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Effects of methadone (10¢ M) and U-50,488H (10° M) on Ca**-
dependent slow APs in frog sartorius muscles. Slow APs were
recorded every 15 min. (a) Control response; (b) test during exposure
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the zero potential level. The tops of the stimulus artifacts have been
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similar way, Ca**-dependent slow APs obtaiied by using 3 mM [Ca], were inhibited

by several other non-peptide opioid agonists and the antagonist, naloxone in a

concentration-dependent manner (Table 8).

All the opioids tested produced essentially similar qualitative changes. Thus,
it took usually 15 to a maximum of 45 min (in few cases) to develop the maximum
effect of the opioids on the Ca**-dependent slow APs, irrespective of the
concentration of the opioid applied. Usually, a recovery to 30-70% of control was
observed in 1 hr following drug removal. All the non-peptide opioids tested
produced a more dramatic decrease in the duration of the slow APs than in the
amplitude of the slow APs. In.few experiments, tetraethylammonium (TEA)
(40 mM) was added to the experimental solution to block K* conductance.
Meperidine (10° M) and Methadone (10° M and }0‘7 M) caused 82.1, 84.2 and
66.6% inhibition of the area of Ca**-dependent slovll APs, respectively (n=3, each)

even in the presence of TEA.
4,6.3 Effect of opioid peptides on Ca**-dependent slow APs

Although the non-peptide opioids mentioned above were quite effective in
reducing or blocking these APs in frog skeletal muscle, various opioid peptides
showed little or no effect on these slow APs (Table 9). Thus, dynorphin (10° M)
caused only a 8.8% inhibition of the area of Ca**-dependent slow APs when tested
for 150 min (Fig. 16). Leucine-enkephalin in a concentration as high as 104 M

produced only a 17.9% inhibition of the area of these APs.
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Lack of effect of dynorphin (10° M), an opioid peptide, on Ca**-
dependent slow APs produced in frog sartorius muscle. Slow APs were
obtained using a Na*-free, ClI-free, high-K* medium and recorded every
15 min. Horizontal line under the records indicates exposure tn
dynorphin (10° M). Times below the records indicate the time after the
start of exposure to dynorphin. (a) control response; (b) to (e) tests
during exposure to dynorphin. The upper horizontal line in cach panel
give the zero potential jevel A prominent stimulus artifact is visible at
the start of each slow AP.
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4.7 INVESTIGATION OF THE POSSIBLE INVOLVEMENT OF_A

STEREOSPECIFIC OPIOID RECEPTOR IN THE DEPRESSION OF
Ca**.DEPENDENT SLOW APs PRODUCED BY OPIOIDS

4.7.1 Studies with opioid stereoisomers

Levorphanol, a potent opioid analgesic, and dextrorphan, its corresponding
inactive isomer, exhibited no significant differences in their ability to produce
inhibition of Ca**-dependent slow APs (Fig. 17). This result clearly demonstrated
that the effective opioids produced a nonstereospecific blockade of the

voltage-dependent slow caicium channels in frog skeletal muscle.

4.7.2 Studies with opioid antagonists

To test this point further, naloxone was used as an opioid antagonist. As with
K* contractures, when naloxone was tested alone in high concentrations, it produced
inhibition of slow APs (Table 8). Since lower concentrations of naloxone (10 M and
lower) showed little effect on Ca**-dependent slow APs, these concentrations were
used to test for an antagonistic effect. However, no antagonism was observed with
naloxone in concentrations ranging from 10"° M to 10 M (Table 10). In fact, there

seemed to be additive effects.
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FIG. 17 Maximum inhibition (%) of the area of Ca**-dependent slow APs
produced by different concentrations of stereoisomers; levorphanol,
analgesicaﬂyacﬁveisomer,anddex&orphan,aninacﬁveisomer,in&og
skeletal muscle. Means + SEM (n=3, each).
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Naloxone did not antagonize the slow AP inhibition produced by U-50,488H,

an opioid agonist specific for the K-receptor subtype (Table 10). Also,
norbinaltorphimine, an opioid antagonist specific for the K-receptor subtype showed
no antagonism of the inhibition of the slow APs produced by U-50,488H (Table 10).
Thus, both naloxone and norbinaltorphimine did not produce any antagonism of the

U-50,488H induced depression of Ca**-dependent slow APs.

The results presented above were used to establish a relationship between the
inhibitory effects of opioids on K* contractures (Table 3 and 4) and Ca**-dependent
slow APs (Table 8 and 9). A linear and highly significant correlation {r=0.96)
appears to exist between K* contracture and Ca**-dependent slow AP inhibition by
opioid drugs (Fig. 18). Thus, in general, same rank order of activity was observed

despite quantitative differences in apparent potency.
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FIG. 18 Correlation between the inhibitory effects of opioids on Ca**-
dependent slow APs and K* contractures. The plot has a slope of 0.91

and a correlation coefficient r=0.96.
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48 [EFFECT OF FREQUENCY OF K* CONTRACTURE TESTS ON THE

BLOCK PRODUCED BY NON-PEPTIDE OPIOIDS

As shown earlier, several non-peptide opioids inhibited K* contractures (123
mM) in a concentration-dependent manner (Table 3). Little or no reduction of the
K* contracture was observed in the first test with the high-K* solution following the
drug application (Fig. 3). However, when tests were repeated at 15 min intervals,
block of K* contractures was eventually preduced (Fig. 3). Thus, it took about 60
min for the complete block to occur with methadone (10 M), when K* contractures
were tested every 15 min. This blockade of K* contractures by non-peptide opioids
was partially reduced when the muscles were kept in the drug solution without testing
with the high-K* solution for 30 min or more. Thus, methadone (10 M) completely
blocked K* contractures in 60 to 90 min when tested with the high-K* solution every
15 min. This block was partially recovered (33.5% recovery) by testing the K*

contracture after a 30 min rest (n=3).

A more complete picture of the effects of methadone (105 M) on K*
contractures is presented in Fig. 19. In the experiment shown (Fig. 19), one muscle
(filled circles) was tested with the high-K* solution every 15 min in methadone
(10 M) and the other muscle (open circles) from the same frog was only tested after
90 min in methadone (10° M). While in the first toe muscle (filled circles), K*

contractures were blocked by methadone (10 M) in 75 min, little or no decrease in
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Effect of timing of K* contracture tests on the inhibition produced by
methadone (10°° M) in a pair of toe muscles isolated from a single frog.
Muscle put in a drug containing solution at time zero. One muscle was
tested with high-K* solution every 15 min (filled circles, 1-5) and
complete inhibition of high-K* contracture was observed by the fifth test
with the high-K* solution. Another muscle from the same frog was
tested with high-K* solution after a 90 min exposure to methadone
(105 M) (open circles, 1) and no inhibition of high-K* contracture was
observed. Treating the same muscle further every 15 min produced
complete block of K* contractures by the fourth test with the high-K*

solution (open circles, 4).
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the initial response of the high-K* solution was obtained with the second toe muscle
(open circles) after a 90 min exposure to methadone (10° M) (Fig. 19, n=3).
Subsequently, testing the second toe muscle (open circles) every 15 min eventually
blocked K* contractures (Fig. 19). Similar results were obtained with U-50,488H
(105 M), i.e., a complete block of the K* contractures in 60 to 75 min when the K*
contractures were tested every 15 min and little or no effect on the first K*

contracture even after a long (90 to 120 min) exposure to U-50,488H (10° M) (n=3).

Using methadone (10° M) as a prototype, a more detailed study was
conducted of the effect of changing the frequency of K* contracture tests; as shown
in Fig. 20, the inhibition could be increased (or. accelerated) by increasing the
frequency of the K* contracture tests. Thus, when these contractures were evoked
every 10 min, complete block was obtained by 40 min, while it took about 75 min for
the complete block to occur when contractures were evoked every 15 min (n=3,
each). With high-K* tests every 30 min, the same concentration of methadone
produced only a 48% inhibition, while this block completely disappeared, if high-K*
tests were made every 60 min (n=2, each) (Figs. 20 and 21). Thus, blockade of K*
contractures by non-peptide opioids was found to be dependent on the frequency of

K* contracture tests.
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FIG. 20 Inhibition of K* contractures produced by methadone (105 M),
dependent on the frequency of K* contractures produced in frog toe
muscle. Frequency of K* contractures: every 10 min (0-0, 1-4), every
15 min (0-8,1-5), every 30 min @-¢, 1-7) and every 60 min (¢-o, 1-3).
Numbers indicate the application of high-K* solution with different
intervals. For details see the text.
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FIG. 21 Lack of effect of methadone (10°° M) when K* contractures (123 mM)
were induced every 60 min. Horizontal line under the records indicates
exposure to methadone (10° M) in choline-Ringer’s solution. Times
below records indicates the time after exposure to methadone. (a)
Control response; (b - €) tests during exposure to methadone.



97

49 EFFECT OF A CI-FREE, HIGH.K* SOLUTION ON THE K*
CONTRACTURE INHIBITION PRODUCED BY NON-PEPTIDE OPIOIDS

The inhibitory effect of the non-peptide opioids on K* contractures developed
slowly. Even with higher concentrations (10° M and more), it took 2 minimum of
60 min for the complete block of K* contractures by non-peptide opioids (see, section
4.1.2). In contrast, the blockade of the Ca**-dependent slow APs by the non-peptide
opioids was produced in about 15 min, irrespective of the concentration of the drug
employed (see, section 4.6.2). To resolve this discrepancy, a ClI'-free, high-K* (10
mM) solution was employed. This experimental solution was similar to the solution
used for generating Ca**-dependent slow APs. The effect of this particular
experimental solution on the non-peptide opioid-induced block of the K* contractures

was studied.

In a ClI'-free, Na*-Ringer’s solution with normal [K], (2.47 mM, RMP=
‘90 mV), it took an average 75 min (n=3) for the complete block of the K*
contactures with methadone (10° M), which is the same time as is required for
blocking K* contractures using a choline-Ringer’s solution. Increasing [K], in a
CI'-free solution to § mM (RMP=-75 mV) reduced the time to an average of 60 min
for the complete block of the K* contractures (n=3). A further increase in [K], to
10 mM (RMP=-60 mV), resulted in a complete block of the K* contractures by the

first test (15 min) with high-K* solution in methadone (10 M) (Fig. 22, n=3).
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FIG.22 Blockade of K* contracture produced by the first test (15 min) with high-
K* solution by methadone (10° M) in a Cl-free, high-K* (10 mM)
medium. Times below the records indicates the time after exposure to
methadone (10° M), (a) control response; (b) and () tests during
exposure to methadone; (d) recovery response after 60 min.
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Similarly, U-50,488H (105 M) completely blocked the K* contractures by the

first test (15 min) in a Cl-free, high-K* (10 mM) solution (n=3). In separate
experiments, U-50,488H (107 M) produced a 98% inhibition of the K* contractures

in a Cl-free, high-K* solution, whereas in normal Ringer’s solution this concentration

produced only a 45% inhibition of the K* contractures (n=3, each).
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4.10 MISCELLANEOUS PRELIMINARY EXPERIMENTS

4.10.1 Effect of Des-Tyr-D-Ala-leucine-enkephalinamide (DTALE) on K*

contractures and Ca**-dependent slow APs

DTALE has been reported to have calcium-agonist activity in a vascular
smooth muscle preparation [193]. This calcjum-agonist effect of DTALE was found
to be naloxone-insensitive, but it could be reversed by the calcium-channel antagonists
verapamil and nitrendipine [193]. Thus, it was of interest to study the effect of

DTALE on a skeletal muscle preparation.

The results obtained in one of the experiments with DTALE (10° M) are
shown in Fig. 23. In this experiment, DTALE (10° M) did not produce any effect
on submaximal K* contractures (25 mM). Similarly, 10 M (n=3) and 10° M (n=3)
DTALE had no effect on 25 and 40 mM K*-induced contractures, when tested for
150 min. In other experiments, DTALE (10° M, n=3) produced no effect on Ca**-

dependent slow APs.

4.10.2 Effect on haloperidol on voltage-dependent slow calcium channels

Recently, haloperidol was reported to bind with high affinity to o-receptor sites
[194,195]. Therefore, it was of interest to study effect of haloperidol on voitage-

dependent slow calcium channels in skeletal muscle.
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FIG. 23 Lack of effect of Des-Tyr-D-Ala-leucine-enkephalinamide (DTALE)
on K* contractures (25 mM) of frog toe muscle. Tests were made
every 15 min. Horizontal line under the records indicates exposure to
DTALE. Times below records indicate the time after the start of the
exposure to DTALE. (a) Control response; (b - d) tests during
exposure to DTALE.
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Haloperidol in concentrations of 10° M and 10 M produced a 100% (n=3,

Fig. 24) and a 56% (n=3) inhibition of K* contractures, respectively. Similarly,
haloperidol (10° M, n=3) completely blocked Ca**-dependent slow APs in frog
skeletal muscle. In a separate experiement, haloperidol (10 M) also caused a 70%
inhibition of caffeine contractures (n=1). In the same concentrations (10° M and
10 M), it also produced a 93% (n=3, Fig. 25) and a 65% (n=3) inhibition of
twitches in isolated frog toe muscles. For comparison, effects of methadone on the
twitch responses were studied. By contrast to haloperidol, methadone produced a
marked twitch potentiating effect. Thus, methadone (10* M and 10° M) caused a

175% (n=3, Fig. 25) and a 140% (n=3) potentiation of twitch responses, respectively.
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Effect of haloperidol (10°° M), a o-receptor agonist, on K* contractures
(123 mM) of frog toe muscle. Tests were made every 15 min.
Horizontal line under the records indicates exposure to haloperidol.
Times below records indicate the time after the start of the exposure
to haloperidol. (a) Control response; (b - ¢) tests during exposure to
haloperidol; (d) recovery response. '
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FIG.25 Twitch inhibition and potentiation in the isolated frog's toe muscle
produced by haloperidol (10 M) and methadone (10" M), respectively.
The preparation was directly stimulated supramaximally once every 30
sec. Horizontal line under the records indicates exposure to a drug.
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5.1 Inhibition of K* contractures and Ca**-dependent slow APs by non-peptide

opioid drugs

During a study of the ability of many opioid drugs to potentiate twitches in
skeletal muscle, a nonstereospecific effect, it was observed that methadone blocked
K* contractures [180}. To determine whether the inhibition of K* contractures
caused by methadone was a property unique to that compound, the effects of several
opioids with diverse chemical structures were tested on K* contractures in frog
skeletal muscle. The results of this study were that all of the non-peptide opioids
tested produced an inhibition of K* contracture similar to that produced by
methadone (Table 3). Thus, inhibition of K* contractures was observed with
different non-peptide opioids, each believed to interact with a particular opioid
receptor subtype; e.g., morphine, meperidine and methadone - u-receptor agonists;
U-50,488H - K-receptor agonist; and naloxone - a non-selective opioid antagonist, all

produced this effect (Table 3).

The ability of the opioid antagonist naloxone to produce inhibition of K*
contractures was not surprising because this compound has been demonstrated to be
a ‘partial agonist’ in frog skeletal muscle [196]. Therefore, if used in high
concentrations, it showed agonist-like effects. Such effects were also shown by earlier
studies of Frank [68] and Frazier et al. [197}, wherein they observed that the effects

of opioid antagonists in high concentrations add on to the effects of opioid agonists.
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Surprisingly, while the various non-peptide opioids tested were quite effective
in reducing K* contractures in low concentrations, various opioid peptides, e.g.,
leucine-enkephalin - a 5-receptor agonist; morphiceptin - a u-receptor agonist; and
dynorphin - a K-receptor agonist, all had little or no effect on these contractures
(Table 4). Even the enzymatically non-degradable peptide analogue D-Ala-leucine-
enkephalinamide, had little effect on K* contractures (this point will be discussed

further in section 5.3 below).

Attempts to associate the non-peptide opioid-induced inhibition of K*
contractures with one of the proposed opioid receptor subtypes met with failure. The
non-peptide opioid-induced inhibition of K* contractures in the frog toe muscle was
resistant to antagonism by naloxone. The only noticeable effect of naloxone was an
increase in the degree of contracture inhibition (Table 5 and 6). Norbinaltorphimine,
an opioid antagonist specific for the K-receptor subtype did not antagonize the
inhibition of K* contractures produced by U-50,488H, a non-peptide opioid agonist

specific for the K-receptor subtype (Table 6, Fig. 7).

Analgesic activity, like most of the actions of the opioid drugs, is highly
stereospecific, with almost all the activity residing in levo-isomers. If the inhibition
of K* contracture involved a stereospecific receptor, the levo-isomer should have had

higher potency than the corresponding dextro-isomer. However, this was not the
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case. Thus, we found that the analgesically active isomer, levorphanol, and its
corresponding inactive isomer, dextrorphan, were equally effective in causing

inhibition of K* contractures (Fig. 6).

The effects on the K contractures were produced at low opioid
concentrations (Table 3). Despite this, the effect was not produced via any known
stereospecific opioid receptor. The data suggested that the effect on the K*
contracture is a consequence of the activation of a nonstereospecific, naloxone-
resistant opioid receptor. Interestingly, similar nonstereospecific, naloxone-resistant
effects of opioids have been reported by others in frog skeletal muscle [198], guinea-

pig ileum [199] and rat vas deferens [200].

One treatment that could antagonize the K* contracture inhibition produced
by the non-peptide opioids was an elevation of [Ca], from 1.08 mM to 5 mM (Fig.
8). This antagonism of the drug effect by Ca** may be explained by two possibilities:
(1) competition between drug and Ca** ions for a binding site on or near the slow
channel, and (2) the increased electrochemical driving force for Ca** influx through
the fraction of slow channels not blocked by the drug. The latter mechanism

probably operates in all cases.

Non-peptide opioids in concentrations used to block K* contractures had no

effect on the K*-induced membrane depolarization (Fig. 10). Also, non-peptide



109

opioids had no effect on caffeine-induced contractures, indicating that these drugs did
not inhibit the release of Ca** from sarcoplasmic reticulum stores. Thus, morphine
(10° M), which produced almost a complete block of the K* contractures, did not
reduce the maximum tension of the caffeine-induced contracture (Fig. 9). Also, these
findings suggest that the internal contractile apparatus is not modified by the non-
peptide opioids. Moreover, in a previous study [198], the non-peptide opioids tested
were shown to produce twitch potentiation at these low concentrations and caused
twitch inhibition only after exposing the muscles to higher concentrations. Thus,
exposing toe muscles to 102 M morphine reduced the twitch by only 50% after 45
min. Thus, the block of K* contractures found in this study occurred at
concentrations at which the twitch is either potentiated (Fig. 25) or unaffected. This
supports the conclusion that the internal contractile apparatus is not depressed at
opioid concentrations that block the K* contractures. As caffeine-induced
contracture were not blockéd, and K*-induced membrane depolarizations were not
reduced, and twitches were either potentiated or unaffected at the drug
concentrations used, the block of the K* contractures cannot be a nonspecific, local

anesthetic-like effect.

These results indicate strongly that the effective non-peptide opioids are
inhibiting K* contractures in skeletal muscle by blocking the voltage-dependent slow
calcium channels located in the t-tubules. To further support this conclusion, the
effects of opioids on Ca**-dependent slow APs were studied, using intracellular

recording techniques.
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Recently, electrophysiological studies have shown that opioids block voltage-
dependent slow calcium channels in several preparations. Thus, activation of -
receptors by enkephalins has been shown to reduce calcium conductance in
neuroblastoma x glioma hybrid cells; [63). While activation of 8- as well as u-
receptors has been shown to cause inhibition of calcium currents in human

neuroblastoma cells [64]. All of these effects were antagonized by naloxone.

Ca**-dependent slow APs in frog skeletal muscle were induced by using a CI-
free (acetate substituted), Na*-free (sucrose substituted), high-K* (20 mM) solution
[192]. These slow APs are produced by the influx of Ca** ions through the voltage-
dependent slow calcium channels located in the t-tubules (this point has been
discussed in detail, in section 4.6.1). These APs were dependent on [Ca], (Fig. 11
and Table 7) and they were abolished by the organic calcium channel blockers

nifedipine and diltiazem (Fig. 14).

Several non-peptide opioids inhibited Ca**-dependent slow APs (Table 8 and
Fig. 15). The inhibition of the Ca**-dependent slow APs by non-peptide opioids was
not prevented by adding tetraethylammonium (TEA), which is known to block
membrane K* conductance. This suggested that the effective opioids were not
blocking the slow APs by increasing the K* conductance, but by a direct blockade of

the voltage-dependent slow calcium channels.
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As was the case for the K* contractures, various opioid peptides tested
showed little or no effect on these Ca**-dependent slow APs (Table 9). Thus,
dynorphin, which has been shown to block slow APs in mouse dorsal root ganglion
neurones [54], did not show any effect on Ca**-dependent slow APs in frog skeletal

muscle in concentrations as high as 10° M (Fig. 16).

As observed during the K* contracture studies, inhibition of the
Ca**.dependent slow APs by the non-peptide opioids was found to be
nonstereospecific and resistant to antagonism by naloxone (Fig. 17, Table 10). There
was an excellent correlation (r=0.96) between the inhibitory effects of opioids on K*
contractures and Ca**-dependent slow APs, showing that opioids that are potent
(non-peptide opioids) in inhibiting slow APs are also potent in inhibiting K*

contractures (Fig. 18).

Des-Tyr-D-Ala-leucine-enkephalinamide (DTALE) has been reported to have
calcium-agonist activity in a vascular smooth muscle preparation [12]. This activity
is resistant to antagonism by naloxone, but could be inhibited or reversed by organic
calcium channel blockers. This report prompted us to study DTALE’s effects on the
skeletal muscle preparation. However, DTALE had no effect on voltage-dependent

slow calcium channels in frog skeletal muscle.

Recently, haloperidol has been reported to bind with high affinity to the

o-receptor subtype [194, 195]. Therefore, it was of interest to study its effect on the
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voltage-dependent slow calcium channels in skeletal muscle. Haloperidol (10° M)

did block K* contractures (Fig. 24) and Ca**-dependent slow APs, indicating its
ability to block slow calcium channels. However, this effect of haloperidol was not
specific to calcium channels. It also inhibited twitches (Fig. 25) and caffeine-induced
contractures in the same concentration range. Haloperidol has also been shown to
block Na* channels in the same concentration range {208]. Therefore, the effects of

haloperidol were not specific or limited to calcium channels.

52  Frequency- aud voltage-dependent block of K* contractures by non-peptide

opioids

Inhibition of the K* contractures by the non-peptide opioids was found to be
dependent upon the frequency of K* contracture tests. This inhibition could be
increased and/or accelerated by increasing the frequency of the K* contracture tests
(Fig. 20). Thus, methadone (10° M) completely blocked K* contractures in 75 min
when the contracture tests were made every 15 min, and this block completely
disappeared if high-K™ tests were made every 60 min (Figs. 20 and 21). These results
indicated that more frequent depolarizations increased the non-peptide opioid block
of K* contractures. This frequency- (use-) dependent inhibition of K* contractures
by the non-peptide opioids indicated a preferential binding of the non-peptide opioids
to their receptors in the open- and/or inactivated-state of the calcium channels (this

point will be discussed in detail in section 5.3 below).
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One of the differences noted in the studies of K* contractures and Ca**
-dependent slow APs was that the block of the Ca**-dependent slow APs by the non-
peptide opioids developed much quicker than the block of the K* contractures. It
took usually 15 min to a maximum of 45 min (in few cases) for these drugs to
develop their maximum effect on Ca**-dependent slow APs. By contrast, even with
high non-peptide opioid concentrations, it took 60 to 90 min to produce a maximum
reduction of the K* contractures. To resolve the discrepancy between the kinetics
of the drug effects on K* contracﬁ;res and Ca**-dependent slow APs, we employed
an experimental solution similar to the one used for generating slow APs. Testing
the muscles in this solution both accelerated and potentiated the non-peptide opioid-
induced inhibition of K* contractures. Methadone (10° M) took a minimum of 60
min to completely block the K* contracture in normal Ringer’s solution, but it
blocked by the first test (15 min) with the high-K* solution in a CI-free, high-K* (10
mM) medium (Fig. 22). Thus, the difference in the onset of block of the voltage-
dependent slow calcium channels in the two types of experiments can be eliminated
when the solutions bathing the muscles are made similar. These results suggest that
the binding of the non-peptide opioid to its receptor is voltage-dependent, with
depolarization favoring the binding and thereby accelerating (and potentiating) the
block. The receptors in this situation, that is, when the membrane is partially

depolarized, are more readily available for the drug molecules to bind.
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53 Possible mechanisms for the inhibition of voltage-dependent slow calcium

channels by nor-peptide opioids

The results discussed thus far shed some light on the possible mechanism(s)
involved in the blockade of voltage-dependent slow calcium channels by non-peptide
opioids (Fig. 26).

Involvement of a G protein (and consequently of a second messenger system)
in the responses to opioid-receptor activation has been extensively documented (see
section 1.2.4). Thus, the opioid inhibition of adenylate cyclase and consequently
cAMP formation has been demonstrated in mammalian brain (75, 76] and the
neuroblastoma x glioma hybrid cell line [77, 78]. However, the possible involvement
of a second messenger system (Fig. 26, 2) or a coupling of opioid receptor to the G
protein, which directly regulates the calcium channel ( Fig. 26, 1), in the non-peptide
opioid-induced blockade of voltage-dependent slow calcium channels can be ruled out
for two reasons: (1) Drugs which produce their response through a G protein (and
consequently through a second messenger system) bind to their receptors at the outer
surface of the cell membrane; that is, they act from the extracellular site. If in the
present study, similar receptors were involved, then various opioid peptides should
have been effective in blocking voltage-dependent slow calcium channels, since they
can bind to their receptors at the outer surface of the cell membrane and there is no

necessity to penetrate the membrane. However, opioid peptides were clearly
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Schematic representation of possible mechanisms for the non-peptide
opioid-induced blockade of voltage-dependent slow calcium channels.
(1) Non-peptide opioid receptor coupled to a G protein, which is
directly linked to a voltage-dependent slow calcium channel. Thus,
activation of opioid receptor will lead to a reduction in calcium current
through voltage-dependent slow calcium channels via a G protein that
directly regulates the channel activity. (2) Indirect inhibition of slow
calcium channels through a 2nd messenger system, e.g., opioid receptor
mediated inhibition of adenylate cyclase and consequently cAMP (2nd
messenger) formation which will lead to the inhibition of slow calcium
channels. (3) Non-peptide opioid binding site inside or near the
channel that directly regulates the calcium current through voltage-
dependent slow calcium channels,
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ineffective in blocking slow calcium channels in skeletal muscle when applied
extracellularly. It is possible that the receptor/binding site may be located inside the
membrane and since opioid peptides being hydrophilic in nature cannot enter the
membrane, and therefore, are ineffective in blocking slow calcium channels. Non-
peptide opioids are sufficiently lipophilic to enter/cross the cell membrane, and thus,
are effective in blocking the voltage-dependent slow calcium channels in skeletal
muscle. However, it is also possible that the receptor is completely different and can
be activated only by non-peptide opioids, and not by opioid peptides. (2) In the
present study, the non-peptide opioid-induced inhibition of slow calcium channels was
found to be frequency- (use-) and voltage-dependent. Such frequency- and voltage-
dependent effects are usually not observed with drugs acting through second
messenger systems. For example, opioid peptides enkephalin and morphiceptin
acting through 8- and p-receptors, respectively, and involving G proteins in their

responses do not show such frequency- or voltage-dependent effects [64].

Although the two reasons presented above make a possible involvement of a
G protein (and consequently the second messenger system) seem unlikely, it would
be necessary to pursue this possibility further in order to completely rule out the
involvement of a second messenger system. In particular, it would be reasonable to
test for pertussis toxin-sensitive 'G protein because most of the responses to opioid-
receptor activation studied so far, have shown the involvement of a pertussis toxin-

sensitive G protein.
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The frequency- and voltage-dependent interaction between the non-peptide
opioids and calcium channels in skeletal muscle closely resembles that which occurs
between calcium-channel antagonists and calcium channels, and also between local
anesthetics and sodium channels [210 - 212]. A simple plugging of the channel by
the non-peptide opioids is not consistent with their frequency- and voltage-dependent
effects. Our results can be best interpreted within the framework of the modulated
receptor hypothesis proposed by Hille [212] to explain the local anesthetic block of
sodium channels in nerves and skeletal muscles. In this interpretation, binding of a
drug to a receptor located within (Fig. 26, 3) the channel is influenced by the state
of the channel which in turn is determined by the membrane potential. This model
predicts that ionized drugs can only gain access to the channel-associated receptor via
a hydrophilic pathway which is available only when the channels are in the open-state
configuration. Uncharged drugs (neutral drugs) can reach the same receptor via this
pathway, as well as by a hydrophobic route through the lipid membrane surrounding

the channel.

The inhibition of K* contractures by non-peptide opioids can be considerably
modulated by a change in membrane potential from -90 mV (RMP) to -60 mV.
Thus, the inhibition of K* contracture by the first test with a high-K* solution is
observed when the membrane potential is -60 mV and there is no necessity of
repeated tests (frequency-) with the high-K* solution (Fig. 22). This voltage is too
negative to completely open the calcium channels. One interesting possibility that is

consistent with the modulated receptor hypothesis is that effective non-peptide
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opioids are shifting the steady-state inactivation curve for slow calcium channels
towards more negative potentials, that is, in the hyperpolarizing direction. Such a
shift in inactivation curve has been often reported with dihydropyridine-type organic
calcium-channel blockers [126, 202-204]. Such an effect would suggest that the non-
peptide opioids preferentially block channels that are in the inactivated state.

However, this possibility remains to be tested.

Another possibility is that the calcium channels are partly but continuously
active in partially depolarized muscle. At low levels of K* depolarization, there is a
sustained influx of calcium in the frog skeletal muscle [205, 206, 207]. Thus, these
active calcium channels in partially depolarized muscle might allow the non-peptide
opioids to reach their receptors in the channels more effectively than in the normally
polarized cells. This would result in quicker block of calcium channels. For this
mechanism to occur, drug molecules would have to use a hydrophilic pathway from
the cytosolic side of the cell to reach their receptors. The Ca** channel has a
selectivity filter of about 6 A° on its extracellular side [214}; this might not allow the
non-peptide opioid molecules to enter the channel from the extracellular side, as
their molecular size is usually more than 12 A°® [216]. So the drugs would have to
cross the membrane and enter the channel from cytosolic side in the ionized form.
It is interesting to note that most of the non-peptide opioids get extensively ionized
at the cytosolic pH and probably enter the channel easily through the hydrophilic

pathway. It is also possible that the non-peptide opioid drug molecules may be using
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both pathways, that is, hydrophobic pathway through the lipid membrane in their

uncharged form and the hydrophilic pathway for the drug molecules, which have
crossed the membrane and are ionized in the cytosol. However, more experiments
would be necessary to confirm these suggestions. In particular, experiments using the
permanently charged (quaternary) non-peptide opioids would be quite useful in

testing above possibilities.
5.4  Future recommendations to pursue this project

The voltage-dependent slow calcium channel is a target for a number of drugs
collectively called the organic calcium channel blockers. The phenylalkylamines, the
benzothiazepines and the 1,4-dihydropyridines, represented by verapamil, diltiazem
and nifedipine, respectively, are the best known groups of these compounds.
Although these three classes of drugs act at three discrete binding sites on the
voltage-dependent slow calcium channels, it has been reported that some new classes
of drugs modulate the channel activity by acting at other sites [215]. The L-type
calcium channel is a large multimeric protein with five subunits [147]. It is likely that
such a large complex will have many drug binding sites. The frequency- and voltage-
dependent inhibitory effects of non-peptide opioids on voitage-dependent slow
calcium channels are very similar to the effects pro;iuced by the organic calcium
channel blockers on the voltage-dependent slow calcium channels. Thus, it would be

interesting to see if these non-peptide opioids have direct or allosteric effects on the
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organic calcium channel blockers’ binding sites in skeletal muscle. Whether these

opioids define a new site of action remains to be established (Fig. 27).

The effects of non-peptide opioids on the voltage-dependent slow calcium
channels in frog skeletal muscle, presented in this study, were nonstereospecific and
resistant to antagonism by naloxone. This indicated that a different type of ‘opioid
drug receptor’ was involved. It would be important to determine whether the non-

peptide opioids produce similar effects on mammalian skeletal muscles.

Loperamide, an opioid chemically related to meperidine, is clinically used as
an anti-diarrhoeal agent. It has a calcium channel blocking effect in taenia coli
muscle, which is only partially sensitive to antagonism by naloxone [217, 218]. This
inhibitory effect of loperamide on calcium channels has been proposed to contribute
to its anti-diarrhoeal effect [218]. It would be interesting to see whether loperamide
produces a similar effect on calcium channels in skeletal muscle, and if so, to study
the possible involvement of a nonstereospecific, naloxone-resistant receptor in such

a response.

Non-opioid antitussive agents, such as dextromethorphan, noscapine,
caramiphen have been reported to act through a receptor which is nonstereospecific
and naloxone-resistant [1}. In addition, dextromethorphan has been reported to block

voltage-dependent slow calcium channels in brain synaptosomes and cultured neural
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Schematic arrangement of voltage-dependent slow calcium channel
binding sites. The estabalished primary binding sites for 1,4 -
dihydropyridines (DHPs), phcnylalkylammes (PAs) and
benzothmzepmes (B‘I‘Zs) are linked through a series of positive and
negative hetemuopxc interactions (+ and -). Because the identity of
the binding site of non-peptide opioids has not been established nor
has the heterotropic- relationship to other sites been established, this
site has been depicted as independent.

(Note: Above figure was modified from ref. [215].)
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(PC12) cells [213]. In some preliminary studies from our laboratory, we observed

that dextromethorphan did block K* contractures in frog skeletal muscle. The
inhibitory effects of dextromethorphan on K* contractures were observed in
concentrations at which the twitch was potentiated. These effects are similar to the
inhibitory effects of the non-peptide opioids on voltage-dependent slow caicium
channels in skeletal muscle. Thus, it would be important to determine whether
dextromethorphan and other antitussive agents produce such an effect through the
nonstereospecific, naloxone-resistant receptor involved in the non-peptide opioid-

induced blockade of voltage-dependent slow calcium channels in frog skeletal muscle.
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6. SUMMARY AND CONCLUSIONS
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The effects of several opioid drugs were tested on the K* contractures of the
frog toe muscles. These contractures are produced by the influx of
extracellular calcium ions via the voltage-dependent slow calcium channels
located in the t-tubules. Methadone and several other non-peptide opicids
inhibited K* contractures in low concentrations. By contrast, various opioid

peptides had little or no effect on these contractures.

The inhibition of K* contractures by non-peptide opioids was found to be
nonstereospecific and resistant to antagonism by naloxone. This implied that
the effects of non-peptide opioids are not mediated by any of the proposed
opioid receptor subtypes, but are due to activation of nonstereospecific,

naloxone-resistant opioid receptors.

The inhibitory effects of non-peptide opioids on the K* contractures were
reversed by raising [Ca], from 1.08 mM to 5 mM. This reversal may reflect
competition for binding and/or an increase in electrochemical driving force for

Ca** influx through the unblocked slow calcium channels.

Non-peptide opioids, in concentrations used to block K* contractures had no
effect on the K*-induced membrane depolarization. These results indicated
that the blocking effects of non-peptide opioids on K* contractures were not

due to the inhibition of K*-induced membrane depolarization.



125

5. These effective non-peptide opioids, in concentrations used to block
K* contractures had no effect on caffeine contractures. These results
indicate that non-peptide opioids neither deplete intracellular calcium
stores nor inhibit the release of calcium from intracellular sarcoplasmic
reticulum stores. This also indicates that the function of the internal
contractile apparatus is not modified by the non-peptide opioids.
Moreover, the non-peptide opioids tested were shown in a previous
study to produce twitch potentiation or no effect on twitches, in the

concentration range used to inhibit K* contractures.

These effective non-peptide opioids also inhibited Ca**-dependent slow APs
in frog skeletal muscle. These slow APs are produced by the influx of calcium
ions through the voltage-dependent slow calcium channels. Inhibition of the
Ca**-dependent slow APs by the non-peptide opioids was found to be
nonstereospecific and resistant to antagonism by naloxone. As was the case
with the K* contractures, various opioid peptides produced little or no effect

on these Ca**-dependent slow APs.

The inhibitory effects of non-peptide opioids on the K* contractures were
found to be frequency- and voltage-dependent. This inhibition could be
accelerated (and also potentiated) by increasing the frequency of K*

contracture tests, and by partial depolarization of the skeletal muscle



126

membrane in a chloride-free medium. These frequency- and voltage-
dependent inhibitory effects are similar to the action of local anesthetics on
the sodium channels, and can be interpreted within the framework of the
modulated receptor hypothesis. These results indicate a preferential binding
of the non-peptide opioids to their receptors in the open- and/or inactivated-
state of the calcium channels. It is possible that the non-peptide opioids are
shifting the steady-state inactivation curve towards more negative potentials.
Such an effect would suggest that the non-peptide opioids preierentially block
channels that are in the inactivated state. Another possible explanation is that
the non-peptide opioids can reach their receptors inside the channels only
when the channels are open. Calcium channels are continuously open in
partially depolarized muscle and thus allow the effective opioids to reach their

receptors in the channels more effectively than in the normally polarized cells.

In a vascular smooth muscle preparation, Des-Tyr-D-Ala-leucine-
enkephalinamide (DTALE) has been reported to have calcium-agonist activity,
that is resistant to antagonism by naloxone. However, DTALE had no effect

on voltage-dependent slow calcium channels in frog skeletal muscle.

Haloperidol, which binds to o-receptors with high affinity, inhibited voltage-
dependent slow calcium channels in frog skeletal muscle. However, its effects

were not specific to calcium channels. Also it inhibited twitches and
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caffeine-induced contractures in the same concentration range. Haloperidol
has also been reported to block sodium channels in the same concentration

range.

It was concluded that several non-peptide opioids block the voltage-dependent
slow calcium channels in frog skeletal muscle, thereby blocking K*
contractures and Ca**-dependent slow APs. This effect was nonstereospecific
and naloxone-resistant. By contrast, various opioid peptides showed little or
no effect on these channels. These results suggest that there are important
differences between the effects of non-peptide opioids and natural endogenous

ligands for opioid receptors.
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