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Abstract

In this thesis, the lunar wake is investigated with a hybrid-kinetic model to

simulate the dynamics of the ions as particles as well as in the fluid approxi-

mations. Two-fluid models of the entire wake whether interacting (the method

of characteristics) or not (the analytic model) are developed based on a simple

single-fluid description of only one edge of the lunar wake. A finite element

code is also used to study the lunar wake as a single-fluid and with the two-

fluid interacting and, two-fluid non-interacting models. All these models are

two dimensional, in a plane of the solar wind velocity and the interplanetary

magnetic field (IMF). The orientation of the IMF is one of the essential ele-

ments controlling the formation of the wake and is discussed in this thesis. To

validate these models, two different IMF oriented in-situ observations of the

density in the lunar wake from the ARTEMIS mission are presented. Cross-

comparisons between densities calculated by these models are also provided.

These 2D models can capture the conical shape of the lunar wake, the den-

sity depletion, and the relation between the length of the wake and the IMF

orientation. However, the formation of the standing shock wave behind the

Moon can only be seen from the finite element approach. A relatively good

qualitative and quantitative agreement between the results of the observations

and each model is achieved. To check the consistency of the assumptions

made in the fluid model, a test particle method is applied to calculate the

distribution function of the ions on their trajectories in the terminator very

close to the Moon surface by using the approximate fields from an analytic
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model. The calculated macroscopic variables from the distribution functions

are compared with the ones assumed in the analytic-fluid description, and an

excellent agreement is obtained.
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Parts of Chapter 2 and Chapter 3 of this thesis are based on a paper by
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Chapter 1

Introduction

1.1 Thesis outline

In this chapter, a short introduction to the interaction between the solar

wind and obstacles in the solar system is given with a particular emphasis

on lunar-type interactions. Kinetic and fluid models to study the dynamics

of plasma in the lunar wake are described. In addition a short review of the

missions that have been sent to investigate the lunar wake is briefly presented.

In Ch. 2, a set of two-fluid equations is presented for describing the parallel

expansion of ions in the wake region of a Moon-like object. These equations

are then solved fully analytically following an approach proposed by Hutchin-

son [31]. In this solution, assumptions are made and justified that reduce the

wake problem to be cast as a two-dimensional problem in the plane defined by

the solar wind velocity and the local interplanetary magnetic field. Hutchin-

son [31] developed a simple single-fluid model to study only one edge of the

lunar wake by assuming that the magnetic field and the perpendicular veloc-

ity are constant. Hutchinson’s original model is then extended to account for

the interaction between two fluid flows entering the wake from different di-

rections, that are counterstreaming in the direction parallel to the magnetic

field. Then the interacting two-fluid equations are solved with "the method of

characteristics" for the first time in this thesis. The results of these two-fluid

models (the analytic model and the method of characteristics) are discussed

and compared. The good qualitative and quantitative agreement between the

two models validate the assumption of ignoring the coupling between the two

1



ion fluids.

In Ch. 3, other computer models to simulate the wake of the Moon are

presented. Paral’s hybrid code [58] and a finite element code [48] are modi-

fied and used for simulating the wake downstream of the Moon. The density

profiles calculated from these models are then compared. The finite element

model can capture shock waves forming in the lunar wake as predicted by

[53], [54] while the hybrid model does not demonstrate the sharp density de-

pletion in the wake. Results obtained with these models are compared with

ones calculated with the method of characteristics and are found to be in good

qualitative agreement.

In Ch. 4, a test-particle code [50] is applied to calculate the trajectory of

ions by using the electric fields obtained from the analytic model. By taking

moments of the computed distribution functions, the consistency of assump-

tions made in the derivation of the two-dimensional fluid model can be checked.

The calculated moments from the distribution function are in general agree-

ment with the ones assumed in the analytic model, although differences appear

when looking at details of the moments and the distribution function in the

wake region.

In Ch. 5, data from two different IMF oriented "Acceleration, Recon-

nection, Turbulence and Electrodynamics of the Moon’s Interaction with the

Sun", ARTEMIS, satellite observations are reported. Measured densities from

ARTEMIS are compared with densities computed from all models presented

in this thesis. Similarities and differences are also discussed.

In Ch. 6, a summary of the findings in this thesis along with some con-

cluding remarks, and possible topics for future work are presented.
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Figure 1.1: Schematic diagram of solar wind interactions with different obsta-
cles in the solar system [courtesy of NASA].

3



1.2 The plasma state

Plasma is described as a quasineutral gas of charged particles that exhibit

collective behavior [7]. In fact, the plasma is able to rearrange its charged

particles (electrons and ions) to be locally neutral. The volume enclosing

this neutral area of the plasma is called the Debye sphere. This means that

a plasma approaches neutrality if one looks at it on a scale larger than the

radius of this sphere. The electron Debye length, λDe is defined as,

λDe =

(
ε0kTe
nee2

)1/2

, (1.1)

where, ε0 = 8.85−12 C2/Nm2 is the free space permittivity, k = 1.38 × 10−23

J/K is the Boltzmann constant, ne is electron number density, Te is electron

temperature, and e is electron charge. In order for a plasma to be quasineutral,

the length scale of the system must be large compared to the Debye length

which is one of the criteria for an ionized gas to behave a plasma. In addition,

the number of particles inside the sphere with radius of Debye length must be

much larger than 1 to meet the second criterion for being a plasma. Another

important characteristic of a plasma is called the plasma frequency ωpe which

is defined as,

ωpe =

(
nee

2

ε0me

)1/2

, (1.2)

where, me is the electron mass. The average time between two collisions, τn
, must be larger than the inverse of the plasma frequency which is the third

criterion for an ionized medium to be in a state of plasma [2], [3], [7], [20].

1.3 The solar wind

The solar wind is a stream of charged particles flowing outward from the sun.

The outer layer of the sun’s atmosphere, the corona, gets to a very high tem-

perature, around 10× 106 K. The gravity of the sun is not sufficiently strong

to confine plasma particles at such temperatures, which then extend out into

interplanetary space and become the source of the solar wind. In other words

the gas pressure differences between the solar corona and the interstellar space

4



Figure 1.2: The 2D structure of the Parker spiral. (Figure from a paper by
Krista 2012 [42])

make the plasma stream out into the interplanetary space at speeds ranging

between ∼ 300 − 1400 km/s [2]. The temperature of the corona decreases

gradually to a value of the order 105 K at the Earth orbit [29]. Another

important physical parameter, besides the temperature and velocity, is the

interplanetary magnetic field (IMF). Because the solar wind plasma is highly

conductive, the interplanetary magnetic field (IMF) does not diffuse efficiently

across the plasma. The magnetic field lines are "frozen in"; that is, they are

constrained to move with the plasma [41]. The solar rotation combined with

the radial expansion of the solar wind, cause the frozen-in interplanetary mag-

netic field lines to take a spiral shape known as the Parker spiral [59], [42].

Table 1.1 shows some of the typical properties of the solar wind at one

astronomical unit (1 AU = 1.5 × 1013 cm). These parameters can change

significantly and abruptly in time depending on space weather conditions.

This is the case in particular in a solar storm, during which solar wind plasma

density and speed can increase by more than 100%.
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Speed 300-1400 km/s
Density 1-10 cm−3

Magnetic field 1-7 nT
Sound speed 60 km/s
Alfvéin speed 40 km/s
Proton gyroradius 80 km
Temperature 1-8×105K

Table 1.1: Some of the observed and derived properties of the solar wind near
the orbit of the Earth (1 AU) which are taken from Kivelson and Russell [41].

1.4 Obstacles in the solar wind

The plasma flows outward from the Sun supersonically and super-Alfvénically

into the solar system. In fact, it carries charged particles and magnetic fields

which interact with planets, moons, and other bodies in the solar system.

Plasma in the solar wind is approximately collisionless. The objects that the

solar wind interacts with are very different in size, from submicrometer dust

to giant planets (refer to Fig. 1.1). They also have various degrees of mag-

netization, internal conductivity, and atmospheric density [22]. The nature of

this interplay depends on the characteristics of the obstacle. Table 1.2 shows

some of the main characteristics for a number of the planets and some of their

moons in the solar system [9]. There are four types of object-solar wind inter-

actions in the solar system that can be identified. They are as follows:

1-Lunar type : This class of interaction is characterized by the ab-

sence of an atmosphere for an unmagnetized planet. The solar wind directly

impacts the surface of the unmagnetized object and is absorbed by it. With

this type of interaction, a vacuum region, or wake appears downstream of the

body. There are various factors at play in this type of interaction such as, the

size of the unmagnetized body, the typical solar wind Debye length which is

∼ 10 m, the ion and electron gyroradii rgi ∼ 120 km and rge ∼ 3 km, the ion

Mach cone angle tan−1(Cs/VSW ) ∼ 6◦, where Cs ∼ 42 km/s is the ion sound

speed and VSW ∼ 400km/s is the solar wind flow speed. For smaller objects,

that are comparable in size to the Debye length, the day and night processes

6



Table 1.2: Some of the main properties of the planets and their moons in the
solar system which are taken from Cravens 1997’s book [9].

Planet Mass
(1023 kg)

Equatorial
Radius (km)

Average heliocentric
distance (AU)

Mercury 3.33 2,439 0.46
Venus 48.7 6,050 0.72
Mars 6.42 3,398 1.52
Earth 59.8 6,378 1
Jupiter 18,990 71,400 5.2
Saturn 5,686 60,330 9.51
Moon 0.73 1,737 384,400 km to Earth
Io 0.89 1816 421,700 km to Jupiter
Titan 1.36 2,575 1.2×106 km to Saturn
Phobos 10.6×1015 kg 11.267 9380 km to Mars

Planet Period of
rotation(days)

Magnetic dipole
moment relative
to Earth

Surface pressure
of atm. (bar)

Mercury 58.6 3.8×10−4 10−14

Venus -243 < 5×10−5 80
Mars 1.03 < 2×10−4 5 ×10−3

Earth 1 1.0 1
Jupiter 0.41 1.9×104 0.3
Saturn 0.43 6.0×102 0.5
Moon 27.3 0 0
Phobos 0.32 0 0
Titan 15.9 0 1.50
Io 0.77 0 (0.3-3.0) ×10−9

1

AU=1.49×106 km
Earth’s magnetic dipole moment is 7.9× 1015Tm3
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can be intertwined. However, in the Moon case, the lunar size Rm is much

larger than the Debye length Rm � c/ωpi � λD and a wake is formed on the

night side which is clearly distinct from the processes occurring on the dayside

[5], [16], [22], [79]. The Earth’s Moon, asteroids, and certain satellites of other

planets such as Phobos (Mars) are in this category. A full description of this

type of interaction will be discussed later in Ch. 2.

2-Earth type : The strong magnetic field of these objects creates a

Figure 1.3: Schematic illustration of the Earth magnetosphere, and the regions
of importance such as, Bowshock, Magnetopause. (taken from http://bloggie-
360.blogspot.com/2014/03/us-magnetic-field-map-from-w3.html)

magnetosphere which prevents the solar wind from penetrating into it. As

a consequence a bow shock appears upstream in the solar wind flow around

the magnetosphere obstacle (see Fig. 1.3). On the dayside of the planet, the

magnetic field is compressed by the solar wind dynamic pressure and, On the

nightside, the magnetic field is confined into a long tail stretching anti-sunward

[25]. The Earth, Mercury, and Jupiter belong to this kind of interplay.

3-Venus type : These celestial bodies are not magnetized but they have a

dense atmosphere and ionosphere. Ionospheric plasma is a very good electrical

conductor that can act as an obstacle to the solar wind flow and cause a bow
8



shock. Mars, Titan and, Venus are among this group.

4-Comet type : Comets are unmagnetized bodies which are composed

of rock, dust, water and, frozen gases. When they are close to the Sun, the

frozen gases sublimate, producing a coma. In this case they are in a Venus

type group. Otherwise, when they are far from the Sun, their interaction with

the solar wind is of the lunar-type [9], [46].

Figure 1.4: Schematic illustration of the lunar orbit.Taken from NASA’s illus-
tration Inset: SOHO: ESA and NASA [courtesy of NASA].
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1.5 The Moon

The Moon orbits the Earth with an orbital radius of ' 60RE (RE = 6, 378

km). The Moon passes through different regions such as solar wind and the

Earth’s magnetotail as is illustrated in Fig. 1.4. The density and energy of the

plasma at the Moon varies widely in each of these regions. Different types of

plasma hit the lunar surface as the Moon does not have a global magnetic field

or a thick atmosphere. As the solar wind flows supersonically through the solar

system, it interacts with the Moon. The lunar surface can absorb the plasma

on the day-side and a plasma density depletion region, or wake is formed on

the night-side. Electrons which are lighter, more mobile, and have a higher

thermal speed fill the wake ahead of ions. Then, ions are accelerated into the

wake because of the resulting the ambipolar electric field. The simple theory

of plasma expansion into the wake predicts the density decreases exponen-

tially from its edge towards its center which was seen by the WIND spacecraft

crossing the lunar wake at a distance of 6.5 lunar radii (Rm) on December

1994 [56]. Simple one-dimensional self-similar solutions have been derived to

investigate electron parameters and magnetic field perturbations in the lunar

wake for plasma expansion into the wake and considering a non-Maxwellian

distribution function for electrons [21]. Such simple one-dimensional models of

expansion used in the above papers cannot explain the velocity of ions parallel

to the magnetic field filling the lunar wake because they do not account for

the spherical shape of the Moon [19], [21], [56], [64].

An analytic self-consistent electrostatic expansion model of the near-Moon

wake has also been derived and applied to predict the proper velocity of ions

which was observed by the Chandrayaan-1 spacecraft [30], [31], [33].

Studying the Moon-solar wind interaction is of interest because of possible

future inhabited missions to the Moon. The night-side of the Moon down-

stream of the solar wind, has been studied from the Explorer 35 and Apollo

missions which made the first observations of the lunar wake [39], and more
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Table 1.3: Some of the early missions on and above the Moon. Modi-
fied from [25] and https://www.nationalgeographic.com/science/space/space-
exploration/moon-exploration/
Mission Year Instrument Note
Luna 2,
Soviet Union 1959 Magnetometer First spacecraft landed

on the Lunar surface.
Luna 3,
Soviet Union 1959 Captured the first images

of the Moon’s far-side.
Luna 9,
Soviet Union 1966 The first vehicle to land

safely on the surface.
Luna 10,
Soviet Union 1966 Magnetometer,

charged particle detector
The first spacecraft to
orbit the Moon.

LRO,
USA 1966-1967 An

imaging system

%99 of the lunar surface
was photographed for the
subsequent crewed landings.

Explorer 35,
USA 1967-1973 Magnetometer, Faraday cup

plasma detector
Apollo 11,
USA 1969 The first mankind

lands on the Moon.

Apollo 12,
USA 1969-1977

Magnetometer, Faraday cup,
plasma detector, electrostatic
ion analyzer

To explore the surface.

Apollo 14,
USA 1971-1977

Magnetometer, Faraday cup
plasma detector, electrostatic
ion analyzer, electrostatic
electron and ion analyzer

Luna 24,
Soviet Union 1976 The last spacecraft to

land on the Moon.
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recently, by the ARTEMIS flybys through the lunar wake [1]. The impor-

tant features of the Moon and solar wind interactions were discovered with

Explorer 35 observations such as the formation of the lunar wake behind the

Moon because of the absorption of solar wind plasma by the lunar surface [47].

Ambipolar electric fields near the boundary of the lunar wake were another

fundamental feature of the lunar wake captured by the observations in the

1990s [25] and [56]. In fact, the inner planets can give us a clearer picture of

the history of the solar system. In this case, the Moon constitutes a valuable

stepping stone for better understanding the origin of the solar system. The

original state of this natural satellite is not altered by volcanism, plate tec-

tonics, and atmospheric processes that tend to destroy the information on the

Venus-type planets [10], [39]. Knowing more about the Moon can therefore

provide valuable information on the early formation of the solar system, and

on the evolution of other terrestrial planets such as Mars and Venus. In order

to achieve this purpose, robots and/or humans may travel to the lunar surface

in the near future. Future missions require an excellent understanding of space

conditions in the Moon environment in order to yield optimal scientific results.

Several missions have already been sent to study this environment and the in-

teraction between the solar wind and the Moon, including the structure of the

wake. Tables 1.3 and 1.4 list some of the missions on and in orbit around the

Moon.
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Table 1.4: Some of the recent missions on and above the Moon. Modi-
fied from [25] and https://www.nationalgeographic.com/science/space/space-
exploration/moon-exploration/
Mission Year Instrument Note

Wind,
USA 1994

Magnetometer, electric field
sensor, Faraday cup
plasma detector, electrostatic
electron and ion analyzer

NOZOMI,
Japan 1998 Electrostatic electron

and ion analyzer
Lunar Prospector,
USA 1998-1999 Magnetometer, electrostatic

electron analyzer
Confirmed the ice
at the lunar poles.

Kaguya,
Japan 2007-2009

Magnetometer,electric
field sensor, electrostatic
electron and ion analyzer

Chandryaan-1,
India 2008-2009

Electrostatic ion analyzer,
energetic neutral atom
analyzer

LRO,
USA 2009

Found super cold
temperature on the
surface.

Chang-E2,
China 2010-2011 Electrostatic ion analyzer

ARTEMIS,
USA 2010-Present

Magnetometer, electric field
sensor, electrostatic electron
and ion analyzer,
solid state telescope
(electron,ion)

Chang-E4,
China 2019 First landing

on the far-side.
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Figure 1.5: Illustration of the ARTEMIS spacecraft near the lu-
nar wake. Taken from: http://www.planetary.org/multimedia/space-
images/earth/artemis-lunar-wake.html

1.6 Different approaches for studying space plasma
physics

Traditionally, a complex physical system has been investigated through

experiments and theoretical approaches. Computer modeling has been used in

scientific research to simulate different physical systems. To validate a model,

its results should be compared with observations. In addition, the results of

simulation models can be used to predict the findings of the experiments that

have not been done or are even doable [11]. Obviously, computer simulations

have an essential role in the development of plasma physics (see Figure 1.6).

John Dawson and Oscar Buneman were pioneers in the use of computers to

simulate plasma by following large numbers of particles in the late 1950’s and

early 1960’s [6]. In general, computer simulations of a plasma are classified

into two main groups: kinetic and moment descriptions.
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Figure 1.6: Different approaches to studying space plasma physics.

1.6.1 Kinetic simulations

Kinetic simulations provide a macroscopic and comprehensive microscopic

picture of a plasma, including the interactions between particles and electro-

magnetic fields. The physics of individual particles is investigated by either

numerically solving the plasma kinetic equations or computing the motion of

a group of charged particles in their self-consistent electric and magnetic fields

as is done for example, in Particle In Cell (PIC) simulations. In PIC codes

the interplay between particles together with the external fields are considered

[11]. In kinetic models, each particle is characterized by position r and velocity

v in phase space. The probability density of points in this (r,v) space at the

time t is proportional to the distribution function f(r,v, t), which is a function

of seven independent variables f(x, y, z, vx, vy, vz, t) [60]. Actually, by taking

the total time derivative of f and ignoring the collisional forces in comparison

with collective interaction, one of the fundamental equations of motion for col-

losionless plasma, the Vlasov equation (1.3), is derived. The Vlasov equation

governs the evolution of the distribution function in phase space.

∂f

∂t
+ v.5 f +

q

m

(
E +

v×B
c

)
.
∂f

∂v
= 0, (1.3)
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where E and B are electric and magnetic fields, respectively. It is important

to realize that people have already studied the Moon-solar wind interactions

kinetically. For example, Farrell et al. [12] used a 1D electrostatic PIC code

to study different features of the lunar wake. They showed that the counter-

streaming ion beams which are generated by ambipolar E fields are consistent

with WIND observations. In addition, a 2D electromagnetic PIC simulation

predicts that the negatively charged lunar surface can generate an intense

electric field that is in the same direction as the ambipolar electric field at

the wake edge [40]. Tao et al. [68] also performed kinetic simulations with

a 1-D Vlasov code and showed that the observed electrostatic waves by the

Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s

Interaction with the Sun (ARTEMIS) satellite are on the electron beam mode

branch.

1.6.2 Hybrid models

In this method ions are treated kinetically, and electrons as a fluid. Hybrid

codes are used to model phenomena that occur on shorter time and distance

scales than can be treated with the MHD formalism and yet do not resolve

processes that occur on electron particle scales. The relevant scales are then

the ion gyro-radius and ion inertial length for spacial scales, and inverse ion

gyrofrequency for time scale. In space physics, these length scales typically

are on the order of 10’s to 100’s of Km and times are on the order of seconds.

These ion scales are readily resolved by satellite instrumentation [45], [63], [76].

With attention to the Moon-solar wind interactions, Kallio [38] presented the

first 3D hybrid simulation of the Moon-solar wind interaction and showed that

a long tail (> 10Rm) of depleted plasma density forms on the night side, along

with an enhancement of the magnetic field in the wake boundary and a de-

creased field in the center of the wake. Wang et al. [74] used a 3D hybrid code

to study electromagnetic disturbances in the solar wind, and showed that the

magnetic field was enhanced by a factor of about 1.4 in the middle of the lunar

wake, with depletion at the two sides due to the lunar absorption effect. A
16



similar approach used by Holmstrom et al.[28] predicts the occurrence of kinks

in the magnetic field at the wake boundary. In addition, Wiehle et al. [75]

used the dynamic solar wind data as input parameters to the 3D hybrid code

to show that the magnetic field tilt (nonzero x-component of magnetic field)

causes an asymmetry in the velocity magnitude. In Ch. 3 a 2D hybrid code

is applied to simulate the lunar wake.

1.6.3 Fluid simulations

In problems with slow time variations, it is more convenient to calculate

certain macroscopic averages such as, particle density and thermodynamical

pressure instead of the microscopic information of the distribution function [2].

Fluid dynamics treats a group of particles as an entity and the particles are

considered to be non-interacting [20], [60]. Conservation equations are solved

in the fluid description. By multiplying the Vlasov equation by powers of

velocity and integrating over all of velocity space, fluid equations are derived,

-Zeroth moment : Equation (1.3) is multiplied by (v0 = 1) and integrated

over the velocity space V , which gives the continuity equation in real space,

∂ns
∂t

+∇∇∇.(nsVVV s) = 0. (1.4)

It states that by changing the number density per unit volume in time, particles

are leaving the volume to conserve the number density. Here, nsVVV s is known

as the number flux, VVV s is the flow velocity, ns is the average number density,

and the subscript s represents a species.

-First moment : If the Vlasov equation is multiplied by (VVV 1 = VVV ) and

integrated over the entire velocity space V , the result is,

∂(msnsVVV s)

∂t
+∇∇∇.(msnsVVV sVVV s) = nsqs(EEE + VVV s ×BBB)−∇∇∇.

←→
PPP s . (1.5)

This is the momentum equation which shows that the momentum is conserved.

In Eq. 1.5,
←→
PPP s is the stress tensor and ms is the mass corresponding to spices

s. The first and the second terms on the left side of this equation correspond
17



to the time and spatial variations of momentum per unit volume respectively.

With some transformations, and considering the continuity equation (1.4), the

left side of this equation can be expressed as the total time derivative,

dVVV s

dt
=
∂VVV s

∂t
+ (VVV s.∇∇∇)VVV s. (1.6)

Equation (1.6) in fluid mechanics is called the convective derivative. Hence-

forth, the right-hand side of the momentum equation represents the forces per

unit volume; the first term is the electromagnetic force, the second term is the

pressure gradient force [20], [43], [44], [60].

By increasing the moments new useful equation can be obtained but they do

not form a closed set of equations, because the numbers of unknowns are more

than the numbers of equations. Therefore some other assumptions need to be

made according to the specific problem. Actually, the nth moment equation

contains n + 1 unknowns. The closure problem is settled by specifying the

n+1th unknown in terms of the first nmoments. For instance, if the continuity

and momentum equations need to be solved, the pressure tensor
←→
PPP s should be

defined in terms of ns or vs. These ad hoc assumptions are often taken from

thermodynamical considerations. For the different fluid components such as

electrons or ions, the equation of state is chosen differently. Next, some of

these assumptions are mentioned.

-Ideal gas : An ideal gas is a gas of non-interacting particles. The only

interaction between particles in the ideal gas would be an elastic collision. In

fact there is not any spatial correlations among the particles [61]. An ideal

gas is identified by three macroscopic variables; the number of particles N , the

space volume V , and the thermodynamic temperature T ,

pV = NkT = nRT, (1.7)

where, n is the total number of moles in the system, N = nNA and NA is the

Avogadro number. In addition, R = kNA is the gas constant and the universal

constant K = 1.38× 10−23 m2 kg s−2K−1 is the Boltzmann constant,

ps = nskTs, (1.8)
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where ns, ps and, Ts are the density, pressure and temperature of species s in

the ideal gas law equation of state.

-The adiabatic equation of state : On one hand, the adiabatic equation

of state is used when the gas is compressed so fast that there is not enough time

for heat to flow. On the other hand, the compression of a gas should be slow

enough that collisions can maintain the gas in its thermodynamic equilibrium.

Hence, it seems that the adiabatic equation of state is not a good option for

the collisionless plasma. But microscopic wave-particle interactions can be a

good substitution for collisions in the gas because they can maintain the local

thermodynamic equilibrium [20]. Therefore, the adiabatic equation of state is

when the change in temperature is related to the change in density. In this

case pressure is defined by adiabatic law,

PV γ = constant, (1.9)

here γ, is the adiabatic index, which is the ratio of the heat capacity at con-

stant pressure to the heat capacity at constant volume.

-Non-adiabatic equation of state : The simplest non-adiabatic equation

of state is the isothermal case, where Ts is constant (γ = 1). In contrast to the

adiabatic process in which there are no exchanges of heat with the surround-

ings, in the isothermal cases the temporal variations occur slowly enough for

plasma to remain in equilibrium with a surrounding reservoir through head

exchange.

Another non-adiabatic equation of state is, the isobaric and isometric pressure.

-Isotropic pressure : The pressure is isotropic when the pressure tensor

is diagonal with equal diagonal elements, i.e.,

←→
PPP s =

←→
111 ps, (1.10)

where,
←→
111 is the unit tensor and ps is defined as an ideal gas Eq. (1.8). In

matrix notation the pressure tensor of an isotropic gas follows as,

←→
PPP s =

ps 0 0
0 ps 0
0 0 ps

 . (1.11)
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-Anisotropic pressure : In magnetized plasma, sometimes particles are

unable to transfer their momentums effectively between the parallel and per-

pendicular directions (due to the magnetic field direction), then the diagonal

elements of pressure tensor are not equal. If the magnetic field lies on the z

axis, the pressure tensor can be defined as,

←→
PPP s =

ps⊥ 0 0
0 ps⊥ 0
0 0 ps‖

 . (1.12)

Where, ps⊥ = nskTs⊥ and ps‖ = nskTs‖.

-Cold plasma : In this approximation, the temperature is very low such

that the pressure can be neglected
←→
PPP s = 0. The Earth’s ionopshere is often

approximated as a cold plasma [66].

Two-Fluid models

In fluid theory the evolution of macroscopic moments of the particles is

considered. In two-fluid plasmas, moments are derived for electrons and ions

separately, s = e, i. In some cases there are two ion fluids used to describe the

plasma. In related to the lunar wake, an analytic model is developed based

on a two-fluid description to consider counterstreaming ion flow parallel to the

magnetic field lines into the lunar wake from above and below the wake bound-

aries [18]. This formalism can be used to calculate the two counterstreaming

ion fluxes into the wake that are not easily predicted with other models. This

model is described in Ch. 2. One of the interesting computational techniques

in fluid theory is called the finite element method. In this technique, an arbi-

trary geometry is divided into a large number of cells. The unknown functions

are discretized and solved on the mesh. In Ch. 3, a 2D finite element code is

used to simulate the lunar wake.

Single-fluid models (MHD)
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Macroscopic, or fluid equations governing the evolution of a plasma, can be

written in different forms, at different levels of detail. Some formulations are

obtained by taking successive moments of kinetic equations for each particle

species. This then needs to be closed heuristically by expressing the higher

order moment in terms of spatial and/temporal derivatives of lower moments.

A simpler approach, used in this thesis, considers the equations of evolution

for a single fluid. These equations are obtained by combining the conservation

equations for mass, momentum, and energy for all species, into corresponding

equations for a single fluid. In addition to conservation equations, single-

fluid models also include a generalized Ohm’s law obtained from the electron

momentum equation, whenever currents and perturbed magnetic fields are in-

volved. In the following, simplified single-fluid equations are used to model

the wake downstream of the Moon, when it is exposed to the solar wind. For

example, Harnett and Winglee [26] applied a 2.5D MHD model to simulate the

solar wind interplay with localized magnetic fields at the surface of the Moon.

They found structures similar to Earth’s magnetopause and bow shock near

magnetic field anomalies, with positions and shapes varying with solar wind

conditions. ARTEMIS data supports the outward expansion of the lunar wake

in the near-Moon region at magnetosonic velocities as is predicted with MHD

models [78]. More recently Xie et al. [77] used the Space Weather Modeling

Framework (SWMF) [69] to study asymmetries in the lunar wake associated

with different orientations of the solar wind magnetic field and plasma flow

velocity.

The set of single-fluid MHD variables are defined as,

1. The mass density:

ρ = (mene +mini), (1.13)

2. The fluid velocity:

VVV =
(miniVVV i +meneVVV e)

mini +mene
, (1.14)

3. The charge density:

q = e(ni − ne), (1.15)
21



4. The current density:

JJJ = e(niVVV i − neVVV e), (1.16)

5. The pressure:

p = pi + pe, (1.17)

here subscript i and e refer to ions and electrons respectively. By applying

these variables and considering the plasma as quasi-neutral the single-fluid

continuity and momentum equations can be written,

∂ρ

∂t
+∇∇∇.(ρVVV ) = 0, (1.18)

∂ρVVV

∂t
+∇∇∇.(ρVVV VVV ) = −∇∇∇p+ JJJ ×BBB, (1.19)

where BBB is the magnetic field. The adiabatic law is also taken into account,

d

dt

(
p

ργ

)
= 0. (1.20)

To close the set of equations, Maxwell equations are applied,

∇∇∇×EEE = −∂B
BB

∂t
, (1.21)

∇∇∇×BBB = µ0JJJ + ε0µ0
∂EEE

∂t
, (1.22)

here EEE is the electric field, µ0 and ε0 are magnetic permeability of free space

and permeability of free space. Equations 1.21 and 1.22 are known as Farady’s

and Ampere’s equations respectively. The ideal MHD equation is written by

assuming the plasma is highly conductive,

EEE = −VVV ×BBB. (1.23)

In MHD approximation, a plasma can support three different types of normal

modes; the fast mode, the slow mode and the shear Alfvéin mode [4], [67].

1.6.4 Test-particle simulations

The test-particle method uses the approximated electromagnetic fields ob-

tained from fluid or kinetic models, to compute particle trajectories without
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solving a set of kinetic equations. The accuracy of the distribution functions

obtained with this method depends on the accuracy of the fields used to com-

pute particle trajectories. These estimated distributions can nonetheless be

informative, and are useful to check for consistency in fluid simulation re-

sults. In Ch. 4 a test-particle code is used to trace ions flowing into the

lunar wake and distribution functions are calculated. By taking moments of

the distribution functions, some of the macroscopic quantities are obtained.

The assumptions made in the fluid models are checked with these calculated

moments, and found to be in reasonable agreement.

1.6.5 Observations

The planning of future lunar missions necessitates a good understanding

of the space environment conditions near and at the Moon surface. Several

missions have already been sent to study this environment and the interac-

tion between the solar wind and the Moon, including examining the structure

of the wake (see Tables 1.3 and 1.4). The first observations of the lunar

wake were made by Explorer 35 and the Apollo missions [39]. Missions such

as, WIND (1994), Lunar Reconnaissance Orbiter (LRO) (2009) and, Lunar

Atmosphere and Dust Environment Explorer (LADEE) (2013) were sent to

orbit the Moon, in order to collect data on its interaction with the solar wind

[22]. The Acceleration, Reconnection, Turbulence and Electrodynamics of the

Moon’s Interaction with the Sun (ARTEMIS) satellites are the latest lunar

mission deployed in 2010 by sending the two of five in-orbit spacecraft from

the project "Time History of Events and Macroscale Interactions during Sub-

storms" (THEMIS) to orbit the Moon [1]. On February 2010 the P1 spacecraft

of the ARTEMIS (formerly THEMIS-B) for the first time went through the

lunar wake at a distance of ∼ 3.5Rm from the Moon center downstream while

the Moon was outside of the magnetosphere [68], [75]. ARTEMIS observa-

tions show that the diamagnetic fields in the lunar wake can exceed twice the

ambient magnetic field during high plasma beta conditions [62]. Two different

observations of interplanetary magnetic field orientations from ARTEMIS in
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the lunar wake are also presented in order to compare with the density calcu-

lated with all these 2D models and which is presented in Ch. 5.

More specifically, goals of this thesis are:

1. To assess the applicability of four relatively simple and computationally

fast models, to reproduce some of the main features of the lunar wake.

This is done by making cross-comparisons between the different models,

and by comparing model predictions with ARTEMIS observations.

2. To check the validity of the approximations made in the construction of

the fluid models, using test-particle simulations.
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Chapter 2

The method of characteristics

2.1 Introduction

Plasma expansion into a vacuum is an important topic in space plasma re-

search because it applies to solar wind phenomena, such as plasma interactions

with planets and their natural satellites and interplay of the solar wind with

artificial obstacles orbiting the Earth and other planets. The first paper on

this physical process introduced a simple one-dimensional model and showed

that ions in a collisionless plasma are accelerated up to thermal velocities of

electrons to fill the void [19]. Depending on density, temperature, and velocity,

plasma expansion can cause a variety of physical phenomena, as for example,

ion acceleration into the vacuum, rarefaction wave, and plasma instabilities

[64]. As the supersonic solar wind flows through the solar system, it interacts

with the planets and their moons. In Earth environment, the Moon surface

can absorb the plasma in the day-side, and a wake characterized by strong den-

sity depletion is formed on the night-side. Electrons with their higher thermal

speed are partly filling the wake ahead of ions. Ions are then accelerated

into the wake by the resulting Ambipolar electric field. Theoretical models

of plasma expansion into the wake predict that the plasma density decreases

exponentially from its edge towards its middle of the wake as confirmed in

the WIND spacecraft crossing the lunar wake at a distance of 6.5 lunar radii

(Rm) on December 1994 [56]. Self-similar solutions have been constructed to

describe electron density, temperature and magnetic field perturbations in the

lunar wake for plasma expansion into the wake, considering a non-Maxwellian
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distribution function [21]. However, such one-dimensional models cannot ex-

plain the velocity of ions parallel to the magnetic field filling the lunar wake

because they do not consider the spherical shape of the Moon [19], [21], [56],

[64]. Following initial one-dimensional models, Hutchinson applied an analytic

self-consistent electrostatic expansion model of the near-Moon wake to predict

the proper velocity of ions which was observed with the Chandrayaan-1 space-

craft [30], [31], [33]. In this chapter, I describe a 2D fluid model in the plane of

magnetic field BBB and the solar wind velocity VVV SW to demonstrate the expan-

sion of counterstreaming ion fluids parallel to BBB into the lunar wake from both

sides. This model is an extension to the two-dimensional single-fluid approach

proposed by Hutchinson to describe the edge of the lunar wake [30], [31], [33].

The equations governing the dynamics of the flowing ions are derived under

certain assumptions. They are analyzed with the method of characteristics.

2.2 Approximate analytic models to study the
lunar wake

2.2.1 Single-fluid model of the lunar wake (Hutchinson’s
model)

The basic assumptions Hutchinson made to develop a single-fluid model to

study only one edge of the lunar wake, are listed as,

1. Particle gyro-radii are much smaller than any macroscopic scale length

in the problem,

2. Plasma is quasi-neutral,

3. Ions can be described as single isothermal fluids,

4. The solar wind magnetic field is constant and uniform,

5. The ion polarization drift is negligible,

6. The plasma equation of state is that of an ideal gas,

7. Electrons are described as a massless isothermal fluid.
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Figure 2.1: Illustration of the unperturbed solar wind and lunar wake regions.
Points P2 and P3 are located, respectively, below and above the wake in
the unperturbed region of the solar wind, while P1 is in the wake. Vectors
identified with + and− are pointing in the −X direction along the positive and
negative characteristics, respectively. The labels 1 and 2 on these vectors refer
to plasma below and above the wake in the unperturbed plasma, or entering
the wake from below and above the wake boundaries, respectively. The two
lines labeled dy

dx
|±∞ show the boundary between the unperturbed solar wind

and the wake. Their slope is that of the + and - upstream characteristic, and
they are tangent to the Moon above and below the lunar disk respectively.
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The dynamics of the ions as a fluid are studied by solving the steady-state

continuity and momentum equations.

∂n

∂t
+555.(nVVV ) = 0, (2.1)

∂(nVVV )

∂t
+555.(nVVV VVV ) =

−nZe
m
555 φ− 1

m
555 pi +

nZe

m
(VVV ×BBB), (2.2)

in these expressions, m, n, pi,V, Z, φ and e are, respectively, ion mass, number

density, pressure, velocity, ion charge-number, electric potential, and electron

charge. The subscript i refers to ions. Under the assumption of steady-state

the momentum equation 2.2 is written in terms of the components parallel

(‖) and perpendicular (⊥) to the magnetic field B. The cross-product of the

perpendicular momentum with B gives

VVV ⊥ = −
[
m

Ze
(VVV .555 VVV ⊥)× BBB

BBB2
+

1

nZe
555 ⊥pi ×

BBB

BBB2
+555⊥φ×

BBB

BBB2

]
. (2.3)

The first term in this equation is the polarization drift which is ignorable,

which results in the "drift-approximation". This approximation is justified

because the ion gyroradius (in the background magnetic field BBBIMF ) is much

smaller than any perpendicular length-scale. The last two terms of Eq. 2.3

are known as the diamagnetic and the E×B drifts. The diamagnetic drift is

perpendicular to the magnetic field BBB. The assumption of constant magnetic

field leads to eliminate the grad-B and curvature drifts. A more complete

description on particle drifts in a plasma can be found, for example, in [2],

[20], [55]. With the ideal gas (pi = nTi) and isothermal ion flow (Ti is a

constant) approximations, Eq. 2.3 reads,

VVV ⊥ = −[
Ti
Ze
555 ⊥ ln (n)× BBB

BBB2
+555⊥φ×

BBB

BBB2
]. (2.4)

The continuity equation becomes,

555 n.VVV + n(555.VVV ) = 0, (2.5)

VVV .555 n+ n
[
555.
(
VVV ‖ + VVV ⊥

)]
= 0. (2.6)

Substituting Eq. 2.4 in Eq. 2.6 we find,

VVV .555 n+ n

[
555.
(
VVV ‖ +−[

Ti
Ze
555 ⊥ ln (n)× BBB

BBB2
+555⊥φ×

BBB

BBB2
]

)]
= 0. (2.7)
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Making use of the fact that curl of a gradient is zero and B is constant, the

third and fourth terms in the Eq. 2.7 are zero, and Eq. 2.7 reduces to

VVV .555 n+ n555 ‖VVV ‖ = 0. (2.8)

Finally, the continuity equation becomes,

VVV .555 ln (n) +555‖VVV ‖ = 0. (2.9)

The steady-state parallel momentum Eq. 2.2 is written as,

VVV .555 VVV ‖ = −[
Ti
m
555 ‖ ln (n) +

Ze

m
555 ‖φ]. (2.10)

Assuming the massless electron fluid gives a relation between the electric field

and pressure gradient. Using the parallel electron momentum equation and as-

suming that plasma is quasi-neutral because the Debye length is much smaller

than any length scale in the problem (ne = Zn), one finds the familiar adia-

batic relation between the electric potential and parallel pressure gradients,

EEE‖ = −∇∇∇‖φ = − 1

eZn
∇∇∇‖pe = − Te

Ze
∇∇∇‖ ln(n). (2.11)

It can then be shown that Eq. 2.9, Eq. 2.10, and Eq. 2.11 reduce to the

following two coupled normalized equations for the ion density n and Mach

number M :

MMM · ∇∇∇ ln (n) +∇∇∇‖M‖ = 0, (2.12)

and

MMM · ∇∇∇M‖ +∇∇∇‖ ln (n) = 0. (2.13)

Where, the velocity is normalized to the ion acoustic speed of the plasma

fluid cs =
√

(ZTe+γTi)
m

to gives the Mach number MMM = V/cs. By adding and

subtracting these equations, it follows that

(MMM · ∇∇∇+∇∇∇‖)(ln (n) +MMM‖) = 0, (2.14)

and

(MMM · ∇∇∇−∇∇∇‖)(ln (n)−MMM‖) = 0, (2.15)
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are two decoupled equations for the two independent variables ln(n)±M‖ that

can be solved straightforwardly using the method of characteristics. Equations

2.14 and 2.15 describe the dynamics of ions in the lunar wake as a single-fluid to

model only one edge of the lunar wake (Hutchinson model [31]). In particular,

it follows from Eq. 2.14 and 2.15 that ln(n) ±M‖ are constant, respectively,

along the characteristics defined by the equations

dx

ds

∣∣∣∣± = Mx ±
Bx

B
(2.16)

and
dy

ds

∣∣∣∣± = My ±
By

B
. (2.17)

Where ds is the infinitesimal element of length along the characteristics, and

the ± superscripts refer to positive and negative characteristics, respectively.

In the upstream solar wind ± characteristics are straight lines with slopes

obtained by taking the ratio of right-hand-sides of Eq. 2.17 to Eq. 2.16.

Using this formalism, Hutchinson [33] was able to model the edge of the lunar

wake. Referring to Fig. 2.1, and assuming that plasma entering the wake is

coming predominantly from one side of the Moon, say from below, he argued

that in the wake the parallel Mach number must be such that the negative

characteristic is tangent to the Moon from below. Therefore, the following

equation for the plasma density associated with the parallel flow coming from

below becomes:

n = n0 exp
(
−|M‖ −M0‖|

)
, (2.18)

where M0‖ and n0 are the upstream plasma parallel velocity and upstream

number density.
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2.2.2 Two-fluid non-interacting model of the lunar wake
(the analytic model)

I now apply Hutchinson’s approach to the full width of the wake by considering

the plasma flow entering the wake from both below and above the 2D wake

region, as shown in Fig. 2.1. Compared with Hutchinson’s original analysis in

which only one ion fluid was considered near the edge of the wake, I need to

account for two ion fluids coming from either side of the Moon in this 2D model.

As we shall see later when the solutions obtained are compared with the finite

element model, these counterstreaming ion flows are essential in determining

the properties of the wake region plasma. We account for the two ion fluids

by labeling them with subscripts 1 and 2 (Fig. 2.1), corresponding to plasma

entering from below and above, respectively, as discussed by [32]. Each ion

fluid is characterized by a density n1,2 and a parallel Mach number M1,2‖, and

it is governed by two characteristic equations similar to Eqs. 2.14 and 2.15.

The main difference here comes from the relation between the parallel electric

field and the electron pressure gradient. Making use of the quasi-neutrality

assumption, and accounting for the two ion fluids, Eq. 2.11 now reads

∇∇∇‖φ =
Te
e

(
n1

n1 + n2

∇∇∇‖ ln(n1) +
n2

n1 + n2

∇∇∇‖ ln(n2)

)
. (2.19)

Then, following the same steps as outlined above for Hutchinson’s model, one

finds

(MMM1 · ∇∇∇+∇∇∇‖)(ln (n1) +M1 ‖)

=
ZTe

Ti + ZTe

n2

n1 + n2

∇∇∇‖ (ln (n1)− ln (n2)) , (2.20)

(MMM1 · ∇∇∇−∇∇∇‖)(ln (n1)−M1 ‖)

= − ZTe
Ti + ZTe

n2

n1 + n2

∇∇∇‖ (ln (n1)− ln (n2)) , (2.21)

(MMM2 · ∇∇∇+∇∇∇‖)(ln (n2) +M2 ‖)

= − ZTe
Ti + ZTe

n1

n1 + n2

∇∇∇‖ (ln (n1)− ln (n2)) , (2.22)
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and,

(MMM2 · ∇∇∇−∇∇∇‖)(ln (n2)−M2 ‖)

=
ZTe

Ti + ZTe

n1

n1 + n2

∇∇∇‖ (ln (n1)− ln (n2)) . (2.23)

This system of four coupled inhomogeneous equations is more challenging to

solve in general than the two equations derived by Hutchinson for a single-fluid.

The reason is that owing to the non-zero right-hand-sides, the dependent vari-

ables are not precisely constant along the characteristics. Consequently, in

contrast to the single-fluid case, the characteristics are not precisely straight

lines. The solutions can be obtained iteratively using the method of character-

istics which is discussed in the next section, or by discretization of Eqs. 2.20 to

2.23 using finite differences and specifying appropriate boundary conditions.

In the following, Eqs. 2.20 to 2.23 are solved approximately by neglecting

the right-hand sides. This means that the two ion fluids streaming from above

and below the wake do not interact with one another. In this case, the system

of four homogeneous equations reduces to a set of two uncoupled homogeneous

equations that can be solved as in Hutchinson’s initial analysis. The resulting

densities n1 entering from below, and n2, entering from above are then added

to give the total plasma wake density.

The approximations made in the analytic model, are further validated by

the good agreement with results obtained using other models (which does

not make these approximations) and with observations in chapters 3 and 5

respectively. In order to explain the solution procedure, it is useful to write

explicit expressions for the characteristics. Assuming an angle α between the

magnetic field and the solar wind flow velocity (see Fig. 2.2), the magnetic

field, the Mach number vector, and the parallel gradient are written as,

BBB = B(cos(α)x̂+ sin(α)ŷ), (2.24)

MMM = [M⊥ sin(α) +M‖ cos(α)]x̂ (2.25)

+ [−M⊥ cos(α) +M‖ sin(α)]ŷ,
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Figure 2.2: The angle between the magnetic field (BBB) and the solar wind flow
velocity (MMM∞).
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and,

∇∇∇‖ = (cos(α)∂/∂x)x̂+ (sin(α)∂/∂y)ŷ, (2.26)

where, consistent with Hutchinson’s model, M⊥ is assumed to be constant.

Omitting subscripts 1 and 2 for brevity, the homogeneous approximation of

Eqs. 2.20 to 2.23 then become

[(M⊥ sin(α) +M‖ cos(α) + cos(α))
∂

∂x
(2.27)

+(−M⊥ cos(α) +M‖ sin(α) + sin(α))
∂

∂y
][ln (n) +M‖] = 0,

[(M⊥ sin(α) +M‖ cos(α)− cos(α))
∂

∂x
(2.28)

+ (−M⊥ cos(α) +M‖ sin(α)− sin(α))
∂

∂y
][ln (n)−M‖] = 0.

The equations for the two characteristics are then,

dy

dx

∣∣∣∣± =
± sin(α)−M⊥ cos(α) +M‖ sin(α)

± cos(α) +M⊥ sin(α) +M‖ cos(α)
. (2.29)

In the upstream region(x → −∞) where plasma is unperturbed, the Mach

vector MMM0 is purely along X, which leads to,

M0⊥ = M0 sin(α), (2.30)

M0‖ = M0 cos(α). (2.31)

From this and Eqs. 2.29 it follows that the equations for the upstream char-

acteristics are
dy

dx

∣∣∣∣±
0

=
± sin(α)

± cos(α) +M0

. (2.32)

2.2.3 Results of the analytic analysis (α = 90◦)

In the following, I limit my attention to the particular case where the mag-

netic field is perpendicular to the upstream flow velocity; that is to α = 90◦.

From Eq. 2.32, it follows that the ± characteristics are then straight lines with

slopes ±1/M0.

The equations for the upstream characteristics can be used to distinguish be-

tween the unperturbed solar wind and the wake regions. By assumption, the
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upstream solar wind is unperturbed as x → −∞. Owing to the constancy

of ln(n) ±M‖ along the ± characteristics, it follows that the incoming solar

wind at any point P in Fig. 2.1, will be unaffected; that is, n = n0 and

M‖ = M0 if and only if P can be moved continuously toward x→ −∞ in such

a way that none of the unperturbed characteristics given in Eqs. 2.32 intersect

the Moon. Conversely, the wake is the region where points cannot be moved

continuously toward x → −∞ without at least one of the unperturbed char-

acteristics intersecting the Moon. From this, it follows that the positive and

negative characteristics tangent delimits the wake region, respectively, above

and below the disk of the Moon, as illustrated in Fig. 2.1. The question then

is how does one compute densities n1 and n2 in the wake region? This is done

with a straightforward extension of Hutchinson’s approach for the edge of the

wake, in which a single ion density is considered. Recalling that n1 and n2 are

the ion densities entering the wake, respectively, from below and above, and

referring to Figure 2.1, these densities are obtained from the equation

n1,2 = n0exp(−|M1,2‖ −M0‖|). (2.33)

M1‖ is set in order for the negative characteristic to be tangent below the lunar

disk for n1, and similarly, M2‖ is set in order for the positive characteristic to

be tangent above for n2. Figure 2.3 shows the ion density computed with the

analytic model. In this figure, α = 90◦ and the perpendicular Mach number

is assumed to be M⊥ = 6.0.
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Figure 2.3: Normalized plasma density in the analytic model. The upper and
lower panels show the density of ions entering the wake from above and below
the wake, respectively. The middle panel shows the total ion density.
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Figure 2.4: Parallel velocity of ions in the analytic model. The upper and
lower panels show the parallel normalized velocity of ions entering the wake
from above and below the wake, respectively.

Parallel plasma flow

In addition to the density, the analytic model provides the parallel flow

velocity of ions entering the wake. Because the magnetic field is perpendicular

to the upstream flow velocity (α = 90◦), fluids are entering the wake in the

opposite direction along the magnetic field M1‖ = −M2‖ as illustrated in Fig.

2.4. M1‖ in the solar wind (X = 2 Rm and Y = −3 Rm) is zero and it gets

larger as it penetrates the wake, thus leading to a lower density Eq. 2.33. M2‖

has a zero value in the solar wind (X = 2 Rm and Y = 3 Rm) where the

normalized density is n2 = 1. However, as fluid 2 penetrates the wake from

above, the parallel velocity gets more negative leading to a decrease in n2.

Velocities parallel to the magnetic field have a very high absolute value when

they exit the wake, but minimal numbers of ions can get to that points. A

result of the analytic model, which is not obtained from single-fluid numerical

simulation models, is an explicit expression for the parallel flow velocity of
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ions entering the wake from below and above. The pressure gradient at the

lower edge of the wake drives parallel plasma flow upward and similarly, the

pressure gradient at the upper edge drives parallel flow downward into the

wake. This is illustrated in Fig. 2.5, which shows the normalized parallel ion

flux Γ1,2 ‖ = (n1,2M1,2 ‖)/nsw0, where nsw0 is the upstream solar wind density

and the net normalized flux Γ = Γ1 ‖ + Γ2 ‖.

The middle panel shows the net flux which would be obtained from a fluid

simulation: negative and positive parallel flow, above and below the X axis,

corresponds to plasma entering the wake from above and below respectively.

The net ion parallel flow at the center of the wake (at Y = 0) vanishes by

symmetry, but the fact that it is associated with two counterstreaming flows

would be missing in single-fluid models. The middle panel shows positive flux

in the solar wind above the wake boundary and negative flux below the wake

boundary which means that some ions coming from below can reach and go

beyond the upper wake boundary. Similarly, a fraction of ions can reach and

go beyond the lower boundary of the wake. This may occur in part because,

in this analysis, the two ion fluids are independent, so the interaction between

the two fluids is neglected. In the next section, I will solve the set of equations

by considering the interactions between the two ion fluids to better understand

their mutual interaction.
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analytic model. Plasma entering the wake from directions above and below
the wake is shown in the upper and lower panels, respectively. The total
normalized parallel flux is shown in the middle panel.
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2.3 Two-fluid interacting model of the lunar wake
(the method of characteristics)

In this section, I describe a method to solve a system of four-coupled, first-

order, and non-linear equations given in Eqs. (2.20) to (2.23), while accounting

for coupling in right hand sides (RHS). By doing so, the interactions between

the two ion fluids counterstreaming into the lunar wake are taken into account.

In this case, the characteristics are not exactly straight lines as they were for

the single-fluid model. This system of equations is solved by using a technique

described by Chester [8]. The most general first-order linear homogeneous

system for n equations and n unknown functions of two independent variables

(x, y) can be written as

n∑
k=1

[
ajk(x, y)u(k)x + bjk(x, y)u(k)y

]
=

n∑
k=1

[
cjk(x, y)u(k)

]
j = 1, 2, ..., n, (2.34)

where, u1(x, y), u2(x, y),u3(x, y),..., un(x, , y) are unknown functions and the

subscripts show partial derivatives. In this equation, the superscript k refers

to the unknown function and the subscript j refers to an equation. In Eqs.

(2.20) to (2.23), the unknown functions, uk(x, y), appear only in derivative

forms so the right hand side of Eq. (2.34) is set to zero in the discussion which

follows. As a result, Eq. (2.34) reduces to

n∑
k=1

[
ajk(x, y)u(k)x + bjk(x, y)u(k)y

]
= 0 j = 1, 2, ..., n. (2.35)

In order to describe the method used to solve this system of equations, first I

should consider that the Eq. (2.35) is presented as the directional derivatives

n∑
k=1

Djku
(k) = 0 j = 1, 2, ..., n, (2.36)

where the n2 directional derivatives appear as Djk = ajk
∂
∂x

+ bjk
∂
∂y
. All the

uk in a single equation, jth equation, should be differentiated in a same di-

rection in order for the method of characteristics to be applicable. However,

in the general, in a given equation, different uk are differentiated in different
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directions. For example, by looking at Eq. (2.36) in the jth equation the

characteristics for uk and uk+1 are bjk/ajk and bjk+1/ajk+1 respectively, which

are not equal in general. I am looking for a way to find a linear combination

of all the n equations such that in each linear combination all the unknown

functions are differentiated in a same direction. In order to achieve this, each

equation in Eq. (2.35) is multiplied by arbitrary constants, λj, and the result-

ing equations are added in order to form equations for linear combinations of

the uk
n∑

j,k=1

[
λjajk(x, y)u(k)x + λjbjk(x, y)u(k)y

]
= 0. (2.37)

Thus, in the jth equation, uk is differentiated in the direction with the slope

given by ∑n
j=1 λjbjk∑n
j=1 λjajk

. (2.38)

Consequently, the direction of characteristic lines for all unknowns are the

same if
n∑
j=1

λjajk = µ
n∑
j=1

λjbjk k = 1, ..., n,

n∑
j=1

λj (ajk − µbjk) = 0 k = 1, ..., n,

(2.39)

where µ is a constant. As can be seen, to find the desired PDE which is a

linear combination of n equations in the Eq. (2.35), one must find λj and µ.

By considering the matrix form of the above equations, µ is seen to be the

root of an nth degree polynomial equation

det (ajk − µbjk) = 0, (2.40)

for which, λj can form a row vector Λ = (λ1, ..., λn) which is a left eigenvector

of A− µB. I combined equations (2.37) and (2.39) to get

n∑
k=1

[λjbjk(µu(k)x + u(k)y )] = 0, (2.41)

where
n∑
j=1

λjbjk = βk. (2.42)
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From Eq. (2.41) then it follows that
n∑
k=1

βk(µu
(k)
x + u(k)y ) = 0. (2.43)

Equation (2.40) is an nth-degree polynomial equation for µ. Therefore, it has

n real roots (µ1, ..., µr, µn). For each of these roots there is an eigenvector

Λr = (λr1, ..., λrn). Then the associated eigenvector Λr is applied to form

the desired PDE. For each root, µl, the directional derivative is defined as

Dl = µl
∂
∂x

+ ∂
∂y
, in the direction with the slope µ−1l . I set

βkl =
n∑
j=1

λjlbjk. (2.44)

Then Eq. (2.43) can be written as
n∑
k=1

βklDlu
(k) = Dl

n∑
k=1

βklu
(k) −

n∑
k=1

(Dlβkl) u
(k). (2.45)

If I define

û(l) =
n∑
k=1

βklu
(k) and Ĉl =

n∑
k=1

(Dlβkl) u
(k). (2.46)

Then, the abbreviated form of Eq. (2.41) can be written as

Dlû
(l) = Ĉl l = 1, ..., n. (2.47)

To summarise, the solution of the given system of first-order linear PDEs Eq.

(2.35) consists of the following steps:

• Solve for the n roots of, det(A− µB).

• For each root, µl, determine eigenvector, Λl, associated with zero eigen-

value.

• Construct a linear superposition of the system of equation using this

eigenvector as in Eq. (2.39).

• The n linear superposition of the unknown functions, û(l), in Eq. (2.46)

are constructed and by using Eq. (2.47), and all û(l) are advanced by

one step.
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• After each step, the original unknowns, uk, are updated using the known

linear relation, Eq. (2.46), between û(l) and functions uk.

• Repeat the procedure until all the characteristics cover the entire domain

of interest.

Coming back to Eqs. (2.20) to (2.23), there are two independent variables x, y

and four unknowns

u(1) = ln(n1), u(2) = M1‖, u(3) = ln(n2), u(4) = M2‖. (2.48)

As in the previous section, I assume an angle α is between the magnetic field

line and the solar wind flow velocity Fig. 2.2 M∞, which lies on the X axis.

Equations (2.20) to (2.23) are built in terms of parallel and perpendicular

components to the magnetic field direction but I need to rewrite them in

terms of x, y. I have,

x̂ = cos(α)b̂+ sin(α)n̂,

ŷ = sin(α)b̂− cos(α)n̂,
(2.49)

where b̂ and n̂ are unit vectors parallel and perpendicular to the magnetic field

line respectively. The parallel and perpendicular Mach numbers in the solar

wind are given by
M‖sw = M∞ cos(α),

M⊥sw = M∞ sin(α).
(2.50)

From Eq. (2.49), the derivatives of parallel and perpendicular in terms of x, y

are
b̂ · ∇∇∇ = cos(α)

∂

∂x
+ sin(α)

∂

∂y
,

n̂ · ∇∇∇ = sin(α)
∂

∂x
− cos(α)

∂

∂y
.

(2.51)
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In order to calculate densities and parallel velocities in the wake of the

Moon, I consider a 2D rectangular simulation domain which can perfectly

cover the wake and beyond. The center of the Moon is at the origin; that

is, at coordinates (0, 0), and in order to avoid singularity in the regions that

are very close to the Moon surface in the wake, the calculations are started

at around X = 2.0 Rm up to X = 15 Rm. In the simulations the spatial

resolution in X and Y are dx = 0.064 Rm and dy = 0.029 Rm, respectively.

Equations (2.52) to (2.55) are solved for each row of Y in the 2-D simulation

domain to the next row to the right. As can be seen from Eqs. (2.52) to (2.55),

there are nonlinear terms in this system of equations. To address this problem,

the nonlinear terms are always evaluated from the previous row (in its left) in

the simulation box. The nonlinear terms of the first row in the left boundary

(X = 2.0 Rm) are determined from the results of the analytic model which is

described in the paper [18] and Sec. 2.2. Indeed it was shown in Sec. 2.2 that

the analytic model can predict the parallel velocities and densities of the two

ion fluids accurately close to the Moon. Therefore, it is a good approximation

to use these quantities for the left boundary which lies at X = 2.0 Rm to

solve the Eqs. (2.52) to (2.55). This is justified because at X = 2.0 Rm,

there is a minimal overlap between plasma coming from the top and from the

bottom. To calculate the unknowns at a grid point (X, Y ), matrices A and

B are constructed, and the zeros of Eq. (2.40), µl, are found. I assume that

the characteristic lines have the same slope between two successive grid points

in the X axis because their interval, dx, is relatively small. I adjusted dx in

order to give the good accuracy in the results. This is also verified by varying

dx to find the best resolution in X. Then I compute the characteristic lines

associated with the calculated µl starting at (x, y) and tracking one step back

in X which the functions uk are known. By interpolation, the solutions for uk

can be found at this new position (x−dx, ŷ), then the four linear superpositions

of the unknown functions (ûl) are calculated by using Eq. (2.46). Hence, I am

able to calculate the densities and velocities at the grid point (x, y) by using

the fact that the updated linear superposition of the unknown functions (ûl)

are constant along characteristic lines.
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2.3.1 Results from the method of characteristics (with
coupling) and the analytic model (without cou-
pling) (α = 90◦)

Figure 2.6: Normalized density in the method of characteristics. The upper
and lower panels show the ion density of fluid 2 and 1 respectively and the
middle panel shows the total normalized density.

In this section results obtained with the method of characteristics, as well

as comparisons with results from the analytic model are presented. In the

calculations, the solar wind flow velocity is assumed to be in the +x direction,

and the solar wind magnetic field BBBIMF is in the +y direction (α = 90◦) with
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a magnitude of ∼ 6 nT [68]. The solar wind speed is 295.6 km/s [75], the

background density is nsw = 3.14 cm−3, the electron and ion temperatures are

Te ' 14.3 eV and Ti ' 5.7 eV respectively. These parameters are chosen to be

the same as those considered in the analytic model for comparison purposes.

Specifically, with the parameters given above, the sound speed is cs ∼ 48.8

km/s and the corresponding upstream Mach number is M⊥ ' 6, and M‖ = 0.

In the special case α = 90◦, matrices A, Eq. (2.56) and B, Eq. (2.57) are of

the form

A =


M⊥ M⊥ 0 0
M⊥ −M⊥ 0 0
0 0 M⊥ M⊥
0 0 M⊥ −M⊥

 , (2.58)

and,

B =


M1 + 1− A2 M1 + 1 A2 0
M1 − 1 + A2 −M1 + 1 −A2 0

A1 0 M2 + 1− A1 M2 + 1
−A1 0 M2 − 1 + A1 −M2 + 1

 . (2.59)

The Moon blocks the plasma solar wind incident on its surface, thus creating

its surface in the upstream, creating a depleted region in the downstream, in

the wake region. The method of characteristics can reproduce the lunar wake

and wake boundaries as shown in Fig. 2.6. The middle panel corresponds

to the total ion density, and the upper and lower panel show the densities

related to fluid 2 and 1, respectively. Since the magnetic field is perpendicular

to the flow velocity in the upstream, n1 and n2 are up-down symmetric. The

density gradient between the lunar wake and the solar wind drives plasma in

the solar wind to refill the lunar wake along the magnetic field lines. Electrons

rush into the wake ahead of ions and make the wake negatively charged. As

a result, an ambipolar electric field Eq. 2.19 between the wake and the solar

wind accelerates ions into the wake. Closer to the Moon, the density on

the wake axis (Y = 0) is almost zero because very few ions can reach this

point from either side. For example, in the middle of the wake and very

close to the Moon Y = 0, X = 2 Rm the density measured by this model

is estimated to be 0.087 nsw. It means there are just 0.27 ions in each Cm3

which corresponds a very high vacuum. The calculated total density at the
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same point, Y = 0, X = 2 Rm from the analytic model is 0.084 nsw which is

smaller than the one is calculated from the method of characteristics. In order

to compare the effect of interactions between the two ion fluids, an ad hoc

coupling coefficient 0.0 < r < 1.0 is introduced to multiply the right hand side

in the Eqs. 2.52-2.55. The interactions between the two fluids in the method

of characteristics are artificially turned off when r = 0, otherwise the effects of

couplings between these counterstreaming fluids are taken into account, when

r = 1. In the method of characteristics, if the counterstreaming fluids do not

interact with one another r = 0, the results of the analytic are recovered with

small differences related to the discretization errors.

In Fig. 2.7, the absolute value of the difference between the densities of the

two models is plotted in a 2D simulation plane. The lower color plot shows

differences in the total density obtained with the analytic model and the one

from the method of characteristics for the case when the interactions between

the two fluids are artificially turned off (
∣∣nAnal − n(r=0)

∣∣). It can be seen that

the maximum difference does not exceed 0.018 nsw, which is found to occur

at the wake boundaries. These discrepancies are related to the discretization

error in the method of characteristics. However, the upper panel shows the

effects of considering the interactions between the two fluids. The maximum

differences are inside the wake, which is ∼ 0.03 nsw.

To be able to interpret the consequences of interactions between the two ion

fluids, the normalized total ion density of both models are compared along

three different cuts in X in front of the wake in Fig. 2.8. The densities are

found to be minimum at the center of the wake and to increase as expected

away from the Moon. Comparisons are made at X = 15 Rm, X = 9 Rm and

X = 3 Rm from top to bottom. Qualitatively, the analytic model creates a

deeper wake as expected. Ions are accelerating into the wake from both sides;

consequently, they have substantial parallel velocities as they are advancing to

the wake. Since there is nothing to stop them in the absence of interactions,

they reach the opposite side of the wake boundary and beyond without slowing

down. As a result, the density in the wake center is smaller in comparison to

the one obtained from the method of characteristics in which coupling between
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Figure 2.7: Differences in absolute value between the density of the analytic
model (nAnal) and the density computed from the method of characteristics
when: 1- the interactions between the two fluids are artificially turned off
(n(r=0)) (lower panel), 2- the interactions are taken into account (n(r=1)) (upper
panel).
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the two fluids is taken into account. While the two fluids are interacting, their

parallel velocities is reduced in absolute value due to the opposing ambipolar

electric field of the counterstreaming fluid, leading to a larger density of ions

on the axis of the wake; therefore, more ions can be found in the center of the

wake. Closer to the Moon X = 3 Rm the density profiles from the two models

are in a very good agreement. The maximum difference occurs in a narrow

range at the wake edge where the differences do not exceed ∼ 0.008 nsw and

at the center of the wake Y = 0 the difference between total density from

the two models is ∼ 0.0029 nsw which is very small. Further from the Moon

surface, the differences between the two model are increasing. For instance,

at X = 9 Rm, the largest difference happens at the wake center Y = 0 which

is ∼ 0.018 nsw, and at the edge of the wake Y = ±1.5 Rm it does not exceed

∼ 0.012 nsw. Finally, at X = 15 Rm, the maximum discrepancy occurs in the

wake center which is ∼ 0.03 nsw. Quantitatively, the two densities agree within

' 6% almost everywhere. The discrepancy occurs in the narrow range at the

wake edge does not exceed ∼ 0.018 nsw, which comes from the discretization

errors (refer to Fig. 2.7). Empirically, by reducing the X and Y resolution,

the differences in densities in this area get smaller and the least discretization

error happens when dx = 0.0065 Rm and dy = 0.004 Rm.
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Figure 2.8: Comparison between the normalized total ion density calculated
with the method of characteristics (dotted line) and analytic model(solid line)
along Y at different cuts in X. From top to bottom, X = 15 Rm, X = 9 Rm

and X = 3 Rm.
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Parallel velocity: Figure 2.9 shows the parallel velocity of ions calculated

with the method of characteristics. The upper panel shows the parallel velocity

of ions accelerating into the wake from above, and the lower panel shows the

parallel velocity of ions enter the wake from below. As expected there is

symmetry between the quantities related to the fluid 1 and fluid 2 because the

magnetic field is perpendicular to the upstream flow velocity. Ions are moving

along the magnetic field (along Y axis in this particular case) and create a

void region. Similar to the analytic model ion parallel velocities increase in

absolute value while expanding to the wake from both sides Fig. 2.9. Parallel
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Figure 2.9: Parallel velocity of ions in the method of characteristics. Upper
and lower panel shows the parallel velocity of ions entering the wake from
above and below the wake respectively.

velocities of the fluid 1 computed from the two models are compared at three

different cuts in X, from top to bottom, X = 15 Rm, X = 9 Rm and X = 3

Rm. As discussed above, I expected to see ion parallel velocities to be smaller

in absolute value when calculated with the method of characteristics compared

to those obtained with the analytic model 2.10. Again, if the comparisons are

54



made closer to the Moon, the differences are less because the analytic model

is very accurate close to the Moon surface. The parallel flow velocity of ions

entering the wake is computed from the two models and is plotted in Fig. 2.12.

Because magnetic field is perpendicular to the upstream flow velocity, fluids

are moving to refill the vacuum in the opposite directions along magnetic field

M1‖ = −M2‖. M1‖ in the unperturbed solar wind region (X = 3 Rm, Y = −3

Rm) is zero and it increases in absolute value as fluid 1 expands to the wake

center (it is illustrated in Fig. 2.33). M2‖ is zero in the unperturbed region

(X = 3 Rm, Y = 3 Rm) where the upstream normalized density related to the

fluid 2 is n2 = 1. But as fluid 1 penetrate the wake from below the parallel

velocity gets bigger while the density in the center of the wake gets very small.

By this analysis the parallel velocity of ions on the opposite boundaries are

very high, but a small fraction of the corresponding ions can reach there.

Parallel flux: Figure 2.11 shows the normalized parallel ion flux Γ1,2 ‖ =

(n1,2M1,2 ‖)/nsw0, where nsw0 is the upstream solar wind density and the net

normalized flux is Γ = Γ1 ‖ + Γ2 ‖. The middle panel shows the approximate

net flux which would be obtained from a fluid simulation: negative and positive

parallel flows, above and below the X axis, correspond to plasma entering the

wake from above and below respectively. The net ion parallel flow at the center

of the wake (at Y = 0) vanishes by symmetry, but the fact that it is associated

with two counter-streaming flows would be missing from single-fluid models

(such as Hutchinson’s model). Normalized parallel ion flux of the analytic

model is compared with the ones computed from the method of characteristics

at three different cuts along Y , from the top to bottom, X = 15 Rm, X = 9

Rm and X = 3 Rm (look at Fig. 2.12). The net ion parallel flow at the center

of the wake (at Y = 0) vanishes by symmetry. Figure 2.13 shows the parallel

flux of fluid from two models along Y at three cuts in X, from top to bottom,

X = 15 Rm, X = 9 Rm and X = 3 Rm.
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Figure 2.10: Comparison between the parallel velocity of particles penetrating
into the wake from below computed by the method of characteristics (dotted
line) and analytic model(solid line) along Y at different cuts in X. From top
to bottom, X = 15 Rm, X = 9 Rm and X = 3 Rm.
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Figure 2.11: Normalized plasma parallel flux along the magnetic field in the
method of characteristics. Plasma entering the wake from directions above
and below the wake is shown in the upper and lower panels, respectively. The
middle panel shows the net normalized parallel flux.
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Figure 2.12: Comparison between the normalized total parallel ion flux of the
method of characteristics (dotted line) and analytic model(solid line) along Y
at different cuts in X when (α = 90◦). From top to bottom, X = 9 Rm, X = 6
Rm and X = 3 Rm.
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The total parallel flux shows some small negative/positive fluxes in the

unperturbed region below/above the center of the void. As can be seen they

are smaller in absolute value in the method of characteristics than from the

approximate analytic model Fig. 2.12. A tiny amount of each fluid can reach

the opposite wake boundary and beyond in the method of characteristics. In

the analytic model the two ion fluids are independent, there is more nega-

tive/positive flux that can be seen beyond the lower/above wake boundaries

in comparisons to the ones from the method of characteristics. This is the

effect of the coupling between the two ion fluids. Qualitatively, the total flux

computed from both models agrees. The maximum discrepancies between the

flux from the two models do not exceed 0.07 of the upstream flux Γsw. Just

like the density profile, closer to the Moon, the agreement is better. Inter-

estingly, the good qualitative and quantitative agreement between the two

models indicates that despite its simplicity the analytic model is capable of

capturing much of the physics at play in the formation of the lunar wake in

this approximate 2D model.
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Figure 2.13: Comparison between the normalized parallel ion flux of fluid
1 computed from the method of characteristics (dotted line) and analytic
model(solid line) along Y at different cuts in X when (α = 90◦). From top to
bottom, X = 15 Rm, X = 9 Rm and X = 3 Rm.
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2.3.2 Comparisons between the method of characteris-
tics and the analytic model (α 6= 90◦)

In the previous section, I limited my attention to the special case where

the magnetic field is perpendicular to the upstream flow velocity; that is to

α = 90◦. In this section, a general case is discussed where α is not 90 de-

grees. The length of the wake depends on the interplanetary magnetic field

(IMF) orientation. It is shorter when the perpendicular component of IMF is

larger [28]. Michel [54] predicts that solar wind protons are accelerated to the

ion-acoustic velocity into the wake. The wake is confined by the inner Mach

cone of the angle β = Cs/VSW [34]. However, in the general case where there

is an angle α between the BBBIMF and VVV SW , then the bulk plasma velocity of

ions penetrating toward the wake center is different in the opposite sides of

the wake. Asymmetries in the lunar wake structure are produced when the

magnetic field is not perpendicular to the solar wind velocity [65]. The asym-

metry in the lunar wake is observed by some of the lunar missions such as

the Explorer 35 satellite [34], the Wind [56], LRO [21] and ARTEMIS [23].

The parameters used to plot the results in this section are as below [62]. Ion

and electron temperatures Ti = 5eV and Te = 9eV. The magnetic field is

BBBIMF = [−1.5, 0.0,−1.0]nT. The solar wind flow velocity and density are

VVV sw = 320Km/s and nsw = 7.0 cm−3. Figure 2.17 shows the total density

of ions computed with the method of characteristics for three different IMF

orientations. In all cases, the solar wind velocity is in the X direction, and

the interplanetary magnetic field has an angle α with respect to X in this

x − y plane. I also observed the different inner cone angles for the two coun-

terstreaming fluid in the wake region in results obtained with the method of

characteristics. Figure 2.14 shows normalized parallel flux calculated by the

method of characteristics for the case α = 33◦. The upper panel shows the

flux of ions penetrating to the wake from above and the lower panel is the flux

of ions entering the wake from below. The middle panel shows the net flux.

Unlike the case where VVV sw and BBB are perpendicular, there is no symmetry

between the upper and lower panel. There is a small difference between the
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Figure 2.14: Normalized plasma parallel flux in the method of characteristics
(α = 33◦). Plasma entering the wake from directions above and below the
wake is shown in the upper and lower panels, respectively. The middle panel
shows the net normalized parallel flux.

62



Figure 2.15: The normalized total ion density from the method of character-
istics and the analytic model are plotted along Y at X = 9 Rm for the case
where α = 33◦ (upper panel). The differences between the densities from the
method of characteristics and the analytic model in absolute value is shown
along Y at X = 9 Rm for the case where α = 33◦ (lower panel).
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results obtained with the method of characteristics and the analytic model. In

the method of characteristics, unlike the analytic model, the interaction be-

tween the two ion fluids coming to the center of the wake from both sides are

considered. However, results show that the interaction between the two ion

fluids does not generate a significant change in the density and flux profiles.

Figure 2.15 shows comparisons between the density from the analytic model

and that of the method of characteristics as a function of Y at a cut in X = 9

Rm. The lower figure shows the discrepancy between the two densities. Densi-

ties obtained with the two models are in a good agreement almost everywhere

within ∼ 1% except at the two edges of the wake where the difference is within

∼ 3.5%. The total normalized flux from the two models is compared in Fig.

2.16. At the two edges the discrepancy is higher, at approximately ∼ 25%.
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Figure 2.16: The normalized total parallel flux from the method of character-
istics and the analytic model are plotted along Y at X = 9 Rm for the case
where α = 33◦ (upper panel). The differences between the net parallel fluxes
from the method of characteristics and the analytic model in absolute value is
shown along Y at X = 9 Rm for the case where α = 33◦ (lower panel).
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α=90

α=60

α=30

Figure 2.17: Computed total density of the plasma with the method of char-
acteristics for three different IMF orientations. From bottom to top, α = 30◦,
α = 60◦ and α = 90◦.
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Chapter 3

Hybrid-kinetic and Finite element
models

In this chapter two other computer models are introduced to scrutinize some

features of the lunar wake. These approaches are: a hybrid-kinetic model

and a finite element model. A short description of each model is provided

and the codes are adjusted to be compatible with the two-dimensional model

of the wake model presented in the previous chapter. Results obtained from

these models are compared with the ones from the method of characteristics

to examin the similarities and differences.

3.1 Hybrid-kinetic model

Hybrid-kinetic models, in which ions are treated kinetically and electrons

as a fluid, have been applied to study macroscopic and fine-scale kinetic as-

pects of lunar wake dynamics. These codes are used to model phenomena

that occur on shorter time and distance scales than be treated by MHD and

yet do not resolve processes that occur on electron particle scales. The rel-

evant scales are then the ion gyro-radius and ion inertial length for spatial

scales, and inverse ion gyrofrequency for time scales. In space physics, these

length scales typically are on the order of 10’s to 100’s of km and times are

on the order of seconds; satellite instrumentation [76] readily resolves these

ion scales. Research has been done to stimulate the lunar wake with different

hybrid models. For example, 2D hybrid-kinetic models have revealed that low-
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frequency electromagnetic turbulence [70] dominates the downstream region

of the lunar wake (28RM < x < 40RM). Kallio [38] presented the first 3D

hybrid simulation of the Moon-solar wind interaction and showed that a long

tail (> 10 Rm) of depleted plasma density forms in the night-side, along with

an enhancement in the magnetic field in the wake boundary and a decreased

field in the center of the wake. Wang et al. [74] used a 3D hybrid code to study

electromagnetic disturbances in the solar wind and showed that the magnetic

field was enhanced by a factor of about 1.4 in the middle of the lunar wake,

with depletions at the two sides due to the lunar absorption effect. A similar

approach used by Holmstrom et al. [28] predicts the occurrence of kinks in the

magnetic field at the wake boundary. A 3D hybrid model was also applied to

investigate a view of the current systems in the lunar wake, and it was shown

that the current is confined around the vacuum region as well as rarefaction

boundaries [14]. A 1D hybrid code was used for the first time to demonstrate

the formation of the standing shock wave behind the Moon [34]. It was used

to show that the shock is created by the interaction of counterstreaming ion

beams in the plane containing the solar wind velocity and the magnetic field.

3.1.1 Implementation the hybrid code

The 2D hybrid-kinetic electromagnetic model, previously used by Paral

[58] to model the solar wind interaction with planet Mercury, is employed in

order to study the solar wind interaction with the Moon [18]. This model ig-

nores electron kinetic effects but correctly accounts for ion gyro-radius effects

that are important for small ion scale structures like discontinuities formed

in the lunar wake. The approximations made in the hybrid models are: 1-

Quasi-nutrality, 2- Darwin approximation, 3- Adiabatic pressure, 4-

Massless Electrons. Electrons are treated as a massless, charge-neutralizing

fluid, which prohibits parallel electric fields from forming, while ions are con-

sidered as particles. With this assumption, the plasma mass density is only

the ion mass density, and the electron gyrofrequency and the electron plasma

frequency are neglected from the equations. Quasi-neutrality is only valid for

grid resolutions larger than the Debye Length λD which leads to ∇∇∇ · JJJ = 0.
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Where JJJ =
∑
JJJs is the total current density, and this condition removes most

electrostatic instabilities [13]. Besides, the low frequency magnetostatic (Dar-

win) approximation is made by ignoring the displacement current in Maxwell’s

equations. The Darwin approximation leads to a set of equations which de-

scribe the temporal and spatial evolution of the electromagnetic fields and the

plasma [37], [52]. The equation of motion of ion particles of species s under

the influence of Coulomb and Lorentz forces are

dXXXs

dt
= VVV s, (3.1)

dVVV s

dt
=

qs
ms

(EEE + VVV s ×BBB) . (3.2)

Where, XXXs,VVV s,ms and qs are positions, velocities, masses and charges of ion

species respectively. Electric and magnetic fields are respectively as EEE and

BBB. Electrons are treated as a fluid and conservation of the momentum for

electrons can be used to consider the electron dynamics,

∂(ne)

∂t
+∇∇∇.(neuuue) = 0, (3.3)

∂(meneuuue)

∂t
+∇∇∇.(meneuuueuuue) = neqe(EEE + uuue ×BBB)−∇∇∇pe. (3.4)

Electron quantities are expressed with the subscript e: ne,me,uuue and qe = −e

are density, mass, fluid velocity and charge, respectively. The electron current

density and electron fluid pressure are, JJJe = −neeuuue and pe. The first and

the second term on the left side of this equation account for the time and

spatial variations of electron momentum per unit volume respectively. By

doing some algebra and considering the continuity equation 3.3, the left side

of this equation can be expressed as the total time derivative (refer to Eq.

(1.6)),
duuue
dt

=
∂uuue
∂t

+ (uuue.∇∇∇)uuue. (3.5)

Henceforth, the right-hand side of the momentum equation represents the vari-

ations of forces per unit volume; the first term is the electromagnetic force,

and the second term is the pressure gradient force [20], [60].Therefore consis-

tently with the massless electron assumption the electron momentum equation
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becomes,

neme
duuue
dt

= −neeEEE + JJJe ×BBB −∇∇∇pe = 0. (3.6)

Therefore, an approximated form of Ampere’s law is used to to obtain total

current density J = Je + Ji,

∇∇∇×BBB = µ0JJJ. (3.7)

Now, the eqs. 3.6 and 3.7 are combined and the electric field becomes,

EEE = −J
JJ i ×BBB
ρ

+
(∇∇∇×BBB)×BBB

µ0ρ
− ∇
∇∇pe
ρ

+R
∇∇∇×BBB
µ0

, (3.8)

where ρ = nsqs is the charge density and µ0 is magnetic permeability of free

space. As it can be seen an artificial resistivity R is added to Eq. 3.8 which

causes damping of high frequency waves that would interact with electrons [58].

The magnetic field is advanced in time with Faraday’s law (∂BBB/∂t = −∇∇∇×EEE).

Then, Eq. 3.8 is combined with the Faraday’s law and the time evolution of

magnetic field becomes

∂BBB

∂t
=∇∇∇×

(
Ji ×BBBJi ×BBBJi ×BBB
ρ

)
−∇∇∇×

(
(∇∇∇×BBB)×BBB

ρµ0

)
−R∇∇∇×

(
∇∇∇×BBB
µ0

)
. (3.9)

To close this system of equations an adiabatic electron pressure is assumed to

respond adiabatically with changes in density, as

pe = pe0

(
ne
ne0

)γ
, (3.10)

where, γ, is the adiabatic index, pe0 and ne0 are electron pressure and number

density of the unperturbed plasma region. A set of equations which describe

the temporal and spatial evolution of the electromagnetic fields and the plasma

are hence derived [37], [52]. Choosing the inner boundary conditions at the

lunar surface is very important in hybrid simulations of the Moon. The solar

wind is incident at the lunar surface on the day-side and it is absorbed by

it, so the inner boundary should be defined in a way to remove all the ions

on the night-side. However, this boundary condition makes a discontinuity

in the density of ions from the ambient values outside the Moon, to the zero

value inside the Moon. This discontinuity causes numerical oscillations and
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instabilities in calculating the fields. A solution to this consists of removing

ions gradually from the inner boundary to avoid a discontinuity [28]. In other

words, the hybrid code imposes a lower bound on density for the numerical

stability which is affected by the number of particles per computational cell. In

my simulations, particles penetrate the Moon from the day-side in the upper

boundary and ∼ 85% of particles are prevented from moving to the wake. The

remaining 15% are artificially allowed to enter the wake on the night side, in

order to prevent numerical instabilities.

3.1.2 Results obtained from the method of characteris-
tics, and the hybrid model

I now compare results obtained from the method of characteristics with

those of the 2D hybrid model. This serves to assess the validity of the as-

sumptions made in the analytic model (or the method of characteristics), and

its skill in describing the main features of the lunar wake. A summary of the

main similarities and differences between the method of characteristics and

the hybrid model is given in Table. 3.1. One constraint is introduced in the

Table 3.1: Main similarities and differences between the method of character-
istics and the hybrid model

Characteristics Hybrid
Similarities 2D cylindrical

isothermal fluid electrons
Differences magnetized fluid ions kinetic ions

stationary time dependent
uniform and constant BBB solves for EEE and BBB
M⊥ constant M⊥ variable

hybrid model: the time evolution of the solar wind magnetic field both inside

and outside of the Moon is artificially turned off to be consistent with the

assumption made in the analytic and characteristics model. All simulations

made with the hybrid code are carried out until steady state was obtained.

We note that although several models have proposed to simulate convection

and diffusion of the IMF through the Moon, these models are not ideal for

comparison because they make ad hoc assumptions that cause perturbations
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in BBB to depend on their specific implementation. This is primarily a result of

the low-density plasma inside the wake; for models to be numerically stable,

particles are artificially injected into the wake from the night-side of the Moon.

A more physical assumption for assuming that BBB is constant is that because of

the low conductivity of the Moon, the IMF penetrates more or less unimpeded.

The constant magnetic field approximation is also supported by the relatively

small variations in BBB observed with ARTEMIS [75]. While variations in BBB

within the wake are not accounted for in the analytic model, some features of

wake physics are reproduced using this model. In the 2D hybrid code, the solar

wind flow is assumed to be in the +x direction, and the solar wind magnetic

field BBBIMF is in the +y direction (α = 90◦) with a magnitude of ∼ 6 nT [68].

The solar wind speed is 295.6 km/s [75], the background density is nsw = 3.14

cm−3, the electron and ion temperatures are Te ' 14.3 eV (βe ' 0.5) and

Ti ' 5.7 eV (βi ' 0.2). The dimensions of the simulation box used in the

hybrid model is (400× 400) (c/ωp,i0) where c is the speed of light, ωp,i0 is the

proton plasma frequency in the ambient solar wind, and c/ωp,i0 is the inertial

length of the solar wind protons is ∼ 129.58 km. In the hybrid code the grid

cell size and time step are set to be (0.5 × 0.5)(c/ωp,i0) and ∆t = 0.006 Ω−1i0 ,

respectively, where Ωi0 ∼ 0.38 s−1 is the proton gyrofrequency in the solar

wind. With these parameters, the simulation domain used in the hybrid sim-

ulations extends over +11 RM in X and ±5 RM in Y , where RM ∼ 1737 km.

Specifically, with the parameters given above, the sound speed is Cs ∼ 48.8

km/s and the corresponding upstream Mach number is M⊥ ' 6 and M‖ = 0.

The same parameters are used in the analytic model and the method of char-

acteristics to be able to compare the results. These parameters correspond

to those from the first flyby of ARTEMIS P1 through the lunar wake [18],

[68], [75] and are also used in the Ch. 2. Recall that in the hybrid code the

perpendicular velocity is not assumed to be constant, while it is invariant in

the analytic (characteristics) model. As a first comparison, Figures 3.1 and 3.2

show the perpendicular Mach number, normalized to it’s upstream value, and

the density obtained from the hybrid model. In contrast to the assumption of

constant perpendicular velocity (in Y direction) made in the analytic model,
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Figure 3.1: Ratio of the perpendicular Mach number to its upstream value
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in the hybrid simulation domain.
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Figure 3.2: Normalized density of the plasma in the hybrid simulation domain.

Fig. 3.1 shows small variations in v⊥ in the wake region. In particular, M⊥
decreased in the immediate downstream region. From Fig. 3.2, however, these

variations are seen to occur in the depleted density regions, where statistical

errors in M⊥ are large. As discussed in Ch. 2, the perpendicular velocity can

be expressed as,

VVV ⊥ = −
[
m

Ze
(VVV .∇∇∇VVV ⊥)× BBB

BBB2
+

1

nZe
∇∇∇⊥Pi ×

BBB

BBB2
+∇∇∇⊥φ×

BBB

BBB2

]
, (3.11)

Where, m, Z, φ and e are, respectively, the ion mass, the ion charge-number,

electric potential, and the electron charge. The first term in this equation

is the polarization drift, the second term is known as the diamagnetic drift,
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and the last term is the E × B drifts. The analytic (characteristics) analysis

addresses the case where the ion gyroradius (in the background magnetic field

BIMF ) is much smaller than the object, so that the perpendicular plasma

flow is strongly constrained [31] and the polarization drift can be neglected.

The diamagnetic drift is perpendicular to the magnetic field as well as the

perpendicular pressure gradient, so it does not have any component in the

plane of VVV SW − BBB. Therefore, in this configuration, the only component of

the perpendicular velocity (Fig. 3.1) comes from the E × B drift term. In

the hybrid code, to be comparable with the analytic (characteristics) model,

the time evolution of the solar wind magnetic field is artificially turned off.

As a result, the E × B drift must be uniform in this simulation because BBB

and EEEz have just their uniform values in the external solar wind which is not

constant close to the Moon surface (less than 3 Rm). In this area, very few

particles are present, and statistical errors are more significant. The results

of the hybrid model are sensitive to the ad hoc conditions. For example, the

hybrid code imposes a density floor; that is, a lower plasma density, for stability

reasons and is affected by the number of particles per computational cell. The

perpendicular Mach number, assumed to be constant in the model based on

the method of characteristics, is found to be closer to being constant, as the

density floor is lowered. In the final analysis, injecting ∼ 15% of incident solar

wind ions in the wake region, M⊥ is found to be constant within ∼ 9% in

regions where the density is significant (say, above 2.8% of the background

density or X ≥ 2.1 Rm). In those regions, the maximum relative difference is

of order 9%, which supports the assumption made in the analytic model that

M⊥ is approximately constant. Figure 3.3 shows normalized densities obtained

from the hybrid and the method of characteristics as a function of the vertical

coordinate Y , at selected values of X in the wake region. In both cases, the

density is found to be minimum at the center of the wake and increases as

expected away from the Moon. Differences in the density profiles obtained

with the two models are visible from this figure. Qualitatively, the density

profile obtained from the hybrid model is narrower near the minimum, and

broader in the wake edge region, than the density obtained with the method
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of characteristics. Another difference is that the method of characteristics

predicts smooth density profiles, while the ones obtained with the hybrid code

show significant levels of short-scale variations, probably associated with waves

and turbulence excited in the solar wind - Moon interaction. Quantitatively,

the minimum density obtained with the method of characteristics is lower than

in the hybrid model. These differences are relatively small and do not exceed

15% of the upstream density, from which I conclude that both models predict

density profiles that are in reasonable agreement.

m

m

m

Figure 3.3: Comparison between the Normalized ion density of the hybrid code
(circle) and the method of characteristics (cross) along Y at different cuts in
X. From top to bottom, X = 3 Rm, X = 5 RM and X = 8 Rm.
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3.2 Two-dimensional finite element model

A two-dimensional finite element model is used to solve systems of partial

differential equations, whether time-dependent or stationary. The system of

partial differential equations which govern plasma dynamics in the wake behind

the Moon is nonlinear and cannot be solved analytically. In the finite element

code, an arbitrary geometry is divided into a large number of cells where

unknown functions are discretized. In this thesis, the computer code TOPO

is used to simulate the night-side the Moon-solar wind interactions with finite

element discretization on an unstructured triangular mesh. The code TOPO is

a general purpose finite element code written by Prof. Richard Marchand [48].

In the paper [48], a detailed explanation of the finite element code (TOPO) is

provided, and in this paper this code is used to simulate the plasma passing

through the edge of a tokamak [48], [49]. The general equations which govern

the transport of plasma and neutral particles can be expressed as,

N∑
l=1

[
Zkl

∂Ul
∂t

+∇∇∇.(AAAklUl) +∇∇∇.(BBBkl.∇∇∇Ul) + CklUl +DDDkl.∇∇∇Ul
]

+Sk = 0 (3.12)

Where the summation is over N coupled partial differential equations. There-

fore, k and l range from 1 to N . Ul is the unknown function with index l. In

addition, Zkl, AAAkl,Bkl,Ckl and Dkl are coupling coefficients, and Sk represents

a source term in equation k. In order to solve the desired system of equations,

an unstructured mesh is required. I used a program which is called ARANEA

(written by Marchand et. al [51]), to generate unstructured triangular meshes.

ARANEA is written in JAVA, with a full Graphics User Interface to generate

unstructured triangular meshes on two-dimensional domains. The interested

reader should refer to article [51] for more details. In order to download the

program, refer to the CPC Program Library under catalog identifier:

HTTP://cpc.cs.qub.ac.uk/summaries/ADOG.

In the next section 3.2.1, TOPO is modified for simulating a normal shock,

which has an analytic solution to assess the accuracy of the code. Then, in

Sec. 3.2.2, the equations related to the interaction of plasma fluid with the
76



Moon are implemented in the code along with the proper boundary conditions

to simulate the lunar wake.

3.2.1 Finite element code validation

Shock waves are formed when a flowing fluid moving at supersonic speed,

encounters an obstacle. The speed of the fluid has an important role in form-

ing shock fronts. If the speed of the plasma flow is much less than the speed of

sound of the plasma, plasma density does not change discontinuously. When

the speed of the plasma reaches the sound speed, compressibility effects are

important, and shock waves appear [60]. In other words, discontinuities can

occur during the motion of a compressible fluid which flows faster than the

speed of sound [15], [57] and [80]. If the shock wave is perpendicular or inclined

to the flow direction, it is called a normal or an oblique shock respectively. As

an illustration, I consider a standard two-dimensional problem in gas-dynamics

involving the flow of a supersonic compressible fluid in the absence of a mag-

netic field encountering a rigid wedge, thus forming an oblique shock. Figure

3.4 shows a rigid wedge with an angle θ with respect to horizon (x − axis).

The discontinuities in the density, velocity, and pressure across the shock front

can be determined from the:,

(i) mass conservation equation,

(ii) momentum conservation equation, and

(iii) ideal gas approximation [15].

In this example, fluid with mass density ρ1 = n1m flows at supersonic speed

with an upstream Mach number M1 = V1/Cs, and encounters a wedge. In the

definition of the Mach number, Cs =
√
kT/m, where T is the temperature of

the upstream fluid and m is the mass of a particle. The shock front exists with

an angle β with respect to the X − axis and unlike normal shock waves which

are always perpendicular to the flow velocity before and after the shock, the

oblique shock waves are deflected upward downstream of the wedge as shown

in Fig. 3.4. The conservation laws, along with the equations of state across

the shock front, are applied to get a formula relating the Mach numbers of
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the flow upstream M1, and downstream M2, the wedge (deflection angle) θ,

and, the shock wave angle β. The partial differential form of continuity and

momentum equations are as below,

-Continuity,
∂ρ

∂t
+∇∇∇.(ρVVV ) = 0, (3.13)

-Momentum,
∂ (ρVVV )

∂t
+∇∇∇.(ρVVV VVV + P ) = 0, (3.14)

where, ρ = nm is the mass density of the fluid, VVV is the velocity of the fluid and

P = pI is the isotropic stress tensor [35], [43]. Now, I consider a 2D surface

with area A in which neutral fluid flows across it. Assuming a stationary state

the first terms ∂
∂t
, in Eqs. 3.13 and 3.14 can be ignored. The steady state,

volume integral conservation equations can be expressed as,

-Continuity, ‹
nmVVV .n̂dA = 0, (3.15)

-Momentum, ‹
nmVVV (VVV .n̂) dA = −

‹
PPP .n̂dA, (3.16)

where PPP is the pressure of particles flowing thought the shock front with area

A. Unit vectors parallel and perpendicular to the shock front are, t̂ and n̂

respectively. In the upstream/downstream regions the velocities have two

components parallel/tangential (with subscript t) and perpendicular/normal

(with subscript n) to the shock front. The continuity equation 3.15 gives a

condition on the normal component of the velocities (Mach numbers),

n1Mn1 = n2Mn2, (3.17)

Mn1 and Mn2 are the components of Mach numbers (normalized velocities)

normal to the shock in the upstream and downstream regions respectively.

Densities before and after shocks are n1 and n2.
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The momentum equation 3.16 is a vector equation. By considering the

tangential component of the normalized momentum conservation and using

Eq. 3.17 it follows that the tangential component of the flow velocity does not

change across an oblique shock

Mt1 = Mt2. (3.18)

The ideal gas approximation, p = nkT is assumed, so that the normal compo-

nent of the momentum equation 3.16 gives,

n1 + n1M
2
n1 = n2 + n2M

2
n2. (3.19)

This gives three equations 3.17-3.19 from which three unknowns n2,Mn2 and

Mt2 can be determined. According to Fig 3.4 the projections of the Mach

Figure 3.4: Oblique shock illustration.

numbers along the shock are

Mt1 = M1 cos(β),

Mt2 = M2 cos(β − θ).
(3.20)

Similarly the normal components of the Mach numbers are

Mn1 = M1 sin(β),

Mn2 = M2 sin(β − θ).
(3.21)
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Referring to the geometry of the oblique shock shown in Fig. 3.4 and applying

Eqs. 3.20-3.21, give

tan(β) =
Mn1

Mt1

,

tan(β − θ) =
Mn2

Mt2

,

tan(β)

tan(β − θ)
=
n2

n1

=
Mn1

Mn2

.

(3.22)

Equation 3.17 is substituted in Eq. 3.19 to give

−Mn1

[
M2

n2

]
+
(
1 +M2

n1

)
[Mn2]−Mn1 = 0. (3.23)

The solutions to this quadratic equation are, Mn2 = 1/Mn1 and Mn2 = Mn1 of

which only the first is physically acceptable (the second one gives no shock).

This gives the formula relating the unknown shock wave angle, β, to the known

variables such as the wedge angle (deflection angle) and the upstream Mach

number (see the references [36], [17] and [71])

tan(β − θ)− 2

M2
1 sin(2β)

= 0. (3.24)

Equation 3.24 can be solved straightforwardly using a root finder, thus giving

shock wave angles for given wedge angles.

To validate the finite element code, the differential form of equations 3.15

and 3.16 are also solved with the TOPO. Two meshes with different wedge

angle (θ1 ∼ 15◦, θ2 ∼ 20◦) are generated with ARANEA. Two different flow

velocities (M1,1 = 2,M1,2 = 4) encountering these obstacles are considered.

Simulations are carried out until a steady state is reached then the shock wave

angle can be determined. The shock wave angles which are computed from

the finite element code are compared with the analytic results in table 3.2.

The shock angles obtained analytically are seen to be in good agreement

with computed values obtained with the finite element code as shown in the

Table 3.2. Quantitatively, the accuracy ranges from ' 1% to ' 4% in the

range of parameters considered. The table shows that when the upstream

Mach number is smaller the discrepancy is less for the two wedge angles con-

sidered. Obviously, in numerical methods and computational simulations there
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Analytic FEM Percentage discrepancy
M1 = 2, θ = 14.9◦ β = 41.62◦ β = 40.91◦ 1.7
M1 = 4, θ = 14.9◦ β = 24.34◦ β = 23.74◦ 2.4
M1 = 2, θ = 19.9◦ β = 46.58◦ β = 45.98◦ 1.2
M1 = 4, θ = 19.9◦ β = 28.46◦ β = 27.32◦ 4.0

Table 3.2: The comparisons between computed shock angle analytically and
via the Finite Element Model (FEM). It has computed for different upstream
Mach numbers and two different wedge angles.

are always approximations which can cause discrepancies between results ob-

tained with different models. One of the sources of numerical errors in the

numerical solution of PDE’s comes from the finite spatial distretization used

in the finite elements. In conclusion, the good qualitative agreement between

the two indicates that the finite element code is reliable and can be used to

simulate the lunar wake.

Figure 3.5: Computed oblique shock with the finite element code. The Mach
number is 2 and the wedge angle is θ = 14.9◦.
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3.2.2 Use of the finite element code for the lunar wake
case

In this section, the equations governing the dynamics of the quasi-neutral,

isothermal fluids refilling the lunar wake are solved using the Finite Element

Code (TOPO). In the absence of any interaction processes to create ions, the

ion number density ni is conserved during the motion of the fluid, which is

described by the continuity equation 3.13:

∂ni
∂t

+∇∇∇.(niVVV i) = 0. (3.25)

The momentum conservation equation 3.14 connects the fluid velocity VVV i to

density and electromagnetic forces acting on the fluid element [2]. I adopt the

simplest possible fluid closure scheme, that the ion temperature,Ti, is invariant,

so that the pressure is simply proportional to density [33],

∂ (niVVV i)

∂t
+∇∇∇.(niVVV iVVV i) +

Ti
mi

∇ni∇ni∇ni −
eniZ

mi

(EEE + VVV i ×BBB) = 0. (3.26)

In this expression, mi, ni, Z, and e are, respectively, the ion mass, the ion

number density, the ion charge-number and the electron charge. EEE and BBB

are the electric and magnetic fields. The assumptions made in the method of

characteristics are also applied in the finite element code:

1. the perpendicular component of the velocity is constant,

2. the magnetic field is constant,

3. plasma is quasi-neutral.

An arbitrary angle α between the interplanetary magnetic field BBB and the flow

velocity in the solar wind is considered. The X and Y components of the ion

normalized velocity (Mach numbers) are

Mx = M‖ cos(α) +M⊥ sin(α),

My = M‖ sin(α)−M⊥ cos(α).
(3.27)

Where the perpendicular Mach number,M⊥ = Msw sin(α), is considered as a

constant in the calculations (see Fig. 3.6). Now, the normalized continuity
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equation 3.25 becomes,

∂n

∂t
+∇∇∇.

[
n
(
M‖ cos(α) +Msw sin(α)2

)
x̂+ n

(
M‖ sin(α)−Msw sin(α) cos(α)

)
ŷ
]
) = 0.

(3.28)

The ion density is normalized to the density of the solar wind n = ni

nsw
and

velocities are normalized to the sound speed of the plasma. As the perpen-

dicular velocity is assumed to be invariant, the parallel momentum of ions is

responsible for the dynamics of the fluids in the plane of BBB − VVV SW ,

ni
∂VVV ‖
∂t

+ (niVVV .∇∇∇)VVV ‖ = − Ti
mi

∇∇∇‖(ni) +
eniZ

mi

EEE‖. (3.29)

As the Debye length is much smaller than any length scale in the problem

(ne = Zni), the plasma is assumed to be quasi-neutral and the electron parallel

momentum equation gives the adiabatic relation between the electric field and

the parallel pressure gradients,

E‖ = − Te
eni
∇∇∇‖(ni). (3.30)

Now, by applying Eq. 3.30 into the Eq. 3.29, the normalized parallel momen-

tum equation in x− y coordinates becomes

n
∂M‖
∂t

+ n
[
M‖ cos(α) +Msw sin(α)2

] ∂M‖
∂x

+ n
[
M‖ sin(α)−Msw sin(α) cos(α)

] ∂M‖
∂y

= −
(

cos(α)
∂n

∂x
+ sin(α)

∂n

∂y

)
. (3.31)

In order to stabilize the simulations diffusion terms −D∇2ni, −D∇2ViViVi are

added to the continuity and the momentum equations 3.25, 3.31, where D

is a constant diffusion coefficient related to fluid viscosity in these equations.

This is needed because with this finite element code, discretization of the

convection equations generates a small negative diffusion. A small artificial

positive diffusion is therefore needed in order to ensure numerical stability. All

of the coupling coefficients in the Eq. 3.12 can now be inserted in TOPO code

along with the proper boundary conditions to do the simulations. The TOPO

is capable of solving the fluid equations for multiple species. Effects from two
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Figure 3.6: This figure shows the orientation of the interplanetary magnetic
field BBB and velocity (Mach number) in the solar wind Msw in the x− y coor-
dinate system.
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ion fluids coming from either side of the Moon cross section in this 2D model are

accounted for, labeling them with subscripts 1 and 2, corresponding to plasma

entering from below and above, respectively as discussed in Ch. 2. Therefore,

Eqs. 3.25, 3.31 are considered for each species which are characterized by

a density n1,2 and a parallel Mach number M1,2‖. The four equations (two

continuity equations and two momentum equations corresponding to each ion

fluid) are then solved simultaneously for the two-fluid system. The interaction

between fluids 1 and 2 is included in the momentum equations of each species

in the finite element code and the strength of this interaction can be varied

arbitrarily as in the solutions obtained with the method of characteristics,

in order to assess its impact on the results. Another interesting test which

can be done with TOPO, which consists of running the code with the same

configurations but for a single-ion fluid and to only solve its continuity and

momentum equation. In order to do these simulations, an unstructured mesh

on a two-dimensional domain is generated with ARANEA (see Fig. 3.7). In

this 2D code the solar wind flow Vsw = 295.6km/s is in the +x direction, and

the solar wind magnetic field BBBIMF is in the +y direction (α = 90◦) with a

magnitude of 6nT. The background density is assumed to be nsw = 3.14

cm−3, the electron and ion temperatures are Te ' 14.3eV and Ti ' 5.7eV.

In that case, with the parameters given above, the sound speed is cs ∼ 48.8

km/s and the corresponding upstream Mach number is M⊥ ' 6 and M‖ = 0.

These parameters correspond to those from the first flyby of ARTEMIS P1

through the lunar wake [18], [68], [75]. The element size and time step are set

to be δ = 0.038 Rm and ∆ = 0.001 respectively. With these parameters, the

simulation domain used in the finite element simulations extends up to +10

Rm in X and ±3 Rm in Y , where RM ∼ 1737 km. The diffusion coefficient

is set to be D = 0.02 and simulations are carried out until a steady state is

reached. Below the results from the finite element code for three possible cases

are presented in figures 3.8, 3.9 and 3.10:

• Case 1- Two-fluid with coupling between the two ion fluids(RHS=1),

• Case 2- Two-fluid without coupling between the two ion fluids (RHS=0),
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Figure 3.7: The two-dimensional domain of the lunar wake is used in ARANEA
to generate an unstructured mesh for the finite element (TOPO) code.

• Case 3- Single-fluid.

In the third case, there is only one fluid, the up-down symmetry yields

zero parallel flow velocity on the wake axis (Y = 0). This constraint prevents

plasma coming from below, to reach regions of the wake above Y = 0, and

vice versa. In the second case where there are two fluids without coupling,

there is no force to stop either fluid from going beyond the Y = 0 axis. In

this case, parallel velocities for each fluid can become large in absolute value,

which explains the shorter region with practically zero density, compared with

the other two cases shown in Fig. 3.8. In this analysis the electric field is

proportional to parallel component of the gradient in logarithm of density. By

comparing the first two cases, it is obvious that the electric field is smaller for

the interacting fluids than for the non interacting fluids. In case 1, the electric

field is the sum over the parallel pressure gradient of the two fluids that are

equal and in opposite directions. Therefore, in the first case, the interactions

between the two fluids reduce the flow of plasma entering the wake from below,

above the Y = 0 axis, and vice versa. This reduction is clearly seen in Figs.

3.8 and 3.9. As a result, in the second case as there is no constraint on the

movement of ion fluid, the void region is the shortest in comparison to the

other two cases where a force prevents fluids from reaching the opposite sides.
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Figure 3.8: Normalized total density from the finite element code for three
different cases. From top to bottom, 1- the interaction between the two fluids
are considered, 2- interaction between the two fluids is ignored, and 3- a single-
fluid is assumed in the simulation.
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Comparing the single-fluid case and the two-fluid case with interactions (case

3 and case 1), it is obvious that when ions fill the wake far from the Moon,

the normalized density of the single-fluid has a higher value in comparison to

the two-fluid case. In the single-fluid approximation, the parallel fluid velocity

must vanish at Y = 0 by symmetry. As a result, plasma stops flowing along

the vertical direction there, which explains the larger density resulting from

an accumulation in density on the axis. In case 3, the density gradient of

one fluid opposes, and decreases the parallel velocity of the other one. This

is why plasma flow from below can reach the region above the Y = 0 axis

and vice versa, but less than when the fluids are not interacting. The parallel

Mach number calculated with the finite element code for three different cases

are plotted in Fig. 3.9. The upper/middle panel shows M1‖ calculated with

the finite element model (FEM) for the interacting/non-interacting fluid tests.

The bottom panel demonstrates the parallel Mach number of the plasma fluid

for the single-fluid test. In order to understand the physics behind the three

cases, I consider the M1‖ for comparisons. In the non-interacting case (the

middle panel), plasma can accelerate upward parallel to the magnetic field to

have large parallel velocity ( 170.87 km/s) because there are no forces opposing

either fluid. In the other cases (single-fluid/interacting two-fluid as shown in

the bottom/top panel) plasma is prevented from reaching the opposite side of

the wake, and the maximum parallel velocity becomes 39.0km/s. Normalized

parallel flux Γ1,2 ‖ = (n1,2M1,2 ‖)/nSW, where nSW is the upstream solar wind

density and the net normalized flux Γ = Γ1 ‖+Γ2 ‖ is calculated with the finite

element code and shown in Fig 3.10. The parallel flux of the plasma moving

up into the wake region of the Moon is shown in the top/middle panel when

the interactions between the two fluids are/are not considered. The bottom

panel shows the normalized parallel flux of the single-fluid plasma. As it is

discussed, when the interaction between the two fluids is turned off (middle

panel), plasma can reach the opposite side of the wake. In other words, there

are some positive fluxes far from the Moon (X > 6.5 Rm) and close to the

upper boundary (Y > 2 Rm) and conversely some negative fluxes close to the

lower boundary. In the two-fluid cases since α = 90, there is symmetry between
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Figure 3.9: Parallel Mach number calculated with the finite element code for
three different cases. Calculated parallel Mach number of the plasma moving
up into the Moon intersection is shown in the top/middle panel when the inter-
actions between the two ion fluids are/are not considered. The bottom panel
shows the parallel normalized velocity of the single-fluid plasma calculated
with the finite element code.
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Figure 3.10: Normalized total parallel flux calculated with the finite element
code for three different cases. The calculated parallel flux of the plasma moving
up into the Moon intersection is shown in the top/middle panel when the
interactions between the two ion fluids are/are not considered. The bottom
panel shows the normalized parallel flux of the single-fluid plasma.

90



the two counterstreaming particle fluxes, and precisely in the middle of the

wake at Y = 0 the two fluxes are equal with opposite signs. There they cancel

each other, and the net flux is zero. However, in the single-fluid simulation,

the unique flux is exactly zero on the X − axis, and it is positive/negative

below/above the Y axis. The main differences in the net parallel flux of the

top and the bottom panel happen in the light shadow region, which is wider

for the two-fluid, interacting rather than the one-fluid model. The zero net

parallel flux in the light shadow region of the single-fluid model comes from

the zero parallel Mach number, in contrast to the two-fluid models for which

the positive and negative fluxes cancel each other at Y = 0.

3.2.3 Comparisons between results obtained with the fi-
nite element model and the method of characteris-
tics

Table 3.3: Main similarities and differences between the method of character-
istics and the finite element code

Characteristics Finite Element
Similarities 2D

Isothermal fluid electrons
Uniform BBB
M⊥ constant
Magnetized fluid ions

Differences Boundary conditions
Stationary Time dependent

Figure 3.11 shows the normalized density obtained from the method of

characteristics compared with the one from the finite element model (the in-

teracting two-fluid case) along Y , at three values of X in the wake region.

The density profile of the two models is seen to be minimum on axis at Y = 0

and to increase gradually from both sides along the Y − axis. Qualitatively,

the density profile obtained from the finite element model is narrower near the

minimum, and broader in the wake edge region, than the density obtained with

the method of characteristics. In addition, the finite element model creates a

deeper void and shorter wake compared to what is obtained with the method

91



of characteristics. This is because in the method of characteristics the parallel

velocities can get large numbers in absolute value (Fig. 2.9) while the parallel

Mach in the finite element code is much smaller (Fig. 3.9). Another difference

between the two models is found at X = 8 Rm where the finite element shows

an increase in density on axis, absent with the method of characteristics. That

is related to another feature expected for the solar wind interaction with the

Moon, which is pointed out by Michel [53], [54] and is modeled by a 1D hy-

brid code for the first time by Israelevich and Ofman [34]. It is shown that a

standing shock wave appears at ∼ 7 Rm in the wake region. This feature of

the wake appears in the results of the finite element simulations while it is not

seen with the method of characteristics. In fact, in the finite element code,

the supersonic flowing solar wind is imposed on the day-side of the Moon as

the boundary condition and right after the solar wind fluid passes the Moon,

a sharp decrease in the density appears on the night-side. This is what causes

the shock fronts converging to the Y = 0 axis. However, in the method of

characteristics, the boundary started at around X = 2Rm which comes from

the analytic model and the discontinuity does not appear in this analysis so

the shock waves cannot be seen. The differences and similarities between the

finite element model and the method of characteristics are listed in Table 3.3.
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3.3 Comparisons between the densities obtained
from the method of characteristics, the fi-
nite element model, and the hybrid model

Results from two different simulation models of the lunar wake, namely the

finite element and hybrid models reveal some characteristic features of the

Moon-solar wind interaction; both were compared with the method of charac-

teristics. The differences and similarities were discussed. In this section, com-

parisons between the density of all three models, based on the hybrid code,

the finite element approach, and the method of characteristics are presented

and discussed. The parameters used to run the two codes are the same as the

ones used in sections 3.1.1, and 3.2.2. In order to have a better appreciation

of the results, normalized ion density of the two models is plotted along the

vertical coordinate Y at four different X in the vacuum region in Figs. 3.12

and 3.13. In both cases, the density is found to be minimum at the center

of the wake and it increases as expected away from the Moon. Qualitatively,

the density profile obtained from the finite element model is deeper than the

density obtained from the hybrid code because of this ad hoc assumption con-

sidered in the hybrid code. Specifically, in order for the hybrid simulations to

be numerically stable, particles are injected into the wake from the night-side

of the Moon, and this makes a wake with higher density in comparison with

the other models which do not have this ad hoc assumption. This explains

why the minimum density obtained from the hybrid code close to the Moon,

X = 3 Rm, is ∼ 0.19nSw which is higher than that obtained with the finite

element model ∼ 10−11nSW . Further from the lunar surface, X = 7 Rm, these

differences are relatively small and do not exceed 5% of the upstream density,

from which I conclude that both models predict density profiles that are in rel-

atively good agreement in the far wake region. Another difference is that the

finite element code predicts smooth density profiles, while the ones obtained

with the hybrid code show significant levels of short-scale variations, probably

associated with waves and turbulence excited in the Moon-solar wind inter-

action. The bottom panel in the Fig. 3.13 shows an increase in normalized
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density in the finite element model in the light shadow of the wake which is the

result of the converging shock fronts as seen in Fig. 3.11 in this model while

it is not be seen in the hybrid code [34], [53] and, [54]. This peak corresponds

to accumulation of plasma on the Y-axis at the end of the wake (it can also

be seen from Fig. 3.10). A summary of the main similarities and differences

between the finite element code and the hybrid model is given in Table 3.4

Table 3.4: Main similarities and differences between the finite element model
and the hybrid models

Finite Element Hybrid
Similarities 2D cylindrical

Time dependent
isothermal fluid electrons

Differences magnetized fluid ions kinetic ions
uniform and constant BBB solves for EEE and BBB(optionally)
M⊥ constant M⊥ variable

The normalized densities in all approaches considered are plotted as a

function of Y at various cuts in X in Fig. 3.14. In all cases, the shape of

the wake is similar that the density has a minimum at the center of the wake

and gets larger away from the Y = 0 axis on both sides. Qualitatively, the

density calculated from the hybrid code at the wake center is more significant

compared to the other analyses. As discussed above some ions are injected

in the wake on the night-side of the Moon to make the hybrid code stable

numerically, so it causes higher number density in the hybrid code than in

other models. One of the features of the Moon-solar wind interaction is the

formation of shock waves behind the lunar surface [34], [53], [54] which is only

captured in the finite element code results. The reason could be due to the ad

hoc assumptions made in the hybrid code. For example, injection of some solar

wind particles to the wake region for stability reasons. In the final analysis,

all the models can present some features of the lunar wake. In order to further

assess the two-fluid models including the method of characteristics and the

finite element model with coupling for the Moon-solar wind interactions, they

are compared with two ARTEMIS satellite observations in Ch. 5.
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Figure 3.11: Comparison between the Normalized ion density calculated with
the two-fluid interacting finite element model (circle) and the method of char-
acteristics (cross) along Y at different cuts in X. From top to bottom, X = 3
Rm, X = 5 Rm and X = 8 Rm.
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Figure 3.12: Normalized total density calculated with the finite element model
(FEM) compared with the results of the hybrid code along Y at different cuts
in X. From top to bottom, X = 3RM and X = 5 Rm.
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Figure 3.13: Normalized total density calculated with the finite element model
(FEM) compared with the results of the hybrid code along Y at different cuts
in X. From top to bottom, X = 7 Rm and X = 8 Rm.
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Figure 3.14: Normalized total density calculated with the finite element model
(FEM), the hybrid code (Hyb) and, the method of characteristics (Char) are
plotted as a function of Y at different cuts in X. From top to bottom, X = 3
Rm, X = 5 Rm, X = 7 Rm and, X = 8 Rm.
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Chapter 4

Test-particle simulations

Fully kinetic descriptions offer the complete model to study a many-body

system, but due to the complexity required computer time, it is not always

practical in many cases. As kinetic simulations show the microscopic view

of particles in a system, fluid approaches provide a macroscopic description

of particles. Although fluid simulations are much simpler to implement, they

cannot describe phenomena occurring in a very short time or fine space scales.

Here, the test-particle method is applied to calculate particle trajectories by

using approximated fields obtained from a low-level approach, such as fluid or

analytic models without solving a fully self-consistent kinetic calculation. Test

particle simulations produce approximate particle distribution functions which

can be informative since they are as accurate as the possible from the fields

used in the calculations of particle trajectories. Particle methods have been

used to study different problems in space physics. For example, Wang et al.

[73] shows a simple simulation model on electrostatic levitation of lunar dust

particles (for a single dust particle) in the lunar terminator region. The electric

field obtained from a full-particle PIC simulation is applied in a test-particle

model to study the dust levitation. This method integrates the test-particle

trajectories in the electric and magnetic fields. There are different types of for-

mulations for test-particle models: (1) trajectory sampling, (2) forward Monte

Carlo, (3) forward Liouville and (4) backward Liouville which are described

in [50]. In a collisionless plasma, forward and backward Liouville method is

used to conduct test-kinetic modeling. In these methods, Liouville’s theorem
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is applied to a one-particle distribution function which does not change in

time (df
dt

= 0) along a particle trajectory. In the backward approach which is

used in this thesis, for each test-particle, the equation of motion is integrated

backward in time.

We recall that the distribution is the function of seven independent

variables f(x, y, z, vx, vy, vz, t) in the phase space (r,v) at the time t. It is

proportional to the probability density of points in the phase space at the time

t. The test-particle code [72] calculates the particle distribution functions of

given species at specified positions in space by using the particle backtracking

(backward Liouville) approach. The code uses electric and magnetic fields

obtained from the analytic model Ch. 2 to give a first approximation of the

kinetic structure of a plasma.

4.1 Algebraic expression for parallel velocities

In this section, the analytic expression for electric fields in the lunar wake is

derived. By using the electron parallel momentum equation and assuming that

plasma is quasi-neutral because the Debye length is much smaller than any

length scale in the problem (ne = Zn), one finds the familiar adiabatic relation

between the electric potential and parallel pressure gradients as stated in Eq.

(2.19). Perpendicular electric field has two components one is in the plane

of magnetic field and solar wind flow BBB - vvv which comes from perpendicular

pressure gradients and the −vvv ×BBB convective electric field. The electric field

components in the plane of magnetic field and solar wind are,

E‖ = −
(
Te
e

)(
1

n1 + n2

)(
1

Rm

)(
−n1∇‖M1‖ + n2∇‖M2‖

)
, (4.1)

and,

E⊥ = −
(
Te
e

)(
1

n1 + n2

)(
1

Rm

)(
−n1∇⊥M1‖ + n2∇⊥M2‖

)
, (4.2)

where, Te and e are electron temperature and charge respectively. M1,2 and

n1,2 are the Mach number and the number density of fluid 1,2. All the coordi-

nates are normalized to the lunar radius Rm. The goal is to find the analytic
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Figure 4.1: The negative characteristic ( dy
dx

)− is drawn for any arbitrary point
A(x, y). Intersection between ( dy

dx
)− and Y axis can indicate parameter h.
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expression of parallel velocities corresponding to the ions expanding in the

wake from both sides. For this purpose, the lower boundary between the wake

and the unperturbed solar wind which is defined as the negative characteris-

tics in Ch. 2 at any arbitrary point A(x, y) in front of the Moon are derived

analytically (refer to the Eq. (2.29)),

dy

dx

∣∣∣∣− =
− sin(α)−M⊥ cos(α) +M1‖ sin(α)

− cos(α) +M⊥ sin(α) +M1‖ cos(α)
. (4.3)

Referring to Fig. 4.1, simple geometric considerations show that,

dy

dx

∣∣∣∣− =
y + h

x
, (4.4)

where, the intersection between the negative characteristic and the Y − axis

is h. Assuming an angle α between the magnetic field and the solar wind flow

velocity, see Fig. 2.2, θ is the angle between the negative characteristic with

respect to the horizontal axis,

cos(θ) =
1

h
, (4.5)

and,

cos(θ) =
x√

x2 + (h+ y)2
. (4.6)

The value of h can be found from eqs. (4.5) and (4.6),

h =
−(x2 + y2)

y − x
√

(x2 + y2 − 1)
. (4.7)

Equations (4.3), (4.4), and (4.7) are combined and the analytic expression for

the parallel velocity entering the wake from below the Moon becomes,

M1‖ = 1−M⊥

{
cos(α)[−y + x

√
x2 + y2 − 1] + sin(α)[x+ y

√
x2 + y2 − 1]

cos(α)[x+ y
√
x2 + y2 − 1] + sin(α)[y − x

√
x2 + y2 − 1]

}
.

(4.8)

It is noticeable that M1‖ cannot be calculated with the analytic model beyond

the line y′ = tan(α)x − 1
cos(α)

. y′ is tangent to the Moon from below with

the slope of tan(α). The negative characteristic is plotted as a function of

M1‖ in Fig. 4.2. It can be seen that the negative characteristic cannot ex-

ceed by increasing M1‖. There is no solution for M1‖ above the dash line y′
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Figure 4.2: Negative characteristic plotted as a function of M1‖. It can be
seen that the negative characteristic has an asymptotic limit of tan(α) as M1‖
approaches infinity.

in the analytic model, which does not affect the accuracy of analytic model

results because very few particles can reach this point from below. The upper

boundary between the wake and the unperturbed solar wind which is defined

as positive characteristic in Ch. 2 from the analytic expression and geometry

are written respectively as,

dy

dx

∣∣∣∣+ =
+ sin(α)−M⊥ cos(α) +M2‖ sin(α)

+ cos(α) +M⊥ sin(α) +M2‖ cos(α)
, (4.9)

and,
dy

dx

∣∣∣∣+ =
y − h
x

. (4.10)

The intersection between the positive characteristic and (Y − axis) gives h,

h =
(x2 + y2)

y + x
√

(x2 + y2 − 1)
. (4.11)

Then the parallel velocity entering the wake from above is formulated analyt-

ically as

M2‖ = −1−M⊥

{
cos(α)[y + x

√
x2 + y2 − 1] + sin(α)[−x+ y

√
x2 + y2 − 1]

cos(α)[−x+ y
√
x2 + y2 − 1]− sin(α)[y + x

√
x2 + y2 − 1]

}
.

(4.12)
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Figure 4.3: Negative and positive characteristics in the solar wind are in solid
lines which shows the lunar wake boundaries. The analytic model cannot
predict parallel velocity of ions entering to the wake from below M1‖ above
the dashed line.

The analytic expressions for the electric field in the plane of the magnetic

field and solar wind becomes,

E‖ = −
(
Te
e

)(
M⊥

n1 + n2

)(
x2 + y2√
x2 + y2 − 1

)[
n1
y − x

√
x2 + y2 − 1

C1
+ n2

y + x
√
x2 + y2 − 1

C2

]
,(4.13)

and,

E⊥ = −
(
Te
e

)(
M⊥

n1 + n2

)(
x2 + y2√
x2 + y2 − 1

)[
n1
x+ y

√
x2 + y2 − 1

C1
+ n2

x− y
√
x2 + y2 − 1

C2

]
,

(4.14)

where the denominators C1 and C2 are

C1 =
[
cos(α)

(
x+ y

√
x2 + y2 − 1

)
+ sin(α)

(
y − x

√
x2 + y2 − 1

)]2
,

C2 =
[
cos(α)

(
−x+ y

√
x2 + y2 − 1

)
− sin(α)

(
y + x

√
x2 + y2 − 1

)]2
.

(4.15)
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4.2 Maxwellian distribution function

A distribution function, f(XXX,VVV , t) varies in space, velocity, and time there-

fore there is no graphical representation of the six-dimensional phase space.

However, by knowing the velocity dependence in a specific position in a space

many of the characteristic features of the plasma can be understood [2]. There

are different types of velocity space distribution functions known in the solar

wind plasma. One of the well-studied distribution functions is the drifting

Maxwellian distribution which is defined as,

fs = ns

(
ms

2πkBTs

)3/2

exp

(
−ms(VVV − vvvs)2

2kBTs

)
, (4.16)

This is an isothermal distribution in a thermal equilibrium. The left panel of

Fig. 4.5 illustrates a drifting Maxwellian distribution function.

4.3 Results

The analytic electric fields (4.13)-(4.15) are applied to the test-particle code

to determine the distribution function of ions inside and outside of the lunar

wake in the night-side of the Moon. In these simulations the interplanetary

magnetic field is BBBIMF = 5 nT along the Y − axis and the solar wind flow

is assumed to be in the +X direction with the magnitude of ∼ 295.6 km/s

(α = 90◦). The background density is nsw = 5 cm−3, the electron and ion

temperatures are Te ' 10.0 eV and Ti ' 5.7 eV. Specifically, with the param-

eters given above, the sound speed is cs ∼ 48.8 km/s and the corresponding

upstream Mach number is M⊥ ' 6 and M‖ = 0. Ions distribution function is

calculated in different positions along the curve below Fig. 4.4

xi = 1.1Rm cos(ηi),

yi = 1.1Rm sin(ηi),

−0.55π < ηi < −0.25π.

(4.17)

Figures 4.5-4.6 show distribution functions of hydrogen ions at different po-

sitions in front of the Moon. The velocities are normalized in ion thermal

velocity, VTh =
√

Ti
mi

. The distribution function is Maxwellian outside the
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Figure 4.4: The calculations of distribution function and moments are done
along this curve which is started somewhere in the terminator and enter the
lunar wake from below.

wake as it is assumed in the analytic model. By moving to the wake, the ion

distribution function is not Maxwellian anymore, which means that the ions

are not in thermal equilibrium. The trajectory in which the calculations are

conducted has been started in the unperturbed region at the lunar termina-

tor, X ' −0.17 Rm, Y ' −1.086 Rm as shown in Fig. 4.4. Next point in the

trajectory X ' 0.33 Rm and Y ' −1.04 Rm is on the boundary of the wake

and the other points are progressively are inside the wake area.

4.3.1 Moments of the distribution function

Macroscopic details of the distribution functions are functions of position and

time and can be obtained by integrating the distribution function over the

velocities. The general approach to calculate the k-th moment of a single

particle distribution function fs(r,v, t) is written as

MMMk(rrr, t) =

ˆ
VVV kfs(rrr,vvv, t)d

3VVV . (4.18)
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Figure 4.5: Distribution functions are plotted at two different positions in
the day-side of the Moon with the distance of 1.1Rm with lunar origin. The
left one is Maxwellian because it is calculated in the unperturbed solar wind
η = −0.45π. The right distribution is calculated inside the wake at η = −0.40π

Here Mk is the moment (macroscopic variable) of the distribution function

and defining general tensor of rank k [27]. In Eq. 4.18, d3VVV = dvxdvydvz.

The lower moments relate to familiar macroscopic variables appearing in fluid

descriptions of plasma. Examples are given below.

- Zeroth moment of distribution function (k = 0) gives the number

density of particle s which has the unit of m−3 in SI,

ns(rrr, t) =

ˆ
fs(rrr,vvv, t)d

3VVV . (4.19)

Figure 4.7 shows the density of ions penetrating the lunar wake from below

along the curve (see Fig. 4.4), calculated from the zeroth moment of the

distribution functions obtained from the test-particle code. This density is

compared with the one predicted with the analytic model. Densities are nor-

malized to the incident solar wind density. An excellent agreement between the

two densities is obtained everywhere except for small variations in the wake,

where the plasma is not in thermal equilibrium. A small deviation around

η ∼ −0.35π can be seen which could be due to the discretization errors. Close

to the Moon, the density in the wake is a quasi perfect vacuum because very
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Figure 4.6: Ion distribution functions plotted at η = −0.35π & −0.30π which
are in the lunar wake.

few ions can reach this point from both sides. In Ch. 2 it is shown that

the density calculated analytically inside the wake (Y = 0, X = 2RM) is

' 0.087nsw which means there are only 0.27 ions per cubic cm in that region.

Consequently, the calculated distribution function becomes increasingly singu-

lar. In those regions (−0.40π < η < −0.25π) the maximum difference between

the two densities is of order 0.005nsw, which is very small. However, in the

unperturbed solar wind regions (−0.55π < η < −0.40π) the discrepancies are

even smaller and the maximum relative difference is of order 0.6% as listed in

Table 4.1.

- First moment of distribution function (k = 1) is the particle flux

density of specie s,

nsVVV s(rrr, t) =

ˆ
VVV fs(rrr,vvv, t)d

3VVV , (4.20)

where Vs is called the plasma bulk flow velocity of particles of type s. In

contrast to the assumption of constant perpendicular velocity made in the

analytic model, Fig. 4.8 shows variations in M⊥ in the wake region. Quanti-

tatively, M⊥ remains constant within ' 0.3% almost everywhere in the solar

wind area (refer to Table 4.1), the exception being in the wake region where

the maximum discrepancy is of order ' 16%. This agreement supports the
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Figure 4.7: The zeroth moments of the ion distribution function is compared
with the density of the ions entering to the Moon from the below.

assumption made in the analytic model that M⊥ is approximately constant.

In the analytic model, Z components are not taken into account because in

the assumed 2D cylindrical model, Z is an ignorable coordinate. The Z com-

ponent of the flow velocity calculated from the distribution function remains

very close to zero in the solar wind area as expected. In the wake region, the

maximum absolute calculated value of Mach number in the Z direction, Mz,

is ∼ 0.25, which is very small as seen in Fig. 4.9. Figure 4.10 shows paral-

lel Mach number of two models which are in a very good agreement. In the

wake the maximum discrepancy between the calculated parallel velocity from

the test-particle model and the one calculated analytically is ∼ 0.64 which is

relatively small. In the solar wind, where plasma is described by a drifting

Maxwellian velocity distribution function, as seen in Fig. 4.5, the maximum

differences in M‖ are of order ∼ 0.03.

- Second moment of distribution function explained the flow V of

momentum msV in the laboratory frame,

PPP s(rrr, t) =

ˆ
msVVV VVV fs(rrr,vvv, t)d

3VVV , (4.21)
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Figure 4.8: The validity of constant perpendicular velocity is examined by
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Figure 4.9: This figure shows variations of vz in the test-particle code from
zero which is assumed in the analytic model.
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is compared with the parallel velocity entered to the wake from below.

Ps is called stress tensor. By calculating the second moment in the frame of

the particle the pressure tensor ps is attained,

ppps(rrr, t) =

ˆ
ms(VVV − VVV s)(VVV − VVV s)fs(rrr,vvv, t)d

3VVV . (4.22)

In the Analytic model it is assumed that the ions are in thermal equilibrium

so an isotropic pressure is expected

ppps =

pxx 0 0
0 pyy 0
0 0 pzz

 , (4.23)

where, pxx = pyy = pzz = ps = 4.56×10−3(nPa). Another assumption made in

the analytic models is the ideal gas equation of state which is described in Sec.

1.6.3. At η = −0.45π which is in the unperturbed solar wind area, calculated

pressure tensor is

ps(nPa) =

 4.66× 10−3 −1.85× 10−6 6.32× 10−8

−1.85× 10−6 4.69× 10−3 −1.63× 10−6

6.32× 10−8 −1.63× 10−6 4.69× 10−3

 . (4.24)

In this region of the solar wind, the off-diagonal elements are indicative of

discretisation errors made in the test-particle method and the integration of
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Analytic Moments of distribution function Percentage discrepancy
Dn (1/m3) 5.00× 106 5.04× 10−6 0.64
vx (m/s) 2.95× 105 2.94× 105 0.34
vy (m/s) 0.00 5.70× 10−4 -
ps (nPa) 4.56× 10−3 4.61× 10−3 1.01

Table 4.1: The moments calculated from the distribution function are com-
pared with the assumptions were made in the analytic model. The distribution
function is computed from test-particle code at the position which is perfectly
outside the wake η = −0.45 (in the solar wind region where plasma is assumed
to be in thermodynamic equilibrium).

distribution functions to obtain the second order moments. The maximum rel-

ative difference between the diagonal elements and the assumed pressure in the

analytic model is of order 1.0% (refer to Table. 4.1). For the perturbed regions

inside wake η = −0.35π, the plasma is not in thermodynamic equilibrium and

the pressure tensor is calculated as

ps(nPa) =

 1.52× 10−3 −8.08× 10−6 −7.61× 10−6

−8.08× 10−6 2.39× 10−4 −2.37× 10−5

−7.61× 10−6 −2.37× 10−5 1.51× 10−3

 , (4.25)

whereas, the plasma fluid pressure of the analytic model is assumed 1.30 ×

10−3nPa. The diagonal elements of the pressure tensor Eq. (4.23) along with

the pressure of the analytic model, are plotted in Fig. 4.11. The curve begins in

the unperturbed region with n = nSW and, ends inside the wake with n = 0.

By the assumptions of ideal gas and isothermal fluid, diagonal elements of

the pressure tensor are expected to decrease along this trajectory. Figure

4.11 illustrates a general qualitative agreement between the analytic pressure,

and the ones are calculated from the test-particle analysis. Some significant

variations can be seen between pyy and the analytic pressure inside the vacuum

area. This shows that the pressure tensor becomes increasingly anisotropic as

one penetrates the wake, contrary to the assumption of an isothermal isotropic

ion distribution assumed in the analytic model.

Table 4.1 shows some of the macroscopic parameters calculated from the

distribution function in the unperturbed solar wind area η = −0.45 or X =

0.017Rm, Y = −1.08Rm, where the calculated distribution function with the
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Figure 4.11: The diagonal elements of the pressure tensor is compared with
the analytic pressure profile along the curve in Eq. (4.17).

test-particle code at this point is a Maxwellian. The discrepancies between the

calculated moments and the analytic values are relatively small. Therefore,

I conclude that the assumptions were made in the analytic model constitute

good approximations.
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Chapter 5

Comparisons with ARTEMIS
observations

In 2010 two of the five in-orbit spacecraft ("probes") from the project "Time

History of Events and Macroscale Interactions during Substorms" (THEMIS)

were sent to lunar orbit to study the Moon-Solar wind interactions, which is

known as "Acceleration, Reconnection, Turbulence, and Electrodynamics of

the Moon’s Interaction with the Sun" (ARTEMIS) [1]. ARTEMIS measures

the density, velocity, and temperature of the ambient plasma from distances

hundreds of kilometers to 120,000 km from the Moon surface. The Electro-

static Analyzers (ESA) of ARTEMIS can measure the particle distribution

function of electrons and ions over the energy range from ∼ 3 eV to ∼ 30 keV

[1]. The ARTEMIS mission has two identical probes, P1 and P2, in elliptical

orbits, with approximate orbital periods of 28 hours [1]. While one of the

probes is crossing the lunar wake, the other one is located outside the wake

and far from the lunar surface to measure the undisturbed solar wind as a ref-

erence. In this chapter, I report two different ARTEMIS observations of the

lunar wake in order to compare with the density calculated with the method

of characteristics.

Case 1: 13 February 2010 between 08:53 and 09:29 UT [68], [75].

Case 2: 13 March 2013 between 08:35 and 09:35 UT [62].

In Sec. 5.1, a short description of mapping 3D results into the 2D plane of

VVV SW −BBB is provided. In Sec. 5.2, there is a short description of transforma-

tion between various coordinate systems. Finally, results from ARTEMIS are
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presented and compared with the ones obtained from models presented in the

previous chapters.

5.1 Mapping a 3D wake into 2D

The method of characteristics and the alternative models consider simpli-

fied 2D wake models. ARTEMIS observations however, are of a 3D actual

wake. In order to compare model predictions and observations, I need to map

the 3D results measured with ARTEMIS into the 2D plane of VVV SW −BBB. The

procedure makes use of the fact that the characteristics, the Mach vectors,

and the magnetic field, all lie in a single plane. Following the trajectory of

ARTEMIS satellite, at each time step, a plane of VVV SW and BBB intersects the

Moon sphere, which defines a circle with radius of Rc. This circle represents

the Moon in my 2D model of the wake (see the Fig. 5.1). The size of this

circle (the 2D Moon) varies with the position of the satellite along its trajec-

tory. Furthermore, it can be seen that in the characteristics description of the

wake and solar wind, the ratio n/n0, and M‖, only depend on the relative po-

sition rrr/Rc in the BBB - VVV SW plane. The alternative models, the finite element,

and the hybrid models do not depend on the actual size of the Moon. In the

particular case, where VVV SW is along X and BBB ‖ ŷ, the 2D plane of interest is

simply the X−Y plane and the radius of the Moon cross section in the X−Y

plane containing the satellite is given by Rc −
√
R2

m − z2SC, where Rm is the

lunar radius and zSC is the z coordinate of the spacecraft. It should be noted

that in this two-dimensional approximation, no plasma flow in the z direction

perpendicular to the BBB − VVV SW plane is taken into account. However, this is

not always the case; VVV SW and BBB can have any arbitrary directions in space.

In this general case, a coordinate transformation is needed to put VVV SW ‖ x̂

and BBB in a plane of X − Y which is reviewed in the next section 5.2.

5.2 Coordinate transformation

The transformation from one coordinate system to another is always required

as many of the measured quantities with the satellites are vectors. For a
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Figure 5.1: Following the trajectory of ARTEMIS satellite, at each time step,
a plane of VVV SW and BBB intersects the Moon sphere, which defines a circle with
radius of Rc.

rotation, the conversion is usually done with a transformation matrix RRR [24].

By rotating one system clockwise about one of the axis, one can transform

a vector from one system to another. Some of the basic rotations are listed

below. In all cases the rotation matrix transforms the original coordinate

system by an arbitrary angle θ about a given axis clockwise. The inverse of

each matrix rotation leads to rotate the system counter-clockwise,

RRRy(θ) rotates the coordinate system about ŷ:

RRRy(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 , (5.1)

RRRx(θ) rotates the coordinate system about x̂:

RRRx(θ) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 , (5.2)

RRRz(θ) rotates the coordinate system about ẑ:

RRRz(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (5.3)

In general, the vector positions of ARTEMIS trajectory in a coordinate sys-

tem are pospospos = (x, y, z). Moreover, the solar wind velocity and magnetic
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field vectors in the same coordinate system are given VVV SW = (vx, vy, vz) and,

BBB = (Bx, By, Bz) respectively. I need to transform the old system to a new

coordinate system (x́, ý, ź) in which VVV SW ‖ x́. In addition, the magnetic field

vector should be in a plane of x́ − ý or x́ − ź. In order to achieve this, these

rotations need to be done :

1. RRRy(α1) will transform the vectors to an intermediate coordinate system,

(x̌, y̌, ž), in which the solar wind velocity in this system has just two

components V̌VV SW = (v̌x, v̌y, 0). The angle α1 is

tan(α1) =
vz
vx
, (5.4)

2. RRR−1z (α2) will transform the vectors from the previous system x́−ý or x́−ź

to another intermediate coordinate system, (x′′, y′′, z′′). In this system

the solar wind velocity has just one components VVV SW
′′ = (vx

′′, 0, 0). α2

becomes,

sin(α2) =
v̌y√

v2x + v2y + v2z
, (5.5)

3. RRRx(α3) will transform the vectors from the last intermediate system

(x′′, y′′, z′′) to the desired coordinate system (x́, ý, ź). By this last ro-

tation the magnetic field and solar wind velocity are now in a same

plane x́− ź.The angle α3 becomes,

tan(α3) =
B′′y
B′′z

. (5.6)
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5.3 Results

5.3.1 Case 1: 13 February 2010 between 08:53 and 09:29
UT
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Figure 5.2: The coordinates related to the trajectory of P1 spacecraft of
ARTEMIS mission on 13 February 2010 between 08:53 and 09:29 UT (XSC ,
YSC ) is plotted with the corresponding radius of cross section Rc.

On February 2010 ARTEMIS P1 (formerly THEMIS-B) passed for the

first time through the lunar wake at a distance of ∼ 3.5 Rm from the Moon

center downstream [68], [75], while the P2 spacecraft of ARTEMIS (formerly

THEMIS-C) was located in the solar wind which is chosen to be a reference

for providing input to the models. In this first flyby, the Moon was located

outside the magnetosphere, between the Earth and the Sun, so the solar wind

was not perturbed by the presence of the Earth’s magnetosphere. This event

occurred on 13 February 2010 between 08:53 and 09:29 UT [68], [75]. The

ambient plasma parameters are taken from ARTEMIS P2 where it was in

the undisturbed solar wind region where ion and electron temperatures were
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Figure 5.3: Trajectory of P1 spacecraft of ARTEMIS mission on 13 February
2010 between 08:35 and 09:29 UTmapped to a 2D plane containingBBB andM⊥.
The boundary of wake which is calculated with the method of characteristics
is marked with the top and bottom solid lines.

respectively Ti = 5.7 eV and Te = 14.3 eV. The measured Interplanetary

Magnetic Field was BBBIMF = [0.0, 6.0, 0.0] nT. The solar wind flow velocity

and density were VVV SW = [−295.0, 0.0, 0.0] km/s and nSW = 3.14 cm−3 respec-

tively. The vectors, BBBIMF and VVV SW were given in Selenocentric Solar Ecliptic

(SSE) coordinates. In these coordinates, the X-axis is along the Moon-Sun

direction, positive towards the Sun. The Z-axis is perpendicular to the plane

of the Earth’s orbit around the Sun (ecliptic plane), positive north, and the

Y -axis completes the right-handed set [75]. SSE coordinates are similar to

those in Geocentric solar ecliptic (GSE) coordinates, except that the origin of

the coordinates is at the center of the Moon instead of at the center of the

Sun. First, the 3D results of the lunar wake are required to be mapped to a

2D plane containing BBB and M⊥ as described in Sec. 5.1. For this special case

where VVV SW is along X and BBB ‖ ŷ, the 2D plane of interest is the X − Y plane

and the radius of the Moon in that plane is given by Rc =
√
R2

m − y2SC. Figure

5.2 shows the real positions of the P1 satellite through the first flyby and the
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radius of the Moon cross section Rc at these positions tends to small when

the absolute value of ySC is close to the Moon. This happened when P1 was

entering the wake from below at about 8:35 UT as illustrated in Fig. 5.3. This

figure demonstrates the 2D wake boundary from the method of characteristics

as well as the normalized positions of the P1 spacecraft through this flyby.

By approaching the center of the Moon Rc becomes larger. Between 8:40 and

10:00 UT, P1 ranges from X ∼ 18 Rc, Y ∼ −3 Rc to X ∼ 2.5 Rc, Y ∼ 1.6 Rc

which from Fig. 5.3 is inside the wake. It can be seen that initially, it is rela-

tively far from the Moon, and that it gradually approaches the lunar surface

where the analytic model is most accurate. The density calculated with the

method of characteristics, along the P1 spacecraft trajectory is compared with

in situ measurements in Fig. 5.4. The density obtained with the method of
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Figure 5.4: Ion density in ARTEMIS data (square) with the method of char-
acteristics (filled circle) are plotted along the trajectory of the P1 spacecraft
during the first flyby.

characteristics is seen to be in good agreement with measured values. Quan-

titatively, the two densities agree within ' 8% with respect to upstream (un-

perturbed) density almost everywhere. Qualitatively, the shapes of the wakes

are similar. Density measured from ARTEMIS shows some variations, and
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the method of characteristics density profile is smooth. Besides, the minimum

density measured from ARTEMIS is around ∼ 0.174 of the background plasma

density, which is lower in comparison to the method of characteristics wake

depth which is ∼ 0.167 nSW . The good qualitative and quantitative agreement

between the method of characteristics and ARTEMIS densities indicates that

the assumptions are made to build this model are approximately correct, and

this 2D model can capture some of the main features of the lunar wake. The

ion density in ARTEMIS data (cross) is also compared with the density calcu-

lated with the finite element method (circle) along the trajectory of the first

ARTEMIS flyby as shown in Fig. 5.5. There is a sharp discontinuity in the

density in ARTEMIS between 9:20 to 9:45 UT, it may be due to the formation

of a shock front on the night-side of the Moon. In the finite element model,

a sharp drop of density in the wake can be seen as discussed in the Ch. 3.

Quantitatively, the two densities agree within ' 3% almost everywhere except

near the edge of the wake. The depth of the wake from ARTEMIS data and

the finite element model is ∼ 3.9% of the background plasma density, while

the one calculated with the method of characteristics is higher ∼ 16.2% as

seen in Fig. 5.6. I conclude that in this comparison, the finite element model

has a better agreement with ARTEMIS measurement.
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Figure 5.5: Ion density computed with the finite element model (FEM) com-
pared with ARTEMIS data along the trajectory of the P1 spacecraft of
ARTEMIS mission on 13 February 2010 between 08:53 and 09:29 UT
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Figure 5.6: Ion density computed with the finite element model (FEM) com-
pared with that computed with the method of characteristics and ARTEMIS
data along the trajectory of the P1 spacecraft of ARTEMIS mission on 13
February 2010 between 08:53 and 09:29 UT

5.3.2 Case 2: 13 March 2013 between 08:35 and 09:35
UT

Another ARTEMIS observation of the lunar wake was made during high

beta plasma conditions where the magnetic field lines were not perpendicular

to the solar wind velocity upstream, which makes a different interesting condi-

tion for checking the accuracy of the method of characteristics. I compare the

measured density from observations with results obtained from the method of

characteristics in order to assess the validity of the model under these circum-

stances. This observation is chosen because the ambient plasma conditions

were relatively steady [62]. Also, the angle between the magnetic field and

the solar wind velocity, α, was different from 90◦. ARTEMIS P1 crossed the

lunar wake on 13 March 2013 from 08:35 coordinated universal time (UTC)

for about 60 minutes while P2 was in the solar wind. In this event, the Moon

was located at [56.9, 19.8, 3.1] RE Geocentric solar ecliptic (GSE) coordinate

system, where RE is the radius of the Earth [62]. ARTEMIS P1 entered the
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Figure 5.7: The trajectory of P1 spacecraft of ARTEMIS mission on on 13
March 2013 between 08:35 and 09:35 UT is mapped to a 2D plane containing
BBB and M⊥. The boundary of wake which is calculated with the method of
characteristics is plotted.

wake from below where it was very close to the lunar surface ' 0.75Rm and

left the wake from above at ' 2.0 Rm. The ambient plasma parameters were

taken from ARTEMIS P2 where it is in the undisturbed area with and electron

temperatures were Ti = 5 eV and Te = 9 eV. The measured Interplanetary

Magnetic Field was low BBBIMF = (−1.5, 0.0,−1.0) nT which gives a high beta

plasma with βe ' 7.8 and βi ' 4. The solar wind flow velocity and density

were VVV sw = (−320.0, 15.0, 0.0) km/s and nsw = 7.0 cm−3 respectively. The

vectors, BBBIMF and VVV sw are given in SSE coordinates. Measurements of the

ambient plasma are taken from a paper published to measure the lunar dia-

magnetic fields in the wake [62]. In this paper, two ARTEMIS events are

considered. In both cases, the plasma beta was significantly higher than nor-

mal. Measurements are compared with results from the hybrid simulations.

Figure 5.7 shows the trajectory of P1 along with the predicted boundaries of

the lunar wake from the analytic model in a 2D plane defined by BBB and M⊥

during this flyby. It can be seen that, as measured relative to the radius of
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Figure 5.8: Coordinates related to the trajectory of P1 spacecraft of ARTEMIS
mission on 13 March 2013 between 08:35 and 09:35 UT (XSC , YSC ) plotted
with the corresponding radius of cross section Rc.

the 2D moon cross section, P1 is in the wake far from the Moon surface at the

beginning of the flight at 8:42 UT. It gradually approaches the Moon surface

and exits the lunar wake at 9:22 UT. The radius of the 2D cross section of the

Moon, as well as the coordinates of P1 spacecraft, are plotted in Fig. 5.8. At

the beginning 8:40 UT and the end 9:23 UT of the flyby the radius of the 2D

Moon (Rc) is small, but it increases in the middle of the flight at 9:00 UT. The

density calculated with the method of characteristics, the finite element code

and the one measured with ARTEMIS satellite through the flyby on 13 March

2013 are compared in Figure 5.9. The density obtained from the method of

characteristics and the finite element model are in excellent agreement. Qual-

itatively, the density of the finite element model is higher in the center of the

wake in comparison to the one from the method of characteristics. Quantita-

tively, the two densities agree within ' 5% almost everywhere. The measured

density from ARTEMIS on this event is entirely consistent with the results of

the two models in the wake. Quantitatively, the three densities agree within

' 5% with respect to the upstream density in the depth of the wake. However,
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the wake measured density from ARTEMIS is to be broader compared with

the results of the other models illustrated in Fig. 5.9. Mapping the 3D results

from ARTEMIS to the 2D wake likely causes some of the differences between

the results from observations and the models.
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Figure 5.9: Ion density computed with the finite element model (FEM) com-
pared with the ones from the method of characteristics and ARTEMIS data
along the trajectory of the P1 spacecraft of ARTEMIS mission on 13 March
2013 between 08:35 and 09:35 UT.
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Figure 5.10: Ion density computed with the method of characteristics com-
pared with the ones from the finite element model along the trajectory of the
P1 spacecraft of ARTEMIS mission on 13 March 2013 between 08:35 and 09:35
UT.
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Chapter 6

Summary and conclusions

In this thesis some important features of the interaction between the Moon

and the solar wind in the night-side are investigated, using different models.

The formation of the conical shape plasma depletion in the downstream re-

gion (the lunar wake) for two different magnetic field orientations is studied

with kinetic and fluid approaches. Earlier works based on sophisticated 3D

models including extensive physical processes have been developed and used

to study this problem. These advanced models however, require considerable

development time and computational resources. This has been the motivation

for considering simplified two-dimensional models that can be solved analyti-

cally, or with relatively modest computational efforts. Each model reproduced

some important features of the lunar wake while requiring significantly less

computer time. More specifically, goals of this thesis are:

1. To assess the applicability of of four relatively simple and computation-

ally fast models, to reproduce some of the main features of the lunar

wake. This is done by making cross-comparisons between the different

models, and by comparing model predictions with ARTEMIS observa-

tions.

2. To check the validity of the approximations made in in the construction

of the fluid models, using test-particle simulations.

Four different models are presented to study the Moon-solar wind interactions

and in particular the formation of the wake. They are, 1- the hybrid-kinetic, 2-
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the analytic model, 3- the method of characteristics and, 4- the finite element

model. Ions are treated as particles in the hybrid-kinetic model and as fluids

in the other methods. However, electrons are approximated as an isothermal

massless fluid in all approaches.

Two-fluid models are developed for the first time to account for the dy-

namics of the two counterstreaming ion fluids parallel to the magnetic field in

which the interaction between the two fluids is taken into account (the method

of characteristics) or not (the analytic model). These models are based on a

2D fluid approach first proposed by Hutchinson, [30], [31], [33] to study a

single entry point of the lunar wake. The model relies on the fact that ions

are strongly magnetized in order to reduce the 3D wake problem to an ap-

proximate 2D problem. All these methods (Hutchinson model, the analytic

model and, the method of characteristics) are solved by using characteristics

for a system of first order partial differential equations. Density, parallel ve-

locity and parallel flux calculated from the two-fluid model with coupling (the

method of characteristics) are compared with the ones in which coupling is

neglected (the analytic model). Along the magnetic field lines, electric fields

are proportional to the gradient of the logarithm of the density which is larger

when coupling is not taken into account. This results in larger parallel speeds

when coupling is ignored, and lower ones when it is taken into account. With

the method of characteristics, in which coupling is taken into account, this

is why plasma entering from below the wake, can be accelerated upward and

cross the wake axis, and vice versa. Solutions found with the analytic model,

in which coupling is ignored, show similar features, but in this case, nothing

opposes the acceleration of either fluid, thus leading to larger parallel veloc-

ities. The results from the method of characteristics and the analytic model

are in a relatively good agreement. This agreement indicates the neglect of

the coupling between the two fluids in the characteristics analysis is a good

approximation.

The 2D hybrid-kinetic electromagnetic model, previously used by Paral [58]
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to model the solar wind interaction with the planet Mercury, is used in order

to study the solar wind interaction with the Moon [18]. The variation of the

magnetic field in the hybrid code was artificially turned off in the calculations

in order to reproduce the assumptions made in the two-fluid models. The

perpendicular velocity is assumed to be constant in the fluid models which is

not the case in the hybrid approach. However, the normalized Mach number

M⊥ is found to be constant within ∼ 9% in regions where the density is above

2.8% of the upstream solar wind density. This supports the assumption made

in the fluid models that M⊥ is approximately constant.

The finite element code (TOPO) [48] is used to model the lunar wake. The

validity of the finite element code is checked by reproducing analytic results

for a simple shock polar problem. The shock angles obtained analytically are

seen to be in agreement with computed values obtained with the finite element

code. Quantitatively, the accuracy ranged from ' 1% to ' 4% in the range

of parameters considered. When applied to the formation of the Moon wake,

the expansion of ions along the magnetic field from the unperturbed region to

the void area downstream of the Moon is simulated by considering ions as a

single-fluid, a two-fluid with coupling and a two-fluid without coupling. The

counterstreaming ion fluids in a non interacting two-fluid case can accelerate

in the direction parallel to BBB to have a large parallel velocity, because there are

no forces opposing either fluid. However, in the single-fluid or two-fluid with

coupling, plasma is prevented from reaching the opposite side of the wake, and

the maximum parallel velocities are significantly lower. That is why plasma

flow from below can reach the region above the Y = 0 axis and vice versa,

but less than when the fluids are not interacting. The main difference between

the single-fluid models and the two-fluid approaches is that the parallel fluid

velocity must vanish at Y = 0 by symmetry, which is different from the two-

fluid models, where the parallel velocity of either fluid (from below or from

above) does not vanish on the Y=0 axis. As a result, accumulation of ions on

the axis farther downstream of the wake is larger in the single-fluid than in

the interacting two-fluid test.
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All these different fluid models were developed under certain approxima-

tions which limit the generality of the results. For example, in the hybrid code

for stability purposes, ∼ 15% of the solar wind particles had to be injected

into the wake in order to prevent numerical instabilities, which causes a higher

minimum density calculated from this approach in comparisons to the ones

from other approaches. Conversely, the finite element model creates the deep-

est wake of all models. The reason is that in the method of characteristics

and the analytic model the parallel fluid velocities can become very large in

comparisons to the ones in the finite element code. Another difference between

these models was found at around X = 8Rm where the finite element shows

an increase in density on the axis, absent with the other methods considered.

That is related to the formation of the shock wave in the solar wind interaction

with the Moon, which was pointed out in [53], [54] and was modeled with a

hybrid code for the first time [34]. In fact, the boundary in the method of

characteristics starts at around X = 2Rm where the boundary condition is

constructed from the analytic model and the discontinuity does not appear in

this analysis so the shock waves cannot be seen. Also, the formation of the

shock wave is not capture in the hybrid-kinetic model because of the injection

of the solar wind ions inside the wake. Cross comparisons between results from

these models show that each model can capture various aspects of the physics

of the lunar wake, and that all these models are found to agree qualitatively.

Two different ARTEMIS observations of the lunar wake with different inter-

planetary magnetic field orientations were reported for comparison purposes.

In all approaches, the lunar wake was modeled in a 2D plane defined by the

magnetic field and the solar wind velocity. ARTEMIS observations however,

are made in a 3D actual wake. For comparison purposes, the 3D results mea-

sured with ARTEMIS were mapped into the 2D plane of VVV SW −BBB. The depth

of the wake from ARTEMIS data in its first flyby and from the finite element

model is ∼ 3.9% of the background plasma density, while the one calculated
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with the method of characteristics is higher by approximately 16.2%. Quan-

titatively, the density from the finite element model agreed within ' 3% with

the observed density from ARTEMIS almost everywhere except near the edge

of the wake.

Moreover, ion particles were traced in the approximated fields assumed in

the analytic model to calculate the distribution functions of ions inside the

wake and in the unperturbed region using Liouville’s theorem for a collision-

less plasma, this was used to construct particle distribution functions on grid

in velocity space. Then densities, velocities and stress tensor of ions are cal-

culated by taking different moments of the obtained distribution functions.

In the unperturbed region where the plasma is in thermodynamics equilib-

rium, the perpendicular velocity remains constant within ' 0.3%, while in the

wake region the discrepancy is higher of order ' 16%. The maximum relative

difference between the diagonal elements and the assumed pressure in the an-

alytic model is of order 1.0%, and the off-diagonal elements are indicative of

discretisation errors made in the test-particle method and the integration of

distribution functions to obtain the second order moments. Therefore, I con-

clude that the assumptions were made in the analytic model constitute good

approximations.

In conclusion, a result of the analytic model, which is not obtained from

single-fluid numerical simulations such as MHD analyses, nor even from three-

dimensional fluid codes, is an explicit expression for the parallel flow velocity

of ions entering the wake from different locations around the Moon. In a fluid

description of plasma, including multi-species models, only one density and

flow velocity is considered for each species, whether that species is considered

upstream or downstream of an obstacle. Thus, an important source of free

energy and possible source of instability and turbulence in the wake is missing

in these approaches. On the other hand, despite their simplicity, the simple

two-dimensional models considered in this thesis, can reproduce some of the

important features of the lunar wake such as density, parallel velocity and
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particle flux as a function of positions which can then be used to benchmark

model results against in situ observations.

Future work All the models considered are built under certain approxima-

tions which limit the generality of the results. For example, in the fluid models

the assumptions are, 1- the magnetic field is uniform, 2- ions and electrons are

isothermal fluids, 3- plasma is quasi-neutral, 4- the ion polarization drift is

negligible, 5- electrons inertia is negligible, 6- the equation of state is that of

an ideal gas and, 7- models are build in two dimensions. In future research

one can improve these fluid models by avoiding some of these assumptions,

in order to capture more of the physics. For example, one of the key goals

of this thesis is to better understand the dynamics of ions expanding paral-

lel to the magnetic field into the void region. Thus, extending the model to

three dimensions, adding perpendicular drifts such as the polarization drift,

the diamagnetic drift, and the E×B drifts to the fluid equations should lead

to significant improvements. On the other hand, a full pic code can be used to

model the ions and electrons as particles to capture more physics in this inter-

action. More comparisons with ARTEMIS data considering other quantities

such as, velocity, fluxes could also be considered in the future. Although the

counterstreaming ion fluids can be captured by a 2D fluid models, an extension

to three dimensions with kinetic descriptions should provide a significant im-

provement and lead to a better understanding of of the Moon wake dynamics

problem.
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