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Abstract

Bayesian nonparametric models have gained increasing attention due to their flexibil-

ity in modelling natural and social phenomena and have been widely applied in machine

learning, biology, social science and so on. Unlike traditional Bayesian parametric models,

Bayesian nonparametric models place priors on an infinite dimensional space and allow the

model itself to be determined by data. To understand and apply Bayesian nonparametric

models, the properties, especially the asymptotic analysis, of the priors and posteriors of

Bayesian nonparametric models should be studied. In this dissertation, various asymptotic

problems for Bayesian nonparametric priors and posteriors are studied, and two depen-

dent Bayesian nonparametric priors are constructed. This thesis includes three main parts

corresponding to three papers. In the first part, we obtain the strong law of large numbers,

Glivenko-Cantelli theorem, central limit theorem, functional central limit theorem for var-

ious Bayesian nonparametric priors which include the stick-breaking process with general

iid stick-breaking weights, the two-parameter Poisson-Dirichlet process, the normalized

inverse Gaussian process, the normalized generalized gamma process, and the generalized

Dirichlet process. For the stick-breaking process with general iid stick-breaking weights,

two general conditions are formulated such that the asymptotic theorems hold. In the

second part, we present the posterior consistency analysis for normalized random mea-

sures with independent increments (NRMIs) through the corresponding Lévy intensities,

which can be used to characterize the completely random measures in the construction

of NRMIs. An assumption based on the Lévy intensities for analysing the posterior con-

sistency of NRMIs is introduced and verified with multiple examples. Furthermore, we

derive the Bernstein-von Mises theorem for the normalized generalized gamma process,

based on which, credible intervals are constructed with some discussions and numerical

illustration. In the third part, we construct two classes of dependent Bayesian nonpara-

metric models through the normalization of completely random measures driven by Cox

processes. We provide multiple distribution theories for the two constructions including
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moments, probabilistic characterizations of the induced random partition structures by

the hierarchical models, distributions of the random partition numbers.
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Preface

The content in this thesis is based on the joint works with my supervisor Prof.

Yaozhong Hu. These works include two published papers and two preprints.

Chapter 1 of this thesis includes the joint work with Prof. Yaozhong Hu that has

been published as “Dirichlet process and Bayesian nonparametric models (in Chinese)”

in SCIENTIA SINICA Mathematica, 2021, 51 (11), 1895–1932. This paper contains a

supplementary material of 37 pages that is available online.

Chapter 2 of this thesis is a joint work with Prof. Yaozhong Hu that has been published

as “Functional central limit theorems for stick-breaking priors” in Bayesian Analysis,

2022, 17 (4), 1101–1120.

Chapter 3 of this thesis is a joint work with Prof. Yaozhong Hu and the work is

a complete preprint entitled “Large sample asymptotic analysis for normalized random

measures with independent increments”.

Chapter 4 of this thesis is a joint work with Prof. Yaozhong Hu and the work is a

complete preprint entitled “Normalized random measures with independent increments

driven by Cox process”.

Junxi Zhang (PhD Candidate)
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Chapter 1

Introduction and Summary

Probabilistic models are widely used throughout statistics and machine learning to model

distributions for observed data. People observe a sequence of data X = {X1, · · · , Xn},

which is assumed to be generated from a certain unknown probabilistic model M . Para-

metric models assume the true probability distribution is determined and parametrized

by fixed and finite many parameters θ ∈ Θ, where Θ is a finite dimensional parameter

space. For example, a Gaussian model is determined by its mean and variance, which

are the model parameters. Usually, the model parameters for M are estimated by using

the observations to make the model suitable for the observed data. The estimation of the

model parameters can be obtained by two popular ways. One way is to assume that θ is

a deterministic value and its value is obtained, foe example, by maximizing the likelihood

function f(X|M) = f(X|θ), the maximizer θ̂n is called the maximum likelihood estimator

(MLE) of θ. The other way is to assume that the parameter θ is random and to assign

a prior distribution π(θ) for the parameter. Then, the estimation of θ can be found by

maximizing the posteriori (MAP) via point estimation or by using Bayesian inference.

The MAP estimation is not flexible, since the estimation is mostly determined by the op-

timization information of the posterior distribution. Thus, Bayesian inference is usually

preferable as it produces the parameter estimation by using the entire information of the

posterior distribution. In Bayesian inference, the estimator of θ is the expectation of the
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posterior distribution that is formulated by the celebrating Bayesian rule:

f(θ|X) =
f(θ,X)

f(X)
=

f(θ)f(X|θ)∫︁
Θ
f(θ)f(X|θ)dθ

.

In traditional Bayesian inference, although the modelM is random, it is still assumed to be

parametrized by a fixed and finite number of parameters. That is to say, the parameter

space Θ is finite dimensional, and the model is known as Bayesian parametric model.

However, the methods that are mentioned above can suffer from over-fitting and under-

fitting problems when there is a misfit between the model complexity (usually expressed by

the dimension of the parameter space) and the data size. As a result, model selection and

determining the suitable model complexity become important problems in these methods.

Fortunately, Bayesian nonparametric models allow the model M to be parametrized by

infinite number of parameters, i.e., Θ is infinite dimensional, and the model complexity

could grow (determined by the data) with the sample size. Thus, both the under-fitting

and over-fitting issues are mitigated. In this thesis, Bayesian nonparametric setting is

considered.

To understand Bayesian nonparametric models in detail, we let (Ω,F ,P) be any prob-

ability space, let X be a complete, separable metric space whose σ-algebra is denoted by

X and let (MX,MX) be the space of all probability measures on X. We first recall the

definition of random measure on (X,X ).

Definition 1.0.1. A random measure is a mapping P from Ω×X to R+ (we denote this

random measure by P = (P (ω,A), ω ∈ Ω , A ∈ X )) such that

(i) when ω ∈ Ω is fixed, P (ω, ·) is a measure on (X,X );

(ii) when A ∈ X is fixed, P (·, A) is a random variable on (Ω,F ,P).

A sample X = (X1, · · · , Xn) that takes values in Xn is drawn iid from a random

probability measure (see 2.7.1 for details of random probability measures) P conditional

on P . A Bayesian approach in this setting is to place a prior distribution Q, on (MX,MX),
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for the random probability measure P . That is to say,

X1, · · · , Xn|P
iid∼ P ; P ∼ Q. (1.0.1)

Thus, one fundamental question is to determine the prior distribution Q. Addressing this

question, (Ferguson, 1973) suggests that the prior distribution should have large enough

support and the posterior distribution should be manageable analytically. A large amount

of priors along this line have been proposed, among which, the most popular ones are

the Dirichlet process (Ferguson, 1973), the two-parameter Poisson-Dirichlet process (also

known as Pitman-Yor process (Pitman and Yor, 1997)), the σ-stable process (Kingman,

1975), the normalized inverse Gaussian process (Lijoi et al., 2005b), the normalized gen-

eralized gamma process (Lijoi et al., 2003, 2007), and generalized Dirichlet process (Lijoi

et al., 2005a). For the applications of these Bayesian nonparametric models, including

mixture models and hierarchical models, we refer interested readers to (Müller and Quin-

tana, 2004; Lijoi et al., 2010; Zhang and Hu, 2021; Ghosal and Van der Vaart, 2017) and

the references therein.

In this thesis, we mainly consider two important subclasses of Bayesian nonparametric

priors: stick-breaking process and normalized random measures with independent incre-

ments (NRMIs). All the previously mentioned processes are included in stick-breaking

process and, all except the two-parameter Poisson-Dirichlet process are included in NR-

MIs. The topics covered in this thesis are as follows: (i) the asymptotic behaviour of the

stick-breaking process when its concentration parameter (more details can be found in

2.1) a→ ∞; (ii) the posterior consistency analysis of NRMIs and the Bernstein-von Mises

theorem for the normalized generalized gamma process when the sample size n→ ∞; (iii)

the constructions of two classes of dependent NRMIs by using Cox process and the corre-

sponding hierarchical structures. The results of the first two topics provide the theoretical

support for constructing Bayesian credible intervals, simplifying Bayesian statistics, ap-

proximating these processes in the limiting sense. The last topic provides two flexible

dependent Bayesian nonparametric models that can be used for partially exchangeable

3



data.

Before going into the details of these topics, we briefly sketch the two subclasses of

Bayesian nonparametric models.

1.1 Stick-breaking process

Let H be a nonatomic probability measure on (X,X ) (i.e., H({x}) = 0 for any x ∈ X).

Definition 1.1.1. A random measure P = (P (ω,A), ω ∈ Ω, A ∈ X ) is said to be a

stick-breaking process with the base measure H, if it has the following representation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P =

∞∑︂
i=1

wiδθi , where

w1 = v1, wi = vi

i−1∏︂
j=1

(1− vj) for i = 2, 3, · · · ,

where θi, i = 1, 2, · · · are iid random variables defined on (Ω,F ,P) with values in (X,X )

such that for each i, the law of θi is H; δθi denotes the Dirac measure on (X,X ), and

vi, i = 1, 2, · · · are random variables with values in [0, 1], independent of {θi}, which are

called the stick-breaking weights.

An illustration of the stick-breaking process is given in figure 1.1. The law of (w1, w2,

· · · ) is called the GEM distribution (details can be found in e.g., (Feng, 2010; Ewens,

2004)), named for the contributions of Griffiths (Griffiths, 1980), Engen (Engen, 1978)

and McCloskey (McCloskey, 1965). One breakthrough in this topic is made by (Sethu-

raman, 1994) who shows that the Dirichlet process admits the stick-breaking representa-

tion, where the stick-breaking weights are iid Beta random variables, i.e., vi
iid∼ Beta(1, a)

(throughout this thesis the notation Beta(α, β) denotes the Beta distribution whose den-

sity is g(x;α, β) = Γ(α)Γ(β)
Γ(α+β)

xα−1(1− x)β−1 , 0 < x < 1). (Perman et al., 1992) obtains the

stick-breaking representation for the two-parameter Poisson-Dirichlet process and shows

the stick-breaking weights vi
ind∼ Beta(1 − b, a + ib) with b > 0, a > −b. For the stick-

breaking representations of other special stick-breaking processes, we include the details
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Figure 1.1: Illustration of the stick-breaking process.

in 2.7.1. Based on the definition of the stick-breaking process, it shows benefits in the

computational aspect as the infinite summation can be truncated with a tolerable error

(Ghosal and Van der Vaart, 2017). However, it is worth pointing out that the infinite

summation is not analytical friendly.

1.2 Normalized random measures with independent

increments

We start by recalling the definitions of completely random measures (see e.g., (Kingman,

1967, 1993) and references therein for more details) and Poisson random measure, which

play important roles in the construction of NRMIs.

Definition 1.2.1. Let µ be a finite random measure on (X,X ). We call µ a completely

random measure (CRM) if the random variables µ(A1), · · · , µ(Ad) are mutually indepen-

dent, for any pairwise disjoint sets A1, · · · , Ad, where d ≥ 2 is a finite integer.

Definition 1.2.2. Let S = R+×X and denote its Borel σ-algebra by S. A Poisson random
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measure Ñ on S with finite intensity measure ν(ds, dx) is a random measure from Ω× S

to R+ satisfying

(i) Ñ(A) ∼ Poisson(ν(A)) for any A in S;

(ii) for any pairwise disjoint sets A1, · · · , Am in S, the random variables Ñ(A1), · · · , Ñ(Am)

are mutually independent.

The Poisson intensity measure ν satisfies the condition (see (Daley and Vere-Jones,

2008) for details of Poisson random measures) that

∫︂ ∞

0

∫︂
X
min(s, 1)ν(ds, dx) <∞ .

Let (BX,BX) be the space of bounded finite measures on (X,X ) endowed with the topology

of weak convergence and let µ̃ be the random measure defined on (Ω,F ,P) that takes

values in (BX,BX) defined as follows,

µ̃(A) :=

∫︂ ∞

0

∫︂
A

sÑ(ds, dx), ∀A ∈ X . (1.2.1)

It is trivial to verify that µ̃ is a completely random measure. It is also well-known that

for any B ∈ X , µ̃(B) is discrete and is uniquely characterized by its Laplace transform

as follows:

E
[︁
e−λµ̃(B)

]︁
= exp

{︃
−
∫︂ ∞

0

∫︂
B

[︁
1− e−λs

]︁
ν(ds, dx)

}︃
. (1.2.2)

The measure ν is called the Lévy intensity of µ̃ and we denote the Laplace exponent by

ψB(λ) =

∫︂ ∞

0

∫︂
B

[︁
1− e−λs

]︁
ν(ds, dx) . (1.2.3)

From the Laplace transform in (1.2.2), we shall study the completely random measure µ̃

by its Lévy intensity ν, which usually takes the following forms in the literature:

(a) ν(ds, dx) = ρ(ds)α(dx), where ρ : B(R+) → R+ is some measure on R+ and α is
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a non-atomic measure on (X,X ) so that α(X) = a < ∞. The corresponding µ̃ is

called homogeneous completely random measure.

(b) ν(ds, dx) = ρ(ds|x)α(dx), where ρ is defined on B(R+) × X such that for any x ∈

X, ρ(·|x) is a σ-finite measure on B(R+) and for any A ∈ X , ρ(A|x) is B(R+)

measurable. The corresponding µ̃ is called non-homogeneous completely random

measure.

It is obvious that case (a) is a special case of case (b). Usually, we assume that α is a

finite measure so we may write α(dx) = aH(dx) for some probability measure H and

some constant a = α(X) ∈ (0,∞).

To construct NRMIs, the completely random measure will be normalized, and thus

one needs the total mass µ̃(X) to be finite and positive almost surely. This happens

under the condition that ρ(R+) = ∞ in homogeneous case and that ρ(R+|x) = ∞ in

non-homogeneous case (Regazzini et al., 2002). Under the above conditions, an NRMI P

on (X,X ) is a random probability measure defined by

P (·) = µ̃(·)
µ̃(X)

. (1.2.4)

Based on the construction of NRMIs, its posterior distribution can be obtained ana-

lytically (see (James et al., 2009) for the details of the posterior analysis).

1.3 Summary of this thesis

This thesis is a collection of joint works with my supervisor. It consists of the following

four papers.

1. (Zhang and Hu, 2021) Dirichlet process and Bayesian nonparametric models

(in chinese), with Yaozhong Hu, SCIENTIA SINICA Mathematica (2021) 51 (11),

1895-1932;
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2. (Hu and Zhang, 2022) Functional central limit theorems for stick-breaking priors,

with Yaozhong Hu, Bayesian Analysis (2022) 17 (4), 1101-1120; Along with the

supplementary material of this paper;

3. Large sample asymptotic analysis for normalized random measures with inde-

pendent increments, joint work with Yaozhong Hu, Preprint.

4. Normalized random measures with independent increments driven by Cox pro-

cess, joint work with Yaozhong Hu, Preprint.

In chapter 2, we study the asymptotic behaviours for various Bayesian nonparametric

priors when their concentration parameters a → ∞. We obtain the strong law of large

numbers, Glivenko-Cantelli theorem, central limit theorem, functional central limit the-

orem for the stick-breaking process with general iid stick-breaking weights, the Dirichlet

process, the two-parameter Poisson-Dirichlet process, the normalized inverse Gaussian

process, the normalized generalized gamma process, and the generalized Dirichlet pro-

cess. The stick-breaking process with general iid stick-breaking weights is introduced as

the general stick-breaking process when the stick-breaking weight vi’s are iid, we deduce

two general conditions on the stick-breaking weights such that the central limit theorem

and functional central limit theorem hold for this general stick-breaking process. These

asymptotic results seem true intuitively since a is an important parameter to send the

variances of these probability random measures to 0. However, people haven’t found way

to show them, since the finite dimensional distributions of these processes are either hard

to obtain or are complicated to use even when they are available. We derive the asymp-

totic theorems for the above mentioned processes except the generalized Dirichlet process

by the method of moments (see 2.1) and their stick-breaking representations. Thus, the

key to this work is to find the moment results (see 2.3) by using the stick-breaking rep-

resentations of these processes. And the main results are proved by the moment results

and some combinatorial analysis. In the case of the generalized Dirichlet process, as its

marginal density is available, we derive the asymptotic results by showing the convergence
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of its marginal density to the normal density, providing an alternative way of achieving

the asymptotic theorems. The numerical illustration shows that the convergences are fast.

In chapter 3, we study the posterior asymptotic behaviours for NRMIs when the

sample X
iid∼ P0 and when the sample size n → ∞. Here, P0 is assumed to be the true

distribution of X. We first provide the posterior consistency analysis for NRMIs through

the corresponding Lévy intensities, which can be used to characterize the completely

random measures in the construction of NRMIs. An assumption based on the Lévy

intensities for analysing the posterior consistency of NRMIs is formulated. To show the

applicability of the proposed assumption, we verify it with multiple known processes

including the normalized generalized gamma process (NGGP), the generalized Dirichlet

process, the extended gamma process. Our results show that the posterior consistency

holds for the Dirichlet process, the generalized Dirichlet process, and the extended gamma

process for any P0 when the Lévy intensity is gamma type. However, for the general

NRMIs, the posterior consistency holds when P0 is discrete or when P0 is continuous

with C̄1 = 0 (see e.g., assumption 3.3.2). The posterior consistency results suggest that

one should avoid using NRMIs when the true distribution is continuous and C̄1 ̸= 0.

Furthermore, we derive the Bernstein-von Mises theorem for the NGGP, which is a flexible

sub-subclass of NRMIs. From the posterior consistency result, the NGGP is posterior

consistent when P0 is discrete or when the model parameter σ = 0. However, the NGGP

is reduced to the Dirichlet process with the latter case (σ = 0), and thus only the former

case is studied. It is interesting to note that there exists a bias term in the Bernstein-von

Mises results that is closely related to the number of atoms of P0 when P0 is discrete.

Therefore, a bias correction is necessary when constructing credible intervals by using the

Bernstein-von Mises theorem. We illustrate how the bias correction affects the coverage

of the true value by the credible intervals when P0 is discrete with different types of atoms

by using numerical experiments. We also discuss the affect of the estimators for the model

parameters of the NGGP under the Bernstein-von Mises convergences.

In chapter 4, we construct two forms of dependent normalized random measures with

independent increments through the normalization of completely random measures that
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is constructed through Cox process. Bayesian nonparameteric models are popular not

only for their flexibility, but also for their property of generating exchangeable samples.

Hierarchical Bayesian nonparametric models extend the exchangeable assumption of the

sample to partially exchangeable, thus they are widely used for two important properties:

(i) they naturally represent multiple heterogeneous sub-populations; (ii) there is a tie

across all sub-populations to represent the dependence across sub-populations. Instead of

using the Poisson random measure to construct NRMIs in the hierarchical NRMIs models,

we suggest a more flexible approach using Cox random measures to construct NRMIs. We

derive two forms along this direction, one is conditionally independent NRMIs driven by

Cox process, and the other is conditionally dependent NRMIs driven by Cox process.

In our constructions, two vectors of dependent NRMIs (P1, · · · , Pd) are generated such

that the dependence between Pi and Pj with i ̸= j in each construction is determined by

both the hierarchical structure and multiple user-controlled tuning parameters. Based on

the two constructions, we first derive the moment results that include the variance and

covariance between Pi and Pj. Secondly, we provide probabilistic characterizations of the

induced partially exchangeable random partition structures in the hierarchical models,

including the partially exchangeable partition probability functions, distribution of the

number of partition sets. To give a clear interpretation, the random partition structure

of the hierarchical models is explained by local special Chinese restaurant franchise as

introduced in 4.5.
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Chapter 2

Functional central limit theorems for

stick-breaking priors

2.1 Introduction

Ever since the work of (Ferguson, 1973) the Dirichlet process has become a critical tool in

Bayesian nonparametric statistics and has found applications in various areas, including

machine learning, biological science, social science and so on. One of the important

features of the Dirichlet process is that when the prior is a Dirichlet process its posterior is

also a Dirichlet process (see e.g., (Ferguson, 1973)). This makes the complex computation

in the Bayesian nonparametric analysis possible and enables the Dirichlet process to

become a backbone of the Bayesian nonparametric statistics.

To widen the applicability of the Bayesian nonparametric statistics, researchers have

tried to extend the concept of Dirichlet process. One of these efforts is the introduction of

the stick-breaking process. The first breakthrough along this path is due to (Sethuraman,

1994) who shows that the Dirichlet process admits the stick-breaking representation (see

(2.2.1)-(2.2.2) in the next section), where the stick-breaking weights are independent and

identically distributed (iid) random variables satisfying the Beta distribution Beta(1, a).

Within this stick-breaking representation, we can extend the class of Dirichlet processes

to many other priors by assuming that the stick-breaking weights are iid with other
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distributions; satisfy some other kinds of dependence; or satisfy some specific (joint)

distributions. Among various such extensions, let us mention the following works which

we shall deal with in this chapter. (Perman et al., 1992) obtain a general formulae for

sized-biased sampling from a Poisson point process where the size of a point is defined

by an arbitrary strictly positive function. From this formulae, they identify the stick-

breaking representation of the two-parameter Poisson-Dirichlet process, which admits a

stick-breaking process with the stick-breaking weights vi
ind∼ Beta(1 − b, a + ib), where

b > 0, a > −b and i = 1, 2, · · · . (Favaro et al., 2012) introduce the normalized inverse

Gaussian process through its stick-breaking representation by identifying the explicit finite

dimensional joint density functions of its stick-breaking weights. (Favaro et al., 2016)

present the stick-breaking representation of homogeneous normalized random measures

with independent increments (hNRMIs) (see e.g., (Regazzini et al., 2003) for more details

of NRMIs), which include the normalized generalized gamma process and the generalized

Dirichlet process, two widely used priors in Bayesian nonparametric statistics.

Strong law of large numbers, central limit theorem and functional central limit the-

orem have always been ones of the central topics in statistics and in probability theory.

Without exception the asymptotic behaviors of the Dirichlet process and other Bayesian

nonparametric priors play important roles in the Bayesian nonparametric analysis, for ex-

ample in the construction of asymptotic Bayesian confidence intervals, regression analysis

and functional estimations. Compared to the vast literature in the field of parametric

statistics relevant to these issues the achievements in the field of Bayesian nonparamet-

rics are quite limited. However, let us mention the following works pioneered this work.

(Sethuraman and Tiwari, 1982) discuss the weak convergences of the Dirichlet measure

P when its parameter measure (i.e the measure aH in this chapter) approaches to a non-

zero measure or a zero measure respectively. (Lo, 1983) studies the central limit theorem

of the posterior distribution of Dirichlet process which is analogous to our central limit

theorem for the Dirichlet process. Based on this result, (Lo, 1987) obtains the asymp-

totic confidence bounds and establishes the asymptotic validity of the Bayesian bootstrap

method. The above mentioned Lo’s results are extended to the mixtures of Dirichlet
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process by (Brunner and Lo, 1996). (James, 2008) reveals the consistency behavior (the

posterior distribution converges to the true distribution weakly) and the functional cen-

tral limit theorem for the posterior distribution of the two-parameter Poisson-Dirichlet

process (with fixed a and when the sample size goes to infinity). The consistency of the

posterior is discussed by (Ho Jang et al., 2010) when the priors are the two-parameter

Poisson-Dirichlet prior and the species sampling prior. Furthermore, (De Blasi et al.,

2013) investigate the consistency of the Gibbs-type priors. (Kim and Lee, 2004) show

that the Bernstein-von Mises theorem holds in survival models for the Dirichlet process,

Beta process and Gamma process. (Dawson and Feng, 2006) establish the large deviation

principle for the Poisson-Dirichlet distribution and give the explicit rate functions when

the parameter a (which represents the mutation rate in the context of population genetics)

approaches infinity. (Labadi and Zarepour, 2013) present the functional central limit the-

orem for the normalized inverse Gaussian process on D(R) when its parameter a is large

by using its finite dimensional joint density. (Labadi and Abdelrazeq, 2016) obtain the

functional central limit theorem for the Dirichlet process by using the finite dimensional

densities and for the Beta process on D(R) by using the characteristic function.

From the above mentioned works we see that there are only very limited results on

the asymptotics of the stick-breaking processes. Relevant to the asymptotics as a→ ∞,

there have been established the central limit theorem and functional central limit theorem

only for two processes: the Dirichlet process and the normalized inverse Gaussian process.

The reason for the above limitation is that the most commonly used technique appeals

to the explicit forms of the finite dimensional densities of the process itself. This method

is effective only when the finite dimensional distributions have explicit forms and are

possible to handle. It cannot be applied to study other processes when the explicit forms

for the finite dimensional marginal densities of the process itself are unavailable or they

are too complex to analyze even though they are available.

This chapter is to introduce the method of moments into this study and to provide

a systematic study of the asymptotics as a → ∞ for various stick-breaking processes

depending on a parameter a > 0. Let us emphasize that the method of moments in
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this chapter refers to the fact that if the distribution of the random variable X is de-

termined by its moments, and the random variables {Xi}ni=1 have all moments, and if

limn→∞ E [Xr
n] = E [Xr] for r = 1, 2, · · · , then Xn

d→ X (see e.g., (Billingsley, 1995,

Theorem 30.2)). We are mainly concerned with three types of the asymptotics (strong

law of large numbers, central limit theorem, and functional central limit theorem) for a

number of processes, which include the stick-breaking process with general stick-breaking

weights, the classical Dirichlet process DP(a,H) (see (Ferguson, 1973)), the two-parameter

Poisson-Dirichlet process PDP(a, b,H) (also known as Pitman-Yor process (Pitman and

Yor, 1997)), the normalized inverse Gaussian process N-IG(a,H) (Lijoi et al., 2005b), the

normalized generalized gamma process NGGP(σ, a,H) (see (Brix, 1999; Lijoi et al., 2007,

2003)), and the generalized Dirichlet process GDP(a, r,H) (see (Lijoi et al., 2005a)).

All of the mentioned processes depend on a parameter a which is usually called the

concentration parameter. It is of the same order as the inverse of the variance of the process

(see Remark 2.3.6 for more precise meaning). It has also some more specific meanings for

various processes. For example, if {Xi}ni=1 is a sample from the Dirichlet process DP(a,H),

then it is known that the posterior mean is E [P (·)|X1, · · · , Xn] =
a

a+n
H(·) + n

a+n

∑︁n
i=1Xi

n
,

which means that a plays the key role of the weight of the prior.

For the generalized Dirichlet process since the finite dimensional marginal distributions

of the process itself are available we shall use them to obtain the asymptotics directly

although the computations are very technical. Let us point out that this process also

admits a stick-breaking representation. However, it seems to us that it is more complex

to use the method of moments than to use the finite dimensional marginal distributions

of the process itself.

Let us stress the following points of the work about the well-known Bayesian nonpara-

metric priors.

(1) (for Dirichlet process) Both the finite dimensional distributions of the stick-breaking

weights and the process itself are explicit and are easy to handle. Prior to this

work the central limit theorem and the functional central limit theorem have been
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established for this process by using the finite dimensional distribution of the process

itself.

For the Dirichlet process the stick-breaking weights {vi} are iid and follow the Beta

distribution Beta(1, α). We introduce the concept of stick-breaking process with

general stick-breaking weights, where we still require the stick-breaking weights

{vi} to be iid but the law µ they follow can be arbitrary. In this case there is no

way to obtain the explicit form of the joint distributions of the process itself. We

use the method of moments to establish the central limit theorem and the functional

central limit theorem for this process. For example, vi ∼ Beta(ρa, a), where ρa is

a function of a such that ρa/a → 0 as a → ∞. In this case the joint distributions

of the process itself is unavailable except in the case ρa = 1, i.e., in the case of the

Dirichlet process.

(ii) (for the normalized inverse Gaussian process and for the generalized Dirichlet pro-

cess) Both the finite dimensional distributions of the stick-breaking weights and that

of the process itself are explicit. Prior to this work the central limit theorem and

the functional central limit theorem have been established only for the normalized

inverse Gaussian process by using the finite dimensional distributions of the process

itself. We shall also use the finite dimensional distributions of the process itself to

obtain the central limit theorem and the functional central limit theorem for the

generalized Dirichlet process. We shall use the method of moments to re-derive the

central limit theorem and the functional central limit theorem for the normalized

inverse Gaussian process, providing an alternative tool for this process.

(iii) (for the two-parameter Poisson-Dirichlet process and the normalized generalized

gamma process) The finite dimensional distributions of the stick-breaking weights

are known but the finite dimensional distributions of the process itself are not avail-

able. We use the method of moments to obtain the central limit theorem and the

functional central limit theorem for these processes.

Now we explain the organization of this chapter. In Section 2.2, we recall the general
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stick-breaking process and introduce the stick-breaking process with general stick-breaking

weights (SPG(µ,H)). In Section 2.3, we present the moment results for various stick-

breaking processes, including SPG(µ,H), PDP(a, b,H), N-IG(a,H), and NGGP(σ,

a,H), GDP(a, r,H) separately since the computations are different for different processes.

In Section 2.4, we state the strong law of large numbers, central limit theorem, and

functional central limit theorem. The stick-breaking process with general stick-breaking

weights are new and we allow the stick-breaking weights to be some very general iid

random variables defined on (0, 1). With different choices of the stick-breaking weights

we can obtain various known stick-breaking processes. Because of this generality of the

stick-breaking weights we state one theorem on the central limit theorem and functional

central limit theorem for this type of processes. We state a similar theorem for all other

processes (PDP(a, b,H), N-IG(a,H), NGGP(σ, a,H), GDP(a, r,H)). The details of the

proofs will be provided in a supplementary file where we also include some definitions

and some well-known propositions of the mentioned processes to provide the necessary

background. Interested readers are referred to (Zhang and Hu, 2021) and references

therein for a recent survey of some of these processes and their applications.

Finally, let us emphasize that all the processes we dealt with in this chapter are actually

“random probability measures”. However, we follow the convention in the literature to

continue to call them “processes”.

2.2 Preliminary Notations

2.2.1 Definitions

Let (Ω,F ,P) be a complete probability space and let (X,X ) be a measurable Polish space,

namely, X is a separable complete metric space and X is the Borel σ-algebra of X. Let

H be a nonatomic probability measure on (X,X ) (i.e., H({x}) = 0 for any x ∈ X). Now

we give the definition of the stick-breaking process (more appropriately a stick-breaking

random probability measure).
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Definition 2.2.1. A random measure P = (P (ω,A), ω ∈ Ω, A ∈ X ) is said to be a

stick-breaking process with the base measure H, if it has the following representation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P =

∞∑︂
i=1

wiδθi , where

w1 = v1, wi = vi

i−1∏︂
j=1

(1− vj) for i = 2, 3, · · · ,

(2.2.1)

(2.2.2)

where θi, i = 1, 2, · · · are iid random variables defined on (Ω,F ,P) with values in (X,X )

such that for each i, the law of θi is H; δθi denotes the Dirac measure on (X,X ), and

vi, i = 1, 2, · · · are random variables with values in [0, 1], independent of {θi}, which are

called the stick-breaking weights.

Since we assume that {θi} are iid and follow the distribution H, if H is given and

fixed, then the random probability measure P depends only on the choice of {vi}.

Remark 2.2.2. To make sure that P is well-defined (namely, (2.2.1) is convergent), one

needs to impose the condition that
∑︁∞

i=1wi = 1 almost surely, which is equivalent to

the condition that
∑︁∞

i=1 logE [(1− vi)] = −∞ (e.g., (Ghosal and Van der Vaart, 2017,

Lemma 3.4)).

Remark 2.2.3. Throughout the entire chapter, we shall assume that a is a positive real

number and H is a nonatomic measure on (X,X ) unless otherwise specified.

For potential applications in practice we introduce the concept of stick-breaking process

with general stick-breaking weights.

Definition 2.2.4. P is called the stick-breaking process with general stick-breaking weights,

denoted by P ∼ SPG(µ,H), if the stick-breaking weights {v1, v2, · · · } in (2.2.1)-(2.2.2) are

iid and follow a general distribution µ.

Remark 2.2.5. The law µ on (0, 1) can be of continuous or discrete types, or the mixture.

An interesting special example is the quasi Bernoulli stick-breaking process (Zeng and

Duan, 2020), where the vi ∼ g(x) = pf(x) + 1−p
ε
f(x/ε) for the Bernoulli density f(x) ∼

Beta(1, a) and for some p ∈ (0, 1), ε > 0.

17



Based on the expectation and variance of P , we introduce the following quantities

that are investigated in the main theorems:

Da(·) =
P (·)− E[P (·)]√︁

Var[P (·)]
=

P (·)−H(·)√︁
H(A)(1−H(A))E [

∑︁∞
i=1w

2
i ]
, (2.2.3)

where the last identity follows from (7.12)-(7.13) (in the supplementary material). Up to

a constant we may just consider the following quantity for notational simplicity:

QH,a(·) =
P (·)− E[P (·)]√︁

E [
∑︁∞

i=1w
2
i ]
. (2.2.4)

2.3 Moment results

We use the method of moments to show the announced asymptotics. This requires to have

some nice estimates of the moments of the random probability measure P , which in turn

requires some nice bounds for the moments of {wi}∞i=1. Thus, in this section we present

the asymptotic behaviors of the joint moments of wi’s for various processes introduced in

the introduction. These results will play the key roles in the proofs of our main theorems.

On the other hand, they also have their own interest.

In the following proposition and throughout the chapter we use the notation pm:n :=∑︁n
i=m pi for m ≤ n, and let the sequence {wi}∞i=1 be defined as in (2.2.2).

Proposition 2.3.1. Let P ∼ SPG(µa, H), i.e., the law of the i.i.d stick-breaking weights

vi is µa, where a > 0 is a certain parameter. We assume that vi is not identically 0. If

lim
a→∞

E[vn+1
1 ]

E[vn1 ]
= 0 for all n ∈ Z+ (set of nonnegative integers), then for any nonnegative

integers m,n, ⎧⎪⎪⎨⎪⎪⎩
E [vni (1− vi)

m] = E[vn1 ] + o (E[vn1 ]) ,
∞∑︂
j=0

(E [(1− vi)
m])j =

1

mE[v1]
+ o

(︃
1

mE[v1]

)︃
.

(2.3.1)

(2.3.2)
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Furthermore, for any positive integers p1, · · · , pk, we have

E

[︄ ∑︂
1≤i1<i2<···<ik<∞

wp1i1 w
p2
i2
· · ·wpkik

]︄

=
E[vp11 ] · · ·E[vpk1 ]

p1:kp2:k · · · pk:k (E[v1])k
+ o

(︄
E[vp11 ] · · ·E[vpk1 ]

(E[v1])k

)︄
.

(2.3.3)

In particular, when pj = 2 for all j ∈ {1, · · · , k} (hence p1:k = 2k), the asymptotics

(2.3.3) becomes

E

[︄ ∑︂
1≤i1<i2<···<ik<∞

w2
i1
w2
i2
· · ·w2

ik

]︄
=

1

2kk!

(︃
E[v21]
E[v1]

)︃k
+ o

(︄(︃
E[v21]
E[v1]

)︃k)︄
. (2.3.4)

Proposition 2.3.2. Let P ∼ PDP(a, b,H). Namely, let the stick-breaking weights v1, v2, · · ·

be given by (7.2) (in the supplementary material). Then, for any positive integers p1, · · · , pk,

we have the following identity.

E

[︄ ∑︂
1≤i1<i2<···<ik<∞

wp1i1 w
p2
i2
· · ·wpkik

]︄

=
1

(a+ kb)(a+ 1)(p1:k−1)

k∏︂
i=1

(1− b)pi(a+ bi)

pi:k − (k − i+ 1)b
. (2.3.5)

In particular, when pj = 2 for all j ∈ {1, · · · , k}, the above expectation becomes

E

[︄ ∑︂
1≤i1<i2<···<ik<∞

w2
i1
w2
i2
· · ·w2

ik

]︄
=

(1− b)k(a+ b) · · · (a+ b(k − 1))

k!(a+ 1) · · · (a+ 2k − 1)
. (2.3.6)

Proposition 2.3.3. Let P ∼ N-IG(a,H). Namely, let the stick-breaking weights {vi}∞i=1

be given by (7.3)-(7.4) (in the supplementary material). Then, for any positive integers

p, p1, · · · , pk, we have

E

[︄
∞∑︂
n=1

wpn

]︄
= O

(︃
1

ap−1

)︃
as a→ ∞ , (2.3.7)

E

[︄ ∑︂
1≤i1<i2<···<ik<∞

wp1i1 w
p2
i2
· · ·wpkik

]︄
= O

(︃
1

ap1:k−k

)︃
as a→ ∞ . (2.3.8)
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Furthermore, when p = p1 = · · · = pk = 2, we have

E

[︄
∞∑︂
n=1

w2
n

]︄
=

1

a
+ o

(︃
1

a

)︃
as n→ ∞ , (2.3.9)

E

[︄ ∑︂
1≤i1<i2<···<ik<∞

w2
i1
w2
i2
· · ·w2

ik

]︄
=

1

k!ak
+ o

(︃
1

ak

)︃
. (2.3.10)

[namely, the leading coefficient in (2.3.7) is 1 and the leading coefficient in (2.3.8) is 1
k!
.]

Proposition 2.3.4. Let P ∼ NGGP(σ, a,H). Namely, let the distribution of the stick-

breaking weights {v1, v2, · · · } be given by (7.5)-(7.6) (in the supplementary material).

Then, for any positive integers p1, · · · , pk, we have

E

[︄
∞∑︂
n=1

wpn

]︄
= O

(︃
1

ap−1

)︃
as a→ ∞, (2.3.11)

E

[︄ ∑︂
1≤i1<i2<···<ik<∞

wp1i1 w
p2
i2
· · ·wpkik

]︄
= O

(︃
1

ap1:k−k

)︃
as a→ ∞. (2.3.12)

Furthermore, when p = p1 = · · · = pk = 2 and when σ = 1
m

for some arbitrarily fixed

integer m ≥ 2, we have

E

[︄
∞∑︂
n=1

w2
n

]︄
=

1

a
+ o

(︃
1

a

)︃
as a→ ∞, (2.3.13)

E

[︄ ∑︂
1≤i1<i2<···<ik<∞

w2
i1
w2
i2
· · ·w2

ik

]︄
=

1

k!ak
+ o

(︃
1

ak

)︃
as a→ ∞. (2.3.14)

Proposition 2.3.5. Let P ∼ GDP(a, r,H) and let p1, · · · , pk be positive integers. Then,

as a→ ∞,

E

[︄ ∑︂
1≤i1<i2<···<ik<∞

wp1i1 w
p2
i2
· · ·wpkik

]︄
= O

(︃
1

ap1:k−k

)︃
. (2.3.15)
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In particular, when pj = 2 for all j ∈ {1, · · · , k}, the above expectation becomes

E

[︄ ∑︂
1≤i1<i2<···<ik<∞

w2
i1
w2
i2
· · ·w2

ik

]︄
=

[︃∑︁r
k=1( 1

k)
2

(
∑︁r

j=1
1
j )

2

]︃k
k!ak

+ o

(︃
1

ak

)︃
. (2.3.16)

Remark 2.3.6. As for SPG(µa, H), a is a parameter such that vi converges in distribution

to 1 as a→ ∞. And we will give more details in Remark 2.4.13 on page 13 later on. For

the specified processes in Propositions 2.3.2-2.3.5, the parameter a is the prior precision

or the concentration parameter as we mentioned in the introduction. We can also see that

the parameter a is the same order as 1

E[
∑︁∞

i=1 w
2
i ]
.

Remark 2.3.7. The special cases when p1 = · · · = pk = 2 in Propositions 2.3.1-2.3.5 are

particularly important, since the corresponding terms in Theorem 2.4.4 will not converge

to zero and we need to use them to identify the limits. Other terms will converge to 0.

This is because otherwise some pi will be greater than 2 and then there will be fewer factors

in the product for the same value p1 + · · · + pk (see the proof of Theorem 2.4.4, Cases 1

and 2).

Remark 2.3.8. The quantity p(n1, · · · , nk) =
∑︁

i1,··· ,ik E
[︁
wn1
i1
wn2
i2

· · ·wnk
ik

]︁
bears the same

form of the exchangeable partition probability function (EPPF) in the random partition

theory (see e.g (Pitman, 1996), (Pitman, 2003)), where the wi is replaced by the so-

called size biased permutation from a random partition. In the study of Poisson-Kingman

model, the order statistics w∗
1, w

∗
2, · · · of w1, w2 · · · are given by w∗

i = Ji
J1+J2+··· , where

J1, J2, · · · are the ranked points of a Poisson process with Lévy density ρ (see (Pitman,

2003, Definition 3)). When vi’s are iid Beta(1, a), w∗
i is Poisson-Dirichlet distribution

(see (Pitman, 1996, Theorem 5)). In general case it seems hard to find the distribution of

w∗
i from vi’s. However, it remains interesting to apply our method of moments to study

the asymptotics for the Poisson-Kingman model.
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2.4 Main results

2.4.1 Strong law of large numbers

The strong law of large numbers and the Glivenko-Cantelli theorem play undoubtedly

important roles in statistics. In this subsection we state the strong law of large numbers

and the Glivenko-Cantelli theorem for various processes introduced in the introduction.

But before we state our theorem, we need an additional condition on the stick-breaking

weights vi in the case of SPG(µa, H).

Assumption 2.4.1. Let the iid stick-breaking weights {vi} satisfy

E[vpi ] =
Cp
akp

+ o

(︃
1

akp

)︃
as a→ ∞ , (2.4.1)

for any p ∈ N, where kp is a positive sequence satisfying jki ≥ ikj for i ≥ j and Cp is a

sequence of finite constants, independent of a.

Theorem 2.4.2. Let P be one of the stick-breaking process with general stick-breaking

weights SPG(µa, H) satisfying Assumption 2.4.1, the two-parameter Poisson-Dirichlet

process PDP(a, b,H), the normalized inverse Gaussian process N-IG(a,H), the normal-

ized generalized gamma process

NGGP(σ, a,H), and the generalized Dirichlet process GDP(a, r,H). Assume that a = N τ

for some arbitrarily fixed τ > 0. Then, as N → ∞,

P (A)
a.s.→ H(A) (2.4.2)

for any measurable set A ∈ X .

Once we have the strong law of large numbers for P , we can deduce the Glivenko-

Cantelli theorem for P (see e.g., Theorem 20.6 in (Patrick, 1995) for a general discussion).

Theorem 2.4.3. Let (X,X ) = (R,B(R)). Let P be one of the stick-breaking process

with general stick-breaking weights SPG(µa, H) satisfying Assumption 2.4.1, the two-
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parameter Poisson-Dirichlet process PDP(a, b,H), the normalized inverse Gaussian pro-

cess N-IG(a,H), the normalized generalized gamma process NGGP(σ, a,H), and the gen-

eralized Dirichlet process GDP(a, r,H). Assume that a = N τ for some arbitrarily fixed

τ > 0. Then, as N → ∞,

sup
x∈R

|P ((−∞, x])−H ((−∞, x]) | a.s.→ 0 .

2.4.2 Central limit theorems and functional central limit theo-

rems

In this subsection, we state the central limit theorems corresponding to the strong law of

large numbers of the form (2.4.2).

We shall state the central limit theorems and functional central limit theorems for

various processes as the following three theorems. The first one is for the stick-breaking

process with general stick-breaking weights defined by Definition 2.2.4. We will assume

mild convergence conditions on the stick-breaking weights.

Theorem 2.4.4. Let P ∼ SPG(µa, H), where the stick-breaking weights v1, v2, · · · (whose

distributions) depending on a parameter a > 0 (we omit the explicit dependence on a of

the vi’s). Let Da and QH,a be defined by (2.2.3) and (2.2.4) respectively. Assume that the

stick-breaking weights v1, v2, · · · satisfy the following two conditions.

(i) For all n ∈ Z+, we have

lim
a→∞

E[vn+1
1 ]

E[vn1 ]
= 0 . (2.4.3)

(ii) For any multi-index (p1, · · · , pk) such that pi ≥ 2 and p1:k
2
> k, where p1:k =

∑︁k
i=1 pi,

we have

lim
a→∞

(E[v1])
p1:k
2

−k∏︁k
i=1 E[v

pi
1 ]

(E[v21])
p1:k
2

= 0. (2.4.4)

Then we have the following results.
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(i) (Central limit theorem) Let A1, A2, · · · , An be any disjoint measurable subsets of X.

Then, as a→ ∞,

(Da(A1), Da(A2), · · · , Da(An))
d→ (X1, X2, · · · , Xn) , (2.4.5)

where (X1, X2, · · · , Xn) ∼ N(0,Σ) and Σ = (σij)1≤i,j≤n is given by

σij =

⎧⎪⎪⎨⎪⎪⎩
1 if i = j ,

−
√︂

H(Ai)H(Aj)

(1−H(Ai))(1−H(Aj))
if i ̸= j .

(2.4.6)

(ii) (Functional central limit theorem) Let (X,X ) = (Rd,B(Rd)) be the d-dimensional

Euclidean space with the Borel σ-algebra. Then

QH,a
weakly→ Bo

H in D(Rd) (2.4.7)

with respect to the Skorohod topology.

Remark 2.4.5. For central limit theorem we use Da because each component converges to

a standard Gaussian. For functional central limit theorem we use QH,a since it converges

to a Brownian bridge with parameter H. We can presumably use Da (or QH,a) in both

(2.4.6) and (2.4.7) with a scaling.

The conditions (i) and (ii) in Theorem 2.4.4 are implied by many other conditions.

One of them is given below.

Remark 2.4.6. Assumption 2.4.1 implies the conditions (i) and (ii) in Theorem 2.4.4.

Proof. It is obviously that {kp} is an increasing sequence, and thus the condition (i) of

Theorem 2.4.4 (i.e (2.4.3)) holds.

For any nonnegative integer m, let N be a certain collection of integers j′s such that∑︁
j∈N j = m. The condition (ii) in Theorem 2.4.4 is equivalent to the following statement:
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If j ≥ 2 and |N| < m
2
, then

m(k2 − k1)

2
<
∑︂
j∈N

kj − |N|k1. (2.4.8)

Thus, to prove (2.4.4) it is sufficient to show mk2
2
<
∑︁

j∈N kj. This is a simple consequence

of jki ≥ ikj for i ≥ j. In fact, taking i = 2, we have for all j ≥ 2, 2kj ≥ jk2 holds and thus

we have
∑︁

j∈N 2kj ≥
∑︁

j∈N jk2, which implies mk2
2
<
∑︁

j∈N kj. Hence we have (2.4.8).

The conditions (i) and (ii) in Theorem 2.4.4 are satisfied by many interesting processes

including the Dirichlet process. We give three examples to illustrate the applicability of

our above theorem.

Corollary 2.4.7. Theorem 2.4.4 holds true when P ∼ DP(a,H).

Proof. It is sufficient to verify the condition (2.4.1) in Assumption 2.4.1. Since vi
iid∼

Beta(1, a), we have for any positive integer p,

E[vpi ] =
Γ(a+ 1)Γ(p+ 1)

Γ(1)Γ(a+ p+ 1)
=

p!

(a+ 1) · · · (a+ p)
=
p!

ap
+ o

(︃
1

ap

)︃
.

Hence, kp = p and Cp = p!. Obviously, for i ≥ j, jki ≥ ikj always holds true.

Remark 2.4.8. Since the posterior of the Dirichlet process is still a Dirichlet process, the

above result can be applied to the posterior process in the Bayesian nonparametric models

when the prior is the Dirichlet process for the following situations: (i) with large sample

size and finite parameter a; (ii) with large parameter a and finite sample size, (iii) with

parameter a and sample size both large.

The assumption of the Beta(1, a)-distribution in Corollary 2.4.7 can be replaced by a

general Beta(ρa, a), where ρa/a→ 0. In fact, in this case, we have

E [vn1 ] =
(︂ρa
a

)︂n
+ o

(︂(︂ρa
a

)︂n)︂
.
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It is easy to verify that the conditions (2.4.3)-(2.4.4) in Theorem 2.4.4 are satisfied. Thus

we have

Corollary 2.4.9. Theorem 2.4.4 holds true when P ∼ SPG(µa, H), where vi
iid∼ Beta(ρa, a)

with lim
a→∞

ρa
a

= 0.

Remark 2.4.10. It is not clear yet what is the finite dimensional distribution of stick-

breaking process P if the corresponding stick-breaking weights vi
iid∼ Beta(ρa, a).

The next corollary is about the asymptotic behaviour of the prior P , when the cor-

responding stick-breaking weights vi follow a linear combination of Beta distributions,

whose precise meaning is give below.

Definition 2.4.11. Let s be any positive integer and let {r1, · · · , rs} and {t1, · · · , ts} be

two sets of positive real numbers such that
∑︁s

ℓ=1 tℓ = 1. Let u1,1, · · · , u1,s, u2,1, · · · , u2,s, · · ·

be independent and let ui,ℓ∼Beta(1, arℓ) , i = 1, 2, · · · , ℓ = 1, · · · , s. Then the random

variables

vi =
s∑︂
ℓ=1

tℓui,ℓ , i = 1, 2, · · · , (2.4.9)

are called linear combinations of Beta random variables.

Corollary 2.4.12. Theorem 2.4.4 holds true when P is the stick-breaking process as de-

fined in Definition 2.2.1, where the weights vi are the linear combinations of Beta random

variables defined by (2.4.9).

Proof. By the independence of {ui,ℓ}sℓ=1, we can compute the p-th moment of vi as follows.

E[vpi ] = E

[︄(︄
s∑︂
ℓ=1

tℓui,ℓ

)︄p]︄
=

∑︂
q1,··· ,qs∈Z+
q1+···+qs=p

(︃
p

q1, · · · , qs

)︃ s∏︂
ℓ=1

E [(tℓui,ℓ)
qℓ ]

=
∑︂

q1,··· ,qs∈Z+
q1+···+qs=p

(︃
p

q1, · · · , qs

)︃ s∏︂
ℓ=1

tqℓℓ

(︃
qℓ!

aqℓrℓ
+ o

(︃
1

aqℓrℓ

)︃)︃
=
tpp!

apr
+ o

(︃
1

apr

)︃
,

where r = min(r1, · · · , rs). Taking kp = pr and Cp = tpp! in Assumption 2.4.1 we see the

condition i ≥ j, jki ≥ ikj is always verified.
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Remark 2.4.13. Let us return to Corollary 2.4.7. This is a typical case and we take

a close look of the density fa(x) = a(1 − x)a−1, 0 ≤ x ≤ 1, of the Beta distribution

Beta(1, a).

For any continuous function g : R → R, it is easy to verify that

∫︂
R
[g(x)− g(1)] fa(x)dx =

∫︂ 1

0

[g(x)− g(1)] fa(x)dx→ 0 as a→ ∞ .

This means that
∫︁
R g(x)fa(x)dx → g(1). In other word, fa converges to the Dirac delta

function δ(x − 1). This observation hints that when the distribution fa of vi’s converges

to the Dirac delta function δ(x − 1), or the random variable vi converges in distribution

to 1 (as a → ∞) we should have the convergence of the random process QH,a. But we

still need to impose some more technical conditions. We give a further illustration by the

following corollary.

Corollary 2.4.14. Let the stick-breaking process P be defined as in Definition 2.2.1,

where the corresponding vi follows the following distribution:

fa(x) =

⎧⎪⎪⎨⎪⎪⎩
a(1− g(a)) if 0 < x ≤ 1/a;

ag(a)
a−1

if 1/a < x ≤ 1,

where g(a) = e−a
ϵ
, a > 1, for a certain arbitrarily fixed ϵ > 0. Then, as a → ∞,

the conditions (2.4.3) and (2.4.4) of Theorem 2.4.4 hold for this density fa. Thus the

statements (2.4.5) and (2.4.7) of Theorem 2.4.4 hold true.

Proof. Before we proceed to the proof. Let us note the obvious fact that fa converges to

the Dirac delta distribution δ(x− 1).

For any n > 0, we see lim
a→∞

ang(a) = 0. A trivial calculation implies that for any

positive integer p,

E[vpi ] =
(1/a)p + g(a)

∑︁p
i=0(1/a)

i

p+ 1
=

1

(p+ 1)ap
+ o(b−p) .
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An application of Assumption 2.4.1 with kp = p yields the desired statement.

When the stick-breaking weights are iid, Theorem 2.4.4 that we obtained for the

stick-breaking random measure P covers very general situation and the conditions (2.4.3)-

(2.4.4) are minimal and are easy to verify. But when the stick-breaking weights are not iid

the situation becomes much more sophisticated like in other statistical situations. We shall

consider some well-known processes introduced in the introduction. For these processes

the explicit forms of the joint finite dimensional distributions of the stick-breaking weights,

although complicated, are given (in the supplementary material). We can state similar

results as those in Theorem 2.4.4 in one theorem for all these processes.

Theorem 2.4.15. Let P be one of the Poisson-Dirichlet process PDP(a, b,H), the nor-

malized inverse Gaussian process N-IG(a,H), the normalized generalized gamma process

NGGP(σ, a,H), and the generalized Dirichlet process GDP(a, r,H). Then, we have the

following results.

(i) As a→ ∞,

(Da(A1), Da(A2), · · · , Da(An))
d→ (X1, X2, · · · , Xn) , (2.4.10)

where (X1, X2, · · · , Xn) ∼ N(0,Σ) and Σ = (σij)1≤i,j≤n is given by

σij =

⎧⎪⎪⎨⎪⎪⎩
1 if i = j

−
√︂

H(Ai)H(Aj)

(1−H(Ai))(1−H(Aj))
if i ̸= j .

(2.4.11)

(ii) Let (X,X ) = (Rd,B(Rd)) be the d-dimensional Euclidean space with the Borel σ-

algebra. Then

QH,a
weakly→ Bo

H in D(Rd) (2.4.12)

with respect to the Skorohod topology.

Corollary 2.4.16. Theorem 2.4.15 holds true when the random measure P is the Beta

process (denoted by P ∼ BP(a, γH)), whose stick-breaking representation is given in
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Definition 7.8 (in the supplementary material). Our method of moments still works and

in fact, due to the independence of the weights wi,j in (7.9) (in the supplementary material)

the computation is much simpler.

As long as the central limit theorem of P is obtained, it is trivial to use the delta-

method to show the similar theorem for the nonlinear functional of this process. Using

Theorem 3.9.4 in (van der Vaart and Wellner, 1996), we can state the following theorem.

Theorem 2.4.17. Let P be one of N-IG(a,H), PDP(a, b,H), NGGP(σ, a,H), GDP(a, r,H)

or SPG(µa, H) satisfying (2.4.3)-(2.4.4) of Theorem 2.4.4. Let D be the metric space of

all probability measures on (X,X ) with the total variation distance. Let ϕ : D → Rd be a

continuous functional which is Hadamard differentiable on D. Then, as a→ ∞, we have

1√︁
E[
∑︁∞

i=1w
2
i ]
(ϕ (P (·))− ϕ (H(·))) weakly→ ϕ′

H(·) (B
o
H) .

Remark 2.4.18. When P is Dirichlet process or the normalized inverse Gaussian process,

the above conclusion have been known (e.g., (Labadi and Zarepour, 2013; Labadi and

Abdelrazeq, 2016)).

One application of the above theorem is the limiting distribution of the quantile process

of P .

Example 2.4.19. Suppose (X,X ) = (R,B(R)) and suppose that P is one of N-IG(a,H),

PDP(a, b,H), NGGP(σ, a,H), GDP(a, r,H) or SPG(µa, H) satisfying (2.4.3)-(2.4.4) of

Theorem 2.4.4. Let H be absolutely continuous with positive derivative h. By Lemma

3.9.23 of (van der Vaart and Wellner, 1996), we have

1√︁
E[
∑︁∞

i=1w
2
i ]

(︁
P−1(·)−H−1(·)

)︁ weakly→ − Bo(·)
h (H−1(·))

= G(·) , (2.4.13)

where H−1(s) = inf{t : H(t) ≥ s}. The limiting process G is a Gaussian process with

zero-mean and with covariance function

Cov (G ((0, s]) , G ((0, t])) =
s ∧ t− st

h (H−1 ((0, s]))h (H−1 ((0, t]))
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for s, t ∈ R,

2.5 Numerical Illustration

Theorem 2.4.15 states that (Da(A1), Da(A2), · · · , Da(An)) converges to a joint normal

distribution as a → ∞. In this section we shall perform some numerical simulations

to illustrate this convergence. To be specific the processes we choose to simulate are

Poisson-Dirichlet process PDP(a, b,H) and the stick-breaking process with general stick-

breaking weights constructed in Corollary 2.4.14. For PDP(a, b,H) we consider the cases

the parameter b = 0.2 and b = 0.5 and for the process constructed in Corollary 2.4.14 we

consider the cases ϵ = 1 and ϵ = 5.

For both of these two processes, the base measure H is assumed to be uniform dis-

tribution on X = (0, 1) and we take n = 3 and fix the partition of X as A1 = (0, 0.3],

A2 = (0.3, 0.7], A3 = (0.7, 1). In our simulations we truncate the infinite series (2.2.1)

to 5000 terms and we simulate 2000 samples of (Da(A1), Da(A2), Da(A3)). Since it is

rather messy to visualize the joint densities of (Da(A1), Da(A2), Da(A3)), we plot the his-

tograms of the linear combination 1.6 × Da(A1) + 1.4 × Da(A2) + 0.5 × Da(A3) (other

linear combinations will produce similar results with different variances). The histograms

for PDP(a, b,H) with b = 0.2 and b = 0.5 and with a = 2, 5, 10, 20 are plotted in Figure

2.1 and the histograms for the stick-breaking process with general stick-breaking weights

constructed in Corollary 2.4.14 with ϵ = 1 and ϵ = 5 and with a = 2, 5, 10, 20 are plotted

in Figure 2.2. Graphs corresponding to different parameters (different b or different ϵ) are

plotted in different figures but those corresponding to different values of a are plotted in

the same figure with different colored curves so that one can observe the convergence to

mean zero normal curves easily.

It is easy to observe that the convergence to the normal shape is very fast as a is

getting larger.
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(a) PDP(a, b,H) with b = 0.2. (b) PDP(a, b,H) with b = 0.5.

Figure 2.1: Convergence of Da with respect to PDP(a, b,H) for a = 2, 5, 10, 20.

2.6 Concluding remarks

The method of moments used in this chapter could be applied to the study of asymptotics

for some Bayesian nonparametric posterior processes in the following situations: (i) when

the parameter a is finite and the sample size is large; (ii) when the parameter a is large

and the sample size is finite; (iii) when the parameter a and the sample size are both

large. As is well-known it is usually very hard to obtain the explicit form of the posterior

distribution (even in the parametric cases) and even when the posterior distribution is

obtained sometimes it is still very hard to use it to compute the needed statistics. A

particularly interesting example is the posterior distribution of a homogeneous normalized

random measure with independent increments (hNRMI) obtained by (James et al., 2009)

and (Favaro et al., 2016, Proposition 4). The hNRMI is a large class of priors, which

contains the normalized generalized gamma processes (Definition 7.6 in the supplementary

material) and the generalized Dirichlet processes (Definition 7.7 in the supplementary
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(a) Parameter ϵ = 1. (b) Parameter ϵ = 5.

Figure 2.2: Convergence of Da with respect to the constructed process in Corollary 2.4.14
for a = 2, 5, 10, 20.

32



material) mentioned in this chapter as special cases. Assume that P a is an hNRMI

depending on a parameter a > 0 and some other parameters studied in (Favaro et al.,

2016), where the parameter a is the same as the one in our work when the hNRMI becomes

a normalized generalized gamma process or a generalized Dirichlet process. If {Xi}ni=1 is a

sample from the hNRMI P a, in the sense that the sequence of exchangeable observations

{Xi}ni=1 are defined on (Ω,F ,P) with values in X in such a way that, given P a, X1, · · · , Xn

are i.i.d with distribution P a, then the posterior distribution of P a can be computed with

the help of a latent variable Un as follows ((Favaro et al., 2016, Proposition 4))

P a|Un, X1, . . . , Xn ∼ P̂
a

n := φa0,Un
P̃
a

Un
+

k∑︂
j=1

φaj,Un
δX∗

j
,

where given Un = u, P̃
a

u is an hNRMI admitting a stick-breaking representation and

{X∗
j }kj=1 are the distinct values of {Xi}ni=1. To compute a Bayesian statistic, we need to

compute some functional of the posterior probability measure P̂
a

n. For example, to find

the quantile tq such that P̂
a

n((−∞, tq)) ≤ q ≤ P̂
a

n((−∞, tq]) for some given q ∈ (0, 1)

or to compute
∫︁
Xd f(x1, · · · , xd)P̂

a

n(dx1) · · · P̂
a

n(dxd) and so on (e.g., (Ferguson, 1973),

(Zhang and Hu, 2021)), which is usually complicated due to the complexity of P̃
a

Un
.

However, when a is sufficiently large the probability measure P̃
a

Un
is approximately a

normal distribution, then we can use the normal distribution to approximate P̃
a

Un
in the

computation of these Bayesian statistics. Let us also point out that in some situations the

normal approximation is sufficiently good for reasonable size a (from the figures in this

chapter, we see that when a = 5, the graphs are already close to normal distributions).

2.7 Appendix

In this section, we present the necessary definitions and propositions for the processes

(random measures) considered in this chapter and give the proofs for the propositions

and theorems in the main body.
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2.7.1 Definitions

Let (Ω,F ,P) be a complete probability space and let (X,X ) be a measurable Polish space,

namely, X is a separable complete metric space and X is the Borel σ-algebra of X. Let

H be a nonatomic probability measure on (X,X ) (i.e., H({x}) = 0 for any x ∈ X). A

random measure is a mapping P from Ω×X to R+ (we denote this random measure by

P = (P (ω,A), ω ∈ Ω , A ∈ X )) such that

(i) when ω ∈ Ω is fixed, P (ω, ·) is a measure on (X,X );

(ii) when A ∈ X is fixed, P (·, A) is a random variable on (Ω,F ,P).

In the following definitions we shall always assume that P is a random probability measure,

which are given by their stick-breaking representation. Different assumptions on the stick-

breaking weights give rise to different processes. The first one is the classical Dirichlet

process.

Definition 2.7.1. Let a > 0 and let H be a nonatomic measure on (X,X ). A random

probability measure P is called the Dirichlet process with parameter (a,H), denoted by

P ∼ DP(a,H), if it has the representation (2.1)-(2.2), where vi
iid∼ Beta(1, a).

In fact, this process is defined differently and the above definition is a result of (Sethu-

raman, 1994). To state the original definition of the Dirichlet process as the following

proposition, we need to recall the concept of the Dirichlet distribution. Throughout this

section we use the following notation to denote the standard simplex in Rn:

Sn =

{︄
(s1, · · · , sn) ∈ Rn : si ≥ 0,

n∑︂
i=1

si = 1

}︄
. (2.7.1)

In case of no ambiguity we also write S = Sn. A random vector (X1, · · · , Xn) ∈ S

follows the Dirichlet distribution with parameters (α1, · · · , αn) ∈ [0,∞)n, denoted by

(X1, · · · , Xn) ∼ Dir(α1, · · · , αn), if the joint probability density function of (X1, · · · , Xn)
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is given by

f(x1, · · · , xn) =
Γ(|α|)∏︁n
i=1 Γ(αi)

n∏︂
i=1

xαi−1
i 1S(x1, · · · , xn) ,

where |α| =
∑︁n

i=1 αi, Γ(a) =
∫︁∞
0
xa−1dx (a > 0), is the gamma function, and 1S is the

indicator function of the simplex S. With this notion of Dirichlet distribution we can

write the following proposition.

Proposition 2.7.2. A random probability measure P is the Dirichlet process with param-

eter (a,H) if for any measurable partition (A1, · · · , An) of X (i.e., A1, · · · , An ∈ X , A1 ∪

· · · ∪Ad = X and Ai ∩Aj = ∅ for 1 ≤ i < j ≤ n), the random vector (P (A1), · · · , P (An))

follows the Dirichlet distribution with parameters (aH(A1), · · · , aH(An)).

Proof. We refer to (Sethuraman, 1994) or (Zhang and Hu, 2021) for the proof of the

equivalence between Definition 2.7.1 and Proposition 2.7.2.

Definition 2.7.3 (Pitman and Yor (1997)). Let b ∈ (0, 1) and let −b < a < ∞. A

random probability measure P is called the two-parameter Poisson-Dirichlet process or

the Pitman-Yor process, denoted by PDP(a, b,H), if the stick-breaking weights satisfy the

following: ⎧⎪⎪⎨⎪⎪⎩
v1, v2, · · · are independent ,

vi ∼ Beta(1− b, a+ ib), i = 1, 2, · · ·
(2.7.2)

Definition 2.7.4 (Favaro et al. (2012)). A random probability measure P is called the nor-

malized inverse Gaussian process with parameters a and H, denoted by P ∼ N-IG(a,H),

if the joint distributions of the stick-breaking weights {v1, v2, · · · } are given through the
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following conditional probability densities recursively:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fv1(x) =
a

1
2x−

1
2 (1− x)−1

(2π)
1
2K− 1

2
(a)

K−1

(︃
a√
1− x

)︃
,

fvn|v1,··· ,vn−1(x) =
a

1
2

∏︁n−1
i=1 (1− vi)

− 1
4x−

1
2 (1− x)−

5
4
+n

4

(2π)
1
2K−n

2

(︃
a√∏︁n−1

i=1 (1−vi)

)︃

×K− 1
2
−n

2

⎛⎝ a√︂
(1− x)

∏︁n−1
i=1 (1− vi)

⎞⎠ ,

n = 2, 3, · · ·

(2.7.3)

(2.7.4)

where a > 0 and Kµ is the modified Bessel function of the third type (see e.g., (Gradshteyn

and Ryzhik, 2014)).

Similar to what we did for the Dirichlet process, we present the original definition of

the normalized inverse Gaussian process as a proposition.

Proposition 2.7.5. A random probability measure P is the normalized inverse Gaussian

process with parameter (a,H) if for any measurable partition (A1, · · · , An) of X, the ran-

dom vector (P (A1), · · · , P (An)) follows the normalized inverse Gaussian distribution with

parameters (aH(A1), · · · , aH(An)) given by the following form:

f(x1, · · · , xn) =
eaan

∏︁n
i=1H(Ai)

2
n
2
−1π

n
2

×K−n
2

⎛⎝⌜⃓⃓⎷ n∑︂
i=1

(aH(Ai))
2

xi

⎞⎠
×

(︄
n∑︂
i=1

(aH(Ai))
2

xi

)︄−n
4

×
n∏︂
i=1

x
− 3

2
i × 1S(x1, · · · , xn) ,

where S is the simplex defined by (2.7.1).

Proof. We refer to (Favaro et al., 2012) for the proof of the equivalence between Definition

2.7.4 and Proposition 2.7.5.

Definition 2.7.6 (Favaro et al. (2016)). P is called the normalized generalized gamma

process with parameters σ ∈ (0, 1), a > 0 and H, denoted by P ∼ NGGP(σ, a,H), if the
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finite dimensional joint distributions of the stick-breaking weights {v1, v2, · · · } are given

by the following conditional distributions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fv1(x) =
x−σ(1− x)σ−1ea

Γ(σ)Γ(1− σ)

∞∑︂
j=0

(1− σ)j
j!

a
j
σ

(1− x)j
Γ

(︃
1− j

σ
;

a

(1− x)σ

)︃
,

fvn|v1,··· ,vn−1(x) =
σΓ((n− 1)σ)x−σ(1− x)nσ−1

Γ(1− σ)Γ(nσ)∑︁∞
j=0

(1−nσ)j
j!

a
j
σ

(1−x)j
∏︁n−1

i=1 (1−vi)j
Γ
(︂
n− j

σ
; a
(1−x)σ

∏︁n−1
i=1 (1−vi)σ

)︂
∑︁∞

j=0
(1−(n−1)σ)j

j!
a

j
σ∏︁n−1

i=1 (1−vi)j
Γ
(︂
n− 1− j

σ
; a∏︁n−1

i=1 (1−vi)σ

)︂ ,

n = 2, 3, · · · ,

(2.7.5)

(2.7.6)

where Γ(c, x) =
∫︁∞
x
uc−1e−udu is the upper incomplete gamma function.

Definition 2.7.7. We call a random probability measure P on (Ω,F) the generalized

Dirichlet process with parameters a > 0, r ∈ N+ and H, denoted by P ∼ GDP(a, r,H), if

for any measurable partition (A1, · · · , An) of X, the joint density of (P (A1), · · · , P (An))

is given by

f(x1, · · · , xn) =
(r!)a∏︁n

i=1 Γ(rai)

∫︂ ∞

0

tra−1e−rt

[︄
n∏︂
j=1

Φ
(r−1)
2 (ajIr−1; raj; txjJr−1)

]︄
dt

×
n∏︂
i=1

xrai−1
i × 1S(x1, · · · , xn), (2.7.7)

where ai = aH(Ai); Ir−1 = (1, · · · , 1)T , Jr−1 = (1, · · · , r−1) are r−1 dimensional vectors

and ΦN
2 (b; c;x) is the confluent form of the fourth Lauricella hypergeometric function (see

e.g., (Exton, 1976)), and S is the simplex defined by (2.7.1).

It is trivial to verify that the Dirichlet process is a special case of the generalized Dirich-

let process with parameter r = 1. Although the expression (2.7.7) looks very sophisticated,

its mean, variance, and predictive distribution have been computed (see e.g., (Lijoi et al.,

2005b)). This process also admits a stick-breaking representation (e.g., (Favaro et al.,

2016)). However, the corresponding stick-breaking representation is more complicated

to use for our study of the limiting theorems. So, we rather use this sophisticated finite
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dimensional distribution than the more sophisticated stick-breaking representation, which

we omit.

For the Beta process, the stick-breaking representations are given in (Paisley et al.,

2010) and (Teh et al., 2007). We use the former as our definition below.

Definition 2.7.8. A random measure P is called the Beta process with parameters a > 0,

γ > 0, H, denoted by P ∼ BP(a, γH), if it has the following representation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
P =

∞∑︂
i=1

κi∑︂
j=1

wi,jδθi,j , where

w1,j = v
(1)
1,j , wi,j = v

(i)
i,j

i−1∏︂
l=1

(1− v
(l)
i,j ) for i = 2, 3, · · · , and j = 1, 2, · · · ,

(2.7.8)

(2.7.9)

where all variables are iid and κi
iid∼ Poisson(γ), v

(l)
i,j

iid∼ Beta(1, a), θi,j
iid∼ H are mutually

independent.

As we are presenting the functional central limit theorem of P , we need to recall the

definition of the Brownian bridge process of parameter H (see e.g., (Kim and Bickel, 2003)

for more details).

Definition 2.7.9. Let H be a measure on (X,X ) and let Bo
H = (Bo

H(ω,A), ω ∈ Ω, A ∈ X )

be a stochastic process (random measure) with parameter A ∈ X . It is called the Brownian

bridge with parameter H if the following two conditions are satisfied.

(i) Bo
H is Gaussian. Namely, for any elements A1, · · · , An ∈ X , Bo

H(A1), · · · , Bo
H(An)

are jointly centered Gaussian random variables on the probability space (Ω,F ,P).

(ii) For any A1, A2 ∈ X , the covariance of Bo
H(A1) and B

o
H(A2) is given by

E [Bo
H(A1)B

o
H(A2)] = H(A1 ∩ A2)−H(A1)H(A2) . (2.7.10)

To state the functional central limit theorem we also need the space D(Rd) introduced

in Section 3 of (Bickel and Wichura, 1971). The characteristics of the elements (functions)
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in D(Rd) are given by their continuity properties described as follows. For 1 ≤ p ≤ d,

let Rp be one of the relations < or ≥ and for t = (t1, · · · , td) ∈ Rd let QR1,··· ,Rd
be the

quadrant

QR1,··· ,Rd
:=
{︁
(s1, · · · , sd) ∈ Rd : spRptp, 1 ≤ p ≤ d

}︁
.

Then, x ∈ D(Rd) if and only if (see e.g., (Straf, 1972)) for each t ∈ Rd, the following

two conditions hold: (i) xQ = lims→t, s∈Q x(s) exists for each of the 2d quadrants Q =

QR1,··· ,Rd
(t) (namely, for all the combinations that R1 = “ < ”, or “ ≥ ”, · · · , Rd = “ < ”

or “ ≥ ”), and (ii) x(t) = xQ≥,··· ,≥ . In other words, D(Rd) is the space of functions that

are “continuous from above with limits from below”, which are similar to the space of

the càdlàg (French word abbreviation for “right continuous with left limits”) functions in

one variable (i.e., d = 1). The metric on D(Rd) is introduced as follows. Let Λ = {λ :

Rd → Rd : λ(t1, · · · , td) = (λ1(t1), · · · , λd(td))}, where each λp : R → R is continuous,

strictly increasing and has limits at both infinities. Denote the Skorohod distance between

x, y ∈ D(Rd) by

d(x, y) = inf{min(∥ x− yλ ∥, ∥ λ ∥) : λ ∈ Λ},

where ∥ x− yλ ∥=
∞∑︂
n=1

sup
|t|≤n

|x(t)− y(λ(t))| and ∥ λ ∥=
∞∑︂
n=1

sup
|t|≤n

|λ(t)− t|.

Having introduced the metric space D(Rd) we can now explain the concept of weak

convergence of a random measure on this space with respect to its Skorohod topology (the

topology on D(Rd) induced by the Skorohod distance d(x, y)). Let Qa : Ω×B(Rd) → [0, 1]

be a family of random probability measures depending on a parameter a > 0 and let

B : Ω× B(Rd) → [0, 1] be another random probability measure. Define

Qa(t1, · · · , td) = Qa((−∞, t1]× · · · × (−∞, td]) , (t1, · · · , td) ∈ Rd .

Definition 2.7.10. We say Qa converges to B weakly on D(Rd) with respect to the Skoro-

hod topology, denoted by Qa
weakly→ B in D(Rd), if for any bounded continuous (continuous
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with respect to Skorohod topology) functional f : D(Rd) → R we have

lim
a→∞

E [f(Qa(·, · · · , ·))] = E [f(B(·, · · · , ·))] . (2.7.11)

Before the proofs of our results in the main body of the chapter, we would like to give

the mean and variance of the stick-breaking random measure P as defined in (2.1)-(2.2).

For any A ∈ X ,

E (P (A)) = E

[︄
∞∑︂
i=1

wiδθi(A)

]︄
=

∞∑︂
i=1

E (wi)E [1A(θi)]

=
∞∑︂
i=1

E (wi)H(A) = E

[︄
∞∑︂
i=1

wi

]︄
H(A) = H(A), (2.7.12)

since
∑︁∞

i=1wi = 1 a.s. and

Var [P (A)] = E
[︁
(P (A)−H(A))2

]︁
= E

⎡⎣(︄ ∞∑︂
i=1

wi (δθi(A)−H(A))

)︄2
⎤⎦

= E

[︄
∞∑︂
i=1

w2
i (δθi(A)−H(A))2

]︄

+ 2E

[︄ ∑︂
1≤i<j<∞

wiwj (δθi(A)−H(A))
(︁
δθj(A)−H(A)

)︁]︄

= E
[︁
(δθi(A)−H(A))2

]︁
E

[︄
∞∑︂
i=1

w2
i

]︄

= H(A)(1−H(A))E

[︄
∞∑︂
i=1

w2
i

]︄
. (2.7.13)

2.7.2 Proof of Proposition 2.3.1

Proof of Proposition 2.3.1. Using the binomial expansion and using the fact that vi ∈

[0, 1] we have

E [vni (1− vi)
m] =

m∑︂
k=0

(︃
m

k

)︃
(−1)kE[vn+ki ]
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= E[vni ]−mE[vn+1
i ] + · · ·+ (−1)mE[vm+n

i ]

= E[vn1 ] +O
(︁
E[vn+1

1 ]
)︁
= E[vn1 ] + o (E[vn1 ]) , (2.7.14)

where the last equality follows from the assumption lim
a→∞

E[vn+1
1 ]

E[vn1 ]
= 0 for all n ∈ Z+. Since

vi ∈ [0, 1] and since we assume that v0 is not identically zero, we have E[(1−vi)m] ∈ [0, 1)

and

∞∑︂
j=0

(E [(1− vi)
m])j =

1

1− E [(1− vi)m]

=
1

1−
∑︁m

j=0

(︁
m
j

)︁
(−1)jE[vji ]

=
1

mE[v1] +
∑︁m

j=2

(︁
m
j

)︁
(−1)jE[vji ]

=
1

mE[v1]
+ o

(︃
1

mE[v1]

)︃
, (2.7.15)

where the last equality also follows from the assumption lim
a→∞

E[vn+1
1 ]

E[vn1 ]
= 0 for all n ∈ Z+.

This proves (3.1)-(3.2).

Now we use (3.1)-(3.2) to show (3.3). Denote

I = E

[︄ ∑︂
1≤i1<i2<···<ik<∞

wp1i1 w
p2
i2
· · ·wpkik

]︄
.

By the construction of the stick-breaking sequence {wi}∞i=1, we may rewrite I as

I = ∑︂
1≤i1<i2<···<ik<∞

E

[︄
vp1i1

i1−1∏︂
ℓ1=1

(1− vℓ1)
p1 · · · vpmim

im−1∏︂
ℓm=1

(1− vℓm)
pm · · · vpkik

ik−1∏︂
ℓk=1

(1− vℓk)
pk

]︄
.

Since 1 ≤ i1 < i2 < · · · < ik <∞, we can rearrange I by putting v’s with the same index
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together to obtain

I =
∑︂

1≤i1<i2<···<ik<∞

E

[︄
vp1i1 (1− vi1)

p2:k

i1−1∏︂
ℓ1=1

(1− vℓ1)
p1:kvp2i2 (1− vi2)

p3:k

i2−1∏︂
ℓ2=i1+1

(1− vℓ2)
p2:k · · · vpmim (1− vim)

pm+1:k

im−1∏︂
ℓm=im−1+1

(1− vℓm)
pm:k

· · · vpk−1

ik−1
(1− vik−1

)pk
ik−1−1∏︂

ℓk−1=ik−2+1

(1− vℓk−1
)pk−1:kvpkik

ik−1∏︂
ℓk=ik−1+1

(1− vℓk)
pk

]︄
.

(2.7.16)

From the independence of {v1, v2, · · · } it follows

I =
∞∑︂
i1=1

E
[︁
vp1i1 (1− vi1)

p2:k
]︁ i1−1∏︂
ℓ1=1

E [(1− vℓ1)
p1:k ]

∞∑︂
i2=i1+1

E
[︁
vp2i2 (1− vi2)

p3:k
]︁

i2−1∏︂
ℓ2=i1+1

E [(1− vℓ2)
p2:k ] · · ·

∞∑︂
im=im−1+1

E
[︁
vpmim (1− vim)

pm+1:k
]︁

im−1∏︂
ℓm=im−1+1

E [(1− vℓm)
pm:k ] · · ·

∞∑︂
ik−1=ik−2+1

E
[︂
v
pk−1

ik−1

(︁
1− vik−1

)︁pk]︂
ik−1−1∏︂

ℓk−1=ik−2+1

E
[︁(︁
1− vℓk−1

)︁pk−1:k
]︁ ∞∑︂
ik=ik−1+1

E
[︁
vpkik
]︁ ik−1∏︂
ℓk=ik−1+1

E [(1− vℓk)
pk ] .

Denoting the general factor in the above expression by

Sm =
∞∑︂

im=im−1+1

E
[︁
vpmim (1− vim)

pm+1:k
]︁ im−1∏︂
ℓm=im−1+1

E [(1− vℓm)
pm:k ] ,

for m ∈ {1, 2, · · · , k}, we can write

I = S1S2 · · · Sk . (2.7.17)

From the fact that {v1, v2, · · · } are identically distributed and by (3.1)-(3.2) we have for
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m = 1, · · · , k,

Sm = E [vpm1 (1− v1)
pm+1:k ]

∞∑︂
im=im−1+1

(︂
E [(1− v1)

pm:k ]
)︂im−im−1−1

=

(︃
E [vpm1 ] + o (E [vpm1 ])

)︃(︃
1

pm:kE[v1]
+ o

(︃
1

E[v1]

)︃)︃
=

E[vpm1 ]

pm:kE[v1]
+ o

(︃
E[vpm1 ]

pm:kE[v1]

)︃
.

Substituting this estimate into (2.7.17), we see

I =
k∏︂

m=1

(︃
E[vpm1 ]

pm:kE[v1]
+ o

(︃
E[vpm1 ]

pm:kE[v1]

)︃)︃
=

E[vp11 ] · · ·E[vpm1 ]

p1:kp2:k · · · pk:k(E[v1])k
+ o

(︃
E[vp11 ] · · ·E[vpm1 ]

(E[v1])k

)︃
.

This prove (3.3). If we take pj = 2 for all j ∈ {1, · · · , k}, then p1:k = 2k. The identity

(3.4) is hence a straightforward consequence of (3.3).

2.7.3 Proof of Proposition 2.3.2

Since v1, v2, · · · are no longer identically distributed, the results established in the previous

proof cannot be applied and we need some new computations. We shall still use the general

method of moments. To this end, we need to recall some results about the hypergeometric

functions and we refer to (Aomoto et al., 2011) for further reading.

Definition 2.7.11. The hypergeometric function 2F1(a, b, c;x) (of parameters a, b, c ∈ C,

the complex plane) is defined by the series

2F1(a, b, c;x) =
∞∑︂
n=0

(a)n(b)n
(c)nn!

xn

for |x| < 1, where (q)n is the Pochhammer symbol defined by

(q)n =

⎧⎨⎩ 0 for n = 0

q(q + 1)...(q + n− 1) for n > 0 .
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This function is defined for |x| < 1 and may be extended to x = 1 and/or x = −1 by

continuation.

We need the following result obtained by Gauss: when Re(c − a − b) > 0 (real part

of c− a− b), the hypergeometric function can be extended to x = 1 and its value at this

point is given by

2F1(a, b, c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
. (2.7.18)

We introduce a variant of the hypergeometric function that will be needed in the following

calculations.

Definition 2.7.12. For any b < 2, n ∈ N+, a > 0, m > 0, c > 0, define the increasing

coefficient hypergeometric function 2Q1 ((a, b), c,m, n;x) by the series

2Q1 ((a, b), c,m, n;x) =
∞∑︂
k=0

n−1∏︂
ℓ=1

(a+ b(k + ℓ))

(︁
a
b
+ 1
)︁
k
(c)k(︁

a+m
b

+ 1
)︁
k
k!
xk

for |x| < 1 and we may extend the definition to x = 1 and/or x = −1 by continuation.

In the above product we use the convention that
∏︁0

ℓ=1 cℓ = 1.

The next proposition describes a Gauss type result for the increasing coefficient hy-

pergeometric function.

Proposition 2.7.13. Let b < 2, n ∈ N+, a > 0, m > 0, c > 0. Then, the increasing

coefficient hypergeometric function can be extended to x = 1 and its value at this point is

given by

2Q1 ((a, b), c,m, n; 1) =
n−1∏︂
ℓ=1

(a+ bℓ)
a+m

m− nb
.

Proof. By (2.7.18) we have

2Q1 ((a, b), c,m, n; 1) =
n−1∏︂
ℓ=1

(a+ bℓ)
∞∑︂
k=0

k∏︂
i=1

a+ (n+ i− 1)b

a+ ib+m

=
n−1∏︂
ℓ=1

(a+ bℓ) 2F1

(︃
a

b
+ n, 1,

a+m

b
+ 1; 1

)︃
=

n−1∏︂
ℓ=1

(a+ bℓ)
a+m

m− nb
, (2.7.19)
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proving the proposition.

Now we are in the position of proving Proposition 3.2.

Proof of Proposition 3.2 Denote

Sm =
∞∑︂

im=im−1+1

E
[︁
vpmim (1− vim)

pm+1:k
]︁ im−1∏︂
ℓm=im−1+1

E [(1− vℓm)
pm:k ] ,

for m ∈ {1, 2, · · · , k}. Then we can write

I := E

[︄ ∑︂
1≤i1<i2<···<ik<∞

wp1i1 w
p2
i2
· · ·wpkik

]︄
= S1S2 · · · Sk .

We shall compute I by computing SmSm+1 · · · Sk recursively on m = k, k − 1, · · · , 2, 1.

First, by using (2.7.18) we have

Sk =
∞∑︂

ik=ik−1+1

(1− b)pk
(1 + a+ b(ik − 1))pk

ik−1∏︂
ℓk=ik−1+1

(a+ bℓk)pk
(1 + a+ b(ℓk − 1))pk

=
(1− b)pk

(1 + a+ bik−1)pk
2F1

(︃
a

b
+ ik−1 + 1, 1,

a+ pk
b

+ ik−1 + 1; 1

)︃
=

(1− b)pk
(pk − b)(1 + a+ bik−1)pk−1

. (2.7.20)

Now we want to compute SmSm+1 · · · Sk assuming that we have already computed Sm+1 · · · Sk.

To make thing clear we will explain how to compute S1 · · · Sk from the expression of

S2 · · · Sk. General case is similar. We assume

S2 · · · Sk =
(a+ b(i1 + 1)) · · · (a+ b(i1 + k − 2))

(1 + a+ bi1)p2:k−1

k∏︂
i=2

(1− b)pi
pi:k − (k − i+ 1)b

.
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Then, by Proposition 2.7.13

I = S1S2 · · · Sk = (1− b)p1

k∏︂
i=2

(1− b)pi
pi:k − (k − i+ 1)b

∞∑︂
i=1

(a+ bi1) · · · (a+ b(i1 + k − 2))

(1 + a+ b(i1 − 1))p1:k

i1−1∏︂
ℓ1=1

(a+ bℓ1)p1:k
(1 + a+ b(ℓ1 − 1))p1:k

=
(1− b)p1
(a+ 1)p1:k

k∏︂
i=2

(1− b)pi
pi:k − (k − i+ 1)b

2Q1 ((a, b), 1, p1:k, k; 1)

=
(1− b)p1
(a+ 1)p1:k

k∏︂
i=2

(1− b)pi
pi:k − (k − i+ 1)b

k−1∏︂
ℓ=1

(a+ bℓ)
a+ p1:k
p1:k − kb

=
(a+ b) · · · (a+ b(k − 1))

(1 + a)p1:k−1

k∏︂
i=1

(1− b)pi
pi:k − (k − i+ 1)b

=
1

(a+ kb)(a+ 1)(p1:k−1)

k∏︂
i=1

(1− b)pi(a+ bi)

pi:k − (k − i+ 1)b
.

This proves (3.5).

When pj = 2 for all j ∈ {1, · · · , n}, we have easily

I = E

[︄ ∑︂
1≤i1<i2<···<in<∞

w2
i1
w2
i2
· · ·w2

in

]︄
=

(1− b)n(a+ b) · · · (a+ b(n− 1))

n!(a+ 1) · · · (a+ 2n− 1)

proving (3.6). □

2.7.4 Proof of Proposition 2.3.3

Proof of Proposition 3.3. By the stick-breaking representation of N-IG(a,H) and the for-

mula (3.471.9) in (Gradshteyn and Ryzhik, 2014), we find that the joint distribution of

{vi}ni=1 can be written as

f(v1, · · · , vn) =
eaan+1

(2π)
n+1
2

n∏︂
i=1

v
− 1

2
i (1− vi)

−n+3−i
2

∫︂ ∞

0

t−
n+3
2 e

− t
2
− a2

2t
∏︁n

i=1
(1−vi)dt. (2.7.21)
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Thus, by using Fubini’s theorem, we have

I =E

[︄
∞∑︂
n=1

wpn

]︄
= E

[︄
∞∑︂
n=1

vpn

n−1∏︂
i=1

(1− vi)
p

]︄

=
∞∑︂
n=1

∫︂ ∞

0

∫︂ 1

0

· · ·
∫︂ 1

0

eaan+1

(2π)
n+1
2

(︄
n−1∏︂
i=1

v
− 1

2
i (1− vi)

p−n+3−i
2

)︄
v
p− 1

2
n (1− vn)

− 3
2

t−
n+3
2 e

− t
2
− a2

2t
∏︁n

i=1
(1−vi)dv1 · · · dvndt . (2.7.22)

To evaluate the above multiple integral, we shall use the formula (3.471.2) in (Gradshteyn

and Ryzhik, 2014):

∫︂ 1

0

(1− v)η−1vµ−1e−
β

1−v dv = Γ(µ)β
η−1
2 e−

β
2W 1−2µ−η

2
, η
2
(β), (2.7.23)

where W is the Whittaker function. For large β, by the formula (9.227) in (Gradshteyn

and Ryzhik, 2014), we have

∫︂ 1

0

(1− v)η−1vµ−1e−
β

1−v dv = Γ(µ)β−µe−β
(︃
1 + o

(︃
1

β

)︃)︃
, (2.7.24)

as β → ∞. In particular, when µ = 1
2
, we have

∫︂ 1

0

(1− v)η−1v−
1
2 e−

β
1−v dv = Γ

(︃
1

2

)︃
β− 1

2 e−β
(︃
1 + o

(︃
1

β

)︃)︃
. (2.7.25)

Denote βi =
a2

2t(1−vn)
∏︁i

ℓ=1(1−vℓ)
for i ∈ {1, · · · , n− 1}. We rewrite (2.7.22) as

I =
∞∑︂
n=1

∫︂ ∞

0

∫︂ 1

0

· · ·
∫︂ 1

0

eaan+1

(2π)
n+1
2

t−
n+3
2 e−

t
2

(︄
n−2∏︂
i=1

v
− 1

2
i (1− vi)

p−n+3−i
2

)︄

v
p− 1

2
n (1− vn)

− 3
2

∫︂ 1

0

v
− 1

2
n−1(1− vn−1)

p− 4
2 e

− βn−2
(1−vn−1)dvn−1dv1 · · · dvn−2dvndt.

Integrating with respect to vn−1 by applying (2.7.25) yields

I =
∞∑︂
n=1

∫︂ ∞

0

∫︂ 1

0

· · ·
∫︂ 1

0

eaan+1

(2π)
n+1
2

Γ

(︃
1

2

)︃(︃
a2

2t(1− vn)

)︃− 1
2
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(︃
1 + o

(︃
1

a

)︃)︃
t−

n+3
2 e−

t
2 (1− vn)

− 3
2v

p− 1
2

n

(︄
n−2∏︂
i=1

v
− 1

2
i (1− vi)

p−n+2−i
2

)︄
∫︂ 1

0

v
− 1

2
n−2(1− vn−2)

p− 4
2 e

− βn−3
(1−vn−2)dv1 · · · dvn−2dvndt.

We repeatedly apply the above procedure to integrate vn−2, vn−3, · · · , v1, each time using

(2.7.25). After these computations we obtain

I =
∞∑︂
n=1

∫︂ ∞

0

∫︂ 1

0

eaan+1

(2π)
n+1
2

(︄
Γ

(︃
1

2

)︃(︃
a2

2t(1− vn)

)︃− 1
2

)︄n−1(︃
1 + o

(︃
1

a

)︃)︃
× t−

n+3
2 e−

t
2v

p− 1
2

n (1− vn)
− 3

2dvndt

=
∞∑︂
n=1

∫︂ ∞

0

∫︂ 1

0

eaa2

2π
vp−

1
2 (1− v)

n−4
2 e−

a2

2t(1−v) t−2e−
t
2

(︃
1 + o

(︃
1

a

)︃)︃
dvdt. (2.7.26)

Again by using Fubini’s theorem and by the fact that v ∈ (0, 1), we take the sum to

obtain

I =

∫︂ ∞

0

∫︂ 1

0

eaa2

2π
vp−

1
2

(︄
∞∑︂
n=1

(1− v)
n−4
2

)︄
e−

a2

2t(1−v) t−2e−
t
2

(︃
1 + o

(︃
1

a

)︃)︃
dvdt

=

∫︂ ∞

0

∫︂ 1

0

eaa2

2π
vp−

3
2

(︂
1 + (1− v)

1
2

)︂
e−

a2

2t(1−v) t−2e−
t
2

(︃
1 + o

(︃
1

a

)︃)︃
dvdt. (2.7.27)

Then, the result (3.7) is obtained by first applying (2.7.24) when we integrate the integral

with respect to v, and then by applying the formula (3.471.9) in (Gradshteyn and Ryzhik,

2014) when we integrate t. Here, we also use the approximation that for fixed ν and for

large a, Kν(a) =
√︁

π
2
a−1/2e−a

(︁
1 + o

(︁
1
a

)︁)︁
.

When p = 2, we want to show that the leading coefficient in (3.7) is 1. This needs some

more delicate computations. First, we have

I =
∞∑︂
n=1

∫︂ ∞

0

∫︂ 1

0

· · ·
∫︂ 1

0

eaan+1

(2π)
n+1
2

(︄
n−1∏︂
i=1

v
− 1

2
i (1− vi)

−n−1−i
2

)︄
v

3
2
n (1− vn)

− 3
2

× t−
n+3
2 e

− t
2
− a2

2t
∏︁n

i=1
(1−vi)dv1 · · · dvndt.
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Notice the fact that the power of vn−4 in the above integrand is −3
2
and to compute the

integral with respect to vn−4 we can use the following nice integral identity:

∫︂ 1

0

(1− v)−
3
2v−

1
2 e−

β
1−v dv = Γ(

1

2
)β− 1

2 e−β. (2.7.28)

After this integration with respect to vn−4, we obtain an expression for vn−5 which also

has this form and we then integrate vn−5 and so on. This procedure can continue until

integrating v1. Hence, we compute the integrals for vn−4, and then for vn−5, · · · and then

for v1 recursively to obtain

I =
∞∑︂
n=1

∫︂ ∞

0

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

eaa5

(2π)
5
2

(vn−3vn−2vn−1)
− 1

2v
3
2
n

× (1− vn−3)
n−6
2 (1− vn−2)

n−5
2 (1− vn−1)

n−4
2 (1− vn)

n−7
2

× e
− a2

2t(1−vn−3)(1−vn−2)(1−vn−1)(1−vn) t−
7
2 e−

t
2dvn−3dvn−2dvn−1dvndt. (2.7.29)

By Fubini’s theorem and by the fact that vi ∈ (0, 1), we can take the sum first [There

is no need to sum up the index n in vn, vn−1, vn−2, vn−3 since we can call them by other

notations. But for consistency we still keep these notations.]

I =

∫︂ ∞

0

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

eaa5

(2π)
5
2

(vn−3vn−2vn−1)
− 1

2v
3
2
n (1− vn−3)

− 5
2 (1− vn−2)

− 4
2

× (1− vn−1)
− 3

2 (1− vn)
− 6

2
1 +

√︁
(1− vn−3)(1− vn−2)(1− vn−1)(1− vn)

1− (1− vn−3)(1− vn−2)(1− vn−1)(1− vn)

× e
− a2

2t(1−vn−3)(1−vn−2)(1−vn−1)(1−vn) t−
7
2 e−

t
2dvn−3dvn−2dvn−1dvndt. (2.7.30)

Now we integrate t by using the formula (3.471.9) in (Gradshteyn and Ryzhik, 2014) to

obtain

I =

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

2eaa
5
2

(2π)
5
2

(vn−3vn−2vn−1)
− 1

2v
3
2
n (1− vn−3)

− 5
4 (1− vn−2)

− 3
4

(1− vn−1)
− 1

4 (1− vn)
− 7

4
1 +

√︁
(1− vn−3)(1− vn−2)(1− vn−1)(1− vn)

1− (1− vn−3)(1− vn−2)(1− vn−1)(1− vn)
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K− 5
2

(︄
a√︁

(1− vn−3)(1− vn−2)(1− vn−1)(1− vn)

)︄
dvn−3dvn−2dvn−1dvn .

Approximating the above modified Bessel function K− 5
2
of the third type by the formula

(8.451.6) in Gradshteyn and Ryzhik (2014) we have

I =

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

eaa2

(2π)2
(vn−3vn−2vn−1)

− 1
2v

3
2
n (1− vn−3)

− 2
2 (1− vn−2)

− 1
2

× (1− vn−1)
− 0

2 (1− vn)
− 3

2
1 +

√︁
(1− vn−3)(1− vn−2)(1− vn−1)(1− vn)

1− (1− vn−3)(1− vn−2)(1− vn−1)(1− vn)

× e
− a2√

(1−vn−3)(1−vn−2)(1−vn−1)(1−vn)

(︃
1 + o

(︃
1

a

)︃)︃
dvn−3dvn−2dvn−1dvn.

To evaluate the above integral we make the following variable substitutions.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn = 1− a2

(y0+a)2
;

vn−1 = 1− (y0+a)2

(y0+y1+a)2
;

vn−2 = 1− (y0+y1+a)2

(y0+y1+y2+a)2
;

vn−3 = 1− (y0+y1+y2+a)2

(y0+y1+y2+y3+a)2
.

The integral I can then be written as

I =

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

eaa2

(2π)2

(︃
1− a2

(y0 + a)2

)︃ 3
2
(︃
1− (y0 + a)2

(y0 + y1 + a)2

)︃− 1
2

×
(︃
1− (y0 + y1 + a)2

(y0 + y1 + y2 + a)2

)︃− 1
2
(︃
1− (y0 + y1 + y2 + a)2

(y0 + y1 + y2 + y3 + a)2

)︃− 1
2

×
(︃

(y0 + y1 + y2 + a)2

(y0 + y1 + y2 + y3 + a)2

)︃− 2
2
(︃

(y0 + y1 + a)2

(y0 + y1 + y2 + a)2

)︃− 1
2

×
(︃

(y0 + a)2

(y0 + y1 + a)2

)︃− 0
2
(︃

a2

(y0 + a)2

)︃− 3
2 1 + a

(y0+y1+y2+y3+a)

1− a2

(y0+y1+y2+y3+a)2

× 24a2

(y0 + a)(y0 + y1 + a)(y0 + y1 + y2 + a)(y0 + y1 + y2 + y3 + a)3

e−y0−y1−y2−y3−a
(︃
1 + o

(︃
1

a

)︃)︃
dy0dy1dy2dy3. (2.7.31)
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When a is large, we have the following asymptotics:

1− a2

(y0 + a)2
=

2ay0 + y20
a2 + 2ay0 + y20

=
2y0
a

+ o

(︃
1

a

)︃
;

1− (y0 + a)2

(y0 + y1 + a)2
=

2y1
a

+ o

(︃
1

a

)︃
;

1− (y0 + y1 + a)2

(y0 + y1 + y2 + a)2
=

2y2
a

+ o

(︃
1

a

)︃
;

1− (y0 + y1 + y2 + a)2

(y0 + y1 + y2 + y3 + a)2
=

2y3
a

+ o

(︃
1

a

)︃
;

a2

(y0 + a)2
=

(y0 + a)2

(y0 + y1 + a)2
=

(y0 + y1 + a)2

(y0 + y1 + y2 + a)2
;

=
(y0 + y1 + y2 + a)2

(y0 + y1 + y2 + y3 + a)2
= 1 + o

(︃
1

a

)︃
;

1 +
a

(y0 + y1 + y2 + y3 + a)
= 2 + o

(︃
1

a

)︃
;

1− a2

(y0 + y1 + y2 + y3 + a)2
=

2(y0 + y1 + y2 + y3)

a
+ o

(︃
1

a

)︃
;

24a2

(y0 + a)(y0 + y1 + a)(y0 + y1 + y2 + a)(y0 + y1 + y2 + y3 + a)3
=

24

a4
+ o

(︃
1

a4

)︃
.

Substituting the above asymptotics into (2.7.31), we see that when a is large the integral

I is

I =

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

eaa2

(2π)2

(︃
2y0
a

)︃ 3
2
(︃
2y1
a

)︃− 1
2
(︃
2y2
a

)︃− 1
2
(︃
2y3
a

)︃− 1
2

× a

(y0 + y1 + y2 + y3)

24

a4
e−y0−y1−y2−y3−a

(︃
1 + o

(︃
1

a

)︃)︃
dy0dy1dy2dy3

=

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0

4

aπ2

y
3
2
0 y

− 1
2

1 y
− 1

2
2 y

− 1
2

3

y0 + y1 + y2 + y3

× e−y0−y1−y2−y3
(︃
1 + o

(︃
1

a

)︃)︃
dy0dy1dy2dy3 . (2.7.32)
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The above integral can be further evaluated by making the following variable substitutions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 = t0 ;

y0 + y1 = t1 ;

y0 + y1 + y2 = t2 ;

y0 + y1 + y2 + y3 = t3 .

With these substitutions, (2.7.32) can be written as

I =

∫︂ ∞

0

∫︂ t3

0

∫︂ t2

0

∫︂ t1

0

4

aπ2

t
3
2
0 (t1 − t0)

− 1
2 (t2 − t1)

− 1
2 (t3 − t2)

− 1
2

t3

× e−t3
(︃
1 + o

(︃
1

a

)︃)︃
dt0dt1dt2dt3.

Now we integrate t0 by letting t0 = ut1,

I =

∫︂ ∞

0

∫︂ t3

0

∫︂ t2

0

∫︂ 1

0

4

aπ2

t1(ut1)
3
2 (t1 − ut1)

− 1
2 (t2 − t1)

− 1
2 (t3 − t2)

− 1
2

t3

× e−t3
(︃
1 + o

(︃
1

a

)︃)︃
dudt1dt2dt3

=

∫︂ ∞

0

∫︂ t3

0

∫︂ t2

0

4

aπ2

Γ(5
2
)Γ(1

2
)

Γ(6
2
)

t21(t2 − t1)
− 1

2 (t3 − t2)
− 1

2

t3

× e−t3
(︃
1 + o

(︃
1

a

)︃)︃
dt1dt2dt3.

Similarly, we integrate t1, t2, t3 one by one in this order to obtain

I =
4

aπ2

Γ(5
2
)Γ(1

2
)

Γ(6
2
)

Γ(6
2
)Γ(1

2
)

Γ(7
2
)

Γ(7
2
)Γ(1

2
)

Γ(8
2
)

Γ(
6

2
)

(︃
1 + o

(︃
1

a

)︃)︃
=

1

a
+ o

(︃
1

a

)︃
, (2.7.33)

completing the proof of (3.9).
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To prove the results (3.8) and (3.10), we denote

L = E

[︄ ∑︂
1≤i1<i2<···<ik<∞

wp1i1 w
p2
i2
· · ·wpkik

]︄
.

We have

L =
∑︂

1≤i1<i2<···<ik<∞

E

[︄
vp1i1 (1− vi1)

p2:k

i1−1∏︂
ℓ1=1

(1− vℓ1)
p1:kvp2i2 (1− vi2)

p3:k

×
i2−1∏︂

ℓ2=i1+1

(1− vℓ2)
p2:k · · · vpmim (1− vim)

pm+1:k

im−1∏︂
ℓm=im−1+1

(1− vℓm)
pm:k

· · · vpk−1

ik−1
(1− vik−1

)pk
ik−1−1∏︂

ℓk−1=ik−2+1

(1− vℓk−1
)pk−1:kvpkik

ik−1∏︂
ℓk=ik−1+1

(1− vℓk)
pk

]︄
.

(2.7.34)

Using the explicit form of the joint density of v1, · · · , vik , we have

L =
∑︂

1≤i1<i2<···<ik<∞

∫︂ ∞

0

∫︂ 1

0

· · ·
∫︂ 1

0

eaaik+1

(2π)
ik+1

2

t−
ik+3

2 e−
t
2 e

− a2

2t
∏︁ik

j=1
(1−vj)

×
i1−1∏︂
ℓ1=1

v
− 1

2
ℓ1

(1− vℓ1)
p1:k−

ik+3−ℓ1
2 v

p1− 1
2

i1
(1− vi1)

p2:k−
ik+3−i1

2

· · ·
im−1∏︂

ℓm=im−1+1

v
− 1

2
ℓm

(1− vℓm)
pm:k−

ik+3−ℓm
2 v

pm− 1
2

im
(1− vim)

pm+1:k−
ik+3−im

2

· · ·
ik−1∏︂

ℓk=ik−1+1

v
− 1

2
ℓk

(1− vℓk)
pk−

ik+3−ℓk
2 v

pk− 1
2

ik
(1− vik)

− 3
2dv1 · · · dvikdt. (2.7.35)

Notice that the integrals of vik−1+1, vik−1+2, · · · vik with the sum of ik from ik−1 + 1 to ∞

is the same form as (2.7.22). Thus, by the computation (2.7.26), we have

L =
∑︂

1≤i1<i2<···<ik<∞

∫︂ ∞

0

∫︂ 1

0

· · ·
∫︂ 1

0

eaaik+1

(2π)
ik+1

2

t−
ik+3

2 e−
t
2 e

− a2

2t(1−vik
)
∏︁ik−1

j=1
(1−vj)

i1−1∏︂
ℓ1=1

v
− 1

2
ℓ1

(1− vℓ1)
p1:k−

ik+3−ℓ1
2 v

p1− 1
2

i1
(1− vi1)

p2:k−
ik+3−i1

2 · · ·
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ik−1−1∏︂
ℓk−1=ik−2+1

v
− 1

2
ℓk−1

(1− vℓk−1
)pk−

ik+3−ℓk−1
2 v

pk−1− 1
2

ik−1
(1− vik−1

)−
3
2

⎛⎝Γ(
1

2
)

(︄
a2

2t(1− vik)
∏︁ik−1

j=1 (1− vj)

)︄− 1
2

⎞⎠ik−ik−1−1

×
(︃
1 + o

(︃
1

a

)︃)︃
dv1 · · · dvik−1

dvvikdt (2.7.36)

=
∑︂

1≤i1<i2<···<ik−1<∞

∞∑︂
ik=ik−1+1

∫︂ ∞

0

∫︂ 1

0

· · ·
∫︂ 1

0

eaaik−1+2

(2π)
ik−1+2

2

t−
ik−1+4

2 e−
t
2

i1−1∏︂
ℓ1=1

v
− 1

2
ℓ1

(1− vℓ1)
p1:k−

ik−1+4−ℓ1
2 v

p1− 1
2

i1
(1− vi1)

p2:k−
ik−1+4−i1

2 · · ·

ik−1−1∏︂
ℓk−1=ik−2+1

v
− 1

2
ℓk−1

(1− vℓk−1
)pk−

ik−1+4−ℓk−1
2 v

pk−1− 1
2

ik−1
(1− vik−1

)−
4
2

vpkik (1− vik)
ik−ik−1−4

2 e
− a2

2t(1−vik
)
∏︁ik−1

j=1
(1−vj)

(︃
1 + o

(︃
1

a

)︃)︃
dvikdv1 · · · dvik−1

dt.

(2.7.37)

By a similar calculation to that of (2.7.27),

L =
∑︂

1≤i1<i2<···<ik−1<∞

∫︂ ∞

0

∫︂ 1

0

· · ·
∫︂ 1

0

O

(︃
1

a

)︃
eaaik−1+1

(2π)
ik−1+1

2

t−
ik−1+3

2 e−
t
2

×
i1−1∏︂
ℓ1=1

v
− 1

2
ℓ1

(1− vℓ1)
p1:k−

ik−1+3−ℓ1
2 v

p1− 1
2

i1
(1− vi1)

p2:k−
ik−1+3−i1

2

· · ·
ik−1−1∏︂

ℓk−1=ik−2+1

v
− 1

2
ℓk−1

(1− vℓk−1
)pk−

ik−1+3−ℓk−1
2 v

pk−1− 1
2

ik−1
(1− vik−1

)−
3
2

× e
− a2

2t
∏︁ik−1

j=1
(1−vj)dvvikdv1 · · · dvik−1

dt. (2.7.38)

We can perform the analogous computations for ik−1, ik−2, · · · , i1 in this order repeatedly

to obtain (3.8).

When p1 = · · · = pk = 2, similar computations to that in the proof of (3.9) can be

carried out to obtain (3.10).
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2.7.5 Proof of Proposition 2.3.4

Proof of Proposition 3.4. By the identities Γ(c, x) = e−xxc
∫︁∞
0
e−xu(1 + u)c−1du and∑︁∞

j=0
(n)j
j!
xj = (1−x)n, we can rewrite the joint density of stick-breaking weights v1, · · · , vn

as

f(v1, · · · , vn) =
anσn−1

[Γ(1− σ)]nΓ(nσ)

n∏︂
i=1

v−σi (1− vi)
−(n−i)σ−1e

− a∏︁n
i=1

(1−vi)
σ

×
∫︂ ∞

0

(1− (1 + t)−
1
σ )nσ−1(1 + t)n−1e

− at∏︁n
i=1

(1−vi)
σ
dt. (2.7.39)

We make the substitution t =
∏︁n

i=1(1−vi)σs
a

in the above integral. Then, when a is large,

namely, when t is small, we have

(1 + t)−
1
σ ≍ 1− t

σ
= 1−

∏︁n
i=1(1− vi)

σ

σa
s ,

where and throughout this chapter we use µ ≍ ν to represent lim µ
ν
= 1.

The integral in (2.7.39) is then approximated by

∫︂ ∞

0

(1− (1 + t)−
1
σ )nσ−1(1 + t)n−1e

− at∏︁n
i=1

(1−vi)
σ
dt ≍

∏︁n
i=1(1− vi)

nσ2
Γ(nσ)

σnσ−1anσ
. (2.7.40)

Thus, for large a, the joint density of v1, · · · , vn has the following asymptotics:

f(v1, · · · , vn) ≍
(aσ)n−nσ

[Γ(1− σ)]n

n∏︂
i=1

v−σi (1− vi)
nσ2−(n−i)σ−1e

− a∏︁n
i=1

(1−vi)
σ
. (2.7.41)

Now the identities (3.11) and (3.12) follows from the same arguments as that in the proof

of Proposition 3.3 and from the use of the following identity, which holds true for any

q ∈ R:

∫︂ 1

0

x−σ(1− x)qe−
a

(1−x)σ dx

=
e−a

aσ

∫︂ ∞

0

(1− (
a

a+ s
)

1
σ )−σ(

a

a+ s
)
q+1
σ

+1e−sds
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= e−a(aσ)σ−1(1 + o(
1

a
))

∫︂ 1

0

s−σe−sds

= e−a(aσ)σ−1Γ(1− σ)

(︃
1 + o

(︃
1

a

)︃)︃
, (2.7.42)

where the last equality follows from the substitution s = a
(1−x)−σ − a and the following

asymptotics:

(︃
a

a+ s

)︃ 1
σ

=

(︃
1− s

a+ s

)︃ 1
σ

= 1− s

σ(a+ s)
+ o

(︃
1

a

)︃
.

To obtain the exact asymptotics in the case when σ = 1
m

and p = p1 = · · · = pk = 2,

we first prove (3.13) using the same argument as that in the proof of (3.9). The only

differences are as follows. First, we integrate vn−m, vn−m−1, · · · , v1 recursively in this

order by using (2.7.42). After these integrations, it remains to integrate the variables

vn−m+1, · · · , vn. This multiple integral is now evaluated simultaneously by using the

substitution

vn−i = 1−
(︃
a+ y0 + · · ·+ yi−1

a+ y0 + · · ·+ yi

)︃ 1
σ

, i = 0, · · · ,m− 1 .

The identity (3.14) follows from (3.13) by the same argument as that in the proof of

(3.10).

2.7.6 Proof of Proposition 2.3.5

Proof of Proposition 3.5. When P ∼ GDP(a, r,H), we will prove the weak convergence

of Da in the part (i) of Theorem 4.15. Combining with the fact that GDP(a, r,H) also

admits the general stick-breaking representation as in (2.1) and (2.2), we can obtain the

desired results by using the same argument as that in the proof of (4.5) in Theorem

4.4.
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2.7.7 Proof of Theorem 2.4.2

Proof.

P (|P (A)−H(A)| > ϵ) ≤ E [|P (A)−H(A)|m]
ϵm

=
E [|

∑︁∞
i=1wi (δθi(A)−H(A)) |m]

ϵm

=
∑︂ c(p1, · · · , pk)

ϵm

k∏︂
i=1

E [|δθi(A)−H(A)|pi ]

× E

[︄ ∑︂
1≤i1<i2<···<ik<∞

wp1i1 w
p2
i2
· · ·wpkik

]︄
, (2.7.43)

where the first sum is taken over all combinations of nonnegative integers {p1, · · · , pk}

such that k ∈ {1, · · · ,m} and
∑︁k

i=1 pi = m and where c(p1, · · · , pk) =
(︁

m
p1,··· ,pk

)︁
= m!

p1!···pk!

are the corresponding combinatorial coefficients. For any combination of {p1, · · · , pk}, if

there exists i ∈ {1, · · · , k} such that pi = 1, then the product in (2.7.43) will be 0 due to

the fact that

E [δθi(Ai)−H(Ai)] = E [1Ai
(θi)]−H(Ai) =

∫︂
Ai

dH −H(Ai) = 0 .

That is to say, pi ≥ 2 for all i and thus k ≤ m
2
.

First, assume P is one of DP(a,H), PDP(a, b,H), N-IG(a,H), NGGP(σ, a,H), GDP(a, r,H).

We choose m = ⌊ 4
τ
⌋, where ⌊x⌋ is the smallest integer that is greater than or equal to x.

Then, from Propositions 3.2-3.5, we have

∑︂
E

[︄ ∑︂
1≤i1<i2<···<ik<∞

wp1i1 w
p2
i2
· · ·wpkik

]︄
≍ 1

am−k ≤ 1

a
m
2

=
1

N
mτ
2

≤ 1

N2
.

If p ∼ SPG(µa, H), then we can choose m such that for all 1 ≤ k ≤ m/2,

∑︂
1≤i≤k,p1+···+pk=m

qpi − kq1 ≥
m(q2 − q1)

2
≥ 2

τ
.
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Then, from Proposition 3.1,

∑︂
E

[︄ ∑︂
1≤i1<i2<···<ik<∞

wp1i1 w
p2
i2
· · ·wpkik

]︄
≍ 1

a
∑︁k

i=1 qpi−kq1
≤ 1

N2
.

Since the series
∑︁∞

N=1
1
N2 converges, it follows

∞∑︂
N=1

P (|P (A)−H(A)| > ϵ) <∞ (2.7.44)

for any of the processes presented in the theorem. This implies (4.2) by the Borel-Cantelli

lemma.

2.7.8 Proof of Theorem 2.4.4

Before we proceed to the proof of Theorem 4.4, we need a preparatory result about the

joint moments of multivariate normal distribution. To state this result, we introduce the

following notations. Let n be a positive integer and let p⃗ = (pij, 1 ≤ i < j ≤ n) be a

multi-index. Denote

|p⃗| =
∑︂

1≤i<j≤n

pij (2.7.45)

and denote

|p⃗|m =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︁
j>1 p1j when m = 1,∑︁
j>m pmj +

∑︁
i<m pim when m = 2, · · · , n− 1,∑︁

i<n pin when m = n .

(2.7.46)

The following proposition is about the joint moments of Gaussian random variables. Sim-

ilar or more general results may be found in literature under the terminology of “Feynman

diagram” (e.g., (Hu, 2017, Theorem 5.7) and references therein). But we could not find

the exact result we need. So, we give the following proposition.

Proposition 2.7.14. Let the random vector (X1, X2, · · · , Xn) follow a multivariate nor-
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mal distribution Nn(0,Σ), where Σ = (σij = E (XiXj))1≤i,j≤n and σii = σ2
i . For any

nonnegative integers r1, · · · , rn, the joint (r1, · · · , rn) moments of (X1, X2, · · · , Xn) is

given by the following formulas.

(i) When
∑︁n

ℓ=1 rℓ is an odd integer, we have

E [Xr1
1 · · ·Xrn

n ] = 0 . (2.7.47)

(ii) When
∑︁n

ℓ=1 rℓ is an even integer, we have (we use the convention that 00 = 1)

E [Xr1
1 · · ·Xrn

n ]

=
∑︂
p⃗∈C

r1! · · · rn!
∏︁n

m=1 σ
rm−|p⃗|m
m

∏︁
1≤i<j≤n σ

pij
ij

2
|r|
2
−|p⃗| ∏︁n

m=1((rm − |p⃗|m)/2)!
∏︁

1≤i<j≤n pij!
, (2.7.48)

where |r| = r1 + · · ·+ rn and

C =

{︃
p⃗ = {pij,1 ≤ i < j ≤ n} ; 0 ≤ pij ≤ ri ∧ rj ,

rm − |p⃗|m m = 1, · · · , n, are all even

}︃
. (2.7.49)

Proof. We shall use the moment generating function to prove it. On one hand, we see

E
[︂
e
∑︁n

ℓ=1 tℓXℓ

]︂
=

∞∑︂
r1,··· ,rn=0

tr11 · · · trnn
r1! · · · rn!

E [Xr1
1 · · ·Xrn

n ] . (2.7.50)

On the other hand, by the moment generating function formula for multivariate normal

variables, we have

E
[︂
e
∑︁n

ℓ=1 tℓXℓ

]︂
= e

1
2
E[(

∑︁n
ℓ=1 tℓXℓ)

2] (2.7.51)

= exp

{︄
1

2

n∑︂
ℓ=1

E
[︁
(tℓXℓ)

2
]︁
+

∑︂
1≤i<j≤n

E [titjXiXj]

}︄

=
n∏︂
ℓ=1

exp

{︃
t2ℓσ

2
ℓ

2

}︃ ∏︂
1≤i<j≤n

exp {titjσij}
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=
∑︂

0≤pl,pij<∞
1≤ℓ≤n

1≤i<j≤n

n∏︂
ℓ=1

(tℓσℓ)
2pℓ

2pℓpℓ!

∏︂
1≤i<j≤n

(titjσij)
pij

pij!

=
∑︂

0≤pl,pij<∞
1≤ℓ≤n

1≤i<j≤n

t
2p1+|p⃗|1
1 · · · t2pn+|p⃗|m

n

2p1+···+pn

n∏︂
ℓ=1

σ2pℓ
ℓ

pℓ!

∏︂
1≤i<j≤n

σ
pij
ij

pij!
. (2.7.52)

Comparing the coefficients of tr11 · · · trnn of the two representations (2.7.50) and (2.7.52) we

obtain

E [Xr1
1 · · ·Xrn

n ] =
r1! · · · rn!
2p1+···+pn

n∏︂
ℓ=1

σ2pℓ
ℓ

pℓ!

∏︂
1≤i<j≤n

σ
pij
ij

pij!
, (2.7.53)

where pℓ, pij, 1 ≤ ℓ ≤ n, 1 ≤ i < j ≤ n satisfies the relation rℓ = 2pℓ+ |p⃗|ℓ for ℓ = 1, · · · , n,

which implies that
∑︁n

ℓ=1 rℓ = 2(
∑︁n

ℓ=1 pℓ +
∑︁

1≤i,j≤n pij) is an even number. This also

proves that E [Xr1
1 · · ·Xrn

n ] = 0 when
∑︁n

ℓ=1 rℓ is an odd integer. This proves part (i) of the

proposition. When
∑︁n

ℓ=1 rℓ is even, by the fact that {p1, · · · , pn} are nonnegative integers

and by the relationship pℓ =
rℓ−|p⃗|ℓ

2
for ℓ = 1, · · · , n, one see the summation in (2.7.53)

is over the set C defined by (2.7.49).

Now, we are in the position to prove Theorem 4.4.

Proof of Theorem 4.4. We first prove the part (i) of this theorem.

For any A ∈ X , the variance of P (A) is given by (2.7.13). Using Proposition 3.1, we

have

Var(P (A)) = H(A) (1−H(A))

(︃
E[v21]
2E[v1]

+ o

(︃
E[v21]
E[v1]

)︃)︃
.

From the definition of Da(A) we have

Da(A) =

[︃
H(A) (1−H(A))

(︃
E[v21]
2E[v1]

+ o

(︃
E[v21]
E[v1]

)︃)︃]︃− 1
2

(P (A)−H(A)) .

By the Cramér-Wold theorem (e.g., (Billingsley, 1995, Theorem 29.4)), to show (4.5) it
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is sufficient to show that for any (t1, · · · , tn) ∈ Rn

n∑︂
i=1

tiDa(Ai)
d→

n∑︂
i=1

tiXi,

where and throughout the remaining part of the chapter (X1, · · · , Xn) are jointly Gaussian

with mean zero and covariance given by (4.6). For any positive integer n and a nonnegative

integer sequence {ri}ni=1, consider the joint moments of Da(A1), Da(A2), · · · , Da(An):

E

[︄
n∏︂
i=1

Dri
a (Ai)

]︄

=
n∏︂
i=1

[︃
H(Ai)(1−H(Ai))

(︃
E[v21]
2E[v1]

+ o

(︃
E[v21]
E[v1]

)︃)︃]︃− ri
2

E

[︄
n∏︂
i=1

(P (Ai)−H(Ai))
ri

]︄

=
n∏︂
i=1

[︃
H(Ai)(1−H(Ai))

(︃
E[v21]
2E[v1]

+ o

(︃
E[v21]
E[v1]

)︃)︃]︃− ri
2

×

E

[︄
n∏︂
i=1

(︄
∞∑︂
ji=1

wji
(︁
δθji (Ai)−H(Ai)

)︁)︄ri]︄
. (2.7.54)

We expand the product of the infinite sums inside the above last expectation as

E

[︄
n∏︂
i=1

(︄
∞∑︂
ji=1

wji
(︁
δθji (Ai)−H(Ai)

)︁)︄ri]︄
=
∑︂

C(q; s1, · · · , sn, s1,1, · · · , sq,n)I(q; s1, · · · , sn, s1,1, · · · , sq,n) ,

where the sum is over all the nonnegative integers {q, s1, · · · , sn; sj,i : j ∈ {1, · · · , q}; i ∈

{1, · · · , n}} satisfying

(i) sj =
∑︁n

i=1 sj,i ≥ 1 for all j ∈ {1, · · · , q}

(ii) ri =
∑︁q

j=1 sj,i ≥ 1 for all i ∈ {1, · · · , n}

(iii) 1 ≤ q ≤
∑︁n

i=1 ri;

(iv)
∑︁q

j=1 sj =
∑︁n

i=1 ri
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(v) C(q; s1, · · · , sn, s1,1, · · · , sq,n) are some constants (that are found later on) de-

pending on q; s1, · · · , sn, s1,1, · · · , sq,n and

I(q; s1, · · · , sn, s1,1, · · · , sq,n)

:= E

[︄ ∑︂
1≤e1<···<eq<∞

q∏︂
j=1

wsjej

(︂
δθej (A1)−H(A1)

)︂sj,1
· · · (δθej (An)−H(An))

sj,n

]︄
. (2.7.55)

With these notations, we can write (2.7.54) as

E

[︄
n∏︂
i=1

Dri
a (Ai)

]︄
=
∑︂ n∏︂

i=1

[︃
H(Ai)(1−H(Ai))

(︃
E[v21]
2E[v1]

+ o

(︃
E[v21]
E[v1]

)︃)︃]︃− ri
2

C(q; s1, · · · , sn, s1,1, · · · , sq,n)I(q; s1, · · · , sn, s1,1, · · · , sq,n) . (2.7.56)

We will divide the discussion of the limit as a → ∞ of the terms in (2.7.56) into three

cases according to the indice {q; s1, · · · , sn; sj,i : j ∈ {1, · · · , q}; i ∈ {1, · · · , n}} appeared

in (2.7.56) satisfying (i)-(iv).

Case 1: There exists at least one j ∈ {1, · · · , q} such that sj = 1 or there exists at least

one pair (j, k) such that sj,k = 1.

From the fact that

E [δθi(Ai)−H(Ai)] = E [1Ai
(θi)]−H(Ai) =

∫︂
Ai

dH −H(Ai) = 0 ,

we see that in this case the corresponding terms in the sum of I(q; s1, · · · , sn, s1,1, · · · , sq,n)

are identically equal to 0.

Case 2 All sj ≥ 2,
∑︁n

i=1 ri is odd or
∑︁n

i=1 ri is even but
∑︁n

i=1 ri
2

> q.

We substitute (2.7.55) into (2.7.56) and we consider the expectations of v1’s. By

Proposition 3.1, when excluding the terms discussed in Case 1 the remaining terms cor-
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responding to this case have the following asymptotics

O

⎛⎝[︃E[v21]
E[v1]

]︃−∑︁n
i=1 ri
2

∏︁q
j=1 E[v

sj
1 ]

(E[v1])q

⎞⎠ = O

⎛⎜⎝(E[v1])
∑︁q

j=1
sj

2
−q∏︁q

j=1 E[v
sj
1 ]

(E[v21])
∑︁q

j=1
sj

2

⎞⎟⎠ . (2.7.57)

From the assumption (4.4), it follows that when
∑︁n

i=1 ri is even and when q <
∑︁n

i=1 ri
2

, the

expectation of the terms in the sum of I(q; s1, · · · , sn, s1,1, · · · , sq,n) will converge to 0 as

a→ ∞.

Similarly, when
∑︁n

i=1 ri is odd, since q is an integer and sj ≥ 2 for all j, we always have

q <
∑︁n

i=1 ri
2

. Therefore, the expectation of the corresponding terms satisfying the condition

that
∑︁n

i=1 ri is odd in the sum of I(q; s1, · · · , sn, s1,1, · · · , sq,n) will always converge to 0

as a→ ∞.

Case 3 All sj ≥ 2,
∑︁n

i=1 ri is even and
∑︁n

i=1 ri
2

= q.

The only terms that may not converge to zero are the terms that are not covered in

Case 1 and Case 2. This means that the only terms that have nontrivial limits are the

terms satisfying the conditions that

n∑︂
i=1

ri is even and q =

∑︁n
i=1 ri
2

.

With the condition (iv), we have
∑︁q

j=1 sj =
∑︁n

i=1 ri = 2q. But sj ≥ 2 for all j. Thus it

is easy to see this is possible only when

s1 = · · · = sq = 2 and sj,i ∈ {0, 1, 2}

for all j ∈ {1, · · · , q} and for all i ∈ {1, · · · , n}. We shall discuss this nontrivial case in 3

steps.

Step 1: The form of I(q; s1, · · · , sn, s1,1, · · · , sq,n).

For ℓ ∈ {1, · · · ,
∑︁n

i=1 ri
2

} the factors in I(q; s1, · · · , sn, s1,1, · · · , sq,n) are either of the

form w2
eℓ
(δθeℓ (Ai) − H(Ai))(δθeℓ (Aj) − H(Aj)) for 1 ≤ i < j ≤ n (we call this factor the

(ij)-mixed term, and if there is no ambiguity to omit the pre-index (ij), we call this kind
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of factor the mixed term) or of the form w2
eℓ
(δθeℓ (Ad)−H(Ad))

2 (which we call the power

two term of Ad) for d ∈ {1, · · · , n}.

Step 2: Computation of C(q; s1, · · · , sn, s1,1, · · · , sq,n) .

For each ℓ ∈ {1, · · · ,
∑︁n

i=1 ri
2

}, let

pij := # {(i, j); 1 ≤ i < j ≤ n , sℓ,i = sℓ,j = 1} .

Namely, for each pair of i, j such that 1 ≤ i < j ≤ n, pij is the number of (ij)-mixed terms

in the product of I(q; s1, · · · , sn, s1,1, · · · , sq,n). Notice that, in order to obtain a (ij)-mixed

term, we need to multiply the form weℓ(δθeℓ (Ai)−H(Ai)) (we call this form the power 1

term of Ai and there are ri power 1 terms of Ai) and the form weℓ(δθeℓ (Aj)−H(Aj)) (we

call this form the power 1 term of Aj and there are rj power 1 terms of Ai). Moreover,

there are pij! ways to get as many as pij (ij)-mixed terms. Therefore, there are totally∏︁
1≤i<j≤n pij! mixed terms in I(q; s1, · · · , sn, s1,1, · · · , sq,n).

Now for each d ∈ {1, · · · , n}, after picking up pdj power 1 terms of Ad, there will

be
rd−

∑︁
j>d pdj−

∑︁
i<d pid

2
power 2 terms of Ad left for us to pick up. Thus, for each d ∈

{1, · · · , n}, there are rd power 1 terms of Ad, in which
∑︁n

j>d pdj +
∑︁

i<d pid of them will

be used to construct the mixed terms and rd −
∑︁n

j>d pdj −
∑︁

i<d pid of them will be used

to construct the power 2 terms of Ad. They have to satisfy the conditions (denoted by C)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
r1 −

∑︁
j>1 p1j is even,

rℓ −
∑︁

j>ℓ pℓj −
∑︁

i<ℓ piℓ is even, for ℓ ∈ {2, · · · , n− 1},

rn −
∑︁

i<n pin is even.

Thus, for each d ∈ {1, · · · , n}, we can construct the mixed terms and power 2 terms of

Ad as follows. Since there are
∑︁n

j>d pdj +
∑︁

i<d pid mixed terms, we choose

(p1d, · · · , p(d−1)d, pd(d+1), · · · , pdn) (some of them could be 0) out of rd and then combine

the remaining rd −
∑︁n

j>d pdj −
∑︁

i<d pid power 1 terms of Ad as the power 2 terms of Ad.
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Thus, the number of terms from the above steps is

(︁
rd

p1d,··· ,p(d−1)d,pd(d+1),··· ,pdn

)︁(︁rd−∑︁n
j>d pdj−

∑︁
i<d pid

2

)︁(︁rd−∑︁n
j>d pdj−

∑︁
i<d pid−2

2

)︁
· · ·
(︁
2
2

)︁(︂
rd−

∑︁n
j>d pdj−

∑︁
i<d pid

2

)︂
!

without ordering. After the above steps, all the mixed terms and power 2 terms of Ad

can be ordered in
∑︁n

l=1 rl
2

! ways. Noticing that pd1d2 ∈ {0, 1, · · · , rd1 ∧ rd2}, the coefficient

C(q; s1, · · · , sn, s1,1, · · · , sq,n) is then

C(q; s1, · · · , sn, s1,1, · · · , sq,n)

=

ri∧rj∑︂
pij=0,1≤i<j≤n

(i,j)∈C

n∏︂
d=1

(︁
rd

p1d,··· ,p(d−1)d,pd(d+1),··· ,pdn

)︁(︁rd−∑︁n
j>d pdj−

∑︁
i<d pid

2

)︁
· · ·
(︁
2
2

)︁(︂
rd−

∑︁n
j>d pdj−

∑︁
i<d pid

2

)︂
!(︄ ∏︂

1≤i<j≤n

pij!

)︄(︃∑︁n
ℓ=1 rℓ
2

)︃
!

=

ri∧rj∑︂
pij=0,1≤i<j≤n

(i,j)∈C

n∏︂
d=1

(︁
rd

p1d,··· ,p(d−1)d,pd(d+1),··· ,pdn

)︁ (︂
rd −

∑︁n
j>d pdj −

∑︁
i<d pid

)︂
!(︂

rd−
∑︁n

j>d pdj−
∑︁

i<d pid

2

)︂
!2

rd−
∑︁n

j>d
pdj−

∑︁
i<d pid

2(︄ ∏︂
1≤i,j≤n

pij!

)︄(︃∑︁n
ℓ=1 rℓ
2

!

)︃

=

ri∧rj∑︂
pij=0,1≤i<j≤n

(i,j)∈C

r1! · · · rn!(︂
r1−

∑︁
j>1 p1j

2

)︂
! · · ·

(︂
rm−

∑︁
j>m pmj−

∑︁
i<m pim

2

)︂
! · · ·

(︂
rn−

∑︁
i<n pin
2

)︂
!(︂∑︁n

ℓ=1 rℓ
2

)︂
!

2
1
2

∑︁n
ℓ=1 rℓ−

∑︁
1≤i,j≤n pij

(︂∏︁
1≤i<j≤n pij!

)︂ . (2.7.58)

Step 3: Computation of E [
∏︁n

i=1D
ri
a (Ai)].

By Proposition 3.1, I(q; s1, · · · , sn, s1,1, · · · , sq,n) can be rewritten as

I(q; s1, · · · , sn, s1,1, · · · , sq,n) =

E

⎡⎢⎢⎣ ∑︂
1≤e1<···<e∑︁n

i=1
ri

2

<∞

∑︁n
i=1 ri
2∏︂
j=1

w2
ej

⎤⎥⎥⎦ n∏︂
d=1

(︁
E
[︁
(δθ(Ad)−H(Ad))

2]︁)︁ rd−
∑︁

j>d pdj−
∑︁

i<d pid
2
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∏︂
1≤i<j≤n

(E [(δθ(Ai)−H(Ai)) (δθ(Aj)−H(Aj))])
pij

=

⎛⎜⎝ 1

2
∑︁n

i=1
ri

2

(︂∑︁n
i=1 ri
2

)︂
!

(︃
E[v21]
E[v1]

)︃∑︁n
i=1 ri
2

+ o

⎛⎝(︃E[v21]
E[v1]

)︃∑︁n
i=1 ri
2

⎞⎠
⎞⎟⎠

n∏︂
d=1

(H(Ad)(1−H(Ad)))
rd−

∑︁
j>d pdj−

∑︁
i<d pid

2

∏︂
1≤i<j≤n

(−H(Ai)H(Aj))
pij . (2.7.59)

From (2.7.56) and (2.7.58), (2.7.59), we can compute E [
∏︁n

i=1D
ri
a (Ai)] as follows.

E[
n∏︂
i=1

Dri
a (Ai)] =

n∏︂
i=1

[︃
H(Ai)(1−H(Ai))

(︃
E[v21]
2E[v1]

+ o

(︃
E[v21]
E[v1]

)︃)︃]︃− ri
2

⎛⎜⎝ 1

2
∑︁n

i=1
ri

2

(︂∑︁n
i=1 ri
2

)︂
!

(︃
E[v21]
E[v1]

)︃∑︁n
i=1 ri
2

+ o

⎛⎝(︃E[v21]
E[v1]

)︃∑︁n
i=1 ri
2

⎞⎠
⎞⎟⎠

ri∧rj∑︂
pij=0,1≤i<j≤n

(i,j)∈C

r1! · · · rn!(︂
r1−

∑︁
j>1 p1j

2

)︂
! · · ·

(︂
rm−

∑︁
j>m pmj−

∑︁
i<m pim

2

)︂
! · · ·

(︂
rn−

∑︁
i<n pin
2

)︂
!(︂∑︁n

i=1 ri
2

)︂
!

2
1
2

∑︁n
ℓ=1 rℓ−

∑︁
1≤i<j≤n pij

(︂∏︁
1≤i<j≤n pij!

)︂
n∏︂
d=1

(H(Ad)(1−H(Ad)))
rd−

∑︁
j>d pdj−

∑︁
i<d pid

2

∏︂
1≤i<j≤n

(−H(Ai)H(Aj))
pij

=

ri∧rj∑︂
pij=0,1≤i<j≤n

(i,j)∈C

r1! · · · rn!(︂
r1−

∑︁
j>1 p1j

2

)︂
! · · ·

(︂
rm−

∑︁
j>m pmj−

∑︁
i<m pim

2

)︂
! · · ·

(︂
rn−

∑︁
i<n pin
2

)︂
!

1

2
1
2

∑︁n
ℓ=1 rℓ−

∑︁
1≤i<j≤n pij

(︂∏︁
1≤i<j≤n pij!

)︂
∏︂

1≤i<j≤n

(︄
−

√︄
H(Ai)H(Aj)

(1−H(Ai))(1−H(Aj))

)︄pij

+ o(1)

a→∞→
ri∧rj∑︂

pij=0,1≤i<j≤n

(i,j)∈C

r1! · · · rn!(︂
r1−

∑︁
j>1 p1j

2

)︂
! · · ·

(︂
rm−

∑︁
j>m pmj−

∑︁
i<m pim

2

)︂
! · · ·

(︂
rn−

∑︁
i<n pin
2

)︂
!

1

2
1
2

∑︁n
ℓ=1 rℓ−

∑︁
1≤i<j≤n pij

(︂∏︁
1≤i<j≤n pij!

)︂

66



∏︂
1≤i<j≤n

(︄
−

√︄
H(Ai)H(Aj)

(1−H(Ai))(1−H(Aj))

)︄pij

, (2.7.60)

which is equal to E [
∏︁n

i=1X
ri
i ], whereX1, · · · , Xn are the multi-normal distribution defined

in Proposition 2.7.14. Now, by multinomial expansion we see that for any positive integer

k and for any (t1, · · · , tn) ∈ Rd,

E

[︄
n∑︂
i=1

tiDa(Ai)

]︄k
=

∑︂
k1+···+kn=k

(︃
k

k1! · · · kn!

)︃
E

[︄
n∏︂
i=1

tkii D
ki
a (Ai)

]︄
a→∞→

∑︂
k1+···+kn=k

(︃
k

k1! · · · kn!

)︃
E

[︄
n∏︂
i=1

tkii X
ki
i

]︄

= E

[︄
n∑︂
i=1

tiXi

]︄k
.

By the method of moments (see e.g. Billingsley (1995, Theorem 30.2)) it follows that

n∑︂
i=1

tiDa(Ai)
d→

n∑︂
i=1

tiXi as a→ ∞.

Part (i) of Theorem 4.4 follows then from the Cramér-Wold theorem (e.g., (Billingsley,

1995, Theorem 29.4)).

Now, we prove the part (ii) of this theorem by proving the weak convergence of finite

dimensional distributions and by verifying a tightness condition. The finite dimensional

weak convergence of QH,a can be shown directly by part (i), i.e., for any finite measurable

sets A1, · · · , An in X d, we have

(QH,a(A1), · · · , QH,a(An))
d→ (Bo

H(A1), · · · , Bo
H(An)).

By Theorem 2 of (Bickel and Wichura, 1971), to show (4.7) we only need to check the

tightness condition, i.e, inequality (3) of (Bickel and Wichura, 1971), with γ1 = γ2 = 2,

β1 = β2 = 1 and µ = 2H. Obviously, µ is finite and nonatomic. For every pair of Borel

sets A and B in B(Rd), by the proof of part (i) of this theorem and the Isserlis’ theorem
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(Isserlis, 1918) we have

E[|QH,a(A)|2|QH,a(B)|2]

= [H(A)(1−H(A))][H(B)(1−H(B))]E[D2
a(A)D

2
a(B)]

= [H(A)(1−H(A))][H(B)(1−H(B))]

(︃
1 + 2

H(A)H(B)

(1−H(A))(1−H(B))
+ o(1)

)︃
= 3H(A)2H(B)2 −H(A)2H(B)−H(A)H(B)2 +H(A)H(B) + o(1)

≤ µ(A)µ(B).

The last inequality is due to the fact that H(·) ∈ (0, 1) and thus H(·)2 ≤ H(·). Therefore,

the tightness condition on D(Rd) is verified. □

2.7.9 Proof of Theorem 2.4.15

Proof of Theorem 4.15. Once we have Proposition 3.2-3.4, the proofs of part (i) of this

theorem for the various processes except the generalized Dirichlet process follow from a

similar argument to that in the proof of part (i) of Theorem 4.4. So, we shall omit the

details.

When P ∼ GDP(a, r,H), We need the following result about the variance of P from

(Lijoi et al., 2005a):

Var [P (A)] = H(A) (1−H(A)) Ia,r ,

where Ia,r is given by

Ia,r = a(r!)a
r∑︂

k=1

∫︂ ∞

0

x

(k + x)2
∏︁r

j=1(j + x)a
dx

=
a(r!)aΓ(ra)

rraΓ(ra+ 2)

r∑︂
j=1

F
(r−1)
D

(︃
ra, a∗

k; ra+ 2;
1

r
Jr−1

)︃
. (2.7.61)

Here a∗
k = (a, · · · , a+ 2, · · · , a)T is a r − 1 dimensional vector where the k-th element is

a+2 and all other elements are equal to a; Jr−1 = (1, · · · , r−1)T ; and F
(r−1)
D is the fourth
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Lauricella multiple hypergeometric function (see e.g., (Exton, 1976) for more details).

Letting x = t
a
we have

Ia,r = a
r∑︂

k=1

1

k2

∫︂ ∞

0

x(︁
1 + x

k

)︁2∏︁r
j=1

(︂
1 + x

j

)︂adx
= a

r∑︂
k=1

1

ak2

∫︂ ∞

0

t

a
(︁
1 + t

ak

)︁2∏︁r
j=1

(︂
1 + t

aj

)︂adt .
When a is large, we can approximate Ia,r by

Ia,r =
1

a

r∑︂
k=1

1

k2

∫︂ ∞

0

te−(
∑︁r

j=1
1
j )tdt+ o

(︃
1

a

)︃

=

∑︁r
k=1

(︁
1
k

)︁2(︂∑︁r
j=1

1
j

)︂2
a
+ o

(︃
1

a

)︃
. (2.7.62)

Denote

c =

(︂∑︁r
j=1

1
j

)︂2
∑︁r

k=1

(︁
1
k

)︁2 . (2.7.63)

Then

Da(·) ≈
1√︂

H(·)(1−H(·))
ca

(P (·)−H(·)) , (2.7.64)

where ≈ means that the two sides converge to the same distribution as a→ ∞. We shall

prove the result for n = 3 and the case for general n can be handled in a similar way.

By the integral representation of the confluent form of the fourth Lauricella hypergeo-

metric function (see e.g., formula (1.4.3.9) in (Exton, 1976)), the joint probability density

of P (A1), P (A2) admits the following form:

ρ(x1, x2) =
Γ(ra)

Γ(raH1)Γ(raH2)Γ(raH3)

(r!)

rraΓ(ra)

Γ(raH1)Γ(raH2)Γ(raH3)

[Γ(aH1)Γ(aH2)Γ(aH3)]r

× x2aH1−1
1 x2aH2−1

2 (1− x1 − x2)
2aH3−1

×
∫︂ ∞

0

∫︂
0≤u(1)1 +···+u(1)r−1≤1

∫︂
0≤u(2)1 +···+u(2)r−1≤1

∫︂
0≤u(3)1 +···+u(3)r−1≤1

ξra−1
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× exp

{︃
− ξ + ξ

(︄∑︁r−1
k=1 ku

(1)
k x1 +

∑︁r−1
k=1 ku

(2)
k x2 +

∑︁r−1
k=1 ku

(3)
k (1− x1 − x2)

r

)︄}︃

×
3∏︂
i=1

[︂
ui1 · · ·u

(i)
r−1

(︂
1− ui1 − · · · − u

(i)
r−1

)︂]︂aHi−1

du
(1)
1 · · · du(1)r−1

du
(2)
1 · · · du(2)r−1du

(3)
1 · · · du(3)r−1dξ, (2.7.65)

where Hi = H(Ai) for i = 1, 2, 3. Using the expression of (2.7.64) and the above density

form (2.7.65), we can obtain the probability density function of D(A1), D(A2) as follows:

f(y1, y2) =J1 × f1(y1, y2) ,

(2.7.66)

where

J1 =

√︁
H1(1−H1)H2(1−H2)Γ(ra)

caΓ(raH1)Γ(raH2)Γ(raH3)

(︄√︃
H1(1−H1)

ca
y1 +H1

)︄raH1−1

×

(︄√︃
H2(1−H2)

ca
y2 +H2

)︄raH2−1(︄
H3 −

√︁
H1(1−H1)y1 +

√︁
H2(1−H2)y2√

ca

)︄raH3−1

(2.7.67)

and

f1(y1, y2) =

∫︂ ∞

0

∫︂
· · ·
∫︂
0≤u(1)1 +···+u(1)r−1≤1

∫︂
· · ·
∫︂
0≤u(2)1 +···+u(2)r−1≤1∫︂

· · ·
∫︂
0≤u(3)1 +···+u(3)r−1≤1

3∏︂
i=1

[︂
ui1 · · ·u

(i)
r−1(1− ui1 − · · · − u

(i)
r−1)

]︂aHi−1

ξra−1

× exp

{︄
− ξ +

ξ

r

[︃ r−1∑︂
k=1

ku
(1)
k

(︄√︁
H1(1−H1)y1√

ca
+H1

)︄

+
r−1∑︂
k=1

ku
(2)
k

(︄√︁
H2(1−H2)y2√

ca
+H2

)︄

+
r−1∑︂
k=1

ku
(3)
k

(︄
H3 −

√︁
H1(1−H1)y1 +

√︁
H2(1−H2)y2√

ca

)︄]︃}︄
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du
(1)
1 · · · du(1)r−1du

(2)
1 · · · du(2)r−1du

(3)
1 · · · du(3)r−1dξ . (2.7.68)

To determine if the density of f(y1, y2) has a limit or not and if yes, to find the limiting

density, we shall find the limits of J1 and f1(y1, y2) separately.

Step 1: Limit of J1.

By Stirling’s formula Γ(z) =
√
2πzz−

1
2 e−z

(︁
1 + o

(︁
1
z

)︁)︁
when z is large, we have the

following approximation:

J1 =
ra

ca2π

√︄
(1−H1)(1−H2)

H3

⎛⎝√︄(1−H1)

caH1

y1 + 1

⎞⎠raH1−1⎛⎝√︄(1−H2)

caH2

y2 + 1

⎞⎠raH2−1

×

(︄
1−

√︁
H1(1−H1)y1 +

√︁
H2(1−H2)y2

H3

√
ca

)︄raH3−1(︃
1 + o

(︃
1

a

)︃)︃
,

=
r

c2π

√︄
(1−H1)(1−H2)

H3

(︃
1 + o

(︃
1

a

)︃)︃
exp

{︃
ra

[︃
H1 log

⎛⎝√︄(1−H1)

caH1

y1 + 1

⎞⎠
+H2 log

⎛⎝√︄(1−H2)

caH2

y2 + 1

⎞⎠
+H3 log

(︄
1−

√︁
H1(1−H1)y1 +

√︁
H2(1−H2)y2

H3

√
ca

)︄]︃}︃
.

An application of log(1 + 1√
z
) = 1√

z
− 1

2z
+ o

(︁
1
z

)︁
for large z yields

J1 =
r

c

√︁
(1−H1)(1−H2)

2π
√
H3

× exp

{︃
− r

c

y21 + y22 + 2y1y2
√︂

H1H2

(1−H1)(1−H2)

2 H3

(1−H1)(1−H2)

}︃(︃
1 + o

(︃
1

a

)︃)︃
. (2.7.69)

Step 2: The limit of f1(y1, y2). This is much more complicated. We first obtain

the leading terms of f1 as a→ ∞.

To make the presentation clear, denote the integrating variables by

z =
(︂
u
(1)
1 , · · · , u(1)r−1, u

(2)
1 , · · · , u(2)r−1, u

(3)
1 , · · · , u(3)r−1, ξ

)︂T
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and denote

g
(︂
u
(1)
1 , · · · , u(1)r−1, u

(2)
1 , · · · , u(2)r−1, u

(3)
1 , · · · , du(3)r−1, ξ

)︂
:=

3∑︂
i=1

(aHi − 1) log
[︂
u
(i)
1 · · ·u(i)r−1(1− u

(i)
1 − · · · − u

(i)
r−1)

]︂
+ (ra− 1) log(ξ)

− ξ +
ξ

r

[︃ r−1∑︂
k=1

ku
(1)
k

(︄√︁
H1(1−H1)y1√

ca
+H1

)︄
+

r−1∑︂
k=1

ku
(2)
k

(︄√︁
H2(1−H2)y2√

ca
+H2

)︄

+
r−1∑︂
k=1

ku
(3)
k

(︄
H3 −

√︁
H1(1−H1)y1 +

√︁
H2(1−H2)y2√

ca

)︄]︃
. (2.7.70)

This function g attains its maximum at its critical point

z0 =
(︂
u
(1)
1,0, · · · , u

(1)
r−1,0, u

(2)
1,0, · · · , u

(2)
r−1,0, u

(3)
1,0, · · · , u

(3)
r−1,0, ξ0

)︂T
, (2.7.71)

where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u
(i)
k,0 =

1

(r − k)
(︂∑︁r

j=1
1
j

)︂ , k = 1, · · · , r − 1 , i = 1, 2, 3 ;

ξ0 = (ra− 1)

(︄
r∑︂
j=1

1

j

)︄
.

By an elementary calculation we have

g′(z0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[︃(︂∑︁r
j=1

1
j

)︂ (︁
1− H1

r

)︁
+
(︂∑︁r

j=1
1
j

)︂ (︁
a− 1

r

)︁ √H1(1−H1)y1√
ca

]︃
Jr−1

[︃(︂∑︁r
j=1

1
j

)︂ (︁
1− H2

r

)︁
+
(︂∑︁r

j=1
1
j

)︂ (︁
a− 1

r

)︁ √H2(1−H2)y2√
ca

]︃
Jr−1

[︃(︂∑︁r
j=1

1
j

)︂ (︁
1− H1

r

)︁
−
(︂∑︁r

j=1
1
j

)︂ (︁
a− 1

r

)︁ √H1(1−H1)y1+
√
H2(1−H2)y2√

ca

]︃
Jr−1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where Jr−1 = (1, · · · , r − 1)T and

g′′(z0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

M1 N1

M2 N2

M3 N3

NT
1 NT

2 NT
3 − 1

(ra−1)(
∑︁r−1

k=1
1
k)

2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where the empty entries should be filled with a (r− 1)× (r− 1) dimensional zero matrix

and where for i = 1, 2, 3, Mi is a (r − 1)× (r − 1) matrix given by

Mi = −(aHi − 1)

(︄
r−1∑︂
k=1

1

k

)︄2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
[(r − 1)2 + r2] r2 · · · r2

r2 [(r − 2)2 + r2] · · · r2

...
...

. . .
...

r2 r2 · · · [(1)2 + r2]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and Ni is a (r − 1) column vector given by

Ni =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

(︃√
Hi(1−Hi)yi√

ca
+Hi

)︃
r

2

(︃√
Hi(1−Hi)yi√

ca
+Hi

)︃
r

...

(r−1)

(︃√
Hi(1−Hi)yi√

ca
+Hi

)︃
r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

With these notations we have when a is large

f1(y1, y2) =
(r!)

rraΓ(ra)

Γ(raH1)Γ(raH2)Γ(raH3)

[Γ(aH1)Γ(aH2)Γ(aH3)]
r

∫︂ ∞

0

∫︂
· · ·
∫︂
0≤u(1)1 +···+u(1)r−1≤1∫︂

· · ·
∫︂
0≤u(2)1 +···+u(2)r−1≤1

∫︂
· · ·
∫︂
0≤u(3)1 +···+u(3)r−1≤1

eg(z)dz

=
(r!)(aH1)

r−1
2 (aH2)

r−1
2 (aH3)

r−1
2

r
3
2 (
√
2π)3r−2e−ra(ra)ra−

1
2

∫︂ ∞

0

∫︂
· · ·
∫︂
0≤u(1)1 +···+u(1)r−1≤1∫︂

· · ·
∫︂
0≤u(2)1 +···+u(2)r−1≤1

∫︂
· · ·
∫︂
0≤u(3)1 +···+u(3)r−1≤1

exp
{︂
g(z0)
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+ g′(z0)
T (z− z0) +

1

2
(z− z0)

Tg′′(z0)(z− z0)
}︂(︃

1 + o

(︃
1

a

)︃)︃
dz . (2.7.72)

Step 3: Evaluation of the leading term of f1(y1, y2).

In order to evaluate the integral of (2.7.72), we use the change of variables

u
(i)
k − u

(i)
k,0 =

t
(i)
k√

aHi

√︁
(r − k)2 + r2

(︁∑︁r−1
k=1

1
k

)︁ ,
for k = 1, · · · , r − 1, i = 1, 2, 3, and

ξ − ξ0 =
√
ra− 1

(︄
r−1∑︂
k=1

1

k

)︄
s .

Thus, we have

f1(y1, y2) =
(r!)(aH1)

r−1
2 (aH2)

r−1
2 (aH3)

r−1
2

r
3
2 (
√
2π)3r−2e−ra(ra)ra−

1
2

√
ra− 1

(︄
r∑︂

k=1

1

k

)︄

×
3∏︂
i=1

r−1∏︂
k=1

1
√
aHi

√︁
(r − k)2 + r2

(︁∑︁r
k=1

1
k

)︁
×
∫︂ ∞

−∞
· · ·
∫︂ ∞

−∞
exp

{︂
g(z0) + bT t− 1

2
tTAt

}︂(︃
1 + o

(︃
1

a

)︃)︃
dt

=
(r!)3

(︁∑︁r
k=1

1
k

)︁3
r

3
2

∏︁r−1
k=1

(︂√︁
(r − k)2 + r2

)︂3 (detA)− 1
2

× exp

{︃
1

2
bTA−1b

}︃(︃
1 + o

(︃
1

a

)︃)︃
, (2.7.73)

where t =
(︂
t
(1)
1 , · · · , t(2)r−1, t

(2)
1 , · · · , t(2)r−1, t

(3)
1 , · · · , t(3)r−1, s

)︂T
, and where a direct calculation

from g′(z0) gives

b =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−
√
r
√
1−H1y1√
c

B

−
√
r
√
1−H2y2√
c

B

−
√
r
(︂√

H1(1−H1)y1+
√
H2(1−H2)y2

)︂
√
c
√
H3

B

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.7.74)

The matrix A in (2.7.73) can be found directly from g′′(z0) and will be given below when
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we study it. The above last identity (2.7.73) follows from the fact that

eg(z0) =

[︁
(ra− 1)

(︁∑︁r
k=1

1
k

)︁]︁ra−1[︁
r!
(︁∑︁r

k=1
1
k

)︁r]︁a−3 e−(ra−1)

and the multivariate Gaussian integral formula. By a simple algebra we can write

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
A0 B1

A0 B2

A0 B3

BT
1 BT

2 BT
3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (2.7.75)

where A0 is a (r − 1)× (r − 1) matrix whose entries are

[A0]ij =

⎧⎪⎪⎨⎪⎪⎩
1 if i = j

r2√
(r−i)2+r2

√
(r−j)2+r2

if i ̸= j .

and for i = 1, 2, 3

Bi = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√
ra−1

(︃√
Hi(1−Hi)yi√

ca
+Hi

)︃
r
√
aHi

√
(r−1)2+r2

2
√
ra−1

(︃√
Hi(1−Hi)yi√

ca
+Hi

)︃
r
√
aHi

√
(r−2)2+r2

...

(r−1)
√
ra−1

(︃√
Hi(1−Hi)yi√

ca
+Hi

)︃
r
√
aHi

√
(1)2+r2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√
H1√

r
√

(r−1)2+r2

(︂
1 + o

(︂
1√
a

)︂)︂
2
√
H1√

r
√

(r−2)2+r2

(︂
1 + o

(︂
1√
a

)︂)︂
...

(r−1)
√
H1

√
r
√

(1)2+r2

(︂
1 + o

(︂
1√
a

)︂)︂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Step 4: The inverse and the determinant of A

We need to find A−1. First we find A−1
0 . From the expression of A0 we can write

A0 = D + vvT = D
1
2

(︂
I +D− 1

2vvTD− 1
2

)︂
D

1
2 ,
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where

v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

r√
(r−1)2+r2

r√
(r−2)2+r2

...

r√
(1)2+r2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(r−1)2

(r−1)2+r2
0 · · · 0

0 (r−2)2

(r−2)2+r2
· · · 0

...
...

. . .
...

0 0 · · · 12

12+r2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence, the determinant of A0 is given by

det(A0) = det
(︂
D

1
2

)︂
det
(︂
I +D− 1

2vvTD− 1
2

)︂
det
(︂
D

1
2

)︂
= det

(︂
D

1
2

)︂(︃
1 +

(︂
D− 1

2v
)︂T (︂

D− 1
2v
)︂)︃

det
(︂
D

1
2

)︂
= (

(r − 1)!∏︁r−1
k=1

√︁
(r − k)2 + r2

)2(1 +
r−1∑︂
k=1

r2

(r − k)2
)

=

∑︁r
k=1(

r!
k
)2∏︁r−1

k=1(
√︁

(r − k)2 + r2)2
.

Now, by the Sherman-Morrison formula we have

A−1
0 = (D + ffT )−1 = D−1 − 1

1 + fTD−1f
D−1ffTD−1 .

As a result we obtain

[A−1
0 ]ij =

⎧⎪⎪⎨⎪⎪⎩
− 1∑︁r

k=1(
1
k
)2

√
(r−i)2+r2

√
(r−j)2+r2

(r−i)2(r−j)2 if i ̸= j

[
∑︁r

k=1(
1
k
)2− 1

(r−i)2
]∑︁r

k=1(
1
k
)2

[(r−i)2+r2]
(r−i)2 if i = j .
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The determinant of A can be computed as follows.

det(A) = (detA0)
3 (︁1−BT

1 A
−1
0 B1 −BT

2 A
−1
0 B2 −BT

3 A
−1
0 B3

)︁
= (detA0)

3 (︁1−BTA−1
0 B

)︁
, (2.7.76)

where

B = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√
r
√

(r−1)2+r2

(︂
1 + o

(︂
1√
a

)︂)︂
2

√
r
√

(r−2)2+r2

(︂
1 + o

(︂
1√
a

)︂)︂
...

(r−1)
√
r
√

(1)2+r2

(︂
1 + o

(︂
1√
a

)︂)︂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From the relation (2.7.76) of expressing det(A) by det(A0) and B we have

det(A) = (detA0)
3 (︁1−BTA−1

0 B
)︁
=

(︁∑︁r
k=1

r!
k

)︁2 (︂∑︁r
k=1

(︁
r!
k

)︁2)︂2
r
∏︁r−1

k=1

(︂√︁
(r − k)2 + r2

)︂6 . (2.7.77)

Moreover, by the block Gaussian elimination method, we find A−1 as

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A−1
0

(︂
I0 +

B1BT
1 A

−1
0

m

)︂
A−1

0 B1BT
2 A

−1
0

m

A−1
0 B1BT

3 A
−1
0

m
−A−1

0 B1

m

A−1
0 B2BT

1 A
−1
0

m
A−1

0

(︂
I0 +

B2BT
2 A

−1
0

m

)︂
A−1

0 B2BT
3 A

−1
0

m
−A−1

0 B2

m

A−1
0 B3BT

1 A
−1
0

m

A−1
0 B3BT

2 A
−1
0

m
A−1

0

(︂
I0 +

B3BT
3 A

−1
0

m

)︂
−A−1

0 B3

m

−BT
1 A

−1
0

m
−BT

2 A
−1
0

m
−BT

3 A
−1
0

m
1
m

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(2.7.78)

where

m = 1−BT
1 A

−1
0 B1 −BT

2 A
−1
0 B2 −BT

3 A
−1
0 B3

and I0 is the (r − 1)× (r − 1)-dimensional identity matrix.

Step 5: the limit of f1(y1, y2).

Combining (2.7.78) and (2.7.74), one finds

bTA−1b =
r

c
BTA−1

0 B

(︄
(1−H1)y

2
1 + (1−H2)y

2
2
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+

(︂√︁
H1(1−H1)y1 +

√︁
H2(1−H2)y2

)︂2
H3

)︄

=(
r

c
− 1)

y21 + y22 + 2y1y2
√︂

H1H2

(1−H1)(1−H2)

H3

(1−H1)(1−H2)

(︃
1 + o

(︃
1

a

)︃)︃
. (2.7.79)

Substituting the expression (2.7.79) and the formula (2.7.77) for the determinant into

(2.7.73) yields

f1(y1, y2) =
c

r
exp

⎧⎨⎩(︂rc − 1
)︂ y21 + y22 + 2y1y2

√︂
H1H2

(1−H1)(1−H2)

2 H3

(1−H1)(1−H2)

⎫⎬⎭
(︃
1 + o

(︃
1

a

)︃)︃
. (2.7.80)

Combining (2.7.80) with the asymptotic (2.7.69) of J1 and the relationship f(y1, y2) =

J1×f1(y1, y2), we see f(y1, y2) converges to the desired Gaussian density, which completes

the proof of part (i) of the theorem when P ∼ GDP(a, r,H).

The proof of part (ii) of this theorem follows from the same argument as that in the

proof of part (ii) of Theorem 4.4.
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Chapter 3

Large sample asymptotic analysis for

normalized random measures with

independent increments

3.1 Introduction

Bayesian nonparametrics has been undergone major study due to its various applications

to many areas, such as biology, economics, machine learning and so on. As a lavish

class of Bayesian nonparametric priors, normalized random measures with independent

increments (NRMIs), introduced by (Regazzini et al., 2003), include the famous Dirichlet

process (Ferguson, 1973), the σ-stable NRMIs (Kingman, 1975), the normalized inverse

Gaussian process (Lijoi et al., 2005b), the normalized generalized gamma process (Lijoi

et al., 2003, 2007), and generalized Dirichlet process (Lijoi et al., 2005a). We refer to

(Müller and Quintana, 2004; Lijoi et al., 2010; Zhang and Hu, 2021) as reviews of these

processes with their properties and applications.

In Bayesian nonparametric statistics, samples are drawn from a random probability

measure that is equipped with a prior distribution. To be more precise, let (Ω,F ,P) be

any probability space, let X be a complete, separable metric space whose σ-algebra is

denoted by X and let (MX,MX) be the space of all probability measures on X. A sample
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X = (X1, · · · , Xn) that take values in Xn is drawn iid from a random probability measure

P conditional on P , which follows a prior distribution Q on (MX,MX). That is to say,

X1, · · · , Xn|P
iid∼ P ; P ∼ Q. (3.1.1)

Two natural questions in literature are raised as follows.

(i) A frequentist analysis of the Bayesian consistency (Freedman and Diaconis,

1983): by assuming the “true” distribution of X is P0, we are interested in whether

the posterior law, that is the conditional law of P |X, denoted by Qn, converges to

δP0 , the Dirac mass at the “true” distribution, as n→ ∞.

(ii) What is the limiting distribution of centered and rescaled P |X? In particular,

is there a Bernstein-von Mises like theorem and central limit theorem for P? If so,

what is the limiting process of
√
n(P |X− E[P |X])?

These two questions are always very important in statistics, as the posterior consistency

can guarantee the model behaves “good” when the sample size is sufficiently large, and

the limiting distribution of the posterior process is the key to construct confident intervals

and conduct hypothesis tests.

Many inspiring works corresponding to the above questions have been done. Referred

to question (i), (James, 2008) obtains the posterior consistency and weak convergence

for the two-parameter Poisson-Dirichlet process, which is not, but closely related to an

NRMI (Pitman and Yor, 1997; Perman et al., 1992; Ghosal and Van der Vaart, 2017).

The posterior consistency of the species sampling priors (Pitman, 1996; Aldous et al.,

1985) and the Gibbs-type priors (Gnedin and Pitman, 2006) are discussed in (Ho Jang

et al., 2010) and (De Blasi et al., 2013). It is worthy to point out that there are overlaps

among the species sampling priors, the Gibbs-type priors and the homogeneous NRMIs.

Whereas, non-homogeneous NRMIs are totally independent from the species sampling

priors and the Gibbs-type priors. As for question (ii), the Bernstein-von Mises results

have been established for the Dirichlet process (Lo, 1983, 1986; Ray and van der Vaart,
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2021; Hu and Zhang, 2022) and for the two-parameter Poisson-Dirichlet process (James,

2008; Franssen and van der Vaart, 2022). Along the same line, we would like to answer

the above two mentioned questions when P is an NRMI.

Since NRMIs are constructed by the normalization of completely random measures

(Kingman, 1967, 1993) associated with their Lévy intensities (see e.g., section 3.2), it is

quite natural to study their properties based on the corresponding Lévy intensities. In

this work, we discuss the posterior consistency of non-homogeneous NRMIs (including the

homogeneous case as a particular case) and provide a simple condition to guarantee the

posterior consistency of non-homogeneous NRMIs. As a result, when P0 is continuous,

the posterior consistency doesn’t hold for NRMIs generally, and when P0 is discrete, the

posterior consistency holds as long as our proposed condition is satisfied.

Furthermore, we obtain the Bernstein-von Mises theorem for the normalized general-

ized gamma process (NGGP), which is a flexible class of Bayesian nonparametric priors

includes the Dirichlet process, the normalized inverse-Gaussian process and the σ−stable

process. Through the posterior consistency analysis, the NGGP is posterior consistent

when the true distribution P0 is discrete or when the parameter σ → 0. The case that

σ → 0 would reduce the NGGP to the Dirichlet process. Thus, we should emphasis the

case when the true distribution P0 is discrete. However, there should be a bias correction

when we use the Bernstein-von Mises theorem for the NGGP when P0 is discrete. Thus, in

order to construct the “correct” confidence intervals that cover the true parameter value,

we suggest to de-bias the bias term. The comparison of confidence intervals with bias

correction and without bias correction is illustrated in the numerical computation. In the

application, the model parameters of NGGP are chosen by some estimators, we show that

the Bayesian estimator or maximum likelihood estimators of the model parameters of the

NGGP won’t affect the convergences in the Bernstein-von Mises results.

The outline of this chapter is as follows. In Section 3.2, we recall the construction

of the NRMIs and their posterior distributions. In Section 3.3, we discuss the posterior

consistency of the homogeneous NRMIs and present a simple assumption on the cor-

responding Lévy intensities to guarantee the posterior consistency of the homogeneous
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NRMIs. Examples are given to see the applicability of the assumption and the posterior

consistency results for some well-known Bayesian nonparametric priors. In Section 3.4,

we derive the Bernstein-von Mises theorem for the NGGP and provide the analysis of

the bias correction with an numerical illustration. Finally, in Section 3.5, we provides a

discussion of our results and some ideas that can be studied in the future. In order to

ease the flow of the ideas, we delay the proofs in the Supplementary Materials 3.6.

3.2 Normalized random measures with independent

increments

3.2.1 Constructions of NRMIs

We start by recalling the notions of completely random measures (see e.g., (Kingman,

1967, 1993) and references therein for more details), which play important role in the

construction of NRMIs.

Let BX be the space of bounded finite measures on (X,X ) endowed with a suitable

topology so that the associated Borel σ−algebra BX can be introduced (Daley and Vere-

Jones, 2008).

Definition 3.2.1. Let µ be a measurable function defined on (Ω,F ,P) that takes values

in (BX,BX). We call µ is a completely random measure (CRM) if the random variables

µ(A1), · · · , µ(Ad) are mutually independent, for any pairwise disjoint sets A1, · · · , Ad,

where d ≥ 2 is a finite integer.

See e.g., (Regazzini et al., 2003; Lijoi et al., 2010) for a more detailed discussion of

constructing Bayesian nonparametric priors by using completely random measures.

As CRMs can be defined via Poisson random measure, we shall first recall this concept.

Denote S = R+ × X and denote its Borel σ-algebra by S. A Poisson random measure

Ñ on S with finite intensity measure ν(ds, dx) is a random measure from Ω × S to R+

satisfying
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(i) Ñ(A) ∼ Poisson(ν(A)) for any A in S;

(ii) for any pairwise disjoint setsA1, · · · , Am in S, the random variables Ñ(A1), · · · , Ñ(Am)

are mutually independent.

The Poisson intensity measure ν satisfies the condition (see (Daley and Vere-Jones, 2008)

for details of Poisson random measures) that

∫︂ ∞

0

∫︂
X
min(s, 1)ν(ds, dx) <∞ .

Let µ̃ be the random measure on (Ω,F ,P) that takes values in (BX,BX) defined as follows,

µ̃(A) :=

∫︂ ∞

0

∫︂
A

sÑ(ds, dx), ∀A ∈ X . (3.2.1)

It is trivial to verify that µ̃ is a completely random measure. It is also well-known that

for any B ∈ X , µ̃(B) is discrete and is uniquely characterized by its Laplace transform

as follows:

E
[︁
e−λµ̃(B)

]︁
= exp

{︃
−
∫︂ ∞

0

∫︂
B

[︁
1− e−λs

]︁
ν(ds, dx)

}︃
. (3.2.2)

The measure ν is called the Lévy intensity of µ̃ and we denote the Laplace exponent by

ψB(λ) =

∫︂ ∞

0

∫︂
B

[︁
1− e−λs

]︁
ν(ds, dx) . (3.2.3)

From the Laplace transform in eq. (4.2.2), we shall study the completely random measure

µ̃ by its Lévy intensity ν, which usually takes the following forms in the literature:

(a) ν(ds, dx) = ρ(ds)α(dx), where ρ : B(R+) → R+ is some measure on R+ and α is

a non-atomic measure on (X,X ) so that α(X) = a < ∞. The corresponding µ̃ is

called homogeneous completely random measure.

(b) ν(ds, dx) = ρ(ds|x)α(dx), where ρ is defined on B(R+) × X such that for any x ∈

X, ρ(·|x) is a σ-finite measure on B(R+) and for any A ∈ X , ρ(A|x) is B(R+)
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measurable. The corresponding µ̃ is called non-homogeneous completely random

measure.

It is obvious that the case (a) is a special case of case (b). Usually, we assume that α is

a finite measure so we may write α(dx) = aH(dx) for some probability measure H and

some constant a = α(X) ∈ (0,∞).

To construct NRMIs, the completely random measure will be normalized, and thus

one needs the total mass µ̃(X) to be finite and positive almost surely. This happens

under the condition that ρ(R+) = ∞ in homogeneous case and that ρ(R+|x) = ∞ in

non-homogeneous case (Regazzini et al., 2002). Under the above conditions, an NRMI P

on (X,X ) is a random probability measure defined by

P (·) = µ̃(·)
µ̃(X)

. (3.2.4)

P is discrete due to the discreteness of µ̃. For notional simplicity, we denote T = µ̃(X)

and let fT (t) be the density of T throughout this chapter.

3.2.2 Posterior of NRMIs

We will recall the posterior analysis (James et al., 2009) of NRMIs, which is a key topic

in Bayesian nonparametric analysis. Let P be an NRMI on X. A sample of size n from

P as in eq. (3.1.1) is an exchangeable sequence of random variables X = (Xi)
n
i=1 defined

on (Ω,F ,P) and taking values in Xn, such that given P , (Xi)i≥1 are iid with distribution

P , i.e.,

P[X1 ∈ A1, · · · , Xn ∈ An|P ] =
n∏︂
i=1

P (Ai) . (3.2.5)

Let Y = (Yj)
n(π)
j=1 be the distinct observations of the sample X and let n(π) be the number

of unique values ofX. This means, π = (i1, · · · , in1 , · · · , inπ(n)−1
, · · · , inn(π)

) is the partition

of {1, · · · , n} of size n(π). The number of the jth set of the partition is nj, so that
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∑︁n(π)
j=1 nj = n, and Y1 := Xi1 = · · · = Xin1

, · · · , Yn(π) := Xnπ(n)−1+1 = · · · = Xnπ(n)
. Let

τk(u, Y ) =

∫︂ ∞

0

ske−usρ(ds|Y ) for any positive integer k and Y ∈ X. (3.2.6)

With these notations, the posterior distribution of P conditional on the observations

of the sample X1, · · · , Xn is given by the following theorem.

Theorem 3.2.2 (James et al. (2009)). Let P be an NRMI with intensity ν(ds, dx) =

ρ(ds|x)α(dx). The posterior distribution of P , given a latent random variable Un, is an

NRMI that coincides in distribution with the random measure

κn
µ̃(Un)

T(Un)

+ (1− κn)

n(π)∑︂
j=1

JjδYj∑︁n(π)
j=1 Jj

, (3.2.7)

where

(i) The random variable Un has density

fUn(u) =
un−1

Γ(n)

∫︂ ∞

0

tne−utfT (t)dt . (3.2.8)

(ii) Given Un, µ̃(Un) is the conditional completely random measure of µ̃ with the Lévy

intensity ν(Un) = e−Unsρ(ds|x)α(dx).

(iii) {J1, · · · , Jn(π)} are random variables depending on Un and Yj and having density

fJj(s|Un = u,X) =
snje−usρ(s|Yj)∫︁∞

0
snje−usρ(ds|Yj)

. (3.2.9)

(iv) The random elements µ̃(Un) and Jj, j ∈ {1, · · · , n(π)} are independent.

(v) T(Un) = µ̃(Un)(X) and κn =
T(Un)

T(Un)+
∑︁n(π)

j=1 Jj
.

(vi) The conditional density of Un given X is given by

fUn|X(u|X) ∝ un−1e−ψ(u)
n(π)∏︂
j=1

τnj
(u, Yj) . (3.2.10)
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The above theorem shows that, given the latent variable Un, the posterior of P is a

weighted sum of another NRMI
µ̃(Un)

T(Un)
and the normalization of Delta measure of distinct

observations Yj, δYj , multiplied by its corresponding jumps Jj. This gives a rather com-

plete description of the posterior distribution of NRMIs. More details of the posterior

analysis of µ̃ and P is discussed in (James et al., 2009).

3.3 Posterior consistency analysis for the NRMIs

In this section, we aim at discussing the posterior consistency for NRMIs as pointed out

in question (i) in the introduction. Assume that X = {X1, · · · , Xn} is a sample from

the “true” distribution P0 in MX. Namely, X = {X1, · · · , Xn} is iid P0− distributed.

Let Qn denote the probability law of the posterior random probability measure P |X.

The posterior distribution is said to be weakly consistent if Qn concentrates on the weak

neighbourhood of P0 almost surely. More precisely, for any weak neighbourhood Oϵ ∈ MX

of P0 with arbitrary radius ϵ > 0,

Qn(Oϵ) → 1 a.s.− P n
0 ,

as n→ ∞. And P∞
0 is the infinite product measure on X∞.

Before presenting the main result, we shall give the following lemma, which provides

the moments of the posterior P . And the lemma plays an important role in the proof of

the main theorem. By recalling ψA in eq. (4.2.3), we denote

V
(k)
α(A)(y) = (−1)keψA(y) d

k

dyk
e−ψA(y) , (3.3.1)

for any A ∈ X .

Lemma 3.3.1. Let X = (Xi)
n
i=1 be a random sample from a normalized random measure

with independent increments P . The moments and the mixed moments of the posterior

moments of P given X are given as follows (we use the notation of Theorem 3.2.2).
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(i) For any A ∈ X and m ∈ N, the posterior moments of P are given by

E[(P (A))m|X)] =
Γ(n)

Γ(m+ n)

m∑︂
0≤l1+···+ln(π)≤m

(︃
m

l1, · · · , ln(π)

)︃∫︂ ∞

0

umfUn|X(u|X)

V
(m−(l1+···+ln(π)))

α(A) (u)

⎛⎝n(π)∏︂
j=1

τnj+lj(u, Yj)

τnj
(u, Yj)

δYj(A)

⎞⎠ du .

(3.3.2)

(ii) For any family of pairwise disjoint subsets {A1, · · · , Aq} of X and any integers

{m1, · · · ,mq}, we have

E [P (A1)
m1 · · ·P (Aq)mq |X] =

Γ(n)

Γ(m+ n)

∫︂ ∞

0

umfUn|X(u|X)

q+1∏︂
i=1

⎧⎨⎩
mi∑︂

0≤l1+···+l#(λi)
≤mi

(︃
mi

l1, · · · , l#(λi)

)︃
V

(mi−(l1+···+l#(λi)
))

α(Ai)
(u)

(︄∏︂
j∈λi

τnj+lj(u, Yj)

τnj
(u, Yj)

)︄⎫⎬⎭ du ,

(3.3.3)

where m =
∑︁q

i=1mi, Aq+1 = (∪qi=1Ai)
c, mq+1 = 0, λi = {j : Yj ∈ Ai} is the set of

the index of Yj’s that are in Ai, and #(λi) is the number of components in λi.

The above lemma provides the posterior moments of NRMIs without including the

latent random variable Un. Such results can be reduced to the moments of NRMIs by

letting the sample size n = 0. The proof of lemma 3.3.1 is inspired by the idea in (James

et al., 2006) and the details are given in the Supplementary Materials 3.6. To apply the

above lemma, one needs to deal with the term V
(k)
α(A)(y) defined by (3.3.1). We give the

following recursion formula

V
(k)
α(A)(y) =

k−1∑︂
i=0

(︃
k − 1

i

)︃
ξk−i(y)V

(i)
α(A)(y) ,

where ξi(y) =
∫︁
A
τi(y, x)α(dx).

To answer question (i) that is mentioned in the introduction, we shall study the weak

consistency for more general NRMIs. To do so, we need the following assumption.
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Assumption 3.3.2. Let τk(u, x) be defined by (3.2.6) and let ρ(s|x) be a function such

that u τk+1(u,x)

τk(u,x)
is nondecreasing in u and bounded from above by k − Ck(x) uniformly for

all k ∈ Z+ and x ∈ X, where {Ck(x)} is a sequence of functions from X to [0, 1). Namely,

there is an increasing positive function ϕ(u) with limu→∞ ϕ(u) = 1 such that

sup
k∈Z+ ,x∈X

u τk+1(u,x)

τk(u,x)

k − Ck(x)
≤ ϕ(u) , ∀ u ∈ R+ .

Theorem 3.3.3. Let P be an NRMI with Lévy intensity ν(ds, dx) = ρ(s|x)dsα(dx), where

ρx(s) satisfies Assumption 3.3.2. Then, we have the following results.

1. If P0 is continuous, then the posterior of P converges weakly to a point mass at

C1̄H(·) + (1− C1̄)P0(·) a.s.−P∞
0 , where C1̄ is the population mean of {C1(Xi)}∞i=1,

that is to say C1̄ = limn→∞

∑︁n
i=1 C1(Xi)

n
.

2. If P0 is discrete with limn→∞
n(π)
n

= 0, then P is weakly consistent, i.e., the posterior

of P converges weakly to a point mass at P0(·) a.s.−P∞
0 .

Although the assumption 3.3.2 looks complicate, it is quite easy to check as long as

ρ(s|x) is given. For instance, the intensities ρ(s|x) for almost all popular NRMIs are

gamma type, and we shall check assumption 3.3.2 for these NRMIs in example 3.3.8,

example 3.3.9 and example 3.3.10 to show how the assumption 3.3.2 works for these

processes. This allows more applicability of Theorem 3.3.3.

As a comparison between Theorem 3.3.3 and the results in (Ho Jang et al., 2010) for

the species sampling priors and (De Blasi et al., 2013) for the Gibbs-type priors, Theorem

3.3.3 considers the consistency results for the non-homogeneous NRMIs, which is a more

general class of Bayesian nonparametric priors than both the species sampling priors and

the Gibbs-type priors. On the other hand, the conditions in (Ho Jang et al., 2010; De Blasi

et al., 2013) are not trivial to verify for homogeneous NRMIs, even though the predictive

distribution of homogeneous NRMIs is given (Pitman, 2003; James et al., 2009).

In Theorem 3.3.3, we require limn→∞
n(π)
n

= 0 as a condition to guarantee the posterior

consistency result when P0 is discrete. This condition is true almost surely by the following
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remark.

Remark 3.3.4. When P0 is discrete, limn→∞
n(π)
n

= 0,almost surely. When P0 is contin-

uous, limn→∞
n(π)
n

= 1,almost surely.

Proof. Note that P0 is the true distribution of X, i.e., X
iid∼ P0. Recall that π(n) is the

number of distinct observations of X. Let Pn(·) =
∑︁n

i=1 δXi
(·)

n
be the empirical probability

measure.

If P0 is discrete, we denote the collection of atoms of P0 is D, then D = {x1, x2, · · · }.

For any k ∈ Z+, we have π(n) ≤ k + nPn({xk+1, xk+2, · · · }). Thus,

lim
n→∞

π(n)

n
= lim

k→∞
lim
n→∞

π(n)

n

≤ lim
k→∞

lim
n→∞

k

n
+ Pn({xk+1, xk+2, · · · })

= lim
k→∞

P0({xk+1, xk+2, · · · }) = 0 ,

almost surely, where we use the Borel–Cantelli lemma when taking the limit of n→ ∞.

If P0 is continuous, we have π(n) = nPn(X) and thus limn→∞
π(n)
n

= limn→∞ Pn(X) =

P0(X) = 1, almost surely.

By the identity that d
du
τk(u, x) = d

du

∫︁∞
0
ske−usρ(s|x)ds = −τk+1(u, x), we can have

the following assumption that is equivalent to assumption 3.3.2.

Assumption 3.3.5. ρx(s) is a function such that u d
du

ln (τk(u, x)) is nonincreasing in u

and bounded from below by Ck(x)− k for all k ∈ Z+ and x ∈ X.

Remark 3.3.6. Theorem 3.3.3 can be extended to more general constructions of NRMIs.

For example, (James, 2002) introduced the h-biased random measures µ̃ by
∫︁
Y×X g(s)Ñ(ds, dx),

where g : Y → R+ is an integrable function on any complete and separable metric space

Y.

One interesting quantity to be considered is n(π), the number of distinct observations

of the sample {Xi}ni=1. In Bayesian nonparametric mixture models, n(π) is the number
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of clusters in the sample observations and thus is studied in a number of works that

are concerning the clustering and so on. Among the literatures let us mention that the

distribution of n(π) is obtained in (Korwar and Hollander, 1973) for the Dirichlet process;

in (Antoniak, 1974) for the mixture of Dirichlet process; in (Pitman, 2003) for the two-

parameter Poisson-Dirichlet process. For the general NRMIs we have by a result of (James

et al., 2009):

Proposition 3.3.7. For any positive integer n, the distribution of n(π) is

P(n(π) = k) =

∫︂ ∞

0

nun − 1

k!
e−

∫︁
X
∫︁∞
0 (1−e−ys)ρ(ds|x)α(dx)

∑︂
(n1,··· ,nk)

k∏︂
j=1

∫︁
X τnj

(u, x)α(dx)

nj!
du,

(3.3.4)

where k = 1, · · · , n, and the summation is over all vectors of positive integers (n1, · · · , nk)

such that
∑︁k

j=1 nj = n.

As we mentioned above, the assumption 3.3.2 is in fact quite easy to verify. We provide

in the following examples to see the applicability of Theorem 3.3.3.

Example 3.3.8. The normalized generalized gamma process NGGP(a, σ, θ,H) (Lijoi

et al., 2003, 2007) is an NRMI with the following homogeneous Lévy intensity

ν(ds, dx) =
1

Γ(1− σ)
s−1−σe−θsdsα(dx) , (3.3.5)

where the parameters σ ∈ (0, 1) and θ > 0. It is easy to see that the Laplace transform

for µ̃(A) is

E
[︁
e−λµ̃(A)

]︁
= exp

{︃
−α(A)

σ
[(λ+ θ)σ − θσ]

}︃
.

When θ → 0, this NRMI yields the homogeneous σ-stable NRMI introduced by (Kingman,

1975). Letting σ → 0, this NRMI becomes the Dirichlet process (Ferguson, 1973). If we

let σ = θ = 1
2
then this NRMI becomes the normalized inverse-Gaussian process (Lijoi

et al., 2005b).
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It is easy to check that for any nonnegative integer k,

τk(u, x) = τk(u) =
1

Γ(1− σ)

∫︂ ∞

0

sk−σ−1e−(u+θ)sds =
Γ(k − σ)

Γ(1− σ)(u+ θ)k−σ
.

It is obvious that u τk+1(u,x)

τk(u,x)
= uk−σ

u+θ
is increasing in u with the upper bound k − σ. Thus,

the assumption 3.3.2 is verified and Theorem 3.3.3 yields that the normalized generalized

gamma process is posterior consistent when σ → 0 (i.e., the Dirichlet process), or when

P0 is discrete.

Example 3.3.9. The generalized Dirichlet process GDP(a, γ,H) (Lijoi et al., 2005a) is

an NRMI with the following homogeneous Lévy intensity

ν(ds, dx) =

γ∑︂
j=1

e−js

s
dsα(dx) , (3.3.6)

where γ is a positive integer. The corresponding Laplace transform of µ̃(A) is

E
[︁
e−λµ̃(A)

]︁
=

(︃
(γ!)

(λ+ 1)γ

)︃α(A)
,

where for c > 0, ck = Γ(c+k)
Γ(c)

is the ascending factorial of c for any positive integer k.

When γ = 1, the generalized Dirichlet process is reduced to the Dirichlet process.

We see easily that for any nonnegative integer k,

τk(u, x) = τk(u) =

γ∑︂
j=1

k

(u+ j)k
.

This means τk+1(u,x)

τk(u,x)
= k

∑︁γ
j=1(u+j)

−k−1∑︁γ
j=1(u+j)

−k ∈ ( k
u+γ

, k
u+1

), which implies u τk+1(u,x)

τk(u,x)
= u k

u+c(γ)

with some constant c(γ) ∈ (1, γ). Thus, u τk+1(u,x)

τk(u,x)
is increasing in u with the upper bound

k. Theorem 3.3.3 can then be used to conclude that the generalized Dirichlet process is

posterior consistent.

Example 3.3.10. As a non-homogeneous example, we consider the extended gamma
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NRMI whose non-homogeneous Lévy intensity is given by

ν(ds, dx) =
e−β(x)s

s
dsα(dx) , (3.3.7)

where β(x) : X → R+ is an integrable function (with respect to α(dx)). Such NRMI is

constructed by the normalization of the extended gamma process on R introduced by (Dyk-

stra and Laud, 1981). More generally, (Lo, 1982) studied the extended Gamma process,

called weighted Gamma process on abstract spaces.

By a trivial computation, for any nonnegative integer k, τk(u, x) =
Γ(k)

(u+β(x))k
and thus

u τk+1(u,x)

τk(u,x)
= u k

u+β(x)
and the assumption 3.3.2 is satisfied. Theorem 3.3.3 implies that

the extended gamma NRMI is posterior consistent when β(x) is integrable with respect to

α(dx).

Our theorem can also be applied to more general NRMIs which haven’t been investi-

gated in previous works. For example, we may naturally consider the following generalized

extended gamma NRMI by letting the Lévy intensity be as follows:

ν(ds, dx) =
r∑︂
i=1

e−βi(x)s

s
dsα(dx),

where r ∈ Z+ and βi(x) : X → R+ are integrable functions (with respect to α(dx)). A

similar argument to that of example 3.3.9 and example 3.3.10 implies that the generalized

extended gamma NRMI is posterior consistent when βi(x) are finite for all i ∈ {1, · · · , r}.

Relying on the results in this section, we have answered the question (i) addressed

in the introduction. The posterior consistency of NRMIs when P0 is continuous doesn’t

hold generally, as the posterior distribution of NRMIs is inconsistent when C̄1 ̸= 0 or

H ̸= P0(Pn). However, it is rare to choose H to be the “true” distribution P0 and it is not

possible to let H = Pn before a sample is observed. Thus, the assumption C̄1 = 0 should

be made to guarantee the posterior consistency for the NRMIs when P0 is continuous.

And, whenever ρx(ds) is gamma type, C̄1 = 0 would reduce the corresponding P to the

Dirichlet process or the generalized Dirichlet process.
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3.4 Bernstein-von Mises theorem for the generalized

normalized gamma process

The Bernstein-von Mises theorem links Bayesian inference with frequentist inference. Sim-

ilarly to the Bernstein-von Mises theorem (Vaart, 1998) in Bayesian parametric frame-

work, one can derive the Bernstein-von Mises theorem in Bayesian nonparametric frame-

work. There has been some works in the literature. One example is the Bernstein-von

Mises theorem for the empirical process Pn =
∑︁n

i=1 δXi

n
(van der Vaart and Wellner, 1996;

Vaart, 1998). With the fact that the maximum likelihood estimator of P0 in the Bayesian

nonparametric sense is Pn =
∑︁n

i=1 δXi

n
, one can conclude the limit law of

√
n(Pn−P0) is nor-

mal distribution. Based on a similar idea, we would consider the limit law of the posterior

distribution of
√
n(P −Pn) given an iid sample X from P0. To explain the Bernstein-von

Mises theorem in the Bayesian nonparametric case, we temporarily let P ∈ MX be any

random probability measure and define the functional as follows:

Pf =

∫︂
fdP, P0f =

∫︂
fdP0, Pnf =

∫︂
fdPn =

∑︁n
i=1 f(Xi)

n
,

where f : X → R is any measurable functions.

Let F be the collection of functions f , the Bernstein-von Mises theorem in the Bayesian

nonparametric case considers the distribution of {
√
n(Pf−Pnf)|X : f ∈ F} and {

√
n(Pnf−

P0f) : f ∈ F}. It is worth to point out that there have been many works for the weak

convergence of stochastic processes indexed by elements of Banach space of functions,

we refer the statisticians to (van der Vaart and Wellner, 1996; Vaart, 1998) for further

reading. When the function collection F is finite, both {
√
n(Pf − Pnf)|X : f ∈ F} and

{
√
n(Pnf − P0f) : f ∈ F} are random vectors in Euclidean space. Otherwise, it is con-

venient to consider the F to be P0−Donsker. Here we recall that F is P0−Donsker if the

sequence
√
n(Pnf − P0f) converges to BoP0

in distribution in the metric space l∞(F) of

bounded functions g : F → R, equipped with the uniform norm ||g||F = supf∈F |g(f)|. And

BoP0
is a Brownian bridge with parameter P0 or P0− Brownian bridge, so that E[BoP0

f ] = 0
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and E[BoP0
f1BoP0

f2] = P0(f1f2) − P0f1P0f2. An notable result is that a finite set F is

P0−Donsker if and only if P0f
2 < ∞ for every f ∈ F. For the infinite P0−Donsker

classes, one can find details and examples in (van der Vaart and Wellner, 1996).

In order to define the weak convergence of
√
n(P − Pn) conditional on X to BoP0

, we

can use the conditional weak convergence in the bounded Lipschitz metric (van der Vaart

and Wellner, 1996) as follows:

sup
h∈BL1

⃓⃓
E
{︁
h(
√
n(P − Pn)|X

}︁
− E[h(BoP0

)]
⃓⃓
→ 0 , (3.4.1)

as n → ∞. The expectation in (3.4.1) is taken for the random probability measure P ,

and thus the left side of (3.4.1) is a function of X. The convergence in (3.4.1) refers to the

iid sample X from P0 and can be in probability or almost surely. The supreme is taken

over the set BL1 of all functions h : l∞(F) → [0, 1] such that |h(f1)− h(f2)| ≤ ||f1 − f2||F,

for all f1, f2 ∈ l∞(F). We denote the above convergence as

√
n(P − Pn)|X⇝ BoP0

.

Under the convergence criteria we explained above, we will present the Bernstein-

von Mises theorem when P ∼ NGGP(a, σ, θ,H). For simplicity of interpretation, let

P̃n =
∑︁n(π)

i=1 δYi
n(π)

.

Theorem 3.4.1. Let X be a sample as defined in (3.1.1) with P ∼ NGGP(a, σ, θ,H).

Let F be the finite collection of functions such that P0f
2 < ∞ and Hf 2 < ∞ for any

f ∈ F. We have the following convergences almost surely under P∞
0 .

(i) If P0 is discrete,

√
n

(︃
P −

{︃
Pn +

σn(π)

n
(H − P̃n)

}︃)︃
|X⇝ BoP0

, (3.4.2)

√
n (P − E[P |X]) |X⇝ BoP0

. (3.4.3)
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(ii) If P0 is continuous,

√
n (P − {(1− σ)Pn + σH}) |X

⇝
√
1− σBoP0

+
√︁
σ(1− σ)BoH +

√
σZ(P0 −H) , (3.4.4)

√
n(P − E[P |X])|X

⇝
√
1− σBoP0

+
√︁
σ(1− σ)BoH +

√
σZ(P0 −H) . (3.4.5)

Here BoP0
, BoH are independent Brownian bridges, independent of the standard normal

random variable Z. Moreover, the convergences hold in probability in l∞(F), for every

P0−Donsker class of functions F for which the NGGP(a, σ, θ,H) process satisfies the cen-

tral limit theorem in l∞(F). If in addition that P0||f −P0f ||2F <∞, then the convergences

is also P∞
0 −almost surely.

We refer to Theorem 2.11.1 and 2.11.9 in (van der Vaart and Wellner, 1996) for more

details of the discussion for F such that the convergence holds in l∞(F).

When P0 is continuous, there is a “bias” term σ(H−Pn) in the convergence in (3.4.4).

And the term vanishes only when σ = 0, under which P becomes the Dirichlet process, or

when H = Pn (H = P0), which is unrealistic. Moreover, the σ equals the C̄1 in Theorem

3.3.3. Thus, it suggests that one is not expected to use NGGP for continuous P0.

On the other hand, it is interesting to see that there is a “bias” term σn(π)
n

(H − P̃n)

in the convergence in (3.4.2) when P0 is discrete to make the limiting process is BoP0
. We

can not drop this “bias” term directly, although limn→∞
n(π)
n

= 0 a.s.. The term can

be dropped as long as limn→∞
n(π)√
n

= 0, in the sense that the number of atoms {xj} in

P0 should decrease fast enough when n → ∞. For a formal condition of P0 to make

limn→∞
n(π)√
n

= 0, we have the following Corollary.

Corollary 3.4.2. Under the conditions in Theorem 3.4.1, when P0 is discrete, we have

the following results.

(i) If P0({xj}) ≤ C
jα
, for some positive constant C and α > 2 and F is the class of

uniformly bounded functions, then
√
n(PUn − Pn)|X⇝ BoP0

in probability in l∞(F).
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(ii) If the function h(t) := #{x : P0({x}) ≥ 1
t
} is regularly varying at ∞ of exponent

η with η < 1
2
and F is the class of uniformly bounded functions, then

√
n(PUn −

Pn)|X⇝ BoP0
a.s. in l∞(F).

(iii) If F is a class of functions f such that f({xj}) ≍ jβ for some β > 0 and P0({xj}) ≤
C
jα
, for some positive constant C and α > 2 + 2β, then

√
n(PUn − Pn)|X ⇝ BoP0

in

probability in l∞(F).

The proof of the above Corollary follows directly from the Corollary 2 in (Franssen

and van der Vaart, 2022). And we recall that if h is regularly varying at ∞ with exponent

η ∈ (0, 1), then for any t > 0, we have limn→∞
h(nt)
h(n)

= tη. Moreover, for such regularly

varying function h, we have n(π)
h(n)

→ Γ(1 − η) a.s., and h(n) is nη up to a slowly varying

factor. We refer the appendix in (Haan and Ferreira, 2006) and (Bingham et al., 1987)

for more details of the regularly varying function.

As the application of the Bernstein-von Mises results in Theorem 3.4.1, we may con-

struct the confidence intervals for P0f when n→ ∞. The choices of f determine the pa-

rameters P0f , for which the credible intervals are constructed. For example, if f(x) = x,

the credible interval is for the mean. Since the posterior consistency does not hold for the

case when P0 is continuous, the credible intervals for P0f is not correct in this case, thus

we shall only give the credible interval for Pf when P0 is discrete.

Corollary 3.4.3. If P0 is discrete, under the conditions in Theorem 3.4.1, we have the

probability of P0f ∈
(︂
Ln,αf − σn(π)

n
(Hf − P̃nf), Ln,βf − σn(π)

n
(Hf − P̃nf)

)︂
is β − α for

any f such that P0f
2 < ∞ and Hf 2 < ∞. Here Ln,α is the α−quantile of the posterior

distribution of Pf |X and β > α.

One direct interpretation of the above Corollary is one may want n(π)
n

→ 0 to make

the “bias” term vanish and therefore the credible interval for P0f becomes a regular form

(Ln,αf, Ln,βf)). Otherwise, the correction σn(π)
n

(Hf−P̃nf) is necessary as a bias correction

to the credible interval. We provide the numerical illustration that corresponding to this

scenario in Section 3.4.1.
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However, P0 is of course unknown in the real application and we shall consider Theo-

rem 3.4.1 without the information from P0. One important parameter that one needs to

pay attention especially is σ, and it is easy to see from both Theorem 3.3.3 and Theorem

3.4.1 that if σ → 0, P is posterior consistent and the Bernstein-von Mises results hold

without the bias terms for any P0. But this corresponds to the case that P becomes

the Dirichlet process. Thus, one should at least expect the parameter σ to be small.

Usually, the model parameters are chosen by the empirical Bayesian method, and people

can estimate the model parameters by using the maximum likelihood estimators condi-

tional on the observations X. A well known conclusion (Pitman, 2003, 2006) in Bayesian

nonparametric framework is the observation X from NRMIs induces a random partition

structure for {1, · · · , n} as we introduced in Section 3.2.2. The random partition struc-

ture is characterized by the exchangeable partition probability function (EPPF) (Pitman,

2003), which also plays the rule as the likelihood function of σ as explained in e.g., (Favaro

and Naulet, 2021; Ghosal and Van der Vaart, 2017; Franssen and van der Vaart, 2022).

And the EPPF for the NGGP is given as

Πσ(n1, · · · , nn(π)) =
∏︁n(π)

j=1 (1− σ)(nj−1)

Γ(n)

∫︂ ∞

0

un−1(u+ θ)n(π)σ−ne
a
σ
((u+θ)σ−θσdu ,

where (1 − σ)(nj−1) =
Γ(nj−σ)
Γ(1−σ) . From Theorem 1 in (Favaro and Naulet, 2021), the max-

imum likelihood estimator σ̂n exists uniquely. Furthermore, the results in Theorem 2 in

(Favaro and Naulet, 2021) implies that σ̂n → σ0 in probability with a rate
√︁
log(n)n−σ0

2 ,

when P0 is discrete with atoms x satisfying h(t) = #{P0({x}) ≥ 1
t
} is a regularly varying

function of exponent σ0 ∈ [0, 1).

Theorem 3.4.4. Under the assumptions in Theorem 3.4.1, we have the following results.

(i) If σ̂n is an estimator based on X that converges to σ0 in probability, then the con-

vergences in Theorem 3.4.1 hold in probability by replacing σn by σ̂n and replacing

σ by σ0. In particular, this is true for the maximum likelihood estimator σ̂n, if P0

is discrete with atoms x satisfying the condition that h(t) = #{P0({x}) ≥ 1
t
} is a
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regularly varying function of exponent σ0 ∈ [0, 1).

(ii) If σ ∼ Lσ, where Lσ is the prior probability law on [0, 1] that plays the law of σ,

then the convergences in Theorem 3.4.1 hold by replacing σn by σ on the left hand

side, and replacing σ by σ0 on the limiting processes.

The proof of the above theorem follows the same constructions as the proof in section

4.2 of (Franssen and van der Vaart, 2022). For the posterior consistency of σ̂n, we refer

to the details with proofs in section 4.3 of (Franssen and van der Vaart, 2022). The

maximum likelihood estimator is not quite interesting since σ̂n → σ0 with σ0 = 1 when

P0 is continuous, and σ0 ̸= 0 when P0 is discrete (Favaro and Naulet, 2021).

Besides the parameter σ, the parameters a and θ don’t appear in the asymptotic

results in Theorem 3.3.3 and Theorem 3.4.1, and thus estimators of a and θ based on

prior distributions or maximum likelihood method won’t affect the convergences when

a <<
√
n and θ << nσ. And the cases when ân and θ̂n converge to ∞ as n → ∞ are

beyond the scope of this work and can be considered in the future works.

3.4.1 Numerical illustration

We present the credible intervals for P0f when P0 is discrete with different behaviours of

the number of atoms. To be more precise, let P0f = P0([2,∞]) for P0 = P1, P2, P3, P4,

where we describe P1, P2, P3, P4 as follows. Let the probability distributions of P1, P2, P3, P4

be on Z+ are as follows.

P1(X = 1) = 0.2, P1(X = 2) = 0.2, P1(X = 3) = 0.2, P1(X = 4) = 0.3, P1(X = 5) = 0.1 ,

P2(X = k) ∝ k−3 , P3(X = k) ∝ k−2 , P4(X = k) ∝ k−
3
2 .

Obviously, n(π) = 5 for P1. From the result (see e.g., Example 4) in (Karlin, 1967), we

have the regularly varying functions h(t) corresponding to P2, P3, P4 are proportional to

t
1
3 , t

1
2 , t

2
3 respectively. And when n → ∞, the distinct numbers n(π) of P2, P3, P4 are

proportional to n
1
3 , n

1
2 , n

2
3 , respectively, from Theorem 1 in (Karlin, 1967). Thus, the
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n 10 100 1000 10000 100000
P1 0.791 0.952 0.961 0.967 0.986
P2 0.695 0.857 0.928 0.917 0.931
P3 0.712 0.785 0.811 0.727 0.754
P4 0.601 0.292 0.078 0.000 0.000

Table 3.1: Proportion of coverage of the true value for the 95% credible interval without
“bias” correction.

n 10 100 1000 10000 100000
P1 0.977 0.989 0.991 0.995 0.997
P2 0.914 0.938 0.951 0.933 0.941
P3 0.863 0.931 0.962 0.960 0.978
P4 0.901 0.955 0.969 0.966 0.956

Table 3.2: Proportion of coverage of the true value for the 95% credible interval with
“bias” correction.

“bias” term for P1, P2, P3, P4 goes to 0, 0, some constant, ∞, respectively.

For the NGGP, we let P ∼ NGGP(1, σ = 0.5, 1, H), where H is standard normal

distribution. We simulate P through its stick-breaking representation with the generating

algorithm in (Favaro et al., 2016). To make sure the simulation of P =
∑︁∞

i=1wiδXi

is accurate, we truncate the infinite sum at some N such that the weight of the tail∑︁∞
i=N wi <

1√
n
, where n is the sample size. We simulate 10000 replications of the sample

X from P1, P2, P3, P4 with the sample size n = 10, 100, 1000, 10000, 100000 respectively.

For the sample from P1, we construct one 95% credible interval for each sample for

P1([2,∞)) with the “bias” correction as in Corollary 3.4.3 and compute the proportion

that the true value P1([2,∞)) belongs to the intervals of 10000 replications. And we also

compute the same proportion without the “bias” correction. The results of P1, P2, P3, P4

are given in tables 3.1 and 3.2.

Since the “bias” terms for P1 and P2 vanish as n→ ∞, the proportions of the coverage

of the true value are large for both with and without “bias” correction. And the 95%

credible intervals for P3f and P4f are not performing good without “bias” correction.

As for the normality convergence, we draw the marginal density plots in figure 3.1
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for P1([2,∞)) given the sample X with size n = 10, 100, 1000, 10000, 100000 respectively.

Both plots are generated from 1000000 replicates, the true mean of P1([2,∞)) is 0.8 The

marginal density for P1([2,∞)) is skewed when n = 10, 100, and symmetric when n = 1000

and larger.

Figure 3.1: The marginal densities for P1([2,∞)) with sample size n =
10, 100, 1000, 10000, 100000 follow the order from top left to bottom right.

3.5 Discussion

To the best of our knowledge, the Lévy intensities of the well-studied NRMIs up-to-date

are given in the form of the gamma density: s−σ−1e−βs. It turns out that with the shape

parameter σ = 0, the posterior consistency is always guaranteed for any “true” prior

distribution P0. Otherwise, the posterior consistency only holds for discrete prior P0

but not for diffusive prior P0. Such phenomenon does naturally make sense due to the

discreteness of NRMIs (the completely random measures (Kingman, 1975)). As explained

in the Bayesian literature, if P0 is diffusive and the prior guess for the sample distribution
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α ̸= P0, then the prior guess will always contribute to the posterior, no matter how large is

the sample size. In such sense, the Bayesian nonparametric models never behave “better”

than the empirical models asymptomatically. However, this doesn’t mean the NRMIs are

not useful. On the one hand, we are not able to know the “true” distribution of a given

sample with any size n, also the sample size n will never be ∞, a prior guess of the random

probability measure based on experience could make the model suitable. On the other

hand, the NRMIs behave great for the data from discrete distributions. Furthermore, the

mixture and hierarchical Bayesian nonparametric models based on NRMIs are showing

great success in the applications and consistency behaviours (Lijoi et al., 2005). And

the class of NRMIs is much larger than we expected, so that more study is necessary

to develop more flexible subclasses of NRMIs or more general NRMIs like classes that

are satisfying the consistency property. The results in this work provides a guideline of

choosing the proper intensity ρx(s), for example, the generalized Dirchlet process and

the generalized extended gamma NRMI are good choice in the Bayesian nonparametric

applications and they both show some flexibility. Besides, we may let σ → 0 by assigning

a randomness on σ, or one may construct α to depend on ρx to deduct C̄1.

Due to the complexity of the posterior of the NRMIs, it is not easy to present a

Bernstein-von Mises like result to give the limiting process of posterior of general NRMIs.

The result for the normalized generalized gamma process, along with the works in (Lo,

1983, 1986; Ray and van der Vaart, 2021; Hu and Zhang, 2022; James, 2008; Franssen

and van der Vaart, 2022), shed some light in discovering the Bernstein-von Mises theorem

for general NRMIs.

3.6 Appendix

In this section, we prove Lemma 3.3.1, Theorem 3.3.3 and Theorem 3.4.1.
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Proof of Lemma 3.3.1

Let I = E[(P (A)|X)m]. Then, by Theorem 3.2.2, I can be computed as follows.

I =

∫︂ ∞

0

E[(P (A)|Un = u,X)m]fUn|X(u|X)du

=

∫︂ ∞

0

E

⎡⎣⎛⎝ µ̃(Un)(A)

T(Un) +
∑︁n(π)

j=1 Jj
+

n(π)∑︂
j=1

JjδYj(A)

T(Un) +
∑︁n(π)

j=1 Jj

⎞⎠m⎤⎦ fUn|X(u|X)du

=
m∑︂
k=0

(︃
m

k

)︃
1

Γ(m)

∫︂ ∞

0

∫︂ ∞

0

ym−1E

[︄
e−y(T(Un)+

∑︁n(π)
j=1 Jj)µ̃(Un)(A)

m−k

×

⎛⎝n(π)∑︂
j=1

JjδYj(A)

⎞⎠k ]︄
fUn|X(u|X)dydu . (3.6.1)

Noticing that T(Un) = µ̃(Un)(A)+µ̃(Un)(A
c), where µ̃(Un)(A) and µ̃(Un)(A

c) are independent,

we can rewrite the expectation in (3.6.1) as

I =
m∑︂
k=0

(︃
m

k

)︃
1

Γ(m)

∫︂ ∞

0

∫︂ ∞

0

ym−1E
[︁
e−yµ̃(Un)(A)µ̃(Un)(A)

m−k]︁E [︁e−yµ̃(Un)(A
c)
]︁

E

⎡⎢⎣e−y(∑︁n(π)
j=1 Jj)

⎛⎝n(π)∑︂
j=1

JjδYj(A)

⎞⎠k
⎤⎥⎦ fUn|X(u|X)dydu

=
m∑︂
k=0

(︃
m

k

)︃
1

Γ(m)

∫︂ ∞

0

∫︂ ∞

0

ym−1(−1)m−kE
[︃
dm−k

dym−k e
−yµ̃(Un)(A)

]︃
E
[︁
e−yµ̃(Un)(A

c)
]︁

⎛⎝∑︂(︃
k

l1, · · · , ln(π)

)︃
E

⎡⎣e−y(∑︁n(π)
j=1 Jj)

n(π)∏︂
j=1

J
lj
j δYj(A)

⎤⎦⎞⎠ fUn|X(u|X)dydu

=
m∑︂
k=0

(︃
m

k

)︃
1

Γ(m)

∫︂ ∞

0

∫︂ ∞

0

ym−1(−1)m−kE[
dm−k

dym−k e
−yµ̃(Un)(A)]E[e−yµ̃(Un)(A

c)]⎛⎝∑︂(︃
k

l1, · · · , ln(π)

)︃
E[

n(π)∏︂
j=1

(−1)lj
dlj

dy
lj
e−yJjδYj(A)]

⎞⎠ fUn|X(u|X)dydu ,

where the sum in front of
(︁

k
l1,··· ,ln(π)

)︁
is over all the vector (l1, · · · , ln(π)) such that

∑︁n(π)
j=1 lj =

k. Taking the derivatives inside the expectation and using the Laplace transform of
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µ̃(Un)(A), we have

I =
m∑︂
k=0

(︃
m

k

)︃
1

Γ(m)

∫︂ ∞

0

∫︂ ∞

0

ym−1(−1)m−k d
m−k

dym−kE[e
−yµ̃(Un)(A)]E[e−yµ̃(Un)(A

c)]⎛⎝∑︂(︃
k

l1, · · · , ln(π)

)︃ n(π)∏︂
j=1

τnj+lj(u+ y, Yj)

τnj
(u, Yj)

δYj(A)

⎞⎠ fUn|X(u|X)dydu

=
m∑︂
k=0

(︃
m

k

)︃
1

Γ(m)

∫︂ ∞

0

∫︂ ∞

0

ym−1V
(m−k)
α(A) (u, y)e−ψX(u,y)

⎛⎝∑︂(︃
k

l1, · · · , ln(π)

)︃ n(π)∏︂
j=1

τnj+lj(u+ y, Yj)

τnj
(u, Yj)

δYj(A)

⎞⎠ fUn|X(u|X)dydu ,

(3.6.2)

where ψX(u, y) =
∫︁
X

∫︁∞
0
(1− e−ys)e−usρ(ds|x)α(dx). By the fact that

fUn|X(u|X) ∝ un−1e−ψX(u)

n(π)∏︂
j=1

τnj
(u, Yj)

and e−ψX(u)e−ψX(u,y) = e−ψX(u+y), we further simplify (3.6.2) to

I =
m∑︂
k=0

(︃
m

k

)︃
1

Γ(m)

∫︂ ∞

0

∫︂ ∞

0

ym−1un−1V
(m−k)
α(A) (u+ y)e−ψX(u+y)

⎛⎝∑︂(︃
k

l1, · · · , ln(π)

)︃ n(π)∏︂
j=1

τnj+lj(u+ y, Yj)δYj(A)

⎞⎠ dydu

=
m∑︂
k=0

(︃
m

k

)︃
1

Γ(m)

∫︂ ∞

0

∫︂ ∞

0

ym−1un−1V
(m−k)
α(A) (u+ y)e−ψX(u+y)

n(π)∏︂
j=1

τnj
(u+ y, Yj)⎛⎝∑︂(︃

k

l1, · · · , ln(π)

)︃ n(π)∏︂
j=1

τnj+lj(u+ y, Yj)

τnj
(u+ y, Yj)

δYj(A)

⎞⎠ dydu .

The change of variable (w, z) = (u+ y, u) yields

I =
m∑︂
k=0

(︃
m

k

)︃
1

Γ(m)

∫︂ ∞

0

∫︂ w

0

(w − z)m−1zn−1V
(m−k)
α(A) (w)e−ψX(w)

n(π)∏︂
j=1

τnj
(w, Yj)
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⎛⎝∑︂(︃
k

l1, · · · , ln(π)

)︃ n(π)∏︂
j=1

τnj+lj(w, Yj)

τnj
(w, Yj)

δYj(A)

⎞⎠ dzdw .

Using

∫︂ w

0

(w − z)m−1zn−1dz = wm+n−1Γ(m)Γ(n)

Γ(m+ n)
,

we obtain

I =
m∑︂
k=0

(︃
m

k

)︃
1

Γ(m)

Γ(m)Γ(n)

Γ(m+ n)

∫︂ ∞

0

wn+m−1V
(m−k)
α(A) (w)e−ψX(w)

n(π)∏︂
j=1

τnj
(w, Yj)⎛⎝∑︂(︃

k

l1, · · · , ln(π)

)︃ n(π)∏︂
j=1

τnj+lj(w, Yj)

τnj
(w, Yj)

δYj(A)

⎞⎠ dw

=
Γ(n)

Γ(m+ n)

m∑︂
k=0

(︃
m

k

)︃∫︂ ∞

0

wmfUn(w)V
(m−k)
α(A) (w)⎛⎝∑︂(︃

k

l1, · · · , ln(π)

)︃ n(π)∏︂
j=1

τnj+lj(w, Yj)

τnj
(w, Yj)

δYj(A)

⎞⎠ dw

=
Γ(n)

Γ(m+ n)

m∑︂
0≤l1+···+ln(π)≤m

(︃
m

l1, · · · , ln(π)

)︃∫︂ ∞

0

wmfUn(w)V
(m−(l1+···+ln(π)))

α(A) (w)

⎛⎝n(π)∏︂
j=1

τnj+lj(w, Yj)

τnj
(w, Yj)

δYj(A)

⎞⎠ dw .

This is (3.3.2).

For any family of pairwise disjoint sets {A1, · · · , Aq} in X and for any positive integers

{m1, · · · ,mq} we denote Aq+1 = (∪qi=1Ai)
c, mq+1 = 0, and m =

∑︁q
i=1mi. For any sample

{Xi}ni=1 from P , let {Yj}n(π)j=1 be the distinct values of {Xi}ni=1. Let λi = {j : Yj ∈ Ai} be

the set of the index of Yj’s that in Ai and we denote by max(λi) the maximal value in λi.

We can compute the following moments easily.

L :=E [P (A1)
m1 · · ·P (Aq)mq |X] (3.6.3)

=

∫︂ ∞

0

E [P (A1)
m1 · · ·P (Aq)mq |Un = u,X] fUn|X(u|X)du
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=
1

Γ(m)

∫︂ ∞

0

∫︂ ∞

0

ym−1E

⎡⎣e−y(Tu+∑︁n(π)
j=1 Jj)

q+1∏︂
i=1

⎛⎝µu(Ai) + n(π)∑︂
j=1

JjδYj(Ai)

⎞⎠mi
⎤⎦ fUn|X(u|X)dydu

=
1

Γ(m)

∫︂ ∞

0

∫︂ ∞

0

ym−1

q+1∏︂
i=1

{︄
mi∑︂
k=0

E
[︁
e−yµu(Ai)µu(Ai)

mi−k
]︁

E

⎡⎣e−y(∑︁j∈λi
Jj)

(︄∑︂
j∈λi

Jj

)︄k
⎤⎦}︄fUn|X(u|X)dydu .

A similar computation as that for I yields

L =
Γ(n)

Γ(m+ n)

∫︂ ∞

0

wn+m−1e−ψX(w)

n(π)∏︂
j=1

τnj
(w, Yj)

q+1∏︂
i=1

{︄
mi∑︂

0≤l1+···+lmax(λi)
≤mi

(︃
mi

l1, · · · , lmax(λi)

)︃

V
(mi−(l1+···+lmax(λi)

))

α(Ai)
(w)

(︄∏︂
j∈λi

τnj+lj(w, Yj)

τnj
(w, Yj)

)︄}︄
dw

=
Γ(n)

Γ(m+ n)

∫︂ ∞

0

wmfUn|X(w|X)

q+1∏︂
i=1

{︄
mi∑︂

0≤l1+···+lmax(λi)
≤mi

(︃
mi

l1, · · · , lmax(λi)

)︃

V
(mi−(l1+···+lmax(λi)

))

α(Ai)
(w)

(︄∏︂
j∈λi

τnj+lj(w, Yj)

τnj
(w, Yj)

)︄}︄
dw .

This is part (ii) of the theorem. Then the proof of lemma 3.3.1 is completed.

Proof of Theorem 3.3.3

We need the following lemma to prove Theorem 3.3.3.

Lemma 3.6.1. Under the assumption 3.3.2, we have for any y ∈ X and k ∈ Z+,

lim
n→∞

∫︂ ∞

0

τk(u, y)fUn|X(u|X)du = k − Ck(y) . (3.6.4)

Proof. Let gn(u) be a constant multiple of the density of fUn|X(u|X) given by (3.2.10).

Namely,

gn(u) =u
n−1e−ψ(u)

n(π)∏︂
j=1

τnj
(u, Yj)
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=un−1e−a
∫︁
X
∫︁∞
0 (1−e−us)ρ(ds|x)H(dx)

n(π)∏︂
j=1

∫︂ ∞

0

snje−usρ(ds|Yj) (3.6.5)

fUn|X(u|X) =
gn(u)∫︁∞

0
gn(u)du

. (3.6.6)

The derivative of gn(u) is computed as follows,

g′n(u) = un−2e−ψX(u)

n(π)∏︂
j=1

τnj
(u, Yj)

⎡⎣n− 1−

⎛⎝u∫︂
X
τ1(u, y)α(dy) +

n(π)∑︂
j=1

u
τnj+1(u, Yj)

τnj
(u, Yj)

⎞⎠⎤⎦ .

Let hn(u) = u
∫︁
X τ1(u, y)α(dy), then h′n(u) =

∫︁
X (τ1(u, y)− uτ2(u, y))α(dy). By the as-

sumption 3.3.2, u τ2(u,y)
τ1(u,y)

≤ 1. This means h′n(u) ≥ 0 and then hn(u) is nondecreasing in u.

Similarly, from the assumption 3.3.2, it follows that u
τnj+1(u,Yj)

τnj (u,Yj)
is also nondecreasing in u

for all nj. Thus, we have

g̃n(u) := u

∫︂
X
τ1(u, y)α(dy) +

n(π)∑︂
j=1

u
τnj+1(u, Yj)

τnj
(u, Yj)

is nondecreasing in u. Since gn(u) is a continuously differentiable function such that∫︁∞
0
gn(u)du <∞, it is then bounded and attain its maximum point at some point u2n,n(π)

satisfying g′n(u
2
n,n(π)) = 0 or g̃n(u

2
n,n(π)) = n−1. Note that g̃n is also a continuous function

and is then bounded on bounded interval. We claim that u2n,n(π) → ∞ as n → ∞. In

fact, by assumption 3.3.2, u τk+1(u,y)

τk(u,y)
≤ ϕ(u)(k − Ck(y)), ∀k ∈ Z+ and y ∈ X, for some

function ϕ(u) ∈ (0, 1) which is nondecreasing in u and limu→∞ ϕ(u) = 1. Assume that

u2n,n(π) < ∞ as n → ∞. Then, ϕ(u2n,n(π)) = α < 1, which implies
∑︁n(π)

j=1 u
τnj+1(u,Yj)

τnj (u,Yj)
<

α
(︂
n−

∑︁n(π)
j=1 Cj(Yj)

)︂
. Therefore,

n− 1 = g̃n(u
2
n,n(π)) < u2n,n(π)

∫︂
X
τ1(u

2
n,n(π), y)α(dy) + α

⎛⎝n−
n(π)∑︂
j=1

Cj(Yj)

⎞⎠ ,
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which implies

n(1− α) + α

n(π)∑︂
j=1

Cj(Yj)− 1 < u2n,n(π)

∫︂
X
τ1(u

2
n,n(π), y)α(dy) <∞ ,

which is a contradiction.

Denote

τ̃ k(u, y) = u
τk+1(u, y)

τk(u, y)
.

And let un,n(π) be the positive square root of u2n,n(π), thus un,n(π) → ∞ as n→ ∞. Then,

we have the following inequalities,

k − Ck(y) ≥
∫︂ ∞

0

u
τk+1(u, y)

τk(u, y)
fUn|X(u|X)du =

∫︁∞
0
τ̃ k(u, y)gn(u)du∫︁∞
0
gn(u)du

≥

∫︁∞
un,n(π)

τ̃ k(u, y)gn(u)du∫︁∞
0
gn(u)du

≥ τ̃ k(un,n(π), y)

∫︁∞
un,n(π)

gn(u)du∫︁∞
0
gn(u)du

= τ̃ k(un,n(π), y)

(︄
1 +

∫︁ un,n(π)

0
gn(u)du∫︁∞

un,n(π)
gn(u)du

)︄−1

≥ τ̃ k(un,n(π), y)

⎛⎝1 +

∫︁ un,n(π)

0
gn(u)du∫︁ u2

n,n(π)
un,n(π)

gn(u)du

⎞⎠−1

≥ τ̃ k(un,n(π), y)

⎛⎝1 +

∫︁ un,n(π)

0
gn(un,n(π))du∫︁ u2

n,n(π)
un,n(π)

gn(un,n(π))du

⎞⎠−1

= τ̃ k(un,n(π), y)

(︄
1 +

un,n(π)gn(un,n(π))

(u2n,n(π) − un,n(π))gn(un,n(π))

)︄−1

= (un,n(π) − 1)
τk+1(un,n(π), y)

τk(un,n(π), y)

n→∞→ k − Ck(y) . (3.6.7)

The last limit in eq. (3.6.7) is due to the following form

lim
n→∞

(un,n(π) − 1)
τk+1(un,n(π), y)

τk(un,n(π), y)
= lim

n→∞

(un,n(π) − 1)

un,n(π)
τ̃ k(un,n(π), y) ,

and limn→∞
(un,n(π)−1)

un,n(π)
= 1, limn→∞ τ̃ k(un,n(π), y) = limu→∞ τ̃ k(u, y) = k − Ck(y) by as-

sumption 3.3.2. This completes the proof of the lemma.
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Now we are ready to give the proof of Theorem 3.3.3. To emphasise the finiteness of

α, we use the notation that α = aH, where a = α(X) is finite and H is some probability

measure.

We would follow the similar idea as that in (Freedman and Diaconis, 1983) to define

a class of semi-norms on MX such that convergence under such norms implies weak con-

vergence. Let A = {Ai}∞i=1 be a measurable partition of X. The semi-norm between two

probability measures P1 and P2 in MX with respect to the partition A is defined by

|P1 − P2|A =

⌜⃓⃓⎷ ∞∑︂
i=1

[P1(Ai)− P2(Ai)]2 . (3.6.8)

In order to show the posterior distribution of NRMI concentrates around its posterior

mean, we have the following lemma.

Lemma 3.6.2. For any given measurable partition A,

E
[︁
|P − E[P |X]|2A|X

]︁
=

∞∑︂
i=1

Var[P (Ai)|X] → 0 , (3.6.9)

a.s.-P∞
0 as n→ ∞.

Proof. To prove this claim, we shall evaluate the first and second posterior moments of

P for any A ∈ X . For the first moment we have

E[P (A)|X] =
1

n

∫︂ ∞

0

ufUn(u)V
(1)
α(A)(u)du+

1

n

n(π)∑︂
j=1

∫︂ ∞

0

ufUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

δYj(A)du

=
a

n

∫︂ ∞

0

ufUn(u)

∫︂
A

τ1(u, x)H(dx)du+
1

n

n(π)∑︂
j=1

∫︂ ∞

0

ufUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

δYj(A)du .

For the second moment we have

E[P (A)2|X] =
a

n(n+ 1)

∫︂ ∞

0

u2fUn|X(u|X)

∫︂
A

τ2(u, x)H(dx)du

+
a2

n(n+ 1)

∫︂ ∞

0

u2fUn|X(u|X)

(︃∫︂
A

τ1(u, x)H(dx)

)︃2

du
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+ 2
a

n(n+ 1)

n(π)∑︂
j=1

∫︂ ∞

0

u2fUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

δYj(A)

∫︂
A

τ1(u, x)H(dx)du

+
1

n(n+ 1)

n(π)∑︂
j=1

∫︂ ∞

0

u2fUn|X(u|X)
τnj+2(u, Yj)

τnj
(u, Yj)

δYj(A)du

+ 2
1

n(n+ 1)

n(π)∑︂
j ̸=k

∫︂ ∞

0

u2fUn|X(u|X)
τnk+1(u, Yk)

τnk
(u, Yk)

τnj+1(u, Yj)

τnj
(u, Yj)

δYi(A)δYj(A)du .

Then, we can write

∞∑︂
i=1

Var[P (Ai)|X] =
∞∑︂
i=1

(︁
E[P (A)2|X]− E[P (A)|X]2

)︁
= J1 + J2 + J3 + J4 ,

where the terms J1, J2, J3, J4 are defined as follows.

J1 =
a

n(n+ 1)

∫︂ ∞

0

u2fUn|X(u|X)

∫︂
X
τ2(u, x)H(dx)du

+
a2

n(n+ 1)

∞∑︂
i=1

∫︂ ∞

0

u2fUn|X(u|X)

(︃∫︂
Ai

τ1(u, x)H(dx)

)︃2

du

− a2

n2

∞∑︂
i=1

(︃∫︂ ∞

0

ufUn(u)

∫︂
Ai

τ1(u, x)H(dx)du

)︃2

; (3.6.10)

J2 =2
a

n(n+ 1)

∞∑︂
i=1

n(π)∑︂
j=1

∫︂ ∞

0

u2fUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

δYj(Ai)

×
∫︂
Ai

τ1(u, x)H(dx)du− 2
a

n2

∞∑︂
i=1

n(π)∑︂
j=1

∫︂ ∞

0

ufUn(u)

∫︂
Ai

τ1(u, x)H(dx)du

×
∫︂ ∞

0

ufUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

δYj(Ai)du ; (3.6.11)

J3 =
1

n(n+ 1)

∞∑︂
i=1

n(π)∑︂
j=1

∫︂ ∞

0

u2fUn|X(u|X)
τnj+2(u, Yj)

τnj
(u, Yj)

δYj(Ai)du

− 1

n2

∞∑︂
i=1

n(π)∑︂
j=1

(︃∫︂ ∞

0

ufUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

δYj(Ai)du

)︃2

(3.6.12)
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=
1

n(n+ 1)

n(π)∑︂
j=1

∫︂ ∞

0

u2fUn|X(u|X)
τnj+2(u, Yj)

τnj
(u, Yj)

du

− 1

n2

n(π)∑︂
j=1

(︃∫︂ ∞

0

ufUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

du

)︃2

; (3.6.13)

and

J4 =2
1

n(n+ 1)

∞∑︂
i=1

n(π)∑︂
j ̸=k

∫︂ ∞

0

u2fUn|X(u|X)
τnk+1(u, Yk)

τnk
(u, Yk)

τnj+1(u, Yj)

τnj
(u, Yj)

δYk(Ai)δYj(Ai)du

− 2
1

n2

∞∑︂
i=1

n(π)∑︂
j ̸=k

∫︂ ∞

0

ufUn|X(u|X)
τnk+1(u, Yk)

τnk
(u, Yk)

δYk(Ai)du

×
∫︂ ∞

0

ufUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

δYj(Ai)du . (3.6.14)

We will first consider the terms J2, J3, J4 and then J1. But before dealing with them,

we need some prior preparations. By the identity E[P (X)|X] = 1 we have

a

n

∫︂ ∞

0

ufUn(u)

∫︂
X
τ1(u, x)H(dx)du+

1

n

n(π)∑︂
j=1

∫︂ ∞

0

ufUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

du = 1 .

By Lemma 3.6.1, we have the approximation

a

n

∫︂ ∞

0

ufUn|X(u)

∫︂
X
τ1(u, x)H(dx)du

n∼
∑︁n(π)

j=1 Cnj
(Yj)

n
(3.6.15)

as n is large. On the other hand, let un,n(π) be the maximal point of gn(u) as in Lemma

3.6.1. Under the assumption 3.3.2, we know that uτ1(u, x) is nondecreasing in u for all x.

We have

a

∫︂ un,n(π)

0

ufUn|X(u)

∫︂
X
τ1(u, x)H(dx)du (3.6.16)

= a

∫︁ un,n(π)

0
ugn(u)

∫︁
X τ1(u, x)H(dx)du∫︁∞

0
gn(u)du

≤ aun,n(π)

∫︂
X
τ1(un,n(π), x)H(dx)

∫︁ un,n(π)

0
gn(u)du∫︁∞

0
gn(u)du
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= aun,n(π)

∫︂
X
τ1(un,n(π), x)H(dx)

(︄
1 +

∫︁∞
un,n(π)

gn(u)du∫︁ un,n(π)

0
gn(u)du

)︄−1

≤ aun,n(π)

∫︂
X
τ1(un,n(π), x)H(dx)

⎛⎝1 +

∫︁ u2
n,n(π)

un,n(π)
gn(un,n(π))du∫︁ un,n(π)

0
gn(un,n(π))du

⎞⎠−1

= aun,n(π)

∫︂
X
τ1(un,n(π), x)H(dx)

(︃
1 +

un,n(π)(un,n(π) − 1)gn(un,n(π))

un,n(π)gn(un,n(π))

)︃−1

= a

∫︂
X
τ1(un,n(π), x)H(dx) , (3.6.17)

which goes to 0 as n → ∞ by the Monotone convergence theorem, since τ1(u, x) is

decreasing to 0 in u for all x. Combining the above computation with the approximation

(3.6.15), we have

lim
n→∞

a∑︁n(π)
j=1 Cnj

(Yj)

∫︂ ∞

un,n(π)

ufUn|X(u)

∫︂
X
τ1(u, x)H(dx)du = 1 . (3.6.18)

Step 1: Evaluation of J2.

Notice first that for any Ai and Yj, by the assumption 3.3.2, we will have

I1 :=

∫︂ ∞

0

u2
τnj+1(u, Yj)

τnj
(u, Yj)

δYj(Ai)

∫︂
Ai

τ1(u, x)H(dx)fUn|X(u|X)du

≤
(︁
nj − Cnj

(Yj)
)︁
δYj(Ai)

∫︂ ∞

0

ufUn|X(u|X)

∫︂
Ai

τ1(u, x)H(dx)du . (3.6.19)

On the other hand,

I1 ≥
∫︂ ∞

un,n(π)

u2
τnj+1(u, Yj)

τnj
(u, Yj)

δYj(Ai)

∫︂
Ai

τ1(u, x)H(dx)fUn|X(u|X)du

≥ un,n(π)
τnj+1(un,n(π), Yj)

τnj
(un,n(π), Yj)

δYj(Ai)

∫︂ ∞

un,n(π)

ufUn|X(u)

∫︂
X
τ1(u, x)H(dx)du . (3.6.20)

By the above inequalities (3.6.19), (3.6.20) and the approximation (3.6.15), (3.6.18), we

can see as n becomes large

∫︂ ∞

0

u2fUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

δYj(Ai)

∫︂
Ai

τ1(u, x)H(dx)du
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n∼
∫︂ ∞

0

ufUn(u)

∫︂
Ai

τ1(u, x)H(dx)du

∫︂ ∞

0

ufUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

δYj(Ai)du .

Thus, for large n, we have

J2
n∼ 2

(︃
a

n(n+ 1)
− a

n2

)︃ ∞∑︂
i=1

n(π)∑︂
j=1

(︁
nj − Cnj

(Yj)
)︁
δYj(Ai)

×
∫︂ ∞

0

ufUn|X(u|X)

∫︂
Ai

τ1(u, x)H(dx)du

n∼ 2

(︃
a

n(n+ 1)
− a

n2

)︃ n(π)∑︂
j=1

(︁
nj − Cnj

(Yj)
)︁ ∫︂ ∞

0

ufUn|X(u|X)

∫︂
X
τ1(u, x)H(dx)du .

This combined with (3.6.15) yields

J2
n∼ −2

(︂
n−

∑︁n(π)
j=1 Cnj

(Yj)
)︂(︂∑︁n(π)

j=1 Cnj
(Yj)

)︂
n2(n+ 1)

, (3.6.21)

which has order O( 1
n
).

Step 2: Evaluation of J3.

For J3, notice that under the assumption 3.3.2, we have

u2
τnj+2(u, Yj)

τnj
(u, Yj)

= u
τnj+2(u, Yj)

τnj+1(u, Yj)
× u

τnj+1(u, Yj)

τnj
(u, Yj)

is nondecreasing in u and is bounded by (nj + 1 − Cnj+1(Yj))(nj − Cnj
(Yj)). Using a

similar approach as that in Lemma 3.6.1, we have as n is large,

∫︂ ∞

0

u2fUn|X(u|X)
τnj+2(u, Yj)

τnj
(u, Yj)

du
n∼ (nj + 1− Cnj+1(Yj))(nj − Cnj

(Yj)) . (3.6.22)

Combining it with Lemma 3.6.1, we have as n becomes large

J3
n∼ 1

n(n+ 1)

n(π)∑︂
j=1

(nj + 1− Cnj+1(Yj))(nj − Cnj
(Yj))−

1

n2

n(π)∑︂
j=1

(nj − Cnj
(Yj))

2

=
1

n2(n+ 1)

n(π)∑︂
j=1

(nj − Cnj
(Yj))

(︁
n+ (n+ 1)Cnj

− nj − nCnj+1

)︁
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≤2
n−

(︂∑︁n(π)
j=1 Cnj

(Yj)
)︂

n(n+ 1)
, (3.6.23)

which has order at most O( 1
n
).

Step 3: Evaluation of J4.

For J4, we have that under the assumption 3.3.2, u2
τnk+1(u,Yk)

τnk
(u,Yk)

τnj+1(u,Yj)

τnj (u,Yj)
is nondecreas-

ing in u and is bounded by (nk − Cnk
(Yk))(nj − Cnj

(Yj)). Using a similar argument to

that in Lemma 3.6.1 leads to

∫︂ ∞

0

u2fUn|X(u|X)
τnk+1(u, Yk)

τnk
(u, Yk)

τnj+1(u, Yj)

τnj
(u, Yj)

du

n∼
∫︂ ∞

0

ufUn|X(u|X)
τnk+1(u, Yk)

τnk
(u, Yk)

du

∫︂ ∞

0

ufUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

du

n∼ (nk − Cnk
(Yk))(nj − Cnj

(Yj)) .

Thus

J4
n∼ 2

(︃
1

n(n+ 1)
− 1

n2

)︃ ∞∑︂
i=1

n(π)∑︂
j ̸=k

(nk − Cnk
(Yk))(nj − Cnj

(Yj))δYk(Ai)δYj(Ai)

n∼ −
2
∑︁n(π)

j ̸=k (nk − Cnk
(Yk))(nj − Cnj

(Yj))

n2(n+ 1)
,

which has an order at most O( 1
n
).

Step 4: Evaluation of J1.

Finally, we deal with the term J1. Notice that E[P (X)2|X] = 1. Using the computation

we obtained for J2, J3, J4, we have

1 = E[P (X)2|X] =
a

n(n+ 1)

∫︂ ∞

0

u2fUn|X(u|X)

∫︂
X
τ2(u, x)H(dx)du

+
a2

n(n+ 1)

∫︂ ∞

0

u2fUn|X(u|X)

(︃∫︂
X
τ1(u, x)H(dx)

)︃2

du

+ 2
a

n(n+ 1)

n(π)∑︂
j=1

∫︂ ∞

0

u2fUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

∫︂
X
τ1(u, x)H(dx)du
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+
1

n(n+ 1)

n(π)∑︂
j=1

∫︂ ∞

0

u2fUn|X(u|X)
τnj+2(u, Yj)

τnj
(u, Yj)

du

+ 2
1

n(n+ 1)

n(π)∑︂
j ̸=k

∫︂ ∞

0

u2fUn|X(u|X)
τnk+1(u, Yk)

τnk
(u, Yk)

τnj+1(u, Yj)

τnj
(u, Yj)

du

n∼ a

n(n+ 1)

∫︂ ∞

0

u2fUn|X(u|X)

∫︂
X
τ2(u, x)H(dx)du

+
a2

n(n+ 1)

∫︂ ∞

0

u2fUn|X(u|X)

(︃∫︂
X
τ1(u, x)H(dx)

)︃2

du

+ 2

(︂∑︁n(π)
j=1 Cnj

(Yj)
)︂(︂

n−
(︂∑︁n(π)

j=1 Cnj
(Yj)

)︂)︂
n(n+ 1)

+

∑︁n(π)
j=1 (nj + 1− Cnj+1(Yj)−

nj−Cnj

n
)(nj − Cnj

(Yj))

n(n+ 1)

+ 2

∑︁n(π)
j ̸=k (nk − Cnk

(Yk))(nj − Cnj
(Yj))

n(n+ 1)
.

This implies

a

n(n+ 1)

∫︂ ∞

0

u2fUn|X(u|X)

∫︂
X
τ2(u, x)H(dx)du

+
a2

n(n+ 1)

∫︂ ∞

0

u2fUn|X(u|X)

(︃∫︂
X
τ1(u, x)H(dx)

)︃2

du

n∼
n+

(︂∑︁n(π)
j=1 Cnj

(Yj)
)︂2

−
∑︁n(π)

j=1 (nj − Cnj
(Yj))(1 + Cnj

− Cnj+1 −
nj−Cnj

n
)

n(n+ 1)
. (3.6.24)

Combining the approximations (3.6.15) and (3.6.24), we have

J1 =
a

n(n+ 1)

∫︂ ∞

0

u2fUn|X(u|X)

∫︂
X
τ2(u, x)H(dx)du

+
a2

n(n+ 1)

∫︂ ∞

0

u2fUn|X(u|X)

(︃∫︂
X
τ1(u, x)H(dx)

)︃2

du

− a2

n2

(︃∫︂ ∞

0

ufUn(u)

∫︂
X
τ1(u, x)H(dx)du

)︃2

+ 2
∞∑︂
i ̸=l

∫︂ ∞

0

ufUn(u)

∫︂
Ai

τ1(u, x)H(dx)du

∫︂ ∞

0

ufUn(u)

∫︂
Al

τ1(u, x)H(dx)du

− 2
∞∑︂
i ̸=l

∫︂ ∞

0

u2fUn|X(u|X)

∫︂
Ai

τ1(u, x)H(dx)

∫︂
Al

τ1(u, x)H(dx)du
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n∼
n+

(︂∑︁n(π)
j=1 Cnj

(Yj)
)︂2

−
∑︁n(π)

j=1 (nj − Cnj
(Yj))(1 + Cnj

− Cnj+1 −
nj−Cnj

n
)

n(n+ 1)

−

(︂∑︁n(π)
j=1 Cnj

(Yj)
)︂2

n2

+ 2
a2

n2

∞∑︂
i ̸=l

∫︂ ∞

0

ufUn(u)

∫︂
Ai

τ1(u, x)H(dx)du

∫︂ ∞

0

ufUn(u)

∫︂
Al

τ1(u, x)H(dx)du

− 2
a2

n(n+ 1)

∞∑︂
i ̸=l

∫︂ ∞

0

u2fUn|X(u|X)

∫︂
Ai

τ1(u, x)H(dx)

∫︂
Al

τ1(u, x)H(dx)du . (3.6.25)

We now treat the above last two summation terms. First, we have

2
∞∑︂
i ̸=l

∫︂ ∞

0

ufUn(u)

∫︂
Ai

τ1(u, x)H(dx)du

∫︂ ∞

0

ufUn(u)

∫︂
Al

τ1(u, x)H(dx)du

n∼
(︃∫︂ ∞

0

ufUn(u)

∫︂
X
τ1(u, x)H(dx)du

)︃2

and

2
∞∑︂
i ̸=l

∫︂ ∞

0

u2fUn|X(u|X)

∫︂
Ai

τ1(u, x)H(dx)

∫︂
Al

τ1(u, x)H(dx)du

n∼
∫︂ ∞

0

u2fUn|X(u|X)

(︃∫︂
X
τ1(u, x)H(dx)

)︃2

du .

Thus,

J1
n∼
n2 − n

∑︁n(π)
j=1 (nj − Cnj

(Yj))(1 + Cnj
− Cnj+1)−

(︂∑︁n(π)
j=1 Cnj

(Yj)
)︂2

n2(n+ 1)
.

It is easy to have that

n(π)∑︂
j=1

(nj − Cnj
(Yj))(1 + Cnj

− Cnj+1) ≤ 3n

n(π)∑︂
j=1

(nj − Cnj
(Yj)) ≤ 3n2 .

Thus J1 has an order O( 1
n
).
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Summarizing the above four steps for evaluating J1, J2, J3, J4, we have

∞∑︂
i=1

Var[P (Ai)|X]
n∼ O(

1

n
) → 0 as n→ ∞ .

Now, we can give the completion of theorem 3.3.3.

Proof. By lemma 3.6.2, the distribution of P (·|X) converges weakly to the point mass at

the distribution of limn→∞ E[P (dx)|X].

If the “true” distribution P0 of X is continuous, the posterior expectation has the

following form for any A ∈ X .

E[P (A)|X] =
a

n

∫︂ ∞

0

ufUn(u)

∫︂
A

τ1(u, x)H(dx)du

+
1

n

n∑︂
j=1

∫︂ ∞

0

ufUn|X(u|X)
τ2(u,Xj)

τ1(u,Xj)
δXj

(A)du . (3.6.26)

As n → ∞, by (3.6.7), the weight
∫︁∞
0
ufUn|X(u|X)

τ2(u,Xj)

τ1(u,Xj)
du

n∼ 1 − C1(Xj), thus the

second part of the summation in (3.6.26) has the form
∑︁n

j=1
1−C1(Xj)

n
δXj

(A) that converges

uniformly over Glivenko-Cantelli classes to (1 − C1̄)P0. Since the sum of the weights of

H(dx) and δXj
(dx) is equal to 1, we have limn→∞ E[P (·)|X] = C1̄H(·) + (1− C1̄)P0(·).

If the “true” distribution P0 of X is discrete with limn→∞
n(π)
n

= 0, the posterior

expectation has the following form:

E[P (A)|X] =
a

n

∫︂ ∞

0

ufUn(u)

∫︂
A

τ1(u, x)H(dx)du

+
1

n

n(π)∑︂
j=1

∫︂ ∞

0

ufUn|X(u|X)
τnj+1(u, Yj)

τnj
(u, Yj)

δYj(A)du . (3.6.27)

As n→ ∞, by (3.6.7),
∫︁∞
0
ufUn|X(u|X)

τnj+1(u,Yj)

τnj (u,Yj)

n∼ nj − Cnj
(Yj). Hence, the second part
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of the summation in (3.6.27) has the form
∑︁n(π)

j=1

nj−Cnj (Yj)

n
δYj(A). Notice that

n(π)∑︂
j=1

nj − Cnj
(Yj)

n
δYj(A) =

n∑︂
i=1

1

n
δXi

(A)−
n(π)∑︂
j=1

Cnj
(Yj)

n
δYj(A) ,

where the term
∑︁n(π)

j=1

Cnj (Yj)

n
≤
∑︁n(π)

j=1
1
n
= n(π)

n
converges to 0. Thus the weight ofH(dx) is

0 and we have limn→∞ E[P (·)|X] = P0(·). This completes the proof of Theorem 3.3.3.

Proof of Theorem 3.4.1

As the preparation of the proof of theorem 3.4.1, we shall present the posterior process

of NGGP(a, σ, θ,H) followed by theorem 3.2.2.

Lemma 3.6.3. If P ∼ NGGP(a, σ, θ,H), conditionally on X and a latent random variable

Un, P coincides in distribution with the random probability measure

κnPUn + (1− κn)

n(π)∑︂
j=1

Dn,jδYj , (3.6.28)

where

(i) The random variable Un has density

fUn(u) ∝
un−1

(u+ θ)n−n(π)σ
e−

a
σ
(u+θ)σ . (3.6.29)

(ii) Given Un = u, PUn ∼ NGGP(a, σ, θ + u,H).

(iii) Dn := (Dn,1, · · · , Dn,n(π)) ∼ Dir(n(π);n1 − σ, · · · nn(π)) is independent of κn and

PUn.

(iv) The random elements PUn and Jj, j ∈ {1, · · · , n(π)} are independent.

(v) T(Un) = µ̃(Un)(X) and κn =
T(Un)

T(Un)+
∑︁n(π)

j=1 Jj
.
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Proof. The lemma is an immediate result from theorem 3.2.2 and the NGGP intensity

given in example 3.3.8. To verify (iii), we let Dn,j :=
Jj∑︁n(π)

j=1 Jj
. Since {J1, · · · , Jn(π)} are

independent G(nj − σ, u+ θ) random variables with density

fJj(t|Un = u) =
(u+ θ)nj−σ

Γ(nj − σ)
tnj−σ−1e−(u+θ)t ,

By the Proposition G.2 in (Ghosal and Van der Vaart, 2017), we have

Dn := (n(π);Dn,1, · · · , Dn,n(π)) ∼ Dir(n1 − σ, · · · nn(π)),

which is totally independent of Un, thus independent of κn and PUn . To understand

the independence, we can use the relationship between Dirichlet distribution and the

gamma distribution form the Proposition G.2 in (Ghosal and Van der Vaart, 2017) and

let Dn,j =
γj∑︁n(π)

j=1 γj
, where γj ∼ G(nj − σ, 1).

The convergences 3.4.2 and 3.4.3 are equivalent in theorem 3.4.1, and also the conver-

gences 3.4.4 and 3.4.5 are equivalent. These equivalences can be shown by the following

lemma. To make the results lavish, we will assume {σi}ni=1 be a sequence such that

limn→∞ σn = σ ∈ [0, 1) in the following proofs. It is worth to point that, we always

assume that σi < 1 and σ < 1 to make sure all quantities in this work are well-defined.

To be more precise, this assumption would make the forms
∫︁∞
0
snj−σi−1e−(u+θ)sds < ∞

and
∫︁∞
0
snj−σ−1e−(u+θ)sds <∞ for any integer nj ≥ 1.

Lemma 3.6.4. For any P0, we have

(i) If P0 is discrete,

lim
n→∞

E[P |X] = lim
n→∞

Pn +
σnn(π)

n
(H − P̃n) = P0 . (3.6.30)

(ii) If P0 is continuous,

lim
n→∞

E[P |X] = lim
n→∞

(1− σn)Pn + σnH = (1− σn)P0 + σnH . (3.6.31)
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Proof. Since the convergence of σn to σ won’t affect the proof, and σn is well-defined as

discussed previously, we may fix σn and use σ for the sake of notational simplicity in the

proof.

By applying the NGGP intensity 3.3.5 to lemma 3.3.1, we have

E[P |X] =
a

n

∫︂ ∞

0

u

(u+ θ)1−σ
fUn(u)duH +

1

n

n(π)∑︂
j=1

∫︂ ∞

0

(nj − σ)u

u+ θ
fUn(u)duδYj . (3.6.32)

To evaluate limn→∞ E[P |X], we need to find the limits of

a

n

∫︂ ∞

0

u

(u+ θ)1−σ
fUn(u)du , (3.6.33)

1

n

∫︂ ∞

0

u

u+ θ
fUn(u)du . (3.6.34)

We will find the limit of 3.6.33 and then 3.6.34. For 3.6.33 by the density of Un, we have

a

n

∫︂ ∞

0

u

(u+ θ)1−σ
fUn(u)du =

a
n

∫︁∞
0

un

(u+θ)n+1−(n(π)+1)σ e
− a

σ
(u+θ)σdu∫︁∞

0
un−1

(u+θ)n−n(π)σ e
− a

σ
(u+θ)σdu

. (3.6.35)

By the similar arguments in lemma 3.6.1, we use the Laplace method to find the limit of

the nominator and denominator of 3.6.35. Let

g1(u) =
un

(u+ θ)n+1−(n(π)+1)σ
e−

a
σ
(u+θ)σ , g2(u) =

un−1

(u+ θ)n−n(π)σ
e−

a
σ
(u+θ)σ .

Thus,

g′1(u) = {n(u+ θ) + ((n(π) + 1)σ − (n+ 1))u− au(u+ θ)σ} un−1

(u+ θ)n+2−(n(π)+1)σ
e−

a
σ
(u+θ)σ ,

g′2(u) = {(n− 1)(u+ θ) + (n(π)σ − n)u− au(u+ θ)σ} un−2

(u+ θ)n+1−n(π)σ e
− a

σ
(u+θ)σ

As n→, by the similar arguments in lemma 3.6.1, g1(u) and g2(u) attain their maximums

at u1,n, u2,n that are both infinity large. Thus, u1,n ≈
{︂

(n(π)+1)σ−1
a

}︂ 1
σ − θ, and u2,n ≈
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{︂
n(π)σ−1

a

}︂ 1
σ − θ. Therefore, followed by eq. (3.6.35),

lim
n→∞

a

n

∫︂ ∞

0

u

(u+ θ)1−σ
fUn(u)du = lim

n→∞

a

n

g1(u1,n)

g2(u2,n)

= lim
n→∞

a

n

{︃(︂
(n(π)+1)σ−1

a

)︂ 1
σ − θ

}︃n (︂
(n(π)+1)σ−1

a

)︂n(π)+1−n+1
σ
e−(n(π)+1)−1/σ{︃(︂

n(π)σ−1
a

)︂ 1
σ − θ

}︃n−1 (︂
n(π)σ−1

a

)︂n(π)−n
σ
e−n(π)−1/σ

= lim
n→∞

((n(π) + 1)σ − 1)(n(π)+1)− 1
σ

n (n(π)σ − 1)n(π)−
1
σ

e−θa
1/σ( n

(n(π)+1)σ−1)
1/σ

n1−1/σ

e−θa
1/σ( n

n(π)σ−1)
1/σ

(n−1)n−1/σ
e−1 . (3.6.36)

Recall remark 3.3.4, when P0 is discrete, limn→∞
n(π)
n

= 0,almost surely. The limit in

3.6.36 becomes

lim
n→∞

a

n

∫︂ ∞

0

u

(u+ θ)1−σ
fUn(u)du

= lim
n→∞

1

n

((n(π) + 1)σ − 1)(n(π)+1)− 1
σ

(n(π)σ − 1)n(π)−
1
σ

e
−θa1/σ

{︃
( 1
(n(π)+1)σ−1)

1/σ
n−( 1

n(π)σ−1)
1/σ

(n−1)

}︃
e−1

= 0 ,

where the exponential part in the last equation converges to 0 by the fact that
(︂

1
(n(π)+1)σ−1

)︂1/σ
−(︂

1
n(π)σ−1

)︂1/σ
> 0 for σ ∈ (0, 1).

When P0 is continuous, limn→∞
n(π)
n

= 1,almost surely. The limit in 3.6.36 becomes

lim
n→∞

a

n

∫︂ ∞

0

u

(u+ θ)1−σ
fUn(u)du

= lim
n→∞

1

n

((n+ 1)σ − 1)(n+1)− 1
σ

(nσ − 1)n−
1
σ

e
−θa1/σ

{︃
( 1
(n)+1)σ−1)

1/σ
n−( 1

nσ−1)
1/σ

(n−1)

}︃
e−1

= lim
n→∞

((n+ 1)σ − 1)

n

((n+ 1)σ − 1)−
1
σ

(nσ − 1)−
1
σ

(︃
1 +

nσ
nσ−1

n

)︃n
e
−θa1/σ

{︃
( 1
(n)+1)σ−1)

1/σ
n−( 1

nσ−1)
1/σ

(n−1)

}︃
e−1

= σ ,

where we emphasis that 1
σ
> 1 when dealing with the convergence of the exponential part.
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By using the same arguments above for finding the limit of 3.6.33, we can find the limit

of 3.6.34. We omit the details of the computation and can obtain the following results.

When P0 is discrete,

lim
n→∞

1

n

∫︂ ∞

0

u

u+ θ
fUn(u)du = 1 .

Thus,

lim
n→∞

E[P |X] = lim
n→∞

1

n

n(π)∑︂
j=1

(nj − σ)δYj = lim
n→∞

Pn +
σn(π)

n
(H − P̃n) = P0 ,

where the last equation is due to limn→∞
n(π)
n

= 0 and the Borel–Cantelli lemma . That is

to say, the result in 3.6.30 is completed by combining the limit of 3.6.33 and 3.6.34 when

P0 is discrete.

When P0 is continuous,

lim
n→∞

1

n

∫︂ ∞

0

u

u+ θ
fUn(u)du = 1− σ .

Thus, combining the limit of 3.6.33 and 3.6.34, we have

lim
n→∞

E[P |X] = lim
n→∞

σH +
1

n

n∑︂
j=1

(1− σ)δXj
= lim

n→∞
σH + (1− σ)Pn = σH + (1− σ)P0 .

Thus the proof of the result in 3.6.31 is completed.

With the lemma 3.6.4, it is sufficient to proof theorem 3.4.1 by only showing the

convergences 3.4.2 and 3.4.4. The following lemma plays an important role in the proof

of theorem 3.4.1. Here, we recall that an envelop function of F is a measurable function

fe : X → R such that |f | < fe, for any f ∈ F.

Lemma 3.6.5. Let F be a finite set of H−square integrable functions. Assume that

n(π) → ∞ as n → ∞, which includes the case when P0 is continuous so that n(π) = n

121



and the case when P0 is discrete but n(π) converges to ∞ with a lower rate than n do.

Then

√︁
σnn(π)(PUn −H)|X⇝

√
1− σBoH , a.s., (3.6.37)

in RF. The convergence holds a.s. in l∞(F) with an envelop function fe such that H(f 2
e ) <

∞, and thus the central limit theorem holds for PUn|X in l∞(F).

Proof. The proof relies on the stick-breaking representation of PUn in (Favaro et al., 2016)

and the functional central limit theorem of NGGP in (Hu and Zhang, 2022). And similarly

as discussed in the proof of last lemma, we use σ instead of σn to make the interpretation

easy to read.

By section 4.2 in (Favaro et al., 2016), PUn admits a stick-breaking representation with

dependent stick-breaking weights {vi}∞i=1, and the joint distribution of {vi}∞i=1 are given

(Hu and Zhang, 2022) as

f(v1, · · · , vk) =
βknσ

k−1

[Γ(1− σ)]kΓ(kσ)

k∏︂
i=1

v−σi (1− vi)
−(k−i)σ−1e

− βn∏︁k
i=1

(1−vi)
σ

×
∫︂ ∞

0

(1− (1 + t)−
1
σ )kσ−1(1 + t)k−1e

− βnt∏︁k
i=1

(1−vi)
σ
dt , (3.6.38)

where βn = a(u+θ)σ

σ
. We will follow the same idea as in the proof of Proposition 3.4 and the

theorem 4.4 in (Hu and Zhang, 2022). To obtain the similar result as the Proposition 3.4

in (Hu and Zhang, 2022), we will consider the asymptotic result of the following quantity

as n→ ∞.

E

{︄
∞∑︂
k=1

wpk|X

}︄
= E

{︄
E

{︄
∞∑︂
k=1

wpk|Un = u,X

}︄}︄
= E

{︄
E

{︄
∞∑︂
k=1

vpk

k−1∏︂
l=1

(1− vl)
p|Un = u,X

}︄}︄

=

∫︂ ∞

0

βknσ
k−1

[Γ(1− σ)]kΓ(kσ)

k∏︂
i=1

v−σi (1− vi)
−(n−i)σ−1e

− βn∏︁k
i=1

(1−vi)
σ

×
∫︂ ∞

0

(1− (1 + t)−
1
σ )kσ−1(1 + t)k−1e

− βnt∏︁k
i=1

(1−vi)
σ
dtfUn(u)du , (3.6.39)
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where p is any positive integer. To evaluate 3.6.39 as n → ∞, we shall have a further

analysis of the integral with respect to u, which is the only term that relates to n. Consider

the following integral for any b > 0, and any positive integer k.

∫︂ ∞

0

βkne
bβnfUn(u)du =

(︁
a
σ

)︁k ∫︁∞
0

un−1

(u+θ)n−(n(π)+k)σ e
− (b+1)a

σ
(u+θ)σdu∫︁∞

0
un−1

(u+θ)n−n(π)σ e
− a

σ
(u+θ)σdu

=

(︁
a
σ

)︁k (︂∫︁M
0

un−1

(u+θ)n−(n(π)+k)σ e
− (b+1)a

σ
(u+θ)σdu+

∫︁∞
M

un−1

(u+θ)n−(n(π)+k)σ e
− (b+1)a

σ
(u+θ)σdu

)︂
∫︁∞
0

un−1

(u+θ)n−n(π)σ e
− a

σ
(u+θ)σdu

,

(3.6.40)

for any M > 0. For any n and any M , we have

∫︂ M

0

un−1

(u+ θ)n−(n(π)+k)σ
e−

(b+1)a
σ

(u+θ)σdu

=

∫︂ M

0

(︃
u

(u+ θ)1−σ

)︃n−1
1

(u+ θ)(n−n(π)−k−1)σ+1
e−

(b+1)a
σ

(u+θ)σdu

≤
(︃

M

(M + θ)1−σ

)︃n−1
(M + θ)(n(π)+k+1−n)σ

(n(π) + k + 1− n)σ
e−

(b+1)a
σ

(θ)σ ,

which goes to 0 as n → ∞ due to the fact that either limn→∞
n(π)
n

= 0 or n(π) = n. The

last inequality holds because
(︂

u
(u+θ)1−σ

)︂n−1

is nondecreasing in u for any σ ∈ [0, 1). Thus

when n→ ∞, we have

∫︂ ∞

0

βkne
bβnfUn(u)du =

(︁
a
σ

)︁k ∫︁∞
M

un−1

(u+θ)n−(n(π)+k)σ e
− (b+1)a

σ
(u+θ)σdu∫︁∞

0
un−1

(u+θ)n−n(π)σ e
− a

σ
(u+θ)σdu

.

This would imply

E

{︄
∞∑︂
k=1

wpk|X

}︄
=

∫︂ ∞

Mn

βknσ
k−1

[Γ(1− σ)]kΓ(kσ)

k∏︂
i=1

v−σi (1− vi)
−(n−i)σ−1e

− βn∏︁k
i=1

(1−vi)
σ

×
∫︂ ∞

0

(1− (1 + t)−
1
σ )kσ−1(1 + t)k−1e

− βnt∏︁k
i=1

(1−vi)
σ
dtfUn(u)du , (3.6.41)

in which we choose M = Mn that goes to ∞ as n → ∞. In this case, when n → ∞,

βn → ∞ as well and we are safe to use the results in Proposition 3.4 in (Hu and Zhang,
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2022) to obtain that when n→ ∞ (thus n(π) → ∞)

E

[︄
∞∑︂
n=1

w2
n

]︄
=

∫︂ ∞

Mn

(︃
1− σ

a(u+ θ)σ

)︃
fUn(u)du =

1− σ

n(π)σ
+ o

(︃
1

n(π)

)︃
,

where the last equation can be computed by the same argument as in eq. (3.6.35) and

the computation afterwards. The result of 3.6.37 follows immediately by applying the

theorem 4.4 in (Hu and Zhang, 2022).

By the above lemma and its proof, it is interesting to see that when n → ∞, we can

have Pn(π)
d
= PUn , where Pn(π) ∼ NGGP(n(π), σ, θ,H) for any n(π) → ∞. Thus, we can

replace PUn by Pn(π) in the proof of theorem 3.4.1, the benefit of such replacement is Pn(π)

is independent of κn when n→ ∞.

The next lemma provides the convergence of κn.

Lemma 3.6.6. (i) If P0 is discrete, when n→ ∞,

√
n(κn −

σnn(π)

n
)⇝ 0 a.s.

(ii) If P0 is continuous, when n→ ∞, κn → σ in probability.

Proof. We shall compute the moments of κn =
T(Un)

T(Un)+
∑︁n(π)

j=1 Jj
by the same method that

we use in the proof of lemma 3.3.1. To make it clear, we present the details for E[κn] as

follows.

E[κn] = E {E[κn|Un]} = E
{︃
E
{︃∫︂ ∞

0

e−(T(Un)+
∑︁n(π)

j=1 Jj)yT(Un)dy|Un
}︃}︃

= E

⎧⎨⎩
∫︂ ∞

0

(︃
− d

dy
E
{︁
e−(T(Un)y|Un

}︁)︃ n(π)∏︂
j=1

E
{︁
e−yJj |Un

}︁
dy

⎫⎬⎭
= E

{︄∫︂ ∞

0

a(y + Un + θ)σn−1e−
a
σn

((y+Un+θ)σn−(Un+θ)σn )

(︃
Un + θ

y + Un + θ

)︃n−n(π)σn
dy

}︄
,
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where the last equation is a direct use of the Laplace transform of TUn and the distribution

of Jj in lemma 3.6.3. Solving the expectation with respect to Un, we have

E[κn] =

∫︁∞
0

∫︁∞
0
a un−1

(y+u+θ)(n+1)−(n(π)+1)σn
e−

a
σn

(y+u+θ)σndydu∫︁∞
0

un−1

(u+θ)n−n(π)σn
e−

a
σn

(u+θ)σndu
.

By the substitution v = u+ y and z = u on the nominator of the above form.

E[κn] =
a

n

∫︁∞
0

vn

(v+θ)(n+1)−(n(π)+1)σn
e−

a
σn

(v+θ)σndv∫︁∞
0

un−1

(u+θ)n−n(π)σn
e−

a
σn

(u+θ)σndu
,

which implies E[κn] = n(π)σn
n

by the analysis of 3.6.33. And we have E[κn] → 0 if P0 is

discrete and E[κn] → σ if P0 is continuous when n→ ∞.

Similarly, we can obtain the second moment of κn in the same way as n→ ∞.

E[κ2n] =
σ2
nn(π)

2

n2
+

(n(π) + 1)(1− σn)σn
n(n+ 1)

,

followed by which, we have Var[κn] =
(n(π)+1)(1−σn)σn

n(n+1)
. And limn→∞Var[κn] = 0 for both

continuous and discrete P0. In particular, if P0 is discrete, Var[
√
nκn] → 0 as well when

n→ ∞. This complete the proof of the lemma.

Now, theorem 3.4.1 can be proved by using the previous lemmas. And we give the

details as follows.

Proof. Proof of theorem 3.4.1

We proof theorem 3.4.1 in two parts corresponding to when P0 is discrete and when

P0 is continuous. We denote Rn =
∑︁n(π)

j=1
Jj∑︁n(π)
j=1

δYj . Then, Rn =
∑︁n(π)

j=1 Dn,jδYj .

(i) When P0 is discrete.

It is convenient to decompose
√
n
(︂
P − Pn − σnn(π)

n
(H − P̃n)

)︂
|X as

√
n

(︃
κn −

σnn(π)

n

)︃
(PUn −Rn) +

√
n

(︄√︁
σnn(π)(PUn −H)

√︃
σnn(π)

n

)︄

125



+
√
n

(︃
Rn

(︃
1− σnn(π)

n

)︃
−
(︃
Pn −

σnn(π)

n
P̃n
)︃)︃

|X . (3.6.42)

The first term in decomposition 3.6.42 converges to 0 by using lemma 3.6.6 and the fact

that PUn −Rn is uniformly bounded. The second term in decomposition 3.6.42 converges

to 0 by using lemma 3.6.5 and the fact that σnn(π)
n

→ 0 a.s.. And the convergence for the

first two terms in decomposition 3.6.42 holds for both n(π) is finite and goes to ∞ when

n→ ∞.

The convergence of the last term in decomposition 3.6.42 relaying on the gamma

representation of Dn,j in Rn. For each j ∈ {1, · · · , n(π)}, we rewrite

Dn,j =
γj,0 +

∑︁nj−1
i=1 γj,i∑︁n(π)

j=1

(︂
γj,0 +

∑︁nj−1
i=1 γj,i

)︂ ,
where the independent random variables γj,0 ∼ G(1 − σn, 1) and γj,i ∼ G(1, 1) for all j

and all i. That is to say, there are n γj,i’s (i can take 0) for j ∈ {1, · · · , n(π)}, during

which, there are n(π) independent G(1−σn, 1) random variables and n−n(π) independent

G(1, 1) random variables. Relabel all these n gamma random variables as {γ̃n,l}nl=1 (the

order doesn’t matter). Then

Rn =

n(π)∑︂
j=1

Dn,jδYj =
n−1

∑︁n
l=1 γ̃n,lδXl

n−1
∑︁n

l=1 γ̃n,l
. (3.6.43)

To make the interpretation clear, we denote Rnf = R̄nf
R̄n1

, where R̄nf =
∑︁n

l=1 γ̃n,lf(Xl)

n
and

R̄n1 =
∑︁n

l=1 γ̃n,l

n
. Thus,

√
n

(︃
Rn

(︃
1− σnn(π)

n

)︃
−
(︃
Pn −

σnn(π)

n
P̃n
)︃)︃

f

= −Rnf
√
n

(︃
R̄n1−

(︃
1− σnn(π)

n

)︃)︃
+
√
n

(︃
R̄nf −

(︃
Pnf − σnn(π)

n
P̃nf

)︃)︃
. (3.6.44)

It is clear that Pnf + σnn(π)
n

P̃nf → P0f outer almost surely, by the Borel-Cantelli lemma

and the fact that F is a finite set such that P0(f
2) < ∞, and thus F is a P0−Donsker
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class. By the distributions and independence of {γ̃n,l}nl=1, we have

E
{︁
R̄n1

}︁
= E

{︃∑︁n
l=1 γ̃n,l
n

}︃
= 1− σnn(π)

n
→ 1 a.s. ,

Var
{︁
R̄n1

}︁
= Var

{︃∑︁n
l=1 γ̃n,l
n

}︃
=

1

n

n∑︂
l=1

Var
{︁
γ̃n,l
}︁
=

1

n
− σnn(π)

n
→ 0 a.s. .

Thus, we have the convergence
√
n
(︂
R̄n1−

(︂
1− σnn(π)

n

)︂)︂
⇝ 0. By noting that Rn is

uniformly bounded, we obtain −Rnf
√
n
(︂
R̄n1−

(︂
1− σnn(π)

n

)︂)︂
⇝ 0. To find the con-

vergence of
√
n
(︂
R̄nf −

(︂
Pnf − σnn(π)

n
P̃nf

)︂)︂
, we follow the similar way and check the

Linderberg-Feller condition as follows.

E
{︁
R̄nf

}︁
=

1

n

n∑︂
l=1

E
{︁
γ̃n,l
}︁
f(Xl) = Pnf − σnn(π)

n
P̃nf ,

Var
{︁
R̄nf

}︁
=

1

n2

n∑︂
l=1

Var
{︁
γ̃n,l
}︁
f 2(Xl) =

1

n

(︃
Pnf 2 − σnn(π)

n
P̃nf 2

)︃
,

1

n

n∑︂
l=1

E
{︂
γ̃2n,lf

2(Xl)1|γ̃n,lf(Xl)|>ϵ
√
n

}︂
≤ max

(︂
E
{︂
γ2j,0f

2(Xl)1|γj,0|max1≤l≤n |f(Xl)|>ϵ
√
n

}︂
,E
{︂
γ2j,if

2(Xl)1|γj,i|max1≤l≤n |f(Xl)|>ϵ
√
n

}︂)︂
Pnf 2 ,

where the last inequality is a verification of Linderberg-Feller condition, and the right hand

side converges to 0 for every sequence X, since P0f
2 <∞ and max1≤l≤n |f(Xl)/

√
n→ 0.

By the Cramér-Wold device and the linearity of f , we have

√
n

(︃
R̄nf −

(︃
Pnf − σnn(π)

n
P̃nf

)︃)︃
⇝ BoP0

f

for any f ∈ F.

To show the convergence in l∞(F) for any P0−Donsker class, we shall prove the asymp-

totic tightness, see e.g., Theorem 1.5.4 in (van der Vaart and Wellner, 1996). The mul-

tipliers of the multiplier process 1√
n

∑︁n
l=1(γ̃n,l − E

{︁
γ̃n,l
}︁
)f(Xl) are independent with 0

means. Thus, the multiplier central limit theorem in Theorem 2.9.7 (van der Vaart and

Wellner, 1996) can be applied once we have the following inequality for any collection H
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of functions.

Eγ̃

⃦⃦⃦⃦
⃦

n∑︂
l=1

(γ̃n,l − E
{︁
γ̃n,l
}︁
)f(Xl)

⃦⃦⃦⃦
⃦
∗

H

≤ Eγ̃,γ̃′

⃦⃦⃦⃦
⃦

n∑︂
l=1

(γ̃n,l − E
{︁
γ̃n,l
}︁
+ γ̃′n,l − E

{︁
γ̃′n,l
}︁
)f(Xl)

⃦⃦⃦⃦
⃦
∗

H

,

by Jensen’s inequality, for any random variable γ̃′n,l independent of γ̃n,l. It is safe to choose

all γ̃′n,l
iid∼ G(1, 1) and γ̃n,l

iid∼ G(1, 1). Then, the multiplier central limit theorem that is

given as Theorem 2.9.7 (see also 2.9.6,2.9.9,3.6.13) in (van der Vaart and Wellner, 1996),

the asymptotic tightness follows immediately. (We apply the inequality with H to be the

set of f1 − f2 for any f1, f2 ∈ F, with L2(P0) norm of f1 −P0f1 − (f2 −P0f2) smaller than

δ.)

This complete the proof of the theorem when P0 is discrete.

(ii) When P0 is continuous.

In this case, n(π) = n. We can decompose
√
n (P − {(1− σ)Pn + σH}) |X as

√
n (PUn −H)κn +

√
n(1− κn)(Rn − Pn) +

√
n(κn − σn)(H − Pn) . (3.6.45)

For the convergence of the first term in 3.6.45, we first use the discussion below the

proof of lemma 3.6.5 to use Pn
d
= PUn when n → ∞, where Pn ∼ NGGP(n, σ, θ,H).

Thus, we can consider the convergence of
√
n (Pn −H)κn instead of

√
n (PUn −H)κn,

the benefit of the former form is Pn and κn are independent. Thus, by lemma 3.6.6, κn → σ

in probability. By using the result in lemma 3.6.5, we have
√
n (Pn −H)⇝

√︂
1−σ
σ
BoH a.s..

Thus, we have
√
n (PUn −H)κn ⇝

√︁
σ(1− σ).

For the second term in 3.6.45, Rn =
∑︁n

j=1Dn,jδXj
, where Dn,j =

γj∑︁n
j=1 γj

with γ
iid∼

G(1 − σn, 1). A direct application of the result of Theorem 2.1 in (Præstgaard and

Wellner, 1993) implies
√
n(Rn − Pn) ⇝ 1√

1−σB
o
P0

a.s., in l∞(F) if there is a P0−square-

integrable envelope function for F. Furthermore, the convergence in probability is a direct

application of Theorem 2.9.7 in (van der Vaart and Wellner, 1996). By noting the fact

that (1− κn) → 1− σ in probability, we have
√
n(1− κn)(Rn − Pn)⇝

√
1− σBoP0

a.s. in

l∞(F).
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For the last term in 3.6.45, we follow the same argument as that in lemma 3.6.6

and will have Var[
√
nκn] = (1 − σn)σn → (1 − σ)σ, thus

√
n(κn − σn) ⇝

√︁
σ(1− σ)Z.

Furthermore, by the Borel-Cantelli lemma, Pn → P0 a.s., and thus
√
n(κn−σn)(H−Pn)⇝√︁

σ(1− σ)Z(H − P0).

The result in theorem 3.4.1 when P0 is continuous follows by combining the conver-

gences of the three terms in 3.6.45.
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Chapter 4

Normalized random measures with

independent increments driven by

Cox process

4.1 Introduction

The random partition structure induced by Bayesian nonparametric priors has been shown

very useful in the statistical inference problems related to clustering, density estimation,

and prediction. Various works have been devoted to study the probabilistic theory (King-

man, 1982; Pitman, 1996; Gnedin and Pitman, 2006; Pitman, 2006) and statistical aspects

(De Blasi et al., 2013; James, 2005; James et al., 2009) of the random partition structure

of exchangeable observations (e.g. (Kallenberg, 2005) and the references therein for more

details). Based on the celebrating work in (MacEachern, 1999, 2000), dependent Bayesian

nonparametric models have gained particular attention due to their flexibilities and the

nonexchangeable assumption (Camerlenghi et al., 2019; Quintana et al., 2022). One type

of the well-studied dependent Bayesian nonparametric models is the hierarchical Bayesian

nonparametric models (see e.g., (Teh et al., 2006; Teh and Jordan, 2010; Gasthaus and

Teh, 2010; NGUYEN, 2016; Zhang and Hu, 2021; Camerlenghi et al., 2019)). In hierar-

chical models, the analytic forms of the random partition structure are complex due to
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the hierarchical levels. To the best of our knowledge, the distribution theory and pos-

terior characterizations are known only for the hierarchical Dirichlet process (Teh et al.,

2006), the hierarchical Pitman-Yor process (Camerlenghi et al., 2019) and the hierarchi-

cal normalized random measures with independent increments (NRMIs) (Camerlenghi

et al., 2019). However, hierarchical structures are “auto” dependent structure, where the

dependence are controlled by the concentration parameters of each hierarchy. Since the

concentration parameters are finite and represent the faithful of the prior, we prefer to

give another “tuning” parameter, which can be used to control the dependence by users.

In this Chapter, we present two flexible constructions of hierarchical NRMIs. We

will construct a vector of dependent random probability measures through two suitable

transformations in the construction of NRMIs. On the one hand, the new constructions

allow the observations to be partially exchangeable. On the other hand, each component of

the dependent vector of random probability measures is assigned a tuning parameter as the

control of component-wise dependence by users. Multiple distributional quantities include

the moments, distribution of the induced random partition structures, distribution of the

number of partition numbers are obtained. Furthermore, we allow each component of the

vector of dependent random probability measure itself to follow different distributions.

1.1 Partial exchangeability As a more general framework, partial exchangeability (see

e.g., (Teh et al., 2004; Camerlenghi et al., 2019) and the references therein) extends

the definition of exchangeability in a natural way. A random sequence is partially ex-

changeable if its distribution is invariant under all finite permutations within subgroups.

Partial exchangeability is also a natural behaviour in many scenarios, when a popula-

tion is decomposed into multiple sub-populations, each of which is exchangeable, and

thus the population is overall partially exchangeable. Formally, let (X,X ) be a Polish

space and MX be the space of all probability measures on X with the corresponding

Borel σ−algebra MX. Consider a sequence of partially exchangeable random variables

X = {X(Ni) = (Xi,k) : k = 1, · · · , Ni; i = 1, · · · , d} defined on some probability space

(Ω,F ,P) that are taking values in (X,X ). That is to say X contains d groups of ex-

changeable groups X(Ni) of random variables. By the celebrating de Finetti’s representa-
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tion theorem, for any A1, · · · , Ad ∈ X , we have

P(X(N1) ∈ A1, · · · ,X(Nd) ∈ Ad) =

∫︂
Md

X

d∏︂
i=1

PNi
i (Ai)Qd(dP1, · · · , dPd) , (4.1.1)

where PNi
i = ×Ni

k=1Pi represents the Ni−ford product measure on XNi for each i ∈

{1, · · · , d}, Qd is a probability measure on (Md
X,Md

X) serving as the prior distribution

of (P1, · · · , Pd). Following (Ferguson, 1973), we call X a sample of size N =
∑︁d

i=1Ni

from (P1, · · · , Pd), i.e., the sample X(Ni) i.i.d∼ Pi conditionally on Pi.

In the literature of Bayesian nonparametric framework, Qd is constructed so that the

random probability measures (P1, · · · , Pd) are discrete with probability 1. Therefore,

there are positive probabilities that the random variables Xi,k = Xj,l, that is to say, the

observations within group or between groups could be equal each other. Such feature

induces a natural way to cluster the observations X, and thus induces a random parti-

tion structure of (1, · · · , N) under Qd. The random partition structure is identified by

the exchangeable partition probability function (EPPF) in the exchangeable setting (e.g.

(Pitman, 1996, 2003, 2006)). The EPPF provides a probability function of random parti-

tion of (1, · · · , N) and thus is very important in the study of clustering, sampling schemes,

prediction rules. In the partially exchangeable setting, one can identify the random par-

tition structure by using partially exchangeable partition probability function (pEPPF)

as follows. Let K be the number of distinct observations of X, and (X∗
1 , · · · , X∗

K) be the

K distinct observations. For each i ∈ {1, · · · , d}, let ni = (ni,1, · · · , ni,K) be the vector of

frequency of (X∗
1 , · · · , X∗

K) appears in the ith group of observations accordingly, namely,

ni,k = #{Xi,j : Xi,j = X∗
k ; j = 1, · · · , Ni}. Thus, ni,j could be 0,

∑︁d
i=1 ni,j ≥ 1 for any

j ∈ {1, · · · , K} and
∑︁K

j=1 ni,j = Ni for each i ∈ {1, · · · , d}. The pEPPF is defined as

Π
(N)
K (n1, · · · ,nd) = E

[︄∫︂
XK

K∏︂
j=1

d∏︂
i=1

P
ni,j

i (dx∗j)

]︄
. (4.1.2)

1.2 Outline The outline of this chapter is as follows. In Section 4.2, we recall the

construction of NRMIs through Poisson random measures. In Section 4.3, we introduce
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the two constructions of dependent vector of random probability measures based on the

construction of NRMIs. In Section 4.4, we obtain the moments of the two constructions

that can be a direct view of the dependence structures of our models. In Section 4.5, we

derive the probability distribution of the random partition induced by the two models.

In Section 4.6, we discuss the distribution of partition number. In order to ease the flow

of the ideas, we delay the proofs in the Appendix 4.8.

4.2 Normalized random measures with independent

increments

4.2.1 Constructions of NRMIs

We start by recalling the notions of completely random measures (see e.g., (Kingman,

1967, 1993) and references therein for more details), which play important role in the

construction of NRMIs.

Let BX be the space of bounded finite measures on (X,X ) endowed with a suitable

topology so that the associated Borel σ−algebra BX can be introduced (Daley and Vere-

Jones, 2008).

Definition 4.2.1. Let µ be a measurable function on (Ω,F ,P) that takes values in

(BX,BX). We call µ is a completely random measure (CRM) if the random variables

µ(A1), · · · , µ(Ad) are mutually independent, for any pairwise disjoint sets A1, · · · , Ad in

X , where d ≥ 2 is a finite integer.

We refer to (Regazzini et al., 2003; Lijoi et al., 2010; James et al., 2009; Camerlenghi

et al., 2019) for more detailed discussions of constructing NRMIs by using completely

random measures.

In this work, we construct NRMIs driven by Cox random measures (Cox, 1955) in

the similar way as the construction of NRMIs. Let (Ω,F ,P) be a probability space and

let X be a complete, separable metric space whose Borel σ-algebra is denoted by X .
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Denote S = R+ × X and denote its Borel σ-algebra by S. Let ξ(dx, ds) be a random

measure defined on (S,S). A Cox random measure Ñ on S is a random measure from

Ω× S to R+ such that Ñ is a Poisson random measure with intensity ν conditioning on

ξ(dx, ds) = ν(ds, dx). That is to say,

(i) Ñ(A)|ξ = ν ∼ Poisson(ν(A)) for any A in S;

(ii) for any pairwise disjoint setsA1, · · · , Am in S, the random variables Ñ(A1), · · · , Ñ(Am)

are mutually independent conditionally on ξ.

The random intensity measure ξ satisfies the condition (see (Daley and Vere-Jones, 2008)

for details of Poisson random measures) that

∫︂ ∞

0

∫︂
X
min(s, 1)ξ(ds, dx) <∞ ,

almost surely. Let µ̃ be the random measure defined on (Ω,F ,P) that takes values in

(MX,MX) defined as follows,

µ̃(A) :=

∫︂ ∞

0

∫︂
A

sÑ(ds, dx), ∀A ∈ X . (4.2.1)

It is trivial to verify that µ̃ is a completely random measure conditioning on ξ. It is also

well-known that for any B ∈ X , µ̃(B) is discrete and is uniquely characterized by its

Laplace transform as follows:

E
[︁
e−λµ̃(B)|ξ = ν

]︁
= exp

{︃
−
∫︂ ∞

0

∫︂
B

[︁
1− e−λs

]︁
ν(ds, dx)

}︃
. (4.2.2)

The measure ν is called the Lévy intensity of µ̃ and we denote the Laplace exponent by

ψB(λ) =

∫︂ ∞

0

∫︂
B

[︁
1− e−λs

]︁
ν(ds, dx) . (4.2.3)

From the Laplace transform in eq. (4.2.2), we aware that the completely random measure

µ̃ is characterized completely by its Lévy intensity ν conditional on ξ = ν. To make the
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interpretation easy to read, the measure ν that ξ can take is usually represented in the

following two cases.

(a) ν(ds, dx) = ρ(ds)α(dx), where ρ : B(R+) → R+ is some measure on R+ and α is a

non-atomic measure on (X,X ) so that α(X) = a < ∞. Conditional on ξ = ν, the

corresponding µ̃ is called homogeneous completely random measure.

(b) ν(ds, dx) = ρ(ds|x)α(dx), where ρ is defined on B(R+) × X such that for any x ∈

X, ρ(·|x) is a σ-finite measure on B(R+) and for any A ∈ X , ρ(A|x) is B(R+)

measurable. Conditional on ξ = ν, the corresponding µ̃ is called non-homogeneous

completely random measure.

It is obvious that the case (a) is a special case of case (b).

To construct NRMIs driven by Cox process, the completely random measure will be

normalized, and thus one needs the total mass µ̃(X) to be finite and positive almost

surely. This happens under the condition that ρ(R+) = ∞ in homogeneous case and that

ρ(R+|x) = ∞ in non-homogeneous case (See e.g., (Regazzini et al., 2002) for a proof).

Under the above conditions, we call the random probability measure P on (X,X ) an

NRMI driven by Cox process, denoted as P ∼ CoxNRMI(ξ), if P is defined by

P (·) = µ̃(·)
µ̃(X)

. (4.2.4)

P is discrete due to the discreteness of µ̃.

In this work, we only focus on the homogeneous case and denote the homogeneous

NRMIs driven by Cox process by P ∼ hCoxNRMI(α, ρ). Usually, the intensity ρ is

used to identify the distributional structure of P . For example, the Dirichlet process is

a CoxNRMI with ξ = ν with probability 1 and ν(ds, dx) = α(dx) e
−s

s
ds; the σ−stable

process is a CoxNRMI with ξ = ν with probability 1 and ν(ds, dx) = α(dx) σ
Γ(1−σ)s1+σ ds;

the normalized generalized gamma process is a CoxNRMI with ξ = ν with probability

1 and ν(ds, dx) = α(dx) 1
Γ(1−σ)s

−1−σe−θsds, where the parameters σ ∈ (0, 1) and θ > 0.

To keep the distributional structure of P , we shall assign the randomness of ν only on
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α. That is to say, ξ = α(dx)ρ(ds), where ρ(ds) is a given fixed intensity and α(dx) is a

random measure on (X,X ).

It is worthy to point out that the hierarchical NRMIs discussed in (Camerlenghi et al.,

2019) are homogeneous CoxNRMIs in the case that α = aH(dx), where a is a positive

finite constant number and H(dx) is an NRMI.

4.3 Models: NRMIs driven by Cox process

With the construction in Section 4.2, we present two models of dependent random prob-

ability measures (P1, · · · , Pd). The first model follows the idea similar to the regular

hierarchical NRMIs, and the dependence between Pi and (Pj)j ̸=i are controlled by a tun-

ing parameter. The second model involves two dependent relationships, one is between

Pi and Pj, another is due to the hierarchical structure across the vector. We use the

notation H0 ∼ NRMI(aH, ρ) to denote the random probability measure H0, which is an

NRMI with Lévy intensity aH(dx)ρ(ds).

4.3.1 Conditionally independent hCoxNRMIs

Model 4.3.1. Let {zi}di=1 be a sequence of random variables that take values in [0, 1].

For any i ∈ {1, · · · , d}, let µ̃i be a CRM with intensity νi(dx, ds) = ziaiHi(dx)ρi(ds)

and let µ̃i,0 be a CRM with intensity νi,0(dx, ds) = (1 − zi)a0H0(dx)ρi(ds), where H0 ∼

NRMI(aH, ρ), for some nonatomic probability measure H, and a, a0, {ai}di=1 are positive

numbers. For each i ∈ {1, · · · , d}, define

µi = µ̃i + µ̃i,0 . (4.3.1)

Then the normalization of µi

Pi =
µi

µi(X)
, (4.3.2)
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is a sequence of dependent random probability measures. We call such sequences of random

probability measures conditionally independent hCoxNRMIs.

A trivial result from the above construction 4.3.1 is that µi are conditionally indepen-

dent with Laplace transform

E
[︂
e−

∑︁d
i=1 λiµi(A)

]︂
= exp

{︄
−

d∑︂
i=1

(ziaiHi(A) + (1− zi)a0H0(A))ϕi(λi)

}︄
, (4.3.3)

conditional on H0 and {zi}di=1, for any A ∈ X .

Remark 4.3.2. The random sequence {zi}di=1 is the control of the dependence. When zi =

0, model 4.3.1 reduces to the general hierarchical NRMIs as introduced in Camerlenghi

et al. (2019), and there is an “auto” dependence structure only due to the hierarchical

structure. When zi = 1, the hierarchical structure in model 4.3.1 is gone, and Pi’s are

totally independent, but may not be identical, since ρi’s may not be the same. Thus, zi

is a tuning parameter that control how “heavy” the hierarchical dependence is on Pi. A

smaller zi implies a “heavier” dependence of Pi induced by the hierarchical dependence.

We can trivially extend the model 4.3.1 as follows.

Remark 4.3.3. Let Dq×q be a q × q matrix with all entries taking values in {0, 1}.

For each i ∈ {1, · · · , d}, let {zi,j}qj=1 be a q-dimensional standard simplex sequence, i.e.

(zi,1, · · · , zi,q) ∈ Sq := {x ∈ Rq :
∑︁q

i=1 xi = 1, xi ≥ 0 for i = 1, · · · , q}. Let q1, q2 be two

integers such that q1 + q2 = q. Let µ̃i,j and µ̃i,0,l be defined similarly to µ̃i and µ̃i,0 in

model 4.3.1 with the random weight zi,j for j ∈ {1, · · · , q1} and zi,l for l ∈ {q1+1, · · · , q}

correspondingly.

Define

µ = Dq×q(µ̃i,1, · · · , µ̃i,q1 , µ̃i,0,q1+1, · · · , µ̃i,0,q)T
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as the random vector of CRM (µ1, · · · , µq)T . And Pi =
µi

µi(X) presents the general case of

model 4.3.1.

We will continue to consider the following example of model 4.3.1 in the next sections.

Example 4.3.4. If ρi(ds) = e−s

s
ds for all i ∈ {1, · · · , d} and ρ(ds) = σ

Γ(1−σ)s1+σ ds, for

some σ ∈ (0, 1), then Pi’s are independent Dirichlet processes conditionally on H0, and

H0 is a σ-stable NRMIs.

4.3.2 Conditionally dependent hCoxNRMIs

Model 4.3.5. Let {zi}di=1 be a sequence of random variables that take values in [0, 1]

and a, a0, {ai}di=1 are positive numbers. For any i ∈ {1, · · · , d}, let µ̃i be a CRM with

intensity νi(dx, ds) = ziaiHi(dx)ρi(ds). Let µ̃0 be a CRM with intensity ν0(dx, ds) =

z0a0H0(dx)ρ0(ds), where H0 ∼ NRMI(aH, ρ), for some nonatomic probability measure H

and z0 = d−
∑︁d

i=1 zi. For each i ∈ {1, · · · , d}, define

µi = µ̃i + µ̃0 . (4.3.4)

Then the normalization of µi

Pi =
µi

µi(X)
, (4.3.5)

is a sequence of dependent random probability measures. We call such sequences of random

probability measures conditionally dependent hCoxNRMIs.

The dependence of Pi is given by the dependence structure of µi. It is trivial to see

the joint Laplace transform of µi as follows.

E
[︂
e−

∑︁d
i=1 λiµi(A)

]︂
= exp

{︄
−

d∑︂
i=1

ziaiHi(A)ϕi(λi)− z0a0H0(A)ϕ0

(︄
d∑︂
i=1

λi

)︄}︄
, (4.3.6)
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conditional on H0 and {zi}di=1, for any A ∈ X .

Remark 4.3.6. The construction in model 4.3.5 presents a complicate dependent struc-

ture. When zi = 0 for all i, Pi’s are identical to each other, which shows a completely

dependence of Pi’s. When zi = 1 for all i, Pi’s are independent. Thus, the independence

of Pi is no longer controlled only by zi but
∑︁d

i=1 zi. Furthermore, when H0 is determin-

istic, (P1, · · · , Pd) is still a vector of dependent probability measures due to the common

component induced by µ̃0.

The model 4.3.5 can be extended by the similar manner as in remark 4.3.3. We will

consider the following example in the next sections.

Example 4.3.7. We can take ρi(ds) =
e−s

s
ds for all i ∈ {1, · · · , d}, ρ0(ds) = e−s

s
ds and

ρ(ds) = σ
Γ(1−σ)s1+σ ds, for some σ ∈ (0, 1).

The two models we introduced in model 4.3.1 and model 4.3.5 are both constructed

under the hierarchical Bayesian nonparametric framework. However, the linear random

intensity presents a more flexible dependent structure than general hierarchical Bayesian

model.

Remark 4.3.8. The distribution of H0 in model 4.3.1 and model 4.3.5 is not necessary

an NRMI. A flexible form is H0 ∼ QH , where QH represents the distribution of random

probability measure H0 with mean measure H. One example is the two-parameter Poisson-

Dirichlet process.

4.4 Dependent results: Moments

In this section, we will obtain the moment results of the dependent hCoxNRMIs intro-

duced in model 4.3.1 and model 4.3.5. The variance and covariance results would present

a clear view of the dependent structures.

To make the notations simple, we introduce the following symbols. For any positive

139



integer m, k and i ∈ {0, 1, · · · , d}, let

τi,m(u) =

∫︂ ∞

0

sme−usρi(ds), ϕi(u) =

∫︂ ∞

0

(1− e−us)ρi(ds) ,

I(k)
i,m =

∫︂ ∞

0

ue−aiϕi(u)τ ki,m(u)du ,

τm(u) =

∫︂ ∞

0

sme−usρ(ds), ϕ(u) =

∫︂ ∞

0

(1− e−us)ρ(ds) ,

I(k)
m =

∫︂ ∞

0

ue−aϕ(u)τ km(u)du .

4.4.1 Moment results of model 4.3.1

Proposition 4.4.1. Let {Pi}di=1 be the CoxNRMIs on (X,X ) defined as in model 4.3.1.

For any A,B ∈ X , we have

E[Pi(A)] =
ziaiHi(A) + (1− zi)a0H(A)

ziai + (1− zi)a0
,

Var[Pi(A)] =
(1− zi)

2a20aH(A)H(Ac)G2

(ziai + (1− zi)a0)
2 +

[(ziaiHi(A) + (1− zi)a0H(A)) (ziaiHi(A
c) + (1− zi)a0H(Ac))− (1− zi)

2a20aH(A)H(Ac)G2]

ziai + (1− zi)a0
Gi,2 ,

Cov[Pi(A), Pj(B)] =
(1− zi)(1− zj)a

2
0a[H(A ∩B)−H(A)H(B)]G2

(ziai + (1− zi)a0) (zjaj + (1− zj)a0)
, (4.4.1)

where

G2 =

∫︂ ∞

0

uτ2(u)e
−aϕ(u)du ,

Gi,2 =
∫︂ ∞

0

uτi,2(u)e
−(ziai+(1−zi)a0)ϕi(u)du .

The moment results of example 4.3.4 can be calculated by using G2 =
1−σ
a

and Gi,2 =
1

(ziai+(1−zi)a0)(ziai+(1−zi)a0+1)
. And thus, we have

E[Pi(A)] =
ziaiHi(A) + (1− zi)a0H(A)

ziai + (1− zi)a0
,

Var[Pi(A)] =
(1− σ)(1− zi)

2a20H(A)H(Ac)

(ziai + (1− zi)a0) (ziai + (1− zi)a0 + 1)
+
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[(ziaiHi(A) + (1− zi)a0H(A)) (ziaiHi(A
c) + (1− zi)a0H(Ac))]

(ziai + (1− zi)a0)
2 (ziai + (1− zi)a0 + 1)

,

Cov[Pi(A), Pj(B)] =
(1− σ)(1− zi)(1− zj)a

2
0[H(A ∩B)−H(A)H(B)]

(ziai + (1− zi)a0) (zjaj + (1− zj)a0)
. (4.4.2)

Interestingly, the variance and the mutual covariance of the dependent random probability

measures {Pi}di=1 are not affected by the concentration parameter a of H0.

4.4.2 Moment results for model 4.3.5

Proposition 4.4.2. Let {Pi}di=1 be the CoxNRMIs on (X,X ) defined as in model 4.3.5.

For any A,B ∈ X , we have

E[Pi(A)] = H(A)z0a0I(0,1)
i,1 +Hi(A)ziaiL(0,1)

i,1

= Hi(A) + (H(A)−Hi(A))z0a0I(0,1)
i,1 = H(A) + (Hi(A)−H(A))ziaiI(0,1)

j,1 ,

(4.4.3)

Var[Pi(A)] = Hi(A)
2z2i a

2
i

(︃
L(1,2)
i,1 −

(︂
L(0,1)
i,1

)︂2)︃
+H(A)2z20a

2
0

(︃
L(1,2)

0,1 −
(︂
I(0,1)
i,1

)︂2)︃
+ 2Hi(A)H(A)ziz0aia0

(︂
Ji,0 − L(0,1)

i,1 I(0,1)
i,1

)︂
+Hi(A)ziaiL(1,1)

i,2

+H(A)z0a0I(1,1)
i,2 + az20a

2
0H(A)H(Ac)I(1,2)

i,1 G2 , (4.4.4)

Cov[Pi(A), Pj(B)] = zizjaiajHi(A)Hj(B)
(︂
Ki,j − L(0,1)

i,1 L(0,1)
j,1

)︂
+ ziz0aia0Hi(A)H(B)

(︂
Ki,0 − L(0,1)

i,1 I(0,1)
j,1

)︂
+ zjz0aja0H(A)Hj(B)

(︂
Kj,0 − L(0,1)

j,1 I(0,1)
i,1

)︂
+ z20a

2
0H(A)H(B)

(︂
K0,0 − I(0,1)

i,1 I(0,1)
j,1

)︂
+ z20a

2
0a(H(A ∩B)−H(A)H(B))G2K0,0

+ z0a0H(A ∩B)H0,2 , (4.4.5)

where for any i, j ∈ {1, · · · , d}, k, n ∈ Z,

I(n,k)
i,m =

∫︂ ∞

0

unτ k0,m(u)e
−z0a0ϕ0(u)−ziaiϕi(u)du ,

L(n,k)
i,m =

∫︂ ∞

0

unτ ki,m(u)e
−z0a0ϕ0(u)−ziaiϕi(u)du ,

Ji,0 =
∫︂ ∞

0

uτi,1(u)τ0,1(u)e
−z0a0ϕ0(u)−ziaiϕi(u)du ,
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Ki,j =

∫︂ ∞

0

∫︂ ∞

0

τi,1(u1)τj,1(u2)e
−z0a0ϕ0(u1+u2)−ziaiϕi(u1)−zjajϕj(u2)du1du2

Ki,0 =

∫︂ ∞

0

∫︂ ∞

0

τi,1(u1)τ0,1(u1 + u2)e
−z0a0ϕ0(u1+u2)−ziaiϕi(u1)−zjajϕj(u2)du1du2

Kj,0 =

∫︂ ∞

0

∫︂ ∞

0

τj,1(u2)τ0,1(u1 + u2)e
−z0a0ϕ0(u1+u2)−ziaiϕi(u1)−zjajϕj(u2)du1du2

K0,0 =

∫︂ ∞

0

∫︂ ∞

0

τ0,1(u1 + u2)τ0,1(u1 + u2)e
−z0a0ϕ0(u1+u2)−ziaiϕi(u1)−zjajϕj(u2)du1du2

H0,2 =

∫︂ ∞

0

∫︂ ∞

0

τ0,2(u1 + u2)e
−z0a0ϕ0(u1+u2)−ziaiϕi(u1)−zjajϕj(u2)du1du2 .

Note that z0a0L(0,1)
0,i + ziaiL(0,1)

i,0 = 1 for any i ∈ {1, · · · , d}.

The moment results of example 4.3.7 can be evaluated by some trivial algebra and we

have

E[Pi(A)] =
H(A)z0a0 +Hi(A)ziai

a0z0 + aizi
,

Var[Pi(A)] =
(1− σ)z20a

2
0H(A)H(Ac)

(ziai + z0a0) (ziai + z0a0 + 1)
+

[(ziaiHi(A) + z0a0H(A)) (ziaiHi(A
c) + z0a0H(Ac))]

(ziai + z0a0)
2 (ziai + z0a0 + 1)

,

Cov[Pi(A), Pj(B)]

= zizjaiajHi(A)Hj(B)

(︃
3F2(1, a0z0, 1; a0z0 + aizi + 1, a0z0 + ajzj + 1); 1)− 1

(a0z0 + aizi)(a0z0 + ajzj)

)︃
+ ziz0aia0Hi(A)H(B)

(︂
3F2(1, a0z0 + 1, 1; a0z0 + aizi + 2, a0z0 + ajzj + 1); 1)

(a0z0 + aizi + 1)(a0z0 + ajzj)

− 1

(a0z0 + aizi)(a0z0 + ajzj)

)︂
+ zjz0aja0H(A)Hj(B)

(︂
3F2(1, a0z0 + 1, 1; a0z0 + ajzj + 2, a0z0 + aizi + 1); 1)

(a0z0 + ajzj + 1)(a0z0 + aizi)

− 1

(a0z0 + aizi)(a0z0 + ajzj)

)︂
+ z20a

2
0H(A)H(B)

(︂
3F2(1, a0z0 + 2, 1; a0z0 + ajzj + 2, a0z0 + aizi + 2); 1)

(a0z0 + ajzj + 1)(a0z0 + aizi + 1)

− 1

(a0z0 + aizi)(a0z0 + ajzj)

)︂
+
(︁
(1− σ)z20a

2
0(H(A ∩B)−H(A)H(B)) + z0a0H(A ∩B)

)︁
×

3F2(1, a0z0 + 2, 1; a0z0 + ajzj + 2, a0z0 + aizi + 2); 1)

(a0z0 + ajzj + 1)(a0z0 + aizi + 1)
. (4.4.6)
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The form 3F2(a, b, c;α, β;x) is the generalized hypergeometric function that is defined by

3F2(a, b, c;α, β;x) =
∞∑︂
n=0

(a)n(b)n(c)n
(α)n(β)nn!

xn ,

where (a)n = Γ(a+n)
Γ(a)

for any a > 0 and n ∈ Z+. The above hypergeometric function

converges when |x| < 1, or x = 1 under the condition Rz(α + β − a − b − c) > 0, with

Rz() denoting the real part of a complex number.

4.5 Random partition structure

Consider the partially exchangeable random sequence X = {X(Ni) : i = 1, · · · , d} that

is sampled from (P1, · · · , Pd) given by either model 4.3.1 or model 4.3.5. Based on the

discreteness of NRMIs, there is a positive probability (when zi ̸= 1) of Xi,k = Xj,l, no

matter that Xi,k and Xj,l are in the same group or in different group. As we discussed in

the introduction, a random partition structure is thus induced, since Xi,k and Xj,l will be

in the same partition subset of X as long as Xi,k = Xj,l. The induced random partition

distribution is identified by pEPPF Π
(N)
k (n1, · · · ,nd) as defined in eq. (4.1.2). We will

derive the pEPPFs corresponding to model 4.3.1 and model 4.3.5 in this section.

In order to have a detailed view of the pEPPFs induced by model 4.3.1 and model 4.3.5,

we would introduce the Local special Chinese restaurant franchise, which is similar

to the well-known Chinese restaurant franchise for the hierarchical Dirichlet process ((Teh

et al., 2006)) and the hierarchical NRMIs ((Camerlenghi et al., 2019)). Assume that

there is a Chinese restaurant franchise consisting of d restaurants located at d different

locations. Each restaurant has infinite number of tables, a shared menu (same for all the

d restaurants) that includes infinite number of shared common white dishes (generated

by H), and a local special menu (different in different restaurant) that includes infinite

number of red dishes (generated by Hi). Although we use red dishes to represent the

local special dishes for all d restaurants, we assumes the red dishes between different

restaurants are totally different. The first customer of each restaurant i will choose a
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table and order a dish, which will be shared with all the customers who afterwards join

the same table. Thus, the second customer of the restaurant i will either choose a new

table and order a new dish, or joint the first table to share the dish ordered by the

first customer. According to the scheme, the same white dish can be served at different

tables within the same restaurant and across different restaurants, whereas the red dish in

restaurant i can only be served at different tables within the restaurant i. The preference

of ordering white dishes or red dishes in a restaurant i is controlled by a historical rating

score zi, namely the customers in the restaurant i will prefer to order red dishes if zi is

close to 1 and prefer to order white dishes if zi is close to 0. We denote the dish served

to the jth customer in the restaurant i by Xi,j and denote the frequency count of the

number of customers in restaurant i who eat the dish Xi,j as ni,j for i ∈ {1, · · · , d} and

j ∈ {1, · · · , Ni}. Let ri,j be the number of tables in restaurant i with the jth dish being

served and then let qi,j,l be the number of customers in restaurant i at table l eating the

jth dish. Hence, there are following relationships for the above quantities.

(1)
∑︁ri,j

l=1 qi,j,l = ni,j and l ∈ {1, · · · , ri,j};

(2)
∑︁d

i=1 ri,j = |r•,j| is the number of tables with dish j across all the d restaurants;

(3)
∑︁K

j=1 ri,j = |ri,•| is the number of tables occupied in restaurant i, where K is

the number of distinct dishes served in all the d restaurants to all the N customers.

The local special Chinese restaurant franchise actually describes a hierarchical partition

structure: the N customers are clustered to |r| =
∑︁d

i=1

∑︁K
j=1 ri,j tables; then the |r| tables

are clustered to K subgroups, which are identified by the K distinct served dishes. It

is worthy to point out that the subgroups corresponding to red dishes only includes the

costumers within the restaurant, but not across the restaurants.

4.5.1 pEPPF for model 4.3.1

Theorem 4.5.1. Suppose the partially exchangeable random sequence X is a sample of

size N from (P1, · · · , Pd) that is constructed in model 4.3.1. Assuming the following
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condition

Assumption A Let
∏︁d

i=1Hi(dx
∗
j )

mi,j

H(dx∗j )
= C(m1,j, · · · ,md,j), where C(m1,j, · · · ,md,j)

is finite (could be 0) for any j ∈ {1, · · · , K}, mi,j ∈ Z+.

Then

Π
(N)
K (n1, · · · ,nd)

=
∑︂
r

∑︂
q

[︄(︄
d∏︂
i=1

(ziai)
|ri,•|

)︄(︄
K∏︂
j=1

C(r1,j, · · · , rd,j)

)︄
+ (4.5.1)

Ψ(|r|)(|r•,1|, · · · , |r•,K |)a|r|0

(︄
d∏︂
i=1

(1− zi)
|ri,•|

)︄]︄

×
d∏︂
i=1

K∏︂
j=1

1

ri,j!

(︃
ni,j

qi,j,1, · · · , qi,j,ri,j

)︃
Ψ

(Ni)
i (qi,1, · · · ,qi,K) ,

where the leading sum are taken of all vectors of r and q such that for any i ∈ {1, · · · , d}

and j ∈ {1, · · · , K}:

(1) r = (r1,•, · · · , rd,•) and ri,• = (ri,1, · · · , ri,K) ∈ ×K
j=1{1, · · · , ni,j};

(2) q = (q1,1, · · · ,q1,K , · · · ,qd,1, · · · ,qd,K) and qi,j = (qi,j,1, · · · , qi,j,ri,j) are vectors

of positive integers such that
∑︁ri,j

l=1 qi,j,l = ni,j;

(3) Ψ(|r|)(|r•,1|, · · · , |r•,K |) = aK

Γ(|r|)

∫︁∞
0
u|r|−1e−aϕ(u)

∏︁K
j=1 τ|r•,j |(u)du

(4) Ψ
(Ni)
i (qi,1, · · · ,qi,K) = 1

Γ(Ni)

∫︁∞
0
uNi−1e−(ziai+(1−zi)a0)ϕi(u)

∏︁K
j=1

∏︁ri,j
t=1 τi,qi,j,t(u)du.

It is worthy to point out that the partially exchangeable random partition structure

is a multiplication of two hierarchies:

(i) The exchangeable random partition structure of each of the d groups, this is

identified by the EPPF Ψ
(Ni)
i (qi,1, · · · ,qi,k) of each group i ∈ {1, · · · , d}. Corre-

spondingly to the local special Chinese restaurant franchise metaphor, this is the

partition probability function of separating Ni costumers in restaurant i by K dis-

tinct dishes.
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(ii) The exchangeable random partition structure of the whole d group after the

partition in (i), this is identified by the EPPF Ψ(|r|)(|r•,1|, · · · , |r•,K |), which cor-

responds to the randomness of H0; and
∏︁K

j=1C(r1,j, · · · , rd,j), which corresponds

to the unique deterministic part Hi of group Hi. As to the local special Chinese

restaurant franchise metaphor, this acts the partition across d groups based on the

K distinct dishes.

We also present the pEPPF for the case in example 4.3.4 as follows.

Example 4.5.2 (Continued of example 4.3.4). If (P1, · · · , Pd) is constructed as in exam-

ple 4.3.4, then the pEPPF can be computed under the Assumption A as

Π
(N)
K (n1, · · · ,nd)

=
∑︂
r

[︄(︄
d∏︂
i=1

(ziai)
|ri,•|

)︄(︄
K∏︂
j=1

C(r1,j, · · · , rd,j)

)︄
+

σK−1Γ(K)

Γ(|r|)

(︄
K∏︂
j=1

(1− σ)|r•,j |−1

)︄
a
|r|
0

(︄
d∏︂
i=1

(1− zi)
|ri,•|

)︄]︄

×

(︄
d∏︂
i=1

1

(ziai + (1− zi)a0)Ni

)︄(︄
K∏︂
j=1

(|r•,j| − 1)!
d∏︂
i=1

S(ni,j, ri,j)

)︄
,

where S(n,m) denotes the unsigned Stirling number of the first kind.

4.5.2 pEPPF for model 4.3.5

Theorem 4.5.3. Suppose the partially exchangeable random sequence X is a sample of

size N from (P1, · · · , Pd) that is constructed in model 4.3.5. Under the assumption A in

theorem 4.5.1, we have

Π
(N)
K (n1, · · · ,nd)

=
∑︂
rmax

∑︂
q

[︄∫︂ ∞

0

· · ·
∫︂ ∞

0

(︄
d∏︂
i=1

uNi−1
i

Γ(Ni)

)︄
e−

∑︁d
i=1 ziaiϕi(ui)−z0a0ϕ0(

∑︁d
i=1 ui)×{︄

K∏︂
j=1

1

rmax,j!

d∏︂
i=1

(︃
ni,j

qi,j,1, · · · , qi,j,rmax,j

)︃}︄
×
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[︄
Ψ(rmax)(rmax,1, · · · , rmax,K) (z0a0)

rmax

K∏︂
j=1

rmax,j∏︂
tj=1

τ0,
∑︁d

i=1 qi,j,tj
(
d∑︂
i=1

ui)+

K∏︂
j=1

C(r1,j, · · · , rd,j)

⎛⎝rmax,j∏︂
tj=1

1{|−−→qj,tj
|=1}

⎞⎠ d∏︂
i=1

(ziaiHi(Bj))
|−−→qi,j |

rmax,j∏︂
tj=1

τi,qi,j,tj (ui)

]︄
du

]︄
,

(4.5.2)

where for any i ∈ {1, · · · , d}, j ∈ {1, · · · , K} the sum of rmax and q are taking over the

vector of rmax and q, and

(1) rmax = (rmax,1, · · · , rmax,K) with rmax,j ∈ {1, · · · , n•,j} and rmax =
∑︁K

j=1 rmax,j;

(2) q = (q1,1, · · · ,q1,K , · · · ,qd,1, · · · ,qd,K) and qi,j = (qi,j,1, · · · , qi,j,rmax,j
) are vec-

tors of nonnegative integers such that
∑︁rmax,j

tj=1 qi,j,tj = ni,j;

(3) We define τi,0(ui) = 1 temporarily in this theorem for the sake of notational

simplicity;

(4) |−−→qj,tj | is the length of the vector (q1,j,tj , · · · , qd,j,tj) and |−→qi,j| is the length of the

vector (qi,j,1, · · · , qi,j,rmax,j
).

The pEPPF corresponding to the case in example 4.3.7 is illustrated as follows.

Example 4.5.4 (Continued of example 4.3.7). If (P1, · · · , Pd) is constructed as in exam-

ple 4.3.7, then the pEPPF can be computed under the Assumption A as

Π
(N)
K (n1, · · · ,nd)

=
∑︂
rmax

∑︂
q

{︄
σK(z0a0)

rmax

Γ(rmax)
(︂∏︁d

i=1 Γ(Ni)
)︂Φ(d)(N1, · · · , Nd; a1z1, · · · , adzd;N + a0z0)×

{︄
K∏︂
j=1

1

rmax,j!

d∏︂
i=1

(︃
ni,j

qi,j,1, · · · , qi,j,rmax,j

)︃}︄ K∏︂
j=1

⎧⎨⎩(1− σ)(rmax,j−1)

rmax,j∏︂
tj=1

Γ(
d∑︂
i=1

qi,j,tj)

⎫⎬⎭+

(︄
d∏︂
i=1

(aizi)
|
−−→
qi,•|

Γ(Ni)(aizi)Ni

)︄
Φ(d)(N1, · · · , Nd; a1z1 +N1, · · · , adzd +Nd; a0z0)×

K∏︂
j=1

⎧⎨⎩C(ri,j, · · · , rd,j)rmax,j!

⎛⎝rmax,j∏︂
tj=1

1{|−−→qj,tj
|=1}

⎞⎠⎛⎝ d∏︂
i=1

(︃
ni,j

qi,j,1, · · · , qi,j,rmax,j

)︃ rmax,j∏︂
tj=1

Γ(qi,j,tj)

⎞⎠⎫⎬⎭
}︄
,
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where

Φ(d)(α1, · · · , αd; βd, · · · , βd; γ)

=

∫︂ ∞

0

· · ·
∫︂ ∞

0

d∏︂
i=1

(︁
uαi−1
i (1 + ui)

−βi
)︁
(1 + u1 + · · ·+ ud)

−γdu1 · · · dud .

From Theorem4.5.1 and Theorem 4.5.3, we see that the random partition structure

induced by model 4.3.1 and model 4.3.5 are both two-level structure partition models de-

scribed by the local special Chinese restaurant franchise. The two-level partition structure

of model 4.3.1 can be separated level by level, in the sense that the first level partition

of each d groups of observations are not affected by the second overall level partition.

Whereas the two level partition structures of model 4.3.5 are affected each other.

4.6 Cluster numbers KN

It is natural to consider the partition structures induced by model 4.3.1 and model 4.3.5

after the pEPPFs is the distributions of the number of random partitions KN . According

to the local special Chinese restaurant franchise, KN represents the number of distinct

dishes served to the N customers in the d restaurants. To derive the distribution of

KN and to make the presentation easy to follow, we introduce a collection of sequences

{(Yi,j)Ni
j=1 : i = 1, · · · , d}, where Yi,j|P̃ i

iid∼ P̃ i and P̃ i is defined similarly to Pi as in

model 4.3.1 and model 4.3.5 but with non-random H0. That is to say, we only consider

the first level partition structure of model 4.3.1 and model 4.3.5. For i = 1, · · · , d, let

Ki,Ni
= K

(1)
i,Ni

+ K
(2)
i,Ni

be the number of distinct observations in YNi = (Yi,1, · · · , Yi,Ni
),

where K
(1)
i,Ni

is the number of tables occupied in restaurant i and served common white

dishes, K
(2)
i,Ni

is the number of tables occupied in restaurant i and served special red

dishes. Let K0,t be the number of distinct observations for t exchangeable observations

from H0 ∼ NRMI(a,H, ρ), then K0,t represent the number of distinct common white

dishes dishes served on the t occupied tables.

Due to the different constructions of model 4.3.1 and model 4.3.5, (K1,N1 , · · · , Kd,Nd
)
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are independent for the former case and dependent for the later case.

Theorem 4.6.1. Suppose the partially exchangeable random sequence X is a sample of

size N from (P1, · · · , Pd) that is constructed in either model 4.3.1 or model 4.3.5. Then,

for any k ∈ {1, · · · , N}, we have

P(KN = k) =
k∑︂
η=0

N∑︂
t=k−η

P(K0,t = k − η)P

(︄
d∑︂
i=1

K
(1)
i,Ni

= t,

d∑︂
i=1

K
(2)
i,Ni

= η

)︄
.

For model 4.3.1, we further have

P(KN = k) =
k∑︂
η=0

N∑︂
t=k−η

P(K0,t = k − η)
∑︂

(t1,··· ,td)∈∆d,t

(η1,··· ,ηd)∈∆d,η

d∏︂
i=1

P
(︂
K

(1)
i,Ni

= ti, K
(2)
i,Ni

= ηi

)︂
,

where ∆d,n = {(r1, · · · , rd) : ri ≥ 0,
∑︁d

i=1 ri = n}.

The distribution of K0,t and (K
(1)
i,Ni

, K
(2)
i,Ni

) can be derived from Theorem 4.5.1 and

Theorem 4.5.3. For model 4.3.1, we have

P (K0,t = k0) =
1

k0!

∑︂
(r1,··· ,rk0 )∈Λk0,t

(︃
t

r1 · · · rk0

)︃
Ψ(t)(r1, · · · , rk0)

for any k0 ∈ {1, · · · , t}, where Λd,n = {(r1, · · · , rd) : ri ≥ 1,
∑︁d

i=1 ri = n}. And for any

(ti, ηi) such that ti + ηi ∈ {1, · · · , Ni}, we have

P
(︂
K

(1)
i,Ni

= ti, K
(2)
i,Ni

= ηi

)︂
=
ziai + (1− zi)a0

(ti + ηi)!

∑︂
(r1,··· ,rti ,··· ,rti+ηi )∈Λti+ηi,Ni

(︃
Ni

r1 · · · rti · · · rti+ηi

)︃
Ψ

(Ni)
i (r1, · · · , rti , · · · , rti+ηi) .

For model 4.3.5, we have

P (K0,t = k0) =
1

k0!

∑︂
(r1,··· ,rk0 )∈Λk0,t

(︃
t

r1 · · · rk0

)︃
Ψ(t)(r1, · · · , rk0)
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for any k0 ∈ {1, · · · , t}. And for (ti, ηi)
d
i=1 such that ti + ηi ∈ {1, · · · , Ni} for all i, we

have

P
(︂
K

(1)
1,N1

= t1, K
(2)
1,N1

= η1, · · · , K(1)
d,Nd

= td, K
(2)
d,Nd

= ηd

)︂
=

∑︂
(r1,1,··· ,r1,t1+η1 )∈Λt1+η1,N1···
(rd,1,··· ,rd,td+ηd

)∈Λtd+ηd,Nd

(︄
d∏︂
i=1

1

(ti + ηi)!

(︃
Ni

ri,1 · · · ri,ti+ηi

)︃)︄
×

∫︂ ∞

0

· · ·
∫︂ ∞

0

(︄
d∏︂
i=1

uNi
i

Γ(Ni)

)︄
e−

∑︁d
i=1 ziaiϕi(ui)−z0a0ϕ0(

∑︁d
i=1 ui)×{︄

d∏︂
i=1

ziai

ti+ηi∏︂
ji=1

τi,ri,ji (ui) + (z0a0)
d

d∏︂
i=1

τ0,Ni

(︄
d∑︂
i=1

ui

)︄}︄
du .

Example 4.6.2 (Continuation of example 4.3.4). If (P1, · · · , Pd) is constructed as in

example 4.3.4, the distribution of KN can be found as

P(KN = k) =
k∑︂
η=0

N∑︂
t=k

tσk−η−1

k − η

⎛⎝ ∑︂
(r1,··· ,rk−η)∈Λk−η,t

k−η∏︂
j=1

(1− σ)rj−1

rj!

⎞⎠×

∑︂
(t1,··· ,td)∈∆d,t

(η1,··· ,ηd)∈∆d,η

d∏︂
i=1

⎛⎜⎜⎜⎜⎝
Ni!

(︄ ∑︁
(ri,1,··· ,ri,ti+ηi

)∈Λti+ηi,Ni

∏︁ti+ηi
ji=1 r

−1
j

)︄
(ti + ηi)!(aizi + (1− zi)a0 + 1)Ni−1

⎞⎟⎟⎟⎟⎠ .

Example 4.6.3 (Continuation of example 4.3.7). If (P1, · · · , Pd) is constructed as in

example 4.3.7, the distribution of KN can be found as

P(KN = k) =
k∑︂
η=0

N∑︂
t=k

tσk−η−1

k − η

⎛⎝ ∑︂
(r1,··· ,rk−η)∈Λk−η,t

k−η∏︂
j=1

(1− σ)rj−1

rj!

⎞⎠×

∑︂
(t1,··· ,td)∈∆d,t

(η1,··· ,ηd)∈∆d,η

∑︂
(r1,1,··· ,r1,t1+η1 )∈Λt1+η1,N1···
(rd,1,··· ,rd,td+ηd

)∈Λtd+ηd,Nd

(︄
d∏︂
i=1

NiziaiΦ
(d)(N1, · · · , Nd; a1z1 +N1, · · · , adzd +Nd; a0z0)

(ti + ηi)!
∏︁ti+ηi

ji=1 ri,ji

+
d∏︂
i=1

a0z0Ni!Φ
(d)(N1, · · · , Nd; a1z1, · · · , adzd;N + a0z0)

(ti + ηi)!
∏︁ti+ηi

ji=1 ri,ji !

)︄
.
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4.7 Discussion

Although the proposed constructions provide flexible tools in modelling partially ex-

changeable observations, they show some complications in deriving the theoretical re-

sults. There are further works that should be done for our constructions, for example,

the asymptotic behaviour of KN when N is large, and the posterior analysis for the two

constructions.

4.8 Appendix

Proof of Theorem 4.4.1

Proof.

E[Pi(A)|H0] = E
[︃
µ̃i(A) + µ̃i,0(A)

µ̃i(X) + µ̃i,0(X)
|H0

]︃
= E

[︃∫︂ ∞

0

e−u(µ̃i(X)+µ̃i,0(X))(µ̃i(A) + µ̃i,0(A))du|H0

]︃
=

∫︂ ∞

0

− d

du
E
[︁
e−u(µ̃i(A)+µ̃i,0(A))

]︁
E
[︁
e−u(µ̃i(A

c)+µ̃i,0(A
c))
]︁
du

= (ziaiHi(A) + (1− zi)a0H0(A))

∫︂ ∞

0

e−(ziai+(1−zi)a0)ϕi(u)dϕ(u)

du
du

=
ziaiHi(A) + (1− zi)a0H0(A)

ziai + (1− zi)a0
.

Then, E[Pi(A)] = E[E[Pi(A)|H0]] is followed by the fact E[H0(A)] = H(A).

We can further calculate the second moments as follows.

E[Pi(A)2|H0] = E

[︄(︃
µ̃i(A) + µ̃i,0(A)

µ̃i(X) + µ̃i,0(X)

)︃2

|H0

]︄

= E
[︃∫︂ ∞

0

ue−u(µ̃i(X)+µ̃i,0(X))(µ̃i(A) + µ̃i,0(A))
2du|H0

]︃
=

∫︂ ∞

0

u
d2

du2
E
[︁
e−u(µ̃i(A)+µ̃i,0(A))

]︁
E
[︁
e−u(µ̃i(A

c)+µ̃i,0(A
c))
]︁
du

=

∫︂ ∞

0

ue−(ziai+(1−zi)a0)ϕi(u)
[︁
(ziaiHi(A) + (1− zi)a0H0(A))

2τi,1(u)
2
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+ (ziaiHi(A) + (1− zi)a0H0(A))τi,2(u)
]︁
du .

By the fact that E[Pi(X)2|H0] = 1, we have

∫︂ ∞

0

ue−(ziai+(1−zi)a0)ϕi(u)τi,1(u)
2du

=
1

(ziai + (1− zi)a0)2
− Gi,2
ziai + (1− zi)a0

.

Combining with the fact that E[H0(A)
2] = H(A)2+ aH(A)H(Ac)G2 (James et al. (2006),

Proposition 1), we can find Var[Pi(A)] by E[E[Pi(A)2|H0]]− E[P (A)]2.

Since Pi(A) and Pj(B) are conditionally independent, we have

E[Pi(A)Pj(B)|H0] = E[Pi(A)|H0]E[Pj(B)|H0]

=

(︃
ziaiHi(A) + (1− zi)a0H0(A)

ziai + (1− zi)a0

)︃(︃
zjajHj(B) + (1− zj)a0H0(B)

zjaj + (1− zj)a0

)︃
.

Noting that E[H0(A)H0(B)] = (H(A∩B)−H(A)H(B))G2 +H(A)H(B), we can further

calculate

E[Pi(A)Pj(B)] = E[E[Pi(A)Pj(B)|H0]]

=

(︃
ziaiHi(A) + (1− zi)a0H(A)

ziai + (1− zi)a0

)︃(︃
zjajHj(B) + (1− zj)a0H(B)

zjaj + (1− zj)a0

)︃
+
a20a(1− zi)(1− zj)(H(A ∩B)−H(A)H(B))G2

(ziai + (1− zi)a0)(zjaj + (1− zj)a0)
.

The covariance result then follows.

Proof of Theorem 4.4.2

Proof. The results of E[Pi(A)] and E[Pi(A)2] can be found by the similar steps to those

in the proof 4.8.

152



For the computation of Cov[Pi(A), Pj(B)], it is sufficient to compute

E[Pi(A)Pj(B)|H0] =

∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµi(X)−ujµj(X)µi(A)µj(B)|H0

]︁
duiduj

=

∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµi(X)−ujµj(X)(µ̃i(A) + µ̃0(A))(µ̃j(B) + µ̃0(B))|H0

]︁
duiduj

=

∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµi(X)−ujµj(X)µ̃i(A)µ̃j(B)|H0

]︁
duiduj+∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµi(X)−ujµj(X)µ̃i(A)µ̃0(B)|H0

]︁
duiduj+∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµi(X)−ujµj(X)µ̃0(A)µ̃j(B)|H0

]︁
duiduj+∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµi(X)−ujµj(X)µ̃0(A)µ̃0(B)|H0

]︁
duiduj ,

where the first three forms in the last equation can be computed in the similar way as

follows.

∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµi(X)−ujµj(X)µ̃i(A)µ̃j(B)|H0

]︁
duiduj

=

∫︂ ∞

0

∫︂ ∞

0

(︃
− d

dui
E
[︁
e−uiµ̃i(A)|H0

]︁)︃(︃
− d

duj
E
[︁
e−uj µ̃j(B)|H0

]︁)︃
E
[︁
e−uiµ̃i(A

c)−uj µ̃j(Bc)−(ui+uj)µ̃0(X)|H0

]︁
duiduj

= zizjaiajHi(A)Hj(B)Ki,j .

Moreover, we have

∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµi(X)−ujµj(X)µ̃0(A)µ̃0(B)|H0

]︁
duiduj

=

∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµ̃i(X)−uj µ̃j(X)−(ui+uj)µ̃0(X)

(µ̃0(A ∩B) + µ̃0(A ∩Bc))(µ̃0(B ∩ A) + µ̃0(B ∩ Ac))|H0

]︁
duiduj

=

∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµ̃i(X)−uj µ̃j(X)−(ui+uj)µ̃0((A∩B)c)|H0

]︁ d2

d(ui + uj)2
E
[︁
e−(ui+uj)µ̃0(A∩B)|H0

]︁
duiduj

+

∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµ̃i(X)−uj µ̃j(X)−(ui+uj)µ̃0(((A∩B)∪(B∩Ac))c)|H0

]︁
−d

d(ui + uj)
E
[︁
e−(ui+uj)µ̃0(A∩B)|H0

]︁ −d
d(ui + uj)

E
[︁
e−(ui+uj)µ̃0(B∩Ac)|H0

]︁
duiduj
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+

∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµ̃i(X)−uj µ̃j(X)−(ui+uj)µ̃0(((A∩B)∪(Bc∩A))c)|H0

]︁
−d

d(ui + uj)
E
[︁
e−(ui+uj)µ̃0(A∩B)|H0

]︁ −d
d(ui + uj)

E
[︁
e−(ui+uj)µ̃0(B

c∩A)|H0

]︁
duiduj

+

∫︂ ∞

0

∫︂ ∞

0

E
[︁
e−uiµ̃i(X)−uj µ̃j(X)−(ui+uj)µ̃0(((A∩Bc)∪(B∩Ac))c)|H0

]︁
−d

d(ui + uj)
E
[︁
e−(ui+uj)µ̃0(A∩Bc)|H0

]︁ −d
d(ui + uj)

E
[︁
e−(ui+uj)µ̃0(B∩Ac)|H0

]︁
duiduj

= z20a
2
0H0(A)H0(B)K0,0 + z0a0H0(A ∩B)H0,2 .

By combining the above calculations, we have

E[Pi(A)Pj(B)|H0] = zizjaiajHi(A)Hj(B)Ki,j + ziz0aia0Hi(A)H0(B)Ki,0+

z0zja0ajH0(A)Hj(B)Ki,j + z20a
2
0H0(A)H0(B)K0,0 + z0a0H0(A ∩B)H0,2 .

The result of Cov(Pi(A), Pj(B)) then follows by the fact that E[H0(A)H0(B)] = H(A)H(B)+

(H(A ∩B)−H(A)H(B))G2.

Proof of Theorem 4.5.1

Proof. From eq. (4.1.2), it follows

Π
(N)
K (n1, · · · ,nd) =

∫︂
XK

E

[︄
d∏︂
i=1

K∏︂
j=1

Pi(dx
∗
j)
ni,j

]︄
.

We shall evaluate the form In(Bϵ(x
∗
1), · · · , Bϵ(x

∗
K)) as follows.

In(Bϵ(x
∗
1), · · · , Bϵ(x

∗
K)) = E

[︄
d∏︂
i=1

k∏︂
j=1

Pi(Bϵ(x
∗
j))

ni,j

]︄
,

where Bϵ(x
∗
j) is a ball of radius ϵ and center x∗j such that ϵ > 0 is small enough to make

Bϵ(x
∗
j) ∩Bϵ(x

∗
i ) = ∅ for i ̸= j.
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Note that

In(Bϵ(x
∗
1), · · · , Bϵ(x

∗
K))

= E

[︄
E

[︄
d∏︂
i=1

K∏︂
j=1

Pi(Bϵ(x
∗
j))

ni,j |H0

]︄]︄

= E

[︄
d∏︂
i=1

E

[︄
K∏︂
j=1

(︃
µi(Bϵ(x

∗
j))

µi(X)

)︃ni,j

|H0

]︄]︄

= E

[︄
d∏︂
i=1

∫︂ ∞

0

uNi−1

Γ(Ni)
E

[︄
e−uµi(X)

K∏︂
j=1

µi(Bϵ(x
∗
j))

ni,j |H0

]︄
du

]︄

= E

[︄
d∏︂
i=1

∫︂ ∞

0

uNi−1

Γ(Ni)
E
[︁
e−uµi(B

∗)|H0

]︁ K∏︂
j=1

(−1)ni,j
dni,j

duni,j
E
[︂
e−uµi(Bϵ(x∗j ))|H0

]︂
du

]︄
,

(4.8.1)

where B∗ = X\
(︁
∪Kj=1Bϵ(x

∗
j)
)︁
and the last equation is due to the conditional independence

of µi(Bϵ(x
∗
j)) for different j. By the famous Faà di Bruno formula (see e.g., Hardy (2006)),

we can calculate the form

(−1)ni,j
dni,j

duni,j
E
[︂
e−uµi(Bϵ(x∗j ))|H0

]︂
= (−1)ni,j

dni,j

duni,j
e−[ziaiHi(Bϵ(x∗j ))+(1−zi)a0H0(Bϵ(x∗j ))]ϕi(u)

= e−[ziaiHi(Bϵ(x∗j ))+(1−zi)a0H0(Bϵ(x∗j ))]ϕi(u)×
ni,j∑︂
ri,j=1

[︁
ziaiHi(Bϵ(x

∗
j)) + (1− zi)a0H0(Bϵ(x

∗
j))
]︁ri,j 1

ri,j!

∑︂
qi,j

(︃
ni,j

qi,j,1, · · · , qi,j,ri,j

)︃ ri,j∏︂
t=1

τi,qi,j,t(u) ,

(4.8.2)

where the sum of qi,j is taken all over the vector of positive integers (qi,j,1, · · · , qi,j,ri,j)

such that
∑︁ri,j

t=1 qi,j,t = ni,j.

Applying eq. (4.8.2) to eq. (4.8.1), we have

In(Bϵ(x
∗
1), · · · , Bϵ(x

∗
K))
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= E

[︄
d∏︂
i=1

∫︂ ∞

0

uNi−1

Γ(Ni)
e−(ziai+(1−zi)a0)ϕi(u)

K∏︂
j=1

(︂ ni,j∑︂
ri,j=1

[︁
ziaiHi(Bϵ(x

∗
j)) + (1− zi)a0H0(Bϵ(x

∗
j))
]︁ri,j

× 1

ri,j!

∑︂
qi,j

(︃
ni,j

qi,j,1, · · · , qi,j,ri,j

)︃ ri,j∏︂
t=1

τi,qi,j,t(u)
)︂
du

]︄
. (4.8.3)

Since the expectation is taken with respect to H0, and H0 ∼ NRMI(aH, ρ), for any

sequence of positive integers m = (m1, · · · ,mK), we have the following identity.

E

[︄
K∏︂
j=1

H0(Bϵ(x
∗
j))

mj

]︄

=
K∏︂
j=1

H(Bϵ(x
∗
j))

aK

Γ(|m|)

∫︂ ∞

0

u|m|−1e−aϕ(u)
K∏︂
j=1

τmj
(u)du

= Ψ(|m|)(m1, · · · ,mK)×
K∏︂
j=1

H(Bϵ(x
∗
j)) . (4.8.4)

Thus, we can rearrange eq. (4.8.3) as

In(Bϵ(x
∗
1), · · · , Bϵ(x

∗
K))

=
∑︂
r

(︄
E

[︄
d∏︂
i=1

K∏︂
j=1

(︁
ziaiHi(Bϵ(x

∗
j)) + (1− zi)a0H0(Bϵ(x

∗
j))
)︁ri,j]︄)︄×

d∏︂
i=1

∫︂ ∞

0

uNi−1

Γ(Ni)
e−(ziai+(1−zi)a0)ϕi(u)

k∏︂
j=1

1

ri,j!

(︃
ni,j

qi,j,1, · · · , qi,j,ri,j

)︃ ri,j∏︂
t=1

τi,qi,j,t(u)du

=
∑︂
r

{︄
d∏︂
i=1

K∏︂
j=1

(︁
ziaiHi(Bϵ(x

∗
j))
)︁ri,j +

Ψ(|r|)(|r•,1|, · · · , |r•,K |)a|r|0

(︄
d∏︂
i=1

(1− zi)
|ri,•|

)︄(︄
K∏︂
j=1

H(Bϵ(x
∗
j))

)︄
+R∗

}︄
×

d∏︂
i=1

∫︂ ∞

0

uNi−1

Γ(Ni)
e−(ziai+(1−zi)a0)ϕi(u)

k∏︂
j=1

1

ri,j!

(︃
ni,j

qi,j,1, · · · , qi,j,ri,j

)︃ ri,j∏︂
t=1

τi,qi,j,t(u)du ,

(4.8.5)
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where the last equation is computed by expanding

E

[︄
d∏︂
i=1

K∏︂
j=1

(︁
ziaiHi(Bϵ(x

∗
j)) + (1− zi)a0H0(Bϵ(x

∗
j))
)︁ri,j]︄

and applying eq. (4.8.4). The notation R∗ = R(Bϵ(x
∗
1), · · · , Bϵ(x

∗
K)) is the sum of all the

cross terms with the form

E

{︄
K∏︂
j=1

Ci,j,0Hi(Bϵ(x
∗
j))

αi,jH0(Bϵ(x
∗
j))

βi,j

}︄

= Ψ|βi|(βi,1, · · · , βi,K)×
K∏︂
j=1

Ci,j,0Hi(Bϵ(x
∗
j))

αi,jH0(Bϵ(x
∗
j)) ,

where αi,j, βi,j are some positive integers, and Ci,j,0 is the coefficient corresponding to the

form.

Rearranging the form in eq. (4.8.5), we obtain

In(Bϵ(x
∗
1), · · · , Bϵ(x

∗
K))

=
∑︂
r

∑︂
q

{︄
d∏︂
i=1

K∏︂
j=1

(︁
ziaiHi(Bϵ(x

∗
j))
)︁ri,j +

Ψ(|r|)(|r•,1|, · · · , |r•,K |)a|r|0

(︄
d∏︂
i=1

(1− zi)
|ri,•|

)︄(︄
K∏︂
j=1

H(Bϵ(x
∗
j))

)︄
+R∗

}︄
×

d∏︂
i=1

k∏︂
j=1

1

ri,j!

(︃
ni,j

qi,j,1, · · · , qi,j,ri,j

)︃
Ψ

(Ni)
i (qi,1, · · · ,qi,k) .

Letting ϵ→ 0, one has

∫︂
XK

R∗ = 0 ,∫︂
XK

d∏︂
i=1

K∏︂
j=1

(︁
ziaiHi(dx

∗
j)
)︁ri,j = (︄ d∏︂

i=1

(ziai)
|ri,•|

)︄(︄
K∏︂
j=1

H(dx∗j)C(r1,j, · · · , rd,j)

)︄
.
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Thus, we have

In(dx
∗
1, · · · , dx∗K)

=
∑︂
r

∑︂
q

[︄(︄
d∏︂
i=1

(ziai)
|ri,•|

)︄(︄
K∏︂
j=1

H(dx∗j)C(r1,j, · · · , rd,j)

)︄
+

Ψ(|r|)(|r•,1|, · · · , |r•,K |)a|r|0

(︄
d∏︂
i=1

(1− zi)
|ri,•|

)︄(︄
K∏︂
j=1

H(Bϵ(x
∗
j))

)︄]︄

×
d∏︂
i=1

K∏︂
j=1

1

ri,j!

(︃
ni,j

qi,j,1, · · · , qi,j,ri,j

)︃
Ψ

(Ni)
i (qi,1, · · · ,qi,K).

The result then follows.

Proof of Theorem 4.5.3

Proof. The proof follows the similar steps in Section 4.8. For the sake of notational sim-

plicity, we denote Bj = Bϵ(x
∗
j), which is defined in Section 4.8. And let u = (u1, · · · , ud).

By noticing that {µi(B)}di=1 are no longer independent conditional on H0 and {zi}di=1 for

any B ∈ X , we can have the following decomposition similar to that in eq. (4.8.1).

In(Bϵ(x
∗
1), · · · , Bϵ(x

∗
K))

= E

[︄∫︂ ∞

0

· · ·
∫︂ ∞

0

(︄
d∏︂
i=1

uNi−1
i

Γ(Ni)

)︄
E

[︄
e−

∑︁d
i=1 uiµi(X)

d∏︂
i=1

K∏︂
j=1

µi(Bj)
ni,j |H0

]︄
du

]︄

= E

[︄∫︂ ∞

0

· · ·
∫︂ ∞

0

(︄
d∏︂
i=1

uNi−1
i

Γ(Ni)

)︄
E
[︂
e−

∑︁d
i=1 uiµi(B

∗)|H0

]︂
×

K∏︂
j=1

E

[︄
e−

∑︁d
i=1 uiµi(Bj)

d∏︂
i=1

µi(Bj)
ni,j |H0

]︄
du

]︄

= E

[︄∫︂ ∞

0

· · ·
∫︂ ∞

0

(︄
d∏︂
i=1

uNi−1
i

Γ(Ni)

)︄
E
[︂
e−

∑︁d
i=1 uiµi(B

∗)|H0

]︂
×

K∏︂
j=1

(−1)n•,j
dn•,j∏︁d
i=1 du

ni,j

i

E
[︂
e−

∑︁d
i=1 uiµi(Bj)|H0

]︂
du

]︄
. (4.8.6)
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The joint Laplace transform of {µi}di=1 and the multivariate Faa di Bruno formula (Con-

stantine and Savits, 1996) lead to

(−1)n•,j
dn•,j∏︁d
i=1 du

ni,j

i

E
[︂
e−

∑︁d
i=1 uiµi(Bj)|H0

]︂
= (−1)n•,j

dn•,j∏︁d
i=1 du

ni,j

i

e−
∑︁d

i=1 ziaiHi(Bj)ϕi(ui)−z0a0H0(Bj)ϕ0(
∑︁d

i=1 ui)

= e−η(Bj ,u)

n•,j∑︂
rmax,j=1

∑︂
q•,j

{︄
1

rmax,j!

d∏︂
i=1

(︃
ni,j

qi,j,1, · · · , qi,j,rmax,j

)︃}︄
×

d
∑︁d

i=1 qi,j,1η(Bj,u)∏︁d
i=1 du

qi,j,1
i

· · · d
∑︁d

i=1 qi,j,rmax,j η(Bj,u)∏︁d
i=1 du

qi,j,rmax,j

i

, (4.8.7)

where the sum of q•,j is taking over all vectors q•,j such that

(1) q•,j = (q1,j,1, · · · , q1,j,rmax,j
, · · · , qd,j,1, · · · , qd,j,rmax,j

) is a vector of nonnegative

integers such that
∑︁rmax,j

tj=1 qi,j,tj = ni,j. Note that
∑︁d

i=1 qi,j,tj ≥ 1 for any j and

tj ∈ {1, · · · , rmax,j}.

The product of the partial derivatives in eq. (4.8.7) can be computed in the following

two cases.

Case I: For any j ∈ {1, · · · , K}, if there exists at least one tj ∈ {1, · · · , rmax,j} such

that
∑︁d

i=1 1{ri,j,tj>0} > 1, then

d
∑︁d

i=1 qi,j,1η(Bj,u)∏︁d
i=1 du

qi,j,1
i

· · · d
∑︁d

i=1 qi,j,rmax,j η(Bj,u)∏︁d
i=1 du

qi,j,rmax,j

i

= (z0a0H0(Bj))
rmax,j

rmax,j∏︂
tj=1

τ0,
∑︁d

i=1 qi,j,tj
(
d∑︂
i=1

ui) +R∗
I(Bj) ,

where R∗
I(Bj) is a linear combination of the form Hi(Bj)

kiH0(Bj)
k0 for ki > 0, k0 > 0.

Case II: All the cases except the Case I.

d
∑︁d

i=1 qi,j,1η(Bj,u)∏︁d
i=1 du

qi,j,1
i

· · · d
∑︁d

i=1 qi,j,rmax,j η(Bj,u)∏︁d
i=1 du

qi,j,rmax,j

i

= (z0a0H0(Bj))
rmax,j

rmax,j∏︂
tj=1

τ0,∑︁d
i=1 qi,j,tj

(
d∑︂
i=1

ui) +
d∏︂
i=1

(ziaiHi(Bj))
|−−→qi,j |

rmax,j∏︂
tj=1

τi,qi,j,tj (ui)+
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R∗
II(Bj) ,

where R∗
II(Bj) has the similar form to that of R∗

I(Bj) and |−→qi,j| is the length of the vector

(qi,j,1, · · · , qi,j,rmax,j
) .

Overall, by the analysis of Case I and Case II, we can have a general form of the

partial derivatives in eq. (4.8.7).

d
∑︁d

i=1 qi,j,1η(Bj,u)∏︁d
i=1 du

qi,j,1
i

· · · d
∑︁d

i=1 qi,j,rmax,j η(Bj,u)∏︁d
i=1 du

qi,j,rmax,j

i

= (z0a0H0(Bj))
rmax,j

rmax,j∏︂
tj=1

τ0,∑︁d
i=1 qi,j,tj

(
d∑︂
i=1

ui)+⎛⎝rmax,j∏︂
tj=1

1{|−−→qj,tj
|=1}

⎞⎠ d∏︂
i=1

(ziaiHi(Bj))
|−−→qi,j |

rmax,j∏︂
tj=1

τi,qi,j,tj (ui) +R∗(Bj) ,

where |−−→qj,tj | is the length of the vector (q1,j,tj , · · · , rd,j,tj). And R∗(Bj) is either R∗
I(Bj)

or R∗
II(Bj).

Combining the above form and eq. (4.8.7), we have

In(B1, · · · , BK)

= E

[︄∫︂ ∞

0

· · ·
∫︂ ∞

0

(︄
d∏︂
i=1

uNi−1
i

Γ(Ni)

)︄
e−

∑︁d
i=1 ziaiϕi(ui)−z0a0ϕ0(

∑︁d
i=1 ui)×

K∏︂
j=1

∑︂
r•,j

∑︂
q•,j

{︄
1

rmax,j!

d∏︂
i=1

(︃
ni,j

qi,j,1, · · · , qi,j,rmax,j

)︃}︄
×

[︄
(z0a0H0(Bj))

rmax,j

rmax,j∏︂
tj=1

τ0,∑︁d
i=1 qi,j,tj

(
d∑︂
i=1

ui)+⎛⎝rmax,j∏︂
tj=1

1{|−−→qj,tj
|=1}

⎞⎠ d∏︂
i=1

(ziaiHi(Bj))
|−−→qi,j |

rmax,j∏︂
tj=1

τi,qi,j,tj (ui) +R∗(Bj)

]︄
du

]︄
. (4.8.8)

By a rearrangement, we have

In(B1, · · · , BK)
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=
∑︂
r

∑︂
q

[︄∫︂ ∞

0

· · ·
∫︂ ∞

0

(︄
d∏︂
i=1

uNi−1
i

Γ(Ni)

)︄
e−

∑︁d
i=1 ziaiϕi(ui)−z0a0ϕ0(

∑︁d
i=1 ui)×{︄

K∏︂
j=1

1

rmax,j!

d∏︂
i=1

(︃
ni,j

qi,j,1, · · · , qi,j,rmax,j

)︃}︄
×[︄

E

{︄
K∏︂
j=1

H0(Bj)
rmax,j

}︄
(z0a0)

rmax

K∏︂
j=1

rmax,j∏︂
tj=1

τ0,
∑︁d

i=1 qi,j,tj
(
d∑︂
i=1

ui)+

K∏︂
j=1

⎛⎝rmax,j∏︂
tj=1

1{|−−→qj,tj
|=1}

⎞⎠ d∏︂
i=1

(ziaiHi(Bj))
|−−→qi,j |

rmax,j∏︂
tj=1

τi,qi,j,tj (ui) +R∗(B1, · · · , BK)

]︄
du

]︄
,

(4.8.9)

where R∗(B1, · · · , BK) is a linear combination of
∏︁d

i=1

∏︁K
j=1Hi(Bj)

ki,j

H0(Bj)k0,j such that there exists at least one group of (i, j) satisfying ki,j > 0 and k0,j > 0.

The same analysis as that of eq. (4.8.4) gives when ϵ→ 0,

In(dx
∗
1, · · · , dx∗K)

=
∑︂
r

∑︂
q

[︄∫︂ ∞

0

· · ·
∫︂ ∞

0

(︄
d∏︂
i=1

uNi−1
i

Γ(Ni)

)︄
e−

∑︁d
i=1 ziaiϕi(ui)−z0a0ϕ0(

∑︁d
i=1 ui)×{︄

K∏︂
j=1

1

rmax,j!

d∏︂
i=1

(︃
ni,j

qi,j,1, · · · , qi,j,rmax,j

)︃}︄(︄ K∏︂
j=1

H(dx∗j)

)︄
×[︄

Ψ(rmax)(rmax,1, · · · , rmax,K) (z0a0)
rmax

K∏︂
j=1

rmax,j∏︂
tj=1

τ0,
∑︁d

i=1 qi,j,tj
(
d∑︂
i=1

ui)+

K∏︂
j=1

C(r1,j, · · · , rd,j)

⎛⎝rmax,j∏︂
tj=1

1{|−−→qj,tj
|=1}

⎞⎠ d∏︂
i=1

(ziaiHi(Bj))
|−−→qi,j |

rmax,j∏︂
tj=1

τi,qi,j,tj (ui)

]︄
du

]︄
.

(4.8.10)

The result follows easily.
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Proof of Theorem 4.6.1

Proof. The proof is similar to that of Theorem 5 in (Camerlenghi et al., 2019). In our

constructions, we have

P (KN = k) = P
(︂
∪{K(1)

1,N1
= t1, · · · , K(1)

d,Nd
= td, K

(2)
1,N1

= η1, · · · , K(2)
d,Nd

= ηd, K0,t = k0}
)︂
,

where the union is taking over all combinations of nonnegative integers {t1, · · · , td, η1, · · · , ηd}

and positive integers {k0, t} such that

(i)
∑︁d

i=1 ti = t, k0 +
∑︁d

i=1 ηi = k;

(ii) ti + ηi ∈ {1, · · · , Ni} for all i ∈ {1, · · · , d}.

The result in this theorem follows immediately. As for the case in model 4.3.1, the result

is implied by the independence of (K
(1)
i,Ni

, K
(2)
i,Ni

) and (K
(1)
l,Nl
, K

(2)
l,Nl

) for i ̸= l.
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