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ABSTRACT 1 

We introduce a novel method of merging disparate but complementary datasets and applying 2 
machine learning techniques to Ground Delay Program (GDP) data. More specifically, we aim to 3 
characterize GDPs with respect to changing weather forecasts, GDP plan parameters, and 4 
operational performance. The purpose of this analysis is to gain insights into GDP usage patterns 5 
(implementation and revisions), with respect to these key dimensions. We also seek to gain insights 6 
into how GDP cancelations and revisions correlate with operational efficiency and predictability. 7 
The results could be used to help traffic managers and air carriers understand complex patterns in 8 
the evolution of GDPs, so that they might, for example, better anticipate or even plan a response 9 
to a change in weather conditions. We focus on GDPs at Newark Liberty International Airport 10 
(EWR), from 2010 through 2014. We first generated a master dataset by merging several datasets 11 
on GDPs, weather forecasts, and individual flight information. We then identified several scenarios 12 
of GDP evolution, by reducing the dimensionality of the master GDP dataset, then applying cluster 13 
analysis on the lower-dimensional data. We found that GDPs at EWR can be categorized into 10 14 
types based on weather forecasts, realized weather, GDP scope, arrival rates, and duration. We 15 
further explored the characteristics of these 10 GDP clusters by examining the relationships 16 
between GDP scenarios and their performance. We found that GDPs under stable, low-severity 17 
weather and with large scope may score higher on the efficiency metric than we would expect. 18 
When GDPs called in the same weather conditions have high program rates, medium durations, 19 
and narrow scopes, we find that capacity utilization is higher than expected – less impacted flights 20 
lead to fewer cancellations and more arrivals (albeit delayed), and therefore, higher capacity 21 
utilization. Results also suggest that program rates are set more conservatively than needed for 22 
some poor weather conditions that end earlier than expected. GDPs with fewer revisions were 23 
associated with a higher predictability score but lower efficiency score. These findings can provide 24 
greater insights and knowledge about GDPs for future planning purposes. More specifically, the 25 
findings could, for example, be used to support discussion around, or even future guidance 26 
regarding, how to set and adjust GDP program rates. For future work, we recommend that 27 
additional data be utilized to provide a more comprehensive operational picture of GDPs, and that 28 
a wider range of performance metrics be considered. In addition, it is also recommended that the 29 
patterns of how GDPs evolve over their lifetimes be further explored using other machine learning 30 
techniques that may provide new and useful insights. 31 
 32 
Keywords: Ground Delay Program (GDP), GDP performance, unsupervised machine learning, 33 
Newark Liberty International Airport (EWR).  34 
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INTRODUCTION 1 

This work applies machine learning techniques to describe Ground Delay Programs (GDPs) with 2 
respect to changing weather forecasts, realized weather, and GDP characteristics and performance. 3 
The purpose of this analysis is to gain some insights into GDPs with respect to these several key 4 
dimensions, by describing GDP performance in response to these (changing) variables. These 5 
insights could be used to start discussions with traffic managers and air carriers that allow all to 6 
gain a greater understanding of complex patterns in the evolution and performance of GDPs. 7 
Although there has been some work in evaluating GDP performance retrospectively, most notably 8 
by Liu and Hansen (1), there has been little to no explorations into how GDPs evolve over the 9 
course of their lifetimes (typically, a day). Therefore, this research attempts to characterize GDPs 10 
with respect to weather, operational parameters, and performance, focusing on GDPs at Newark 11 
Liberty International Airport (EWR) from 2010 through 2014. Our analysis process involves: 12 
creating a comprehensive master dataset of GDP initiatives, weather forecasts, and individual 13 
flight data, merged from several datasets obtained from various sources; identifying GDP evolution 14 
scenarios through cluster analysis based on data visualization and the results of data dimensionality 15 
reduction; and understanding the relationships between GDP scenarios and performance using 16 
statistical analysis.  17 

We next present a brief introduction to the literature on GDPs, followed by a section 18 
describing the datasets used. This section also provides some basic descriptions of the GDP, 19 
weather, and operational data. Next we describe the machine learning techniques used to classify 20 
EWR GDPs into 10 types based on weather forecasts and GDP plan parameters, the performance 21 
metrics calculated for these 10 GDP types, and how the metrics’ values compare to expectation. 22 
Finally, conclude with recommendations for future work. 23 

BACKGROUND 24 

A GDP delays flights at their departure airports in order to control arrival demand at an airport 25 
where an imbalance of capacity and demand is anticipated (2, 3). The capacity shortfalls that 26 
trigger GDPs are typically due to adverse weather conditions forecasted for the arrival airport (4). 27 
Planned airport capacity and GDP duration are determined by the FAA’s Air Traffic Control 28 
System Command Center (ATCSCC) based on predicted conditions at the impacted airport. 29 
Considering the extensive use of GDPs and their significant operational impacts within the 30 
National Airspace System, they have been the subject of much attention in the literature. The 31 
majority of the existing literature focuses on improving GDP planning, accounting for airport 32 
capacity uncertainty caused by adverse weather conditions (5, 6), with one (delay minimization) 33 
(7) or more performance objectives (8). Research efforts have focused on generating airport 34 
capacity profiles from weather forecasts, to aid GDP planning (9–11). Several researchers have 35 
looked at evaluating GDP performance retrospectively (1, 12, 13), while others have attempted to 36 
classify days at airports based on weather and GDP characteristics (14–18). Overall, the existing 37 
studies have provided much insights for GDP planning and prediction, and measuring performance, 38 
which have guided this work. Although our work most closely follows the last set of papers, it 39 
differs in that we base our analysis of GDPs based on the (changing and realized) weather 40 
conditions, GDP plan parameters, and operational performance over the lifetime of each GDP. 41 

The ATCSCC issues advisories modifying GDPs in response to changing weather and 42 
traffic conditions. Modifications are quite common; in our dataset (introduced in the next section) 43 
we found that the average number of modifications per GDP was 1-2. This research attempts to 44 
characterize GDPs by these changing aspects, focusing on GDPs at Newark Liberty International 45 
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Airport (EWR) from 2010 through 2014. EWR is one of three major airports serving the New York 1 
metropolitan area, and one of the busiest airports in the US, serving over 35 million passengers in 2 
2015 (19). EWR is also frequently subject to adverse weather conditions; the TMI advisory dataset 3 
used for this study indicates that 15% of all GDPs implemented in the US from 2010-2014 occurred 4 
at EWR. Operational problems at any of the three major New York airports have been 5 
demonstrated to have wide-reaching effects (20); Liu and Hansen (1) apply their GDP performance 6 
metrics at EWR as well, providing us with a useful point of comparison for our own study of EWR 7 
GDPs. 8 

DATA 9 

The data used in this study includes GDP advisory data (from the FAA Traffic Management 10 
Initiative [TMI] Advisories database), weather forecast data (Terminal Aerodrome Forecast 11 
database [TAF]), flight data (Individual Flight [IF] dataset from the FAA’s Aviation System 12 
Performance Metrics database), and observed weather data (Aviation Routine Weather Report 13 
[METAR]). We combined these four datasets into a master dataset.  14 
 15 
Data Sources 16 
The Traffic Management Initiative (TMI) Advisories database contains ATCSCC advisories 17 
reporting TMI plans, modifications, and cancellations. We extracted 21 variables from the original 18 
dataset, including advisory type, dates, times, causes, impacted scopes and program rates. Filtering 19 
by Advisory Category “GDP” and Control Element “EWR/ZNY” yielded 2,410 advisories (765 20 
which were root advisories) from 2010 through 2014.  21 

A Terminal Aerodrome Forecast (TAF) report is issued by the US National Weather 22 
Service, and contains forecasted meteorological conditions at major US airports. The forecast 23 
pertains to visibility, ceiling, winds, and other meteorological features of interest (21). TAFs are 24 
issued at least once every six hours and generally cover a 24- to 30-hour period following the 25 
forecast (22). We extracted 28 variables from the TAF dataset including TAF issue and forecast 26 
coverage times, and forecast visibility, ceiling, winds and precipitation. After removing duplicate 27 
reports as well as those with illogical durations, the final dataset contained 96,829 forecasts from 28 
January 2010 through August 2014. 29 

The FAA’s Aviation System Performance Metrics (ASPM) includes a database of 30 
individual flights [IF], which provides detailed information including various departure and arrival 31 
timing points (scheduled gate out, flight plan gate out, actual gate out, scheduled wheels off, etc.) 32 
and flight delays reported from Traffic Flow Management System (23), OOOI and ASQP records. 33 
We selected 36 variables from this dataset, and extracted information for 879,507 flights inbound 34 
to EWR.  35 

METARs report observational surface weather data and are generated and published hourly 36 
by the US National Weather Service (24). We extracted 15 variables and 46,481 records from this 37 
dataset from January 2010 through August 2014. 38 

For all airports with departing flights destined for EWR, we combined their geographic 39 
data (longitudes, latitudes, countries, and Air Route Traffic Control Centers [ARTCCs]) and their 40 
great-circle distances from EWR to create a dataset called Airport Information (AI). By doing so, 41 
the GDP parameter “departure scope” – usually defined as a radius from the GDP airport or a set 42 
of ARTCCs – can be redefined as GDP-impacted departure airports.  43 

The data included in the merged master dataset, with original sources, are listed in Table 1. 44 
Note that each data point drawn from the TMI dataset describes a single GDP; the TAF and 45 

http://aspmhelp.faa.gov/index.php/Aviation_System_Performance_Metrics_(ASPM)


Kim, Ren, Kuhn 5 
 

METAR data sets describes a single weather report; the IF data set describes a flight; and the AI 1 
data set describes an airport. 2 
 3 
Place Table 1 here. 4 
 5 
Data Preparation 6 
To prepare the datasets for merging, we first filtered and cleaned it, and unified time zones. We 7 
filtered to include data from January 2010 through August 2014, TMI advisory category “GDP,” 8 
and control element “EWR/ZNY.” After filtering, illogical entries, such as TAFs or TMIs with 9 
abnormal (too long or negative) durations and duplicates were removed. Finally, all datasets were 10 
unified into local New York time. 11 

We also calculated several new variables from the original datasets, for the purposes of 12 
data merging and describing GDP features: 13 

• TMI dataset: We added the planned advisory/initiative durations, number of revisions, 14 
and early cancelation time (if there should be one) based on the original GDP data. 15 
Then we calculated the actual GDP advisory end times, which is the advisory begin 16 
time of the subsequent revision advisory belonging to the same GDP (if there should 17 
be one). The actual initiative end times and advisory/initiative durations were thus 18 
generated. We also matched GDP departure scope to the impacted departure airports.  19 

• TAF and METAR: we calculated a crosswind variable based on wind speed, wind angle, 20 
and runway direction. Precipitation was defined to consist of RA (rain), DZ (drizzle), 21 
SN (snow), SG (snow grains), GR (hail), GS (snow pellets), IC (ice crystals), and UP 22 
(unknown precipitation) (25). 23 

• For each flight in the IF data, departure airport ARTCC and country, and flight distance 24 
to EWR was added. 25 

We matched the TAFs and METARs to GDPs (in the TMI dataset) by time and matched 26 
IFs to GDPs by both time and geography. The steps for matching the TAFs to GDPs include: 1) 27 
for each GDP advisory, select the TAFs issued before the GDP send time, and with a start time 28 
earlier than the GDP end time or an end time later than the GDP start time; 2) for each hour of the 29 
GDP, select the TAFs with a start time earlier than the last minute of the hour, and with an end time 30 
later than the first minute of the hour; 3) if, for a GDP hour, there are several TAF records, then 31 
choose the TAF with the latest issue time and match this to the GDP. 32 

To match the METARs to GDPs, for each hour of a GDP, select the METARs issued during 33 
the hour. If there is more than one METAR for a GDP hour, select and use the most severe observed 34 
weather. 35 

The IF data was matched to GDP data through the following steps: 1) pick out flights with 36 
base estimated time of arrival (scheduled gate-in time) falling between the GDP start and end 37 
times; 2) check whether the flights were GDP exempted; 3) attach the flights impacted by a GDP 38 
to the GDP. 39 

The additional variables generated from the merging of IFs and GDPs include initially 40 
scheduled arrivals during a GDP, arrivals impacted by a GDP, ground delays, planned total delays, 41 
and actual total delays. Thus, we obtained a GDP advisory dataset with GDP advisories matched 42 
to weather forecasts and operational parameters. We then further constructed a dataset where each 43 
row represents an hour when a GDP initiative was in place, and the GDP advisories data was 44 
reorganized into this time-based format. The final dataset contains 11,177 rows and 38 columns. 45 

  46 
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Data Description 1 
From 2010 through 2014, 89% of EWR GDPs were initiated due to adverse weather, confirming 2 
that it was the dominant cause of GDPs from 2010 through 2014. Notable weather characteristics 3 
obtained from METAR data included the following. First, precipitation was the most common 4 
adverse weather condition from 2010-2014, followed by strong crosswinds (i.e. >15 knots) to 5 
parallel runways 4/22, and low ceiling/visibility (causing instrument meteorological conditions, 6 
IMC). Second, weather conditions in December to May were generally worse than in other months. 7 
However, thunderstorms were more prevalent at EWR in the summer months, consistent with 8 
general knowledge about thunderstorms across the eastern states (26). Third, adverse weather was 9 
experienced more frequently in 2010-2011 than 2012-2014. Year 2010 experienced more strong 10 
crosswinds to runways 4/22 and precipitation, while precipitation and IMC were prevalent in 2011. 11 
These observations are consistent with reports from NOAA (27). However, while adverse weather 12 
is the most common cited reason for GDP issuance, GDPs are typically caused by a combination 13 
of weather and heavy flight demands (28). Thus, we explored GDP characteristics using the 14 
METAR and individual flights datasets as well.  15 

There are five observations to be made. Firstly, weather factors, especially crosswinds to 16 
runways 4/22 and low visibility/ceiling, were the most common causes of GDPs, consistent with 17 
previous findings (29, 30). Although thunderstorms occurred with the lowest frequency of all 18 
adverse conditions, they caused a significant number of summer GDPs (June to August). 19 
Thunderstorms typically led to low GDP arrival rates and therefore, significant arrival delays (31). 20 
Secondly, although the TMI data demonstrated that weather was the major cause of GDPs at EWR, 21 
we know GDPs would not be as prevalent if flight demands were lower. The advisories and IF data 22 
indicates that more GDPs were initiated in the spring (March-May) months, and on weekdays due 23 
to heavier flight schedules. Thirdly, GDPs were typically sent in the late morning, initiated around 24 
noon, modified in the afternoon, and finished by late evening. Fourthly, most GDPs were initially 25 
planned for duration of 8-12 hours, are typically extended in a revision reaching planned durations 26 
of 10-13 hours, and actually run about 6-11 hours. Finally, each GDP had an average of 1.16 27 
revisions, while 95% were cancelled an average of two hours early. This seems to suggest that air 28 
traffic controllers were either conservative in their GDP planning, TAF forecasts are conservative, 29 
or both. 30 

METHODS AND RESULTS 31 

We first extracted GDP features with the purpose of dimensionality reduction. We then identified 32 
GDP evolution scenarios using cluster analysis. Finally, we examined correlations between GDP 33 
types (as per 10 scenarios identified in the cluster analysis) and metrics calculated to describe GDP 34 
operational performance.  35 
 36 
Data Feature Extraction 37 
We identified nine important variables in the merged dataset describing the GDPs by their 38 
forecasted weather conditions and corresponding GDP operational parameters. Six pertain to 39 
weather conditions: thunderstorm (TS), precipitation (PC), crosswind strength to runways 4/22 40 
(CW0422), crosswind strength to runway 11/29 (CW1129), ceiling (CL), and visibility (VS). The 41 
remaining three variables pertain to GDP parameters, including: GDP program rate (PR, allowed 42 
flight arrival rate), departure scope (DS, represented by the number of GDP-impacted flights), and 43 
planned initiative duration (DR). We represented GDPs using 2D greyscale images with these nine 44 
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weather/GDP parameters represented on the y-axis (each parameter normalized to [0,1] and 1 
represented by the greyscale) and time (also normalized) on the x-axis. 2 

Figure 1 shows an example of one observed GDP, as we have represented it. Since we 3 
wanted to characterize GDPs not by their durations but by how the nine identified features evolve 4 
over their duration, we divided the time period during which each GDP was active into 65 equal-5 
length intervals. For example, if a GDP was in effect from 9:00 am until 2:25 pm, the first time 6 
interval would cover 9:00-9:05 am and the sixty-fifth and final time period would cover 2:20-2:25 7 
pm. We then examined the features described in the previous paragraph as observed during each 8 
time interval. In this way, each GDP is represented by a 9 x 65 matrix (585 cells), where rows 9 
represent features and columns represent time intervals. After removing GDPs with discontinuous 10 
weather forecasts, 495 GDPs remained in the dataset.  11 
 12 
Place Figure 1 here 13 
 14 
With the goal of clustering these 585-dimensional GDPs, we performed a dimensionality reduction 15 
on the GDP data, to identify the most important variables that describe GDPs at EWR. 16 
Dimensionality reduction is the process of reducing the number of variables describing some 17 
phenomenon, by selecting a subset of the original data (feature selection) or transforming the data 18 
to a lower-dimensional space (feature extraction). The transformation can be linear or nonlinear. 19 
As linear methods can be restrictive, a technique that does not make a linearity assumption, called 20 
autoencoder, was used. An autoencoder is an artificial neural network which learns the features of 21 
inputs using a backpropagation algorithm (32). An autoencoder includes an input layer, one or 22 
more hidden layers, and an output layer. From input layer to hidden layer, the autoencoder learns 23 
representation for a data set; from hidden layer to output layer (encoder), it is trained to optimize 24 
a loss function which measures how well the data is reconstructed based on the encoder 25 
representation. Autoencoders have been applied to reduce dimensionality for characterizing time-26 
varying data in many studies, for example, Shin et al. (33) applied autoencoders to automatically 27 
classify tissue types by the change in brightness of resonance images. By comparing the clustering 28 
results with different autoencoder forms, we finally constructed an autoencoder neural network 29 
with the following structural characteristics: one input layer with 585 neurons, three hidden layers 30 
with 300, 2, and 200 neurons in each successive layer, and one output layer with 585 neurons. The 31 
original 585-dimensional data was compressed to two in the second hidden layer. The use of 32 
autoencoder allowed for data dimensionality reduction (allowing for compact representation of 33 
our original dataset while minimizing information loss) to facilitate cluster analysis. 34 
 35 
Cluster Analysis 36 
To characterize evolving GDPs under changing weather forecasts, we attempted to identify GDP 37 
evolution scenarios through cluster analysis based on the compressed 2-dimensional data. Three 38 
classes of clustering methods (𝑘𝑘-means, PAM, and hierarchical clustering) were applied, and 𝑘𝑘-39 
estimation methods (average silhouette and gap statistic) were used to determine the optimal 40 
number of clusters. By comparing their results, 𝑘𝑘 = 10  was judged to be a good candidate. 41 
However, we did further explore values of 𝑘𝑘 between 8-12, by comparing the similarity of images 42 
within the same group as well as the differences between images in different groups. We found 43 
that for 𝑘𝑘 = 8 or 9, some clusters appeared to hold very different images and thus were candidates 44 
for further division into more groups; with 𝑘𝑘 = 11 or 12, several different clusters appeared quite 45 
similar and candidates for combining into a single cluster. Finally, with the PAM clustering method 46 
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and 𝑘𝑘 = 10, the greyscale images were such that GDPs within a group were quite similar while 1 
those in different groups were more distinguished.  2 

To understand the general features of the clusters, we calculated the average of each of the 3 
nine variables for GDPs of a cluster. We also calculated the average of the variance of each variable 4 
to report the dispersion of the variables in each cluster. The clusters were characterized by 5 
forecasted weather, weather severity, weather stability across time, and GDP parameters of 6 
program rate, departure scope and duration, which are further described in Table 2. The 7 
characteristics of the 10 clusters are shown in Table 3. For more detailed results, refer to (34). 8 
 9 
Place Table 2 here 10 
Place Table 3 here 11 
 12 
We found that the clusters could be categorized into three groups based on forecasted weather 13 
conditions: 1) less severe and stable weather, with low visibility/ceiling (LVC) or strong 14 
crosswinds (CW) as the main adverse weather condition; 2) severe and unstable weather, with 15 
precipitation (PC) as the main adverse weather with crosswinds or low visibility/ceiling occurring 16 
together; and 3) very severe and unstable weather, with thunderstorms (TS) as the main adverse 17 
weather, with precipitation and low visibility/ceiling occurring together. The first category, which 18 
includes Clusters 1-3, contains the most GDPs. GDPs in clusters 1-3 were all planned with high 19 
program rates, and short to medium durations. Also, GDPs in Clusters 1 and 3 had medium to wide 20 
departure scopes while those in Cluster 2 (smallest membership) had narrow scopes. The second 21 
category, consisting of Clusters 4-8, was the second most frequently occurring group. All the GDPs 22 
in this category had medium to low program rates, medium to wide departure scopes, and medium 23 
to long planned durations. The third category, which includes Clusters 9 and 10, occurred with the 24 
lowest frequency. GDPs in this category had medium to low program rates, medium to narrow 25 
departure scopes, and short planned durations. The clustering results were used to assess expected 26 
performance as described next. 27 
 28 
GDP Performance Assessment 29 
The GDPs in each of the 10 clusters were evaluated using the efficiency, capacity utilization and 30 
predictability metrics proposed by Liu and Hansen (1). Early cancelation time and number of 31 
revisions were also explored. Then, a series of Configural Frequency Analysis (CFA) tests were 32 
conducted to assess the relationships between GDP clusters and the expected outcome of each 33 
performance metric. CFA is a widely-used, parameter-free multivariate data analysis method, 34 
which can be applied to any set of data regardless of its statistical distribution. It identifies values 35 
of metrics that occur statistically more, equal to, or less than expected under the assumption that 36 
there is no relationship between (for example) GDP clusters and values of a performance metric. 37 
Table 4 contains the results of CFA applied to our clustering results. Columns 1-3 contain cluster 38 
number, weather conditions and GDP operational parameters (shown as rate, scope, duration). 39 
Columns 4-6 show the CFA results (comparisons to expected metric performance). A “High” 40 
(“Low”) score means that, for the given metric, the observed value of the metric is higher (lower) 41 
than its expected value and that this result is statistically significant. To obtain these results, we 42 
calculated the expected frequencies using a first-order CFA model, tested the significance of the 43 
difference between observed and expected frequencies using the Z-test, and identified statistically 44 
significant configurations (at a 90% confidence level). The mean metrics values calculated for 45 
each cluster are also provided and compared against those found by Liu and Hansen (1). However, 46 
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their results are for 2011 only; we found that our metrics, when calculated for 2011, are similar. 1 
The cells highlighted in grey are of particular interest and therefore, discussed below. 2 
 3 
Place Table 4 here. 4 
 5 
Recall that CFA tests whether a configuration occurred statistically significantly higher than 6 
expected. For example, we divided the “efficiency” metric into three bins of equal size – high, 7 
medium and low efficiency. Table 4 indicates that for cluster 6, the number of observations in the 8 
“low efficiency” bin was statistically significantly higher than expected; thus, cluster 6’s 9 
“efficiency” is marked “Low.” The cells marked with “-” indicate that the results are as expected. 10 
Table 4 contains a rich set of results to discuss and synthesize; however, due to limited space, we 11 
will discuss two sets of results of particular note. 12 

The first observations pertain to the results for clusters 1-3, highlighted in light grey (and 13 
bordered in dark grey). We observe that the weather forecast that occurs with the GDPs in these 14 
clusters is less severe and stable, such that initiation of GDPs in this group may be attributed more 15 
to high demands rather than severe weather. When those GDPs have high program rates, short-16 
medium durations, and medium-wide scopes (cluster 1 and 3), we find that the efficiency metric 17 
is significantly higher than expected (as per the CFA results). Comparing with cluster 2 (high, short, 18 
narrow GDPs), this suggests that GDPs with larger scope (i.e. larger geographic scope and 19 
therefore, more impacted flights) may be more efficient (ratio of GDP-induced departure over 20 
arrival delay) than we would expect. This could be attributed to the fact that, despite a wide scope, 21 
stable weather conditions lead to more stable GDPs. When these GDPs have high program rates, 22 
medium durations, and narrow scopes (cluster 2), we find that capacity utilization is significantly 23 
higher than expected (based on CFA results). Comparing with clusters 1 and 3, this result could be 24 
due to these high program rate GDPs with narrower scopes involving less flights, leading to fewer 25 
cancellations and more arrivals (albeit delayed), and therefore, higher capacity utilization. 26 

The second set of observations pertain to the results for clusters 6-8, highlighted in darker 27 
grey. The GDPs of clusters 6-8 are distinguished by weather forecasted to be severe and unstable 28 
(i.e. rapidly changing). When a GDP with low program rate, wide departure scope and long 29 
duration (clusters 6 and 7) occurs, we find that the efficiency metric values are lower than expected. 30 
When compared to cluster 8 GDPs (low, medium, medium), this results may be attributed to 31 
unstable weather conditions and a wider scope leading to a more volatile and rapidly changing 32 
GDP, which will lead to further delays in the air, and therefore, a lower efficiency score. When a 33 
GDP with low program rate, medium departure scope and medium duration (cluster 8) occurs, we 34 
find that capacity utilization is lower than expected. With longer duration the capacity utilization 35 
is as expected. This seems to suggest that program rates are set more conservatively than actually 36 
required for some poor weather conditions that end earlier than expected, with early GDP 37 
cancelation as well. These two sets of findings are summarized in Table 5. 38 

 39 
Place Table 5 here. 40 
 41 
Different revision decisions may involve a trade-off between predictability and efficiency. Clusters 42 
6-8 have similar forecasted weather (severe and unstable with precipitation and low 43 
visibility/ceiling). By comparing these clusters, a trade-off was found to exist between high (2 or 44 
more) and low number of modifications; fewer revisions were associated with higher predictability 45 
but lower efficiency.  46 
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These results suggest the joint impact of GDP plans and weather forecasts on GDP 1 
efficiency – when weather is predicted to be less severe, a wide GDP departure scope would lead 2 
to higher-than-expected efficiency, while when weather is predicted to be severe and unstable over 3 
time, it would lead to lower-than-expected efficiency. We may interpret that, under less severe and 4 
stable forecasted weather conditions, GDPs with wider departure scope would lead to higher 5 
efficiency because they can absorb the airborne delays almost completely on ground by delaying 6 
numerous flights at their departure airport instead of en route; under long-term severe and unstable 7 
weather, less of flights’ airborne delays may be transferred to the ground, due to the uncertainties 8 
induced by the long-term unstable conditions. 9 

PRACTICAL APPLICATION OF THIS WORK 10 

Our results include clusters that show typical GDP types and weather patterns observed at EWR. 11 
These results could be used to help traffic managers save time when planning future GDPs. A 12 
recommendation engine could highlight a typical GDP or modifications to a GDP based on the 13 
observed or forecasted weather. These results could also be used by airlines, for example to 14 
generate a set of scenarios representing plausible combinations of GDPs and weather patterns. The 15 
airlines could plan against these scenarios and develop operational strategies. Our results also 16 
include details about the performances of different types of GDPs. These results could be used to 17 
start data-driven discussions with traffic managers and policy makers, which could lead to more 18 
consistent, predictable, and/or efficient GDPs. 19 

CONCLUDING REMARKS 20 

This research explored the characteristics of GDPs and weather conditions as realized during the 21 
lifetimes of the GDPs. In particular, we considered modifications made to GDPs and did not restrict 22 
our attention to GDPs as planned initially. We also examined the correlations between GDP 23 
characteristics and performance. Based on TMI advisory, weather forecast, and flight data at EWR 24 
from 2010 through 2014, we applied machine learning techniques to better observe the 25 
characteristics of GDPs as they evolved over a day at EWR. We first developed a master dataset 26 
through the merging of weather forecasts, realized weather, TMI advisories, and individual flights 27 
information datasets. Second, we visualized the GDP evolution data in order to support data 28 
processing process and clustering results. Third, we used autoencoder to reduce 585 dimensions 29 
of GDP evolution into two. Fourth, we identified GDP evolution scenarios through cluster analysis 30 
based on the compressed 2-dimensional data. Finally, we assessed correlations between the 31 
identified GDP clusters and GDP performances, using Configural Frequency Analysis.   32 

The data confirmed that, as expected, various indications of inclement weather were 33 
determined to be the most frequent causes of GDPs. After dimensionality reduction, GDPs were 34 
clustered into 10 scenarios according to weather type, severity, and stability over time, in addition 35 
to GDP duration, scope, and program rate. The results of the Configural Frequency Analysis 36 
suggest that GDPs under stable, low-severity weather and with large scope (i.e. more impacted 37 
flights) may score higher on the efficiency metric than we would expect. This could be attributed 38 
to the fact that stable weather conditions lead to more stable GDPs. When these GDPs have high 39 
program rates, medium durations, and narrow scopes, we find that capacity utilization is higher 40 
than expected – less impacted flights lead to fewer cancellations and more arrivals (albeit delayed), 41 
and therefore, higher capacity utilization. Results also suggest that program rates are set more 42 
conservatively than needed for some poor weather conditions that end earlier than expected, with 43 
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GDP being canceled early as well. GDPs with fewer revisions were associated with a higher 1 
predictability score but lower efficiency score.  2 

The results of this work could be used to raise awareness of typical and unusual patterns in 3 
how GDPs are revised in response to changing weather conditions. The methodology could be 4 
applied to study other forms of air traffic flow management, to study how, for example, FAA 5 
playbook routes and reroute initiatives are used. For future work, we recommend that additional 6 
data be utilized to provide a more comprehensive operational picture of GDPs, and that a wider 7 
range of performance metrics be considered in the CFA analysis. In addition, it is also 8 
recommended that the patterns of how GDPs evolve over their lifetimes, with respect to several 9 
key variables identified using statistical analysis and dimensionality reductions, be further 10 
explored using other novel machine learning techniques that may provide new and useful insights. 11 
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TABLE 1 Original Data Used in Master Dataset 1 
 2 
Name Source Description 
Year TMI Advisory send year 
AdvisoryDate UTC TMI Advisory send date 
AdvisoryNumber TMI Label of the advisory 
SendDate.Time.UTC TMI Advisory send date and time (time zone = GMT) 
AdvisoryCategory TMI TMI category; we have chosen GDPs only. 
AdvisoryType TMI Advisory type, “GDP” or “GDPX” (GDP cancellation) 
ControlElement TMI ARTCC which issued the advisory. Here, it should be “EWR/ZNY”. 
RootAdvisoryDate.UTC TMI Send date of this advisory’s root advisory 
RootAdvisoryNumber TMI Advisory Number of this advisory’s root advisory 
Derived.BgnDate.Time.UTC TMI The begin time of the GDP or GDPX advisory (time zone = GMT) 
Derived.EndDate.Time.UTC TMI The end time of the GDP or GDPX advisory (time zone = GMT) 
Is.RootAdvisory TMI Whether this advisory is a root advisory (“Yes” or “No”) 
Canadian.Dep.Arpts.Included TMI Impacted Canadian departure airports included in the advisory 
Dep.Scope TMI Impacted departure scope: radius or a set of ARTCCs. 
GDP.Bgn.Date.Time.UTC TMI GDP begin time (time zone = GMT) 
GDP.End.Date.Time.UTC TMI GDP end time (time zone = GMT) 
GDPX.Bgn.Date.Time.UTC TMI GDP cancel begin time (time zone = GMT) 
GDPX.End.Date.Time.UTC TMI GDP cancel end time (time zone = GMT) 
Impacting.Condition TMI Causes of the advisory 
Program.Rate TMI Hourly arrival capacity to GDP airport, for each hour. 
Exempt.Dep.Facilities TMI Airports exempt by the advisory 
Issued date & time TAF TAF issue Year, Month, Day, Hour, Minute 
From date & time TAF Forecast start Year, Month, Day, Hour, Minute 
To date & time TAF Forecast end Year, Month, Day, Hour, Minute 
Wind Angle TAF Forecasted wind angle (degrees) 
Wind Speed TAF Forecasted wind angle (knots) 
Visibility TAF Forecasted visibility (miles) 
Ceiling TAF Forecasted ceiling (100 feet) 
RA TAF Forecasted occurrence of rain (1 = yes, 0 = no) 
DZ TAF Forecasted occurrence of drizzle (1 = yes, 0 = no) 
SN TAF Forecasted occurrence of snow (1 = yes, 0 = no) 
SG TAF Forecasted occurrence of snow grains (1 = yes, 0 = no) 
GR TAF Forecasted occurrence of hail (1 = yes, 0 = no) 
GS TAF Forecasted occurrence of snow pellets (1 = yes, 0 = no) 
IC TAF Forecasted occurrence of ice crystals (1 = yes, 0 = no) 
UP TAF Forecasted occurrence of unknown precipitation (1 = yes, 0 = no) 
TS TAF Forecasted occurrence of thunderstorm (1 = yes, 0 = no) 
start.time METAR Start date and time of the METAR observation  
end.time METAR End date and time of the METAR observation 
Wind.Angle METAR Observed wind angle (degrees) 
Wind.Speed METAR Observed wind angle (knots) 
Visibility METAR Observed visibility (miles) 
Ceiling METAR Observed ceiling (100 feet) 
RA METAR Observed occurrence of rain (1 = yes, 0 = no) 
DZ METAR Observed occurrence of drizzle (1 = yes, 0 = no) 
SN METAR Observed occurrence of snow (1 = yes, 0 = no) 
SG METAR Observed occurrence of snow grains (1 = yes, 0 = no) 
GR METAR Observed occurrence of hail (1 = yes, 0 = no) 
GS METAR Observed occurrence of snow pellets (1 = yes, 0 = no) 
IC METAR Observed occurrence of ice crystals (1 = yes, 0 = no) 
UP METAR Observed occurrence of unknown precipitation (1 = yes, 0 = no) 
TS METAR Observed occurrence of thunderstorm (1 = yes, 0 = no) 



Kim, Ren, Kuhn 17 
 

Name Source Description 
DEP_YYYYMM IF Scheduled Departure Year and Month (Local Date) 
DEP_DAY IF Scheduled Departure Day (Local Day) 
DEP_HOUR IF Scheduled Departure Hour (Local Hour) 
DEP_QTR IF Scheduled Departure Quarter Hour (Local Qtr) 
ARR_YYYYMM IF Scheduled Arrival Year and Month (Local Date) 
ARR_DAY IF Scheduled Arrival Day (Local Day) 
ARR_HOUR IF Scheduled Arrival Hour (Local Hour) 
ARR_QTR IF Scheduled Arrival Quarter Hour (Local Qtr) 
OFF_YYYYMM IF Actual Wheels Off Year and Month (ASQP/OOOI Off Local Date) 
OFF_DAY IF Actual Wheels Off Day (ASQP/OOOI Off Local Day) 
OFF_HOUR IF Actual Wheels Off Hour (ASQP/OOOI Off Local Hour) 
OFF_QTR IF Actual Wheels Off Quarter Hour (ASQP/OOOI Off Local Qtr) 
ON_YYYYMM IF Actual Wheels on Year and Month (ASQP/OOOI On Local Date) 
ON_DAY IF Actual Wheels on Day (ASQP/OOOI On Local Day) 
ON_HOUR IF Actual Wheels on Hour (ASQP/OOOI On Local Hour) 
ON_QTR IF Actual Wheels on Quarter Hour (ASQP/OOOI On Local Qtr) 
FAACARRIER IF Flight Carrier Code - ICAO 
FLTNO IF Flight Number 
Dep_LOCID IF Departure Location Identifier 
Arr_LOCID IF Arrival Location Identifier 
SchOutTm IF Scheduled Gate Departure Time (Local) HH:MM 
FPDepTm IF Flight Plan Gate Departure Time HH:MM 
ActOutTm IF Actual Gate Out Time HH:MM 
SchOffTm IF Scheduled Wheels Off Time HH:MM 
FPOffTm IF Flight Plan Wheels Off Time HH:MM 
ActOffTm IF Actual Wheels Off Time HH:MM 
DlaSchOff IF Airport Departure Delay Minutes (Based on Schedule) 
DlaFPOff IF Airport Departure Delay Minutes (Based on Flight Plan) 
DELAY_AIR IF Airborne Delay Minutes 
EDCTOnTm IF Wheels on Time HH:MM (Filed on EDCT) 
ActOnTm IF Actual Wheels on Time HH:MM 
SchInTm IF Scheduled Gate-In HH:MM 
FPInTm IF Flight Plan Gate-In HH:MM 
ActInTm IF Actual Gate In Time HH:MM 
DlaSchArr IF Arrival Delay in Minutes (Compared to Scheduled) 
DlaFPArr IF Arrival Delay in Minutes (Compared to Flight Plan) 
Country AI The country in which the airport is located 
City AI The city in which the airport is located 
Latitude AI Airport latitude 
Longitude AI Airport longitude 
ARTCC AI ARTCC which the airport belongs to (for US & Canadian airports only) 
Distance AI Great circle distance between the airport and EWR airport (in miles) 
 1 
  2 
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TABLE 2 GDP Cluster Characteristics 1 
 2 
Characteristic Values 
Forecasted 
adverse 
weather 

⋅ Crosswinds (CW) >9.4 knots 
⋅ Precipitation (PC) accounting for >30% of GDP duration 
⋅ Thunderstorms (TS) accounting for >30% of GDP duration 
⋅ Low visibility/ceiling (LVC):  <3 miles, <1000 feet 

Weather 
severity 

⋅ Less severe: only strong crosswinds (>15 knots), low ceiling (<1000 feet) 
or low visibility (<4 miles) forecasted (35) 

⋅ Severe: precipitation plus strong crosswinds, low ceiling or low visibility 
(< 4 miles) forecasted 

⋅ Very severe: thunderstorms forecasted 
Weather 
stability across 
time 

⋅ Stable: no weather variables expected to change significantly over time 
⋅ Medium: 1 weather variable expected to change significantly over time 
⋅ Unstable: ≥2 weather variables expected to change significantly over time 

GDP program 
rate 

⋅ Low/Medium: hourly program rate ≤35 arrivals/hour 
⋅ High: hourly program rate >35 arrivals/hour. 

GDP departure 
scope 
 

⋅ Narrow: number of impacted flights <100 
⋅ Medium: number of impacted flights between 100-130 
⋅ Wide: number of impacted flights >130 

GDP planned 
duration 

⋅ Short: planned duration <9 hours 
⋅ Medium: planned duration 9 – 11 hours 
⋅ Long: planned duration >11 hours 

  3 
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TABLE 3 Cluster descriptions 1 
 2 
Cluster Weather types Weather severity Weather stability GDP Type # Obs 
1 CW Less severe Stable High, Wide, Medium 110 
2 LVC, CW Less severe Stable High, Narrow, Short 39 
3 CW Less severe Stable High, Medium, Short 151 
4 PC, CW Severe Unstable Low, Wide, Long 23 
5 LVC, PC Severe Unstable Medium, Wide, Long 46 
6 PC, LVC Severe Unstable Medium, Wide, Long 34 
7 PC, LVC Severe Medium Low, Wide, Long 36 
8 PC, LVC Severe Medium Low, Medium, Medium 37 
9 TS, PC, LVC Very severe Unstable Medium, Medium, Short 26 
10 TS, PC, LVC Very severe Medium Low, Narrow, Short 10 
 3 
  4 
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TABLE 4 CFA Results and Cluster Performance 1 
 2 
Cluster 
 

Weather  
forecast 

GDP 
parameters 

CFA results Mean values 
1 2 3 4 5 1 2 3 4 5 

1 Less severe, 
stable 

High, wide, 
med 

High -* - ≥2 - 1.03 0.55 0.50 2.20 1.15 

2 Less severe, 
stable 

High, narrow, 
short 

- High - - 0 1.02 0.74 0.34 1.88 0.31 

3 Less severe, 
stable 

High, med, 
short 

High - - - 0 1.05 0.64 0.44 1.94 0.64 

4 Severe, 
unstable 

Low, wide, 
long 

- - - - ≥2 1.00 0.46 0.54 1.48 1.70 

5 Severe, 
unstable 

Low, wide, 
long 

- - - - ≥2 0.99 0.43 0.48 1.79 1.66 

6 Severe, 
unstable 

Low, wide, 
long 

Low - High - - 0.97 0.51 0.54 1.35 1.09 

7 Severe, 
medium 

Low, wide, 
long 

Low - - - ≥2 0.95 0.58 0.52 1.92 1.50 

8 Severe, 
medium 

Low, med, 
med 

- Low - - ≥2 0.93 0.41 0.45 1.65 1.57 

9 Very severe, 
unstable 

Low, med, 
short 

- - - - - 0.99 0.46 0.53 1.60 1.38 

10 Very severe, 
unstable 

Low, narrow, 
short 

- - - - 0~1 0.91 0.62 0.43 2.08 0.30 

1: Efficiency (planned/actual arrivals; unitless); 2: Capacity utilization (ratio; unitless); 3: Predictability 3 
(ratio; unitless); 4: Early CNX time (hrs); 5: Revisions (no.) 4 
* “-”: occurred as expected 5 
  6 
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TABLE 5 CFA Results Summary (key observations) 1 
 2 

Clusters Weather 
forecasts 

GDP features Possible reason 

1-3 
• less 

severe 
• stable 

• Impacting more flights 
• More efficient than 

expected 

Despite a wide scope, stable weather 
conditions led to more stable GDPs.  

• Impacting less flights 
• Higher capacity 

utilization than expected 

Smaller number of impacted flights led to 
fewer cancellations and more arrivals. 

5-8 • severe 
• unstable 

• Impacting more flights 
• Less efficient than 

expected 

Unstable weather conditions and a wide 
scope led to more volatile and rapidly 
changing GDP, and further (airborne) delays. 

• Impacting less flights 
• Lower capacity utilization 

than expected 

Program rates are set more conservatively 
than actually needed for some poor weather 
conditions that end earlier than expected; 
GDP canceled early as well. 

 3 
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