the optimization of the -

integer programming model, the output is a sequence of operations that results in a 

minimal cost (Figure 6.15b). 

  

a b 

Figure 6.15: Directed graphs representation: (a) precedence-constrained model; (b) 

optimal model. 
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The mathematical formulation of the integer programming model is employed from 

Section 5.2.4 [161]. With this mathematical formulation, the model can be solved through 

branch and bound, linear programming, dynamic programming as exact approaches or 

genetic algorithm as an approximate approach. 

6.4 Case Study I: test part remanufacturing 

In this section, the proposed method is verified by the correctness and efficiency of a 

virtual case study.  

Figure 6.16a shows the point cloud scanned from the used part, which is required to be 

remanufactured. Figure 6.16b represents the CAD model of the final part, which has 

different functionalities compared to the used part. Especially, the final part has primitive 

features and 2.5D freeform feature. 

  

a b 

Figure 6.16: Case study 1: (a) point cloud of the used part (b) CAD model final part. 

The level set function for the final part is built from the CAD modelling on a design 

domain of size 150*150*150 with grid size ∆𝑥  (0.5mm), as Figure 6.17 shown. The 

modelling history is given in Table 6.3, and the mathematical formulation of each level set 

function is provided in Appendix. 
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Figure 6.17: Level set representation for the final part. 

Table 6.3：Case study 1: Modelling history of the level set representation for the final 

part. 

Modelling history: 

     Φ𝑓1 = max (Φcube1, Φcube2, Φfree) 

     Φ𝑓2 = min (Φ𝑓1 , −Φcyl1, −Φcyl2, −Φcyl3) 

      Φ𝑓 = min (Φ𝑓2 , −Φcube3, −Φcube4) 

     Notations: 

     Φcube: level set function for cube; 

     Φcyl: level set function for cylinder; 

     Φcyl: level set function for cylinder; 

     Φfree: level set function for freeform feature; 

     Φ𝑓: level set function for final part. 

In terms of the used part, the RANSAC surface fitting technique is adapted and the max 

distance and angular distance variants are set as 0.002 m and 5 degrees, respectively. The 

surface fitting results are shown in Figure 6.18a. By implementing the k-NNG-based 

defect identification method, the defect points are differentiated from the point clouds 
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Figure 6.18b. The level set function for the used part is constructed in Figure 6.19a with 

modelling history: Φ𝑢 = min (Φcube1, −Φcube2, −Φcube3, −Φcube4) and formulations 

for each level set functions are given in  Appendix. The optimal pre-machining feature can 

be obtained from the defect points, and the used part is updated with the pre-machining 

feature, as shown in Figure 6.19b. 

The proposed intersection part extraction algorithm is applied to find the relative 

position between the used part and the final part. The optimization results of the translation 

and rotation variables are listed in Table 6.4 and the output of the intersection part is shown 

in Figure 6.20. 

For the next step, the intersection part is modified by considering the collision problem 

in the DED process. The DED nozzle is modelled in level set function as shown in Figure 

6.21a and the vertical distance d is set as 10 mm. Figure 6.21b shows the deposition 

volume, which is obtained by subtracting the final part by the original intersection part. 

The motion space that represents all possible motions of the DED nozzle during deposition 

is derived from the proposed algorithm (Table 6.2); see Figure 6.21c. The result of the 

modified intersection part through subtracting the original intersection part by motion 

space is presented in Figure 6.21d. 

 

  

a b 

Figure 6.18: Case study 1: (a) Surface fitting results; (b) defect area (red points) from point 

clouds of the used part; 
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a b 

Figure 6.19: Case study 1: (a) Level set representation for the used part; (b) updated used 

part with pre-machining feature. 

Table 6.4: Case study 1: The optimal translation and rotation for test parts. 

 Translation (mm) Rotation (°) 

Optimal 

variables: 

𝑡𝑥 𝑡𝑦 𝑡𝑧 𝜃𝑥 𝜃𝑦 𝜃𝑧 

4.07 4.21 -1.33 0 0 0 
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a b 

Figure 6.20: Case study 1: (a) Optimal intersection part; (b) convergence history of the 

intersection part maximization. 

  
a b 

  
c d 

Figure 6.21: Case study 1: (a) DED nozzle; (b) deposition volume; (c) motion space of 

DED nozzle; (d) modified intersection part. 

By subtracting the final part and the used part by the modified intersection part, SFV 

and AFV can be collected, respectively. Then, each SF and AF are extracted, as presented 

in Figure 6.22. With respecting HM rules, precedence constraints are applied to all features.  

The parameters and machine resources that are used in the cost estimation are listed in 

Table 6.5. In this study, Ti-6Al-4V is used as the material for the DED process. The 

sequence optimization problem is solved by a branch-and-bound solver and the optimized 
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process plans are presented in Table 6.6, and the optimal remanufacturing plan costs 

$ 1835.24. 

 

Figure 6.22: The results of SFs and AFs extraction from SFV and AFV. 

 

Table 6.5: Manufacturing parameters and manufacturing resources for cost estimation. 

Manufacturing parameters Manufacturing resources 

Parameter Value Tool ID Tool type Diameter (mm) 

Chh 100 $/h T1 End mill 20 

Ctool 5 $ T2 End mill 10 

𝜌 4.43 𝑘g/dm3 T3 End mill 5 

𝜌/𝜌 0.4 T4 Drill 5 

Cmaterial
unit  450 $/kg T5 Drill 10 

tre 0.35 h T6 DED  - 

ttc 0.17 h    
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Table 6.6: Case study 1: Optimal process plan. 

Sequence Features TAD Tool 

1 SF1 +z T1 

2 SF2 +z T1 

3 AF1 +z T6 

4 SF9 +z T2 

5 AF2 +z T6 

6 SF5 +y T4 

7 SF8 +x T4 

8 SF3 +x T4 

9 SF6 +y T2 

10 SF7 +y T3 

11 SF4 +y T3 

 

6.5 Case Study II: bracket remanufacturing 

In the second case study, the proposed method is validated by the remanufacturing process 

of a used pillow bracket (see Figure 6.23a) to a new featured bracket (see Figure 6.23b). 

The CSG models for the used part and final part are constructed by discrete level set 

function on a design domain of size 150*150*150 with grid size ∆𝑥 (0.5mm), as shown in 

as follows: 
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a b 

Figure 6.23: Case study 2: (a) the used pillow bracket (b) the final part. 

  
a b 

Figure 6.24: Discrete level-set representation: (a) the used pillow bracket (b) the final 

part. 

Table 6.7：Case study 2: Modelling history of the level set representations. 

Modelling history for the used part: 

     Φ𝑓1 = max (Φcube1, Φcube2, Φcube3, Φcyl5, Φcyl6) 

     Φ𝑓 = min (Φ𝑓1 , −Φcyl1, −Φcyl2, −Φcyl3, −Φcyl4, −Φcyl7, −Φcyl8) 

Modelling history for the final part: 

     Φ𝑓1 = max (Φcube1, Φfree) 

     Φ𝑓2 = min (Φ𝑓1 , −Φcyl1, −Φcyl2, −Φcyl3) 

 

The intersection part extraction algorithm is implemented for the used part and final 

part to obtain the maximized intersection volume, and the optimal translation and rotation 

values are shown in Table 6.8. The intersection part is presented in Figure 6.2a and the 

convergence history is shown in Figure 6.2b. It can be observed that, the optimization 

problem is converging quickly, and the optimal values are achieved around 10 iterations. 



134 

 

 

 

 

Table 6.8: Case study 2: The optimal translation and rotation for test parts. 

 Translation (mm) Rotation (°) 

Optimal 

variables: 

𝑡𝑥 𝑡𝑦 𝑡𝑧 𝜃𝑥 𝜃𝑦 𝜃𝑧 

-2.2 1.2 2.34 0 0 0 

 

 

 

a b 

Figure 6.25: Case study 2: (a) Optimal intersection part; (b) convergence history of the 

intersection part maximization. 

The nozzle is constructed by level set function in Figure 6.26a; the intersection volume 

for the AM process is represented in Figure 6.26b; the motion space for nozzle deposition 

is modelled in Figure 6.26c; by implementing the modification algorithm, the result of the 

modified intersection part is obtained in Figure 6.26d. 
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a b 

  
c d 

Figure 6.26: Case study 2: (a) DED nozzle; (b) deposition volume; (c) motion space of 

DED nozzle; (d) modified intersection part. 

By subtracting the final part and the used part by the modified intersection part, SFV 

and AFV are collected, respectively. Then, each SF and AF are extracted. With the cost 

model for each feature and precedence constraint information, the programming model is 

formulated and solved by LINGO. The optimized process plans are presented in Table 6.9. 
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Table 6.9: Case study 2: Optimal process plan. 

Sequence Features TAD Tool 

1 SF3 +z T4 

2 SF4 +z T4 

3 SF1 +z T2 

4 SF2 +z T2 

5 SF5 +z T2 

6 SF6 +z T2 

7 AF1 +z T6 

8 AF2 +z T6 

 

6.6 Conclusion 

Nowadays, the combination of AM and SM in a single workstation is emerging to provide 

a more flexible and productive and capable manufacturing approach comparing with 

traditional manufacturing strategies. Because it utilizes the merits of AM and SM to add 

and remove features flexibly, HM has the potentials to raise remanufacturing technology 

to a higher level. In this chapter, taking to account the benefits of the HM process, hybrid 

CNC-DED manufacturing technology in a single workstation is investigated to 

remanufacture an end of life part (used part) to a new part (final part) with new 

functionalities, avoiding the material recycling process.  

This chapter has demonstrated a novel feature extraction algorithm and a cost-driven 

process planning method for hybrid CNC-DED manufacturing in a remanufacturing 

context. Specifically, starting from point clouds for the used part and a solid CAD model 

for the final part, geometry modeling is performed to transform the input to level set 

representations. Also, the defects on the used part are investigated and an optimal pre-

machining feature is derived from the proposed method and applied to remove the 

perturbation caused by the defects. The feature extraction method, developed under the 

level set framework, is proposed as an automated process to extract the AM and SM 

features for remanufacturing process planning, which addresses the numerical calculation 

between two solid models. Moreover, the collision problems of DED nozzle during 
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deposition are considered and this method provides collision-free motions. With the 

carefully developed hybrid CNC-DED cost model, the process planning work is converted 

to an integer programming model as an optimization problem. Finally, the optimal process 

plan can be determined by solving the optimization problem. 

For future work, there are more research works need to be done to expand the current 

methodology. A practical case study is required to validate the work presented in this study. 

Moreover, in the present study, the AM and SM processes are considered as a 3-axis type. 

However, the feature extraction and process planning problems for multi-axis capability 

need to be addressed.  
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Chapter 7: Conclusion, Discussion & Future work 

7.1 Conclusions 

The increasing developments and over-exploitation of resources outcome vast amount 

“end-of-life” products. Remanufacturing and repairing are identified as environmentally 

friendly approaches to deal with them since the energy consumption to produce a new part 

can be minimized by maintaining the intrinsic energy of the legacy part. The research 

presented aims to automate and optimize the remanufacturing and repairing processes and, 

the current remanufacturing and repairing processes can be improved in perspectives of 

damage inspection, nominal volume reconstruction, process planning. The developed 

framework enables (a) an intelligent inspection to support automated classification and 

localization of damages from the end-of-life part; (b) an efficient geometric reconstruction 

of the damaged part to support the damaged volume extraction; (c) cost-driven and 

collision-free process planning that support HM processes. 

In the module of intelligent damage inspection, firstly, the RGB image and depth image 

are acquired by a depth camera. Then, the Mask RCNN-based model train the collected 

data and results in the damage segments with the recognized damage type. With that result, 

the spatial position of the damaged area is calculated by the integration of damage 

segments and a point cloud from the depth data. The results of the damage type and damage 

location are beneficial to damage the volume extraction module for the repairing process 

and also process planning module for the remanufacturing process. In the damage volume 

extraction module, an efficient and precise nominal model reconstruction method is 

developed, which includes the processes of StepRANSAC surface fitting, SDM refitting, 

modelling, damage volume localization, and extraction. The result of reconstruction 

significantly facilitates the repairing process because it does not require prior information 

on the nominal CAD model. In the process planning for hybrid remanufacturing, two 

scenarios of CNC-PBF and CNC-DED are explored separately due to their different 
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working principles. In both scenarios, the level of automation of hybrid processes is 

strongly raised by collision-free and cost-minimized process plans. 

7.2 Research Contributions 

The main contributions of this research are summarized as follows: 

• Developed a deep learning-based damage inspection method which performs damage 

classification and 3D localization simultaneously. The method can achieve an 

acceptable accuracy (average relative error from 4.322% to 11.253%) to localize the 

damage area in 3D frame with a small training data size and a low cost RGB-D camera.  

• Developed a primitive-based nominal reconstruction method for the general 

mechanical component which is less concentrated in previous studies. With the 

reconstruction results, the repairing does not require a priori information of the 

nominal CAD model. 

• Developed a novel primitive surface fitting method, by the combination of 

StepRANSAC and SDM. It has been proven a 60–90% improvement in precision 

compared with the traditional RANSAC method. 

• Proposed a primitive and free-form feature modelling method under an implicit level 

set representation for the automation of feature extraction for HM remanufacturing. 

• Summarized precedence constraints for hybrid remanufacturing. 

• Formulated the process planning for remanufacturing into an integer programming 

model which can be numerically optimized in an objective of cost-minimization. 

• Developed cost-driven process planning methods for hybrid CNC-PBF and CNC-DED 

separately in remanufacturing context. 

• Proposed a concept of pre-machining feature for removing defect area from the end-

of-life part, which is an issue rarely addressed in the previous studies of process 

planning for remanufacturing.  

• Developed the cost estimation for HM and proposed a concept of change cost which 

can explicitly explore the cost of switching operations in a hybrid process. 
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7.3 Limitations and future work 

Despite the achievement of its goal, the research presented is confronted by particular 

limitations and can be addressed in future work: 

• The current remanufacturing/repair industry relies on visual inspection to determine 

the damage type, damage location and damage degree to schedule the process plans. 

The proposed damage classification and localization method currently is able to 

perform damage detection to output the damage type, and location. However, the 

damage degree determination is also significantly important to schedule process plans 

for remanufacturing/repairing, which is not covered in this thesis. In future work, the 

proposed method can be extended for damage degree characterization by constructing 

quantified scores for the damaged part. Different damage features (e.g. wear, crack and 

corrosion) with their corresponding quantification model can be established, as 

examples of wear damage model, crack damage model and corrosion model. 

• The primitive surface-based nominal model reconstruction method is currently only 

focusing on primitives (e.g. plane, cylinder, cone and sphere). Given the fact that 

freeform surfaces are playing an increasingly important role in mechanical design, this 

aspect can be highly focused on future work.  

• The framework of process planning for hybrid remanufacturing has been proven its 

efficiency in several virtual case studies. However, it also needs to be validated in some 

practical case studies, because the manufacturing constraints may vary from specific 

AM and SM machines. Therefore, some more specific manufacturing constraints 

should be considered in real case studies, which can be addressed in future work. The 

promising application can be remanufacturing of high-value components such as 

molds and dies, components of aircraft. 

• Additive-subtractive process with multi-axis capability need to be considered for 

complex freeform surface. In the future work, the motion space analysis proposed in 

this thesis can be extended to explore the motions of nozzle of DED and cutting tool 
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in CNC machining under a five-axis environment. In addition, issues of fixture and 

AM support structure are also necessary to be addressed in the future. 
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Appendix 

NURBS surface fitting from point clouds: 

NURBS surface:  

𝑝(𝑢, 𝑣) =

∑ ∑ 𝜔𝑖,𝑗𝑑𝑖,𝑗𝑁𝑖,𝑘(𝑢)𝑁𝑗,𝑙(𝑣)
𝑛

𝑗=0

𝑚

𝑖=0

∑ ∑ 𝜔𝑖,𝑗𝑁𝑖,𝑘(𝑢)𝑁𝑗,𝑙(𝑣)
𝑛

𝑗=0

𝑚

𝑖=0

 

where 𝜔𝑖,𝑗 is the weight of control points; 𝑑𝑖,𝑗 is the control point; 𝑁𝑖,𝑘(𝑢) and 𝑁𝑗,𝑙(𝑣) are 

the basis B-spline functions in u and v direction separately, they are defined over the knot 

vectors as: 𝑈 = [𝑢0, 𝑢1, ⋯ , 𝑢𝑚+𝑘+1], 𝑉 = [𝑣0, 𝑣1, ⋯ , 𝑣𝑚+𝑘+1]. 

Matrix formulation: 

𝑝𝑖,𝑗(𝛼, 𝛽) =
𝑈𝑀𝑖𝐷𝑖,𝑗𝑀𝑗

𝑇𝑉𝑇

𝑈𝑀𝑖𝑊𝑖,𝑗𝑀𝑗
𝑇𝑉𝑇

 

where 𝑖 = 0,1,⋯ ,𝑚 − 3;  𝑗 = 0,1,⋯ , 𝑛 − 3; 

𝑈 = [1 𝛼 𝛼2 𝛼3],  𝑉 = [1 𝛽 𝛽2 𝛽3]; 

𝑀𝑖 = [

𝑚11 𝑚12 𝑚13 𝑚14

𝑚21 𝑚22 𝑚23 𝑚24

𝑚31 𝑚32 𝑚33 𝑚34

𝑚41 𝑚42 𝑚43 𝑚44

]; 
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2

𝛥𝑖+3
2 𝛥𝑖+2

3 )
(𝛥𝑖+3)

2

𝛥𝑖+3
2 𝛥𝑖+3

3 ]
 
 
 
 
 
 
 
 
 

; 
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𝐷𝑖,𝑗 =

[
 
 
 
 
𝜔𝑖,𝑗𝑑𝑖,𝑗 𝜔𝑖,𝑗+1𝑑𝑖,𝑗+1 𝜔𝑖,𝑗+2𝑑𝑖,𝑗+2 𝜔𝑖,𝑗+3𝑑𝑖,𝑗+3

𝜔𝑖+1,𝑗𝑑𝑖+1,𝑗 𝜔𝑖+1,𝑗+1𝑑𝑖+1,𝑗+1 𝜔𝑖+1,𝑗+2𝑑𝑖+1,𝑗+2 𝜔𝑖+1,𝑗+3𝑑𝑖+1,𝑗+3
𝜔𝑖+2,𝑗𝑑𝑖+2,𝑗 𝜔𝑖+2,𝑗+1𝑑𝑖+2,𝑗+1 𝜔𝑖+2,𝑗+2𝑑𝑖+2,𝑗+2 𝜔𝑖+2,𝑗+3𝑑𝑖+2,𝑗+3
𝜔𝑖+3,𝑗𝑑𝑖+3,𝑗 𝜔𝑖+3,𝑗+1𝑑𝑖+3,𝑗+1 𝜔𝑖+3,𝑗+2𝑑𝑖+3,𝑗+2 𝜔𝑖+3,𝑗+3𝑑𝑖+3,𝑗+3]

 
 
 
 

; 

𝑊𝑖,𝑗 = [

𝜔𝑖,𝑗 𝜔𝑖,𝑗+1 𝜔𝑖,𝑗+2 𝜔𝑖,𝑗+3
𝜔𝑖+1,𝑗 𝜔𝑖+1,𝑗+1 𝜔𝑖+1,𝑗+2 𝜔𝑖+1,𝑗+3
𝜔𝑖+2,𝑗 𝜔𝑖+2,𝑗+1 𝜔𝑖+2,𝑗+2 𝜔𝑖+2,𝑗+3
𝜔𝑖+3,𝑗 𝜔𝑖+3,𝑗+1 𝜔𝑖+3,𝑗+2 𝜔𝑖+3,𝑗+3

]; 

𝛼 =
𝑢−𝑢𝑖

𝑢𝑖+1−𝑢𝑖
, 𝛽 =

𝑣−𝑣𝑖

𝑣𝑖+1−𝑣𝑖
(0 ≤ 𝛼, 𝛽 ≤ 1); 

𝛥𝑖 = 𝑢𝑖+1 − 𝑢𝑖; 𝛥𝑖
2 = 𝑢𝑖+2 − 𝑢𝑖; 𝛥𝑖

3 = 𝑢𝑖+3 − 𝑢𝑖 . 

Parameterization of knot vector: 

{
 
 

 
 

𝑢0 = 𝑢1 = 𝑢2 = 𝑢3 = 0;

𝑢𝑖+3 = 𝑢𝑖+2 + |𝑝𝑖 − 𝑝𝑖−1|
1 2⁄ ∑|𝑝𝑖 − 𝑝𝑖−1|

1 2⁄ ;

𝑛

𝑖=1

⁄

𝑢𝑛+3 = 𝑢𝑛+4 = 𝑢𝑛+5 = 𝑢𝑛+6 = 1

 

where 𝑖 = 1,2,⋯ , 𝑛 − 1 and 𝑝𝑖 is a measured point. 

Boundary condition: 

Freeform terminal vertex condition: {
𝑑0 = 𝑑1

𝑑𝑛+2 = 𝑑𝑛+1
; 

Closed curve condition: {
𝑑0 = 𝑑𝑛+1
𝑑1 = 𝑑𝑛+2

. 

Calculation of control points: 

[
 
 
 
 
 
 
 
𝐵1 𝐶1 𝐴1
𝐴2 𝐵2 𝐶2

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅
𝐴𝑛−3 𝐵𝑛−3 𝐶𝑛−3

𝐶𝑛−2 𝐴𝑛−2 𝐵𝑛−2]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑑1
𝑑2
⋅
⋅
⋅

𝑑𝑛−3
𝑑𝑛−2]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝐸1
𝐸2
⋅
⋅
⋅

𝐸𝑛−3
𝐸𝑛−2]
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Where 𝐴𝑖 =
(𝛥𝑖+2)

2

𝛥𝑖 +𝛥𝑖+1+𝛥𝑖+2
; 𝐵𝑖 =

𝛥𝑖+2(𝛥𝑖+𝛥𝑖+1)

𝛥𝑖 +𝛥𝑖+1+𝛥𝑖+2
+
𝛥𝑖+1(𝛥𝑖+2+𝛥𝑖+3)

𝛥𝑖+1+𝛥𝑖+2+𝛥𝑖+3
; 𝐶𝑖 =

(𝛥𝑖+1)
2

𝛥𝑖+1+𝛥𝑖+2+𝛥𝑖+3
; 

𝐸 = (𝛥𝑖+1 + 𝛥𝑖+2)𝑝𝑖−1 

𝑝𝑖 is the control point and 𝛥𝑖 = 𝑢𝑖+1 − 𝑢𝑖(𝑖 = 1,2,⋯ . 𝑛 − 2). 

Level set function for the final part in Chapter 5 case study 1: 

Φcube1 = min (120 −  𝑥, 𝑦 −  30, 110 −  𝑦, 𝑦 −  40, 25 −  𝑧, 𝑧 −  10); 

Φcube2 = min (111 −  𝑥, 𝑥 −  39, 98.5 −  𝑦, 𝑦 −  51.5, 35 −  𝑧, 𝑧 −  25); 

Φcube3 = min (89.5 −  𝑥, 𝑥 −  60.5, 45 −  𝑦, 𝑦 −  40, 21.75 −  𝑧, 𝑧 −  13.25); 

Φcube4 = min (89.5 −  𝑥, 𝑥 −  60.5, 59 −  𝑦, 𝑦 −  60.5, 32 −  𝑧, 𝑧 −  28); 

Φcyl1 = min {6.25 − (𝑧 −  30)
2 − (𝑦 −  75)2, 114.75 − 𝑥, 𝑥 − 104.75}; 

Φcyl2 = min {25 − (𝑧 −  17.5)
2  −  (𝑦 −  75)2, 120 −  𝑥, 𝑥 −  105}; 

Φcyl3 = min {6.25 − (𝑧 −  17.5)
2  − (𝑥 −  68)2, 50 −  𝑦, 𝑦 −  45}; 

Φcyl4 = min {6.25 − (𝑧 −  17.5)
2  − (𝑥 −  82)2, 50 −  𝑦, 𝑦 −  45}; 

Φfree = min {−(𝑥 − 55)
3 + (𝑥 − 55)2 ∗ (18 ∗ (𝑦 − 55) + 19200) + (𝑥 − 55) ∗

(108 ∗ (𝑦 − 55)2 − 46080 ∗ (𝑦 − 55) + 216 ∗ (𝑦 − 55)3 + 15360 ∗ (𝑦 − 55)2, 𝑥 +

𝑦 − 110,83 − 𝑧, 𝑧 − 68}. 

Level set function for the used part in Chapter 5 case study 1: 

Φcube1 = min ( 125 −  𝑥, 𝑥 −  25, 112.5 −  𝑦, 𝑦 −  37.5, 37.5 −  𝑧, 𝑧 −  12.5); 

Φcube2 = min (115 −  𝑥, 𝑥 −  35, 102.5 −  𝑦, 𝑦 −  47.5, 37.5 −  𝑧, 𝑧 −  32.5); 

Φcube3 = min (70 −  𝑥, 𝑥 −  40, 87.5 −  𝑦, 𝑦 −  52.5, 32.5 −  𝑧, 𝑧 −  27.5); 

Φcube4 = min (110 −  𝑥, 𝑥 −  80, 87.5 −  𝑦, 𝑦 −  52.5, 32.5 −  𝑧, 𝑧 −  27.5); 


