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Abstract 

Over the last two decades, several high-profile caprock performance issues, such as surface 

steam and fluid releases, have highlighted the importance of caprock integrity assessments and 

the critical role that robust determination of the initial in-situ stress tensor plays in these 

assessments.  Traditionally, the minimum in-situ stress, which is a key component of the in-situ 

stress tensor, is determined from diagnostic fracture injection tests or minifrac tests. However, 

it is challenging to select the minimum stress from these tests.  Consequently, recent research 

has pursued alternative techniques to help constrain the values of the in-situ stresses, resulting 

in the development of a reservoir geomechanical pressuremeter (RGP) that will allow for an 

integrated assessment of the in-situ reservoir rock compressibility and the direction and 

magnitude of maximum and minimum horizontal stresses. A conventional high-pressure 

pressuremeter was modified for deployment in a borehole using industry-standard wireline 

technology. RGP field tests were conducted at the Primrose Site project in 2016.  Five intervals in 

three formations - Westgate, Joli Fou, and Clearwater - were tested with the deployment of the 

RGP tool. Interpretation and analysis of these data can provide vital information for the oil and 

gas industry, such as the shear modulus, undrained shear strength, and orientation and 

magnitude of anisotropic in-situ stresses.  

The frequentist and Bayesian statistical methods proposed were first applied to the uncertainty 

quantification of in-situ horizontal stress using a self-bored pressuremeter (SBP). The statistical 

methods used in the SBP test were then used to analyze the RGP tests. Using raw data from the 

Primrose-Wolf Lake project , uncertainties were first identified, followed by data conversion and 
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corrections. Using the corrected RGP data, analytical and numerical models were coupled with 

optimization algorithms to find the best parameter estimates. To address the problem of non-

unique solutions, uncertainty analyses were conducted using frequentist statistical assessment 

methods. With mean, standard deviations, and confidence intervals, uncertainties from 

parameter estimation were quantified, and non-uniqueness issues were addressed. Alternatively, 

Bayesian inference methods were adopted to evaluate in-situ horizontal stresses and material 

properties under a Bayesian statistical framework.  

To account for the radial and azimuthal anisotropies of borehole material, the modified strain-

hardening/softening model was implemented in the statistical analysis for RGP tests in deep 

geological formations. The advantages of this model over the Mohr-Coulomb and conventional 

strain-hardening/softening models were verified through the interpretation of triaxial 

compression tests, demonstrating superior prediction accuracy, validity, and applicability.  

Compared with conventional pressuremeter interpretation methods, the proposed frequentist 

statistical inverse analysis methods can quantify the potential uncertainty and errors from 

ground properties and in-situ horizontal stress. In addition, the proposed Bayesian approach can 

continuously update one’s beliefs with new data through an open system, which is superior to 

the frequentist statistical methods employed in pressuremeter studies. The statistical 

methodology described in this study can be extended to other engineering inverse analysis 

problems, such as the calibration of constitutive models and inverse analysis of in-situ stress 

fields for horizontal drilling, tunnelling, and hydraulic fracturing. 
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1.0 Introduction 

1.1 Background knowledge 

Alberta's oil sand has the third largest oil reserves in the world. As of 2016, Alberta's oil sands 

proven reserves were 165.4 billion barrels (bbl) and comprised the vast majority of the proven 

oil reserves in Canada. However, more than 80% of the reserves are deeper than 65 m, which is 

unsuitable for surface mining. As a result, thermal recovery processes such as steam-assisted 

gravity drainage (SAGD) have become mainstream in the Alberta oil sands areas. Steam injection 

pressure is one of the most important operating parameters for determining the success of SAGD 

(AER, 2014).  

A maximum operating pressure (MOP) formula was developed by the Alberta Energy Regulator 

(AER – Directive 23, 2024) to ensure caprock integrity, primarily governed by tensile failure.  

However, to address the potential risk of caprock shear failure, geomechanical modelling is the 

tool identified to assess the complex factors contributing to potential caprock shear failure (AER 

– Directive 23, 2024). In the geomechanical model, in-situ stresses should be characterized over 

the region to be modelled. There are more than ten approaches available to measure in-situ 

horizontal stresses in the deep ground (Liu, 2015). Minifrac tests have been routinely used by the 

oil sand industry to measure the in-situ minimum horizontal stress. However, it is concluded that 

“most measurements provided data of low confidence and should be deemed inconclusive’ (Yuan 

et al. 2013). In addition, the AER pointed out that the rock properties measured in the laboratory 

were not representative of larger-scale values incorporated in a geomechanical simulator 

because of the fissures and slickensides of clay shales. Alternatively, an in-situ technique, the 

reservoir geomechanical pressuremeter (RGP) tool, has been proposed as a method to 

potentially solve these challenges. 

Since the introduction of the pressuremeter by Louis Menard in 1955, the in-situ pressuremeter 

testing approach has been developed and practiced in Europe and elsewhere, with considerable 

success over the past several decades. The characteristics of shallow ground, such as strength, 

in-situ horizontal stress, and permeability, can be derived from measurements of the pressure 

and the change in volume or radius of the expanding membrane. Because of inevitable sample 
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disturbance, simple laboratory testing results may often be scattered and unreliable. The 

principal advantage of the pressuremeter is that the boundary conditions are usually well-

defined and controlled. However, it has been found that the test results are sensitive to the 

ground properties, installation techniques, and test procedures. Consequently, it is necessary to 

quantify the uncertainty propagated from the soil or rock spatial variability, tool installation, 

measurement errors, and modelling.  

Based on a 73 mm high-pressure dilatometer, RGP1 was developed by the Reservoir 

Geomechanics Research Group (RG2) at the University of Alberta. RGP1 is a Menard-type 

(inserted in the pre-bored borehole) pressuremeter for deeper formations that allows for an 

integrated assessment of the in-situ reservoir rock compressibility, as well as the direction and 

magnitude of the maximum and minimum horizontal stresses. RGP1 can provide unique in-

situ data for reservoir and caprock integrity assessments associated with thermal recovery 

operations in unconventional reservoirs.  

In February 2016, an RGP1 field test was conducted by the University of Alberta at Primrose-Wolf 

Lake project near Bonnyville, Alberta. Five downhole tests (B0T1 to B0T5) were conducted in four 

test pockets over four separate tool deployments. Data retrieved from B0T2 are discarded 

because the test was deemed unsuccessful (RG2, 2016). As a result, four RGP downhole tests 

were selected for this study. The RGP field test details, including the site location, geology and 

lithology, borehole information, and tool calibration, can be found in the research report (RG2, 

2016) and published literature (Liu et al., 2020). 

1.2 Motivation 

A preliminary interpretation of raw data from the RGP tests was based on the analytical solutions 

for cylindrical cavity expansion theory under the isotropic stress plane (Gibson and Anderson, 

1961; Jefferies, 1988; Yu and Netherton, 2000). However, Bell and Gough (1981) pointed out that 

many oil wells in Alberta are noncircular, and the elongations are caused by large, unequal 

horizontal principal stresses.  Therefore, an inversion study on RGP field tests provides solutions 

for RGP expansion and contraction under an anisotropic stress field in saturated, fractured soft 
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rock formations.  Consequently, the anisotropic stress field was examined in this study and 

eventually applied in a reservoir geomechanical model. Ground properties and in-situ parameters, 

such as rock formation stiffness, shear strength, and the magnitude and orientation of in-situ 

horizontal stresses, play a vital role in geomechanical modelling for predicting the MOP and 

potential risk of caprock shear failure. Using RGP testing data, analytical and numerical models 

were coupled with optimization algorithms in inverse analyses to find the best parameter 

estimates.  A modified strain-hardening/softening model was proposed to simulate the clay shale 

response to applied pressure. Both frequentist and Bayesian statistical approaches were used in 

this study to quantify the uncertainties propagated from rock spatial variability, tool calibration, 

tool deployment, measurement errors, and modelling. Consequently, non-uniqueness problems 

are solved (or at least partially solved). 

1.3 Scientific hypothesis   

The scientific hypothesis underpinning this research is that it is possible to adequately constrain 

the uncertainty bounds for estimates of the magnitude and orientation of the minimum and 

maximum horizontal stresses from an RGP test. 

1.4 Research objectives 

The main objective of this research is to develop a platform for the statistical inverse analysis of 

pressuremeter and RGP tests using frequentist and Bayesian approaches, combined with 

analytical and numerical models. This approach seeks to reduce the degree of non-uniqueness in 

parameter estimation. The platform is implemented using Matlab and Python, effectively 

enabling the statistical inverse analysis of RGP tests in the Primrose-Wolf Lake project or any 

other future pressuremeter tests.   

1.5 Workflow 

For the initial stages of this research, the frequentist and Bayesian statistical methods are applied 

in the uncertainty quantification of in-situ horizontal stress with a self-bored pressuremeter (SBP). 

Following this, data obtained from field tests conducted with the RGP tool are converted and 

corrected using deterministic and Bayesian approaches. With corrected arm displacements, a 
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deterministic solution is proposed for parameter estimation, that is, a computational model is 

coupled with an optimizer to find the best parameter estimate. To quantify the uncertainty from 

the parameter estimation, both frequentist and Bayesian statistical methods were implemented. 

After frequentist and Bayesian statistical assessments, the geotechnical properties and in-situ 

parameters were evaluated statistically. 

1.6 Outline of the thesis  

It should be noted that this study was partially prepared in a paper-based format. Chapters 4 and 

5 have been published in the Canadian Geotechnical Journal, and Chapter 6 has been published 

in the conference proceedings of GeoConvention 2023.  This dissertation comprises eight 

chapters and three appendices. A brief description of the contents of each chapter and the 

appendix are given below.  

Chapter 1:  Introduction: Project background, motivation, methodology, objectives, and outline 

of this thesis.  

Chapter 2:  Research background of pressuremeter analysis and interpretation 

Chapter 3:  Assessment of sources of uncertainty in RGP data: Data conversion, corrections, and 

uncertainty quantification of RGP testing data. Uncertainties are identified for the 

RGP test, followed by raw data analyses with both the deterministic and Bayesian 

methods. 

Chapter 4:  Uncertainty quantification of in-situ horizontal stress with a pressuremeter using a 

statistical inverse analysis method: A frequentist statistical inverse analysis method 

is proposed for the analysis of an SBP test. The in-situ horizontal stress and 

geotechnical parameters were estimated using local and global optimization 

algorithms. The problem of non-unique solutions is addressed in the uncertainty 

quantification of the estimated parameters.  

Chapter 5:  Bayesian approach for uncertainty quantification of in-situ horizontal stress and 

geotechnical parameters with a pressuremeter: Bayesian inference approaches are 

developed to conduct parameter estimation and Bayesian statistical assessment 
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from posterior distributions. Given this new evidence, the posterior distributions 

can be updated using Bayesian inference. 

Chapter 6:  Statistical inverse analysis of RGP case study —The frequentist approach is applied 

in the real RGP test project. The in-situ horizontal stress and clay shale properties 

were estimated using analytical, semi-analytical, and numerical models. Statistical 

assessments quantify the parameter uncertainty with 95% confidence intervals or 

95% credible intervals. The model fit was evaluated using the coefficient of 

determination, and its uncertainty was illustrated using prediction bands.  

Chapter 7:  Bayesian inverse analysis of RGP case study - The Bayesian approach is applied to 

the RGP test results at Primrose-Wolf Lake oil sands. The in-situ horizontal stress 

and clay shale properties were estimated using the analytical solution. Statistical 

assessments quantified parameter uncertainty with 95% credible intervals. The 

model fit was evaluated using the coefficient of determination, and its uncertainty 

was illustrated using prediction bands. With new evidence of Young’s modulus 𝐸, 

the posterior distribution of Young’s modulus 𝐸 can be updated through Bayesian 

inference. 

Chapter 8:  Concluding remarks: Summary and conclusions of this research, limitations, and 

future work. 

Appendix A: Verification of the modified strain-hardening/softening model through the 

interpretation of triaxial testing data: triaxial compression testing data were utilized to verify the 

advantages of the modified strain-hardening/softening model proposed in Chapter 6 over the 

Mohr-Coulomb and strain-hardening/softening models. 

Appendix B: Optimization algorithms for inverse analysis and interpretation of SBP tests using 

conventional deterministic methods: the theories of three optimization algorithms discussed in 

Chapter 4 are briefly introduced in Appendix B. In addition,  conventional methods are used to 

verify the effectiveness of the results from the inverse analysis. Data from triaxial tests are also 

deduced to constrain the range of estimated parameters.  
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Appendix C: Stiffness and strength of clay shale in the plastic zones: the variations of stiffness 

and shear strength of clay shale in the plastic zones at all stages during RGP testing studied in 

Chapter 6 were illustrated. 

 

1.7 Extent and limitations 

The case study in this thesis is limited to raw data from RGP tests in the Primrose-Wolf Lake 

project near Bonnyville, Alberta, in 2016. The conclusions were based on the results of the RGP 

field test conducted in 2016 and associated laboratory testing reports.  
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2.0 RESEARCH BACKGROUND OF PRESSUREMETER ANALYSIS AND 
INTERPRETATION 

As this thesis is partially organized in a paper-based style, Chapters 4, 5, and 6 are self-contained 

studies and consequently, some repetition of literature reviews, figures, and equations between 

chapters exists. This chapter provides a general background review of the research topics related 

to this research, while the following chapters provide more detailed reviews for topics specifically 

covered in those chapters. 

2.1 Introduction 

Since Louis Menard introduced the pressuremeter in 1955, the in-situ testing instrument has 

established its reputation for estimating ground properties for foundation engineering and 

retaining structure designs (Clarke, 1995; Mair and Wood, 1987; Schnaid, 2009). Using the 

measured cell pressure and volume or radial displacements, the undrained shear strength, shear 

modulus, in-situ horizontal stress, and soil permeability can be deduced from the pressuremeter 

testing curves through graphical plotting or curve-fitting methods. Sections 2.2 to 2.5 briefly 

review the theoretical and numerical analyses of pressuremeter tests over the past decades. 

Section 2.6 proposes statistical assessment methods for uncertainty quantification of parameter 

estimates with a pressuremeter. Section 2.7 reiterates the problems existing in previous studies. 

2.2 Literature review of the pressuremeter test 

Based on cylindrical expansion theory, Gibson and Anderson (1961) proposed a theoretical 

relationship between the volume of the measuring cell and the applied radial pressure for the 

Menard Pressuremeter (MPM) test. Ideally, a borehole of radius a0 is drilled in clay under the 

condition of radial plane strain. The undrained pressuremeter test assumes no volumetric 

deformation in the plastic annulus surrounding the borehole. Ladanyi (1972) extended Gibson 

and Anderson’s method to determine the stress-strain curve using a conventional pressuremeter 

test. The average mobilized strength and corresponding shear strains between any two 

successive pressures can be obtained by applying the proposed equations to an actual 

pressuremeter curve.  Consequently, the deduced undrained stress-strain curve can provide the 

post-peak softening behavior of sensitive clays. It was concluded that the loading rate in a 
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conventional pressuremeter test may exceed the rate used in the undrained laboratory test, 

which probably contributes to the higher undrained strength values.  

Houlsby and Withers (1988) carried out seven full displacement pressuremeter tests in clay using 

a cone pressuremeter consisting of a 43.7 mm diameter pressuremeter mounted above a 

prototype piezo friction cone. The Hencky strain, e.g. a logarithmic strain, was chosen for the 

mathematical analysis because of its ability to capture large strains. The values of the undrained 

shear strength, shear modulus, and horizontal stress were derived using expansion-contraction 

curves. It was concluded that the analytical solution fits the unloading curves obtained from the 

cone pressuremeter tests remarkably well. The conventional derivations mentioned above are 

generally based on the radial plane strain, elastic, perfectly plastic soils, and undrained conditions. 

By using the Hencky strain definition, Shuttle (2007) proved that the cavity contraction solution 

provided by Houlsby and Withers (1988) and Jefferies (1988) is identical if the higher-order terms 

are neglected in the expansion. In addition, it was demonstrated that the unloading portion of 

the pressuremeter curve can provide reliable estimates of the undrained shear strength, similar 

to high-quality triaxial tests.  

Carter et al. (1986) presented closed-form solutions for the expansion of cylindrical and spherical 

cavities. Plane strain and isotropic elastic and perfectly plastic soil conditions are assumed in the 

derivation of the pressure-expansion relationship. Compared with the analysis by Hughes et al. 

(1977), elastic strains in the plastic region were considered in the evaluation. The closed-form 

solution is applicable to the interpretation of pressuremeter tests (small strain) and installation 

of driven piles in cohesive frictional soil (large strain).  

However, the analysis of the SBP test is still based on a simple linear elastic-perfectly plastic clay 

model. A more sophisticated model is required to reconcile the actual elastic modulus with the 

actual ground. For the MPM tests, the solution can be invalid because of the restriction on a 

perfect self-boring borehole. However, a complete stress-strain relation can be derived from a 

simple graphical procedure only under undrained conditions (Palmer, 1972); there is no 

restriction on the other two assumptions, namely, small strain and elastic perfectly plastic 

surrounding soils. It was found that the stress difference (𝜎𝑟 − 𝜎𝜃) was twice the slope of the 
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graph of cell pressure 𝛹  against 𝑙𝑜𝑔(𝛥𝑉/𝑉) , where 𝜎𝑟  and 𝜎𝜃  denote the radial and 

circumferential stresses, respectively; 𝛥𝑉 represents the change in cavity volume; 𝑉 represents 

the cavity volume.  To avoid possible erratic estimates of the stress difference  (𝜎𝑟 − 𝜎𝜃) due to 

the inevitable scatter between adjacent measurements, various mathematical functions 

obtained by fitting the full or partial pressuremeter data can yield smooth and differentiable 

curves (Baguelin et al., 1972; Prevost and Höeg, 1975).  

Bolton and Whittle (1999) derived a solution for the undrained expansion tests based on a power-

law function 𝜏 = 𝛼𝛾𝛽,  where 𝜏 𝑎𝑛𝑑 𝛾 denote the shear stress and shear strain, respectively, and 

the values of 𝛼 𝑎𝑛𝑑 𝛽 can be obtained from unloading and reloading loops. The cavity pressure 

and shear strain relation can be derived as:  𝑝𝑐 = 𝑝0 + 𝑐𝑢 [
1

𝛽
−𝑙𝑛 𝑙𝑛 (𝛾𝑦)  +𝑙𝑛 𝑙𝑛 (𝛾𝑐) ] . When 

𝛽 = 1 , the solution is identical to the solution proposed by Gibson and Anderson (1961). In 

addition, a complete expression for pore water generation during undrained cavity expansion is 

provided. Similarly, Denby and Clough (1980) included a hyperbolic stress-strain curve (Duncan 

and Chang, 1970) to account for the nonlinear characteristic behavior of soil. Data from 32 self-

boring tests on the northern shore of San Francisco Bay were interpreted using the Duncan-

Chang hyperbolic curve. The hyperbolic stress-strain model was also implemented in the 

analytical solution proposed by Ferreira (1992). For the undrained pressuremeter tests, the small 

strain (<15%) equation for the SBP test and the large strain equation for the full displacement 

pressuremeter test and pre-bored pressuremeter test were derived using Cauchy’s strain and 

Green’s strain, respectively. It was concluded that the unloading data and last points of the 

loading portion play a major role in the methodology to interpret undrained tests, and the early 

part of the loading curve is assumed to not represent the natural soil response. In addition, 

Ferreira advised that the expansion should reach a strain level sufficiently close to the limit 

pressure owing to the disturbance of the pressuremeter installation.  

Zhou et al. (2015) proposed a semi-analytical solution for cylindrical cavity expansion in elastic-

perfectly plastic soil under a biaxial in-situ stress field. The stress and elastic-plastic boundary 

around the cylindrical cavity were determined by conformal mapping and complex variable 
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theory. This semi-analytical solution can reflect the elliptical effect around the cylindrical cavity 

expansion, providing a theoretical tool for pressuremeter analysis in an anisotropic in-situ stress 

field.  

Yeung and Carter (1990) conducted a numerical study of pressuremeter tests in soft clays. A two-

dimensional axisymmetric finite element model was used to investigate the effects of test depth, 

non-homogeneity, and relative stiffness. They concluded that the interpretation of 

pressuremeter tests using Gibson and Anderson’s solution might overestimate the undrained 

shear strength by 18–36% higher than the true value at deep depths. Finite membrane length, 

L/D ratio, and testing depth were considered in the analyses. However, the above conclusion is 

based on analyzing a specific two-dimensional finite element model in a Tresca material.  

Fahey and Carter (1993) performed finite element analyses to simulate the behaviour of 

pressuremeter tests in sand using a nonlinear elastic-plastic model. It was concluded that it is 

important to model the whole test rather than the unload-reload loops only. 

Fawaz et al. (2002) conducted pressuremeter chamber tests in sand, and deduced the 

geotechnical parameters using the finite element method.  They pointed out that the 

pressuremeter modulus derived from pressuremeter chamber tests should be divided by a 

coefficient of 𝛼 between 1/3 and 1/4 to obtain the elastic modulus. 

Yu et al. (2005) presented the results of a two-dimensional finite element method (FEM) 

simulating an SBP test in undrained clay with critical state soil models. The effects of geometry 

(L/D) and over-consolidation ratio (OCR) on soil strength are discussed. Instead of the 

conventional total stress analysis proposed by Gibson and Anderson (1961), an effective stress 

formulation was employed to consider the variation in soil strength and highly overconsolidated 

soil.  This study indicated that the pressuremeter geometry and OCR have a significant effect on 

the overestimation of the undrained shear strength. 

To understand the consolidation characteristics of soil, Fahey and Carter (1986) conducted the 

strain hold test (SHT) and pressure hold test (PHT), respectively. It demonstrated that the PHT 

may be a useful variant on the SHT. The values of coefficient of consolidation from the field SHT, 
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the numerical modelling of PHT, and the back analysis of trial embankment behaviour agree well. 

Jang et al. (2003) numerically analyzed an SHT in an SBP test with an Abaqus model. With a 

modification method for soil permeability, the curve of the time factor T50 was newly proposed. 

Liu et al. (2017) proposed a method for interpreting the horizontal permeability from PHTs using 

a regression analysis approach. 

Previous researchers have made valuable contributions to the development of interpretation and 

theoretical analysis of pressuremeter tests. However, most of these studies focused on the 

deduction of closed-form solutions or parameter estimation using a deterministic method. 

Sections 2.3 to 2.5 will briefly discuss the theoretical and numerical solutions to pressuremeter 

tests, which will also be utilized as computational models in this study.  

2.3 Analytical solutions to a pressuremeter test 

2.3.1 Analytical solution proposed by Gibson and Anderson (1961) 

A pressuremeter test can be simulated using analytical, semi-analytical, and numerical models. 

With the assumption of a linear elastic-perfectly plastic Tresca material around the borehole wall, 

Gibson and Anderson (1961) proposed the formulation of an expansion curve for an idealized 

pressuremeter test in clay under undrained conditions. According to Gibson and Anderson, there 

are three stages in this formula: 

Stage 1:  The pressuremeter pressure 𝑃 increases from zero to the initial in-situ horizontal stress 

𝜎ℎ0, 0 ≤ 𝑃 ≤ 𝜎ℎ0: 

∆𝑉

𝑉0
=

𝑃

𝐺
 (2.1) 

where 𝑉0 denotes the original volume of the soil cavity,  ∆𝑉 represents the increase in volume, 

and 𝐺 indicates the shear modulus.  

Stage 2:  The pressuremeter pressure increases from the original in-situ horizontal stress 𝜎ℎ0 to 

𝜎ℎ0 + 𝑆𝑢,   𝜎ℎ0 ≤ 𝑃 ≤ 𝜎ℎ0 + 𝑆𝑢: 

∆𝑉

𝑉0
=

𝑃

𝐺
 (2.2) 
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where 𝑆𝑢 denotes the shear strength. Yield occurs at the end of Stage 2. 

Stage 3: Plastic yielding is initiated until the termination of expansion, the relationship between 

the pressure and the volumetric strain 𝜖𝑣 =
∆𝑉

𝑉0
  is given by: 

𝑃 = 𝜎ℎ0 + 𝑆𝑢 [1 + 𝑙𝑛 (
𝐺

𝑆𝑢
)] + 𝑆𝑢𝑙𝑛 [

∆𝑉

𝑉
− (1 −

∆𝑉

𝑉
)

𝜎ℎ0

𝐺
] (2.3) 

where P denotes total pressuremeter pressure; V denotes the current volume of soil or rock 

cavity. As 𝐺 ≫ 𝜎ℎ0,
𝜎ℎ0

𝐺
= 0, Equation 2.3 can be simplified as (Clarke, 1995; Mair and Wood, 

1987; Yu, 2006): 

𝑃 = 𝜎ℎ0 + 𝑆𝑢 [1 + 𝑙𝑛 (
𝐺

𝑆𝑢
)] + 𝑆𝑢𝑙𝑛

∆𝑉

𝑉
 (2.4) 

Equations 2.3 and 2.4 are applicable for the Menard pressuremeter (pre-bored pressuremeter) 

test in a borehole, where the in-situ stress is totally or partially relieved in a testing pocket with 

the assumption of small deformations. Unlike SBP, the Menard pressuremeter cell is usually 

smaller than the pocket at the start of testing. Therefore, if unloading causes the cavity to yield 

or collapse due to stress relief, no compensation can be made for the disturbance related to the 

pressuremeter installation (Mair and Wood, 1987).  

2.3.2 The analytical solution proposed by Jefferies (1988) 

Jefferies (1988) extended the solution proposed by Gibson and Anderson (1961) to the 

contraction phase of an SBP test. Because there is no in-situ horizontal stress relief in an SBP 

testing pocket, only two stages are presented in the expansion phase: 

Stage 1:  The pressuremeter pressure increases from the original in-situ horizontal stress 𝜎ℎ0 to 

𝜎ℎ0 + 𝑆𝑢,   𝜎ℎ0 ≤ 𝑃 ≤ 𝜎ℎ0 + 𝑆𝑢: 

𝑎−𝑎0

𝑎0
=

(𝑃−𝜎ℎ0)

2𝐺
 (2.5) 

where 𝑎0  denotes the initial radius of the instrument, 𝑎 represents the current radius of the 

device. The left side of Equation 2.5 is the cavity strain 𝜖𝑐, which is approximately one-half of the 

volumetric strain 𝜖𝑣 =
∆𝑉

𝑉0
  as shown in Equation 2.2. The yielding of the borehole wall first occurs 
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at the end of Stage 1. The denotation of 𝑎  in Equation 2.5 reflects the difference in 

measurements from volumetric change to radius displacement with the development of the 

pressuremeter device.  Differential radial displacements can be recorded with individual caliper 

arms, from which the anisotropy of in-situ horizontal stresses can be identified. 

Stage 2: Plastic yielding is initiated until the termination of expansion, 𝜎ℎ0 + 𝑆𝑢 ≤ 𝑃 ≤ 𝑃𝑚𝑎𝑥. The 

relationship between pressure and the ratio of the initial radius to the current radius  
𝑎0

𝑎
  is given 

by: 

𝑃 = 𝜎ℎ0 + 𝑆𝑢 [1 + 𝑙𝑛 (
𝐺

𝑆𝑢
)] + 𝑆𝑢𝑙𝑛 [1 − (

𝑎0

𝑎
)

2

] (2.6) 

Stage 3: Following the termination of expansion, the elastic displacement in the contraction 

phase is induced by the principal stress rotation of 90°, during the third stage  𝑃𝑚𝑎𝑥 − 2𝑆𝑢 ≤ 𝑃 ≤

𝑃𝑚𝑎𝑥: 

𝑎−𝑎𝑚𝑎𝑥

𝑎𝑚𝑎𝑥
=

(𝑃−𝑃𝑚𝑎𝑥)

2𝐺
   (2.7) 

where 𝑎𝑚𝑎𝑥 denotes the maximum radius of the instrument at the termination of expansion.  

Stage 4: Once the maximum internal pressure has been lowered by approximately twice the 

shear strength of the clay (𝑃 ≤ 𝑃𝑚𝑎𝑥 − 2𝑆𝑢), the plastic displacement in Stage 3 is initiated until 

the plastic cavity collapses (Jefferies, 1988). The relationship between 𝑃  and 𝑎  reported by 

Jefferies is: 

𝑃 = 𝑃𝑚𝑎𝑥 − 2𝑆𝑢 − 2𝑆𝑢𝑙𝑛 [(
𝑎𝑚𝑎𝑥

𝑎
−

𝑎

𝑎𝑚𝑎𝑥
) (

𝐺

2𝑆𝑢
)] (2.8) 

where 𝑃𝑚𝑎𝑥 the maximum pressuremeter pressure; 𝑎𝑚𝑎𝑥 denotes the maximum radius of the 

instrument. To account for the strength softening or hardening effect during unloading in the 

SBP contraction phase, Jefferies (1988) introduced a simple fraction 𝛽𝑠𝑢 of the loading strength: 

𝑆𝑢𝑐
= 𝛽𝑠𝑢𝑆𝑢 (2.9) 

Then, the pressure that initiates plastic deformation during the contraction stage becomes 𝑃 =

𝑃𝑚𝑎𝑥 − (1 + 𝛽𝑠𝑢)𝑆𝑢, and Equation 2.8 should be rewritten as (Jefferies, 1989): 
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𝑃 = 𝑃𝑚𝑎𝑥 − (1 + 𝛽𝑠𝑢)𝑆𝑢 − 𝑆𝑢𝑙𝑛 {[1 − (
𝑎

𝑎𝑚𝑎𝑥
)

2
] [

𝐺

(1+𝛽𝑠𝑢)𝑆𝑢
]} − 𝛽𝑠𝑢𝑆𝑢𝑙𝑛 {[(

𝑎𝑚𝑎𝑥

𝑎
)

2
− 1] [

𝐺

(1+𝛽𝑠𝑢)𝑆𝑢
]} (2.10) 

where 𝛽𝑠𝑢  denotes softening/hardening coefficient in unloading. Using the analytical solution 

proposed by Jefferies (1988), displacements measured in the field can be directly applied to the 

equations described above after calibration corrections.  

The solutions proposed by Gibson and Anderson (1961) and Jefferies (1988) were deduced from 

the Tresca criterion under assumed undrained conditions. Thus, the soil was modelled as an 

isotropic, homogeneous, and perfectly elastic-plastic material. In addition, the effects of the 

overburden pressure on the soil response to pressuremeter expansion and contraction were not 

considered. Therefore, the idealization and oversimplification of the material properties and 

boundary conditions in these solutions can result in non-negligible discrepancies between the 

measured and predicted data. Furthermore, these solutions cannot simulate anisotropic in-situ 

stress fields. Thus, alternative approaches should be adopted to analyze RGP tests in deep 

formations.  

2.4 The semi-analytical solution proposed by Zhou (2015) 

Zhou et al. (2015) proposed a semi-analytical solution for cylindrical cavity expansion in elastic-

perfectly plastic soil under a biaxial in-situ stress field. The stress and elastic-plastic boundary 

around the cylindrical cavity were determined by conformal mapping and complex variable 

theory. This semi-analytical solution can reflect the elliptical effect around the cylindrical cavity 

expansion, which provides a theoretical tool for pressuremeter analysis in an anisotropic in-situ 

stress field. The elastic-plastic (EP) boundary for cylindrical cavity expansion is an ellipse under a 

biaxial in-situ stress field described by Equations 2.11 to 2.13. 

𝑟𝑏(𝜃𝑝) =
𝑐0(1+𝛽𝑚)

√1+[(1+
𝛽𝑚

1−𝛽𝑚
)2−1]𝜃𝑝 

  (2.11) 

𝑐0 = 𝑎 × 𝑒
(

1

2𝑠𝑢
)(−{[1+𝐾𝜎]

𝜎0
2

}+𝜎𝑎−𝑠𝑢)
 (2.12) 

𝛽𝑚 =
(𝐾𝜎−1)𝜎0

2𝑠𝑢
 (2.13) 

According to Cao et al. (2001), the stress in the plastic zone can be written as 
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𝜎𝑟 = 2𝑠𝑢𝑙𝑛 (
𝑟𝑝

𝑎
) − 𝜎𝑎   (2.14) 

𝜎𝜃 = 2𝑠𝑢 − 𝜎𝑎  (2.15) 

𝜏𝑟𝜃 = 0 (2.16) 

The stress in the elastic zone can be described by two complex stress functions. 

𝜎𝑒
𝑥 + 𝜎𝑒

𝑦 = 4𝑅𝑒[∅(𝜉)] (2.17) 

𝜎𝑒
𝑦 − 𝜎𝑒

𝑥 + 2𝑖𝜏𝑥𝑦
𝑒 = 2 [

𝑤(𝜉)

𝑤′(𝜉)
∅′(𝜉) + 𝜓(𝜉)] (2.18) 

The displacement in the plastic zone can be written as 

𝑢𝑟 = 𝐵0
1

𝑟
+ ∑ {𝐴𝑛 𝑠𝑖𝑛  [√4𝑛2 − 1 𝑙𝑛 𝑟 ] + 𝐵𝑛 𝑐𝑜𝑠 [√4𝑛2 − 1 𝑙𝑛 𝑟 ]   × 𝐶𝑛𝑐𝑜𝑠2𝑛𝜃}∞

𝑛=1   (2.19) 

𝑢𝜃 = − ∑ {𝐴𝑛(𝑠𝑖𝑛 [√4𝑛2 − 1 𝑙𝑛 𝑟 ] + √4𝑛2 − 1𝑐𝑜𝑠 [√4𝑛2 − 1 𝑙𝑛 𝑟 ]) + 𝐵𝑛(𝑐𝑜𝑠  [√4𝑛2 − 1∞
𝑛=1

𝑙𝑛 𝑟 ]   − √4𝑛2 − 1𝑠𝑖𝑛[√4𝑛2 − 1 𝑙𝑛 𝑟 ])} ×
𝐶𝑛𝑠𝑖𝑛2𝑛𝜃

2𝑛
 (2.20) 

The distribution of predicted displacement in the elastic zone can be expressed 

2𝐺(𝑢 + 𝑖𝑣) =
𝑐0𝑠𝑢

𝜉
  (2.21) 

The semi-analytical solution proposed by Zhou et al. (2015) can be used in a biaxial in-situ stress 

field. However, the solution cannot simulate pressure-hold test (PHT) or strain-hold test (SHT). 

Although a complete pressuremeter test usually consists of one or two PHTs (SHTs), there is a 

limitation to utilizing the solution in such cases. To overcome the limitations of analytical and 

semi-analytical solutions, a numerical model was proposed to simulate a pressuremeter test. 

2.5 Numerical modelling of pressuremeter tests 

In addition to the analytical and semi-analytical solutions discussed above, a numerical model 

using the Finite Element Method (FEM) or the Finite Difference Method (FDM) can be built to 

simulate pressuremeter tests in clay, sand, and rock (Yeung and Carter, 1990; Yu and Netherton, 

2000). A properly built numerical model can address the sources of inaccuracy from 
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oversimplified assumptions in analytical solutions regarding the geometry, boundary conditions, 

and constitutive model (Yu, 2006). 

In Chapters 4, 5, and 6, FDM models are built to simulate an SBP test in clay and RGP tests in clay 

shale. FDM models vary from a simple axisymmetric model to a full two-dimensional model, 

depending on the requirements of accuracy and efficiency. To limit the amount of repetition in 

this chapter, the modelling details are provided at the beginning of Chapters 4, 5, and 6.  

2.6 Statistical assessment methods for uncertainty quantification of the identified 
parameters with a pressuremeter 

With the analytical, semi-analytical, and numerical models discussed above, one can determine 

the geotechnical design parameters using curve-fitting techniques (Arnold, 1981; Denby and 

Clough, 1980; Gibson and Anderson, 1961; Jefferies, 1988). However, Houlsby (1989) pointed out 

that non-unique solutions exist using the curve-fitting method through visual comparison only. 

However, even if the curve fit is achieved using an optimization algorithm (Ferreira, 1992; Gaone 

et al., 2019; Huang et al., 1986; Levasseur et al., 2008; Obrzud et al., 2009), the non-uniqueness 

can not be eliminated (Zheng et al., 2021).  Alternatively, if a unique solution cannot be found, 

uncertainty quantification can be used to constrain the variability of the identified parameters. 

To quantify the uncertainties from soil or rock variability, measurement errors, and modelling 

methods, both frequentist and Bayesian statistical methods were adopted for the parameter 

estimation of the pressuremeter test in this study. 

2.6.1 Frequentist statistical methods 

To quantify the variability in parameter estimates, a statistical assessment can be performed 

under the frequentist framework. The random variables generated in the optimization process 

can reproduce potential parameter uncertainties. The evaluation of parameters and their 

uncertainties in the model prediction for an inverse analysis requires confidence intervals, as 

discussed by Bard (1974), Ledesma et al. (1996) and Knabe et al. (2012). According to Bard (1974), 

the reliability and correlation of parameter estimates can be evaluated using the covariance 

matrix. The 100(1 − 𝛼)% confidence intervals for the identified parameters can be deduced 

using the standard deviation (SD) derived from the covariance matrix. The covariance matrix and 
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confidence intervals derived from the frequentist statistical assessment were used to evaluate 

the variability of the predicted horizontal stress and ground properties.   

Chapter 4 presents a published paper on uncertainty quantification of parameter estimation from 

pressuremeter tests using a frequentist statistical method. 

2.6.2 Bayesian inference methods 

More than 250 years have passed since Bayes’ theorem was published in 1763. The posterior 

predictive distribution, which is the distribution of possible unobserved values conditional on the 

observed values, is determined by Bayes’ rule, which is expressed as: 

𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
                     (2.22) 

𝑝(𝜃|𝑦) denotes posterior distribution; 𝑝(𝑦|𝜃) denotes likelihood, which is the distribution of the 

observed data conditional on the parameters; 𝑝(𝑦) represents marginal likelihood or evidence; 

𝑝(𝜃)  represents prior distribution. 

Unlike the frequentist approach, whose probability is based on trials, Bayesian inference 

compromises prior information and observed data to determine the posterior distribution of the 

observed data. Bayesian inference methods based on Bayes’ theorem have gained increasing 

attention from the geotechnical community over the last few decades (Zhang and Liu, 1995; Yan 

et al., 1997; Wang et al., 2010; Wang and Cao, 2013; Juang et al., 2013; Bozorgzadeh et al., 2019). 

With Bayesian inference methods, prior knowledge can be integrated by using project-specific 

in-situ testing data. Posterior distributions of uncertain parameters can be used to update the 

prior knowledge. This solution can overcome the issue of limited testing data in pressuremeter 

(or RGP) tests by including previous knowledge and data available in past projects and research. 

However, a simple linear function instead of a computational model has usually been 

implemented in previous studies (Bozorgzadeh et al., 2019; Cao and Wang, 2014; Feng et al., 

2020; Wang and Cao, 2013; Yan et al., 1997; Zhang and Liu, 1995), which prevents the Bayesian 

inference methods from being widely applied in geotechnical engineering practice and research. 

Therefore, a simple linear function cannot properly simulate a pressuremeter or an RGP test. It 
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is usually agreed that only a strictly deduced closed-form solution or a well-built numerical model 

can adequately simulate a pressuremeter or an RGP test (Gibson and Anderson, 1961; Jefferies, 

1988; Liu, 2015; Yeung and Carter,  1990; Yu, 2006; Zheng et al., 2021; Zhou et al., 2015). 

Therefore, the critical step in this study was to effectively implement a closed-form solution or 

numerical model in the Bayesian framework. However, Bayesian inference is usually 

computationally expensive compared with traditional frequentist approaches. Therefore, 

accomplishing the Bayesian inference task in a computationally efficient manner is a challenge 

for geotechnical researchers and practitioners.   

Chapter 5 presents the uncertainty quantification of the parameter estimation from 

pressuremeter tests using a Bayesian approach. 

2.7 Observations from Literature Review 

Based on the discussions above, non-unique solutions to parameter estimates exist in the inverse 

analysis of the pressuremeter (or RGP) test using a conventional deterministic method. The non-

uniqueness problems are identified and solved (or at least partially solved) in Chapter 4 using 

frequentist statistical assessment methods for SBP tests in clay (Zheng et al., 2021).  

Another challenge in the inverse analysis of the pressuremeter (RGP) test is dealing with new 

data. Traditionally, new data cannot be automatically integrated into previous frequentist 

statistical assessments, which usually rely on a single pressuremeter (or RGP) test. With the 

Bayesian inference approach, one’s beliefs can be continuously updated with new data. In 

Chapter 5, the Bayesian inference method is utilized for the uncertainty quantification of the 

estimated parameters and the renewal of one’s belief with new data. At present, most 

applications of Bayesian inference in geotechnical engineering are limited to coupling with simple 

linear functions. One of the innovative contributions of this research is the implementation of 

both analytical solutions and the numerical model to simulate the pressuremeter test in the 

Bayesian statistical framework, rather than a simple linear function presented by other 

researchers. The effects of different samplers on MCMC simulations were also examined. 
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Consequently, the Bayesian inference approach proposed in this study is an open estimation 

system. 

Unlike conventional pressuremeter tests, an RGP tool is usually deployed at a deep depth in 

reservoir caprock formations. Consequently, sources of uncertainty in RGP data are assessed 

from tool calibration, rock spatial variability, tool deployment, measurement errors, data 

acquisition, and modelling. Chapter 3 presents the data conversion, corrections, and uncertainty 

quantification of the RGP testing data.  

Although Chapters 4 and 5 demonstrate the applicability of the statistical inverse analysis 

methods in self-bored pressuremeter tests in shallow grounds, the effectiveness of the inverse 

analysis methods on RGP tests in deep geological formations needs to be verified. Thus, 

Chapters 6 and 7 introduce a case study to conduct the inverse analyses of an RGP test in the 

Primrose-Wolf Lake oil sands field using the frequentist approach discussed in Chapter 4 and the 

Bayesian approach in Chapter 5. In addition to the analytical and semi-analytical models, a 

modified strain-softening/hardening model was implemented in the numerical modelling to 

simulate the RGP test. The profile of the in-situ stresses shows a good match between the 

measured and predicted data using the numerical model, providing increasing confidence that 

the methods developed in this research can be successfully applied in RGP tests in deep 

geological formations. 

To validate the proposed modified strain-hardening/softening model, a triaxial compression test 

is simulated in Appendix A through interpretation of the triaxial testing data. The results are 

compared with those obtained using the Mohr-Coulomb model and strain-hardening/softening 

model. 

Finally, to simulate the RGP testing with a computational model, some ideal conditions need to 

be assumed:1) no tool rotation occurred during the RGP test; 2) the temperature maintained 

inside the testing trailer can ensure that the data sensors are in a consistent working condition; 

3) the magnetic field does not influence the magnetic sensor of the RGP tool; 4) the borehole is 

assumed to be vertical and cross-sectional with a regular smooth shape, circle, or eclipse; 5) no 
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major breakout and spalling, or drilling-induced fractures exist around the borehole wall; 6) 

continuum mechanics and small strain theory are assumed in the numerical models and single-

phase fluid flow in the coupling process. The surrounding medium is treated as a poroelastic or 

poroplastic material in a coupled fluid mechanical model.  
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3.0 ASSESSMENT OF SOURCES OF UNCERTAINTY IN RGP DATA  

The execution of a Reservoir Geomechanical Pressuremeter (RGP) test involves a multitude of 

steps ranging from the initial calibration of sensors and membranes to the acquisition of test data 

during field programs. It is important to understand the embodied uncertainties represented by 

each of these phases in order to quantify the uncertainty of in-situ stress estimates based on data 

collected during the RGP test. Consequently, this chapter provides a reasonably detailed 

assessment of the origin of uncertainties that arise during tool calibration, deployment and field 

testing, including inherent uncertainties resulting from data processing of raw data collected 

from the field tests. Calculating the confidence interval using a frequentist approach requires a 

large population of data from multiple tests, which would generally be considered impractical or 

prohibitively expensive in practice. Therefore, based on the uncertainty assessment described in 

this chapter, a Bayesian linear regression modelling approach is used to define lower and upper 

bound confidence intervals for an RGP test curve.  

3.1 RGP components and testing procedures 

The RGP testing system is composed of three components: (i) surface control and data 

acquisition; (ii) wireline and gas line deployment; and (iii) downhole pressure and temperature 

probe. The unmodified version of the RGP is a high-pressure dilatometer (HPD) manufactured by 

Cambridge In-situ Ltd (Cambridge In-situ Ltd., 2012). Compared to a conventional pressuremeter, 

the RGP system developed by RG2 at the University of Alberta allows in-situ downhole 

pressuremeter testing at depths (e.g., up to 1000 m depths) beyond conventional geotechnical 

engineering practice. Figure 3.1 illustrates the layout of the RGP testing system devices. The 

testing procedure is shown in the flowchart in Figure 3.2 .  
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Figure 3.1 The layout of the RGP testing system devices (RG2,2016; Liu et al., 2019) 
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Figure 3.2 Flowchart for RGP testing process 
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3.2 Identification of uncertainties in the RGP test and inverse analysis 

Uncertainties in an RGP test can originate from ground material spatial variability, tool calibration, 

tool deployment, measurement errors, and modelling. Errors existing in tool calibration, tool 

deployment, and measurement have two components, namely, random error and systematic 

error. Random errors are always present and are generally unavoidable but can be reduced by 

repeated measurements. Systematic errors are introduced by inaccuracies inherent to the 

system, such as errors in the calibration process, but can be identified and eliminated by 

following standardized procedures. 

The primary sources of uncertainty in RGP tests are briefly discussed below. 

1) Displacement and pressure measuring transducers: Pressure cell and strain arm transducers 

need to be calibrated periodically. The following measurements have been identified with 

experience gained from lab-based and field work with the RGP tool: 

a) Random errors: 

i) The non-linearity and hysteresis when using the sensitivity calibration to convert 

readings from volts to mm or kPa. 

ii) Zero and slope readings derived from calibration best fit line. 

b) Systematic errors: 

i) Air leakage in the injection line: unexpected pressure drop in the pressure line.  

ii) Imperfect calibration of a micrometre or pressure gauge: biased calibrated values 

for arm displacement and pressure measurement. 

iii) The switch of nitrogen bottles: unexpected pressure variations in the pressure line. 

iv) Leakage at the metering valve in the control box: an exact pressure can not be 

maintained. 

v) Non-centralization of the RGP at the pocket entry: distorted readings of 

displacement and pressure.  
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vi) Interference of the different environments between laboratory and field: it includes 

factors such as weather (precipitation, temperature, humidity) and the influence of 

magnetic fields, such as those from nearby metal objects. 

Calibration on pressure cell and strain arm transducers is usually conducted in standard 

laboratory conditions. Therefore, on-site calibration should be performed considering 

temperature, humidity, and magnetic field variations different from the in-house laboratory 

environment. For instance, RGP testing in winter in Alberta may encounter extremely cold 

weather conditions. In such cases, errors can still be reduced to a minimal level by following 

proper procedures on-site (e.g., heated storage for the RGP tool and its auxiliary equipment, 

shortening the exposure to cold air, etc.). 

2) Membrane stiffness: Membrane stiffness shall be subtracted from the raw pressuremeter 

curve in data calibration, which can be obtained by inflating the pressuremeter in free air. 

The expansion rate for membrane inflation in air is similar to that used in strain-controlled 

field tests (Schnaid, 2009). The following measurement errors during membrane inflation 

calibration have been identified: 

a) Random errors: 

i) Variation in membrane properties. 

ii) The transducer slope and y-intercept on the pressure axis of the graph by inflating 

the pressuremeter in a steel cylinder. 

b) Systematic errors: 

i) Inflate the instrument in a tight steel cylinder 

In practice, the membrane is usually inflated inside a thick-walled steel cylinder instead of free 

air due to safety concerns. In such a case, there could be not enough gap between the 

membrane and the steel wall. The stiffness of the membrane could be exaggerated. This 

calibration is crucial in soft clay. 

3) System compliance calibration: Calibration of measuring system compliance will evaluate the 

control unit, line connection, and compression of the probe. During calibration, the probe is 

inflated inside a thick-walled steel cylinder, and pressure is raised in increments until the 

https://en.wikipedia.org/wiki/Surroundings
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maximum anticipated working pressure is reached. The change in the thickness of the 

membrane is also evaluated in this process. The slope of system compliance has an 

appreciable influence on the calibrated data for an inverse analysis and shear modulus as a 

result (Schnaid, 2009; Mair and Wood, 1987).  

a) Random errors: 

i) Finding the best-fit slope through the loading/unloading loops. 

ii) Variation in membrane properties. 

iii) Axial movement of the membrane during expansion. 

iv) Effect of Chinese lantern strips, which are stainless steel shealths protecting the 

membrane from sharp edges. 

v) The eccentricity of the instrument due to the low friction between the membrane 

and the steel. 

b) Systematic errors: 

i) Probe movement with respect to the cylinder. 

ii) Loading rate. 

4) Membrane thinning: The membrane stretches during expansion, and the change in 

thickness is calculated with the assumption of a constant cross-section area. 

a) Random errors: 

i) Variation in membrane thickness. 

ii) Variation of pressure applied to the membrane. 

b) Systematic errors: 

i) The assumption of a circular cross-section during expansion. 

5) Operator 

The errors derived from observation can be mistakes in the collection of data, which are 

random or systematic. To eliminate systematic errors, an operator needs to be well-trained 

and consistent throughout the whole testing program. A detailed testing proposal shall be 

prepared and approved ahead of the field test. Observational errors may come from the 

operator/team member’s fatigue on the night shift, so fatigue management should also be 
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managed. To quantify these random errors, a deviation can be included in the statistical 

analysis. 

6) On-site: Deployment of pressuremeter  

The deployment of the pressuremeter probe is always challenging and needs teamwork with 

the drilling crew and downhole service operators. The deployment of the RGP tool requires 

four separate pieces of equipment: a drilling rig, an open-hole wireline truck, a power spooling 

unit, and an RGP control trailer. Several hundred meters of control line supplying nitrogen air 

should be handled carefully. The temperature inside the trailer should be maintained at the 

same temperature as it was calibrated to ensure the data sensors are in the same working 

conditions. Also, it was found that the magnetic sensor in the pressuremeter tool may be 

potentially influenced by a nearby metal objective, such as a wireline truck. Therefore, 

calibration of the compass inside the pressuremeter tool shall be completed before the arrival 

of other equipment or far away from the radius of influence. 

7) On-site: Downhole testing 

A full bottle of nitrogen should be used to maintain constant pressure. Unexpected pressure 

variations should be avoided due to the switch of nitrogen bottles during the test. To minimize 

the systematic errors in the expansion and unload-reload stages, continuous pressure supply 

by oil instead of nitrogen is suggested in the in-house RGP test. Rotating and twisting of the 

supply line shall be avoided while inflating the pressuremeter membrane, which could cause 

significant errors in the acquisition of data because the tool inclination and rotation is not 

considered in this research. The eccentricity due to tool movement should be considered in 

data correction. 

8) Raw data analysis  

Raw pressuremeter curves should be corrected according to the calibration procedures 

mentioned above. Corrections need to account for the fact that the pressure and strain arm 

displacements inside the membrane differ from the pressure and displacements on the 

borehole wall due to the expansion of the membrane. Ellipse fitting can be used in data 

corrections to find the best fit of the ellipse for individual arm displacements under each load 
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increment. 

9) Inverse analysis 

In-situ horizontal stresses and the properties of borehole material can be derived from the 

inverse analysis of the RGP test. Both analytical and numerical models can be implemented in 

the inverse analysis to simulate the RGP testing. However, an oversimplified analytical model 

may cause significant errors in the inverse analysis. Conversely, a complicated numerical 

model may require unknown input parameters and significant computational effort. Instead 

of finding a unique ‘true’ value, statistical assessments on derived parameters can be used to 

quantify the estimation uncertainty. 

For this research, both deterministic and Bayesian inference methods will be applied to quantify 

the uncertainties propagated from calibration, measurement and analysis errors described 

above. It is recognized that additional sources of uncertainty in RGP test interpretations can arise 

from issues associated with inclined boreholes, tool rotation, borehole disturbance, and material 

heterogeneity. These are beyond the scope of the current research but are recognized as 

important and identified as topics for future research.  

3.3 Analysis of raw data using a deterministic approach 

Raw data retrieved from the RGP test need to be converted to arm displacements and cell 

pressure, followed by data corrections with the instrument calibration data. According to the 

pressuremeter working instructions (Cambridge In-situ Ltd., 2012), strain arm gauges and 

pressure transducers, membrane stiffness and thinning, system compliance, and compass 

orientation shall be calibrated prior to conducting an RGP in-situ test. Then, calibration data can 

be used to correct the arm displacement and cell pressure. 

3.3.1 Collection of raw data from RGP tests 

Raw data for radial expansion of the membrane are obtained from electrical signals collected 

from strain gauges embedded in the six internal arms during an RGP test. The raw data are in 

units of volts, which can be converted into six independent arm displacements with readings of 

zero and slope through micrometre calibration. For the field data analyzed in this study, the first 
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pocket of the RGP tests was drilled in the Westgate Formation, 259 m below the ground surface. 

In total, 557 separate recordings of electrical signals from six arm gauges were collected and are 

plotted in Figure 3.3. Similarly, the data for the RGP tests conducted in the Joli Fou and Clearwater 

Formations are illustrated in Figure 3.4 and Figure 3.5 , respectively. 

The raw data illustrated in Figures 3.3, 3.4, and 3.5 cannot be directly used in the RGP 

interpretation and inverse analysis. Through the conversion by a linear regression model, cell 

pressure and arm displacements can be obtained for further data corrections and interpretation 

of the RGP tests. 

 

Figure 3.3 Signal output from the six arms for RGP testing in the Westgate Formation 
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Figure 3.4 Signal output from the six arms for RGP testing in the Joli Fou Formation 

 

a)  b)  

Figure 3.5 Signal output from the six arms for RGP testing in the two tested intervals in the Clearwater 

Formation: a) Black Shale and b) Grey Shale. 

3.3.2 Data conversion from signals to arm displacements and cell pressure 

To find the relationship between the strain gauge output and arm displacement, a micrometre 

was mounted above each arm, and the readings of the voltage output from the strain gauge were 

recorded. With the data points from micrometre readings and voltage output, the zero and slope 

of the best fit straight line can be obtained from the least square linear regression model, which 

is: 
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𝑦𝑖 = 𝑏𝑠 + 𝑚𝑠𝑥𝑖  (3.1) 

𝑚𝑠 = 1 𝛽𝑠,   𝑏𝑠 = 𝛼𝑠 𝛽𝑠⁄⁄  

where 𝛼𝑠   and 𝛽𝑠   denote the zero (y-intercept) and slope (sensitivity) in a micrometre or 

pressure cell calibration plot, respectively; 𝑥𝑖  represents the signal voltage output, and 𝑦𝑖 

represents the arm displacement or total cell pressure (TCP). The values of 𝛼𝑠 and 𝛽𝑠 for six arm 

strain gauges and two pressure cell transducers are listed in Table 3.1. Then, arm displacements 

and TCP can be calculated with the voltage outputs from strain gauges and pressure cell 

transducers using the least square linear regression model shown in Equation 3.1.  

The uncorrected displacements of individual arms for RGP testing in the four geological 

formations, illustrated in Figures 3.6, 3.7, 3.8 and 3.9 need to be corrected for membrane 

stiffness and system compliance effects on arm displacements and cell pressures.  

 

Table 3.1 The slope (sensitivity) and zero (y-intercept) of strain gauges and pressure transducers 

Slope and zero Arm 1 Arm 2 Arm 3 Arm 4 Arm 5 Arm 6 TPC A* TPC B* 

𝛽𝑠 

(mV/mm or 

 mV/MPa*) 

273.5 288.9 286.6 276.5 241.7 273.5 98.3 116.3 

𝛼𝑠 

(mv) 
-1465.2 -1898.9 -1786.6 -1718.9 -2341.8 -1629.6 60.6 -78.4 
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Figure 3.6 Uncorrected curves for RGP testing in the Westgate Formation 

 

 

 

Figure 3.7 Uncorrected curves for RGP testing in the Joli Fou Formation 
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Figure 3.8 Uncorrected curves for RGP testing in the Clearwater black shale Formation 

 

 

 

Figure 3.9 Uncorrected curves for RGP testing in the Clearwater grey shale Formation 
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3.4 RGP testing curves corrected to system compliance and membrane stiffness 

The instrument will deform while the pressure is internally applied during a pressuremeter test 

(Cambridge In-situ Ltd., 2012). To obtain calibration data due to instrument deformation, the 

RGP probe was inflated in a steel cylinder. Figure 3.10 illustrates that the mean value of slope, 

derived from system compliance calibration (Liu, 2017), is 1.3 mm/GPa with an error margin of 

0.4 mm/GPa. 

 

Figure 3.10 RGP system compliance calibration (Liu, 2017) 

To obtain membrane correction information, the RGP instrument was pressurized inside a steel 

cylinder instead of “free air” for safety reasons. The steel cylinder fits closely at the ends of the 

membrane but allows a large expansion elsewhere (Cambridge In-situ Ltd., 2012). Figure 3.11 

illustrates that the zero and slope corrected to membrane stiffness are 0.0352 MPa and 0.0322 

MPa/mm (RG2, 2016), respectively.  
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Figure 3.11 RGP membrane stiffness calibration (RG2, 2016) 

With these system compliance and membrane stiffness calibrations, the uncorrected RGP testing 

curves shown in Figure 3.6 to Figure 3.9, can be corrected and are shown in Figure 3.12 to Figure 

3.15. 

 

Figure 3.12 Curves corrected to system compliance and membrane stiffness for RGP testing in the 
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Westgate Formation. The dashed line is the uncorrected curve, and the solid line is the corrected curve. 

 

 

Figure 3.13 Curves corrected for system compliance and membrane stiffness for RGP testing in the Joli 

Fou Formation. The dashed line is the uncorrected curve, and the solid line is the corrected curve. 
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Figure 3.14 Curves corrected for system compliance and membrane stiffness for RGP testing in the 

Clearwater black shale Formation. The dashed line is the uncorrected curve, and the solid line is the 

corrected curve. 

 

 

Figure 3.15 Curves corrected for system compliance and membrane stiffness for RGP testing in the 

Clearwater grey shale Formation. The dashed line is the uncorrected curve, and the solid line is the 

corrected curve. 

 

It is noticed that the differences between corrected (solid) and uncorrected (dashed) lines are 

quite small but there is a notable shift from solid line to dashed line for the Clearwater grey shale. 

It may indicate the serverity of borehole disturbance due to the existence of weaker layers and 

bentonitic layers in Clearwater grey shale Formation (Zadeh, 2016).  

Data correction to system compliance can substantially reduce estimation errors, especially when 

measuring the shear modulus of hard rocks (Cambridge In-situ Ltd., 2012). Additional corrections 

prior to formal pressuremeter interpretation are required to account for membrane thinning and 

tool eccentricity that may exist during the RGP measurement. 



 

 

38 

 

3.5 Arm displacement corrections to membrane thinning and ellipse fitting  

As the thickness of the pressuremeter membrane changes while being stretched during a test, 

data correction to membrane thinning shall be further carried out. To consider membrane 

thinning, the calculation (Cambridge In-situ Ltd., 2012) is presented below: 

 

𝐸𝑚 = √[(𝑏𝑚 − 𝑡𝑚)2 + 𝑑𝑚(2𝑎𝑚 + 𝑑𝑚)] − (𝑏𝑚 − 𝑡𝑚) (3.2) 

 

where 𝐸𝑚 denotes the actual expansion of the membrane; 𝑎𝑚 denotes the internal radius of the 

membrane at rest; 𝑏𝑚 denotes the external radius of the membrane at rest; 𝑑𝑚 represents the 

measured movement of the strain arm; 𝑡𝑚 represents the thickness of the stainless-steel sheath 

strips.  

To calculate the arm displacements at any azimuth, the deformed shape of the borehole 

subjected to pressuremeter loading pressure can be fitted with an ellipse. Then, the arm 

displacements 0∘ ∼ 360∘ can be easily obtained by subtraction of the previous ellipse from the 

present one corresponding to each loading increment. Schwerzmann et al. (2006) used general 

equations for circles and ellipses to fit eight positions of caliper arms. Figure 3.16 illustrates the 

schematic diagram of the expanded arms of an eccentric calliper inclinometer probe in a rotated 

elliptic borehole. Thus, the problem of eccentricity (refer to Figure 3.16) encountered in the 

corrected arm displacements can be solved with the ellipse fitting approach. 

The equation of an ellipse in the polynomial form:  

𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 = 1 (3.3) 

With coordinates of the ellipse centre relative to the calliper arm centre: 

𝑥0 =
2𝐶𝐷−𝐵𝐸

𝐵2−4𝐴𝐶
, 𝑦0 =

2𝐴𝐸−𝐵𝐷

𝐵2−4𝐴𝐶
 (3.4) 

𝑡𝑎𝑛2𝛼 =
𝐵

𝐴−𝐶
      (3.5) 

and 
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𝑎 = √
2(1+𝐹)

𝐴+𝐶+
𝐵

𝑠𝑖𝑛 (2𝛼)

, 𝑏 = √
2(1+𝐹)

𝐴+𝐶−
𝐵

𝑠𝑖𝑛 (2𝛼)

   (3.6) 

where  

𝐹 = 𝐴𝑥0
2 + 𝐵𝑥0𝑦0 + 𝐶 (3.7) 

 

Figure 3.16 Schematic diagram of the expanded arms of the calliper inclinometer probe in an elliptical 

borehole (adapted from Schwerzmann et al., 2006) 

Substituting the corrected arm displacements shown in Figure 3.12 to Figure 3.15 into 

Equations 3.3 to 3.7, a system of six linear equations for the five coefficients can be derived. To 

solve the overdetermined linear equations, Matlab and AutoCAD VBA codes are programmed to 

find the best-fit ellipse for six arm readings. However, the shape of the deformed borehole could 

be irregular. The assumption of an elliptical borehole may introduce additional errors.  

Using the ellipse curve fit function, the deformed borehole radii can be plotted at any azimuth 

(refer to Figure 3.32 to Figure 3.35). This permits both the analytical and numerical models to use 

the deformed borehole radii in workflows to determine the best estimates of geotechnical 

properties and in-situ stresses.  However, as described in Section 3.2, uncertainties propagated 

from tool calibration, deployment and data collection should be considered in data corrections. 

The analysis of raw data discussed in Section 3.3 is conducted with a deterministic approach, 
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which cannot quantify the uncertainties in data corrections. Therefore, a Bayesian inference 

approach is adopted to address this issue. 

 

Figure 3.17 The best fit of ellipse with the corrected displacements of the six arms for Westgate Formation 

3.6 Analysis of raw data using Bayesian inference methods 

Sections 3.3 to 3.5 discuss the application of a deterministic approach in the data conversion and 

corrections for an RGP test. To account for the uncertainty owing to tool calibration, deployment 

disturbance and measurement errors, uncertainty quantification should be carried out under a 

statistical framework. Traditionally, frequentist approaches prevail in the geotechnical 

engineering community, but in recent years, Bayesian inference methods have been gaining 

momentum (Cao and Wang, 2014; Feng et al., 2020). Unlike the frequentist approaches, whose 

probability is based on many trials, Bayesian inference integrates prior knowledge and project-

specific information (geological maps, previous test reports, and even personal judgment). The 

posterior predictive distribution, that is, the distribution of possible unobserved values 

conditional on the observed values, can be characterized under a Bayesian framework. Besides 

the deterministic method discussed above, the raw RGP data can also be converted and 

corrected using a Bayesian inference approach, as discussed in Chapter 5. 
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3.6.1 Bayesian linear regression modelling on micrometre calibration data 

The raw calibration data plotted in Figure 3.3, Figure 3.4 and Figure 3.5 is used to convert sensor 

voltage measurements into arm displacements. The calibration conversion equation can be 

treated in a Bayesian statistical way by quantifying the uncertainty propagated from micrometre 

calibration. The variables, 𝛼𝑠 𝑎𝑛𝑑 𝛽
𝑠
, shown in Figure 3.18 represent the y-intercept and slope of 

the calibration equation, respectively. The values of 𝛼𝑠 = −1310.9 𝑚𝑉 𝑎𝑛𝑑 𝛽
𝑠

= 234.2 𝑚𝑚/𝑚𝑉 

can be treated as prior information. This information is used to carry out further statistical 

inference on the data points shown in Figure 3.18 with a Bayesian linear regression model. The 

Bayesian linear regression model can be expressed as: 

𝑦~𝑁(𝜇𝑠 = 𝑏𝑠 + 𝑚𝑠𝑥, 𝜎𝑠 = 𝜀𝑠) (3.8) 

𝑚𝑠 = 1 𝛽𝑠,   𝑏𝑠 = 𝛼𝑠 𝛽𝑠⁄⁄  

where y denotes the arm displacements following a Gaussian distribution with mean 𝑏𝑠 + 𝑚𝑠𝑥, 

and standard deviation 𝜀𝑠. The standard deviation introduced in Equation 3.8 provides a measure 

of the data noise 𝜎𝑠 while converting raw data into arm displacements. 

 

a)  
b)  

Figure 3.18 Linear regression of data points from a) first and b) second calibrations for Arm1 

According to the working instructions (Cambridge In-situ Ltd., 2012), 0.5% of the sensor 

sensitivity is taken as an acceptable limit for hysteresis. Correspondingly, a standard deviation of 

0.024 mm has been presumed as the random error limit in the measurement of arm deflection. 

For Arm1, about 50% of the random error limit, 0.012 mm, is used for the Bayesian inference. 
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There is no prior knowledge of the initial systematic error. For the current research, this has been 

conservatively estimated to be 0.002 mm or about 1/6 of the assigned random error. The 

standard deviation 𝜎𝑠 is the sum of random and systematic errors (Equation 3.9). The data points 

in Figure 3.18 (1st calibration) are used as evidence to update the standard deviation 𝜎𝑠: 

𝜎𝑠 = 𝜀𝑟𝑎𝑛𝑑𝑜𝑚 + 𝜀𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 = 0.012 + 0.002 = 0.014 𝑚𝑚 (3.9) 

It has been argued that prior knowledge of systematic error is very subjective 

(Gelman et al., 2014), but for this research, it is assumed that it doesn’t violate the Bayesian 

theorem because the data points (evidence) from micrometre calibration will compromise the 

prior knowledge. The more the data points are, the weaker the prior knowledge will become. 

Chapter 7 provides additional discussion on the application of the No-U-Turn (NUTS) sampling 

algorithm for random sampling in Monte Carlo Markov Chain (MCMC) simulation.  

 

Figure 3.19 KDE (Kernel Density Estimation) and trace plots after Bayesian inference using the first 

calibration data of Arm1. 

The results from the Bayesian inference on the first calibration data (evidence) are shown in 

Figure 3.19 and summarized in Table 3.2. Table 3.2 shows that the standard deviation of arm 

displacement is updated from 0.014 mm to 0.0165 mm (mean epsilon). Then, the updated 
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standard deviation of 0.0165 mm is used as prior knowledge for the following Bayesian inference 

on the second calibration data points shown in Figure 3.18b. 

 

 

Table 3.2 Posterior parameters after Bayesian inference using the first calibration data of Arm1 

zero and slope mean sd mc_error hpd_2.5 hpd_97.5 

𝑏𝑠 (mm) -5.59 4.33e-03 1.62e-04 -5.60 -5.59 

𝑚𝑠 (mm/mV) 4.27e-03 3.88e-06 1.52e-07 4.26e-03 4.28e-03 

𝑒𝑝𝑠𝑖𝑙𝑜𝑛 (mm) 1.65e-02 3.33e-03 1.16e-04 1.06e-02 2.32e-02 
 

 

Similarly, kernel density estimation (KDE) and trace plots from Bayesian linear regression on the 

second calibration data (evidence) are illustrated in Figure 3.20 and summarized in Table 3.3, 

respectively. 

 

Figure 3.20 KDE and trace plots after Bayesian inference using the second calibration data of Arm1 

Table 3.3 shows that the standard deviation of arm displacement is updated from 0.0165 mm to 

0.0249 mm (mean epsilon), which can be used as the posterior knowledge for the raw data 

conversion using Equation 3.8. 
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With the Bayesian inference method introduced above, the standard deviations for other strain 

arms can be updated similarly. The standard deviations for Arms 1 to 6 after Bayesian inference 

using two calibration data are illustrated in Figure 3.21.  

 

Table 3.3 Posterior parameters after Bayesian inference using the second calibration data of Arm1 

zero and slope  mean Std Dev. mc_error hpd_2.5 hpd_97.5 

𝑏𝑠  (mm) 
-5.64 

(-5.59) 

9.60e-03 

(4.33e-03) 

4.32e-04 

(1.62e-04) 

-5.66 

(-5.60) 

-5.62 

(-5.59) 

𝑚𝑠 (mm/mV) 
3.66e-03 

(4.27e-03) 

6.16e-06 

(3.88e-06) 

2.51e-07 

(1.52e-07) 

3.65e-03 

(4.26e-03) 

3.67e-03 

(4.28e-03) 

𝑒𝑝𝑠𝑖𝑙𝑜𝑛 (mm) 
2.49e-02 

(1.65e-02) 

7.27e-03 

(3.33e-03) 

3.65e-04 

(1.16e-04) 

1.39e-02 

(1.06e-02) 

4.04e-02 

(2.32e-02) 

(###): Numbers in parenthesis are the original posterior parameters from Table 3.2 
 

 

Note that the initial standard deviations for the six arms follow a uniform distribution due to a 

lack of prior information. After updating with first and second micrometre calibration data (the 

evidence), the posterior standard deviations tend to follow a Gaussian distribution. The standard 

deviations inferred from the second calibration are used to predict the arm displacements with 

the signals (raw data) collected from the RGP test. 
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Figure 3.21 Bayesian inference on the standard deviations using micrometer calibration data 

3.6.2 Bayesian linear regression modelling on the data from total pressure cell calibration 

By inflating the pressuremeter inside a steel cylinder, readings on the transducer voltage output 

can be plotted in Figure 3.22. Similar to the strain arms, the sensitivity of the pressure measuring 

transducer can be determined by the best fit line through data points retrieved from the total 

pressure cell (TPC). 

Similar to strain arms, the standard deviation 𝜎𝑠 = 1.25 𝑘𝑃𝑎 can be considered as a random 

error in the measurement of pressure. Also, there is no prior knowledge of the initial systematic 

error of the internal pressure transducer. A value of 0.75 kPa is assigned to the initial systematic 

error, which will be updated by the following two calibration tests. 

a)  b)   

Figure 3.22 Linear regression of data points from first (a) and second (b) total pressure cell calibrations 

The standard deviation 𝜎𝑠 is formulated in Equation 3.10: 

𝜎𝑠 = 𝜀𝑟𝑎𝑛𝑑𝑜𝑚 + 𝜀𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐 = 1.25 + 0.75 = 2.0 𝑘𝑃𝑎  (3.10) 

Using the same procedure described in §3.6.1, the posterior standard deviations obtained from 

the Bayesian inference for the TPC are illustrated in Figure 3.23. 
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Figure 3.23 Bayesian inference on TPC calibration data 

The posterior standard deviations in Figure 3.21 and Figure 3.23 are summarized in Table 3.4. 

The values of the second micrometre/pressure calibration will be used for further Bayesian 

analysis to account for uncertainty from membrane stiffness, system compliance and membrane 

thinning. 

Table 3.4 Posterior standard deviations of strain arms and TPC after Bayesian inference 

Standard Deviation 

𝜎𝒔  

Arm1 

(mm) 

Arm2 

(mm) 

Arm3 

(mm) 

Arm4 

(mm) 

Arm5 

(mm) 

Arm6 

(mm) 

TPC A 

(kPa) 

TPC B 

(kPa) 

Initial 0.014 0.014 0.014 0.014 0.014 0.014 2.0 2.0 

First micrometre/TPC calibration 0.017 0.017 0.019 0.018 0.017 0.016 3.06 3.12 

Second micrometre/TPC 
calibration 

0.025 0.025 0.029 0.027 0.026 0.024 3.74 3.82 

 

 

3.6.3 Data conversion from signals to arm displacements and total pressure using Bayesian 
linear regression model 

The raw data collected from RGP tests are the digital outputs from the strain gauge signals or 

pressure transducers. The displacements of the six arms predicted with the Bayesian linear 

regression model (Equation 3.8) are plotted in Figure 3.24 to Figure 3.27 
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The lower and upper bounds of 95% credible interval (CR) are represented by the solid lines and 

the mean displacement with the dashed line. The width of 95% CR defines the range of prediction 

uncertainty owing to the calibrations of micrometre and TPC, as well as measurement errors. The 

relatively narrow width of 95% CR shown in Figure 3.24 indicates fewer uncertainties for the RGP 

test in the Westgate Formation, whereas the broader width of 95% CR in Figure 3.27 implies more 

uncertainties exist in the RGP test in the Clearwater grey shale Formation. As the slope, zero (y-

intercept), and standard deviation 𝜎  are all the same for the four testing pockets; different 

widths of 95% CR indicate that the Bayesian linear regression model used in the raw data 

conversion is data-driven.  

 

Figure 3.24 Uncorrected curves for RGP testing in Westgate using Bayesian linear regression model  



 

 

48 

 

 

Figure 3.25 Uncorrected curves for RGP testing in Joli Fou using Bayesian linear regression model. 

 

Figure 3.26 Uncorrected curves for RGP testing in Clearwater black using Bayesian linear regression model. 
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Figure 3.27 Uncorrected curves for RGP testing in Clearwater grey using Bayesian linear regression model. 

3.7 RGP test curve corrected to system compliance and membrane stiffness 

After converting the raw data from voltage to mm, the next step is to correct the arm 

displacements to the compliance of the measuring system and the measured pressure to 

membrane stiffness. The instrument compliance factor was determined to be 1.3 𝑚𝑚/𝐺𝑃𝑎 (Liu, 

2017) by fitting the calibration data. The equivalent measurement errors are assumed to follow 

a Gaussian distribution  ∼ 𝑁(0, 0.002252) . The arm displacements before and after the 

correction are illustrated in Figure 3.28 to Figure 3.31. 
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Figure 3.28 Curves corrected to system compliance and membrane stiffness for RGP testing in Westgate. 

Compared to the uncorrected mean arm displacements, the corrected ones after system 

compliance are slightly reduced, which could cause significant errors when deriving the rock 

stiffness from the inverse analysis of the RGP test. In addition, the corrected curve looks more 

erratic than the uncorrected one because measurement errors are applied in the data correction. 

It indicates corrections to system compliance are necessary for clay shale formations. 
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Figure 3.29 Curves corrected to system compliance and membrane stiffness for RGP testing in Joli Fou. 

By examining Figure 3.30, displacements of Arm1 and Arm2 vary dramatically and fail to produce 

smooth testing curves. Figure 3.31 shows the greatest width of 95% CR among the four RGP tests, 

indicating the maximum uncertainty from tool measurement and data retrieval in the Clearwater 

grey shale testing pocket. Besides, at the same depth, the bandwidths of 95% CR derived from 
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Bayesian inference can differentiate the uncertainties between strain arms owing to the 

anisotropies of in-situ stresses and borehole material properties. For example, Arm4 and Arm5 

in Figure 3.30 have much fewer uncertainties than Arm1 and Arm2. The same phenomenon can 

be observed in other testing pockets.  

 

Figure 3.30 Curves corrected to system compliance and membrane stiffness for RGP testing in Clearwater 

black. 
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Figure 3.31 Curves corrected to system compliance and membrane stiffness for RGP testing in Clearwater 

grey. 

If new calibration data are available, the curves from Figure 3.28 to Figure 3.31 can be further 

updated using the Bayesian linear regression model. Compared to the deterministic approach 

used in Sections 3.3 to 3.5, the Bayesian approach is an open system to the new evidence. New 

evidence can be easily implemented into the Bayesian data structure to update the posterior 

knowledge without starting from scratch.   
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3.7.1 Arm displacement correction to membrane thinning and ellipse fitting  

Similar to Section 3.5, membrane thinning shall also be considered the last step of data 

corrections. The radius of the deformed borehole at the azimuth from 0º ~ 360º can be calculated 

with the addition of the corrected arm displacements and the radius of the RGP probe by 

performing ellipse fitting in the Bayesian way. With fitted ellipses shown as in Figure 3.17, 

deformed borehole radii at the azimuth of 0º, 45º, 60º and 90º can be plotted in Figure 3.32 to 

Figure 3.35. In the Bayesian statistical paradigm, the prediction interval 95% CR in Figure 3.32 to 

Figure 3.35 can be used to constrain the numerical uncertainty in the inverse analysis and 

accordingly reduce non-unique solutions.  

 

Figure 3.32 Deformed borehole radii corrected to membrane thinning and ellipse fitting in Westgate. 
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Figure 3.33 Deformed borehole radii corrected to membrane thinning and ellipse fitting in Joli Fou. 

 

Figure 3.34 Deformed borehole radii corrected to membrane thinning and ellipse fitting in Clearwater 
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black. 

 

Figure 3.35 Deformed borehole radii corrected to membrane thinning and ellipse fitting in Clearwater grey. 

3.8 Summary and Conclusions 

Uncertainties in RGP tests were first identified and classified as random errors and systematic 

errors. Most systematic errors can be reduced or eliminated by following standard procedures, 

proper training, and maintenance of instruments. The uncertainties due to random errors can be 

quantified by conducting a statistical regression analysis.  

Both deterministic and Bayesian statistical methods were used to analyze raw data. With the 

deterministic approach, the raw data are converted into arm displacements with the linear 

regression model. The slope and zero are obtained from micrometre calibration. After the 

conversion of raw data, the uncorrected testing curves need to be corrected to instrument 

system compliance, membrane stiffness and thinning. To find the arm displacement at an 

azimuth of 0∘ ∼ 360∘, ellipse fitting is used to fit the corrected displacements of the six arms. 
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Thus, the deformed shape of the borehole subjected to applied pressure can be represented by 

a series of ellipses. The subtraction of the previous ellipse from the current one is the borehole 

deformation, which can be used in the curve fitting of an RGP test. However, due to the limitation 

of the deterministic approach, uncertainties propagated from tool calibration, tool deployment, 

and measurement errors cannot be quantified. As a result, the corrected RGP curve is not unique 

and may bring forward the problem of non-uniqueness in parameter estimation. To quantify the 

measurement uncertainties for an RGP test, the Bayesian inference method is adopted in the 

data corrections to raw data conversion, system compliance, membrane stiffness and thinning. 

Raw data from RGP testing can be converted and corrected with a deterministic or statistical 

approach. The deterministic approach is easy to use but cannot characterize the variability of 

RGP test curves from errors. In comparison, the statistical method can quantify the uncertainties 

with a Bayesian linear regression model. The prior information adopted in the Bayesian linear 

regression model is always open to new data (evidence) and accordingly, the ‘belief’ continues 

to be updated with every new dataset. The Bayesian linear regression modelling on the raw data 

can derive the lower and upper bounds of 95% CR, which can constrain the prediction uncertainty 

from the parameter estimation. At the same time, the non-unique solutions can be reduced in 

the inverse analysis workflows, which are described in the following chapter. 
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4.0 UNCERTAINTY QUANTIFICATION OF IN-SITU HORIZONTAL STRESS WITH 
PRESSUREMETER USING A STATISTICAL INVERSE ANALYSIS METHOD1 

 

4.1 Introduction 

Knowledge of the in-situ stress magnitude and orientation plays a very important role in 

geological/geotechnical engineering and in the development of energy resources, such as 

caprock integrity, waste fluid disposal, geological storage of CO2, and geothermal energy 

extraction. The uncertainty of estimated parameters, especially horizontal stress, from in-situ 

tests, such as pressuremeter tests, is a long-standing challenge owing to the existence of 

uncertainties from geomaterial spatial variability, measurement errors, limited information, and 

modelling methods. Therefore, non-unique solutions are often encountered in pressuremeter 

interpretation. In this study, a statistical inverse analysis method is proposed to solve this issue 

by combining a closed-form solution, a finite-difference model, and selected optimization 

algorithms. The objective of statistical inverse analysis is to determine the optimal parameters 

by minimizing the sum of squared errors while providing the confidence intervals of the inversed 

parameters. The random variables generated in the optimization process reproduced the 

potential parameter uncertainties. The Jacobian matrix and confidence intervals were derived 

from the optimization process to evaluate the variability of the predicted horizontal stress and 

ground properties. A workflow that demonstrates a statistical inverse method for analyzing 

pressuremeter results and helps quantify uncertainties of the ground properties and in-situ stress 

magnitudes and orientations derived from a pressuremeter test is presented. 

 
 

1  A version of this chapter has been published: Zheng, D., B. Zhang, and R.J. Chalaturnyk, 2021. Uncertainty 
quantification of in-situ horizontal stress with pressuremeter using a statistical inverse analysis 
method. Canadian Geotechnical Journal. 59(3): 397-409. https://doi.org/10.1139/cgj-2021-0004 

 

https://doi.org/10.1139/cgj-2021-0004
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4.2 Background 

The pressuremeter was introduced by Louis Menard in 1955 for in-situ testing to estimate 

ground properties for geotechnical designs (Clarke, 1995; Mair and Wood, 1987; Schnaid, 2009). 

Generally, there are three types of pressuremeter devices in terms of their installation methods 

(Mair and Wood, 1987): Menard-type, self-boring (SBP), and push-in pressuremeters. 

Theoretically, an SBP device can achieve minimal disturbance to adjacent soils by drilling its 

testing pocket. In the pressuremeter test, the applied pressure, volume, and/or radial 

displacements are recorded. A typical pressuremeter testing curve includes two components, 

expansion and contraction, as well as loops, if unloading–loading cycles are performed. 

Geotechnical properties, such as undrained shear strength and shear modulus, as well as in-situ 

horizontal stress, can be derived from the pressuremeter testing curves. 

Uncertainties in ground properties and in-situ stress fields are associated with aleatory 

uncertainties (spatial variability) and epistemic uncertainties (measurement errors, limited 

information, and model uncertainty) in pressuremeter tests (Nadim, 2007). Uncertainty 

quantification plays a vital role in the assessment of potential natural hazards (Chen and Cui 

2017; Cui et al., 2017; Liu et al., 2020). The quantified uncertainty helps to provide a more 

sophisticated design of hydraulic fracturing, tunnelling, and caprock integrity in subsurface 

development, considering the spatial variability of geotechnical properties, stress, and pore 

pressure distributions (Yang et al., 2004; Ghassemi, 2012; Ganesh et al., 2020; Zhang et al., 2021). 

In general, pressuremeter tests are interpreted using graphical plotting methods (Gibson and 

Anderson, 1961; Houlsby and Withers, 1988; Marsland and Randolph, 1977) or curve-fitting 

methods (Arnold, 1981; Denby and Clough, 1980). Graphical plotting methods involve the 

construction of a tangent line to the loading or unloading curve, which can determine the 

geotechnical properties. However, one of the drawbacks of graphical methods is their 

subjectivity to personal judgments (Clarke, 1995). To fit measured points with predicted ones, a 

computational model that can be either a closed-form solution or a numerical model is required. 

Jefferies (1988) proposed a curve-fitting approach to identify the horizontal stress and ground 

properties by extending the mathematical solution proposed by Gibson and Anderson (1961). 
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However, the model fit was achieved through visual comparison, which may lead to non-unique 

solutions (Houlsby, 1989). By extending the hyperbolic model (Duncan and Chang, 1970), 

Ferreira (1992) numerically fitted the pressuremeter curves using the least-square error curve-

fitting technique. Fahey and Carter (1993) performed finite-element analyses to simulate the 

behavior of pressuremeter tests in sand using a nonlinear elastic–plastic model. Fawaz et al. 

(2002) conducted pressuremeter chamber tests in sand, and deduced the parameters using the 

finite element method. Huang et al. (1986) adopted the simplex algorithm in the least-squares 

error curve-fitting process to solve the problem of repeatability. Levasseur et al. (2008) 

identified the Mohr–Coulomb parameters using two optimization approaches based on a 

gradient method and genetic algorithm (GA). In a recent publication, Obrzud et al. (2009) 

presented the application of a neural network technique for parameter identification based on 

SBP measurements. Gaone et al. (2019) derived modified Cam clay parameters from SBP testing 

data by combining traditional interpretation methods, parameter sweeps, and a local minimizer 

based on the golden section search algorithm and parabolic interpolation. However, the 

uniqueness of the solution in the parameter estimations discussed above is yet to be addressed 

in depth. 

In general, there are two possible sources of non-uniqueness: (i) the initial parameters are 

arbitrarily chosen during the numerical curve-fitting process (Arnold, 1981). Houlsby (1989) 

pointed out that experimental data can be fitted by a wide range of parameter combinations, 

and (ii) the mathematical minimum is not necessarily the physical minimum. For example, the 

simplex algorithm (Nelder and Mead, 1965; Huang et al., 1986) is sensitive to the initial values 

provided at the beginning of the optimization process, leading to different optimal results for 

each initial dataset. Consequently, the curve-fitting process may produce mathematically 

optimal values rather than physically optimal values (Papon, 2012). 

To address the issue of arbitrarily chosen parameters, the research presented in this paper 

introduces cut-offs of random parameter variables in inverse analysis to filter unreasonable data 

points (Clarke, 1995). A priori knowledge of ground properties is essential for defining the 

physical bounds for a constrained optimization problem. Multiple optimizers were used in the 
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inverse analysis. Notably, the statistical inverse analysis method can accommodate parameter 

uncertainties during the interpretation of the pressuremeter tests. A statistical assessment of 

the estimated parameters shows not only the optimal predicted dataset but also the bounds of 

the predicted values (e.g., 95% confidence intervals (CIs)). Furthermore, correlations between 

the estimated values were derived from statistical assessments. 

To overcome the disadvantages of conventional interpretation techniques for pressuremeter 

tests, a statistical inverse analysis framework was proposed and applied to the uncertainty 

quantification of parameter estimation for SBP tests. The results demonstrated its capability to 

quantify uncertainties in geotechnical design and research. 

4.3 Methodology 

In geotechnical engineering, inverse analysis has been widely applied for the calibration of 

constitutive models, the identification of soil parameters, and geotechnical design optimization 

(Levasseur, 2008; Papon, 2012; Yin et al., 2018). The objective of the proposed statistical inverse 

analysis of a pressuremeter test is to minimize the errors between the measured and predicted 

data under a statistical framework, as opposed to the deterministic method adopted by Jefferies 

(1988) for the parameter estimation of an SBP. The framework of the statistical inverse analysis 

includes, but is not limited to, the following steps: (i) a priori knowledge of initial values and 

uncertainty quantification of input variables, (ii) selection of a computational model and coupling 

with an optimization algorithm, (iii) establishing an objective function, (iv) identification of the 

optimal dataset based on the optimization criteria, and (v) execution of a statistical assessment 

of the identified parameters. The workflow for the proposed statistical inverse analysis of 

pressuremeter tests is shown in Figure 4.1. To begin the statistical inverse analysis, the initial 

values must be selected for certain optimizers, such as the Levenberg–Marquardt (LMA) and 

simplex algorithms. For other optimizers, e.g., Monte Carlo simulation (MCS) and subset 

simulation (SS), independent and identically distributed (IID) parameter samples must be 

randomly drawn from a proposed probability density function (PDF) (e.g., uniform distribution, 

Gaussian distribution, and log- normal distribution). The PDFs denote the initial probability 

distributions of the formation properties and in-situ horizontal stress, which can be defined using 
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a priori knowledge, such as laboratory and field tests, local experience, and literature. A uniform 

distribution was adopted for the inverse analysis. These IID samples were used as input 

parameters in the computational model. Solving an objective function involves coupling a 

computational model with an optimizer. 

 

Figure 4.1 Flow chart of statistical inverse analysis of a pressuremeter test. IID, independent and 

identically distributed; LMA, Levenberg–Marquardt algorithm; PDF, probability density function; TRRA, 

trust-region reflective algorithm.  

4.4 Objective functions 

An unweighted nonlinear least-squares (NLLS) performance function (also called the error 

function) can be formulated to minimize the subjective errors caused by the visual 

interpretation method proposed by Jefferies (1988). The NLLS performance function is 
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formulated as the objective function in the search process of optimization algorithms (Ahmed 

and Soubra, 2015; Papon, 2012; Yin et al., 2018). The unweighted NLLS performance function is 

expressed as 

𝑆𝑆𝐸 = ∑ [𝑌𝑖 − �̂�𝑖(𝑏𝑖)]
2𝑛

𝑖=1  (4. 1) 

where SSE denotes the sum of squared errors, 𝑌𝑖  denotes the observed data, �̂�𝑖  denotes the 

predicted data, and 𝑏𝑖 represents a parameter to be estimated (𝐺, 𝜎ℎ, 𝑆𝑢). 𝐺  represents the 

shear modulus, 𝜎ℎ  is the total horizontal stress, and 𝑆𝑢 is the undrained shear strength. �̂�𝑖(𝑏𝑖) 

represents a nonlinear function of 𝑏𝑖for simulating a pressuremeter test. In the inverse analysis, 

an optimizer must be coupled with a computational model to minimize the SSE, as formulated 

in Equation 4.1. 

4.4.1 Optimization algorithms 

The LMA and the trust-region reflective algorithm (TRRA), which are adopted in the statistical 

inverse analysis, are realized with the nonlinear least-squares solver “lsqnonlin” in Matlab 

(MathWorks, 2019). To verify the conclusion made by the local optimizers (i.e., LMA and TRRA), 

a global optimization algorithm, SS, was used in the inverse analysis. The SS code was modified 

from that of Li and Cao (2016) and implemented to minimize the unweighted NLLS performance 

function, as described by Equation 4.1. Appendix B briefly introduces the theories of the three 

optimization algorithms. 

4.4.2 Simulation of pressuremeter test 

A pressuremeter test can be simulated using either a closed-form solution or numerical model. 

Based on the solution proposed by Gibson and Anderson (1961), Jefferies (1988) proposed a 

theoretical relationship between the pressure and ratio of the initial radius to the current radius, 

𝑎0 𝑎⁄ , at the plastic loading stage: 

𝑃 = 𝜎ℎ0 + 𝑆𝑢 [1 + 𝑙𝑛 (
𝐺

𝑆𝑢
)] + 𝑆𝑢𝑙𝑛 [1 − (

𝑎0

𝑎
)

2

] (4.2) 

To account for the strength softening or hardening effect during unloading in the SBP 

contraction phase, Jefferies (1988) introduced a fraction 𝛽 of the undrained shear strength 𝑆𝑢: 
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𝑆𝑢𝑐
= 𝛽𝑆𝑢 (4.3) 

Then, the pressure that initiates plastic deformation during the contraction stage becomes 𝑃 =

𝑃𝑚𝑎𝑥 − (1 + 𝛽)𝑆𝑢, and the relationship between 𝑃 and 𝑎 can be written as (Jefferies, 1989) 

𝑃 = 𝑃𝑚𝑎𝑥 − (1 + 𝛽)𝑆𝑢 − 𝑆𝑢𝑙𝑛 {[1 − (
𝑎

𝑎𝑚𝑎𝑥
)

2

] [
𝐺

(1 + 𝛽)𝑆𝑢
]} 

−𝛽𝑆𝑢𝑙𝑛 {[(
𝑎𝑚𝑎𝑥

𝑎
)

2

− 1] [
𝐺

(1+𝛽)𝑆𝑢
]} (4.4) 

where 𝛽 denotes the softening or hardening coefficient during unloading and 𝑎𝑚𝑎𝑥 represents 

the maximum radius. 

The displacements measured in the field can be directly applied to Equations 4.2 and 4.4 after 

calibration. The proposed inverse analysis of an SBP test in clay can be efficiently conducted 

using the NLLS curve-fitting inverse analysis technique, as explained previously. 

In addition to the closed-form solution introduced above, a two-dimensional numerical model 

using the finite element method (FEM) or finite difference method (FDM) can be built to 

simulate pressuremeter tests in clay, sand, and rock (Yeung and Carter, 1990; Yu and Netherton, 

2000; Gaone et al., 2019). In the present study, fast Lagrangian analysis of continua (FLAC), a 

commercial two-dimensional explicit finite-difference program (Itasca, 2011), was applied to 

model an SBP test in clay. A properly built numerical model can address the sources of 

inaccuracy from oversimplified assumptions in closed-form solutions regarding pressuremeter 

geometry, water drainage, and initial disturbance (Yu, 2006). Although the numerical model may 

encounter convergence issues, it can detect unreasonable initial estimates for an unconstrained 

optimization problem. 

4.4.3 Statistical assessment of identified parameters 

To quantify the uncertainty in parameter estimates, statistical assessments should be conducted 

after the optimization process. The evaluation of uncertainty for inverse analysis requires the 

definition of mean values, standard deviations (SDs), and confidence intervals (CIs). In the 



 

 

65 

 

proposed workflow, the covariance for the optimal parameters, 𝑏′ , was calculated as 

(Knabe et al., 2012): 

𝑐𝑜𝑣(𝑏′) = 𝑠2(𝐽𝑇𝐽)−1 (4.5) 

where 𝑏′
  represents the estimated optimal parameters, 𝑠2  denotes the calculated error 

variance, and 𝐽 denotes the Jacobian matrix, also known as the sensitivity matrix. The error 

variance, 𝑠2, asymptotically reaches the mean-squared error and is defined as: 

𝑠2 =
𝑆𝑆𝐸

(𝑛−𝑝)
 (4.6) 

where SSE represents the sum-of-squared errors, as calculated using Equation 4.1, 𝑛 represents 

the number of observations, 𝑝 indicates the number of parameters, and (𝑛 − 𝑝) denotes the 

degrees of freedom.  

The standard deviation (SD) is the square root of diagonal elements of matrix 𝑐𝑜𝑣(𝑏′). With the 

derived SD, the 100(1 − 𝛼)% CIs for the optimal parameters are 

𝑏′ ± 𝑡(1−𝛼 2,𝑛−𝑝⁄ )
𝑆𝐷(𝑏′)

√𝑛
  (4.7) 

where 𝑆𝐷(𝑏′) represents the SD of 𝑏′, and 𝑡(1−𝛼 2,𝑛−𝑝⁄ ) indicates 100(1 − 𝛼 2⁄ )𝑡ℎ percentile of 

the 𝑡-distribution with (𝑛 − 𝑝) degrees of freedom. The off-diagonal elements of matrix 𝑐𝑜𝑣(𝑏′) 

are covariance, which can be used to determine the correlation between the optimal parameters. 

For uncorrelated parameters, the covariance is zero. If parameters are correlated, then their 

covariance will be nonzero (Weisstein et al. n.d.). Knabe et al. (2012) pointed out that the matrix 

𝑐𝑜𝑣(𝑏′) provides the reliability of the estimated parameters in terms of their covariances. 

The proposed statistical inverse method can accommodate the parameter uncertainty in the 

interpretation of pressuremeter tests. With a statistical assessment, the statistics of the 

estimated parameters provide the confidence bounds together with the optimal values. In 

addition, correlations between the estimated values can be derived from statistical assessment. 
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4.5 Case study of an SBP test 

The SBP test conducted at the test site Amauligak F-24 (Jefferies, 1988) was reanalyzed using 

the proposed statistical inverse method. Parameter estimation by Jefferies was based on curve 

fitting with visual comparison by trial and error. In the case study, a reanalysis of the SBP test 

was performed using the inverse method under a statistical framework. Model fit was evaluated 

by coupling the closed-form solution (Jefferies, 1988) or a finite-difference model with the LMA, 

TRRA, and SS. The results were interpreted using SSE for unweighted residuals and statistics 

(mean and CIs). 

 

Figure 4.2 Boundary conditions for FLAC model in the inverse analysis. 

4.5.1 Project background 

The Amauligak F-24 site is located 32 m below sea level. The testing pocket was surrounded by 

stiff clay (unit D1) approximately 40 m below the mud line. The published SBP testing data 

(Jefferies, 1988) are utilized for the re-analysis of the SBP testing in clay at this site. 
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4.5.2 Soil profile 

The geotechnical profile below the mudline for the Jefferies et al. (1987) study consists of a 12 m 

layer of soft clay (units A1 and A2) overlying 24 m of dense to compact sand (unit C). The SBP 

testing pocket is located in the 15 m massive clay unit (D1) below unit C, which is horizontally 

bedded silty clay with medium to high plasticity. The water content of unit D1 ranged from 25% 

to 32%, and the liquid index were close to zero. The a priori information presented by Jefferies 

et al. (1987) provides the geotechnical constraints for the following inverse analyses of the same 

SBP testing. 

4.5.3 Numerical modelling of an SBP test 

In addition to the analytical solution proposed by Jefferies (1988), FLAC modelling was used in 

the inverse analyses. As the expanding length of the SBP instrument is approximately 0.5 m 

(Cambridge Insitu Ltd., 2012), the SBP testing in clay was treated as a cylindrical cavity expansion 

in a homogeneous, isotropic medium to simplify numerical modelling  (Wroth, 1984; Jefferies, 

1988; Yeung and Carter, 1990; Yu and Netherton, 2000). The studies were conducted using total 

stresses with the assumption of undrained conditions throughout the test, considering a fast 

loading rate (Windle and Wroth, 1977; Jefferies, 1988; Liu et al., 2021). Figure 4.2 illustrates the 

two-dimensional plane–strain discretized domain and boundary conditions. Taking advantage of 

symmetry, only a quarter of the cylindrical cavity was modelled. 

The Mohr–Coulomb model was used to calculate the elastic and plastic responses of the SBP test. 

Under undrained conditions, the plastic strength of the clay in D1 is represented by the Tresca 

model with a unique 𝑆𝑢 and 𝜑 = 0°.  

Random variables, horizontal stress (𝜎ℎ), shear modulus (𝐺), and undrained shear strength (𝑆𝑢), 

were generated through parameter perturbation in the LMA and TRRA and randomly selected 

from IID samples in the SS. These random variables were used as the input parameters for the 

analytical and finite difference FLAC models. The minimization of the objective function 

formulated using Equation 4.1 was solved by coupling the analytical or the FLAC model with the 

LMA, TRRA, and SS. 
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4.6 Criteria applied in determination of best-fit dataset 

The goal of the optimization is to determine the optimal dataset in an inverse analysis. The 

criteria used to determine the best-fit dataset are summarized as follows (the flow chart of the 

criteria described below is shown in Figure 4.3): 

1. Value of SSE: Considered the primary index to determine the optimal dataset with the 

minimum SSE. 

2. SD (Standard Deviation) bar: Length of SD bar shown in Figure 4.4 and Figure 4.5. represents 

variability of the estimated parameters, which can be treated as a secondary index for 

determining the optimal dataset. 

3. In general, there are three cases in the decision-making process from which the best-fit 

dataset is selected: 

Case A: A dataset with both the minimal SSE and SD bar is considered the best-fit dataset. 

Case B: For the case of the same minimal SSEs, a dataset with a shorter SD bar is preferred 

to one with a longer SD bar. 

Case C: If the SSE is minimal, its SD bar is longer, which means an “accurate” fit but larger 

uncertainty in the curve fitting (or vice versa, the dataset with a greater SSE but a shorter 

SD bar). In such cases, the assessment should be assisted by other statistical parameters, 

e.g., coefficient of determination and p-value, and the evidence from other independent 

tests, such as the field vane test and triaxial test. 
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4. Knowledge and experience from experts are still important in the final determination of the 

best-fit dataset. 

Figure 4.3 Flow chart of criteria applied in the determination of the best-fit dataset. 

4.6.1 Statistical inverse analysis of expansion curve 

A complete pressuremeter test curve consists of both expansion and contraction parts. To 

examine the effects of the contraction part on parameter estimation, the inverse analysis 

presented in this section is performed by considering only the expansion part. The inverse 

analysis of the complete curve is presented in Section 4.6.2. Two local optimization algorithms 

(LMA and TRRA), together with a global optimization algorithm (SS), are implemented in the 

statistical framework. 

In the case of the three input parameters, the gradient descent algorithm may be easily confined 

by local minima. Thus, other optimizers, such as the SS or GA, must be adopted to ensure the 

global minimum. However, these optimizers often require a large number of iterations to 

accomplish an optimization task, which becomes computationally costly for inverse analysis using 

a numerical model. In some cases, a hybrid of local and global optimizers may be an alternative 

solution. 
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4.6.1.1 Inverse analysis of expansion curve using local optimizers 

The inverse analyses of the SBP test AF85 P06-15 are conducted using the proposed inverse 

method and compared with the results presented by Jefferies (1988) and from conventional 

interpretation methods (Appendix B). The expansion part of the SBP test AF85 P06-15 is used. 

The initial parameters for the inverse analyses of the SBP test are listed in Table 4.1. Three sets 

of initial parameters are selected to estimate 𝜎ℎ, G, and 𝑆𝑢. Initial values of dataset A (Initial A) 

represent the parameters estimated by Jefferies (1988) using the complete expansion and 

contraction curve, and dataset B (Initial B) considers only the expansion part (refer to Figures. 10 

and 12a in Jefferies, 1988). Dataset C (Initial C) was randomly generated to test the robustness 

of the proposed method in the present study. Initial values of the SSE shown in Table 4.1 have 

been evaluated using Equation 4.1. 

The optimal parameters from the inverse analysis of the expansion curve using the LMA are 

presented in Table 4.2. In terms of the SSE in Table 4.2, the optimal dataset using the closed-form 

solution corresponds to the optimal values of datasets A and C, which are virtually identical. In 

dataset A, G measures 9915 kPa, which is similar to the lower bound reported by Jefferies (1988; 

see Figure 7a). Similarly, the optimal parameters using the numerical model can be determined 

as dataset A by examining the SSE in Table 4.2. Figure 4.4 illustrates the 𝜎ℎ datasets in Table 4.2 

with SD bars (one SD below and above the data points). The SDs for Initials A, B, and C were not 

provided in Jefferies (1988). The lengths of the SD bars shown in Figure 4.4 illustrate that the 

estimation uncertainty using numerical modelling appears to be higher than that using the 

closed-form solution, indicating that the numerical model is more sensitive to the variation in 

input parameters than the closed-form solution while simulating the expansion part owing to the 

disturbance at the early stage. 
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Figure 4.4 Initial and best datasets of horizontal stresses derived from the expansion curve using closed-

form solution and numerical model coupled with LMA and TRRA. Note: the number displayed on the 

top of SD bar is SD, unit: kPa. 

Table 4.1 Initial parameters for inverse analysis of expansion curve. 

Dataset 

Initial values (Initial) 

𝝈𝒉𝟎 

(kPa) 

𝑮𝟎 

(kPa) 

𝑺𝒖𝟎 

(kPa) SSE 

A 1690 18 000 160 1.08 

B 1525 45 000 165 0.96 

C 1882 19 900 178 71.27 

Note: Initial values of A (Initial A) and B (Initial B) refer to Figures. 10 and 12a in Jefferies (1988). Initial values 
of C (Initial C) are random values generated for the inverse analysis. 
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Figure 4.5 Initial and best datasets of horizontal stresses derived from the complete curve using closed-

form solution and numerical model coupled with LMA and TRRA. Note: the number displayed on the 

top of SD bar is SD, unit: kPa. 

Table 4.2 Optimal parameters from inverse analysis of expansion curve using LMA 

Dataset 

Optimal values using the 
closed-form solution  

Optimal values using the 
numerical model  

𝝈𝒉 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) SSE 
𝝈𝒉 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) SSE 

A 1736 9915 190 0.47 1713 15 289 178 0.43 

B 1453 44 695 189 0.48 1488 44 997 174 0.45 

C 1736 9915 190 0.47 1658 19 975 176 0.44 
 

The SD bars for optimized dataset B in Figure 4.4 are absent because of the ill-conditioned 

Jacobian matrix caused by the overestimated G. The computational model predicted using 
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dataset B is unstable. A small change in input leads to a significant difference in output. Therefore, 

dataset B presented in Table 4.2 should be discarded, although the predicted curve fits the 

measured data quite well. 

For a pressuremeter test, 𝜎ℎ draws the most attention because the soil stiffness and strength can 

be evaluated by other types of in-situ tests, such as the cone penetration test, standard 

penetration test, and field vane test. 𝜎ℎ measures 1713 kPa, as identified from the numerical 

model in Table 4.2. Compared to the numerical model, the closed-form solution (1736 kPa) seems 

to overestimate 𝜎ℎ slightly as well as 𝑆𝑢, and significantly underestimates G by 50%.  

The parameters are not constrained when using the LMA. Although the LMA is the most popular 

algorithm for unconstrained NLLS curve-fitting problems, the TRRA is still necessary to constrain 

the parameters in the optimization process. Specifically, the limits of the soil stiffness and 

strength should be well defined to derive a reasonable horizontal stress, 𝜎ℎ , from inverse 

analyses.  

Table 4.3 Lower and upper bounds for the TRRA 

Dataset Horizontal stress (kPa) Shear Modulus (kPa) Undrained shear strength (kPa) 

A (1267; 2113) (9000; 27 000) (80; 240) 

B (1267; 2113) (9000; 50 000) * (80; 240) 
C (1267; 2113) (9000; 27 000) (80; 240) 

*To compare with Jefferies (1988), the upper bound of the shear modulus for dataset B was relaxed to  
50 000 kPa. 

 

The TRRA was implemented in the minimization of objective functions for the inverse problems, 

as it can constrain the randomly generated variables within the defined bounds. Table 4.3 defines 

the initial variabilities of the geotechnical properties and in-situ horizontal stress with lower and 

upper bounds, which are calculated by assuming 50% deviations from the initial values in Table 

4.1. The TRRA conducted a search around the neighbourhood constrained by the bounds defined 

in Table 4.3. The optimal parameters using the closed-form solution coupled with the TRRA were 

determined to be datasets A and C in Table 4.4. Although the Initial C (G0, 𝜎ℎ0 , 𝑆𝑢0) differs from 

that of Initial A, only a negligible difference in G was observed between datasets A (9920 kPa) 
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and C (9922 kPa). With bound constraints, the TRRA derived nearly identical optimal values to 

the LMA. 

Table 4.4 Optimal parameters from inverse analysis of expansion curve using TRRA. 

Dataset 

Optimal values using the 
closed-form solution  

Optimal values using the 
numerical model  

𝝈𝒉 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) SSE 
𝝈𝒉 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) SSE 

A 1736 9920 190 0.47 1695 17 962 173 0.45 

B 1456 44 116 189 0.48 1489 42 840 176 0.44 

C 1736 9922 190 0.47 1703 16 314 178 0.43 
 

 

By comparing the SSEs presented in Table 4.4, the optimal horizontal stress derived from the 

closed-form solution using the TRRA can be determined as 1736 kPa, and from the numerical 

modelling as 1703 kPa, respectively. 

4.6.1.2 Inverse analysis of expansion curve using subset simulation algorithm 

As a global optimization algorithm, the SS is implemented to compare the results from the two 

local optimizers, the LMA and TRRA. Dataset A in Table 4.3 is also used to define the bounds for 

the SS. With the number of samples 𝑁𝑠 = 250, intermediate conditional failure probability 𝑃(𝐹𝑖 )= 

0.1, and maximum number of simulation levels 𝑁𝑙 = 5, the SS algorithm can derive the optimal 

parameters listed in Table 4.5. The global optimizer SS serves as a reliable reference for 

constraining the solution derived from the two local optimizers. 

Table 4.5 Optimal parameters from inverse analysis of expansion curve using SS. 

Optimal values using the 
closed-form solution 

Optimal values using the 
numerical model 

𝝈𝒉 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) SSE 
𝝈𝒉 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) SSE 

1577 22 930 190 0.49 1680 16 546 166 0.48 
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4.6.2 Statistical inverse analysis of complete (expansion–contraction) curve 

To study the effects of the contraction part on the inverse parameters, the complete expansion–

contraction SBP testing curve AF85 P06-15 is utilized in the following inverse analyses. 

Table 4.6 Initial parameters for inverse analysis of complete curve. 

Dataset 

 Initial values (Initial) 

𝝈𝒉𝟎 

(kPa) 

𝑮𝟎 

(kPa) 

𝑺𝒖𝟎 

(kPa) 

𝜷 SSE 

D 1690 18 000 160 0.83 1.81 

E 1670 20 000 160 0.70 1.29 

F 1730 16 000 150 1.30 1.88 

 

Note: Initial values of D (Initial D) refer to Figure 10 in Jefferies (1988). 
Initial values of E (Initial E) and F (Initial F) refer to Figures. 8a and 8b in Jefferies (1988). 

 

The initial values of 𝐺, 𝜎ℎ, 𝑆𝑢, and 𝛽 for datasets D, E, and F in Table 4.6 are adopted from Figures. 

8a, 8b, and 10 in Jefferies (1988), and 𝛽 is defined as the softening or hardening coefficient during 

unloading in the SBP test. The optimal parameters after inverse analyses using the closed-form 

solution and the numerical model are presented in Table 4.7. In terms of the SSE in Table 4.7, 

dataset D is preferred to datasets E and F as the optimal dataset using the closed-form solution 

and numerical model coupled with the LMA. It can be observed that the SDs (see Figure 4.5) using 

numerical modelling appear to be lower than those using the closed-form solution, indicating 

that the prediction made by the numerical model has less uncertainty than the closed-form 

solution while simulating the entire expansion–contraction curve. 

Table 4.7 Optimal parameters from inverse analysis of complete curve using LMA. 

Dataset 

Optimal values using the closed-form 
solution  

Optimal values using the numerical 
model  

𝝈𝒉 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) 

𝜷 SSE 𝝈𝒉 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) 

𝜷 SSE 

D 1610 23 097 173 0.60 0.99 1709 15 344 180 0.79 0.49 
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E 1619 22 271 172 0.64 1.02 1702 15 536 183 1.03 0.59 

F 1620 21 839 173 0.68 1.04 1715 16 677 170 0.93 0.61 
 

 

Table 4.8 lists the lower and upper bounds of the TRRA. The optimal datasets using the TRRA 

are listed in Table 4.9. Similarly, Table 4.10 defines the bounds for the SS and Table 4.11 

confirms the global minimum predicted by the two local optimizers. 

Table 4.8 Lower and upper bounds for TRRA 

Dataset 
Horizontal stress 

(kPa) 

Shear Modulus 

(kPa) 

Undrained shear strength 

(kPa) 
𝜷 

D, E, F (1267; 2113) (9000; 27 000) (80; 240) (0.4; 1.5) 
 

 

Table 4.9 Optimal datasets from inverse analysis of complete curve using TRRA. 

Dataset 

Optimal values using the closed-form 
solution  

Optimal values using the numerical 
model  

𝝈𝒉 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) 

𝜷 SSE 𝝈𝒉 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) 

𝜷 SSE 

D 1616 23 109 171 0.58 0.99 1707 18 632 167 0.87 0.83 

E 1628 22 269 169 0.65 1.03 1691 19 121 172 0.83 0.66 

F 1614 22 983 172 0.56 1.00 1739 16 657 156 1.12 0.97 
 

 

In terms of the derived values 𝐺, 𝜎ℎ, and 𝑆𝑢 in Table 4.7 and Table 4.9, different initial values of 

datasets D, E, and F have similar predictions to the closed-form solution or the numerical model, 

indicating the robustness of the inverse analysis approach used in this study. 

 

Table 4.10 Lower and upper bounds for SS. 

Horizontal stress 
(kPa) 

Shear Modulus 

(kPa) 

Undrained shear strength 

(kPa) 
𝜷 

(1267; 2113) (9000; 27 000) (80; 240) (0.8; 0.9) 
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Table 4.11 Optimal parameters from inverse analysis of complete curve using SS. 

Optimal values using the 
closed-form solution  

Optimal values using the numerical 
model  

𝝈𝒉 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) 

𝜷 SSE 𝝈𝒉 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) 

𝜷 SSE 

1616 24 124 169 0.88 1.04 1725 14 826 174 0.85 0.49 
 

 

Compared with Figure 4.4, Figure 4.5 indicates that the prediction using the complete curve has 

lower uncertainty than using only the expansion curve for numerical models. There are two 

reasons to explain this advantage: (i) the complete curve provides more data points for the 

inverse analysis, leading to less uncertainty in the prediction, and (ii) the contraction curve is 

more reliable than the expansion part as the effect of installation disturbance becomes minimal 

at this stage (Ferreira, 1992; Houlsby and Withers, 1988). 

The purpose of using the TRRA is to verify the conclusion made by the LMA and reduce the non-

uniqueness caused by arbitrarily chosen parameters and local minimum values. In addition, the 

uniqueness of the solution can be better addressed through statistical assessments of the derived 

parameters. Thus, it is more meaningful to derive narrow CIs than “true values” from parameter 

estimation. The derived narrow CIs are valuable for quantifying the uncertainty of 𝐺, 𝜎ℎ, and 𝑆𝑢 

for geotechnical design. 

4.6.3 Uncertainty quantification of optimal inversed results 

With one global optimizer and two local optimizers, the optimal parameters are derived from the 

initial datasets and their bounds. After the optimization process, the uncertainties from the 

parameter estimation can be quantified using the statistical assessment methods discussed in 

Section 4.4.3.  

4.6.3.1 Summary of optimal inversed parameters and statistical assessments 

Table 4.12 summarizes the derived mean and 95% CIs of 𝐺, 𝜎ℎ, and 𝑆𝑢 using the closed-form 

solution, whereas Table 4.13 shows the numerical model.  
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In Table 4.12, 𝐺 appears to be underestimated, while 𝜎ℎ is overestimated when using the 

expansion curve only, and vice versa for the complete curve. The closed-form solution tends to 

be nonconservative in interpreting pressuremeter tests because of oversimplifications in 

geometry and boundary conditions. 

Compared to Table 4.12, the wide distribution in predicted shear modulus (𝐺) values provided in 

Table 4.13 can be observed within the confidence intervals given for the expansion curve. This 

indicates that the numerical model is more sensitive to 𝐺 than the closed-form solution. This is 

likely due to an apparent Poisson’s ratio of 0.49 in the undrained analysis, which causes the clay 

material to be nearly incompressible in the numerical model. In contrast, static equilibrium, given 

a Poisson’s ratio close to 0.5, does not need to be reached in the closed-form solution as it does 

in the numerical model. 

From Table 4.13 it is interesting to note that the numerical model provides similar mean values 

of 𝐺, 𝜎ℎ, and 𝑆𝑢 for the expansion and complete curves. By contrast, the estimated 95% CI for 

the expansion curve is much wider than that for the complete curve. Again, the wider CI band 

for the expansion curve accounts for the uncertainties in the early stage of expansion. 

Therefore, the complete curve can provide a more reliable prediction than the expansion curve. 

 

Table 4.12 Optimized parameters after inverse analysis of the expansion curve using the closed-form 

solution 

Type 
Predicted 

values 

Horizontal stress 
(𝝈𝒉) 
(kPa) 

Shear modulus 
(𝑮) 

(kPa) 

Undrained 
strength (𝑺𝒖) 

(kPa) 

𝜷 

Expansion 
curve 

mean 1736 9915 190 - 

95% CI (1652; 1820) (5412; 14 418) (180; 199) - 

Complete 
curve 

mean 1610 23 097 173 0.60 

95% CI (1526; 1695) (13 365; 32 828) (165; 182) (0.0; 1.3) 
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Table 4.13 Optimized parameters after inverse analysis of complete curve using numerical model. 

Type 
Predicted 

values 

Horizontal stress 
(𝝈𝒉) 
(kPa) 

Shear modulus 
(𝑮) 

(kPa) 

Undrained 
strength (𝑺𝒖) 

(kPa) 

𝜷 

Expansion 
curve 

mean 1713 15 289 178 - 

95% CI (1593; 1832) (6263; 24 315) (164; 193) - 

Complete 
curve 

mean 1709 15 344 180 0.79 

95% CI (1649; 1769) (11 638; 19 050) (172; 188) (0.53; 1.05) 
 

 

 

4.6.3.2 Validation of optimized parameters 

By examining Table B.1 in Appendix B, the value of 𝜎ℎ (1690 kPa) deduced from the modified 

inspection technique (Jefferies, 1988) basically agrees with the corresponding values (1713 kPa 

and 1709 kPa), as shown in Table 4.13, Table 4.12 shows a slightly higher or lower value of 𝜎ℎ 

than that in Table B.1. The mean of Su (182 kPa) in Table B.1, which was estimated from the SBP 

curve using the linear regression method, approximately coincides with those in Tables 4.12 and 

4.13. The values of G (13 730 kPa and 11 230 kPa) deduced from the triaxial test curve lie roughly 

within the 95% CI (between 11 638 kPa and 19 050 kPa) predicted by the complete curve 

(Table 4.13). Simultaneously, the gradient of the unloading–reloading loop in Figure B.3 

illustrates a significant increase in stiffness, which may have resulted from the drainage occurring 

near the probe during this stage (Clarke, 1995). The ratio of shear strength 𝛽 is identified as 0.79, 

which approximately coincides with 0.8, as shown in Table B.1. Owing to the advantages of 

runtime efficiency, it is recommended to conduct a closed-form solution coupled with an 

optimizer (LMA or TRRA) before performing additional numerical simulations. To determine 𝜎ℎ, 

the expansion part of the pressuremeter curve may be sufficient for conducting an appropriate 

inverse analysis. The complete expansion–contraction curve can be used to investigate the 

unloading effects on soil properties and provide narrower 95% CIs. 
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4.6.3.3 Evaluation of model fit with coefficient of determination 

Although the statistical values listed in Tables 4.12 and 4.13 provide quantitative assessments 

of the inversed parameters, visual comparison of the predicted and observed curves adopted 

by Jefferies (1988) is still meaningful in evaluating the model fit as a final check. 

Figure 4.6 and Figure 4.7 illustrate the observed data from test AF85P06-15 (Jefferies, 1988) 

and the data predicted using analytical and numerical models. The goodness of fit can also be 

quantified using the coefficient of determination R2, which is defined as 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 (4.8) 

where SSE represents the sum of squared errors, as defined in Equation 4.1, and SST indicates 

the total sum of squares. 

SST = ∑ (𝑌𝑖 − �̅�)2𝑛
𝑖=1  (4.9) 

where 𝑌𝑖 denotes observed data, and �̅� represents the mean of observed data. 

𝑅2 can take any value between 0 and 1, with a value equal to 1 indicating the model prediction 

exactly matches the observed data. Using only visual comparison, it is challenging to make an 

unbiased judgment of which dataset is the best fit. Therefore, the SSE, SD, and 𝑅2 can evaluate 

the model fit numerically, which is independent of an observer. 
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Figure 4.6 Fit of observed data to predicted data using the expansion curve for test AF85P06-15 

(Jefferies 1988): (a) predicted with closed-form solution and (b) predicted with numerical model 

In terms of 𝑅2  in Figure 4.6a and Figure 4.7a, the best values predicted by the closed-form 

solution achieve a slightly better fit for the observed data compared to the estimates (initial A in 

Table 4.1) proposed by Jefferies (1988). Whereas there are significant deviations observed in 

Figure 4.6b and Figure 4.7b, implying that the best values predicted by the numerical model 

achieve a significantly better fit than the initial dataset A. The best-fit dataset evaluated with the 

closed-form solution does not necessarily apply to the numerical model.  
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Figure 4.7 Fit of observed data to predicted data using the complete curve for test AF85P06-15 (Jefferies, 

1988): (a) predicted with closed-form solution and (b) predicted with numerical model 

 

Jefferies (1988) emphasized the match at the early stage; however, the observed data may be 

significantly affected by the disturbance of the adjacent soil during SBP installation. The 95% 

prediction interval (shaded bands in Figure 4.6 and Figure 4.7) provides the lower and upper 

bounds of the predicted data. The wider band at the early stage of expansion reveals more 

uncertainties in the curve fitting because of the disturbance caused by tool installation. The 

narrow band at a later stage verifies the viewpoint proposed by Ferreira (1992) that the latter 

part of the loading stage is more reliable. Thus, in terms of R2 and the width of the band, Figure 

4.7b shows the best fit for the observed data and corresponding prediction interval. 
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4.7 Summary and Conclusions 

Traditionally, the interpretation of pressuremeter tests has focused on the derivation of soil 

properties using graphical plotting or curve fitting methods in a deterministic manner. Therefore, 

the interpreted parameters are usually expressed as the “best” dataset, which may be biased 

because they fail to account for uncertainty and errors related to soil or rock spatial variability, 

measurement errors, limited information, and model uncertainty. The proposed statistical 

approach can employ analytical and numerical models coupled with selected optimization 

algorithms to quantify the effects of uncertainty and errors on the derived soil properties and 

horizontal stress. To perform the parameter estimation for an SBP test in clay, both the closed-

form solution (Jefferies, 1988) and numerical modelling coupled with three optimization 

algorithms were adopted in the inverse analyses. 

The closed-form solution was used for the initial assessments owing to its computational 

efficiency. The two-dimensional numerical model can provide more realistic estimates of in-situ 

parameters. To verify the parameters derived from the inverse analyses, data from the SBP and 

triaxial tests were also interpreted using graphical plotting and linear-fit regression methods. 

Finally, the variability of the optimized datasets derived from inverse analysis can be described 

using the mean, SD, and 95% CIs. The quality of the curve fitting can be quantified using R2 and 

prediction intervals. 

To minimize non-uniqueness, (i) various optimisation algorithms should be implemented; (ii) the 

statistical assessment may be unable to improve the accuracy of the predicted mean but can 

provide precise lower and upper bounds within which the true values may lie; and (iii) other types 

of laboratory and in-situ tests, such as triaxial and field vane tests, can provide more constraints 

on the predicted parameters with relatively narrow bounds. 

Compared with an analytical solution, a numerical model can simulate an SBP test as a two-

dimensional cylindrical cavity expansion, which is similar to a real pressuremeter test. As 

oversimplification and idealization in the closed-form solution can lead to significant errors in the 
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derived soil properties (Yu, 2006), the numerical model adopted here can identify reasonable 

combinations of parameters, as presented in this research. 

In the future, the statistical inversion code will be extended to consider uncertainties from tool 

calibrations, installation disturbance, and irregular cavity geometry, as well as a more complex 

numerical model that considers partial drainage, soil anisotropy, and inhomogeneity using solid 

and fluid coupling methods (Yin et al., 2021). 

Compared with conventional pressuremeter interpretation methods, the proposed statistical 

inverse analysis can quantify the potential uncertainty and errors from the ground properties and 

in-situ horizontal stress. Minimization of the objective function with multiple optimizers can 

reduce the degree of non-uniqueness encountered using conventional methods. Compared with 

the expansion curve only, the complete curve can predict a more reasonable mean and narrower 

95% CIs in the inverse analysis. Statistical assessments of the optimal parameters were used to 

evaluate the statistics defined by SD and CIs. In addition, the model fitness can be further 

evaluated using R2 and prediction intervals. The uncertainties propagated from the ground 

properties and computational modelling can be quantified statistically. 

The statistical methodology described above can be extended to other engineering inverse 

analysis problems, such as the calibration of constitutive models and inverse analysis of in-situ 

stress fields for horizontal drilling, tunnelling, and hydraulic fracturing. 
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5.0 BAYESIAN APPROACH FOR UNCERTAINTY QUANTIFICATION OF IN-SITU 
HORIZONTAL STRESS AND GEOTECHNICAL PARAMETERS WITH 
PRESSUREMETER2 

5.1 Introduction 

Knowledge of in-situ horizontal stress for the evaluation of the coefficient of at-rest earth 

pressure 𝐾0, expressing the ratio between the horizontal and vertical effective geostatic stresses, 

is indispensable in the design of retaining structures or laboratory-reproduced stress path tests. 

The pressuremeter has gained increasing attention over the last decades as it could help to 

determine the anisotropic stress field and soil properties in situ. However, quantification of 

inversed properties uncertainty remains an outstanding challenge. The frequentist statistical 

approach was shown to be effective in quantifying the uncertainty from parameter estimation 

using a self-boring pressuremeter (SBP) test in clay (Zheng et al., 2021). However, a major 

downside of the frequentist approach is that it is a closed system unable to be continuously 

updated with new data. On the contrary, a Bayesian approach is an open system with significant 

advantages in quantifying the parameter uncertainty and utilization of prior knowledge. Prior 

knowledge of in-situ stress magnitude and geotechnical parameters is obtained from external 

information sources such as analogue engineering design, geologic environment, and expert 

judgement. An objective function is formulated to evaluate the logarithm of the probability 

density function (PDF) by incorporating observed and predicted data. Both the analytical solution 

and the finite difference numerical model are coupled with sampling algorithms. The Bayesian 

inference consists of two parts: first, the maximum a posteriori (MAP) method is used to perform 

a quick point estimation, and then followed by the Markov Chain Monte Carlo 

(MCMC) simulation to obtain parameter statistics by sampling posterior distributions. Through 

the Bayesian scheme, prior knowledge is reconciled with the project-specific pressuremeter 

 
 

2 A version of this chapter has been published: Zheng, D., B. Zhang, and R.J. Chalaturnyk, 2024. Quantifying 
Uncertainty of In-Situ Horizontal Stress and Geotechnical Parameters Using a Bayesian Inference Approach 
for Pressuremeter Tests. Canadian Geotechnical Journal. Just-IN https://doi.org/10.1139/cgj-2023-0686 
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testing data and final posterior distributions of uncertain parameters are summarized from 

sampling the MCMC chains. In addition, model fit is evaluated with the coefficient of 

determination 𝑅2, and prediction uncertainty is visualized with the HDI band. Given this new 

evidence, the posterior distributions can be updated using Bayesian inference. The most 

outstanding advantage of the proposed Bayesian approach is that it can continuously update 

one’s belief with new data through an open system, which is superior to the frequentist statistical 

methods so far employed for in-situ horizontal stress studies. 

5.2 Background 

As an in-situ testing tool, the pressuremeter has gained increasing attention over the past several 

decades (Clarke, 1995; Gibson and Anderson, 1961; Mair and Wood, 1987; Yu, 2006). With the 

analysis of the pressuremeter test, soil strength and stiffness, in-situ horizontal stress, and 

consolidation characteristics of soils can be estimated from the measured data (Jefferies et al., 

1987; Elwood et al., 2015; Liu et al.,  2017). Conventionally, there are two major ways to estimate 

the in-situ horizontal stress and geotechnical parameters, which are graphical plotting (Houlsby 

and Withers, 1988; Marsland and Randolph, 1977) and curve-fitting methods (Jefferies, 1988; 

Ferreira, 1992). Zheng et al.  (2021) discussed these two methods and pointed out that the 

drawback of graphical plotting is its dependence on individual interpreters (Clark, 1995), and the 

curve-fitting method may lead to a non-unique solution (Houlsby, 1989). The issue mentioned 

above can be attributed to soil variability, measurement errors, and uncertainties in a 

computational model. To solve the problem of non-uniqueness encountered in the analysis of 

the pressuremeter test, Zheng et al. (2021) proposed a frequentist statistical approach to quantify 

the uncertainties existing in the parameter estimation for a pressuremeter test. 

Uncertainty quantification plays a vital role in the risk assessment of geotechnical structures 

(Chen and Cui, 2017; Cui et al., 2017; Ganesh et al., 2020; Zhang et al., 2021; Zheng et al., 2022). 

With the transition from working stress design (WSD) to full probabilistic analysis, uncertainty 

quantification of geotechnical parameters helps to assess soil variability, measurement errors, 

and computational models.  
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In addition to the frequentist statistical framework presented by Zheng et al. (2021) in the 

geotechnical context, the Bayesian inference method can deal with data in events occurring in a 

sequence, such as observed data from a monitoring system. Unlike the frequentist approach, 

whose probability is based on repeatable trials and pooling all the available data together, the 

Bayesian approach is based on Bayes' theorem by utilizing external prior (expert judgement, 

experience, and published information) with evidence (observed data) on each stage to conclude 

a parameter (posterior prediction). The posterior distributions can be obtained with the Bayesian 

inference on the pressuremeter test, and later, the posterior belief can be updated again with 

the triaxial tests if they are performed. The belief from Bayesian inference is subject to change 

with data. Under the Bayesian paradigm, the highest density interval (HDI), analogous to the 

confidence interval (CI) in frequentist statistics, can be inferred from Markov chain samples to 

define the lower and upper bounds of the identified parameters. Notably, the mean and its 

statistics can be continuously updated through Bayesian inference with new data.  

Over the past decades, Bayesian inference has been extensively applied in the evaluation of soil 

and rock properties with laboratory and in-situ tests. Zhang and Liu (1995) analytically inferred 

posterior probabilistic distribution with conjugate priors based on Bayes' theorem. With the small 

dataset and little knowledge of prior probability distribution function (PDF), Yan et al. (1997) 

inferred the posterior distribution of mechanical properties of rock samples based on Bayes' 

method. By approximating the posterior PDF, Wang et al. (2010) derived the probabilistic 

characterization of sand friction angles using cone penetration test (CPT) data. Cao and Wang 

(2014) probabilistically estimated undrained shear strength using a limited number of liquid index 

test data by selecting the most appropriate likelihood model in Bayesian inference. Wang and 

Cao (2013) conducted a probabilistic characterization of undrained Young's modulus based on 

the MCMC simulation. In addition, Cao et al. (2016) proposed a Bayesian sequential updating 

approach to characterize soil properties based on the over-consolidation ratio (OCR), standard 

penetration test (SPT), and CPT data. Bozorgzadeh et al. (2019) adopted a non-linear hierarchical 

Bayesian model to update rock strength by combining data from different sources. Besides the 

determination of soil or rock properties, the Bayesian approach has been widely used in other 
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areas. Juang et al. (2013) back-analyzed and updated soil parameters for braced excavations 

using field observation with Bayesian updating methods. Wang et al. (2016) developed a Bayesian 

inverse model for probabilistic site characterization. Prior information and project-specific 

observation are combined in this Bayesian approach. Spatial variability of soil properties is 

addressed to estimate the posterior distribution of the compression modulus at unsampled 

locations. Zhang et al. (2009) calibrated a Bayesian model using centrifuge tests to study soil 

slopes under rainfall conditions. Feng et al. (2020) conducted a Bayesian analysis for the 

uncertainty quantification of in-situ stress magnitude and orientation using overcoring datasets. 

However, to the best of the author’s knowledge, there are few publications about the Bayesian 

analysis of a pressuremeter test. 

With the Bayesian inference methods, the prior knowledge can be reconciled with the project-

specific pressuremeter testing data. This solution can overcome the issue of limited testing data 

in pressuremeter tests by including the previous knowledge and data available in past projects 

and research. However, previous researchers’ (Wang et al., 2010; Juang et al,. 2013; Cao and 

Wang, 2014) implementation of a simple linear function in the Bayesian analysis may be an 

oversimplification compared to a more realistic strictly deduced closed-form solution or a well-

built numerical model. Consequently, it hurdles the widespread use of the Bayesian inference 

technique in geotechnical engineering practice and research. Two aspects need to be addressed: 

(i) a simple linear function usually cannot properly simulate a pressuremeter test due to the 

complex in-situ testing conditions. It is agreed that only a strictly deduced closed-form solution 

(Jefferies, 1988) or a robust numerical model (Ferreira, 1992) can adequately simulate a 

pressuremeter test. Therefore, the critical step in this study is to effectively implement an 

analytical solution or a numerical model in the Bayesian framework; (ii) Bayesian inference is 

usually computationally costly compared to traditional deterministic approaches. To accomplish 

the Bayesian inference task efficiently is another challenge the geotechnical researchers and 

practitioners must encounter.  

To incorporate a strictly deduced closed-form solution or a well-built numerical model into the 

Bayesian framework, an objective function must be properly formulated. If a numerical 
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simulation is needed, the numerical model should be balanced between efficiency and accuracy. 

For example, usually a simplified 2D model is used in the pressuremeter numerical analysis 

(Yeung and Carter, 1990; Liu et al.,  2017). The geometry shall be as simple as possible while 

preserving the key structural elements, and the main features of stress and strain responses can 

be reproduced at the same time. 

Bayesian inference of unknown parameters includes a point estimate with the maximum a 

posterior (MAP) and a complete Bayesian analysis aiming at the full posterior distributions. Like 

the frequentist maximum likelihood estimation (MLE), MAP is a point estimator in a Bayesian 

setting. By default, a local optimization algorithm, such as the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) (Kelley, 1999), is used to find the maximum log-posterior in the point estimation. 

Although the MAP estimator is fast and efficient, only a single parameter can be estimated 

without the associated parameter uncertainty. Another limitation of a point estimate is the 

potential solution trapping in the local minimum in high-dimensional posteriors (Salvatier et al., 

2016). 

Alternatively, the complete Bayesian analysis approach can ensure the global minimum and 

obtain posterior statistics by summarizing realizations from Markov chains. The MAP tends to 

estimate the parameters under assumed parametric probability distributions. In contrast, the 

complete Bayesian analysis aims to report the posterior mean together with the HDI regardless 

of the target distribution shape.  

Compared to frequentist inference, Bayesian inference has the advantage of an open system, 

whose degrees of belief are subject to changes with new data. In this study, posterior statistics 

inferred from pressuremeter tests can be continuously updated with new evidence from other 

laboratory and in-situ tests. 

5.3 Methodology 

The goal of a pressuremeter test is to record the changes in the applied pressure and radial 

displacements or cell volume during the expansion and contraction stages. A pressuremeter 

testing curve analysis is to estimate the values of in-situ horizontal stress and soil parameters for 
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geotechnical design and research. With the observed data from the pressuremeter test, the MAP 

point estimate approach is first used as a preliminary estimate of in-situ horizontal stress and soil 

parameters and followed by the complete Bayesian analysis, which summarizes the samples 

drawn from the posterior distribution after MCMC simulation. 

Both MAP optimization and MCMC simulation require a probability distribution for prior input 

parameters. Prior knowledge of ground properties and in-situ horizontal stress can be taken from 

analogous case studies, measurements, etc. This study assumes bounded uniform distributions 

for all prior input parameters in the MAP and MCMC simulation. To simulate a pressuremeter 

test, an analytical (closed-form solution) or a numerical model shall be adopted in the Bayesian 

inference. A computational model in Bayesian modelling is implemented in a likelihood function 

formulated with the observed and predicted data.  

For the MAP, the dataset that maximizes the likelihood function corresponds to the optimal point 

estimates. In MCMC, a sampling algorithm proposes a random move in the model space, which 

is then passed to the likelihood function. Relative comparison between the likelihoods from the 

previous and current steps shows which one explains the data better. In the general case, 

likelihoods and priors at the current proposed and the previous steps are evaluated through the 

acceptance probability. In case of rejection, the model parameters at the current step retain the 

values from the previous step and are saved in the chain. Conversely, accepting the new 

proposed model parameters places them into the chain and sampling proceeds to the next 

realization. 

After drawing from sufficiently large set samples, the convergence of MCMC chains could be 

evaluated with diagnostics criterion. Once the chain is converged, its elements can be accepted 

as samples from the target posterior distribution, and statistics can be summarized from those 

samples, from which the mean and HDIs are the key. The workflow for the proposed Bayesian 

inference of the pressuremeter test is shown in Figure 5.1. The framework of the Bayesian 

inference includes, but is not limited to, the following steps: (i) a priori knowledge of initial values 

and uncertainty quantification of input variables, (ii) selection of a computational model and 
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coupling with an MCMC sampling algorithm, (iii) establishing a likelihood function as the 

objective function, (iv) identification of the optimal value (the MAP) or the mean and its statistics 

from posterior distributions (the MCMC) by maximizing the log-likelihood function, and (v) 

convergence diagnostics. 

 

Figure 5.1 Flow chart of Bayesian inference of a pressuremeter test.  

5.3.1 Objective function 

Both in stochastic sampling and optimization, the maximization of the likelihood function is 

equivalent to the minimization of an objective function. A log-likelihood function can be 

formulated as the objective function in the searching process of the BFGS algorithm or the 
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iterative convergence of MCMC chains. Given a normal distribution, the log-likelihood function 𝑙 

can be defined as in Equation 5.1 (Taboga, 2017): 

𝑙(𝜇(𝜃), 𝜎2;  𝑦) = −
𝑛

2
𝑙𝑛(2𝜋) −

𝑛

2
𝑙𝑛(𝜎2) −

1

2𝜎2
∑ (𝑦𝑗 − 𝜇(𝜃))

2𝑛
𝑗=1   (5.1) 

where y = (𝑦1, 𝑦2, … , 𝑦𝑛) denotes observed data; 𝜇 indicates predicted data; 𝜃 denotes unknown 

parameters, and 𝜎 represents the standard deviation. 𝑛 represents the number of observed data 

from a pressuremeter test. The parameters 𝜃 can be estimated by maximizing the specific log-

likelihood function 𝑙 over the parameter space 𝛩: 

𝜃 = arg max
𝜃∈Θ

ℓ̂(𝜇(𝜃), 𝜎2; 𝑦)  (5.2) 

Similarly, log-likelihood functions for other distributions like Poisson, exponential, and student t 

distribution can be derived. The log-likelihood function like Equation 5.1 makes the MAP and 

complete Bayesian analysis easier by implementing an analytical or numerical model in Bayesian 

inference. 

5.3.2 Assumptions and sources of uncertainties 

A typical SBP testing curve is composed of the applied pressure and volume changes or radial 

displacements as illustrated in Figure 5.2. A complete testing curve includes the expansion part, 

contraction part, and loops if unloading-reloading cycles are performed. Sometimes, hold tests 

are conducted to investigate the characteristics of hydraulic consolidation.  
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Figure 5.2 A typical SBP testing curve. 

The self-boring pressuremeter (SBP) test in Canadian Arctic offshore site investigations (Jefferies 

et al., 1987) is re-analyzed with the Bayesian inference methods discussed above. To simplify the 

theoretical analysis and numerical modelling of the SBP test, the effect of the finite 

pressuremeter length is not considered. The SBP test in the saturated clay is simulated with a 

cylindrical cavity expansion model in an infinite medium. Owing to the low permeability of clay 

and impermeability of the pressuremeter membrane, the simulation of stress and pore pressure 

responses to the expansion of a pressuremeter can be assumed in undrained conditions. 

Therefore, the Tresca model is adopted to reproduce the constitutive behaviour of the clay 

around the borehole wall. The isotropic in-situ horizontal stress regime is assumed as Jefferies 

(1988) only provided the averaged radial displacements. The anisotropy of the in-situ horizontal 

stress regime can only be derived from the radial displacements measured at multiple azimuthal 

angles. 

The primary sources of uncertainty are measurement errors, soil spatial distribution, and 

boundary conditions. Here, we focus on variabilities of in-situ horizontal stress, soil stiffness and 

shear strength in the Bayesian inference analysis. 
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The analytical solution proposed by Jefferies (1988) is adopted in the current work. However, the 

numerical model in their study is further simplified due to the extensive computational costs 

required by the MCMC simulations. The details of the simplified numerical model are explained 

in Section 5.4.3. 

The proposed Bayesian inference method can accommodate parameter uncertainty and aid in 

pressuremeter test interpretation. The MAP can be performed to obtain a quick preliminary point 

estimation of the unknown parameters. The complete Bayesian analysis can provide posterior 

distributions of in-situ horizontal stress and soil parameters with statistics on the estimated 

parameters summarized as the confidence bounds and the mean values. In addition, the 

posterior probability can be continuously updated on new data from laboratory and field tests. 

5.4 Case Study – Self-Boring Pressuremeter Tests at Amauligak F-24 in Canadian Arctic 

5.4.1 Introduction 

Jefferies et al. (1987) carried out SBP tests in Canadian Arctic offshore site investigations from 

1982 to 1985. Jefferies (1988) presented his analysis of in-situ horizontal stress and soil 

parameters for the SBP test at Amauligak F-24 using a deterministic curve-fitting method. The 

SBP testing data was re-analyzed by Zheng et al. (2021) with a frequentist statistical inverse 

analysis method. This study adopts the Bayesian inference approach to estimate the mean values 

of in-situ horizontal stress and soil parameters and their statistics from posterior distributions. In 

addition, data from the interpretation of triaxial and SBP tests presented by Jefferies (1988) and 

Zheng et al. (2021) are used as new evidence to update the posterior belief after the Bayesian 

inference.  

5.4.2 Project background 

The Amauligak F-24 site is located 32 m below sea level. The testing pocket is in a massive stiff 

clay unit (D1) approximately 40 m below the mud line. The SBP testing data published by 

(Jefferies, 1988) are utilized for the Bayesian analysis of the SBP testing in clay at this site. The 

soil profile for the SBP test is briefed by Zheng et al. (2021). The information presented by 

Jefferies et al. (1987) provides a priori belief for the following Bayesian analyses of this SBP testing. 
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The geotechnical investigation details can be referred to the relevant documents 

(Jefferies et al., 1987; Jefferies, 1988).  

5.4.3 Numerical simulation of an SBP test 

The SBP testing in clay can be treated as a cylindrical cavity expansion and contraction in Tresca 

material. The closed-form solutions proposed by Jefferies (1988) and a finite-difference model 

are adopted as computational models in Bayesian inference. Due to the high computational 

demand for the MCMC simulation, a simple finite-difference model is proposed. Figure 5.3 

illustrates the axisymmetric finite-difference discretized domain and plane-strain boundary 

conditions. The present study applied FLAC, a commercial two-dimensional explicit finite-

difference program (Itasca, 2011), to model the SBP test in clay. 

The axisymmetric finite-difference model shown in Figure 5.3 is more efficient than the model in 

Figure 2 (Zheng et al., 2021). The axisymmetric model shown in Figure 5.3 is applied in the case 

study to simulate the assumed isotropic in-situ horizontal stress as radial strains presented by 

Jefferies (1988) are calculated from the average radial displacements. The numerical model has 

fixed top and bottom boundaries, and the effects of vertical stress on parameter estimation are 

neglected. 

The Mohr-Coulomb model is selected as the constitutive model for the clay in the SBP test. Under 

undrained conditions, the plastic strength of the clay in Unit D1 is represented by the Tresca 

criterion (e.g., undrained shear strength 𝑆𝑢 and friction angle 𝜑 = 0°). In the contraction stage, 

the effect of unloading on the weakened strength of the clay is evaluated by a softening index 𝛽 

in the numerical model.  
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Figure 5.3 Discretized domain and boundary conditions for axisymmetric finite-difference model. Note: 𝑟0 

= 41 mm. 

Random variables, horizontal stress (𝜎ℎ), shear modulus (𝐺), and undrained shear strength (𝑆𝑢), 

were generated through a sampling algorithm in the Bayesian inference. These random variables 

were used as the input parameters for the analytical and finite-difference FLAC models. The 

maximization of the objective function formulated as Equation 5.1 was solved by coupling the 

analytical or the FLAC model with an optimizer in the MAP or a sampler in the MCMC simulation. 

5.4.4 Bayesian inference analysis of complete curve 

A complete pressuremeter test curve consists of expansion and contraction stages. To 

understand the effects of unloading during the contraction stage upon the parameter estimates 

from Bayesian inference, the complete expansion-contraction SBP testing curve AF85 P06-15 is 

utilized in the following Bayesian analyses. Two computational models, the analytical model 

proposed by Jefferies (1988) and the axisymmetric finite-difference model shown in Figure 5.3, 

are coupled with the BFGS optimizer in the MAP or the slice sampler in the MCMC simulation. 

The PDFs of prior parameter values (𝐺, 𝜎ℎ, Su and 𝛽 ) for the MAP and MCMC simulations are 

defined with previous publications and expert experience, as illustrated in Figure 5.4 (analytical) 

and Figure 5.5 (numerical).   

5.4.4.1 Point estimation with MAP for complete curve 

As discussed above, MAP is equivalent to MLE when the prior follows a uniform distribution. The 

local optimizer BFGS in the MAP analysis of the complete curve is used to find the optimal 

parameter values shown in the Figures. 5.4 and 5.5. By examining the point values predicted by 

the analytical model in Figure 5.4, we can see the estimate of 𝛽 is very close to the upper or lower 

bound. Whereas the numerical model can provide an estimation close to the mean value (see 

Figure 5.5). In addition, 𝛽 = 0.85 proves the unloading effects on the shear strength softening 

during the contraction stage in an SBP test. Usually, the MAP gives a quick point estimation of 

the analytical and numerical models. However, to verify the results of the MAP using the local 

optimizer BFGS, the complete Bayesian analysis with MCMC simulations shall be performed.  The 
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extreme values predicted by the analytical model are owing to its sensitivity to parameter 

changes during the optimization. 

 

Figure 5.4 PDFs and Point estimates from MAP analysis of the complete curve using an analytical solution. 

Note: ~𝑈(𝑎, 𝑏 ) denotes uniform distribution. 
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Figure 5.5 PDFs and Point estimates from MAP analysis of the complete curve using a numerical model. 

Note: ~𝑈(𝑎, 𝑏 ) denotes uniform distribution. 

5.4.4.2 MCMC simulation of the complete curve using the analytical model 

To carry out the complete Bayesian analysis, MCMC simulation is performed using the slice 

sampler coupled with the analytical model (Jefferies, 1988). Figure 5.4 illustrates the prior 

parameter distributions for the MCMC simulations. To account for the strength-softening 

behaviour of clay at the contraction stage, the additional parameter 𝛽  proposed by Jefferies 

(1988) is included in the analytical model. The MCMC sampling is carried out with two MCMC 

chains: each of them consisting of 2000 draw iterations and 1000 tuning samples.  
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Figure 5.6 Posterior statistics from Bayesian analysis of the complete curve using the analytical model. 

Note: ~𝑈(𝑎, 𝑏 ) denotes uniform distribution. 

Figure 5.6  illustrates the posterior distributions, mean and 95% HDI after MCMC simulations. To 

quantitatively diagnose convergence for the MCMC simulation, �̂�  (Gelman and Rubin, 1992; 

Brooks and Gelman, 1998) shall be examined. As can be seen in Figure 5.6, all the �̂� values are 

less than 1.1 so the chains are deemed to be converged (Gelman and Rubin, 1992; Martin, 2016; 

Peng, 2021). The narrow normal distribution curves in Figures. 5.6a to 5.6c indicate significantly 

reduced uncertainties compared to the prior uniform distributions. However, Figure 5.6d shows 

a half-normal posterior distribution curve. In addition, the outliers of the posterior 𝜎ℎ samples 

greater than the 95% HDI fall close to the upper bound of the prior in Figure 5.6d. It indicates 

that new data is needed to update the posterior belief further.  
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5.4.4.3 MCMC simulation of the complete curve using the numerical model 

To maintain the MCMC computation time acceptable (e.g., about 200 hours for a computer 

equipped with a 4.5 GHz CPU), two chains with 1000 draw iterations and 500 tune samples per 

chain are simulated with the slice sampler coupled with the numerical model. The results from 

the MCMC simulations are plotted in Figure 5.7. 

 

Figure 5.7 Posterior statistics from Bayesian analysis of the complete curve using the numerical model: a) 

horizontal stress, b) Shear modulus, c) Shear strength and d) Strength softening index. 

 Note: ~𝑈(𝑎, 𝑏 ) denotes uniform distribution. 

In Figure 5.7, all the �̂�  values for (𝜎ℎ , 𝐺  , 𝑆𝑢  𝛽) are less than 1.1, which indicates the chains 

simulated are converged as well. The posterior distributions in Figure 5.7 are within the prior 

uniform distributions, implying the numerical model narrowed the uncertainty range compared 

to the analytical model. The probability density of the prior in Figure 5.7 is much smaller than 
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that of posteriors. Especially the one in Figure 5.7a is too small to be visible, demonstrating the 

distribution of posterior variables 𝜎ℎ  is highly concentrated around the posterior mean. 

Compared to Figure 5.6d, Figure 5.7d shows approximately normal distributed posterior samples 

for the strength softening index 𝛽 with a much narrower 95% highest density interval (HDI). It 

indicates that a numerical model can make a more accurate prediction than an analytical model 

in Bayesian inference. 

5.4.5 Visualization of model fit and prediction uncertainty 

Although Figures 5.6 and 5.7 illustrate the mean and statistics derived from the Bayesian 

inference method for the SBP test, the predicted and observed data fit should be visually 

examined as a final check. At the same time, the coefficient of determination R2 can show how 

well the computational model replicates the SBP measurement. In addition, the HDI of posterior 

distributions can be visualized with shaded bands in the curve-fitting plots. Figure 5.8 illustrates 

the fit of the observed data to the predicted data, whose uncertainty is characterized by the 95% 

HDI (shaded band), which is analogous to the frequentist 95% CI band presented by 

Zheng et al. (2021).  

Regarding the coefficient of determination R2 in Figure 5.8, the numerical model achieves a 

slightly better fit for the SBP data than the analytical model. In contrast, the prediction band in 

Figure 5.8a shows more significant uncertainty than Figure 5.8b. For the expansion curve 

predicted by the analytical model (Figure 5.8a), the width of the 95% HDI band increases with the 

loading pressure from 1750 kPa to 2100 kPa. Then, the bandwidth decreases from 2100 kPa to 

2300 kPa, implying that there exists much less prediction uncertainty at the late stage of 

expansion predicted with the analytical model (Jefferies, 1988) while using the Bayesian 

approach. 

Besides, Figure 5.8a shows a much wider band at the contraction stage for the complete curve 

using the analytical model due to the addition of the strength softening index 𝛽 in the analytical 

model, which results in higher dimensional posterior distributions. Consequently, the prediction 

uncertainty increases and the 95% HDI bands widen during the contraction stage. 
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Similar patterns can be observed in Figure 5.8b for the numerical model. However, the 95% HDI 

bands are significantly reduced compared to their counterparts in Figure 5.8a, implying the 

numerical model adopted in this study is less sensitive to the variation in input parameters than 

the analytical model proposed by Jefferies (1988). Comparing Figure 5.3 with Figure 2 presented 

by Zheng et al. (2021), the numerical model in this study is simplified owing to the computational 

efficiency of MCMC simulations. To better simulate the boundary conditions for an SBP test, the 

2D plane strain model presented by Zheng et al. (2021) is recommended for this Bayesian 

inference if the computing power can be significantly increased in the future.  

 

Figure 5.8 Fit of observed data to predicted data for test AF85P06-15 (Jefferies 1988): (a) predicted with 

the analytical model using the complete curve (b) predicted with the numerical model using the complete 

curve. 

5.4.6 Posterior distribution updated with new evidence 

According to Bayesian inference theory (Gelman and Rubin, 1992), posterior knowledge from 

MCMC simulations can be continuously updated if new evidence is available. In this study, 

findings presented by other researchers (Jefferies, 1988; Zheng et al., 2021) can be used as new 

evidence to update posterior distributions derived from the MCMC simulations.  

Horizontal stress and soil parameters presented in table B1 (Zheng et al., 2021) and Figures 7, 8, 

10, 11, and 12 (Jefferies, 1988) are used as the new data in Bayesian updating. The new evidence 

is shown in Figure 5.9. 
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Figure 5.9 New evidence for Bayesian updating the posterior distributions 

5.4.6.1 Updated posterior distributions derived from the complete curve using the 

analytical model 

Figure 5.10 demonstrates updated posterior statistics from the MCMC simulations with 

additional data described in the previous section. The new evidence in Figure 5.9 is used to 

update the mean and standard deviation of the posterior distribution (𝜎ℎ, 𝐺, 𝑆𝑢 𝑎𝑛𝑑 𝛽).   
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Figure 5.10 Updated posterior distribution of parameters derived from complete curve using analytical 

model. Note: ~𝑈(𝑎, 𝑏 ) denotes uniform distribution. 

Figure 5.10a to Figure 5.10c illustrate similar patterns, where the mean is shifted, and the change 

of standard deviation is slightly reduced. For in-situ stress and shear strength, the mean value is 

shifted as the new data deviates from the posterior. The change in standard deviation is negligible 

because the range of the new feed of data is similar to the posterior before Bayesian updating. 

In other words, the belief of the mean value might be changed with the new data, but prediction 

uncertainty is almost unchanged. In the Bayesian paradigm, the degree of belief is a function of 

observed data, sampling algorithms, computational models, and new evidence. The conclusion 

is subject to change with new data. Figure 5.10d shows that the mean of the updated posterior 

𝛽 is about 0.72, and 95% HDI is narrower than the posterior. Figure 5.10 shows if the new data 
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deviates from the original posterior, the updated posterior will be subject to considerable 

changes, even switching from one type of distribution to another. 

5.4.6.2 Updated posterior distributions derived from complete curve using numerical 

model 

Updated posterior distributions from the numerical model (Figure 5.11) show similar patterns to 

the ones from the analytical model (Figure 5.10). The mean of normal distribution curves of (𝐺, 

𝜎ℎ , 𝑆𝑢 and 𝛽)  are shifted to the left after being updated with the new evidence, whereas the 

spreads are reduced slightly.  

  

Figure 5.11 Updated posterior distribution of parameters derived from complete curve using numerical 

model. Note: ~U(a, b ) denotes uniform distribution. 

The new data updates the predicted mean, but the prediction uncertainty is almost the same. 

Again, the new evidence shifts the mean of the updated posterior, indicating that our belief is 
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changing with new measurements. With new data in the future, Bayesian updating can be 

conveniently performed and serve as an open system compared to frequentist inference.  

5.5 Summary and Conclusions 

This chapter introduces a Bayesian approach for uncertainty quantification of in-situ stress and 

geotechnical parameters with a pressuremeter test. Uncertainty can be quantified with both 

frequentist and Bayesian approaches. In Chapter 4, the frequentist approach views parameters 

as unknown but fixed, whereas the Bayesian approach in Chapter 5 regards them as random 

variables following prior probability distributions. The standard deviation (SD) in Chapter 4 was 

calculated from the covariance matrix using perturbed methods. In contrast, this chapter 

describes the estimation of the SD using MCMC chains. Chapters 4 and 5 provide two options for 

performing uncertainty quantification for in-situ stress and parameter estimates in 

pressuremeter tests.  

The prior represents external knowledge independent of observations, which may come from 

previous publications, expert experience, and analogous scientific or engineering experiment 

settings. A posteriori belief is obtained by reconciling the prior and the observed data through 

Bayesian inference. The posterior belief can be further updated without starting from scratch if 

new evidence is available and more data are provided in the future.  

Figure 5.10 and Figure 5.11 show that the new data can significantly impact the updated posterior 

distributions. Therefore, the data shown in Figure 5.9, especially the outliers, may be discarded 

by other investigators with personal judgement. However, the influence of outliers on the 

updated posterior distributions would decrease with more new data feeds available. In other 

words, statistical inferences can be made objectively with sufficient testing data. On the other 

hand, expert advice, as well as supplementary laboratory and field tests, are helpful in making a 

decision to accept or discard outliers from new data. 

The log-likelihood function in the Bayesian inference is formulated as an objective function with 

the observed and predicted data. The log-likelihood function can be implemented by following 

the flow chart shown in Figure 5.1. By maximizing the log-likelihood function, posterior statistics 
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can be obtained from the MCMC simulations. Given the characteristics of an open estimation 

system, the Bayesian inference approach would not rely on a single SBP test. One’s belief in the 

in-situ stress and soil parameters can always be updated with other SBP tests in the adjacent 

boreholes, nearby field tests (e.g., CPT, SPT and shear vane test), and laboratory tests. This makes 

the Bayesian approach distinguishable from the frequentist approach, which cannot be updated 

without starting from scratch. Therefore, the adoption of the Bayesian inference methods is 

meaningful in the statistical inference of parameters from in-situ and laboratory tests in 

geotechnical engineering.  

However, because of high computational demands from the MCMC simulation, there is limited 

usage of numerical models with the Bayesian approach. This issue can be solved or partially 

solved with a high-performance multi-CPU computer, multi-threaded software, and cloud 

computing in the future and by designing problem-specific proposal distributions enabling 

efficient sampling of the solution space. 

The Bayesian inference approach can quantify uncertainties from soil variability, measurement 

error, and computational model. An SBP test presented by Jefferies (1988) was re-analyzed using 

our proposed MCMC workflow in this chapter. Among the tested algorithms, the slice sampling 

demonstrates a satisfactory performance with the analytical solution and numerical model. The 

complete testing curve helps to determine the strength softening parameter 𝛽. After MCMC 

simulations, statistics of parameters (𝐺, 𝜎ℎ, 𝑆𝑢 and 𝛽) are summarized from samples drawn from 

the posterior distribution. Among them, the mean and 95% HDI are used to characterize the 

uncertainty from parameter estimation. The model fit is evaluated with the coefficient of 

determination R2, and the corresponding prediction uncertainty is visualized with the 95% HDI 

band. The analytical model is very sensitive to parameter changes during the Bayesian inference 

compared to the numerical model. With the Bayesian approach, this paper introduces a data-

driven and open system with potential applications for the events occurring in a sequence, such 

as a slope stability monitoring system, caprock integrity analysis, and carbon sequestration 
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projects where new data like well test, seismic survey are often provided at different stages of 

projects.  

  



 

 

109 

 

6.0 STATISTICAL INVERSE ANALYSIS OF THE RGP TESTS AT PRIMROSE-WOLF 
LAKE OIL SANDS FIELD3 

6.1 Introduction 

Knowledge of the initial in-situ stress plays a vital role in the geomechanical caprock integrity and 

risk assessment problems experienced in projects of enhanced oil recovery, CO2 sequestration, 

and underground radioactive waste storage. Traditionally, the minimum in-situ stress is 

determined from diagnostic fracture injection tests or mini/micro-frac tests. However, 

measurements of the minimum stress from these tests are deemed inconclusive in the shallow 

oil sands reservoirs. Consequently, the pursuit of alternative in-situ stress testing techniques 

results in the development of a reservoir geomechanical pressuremeter, which can be deployed 

into the borehole using industry-standard wireline technology. In 2016, five borehole intervals in 

Formations Westgate, Joli Fou and Clearwater were tested with the deployment of the RGP tool 

at the Primrose-Wolf Lake oil sands field. Inverse analysis of RGP testing data allows for an 

integrated assessment of the magnitude and orientation of anisotropic in-situ stresses and 

formation rock stiffness and strength. A statistical method is utilized for the inverse analysis of 

the RGP tests, from which the mean value and its statistics can be derived. With the statistical 

method, parameters are first estimated by coupling an analytical, semi-analytical, and numerical 

model with an optimization algorithm. Then, the non-uniqueness issues in parameter estimation 

are addressed by uncertainty quantification using statistical assessment methods. With the mean, 

standard deviations, and confidence intervals, uncertainties from parameter estimation can be 

quantified. In addition, model fit using the statistical method is examined with the coefficient of 

determination, 𝑅2, and prediction uncertainty is visualized with the prediction band. Finally, the 

minimum in-situ horizontal stress measured by the microfrac modular formation dynamics tester 

is used to compare the findings from the statistical inverse analyses of the RGP tests. 

 
 

3 A version of this chapter has been published: Zheng, D., N. Deisman, B. Zhang, and R.J. Chalaturnyk, 2023. 
Statistical inverse analysis of the RGP tests at Primrose-Wolf Lake oil sands field. Proceedings, 
GeoConvention, Calgary, 6 p. 
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6.2 Background 

With the modification of a conventional high-pressure pressuremeter, a reservoir geomechanical 

pressuremeter (RGP) was developed by the reservoir geomechanical research group (RG2 ) at the 

University of Alberta in 2016. As an in-situ testing tool, RGP can be deployed into the downhole 

in the deep geological formation using industry-standard wireline technology. The RGP has seen 

increasing application in reservoir geomechanics over the past five years (RG2 , 2016; Liu et al.,   

2019). With the measurements of cell pressure and radial displacement during the RGP test, the 

magnitude and orientation of anisotropic in-situ horizontal stresses, as well as rock strength and 

stiffness, can be derived. Conventionally, parameters such as in-situ horizontal stress and rock 

properties are estimated with curve-fitting methods (Jefferies, 1988; Ferreira, 1992). However, 

the curve-fitting methods may lead to non-unique solutions (Houlsby, 1989). The issue of non-

unique solutions can be attributed to rock spatial variability, measurement errors, and 

uncertainties in a computational model. To solve the problem of non-uniqueness encountered in 

the analysis of a pressuremeter test, Zheng et al. (2021) proposed a statistical method to quantify 

the uncertainties existing in the parameter estimation for a self-bored pressuremeter (SBP) test. 

Owing to the deep test depth for an RGP test, some factors, such as deployment techniques, 

nitrogen gas supply, and borehole disturbance, make an RGP test distinguished from a 

conventional pressuremeter test. Therefore, the approach proposed by Zheng et al. (2021) for 

an SBP test in clay can be directly applied here for an RGP test in deep geological formations with 

minimal modifications.  

To perform a statistical inverse analysis of the RGP test, a computational model (analytical, semi-

analytical or numerical) needs to be coupled with an optimizer to find the optimal parameters, 

followed by uncertainty quantification with statistical methods. Zheng et al. (2021) may be 

referred to for details. Although the inverse techniques presented by Zheng et al. (2021) are 

utilized in this research, there are some differences from the previous study. For example, the 

modified strain-softening/hardening constitutive model is proposed to simulate the responses of 

clay shale to RGP expansion, hold, loading/unloading, and contraction. In addition, the fluid-

mechanical coupling technique is used to reproduce the hold test stage. Above all, those changes 
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made in this paper from the previous study are targeted to solve the specific problems 

encountered in the RGP tests for deep geological formations in Alberta, Canada.  

Finally, to verify the findings from the statistical inverse analyses, the minimum in-situ horizontal 

stress, measured by the microfrac modular formation dynamics tester (MDT), is compared with 

the predicted horizontal stresses. 

6.3 Methodology 

The goal of an RGP test is to record the changes in the applied pressure and radial displacements 

during the expansion, hold, unloading/reloading, and contraction stages. In addition, inverse 

analysis of an RGP testing curve is performed to estimate the values of in-situ horizontal stress 

and rock properties for geomechanical investigation. With observed data from the RGP test, 

point estimation with deterministic methods is usually first carried out and then followed by 

statistical assessments of estimated parameters. 

At the beginning of point estimation, the prior probability distributions for unknown parameters 

must be assumed. The proposed PDFs, such as uniform, normal, and log-normal distribution, 

represent a priori knowledge of rock properties and in-situ horizontal stress from previous 

publications, expert experience, and personal judgment. This study assumes uniform 

distributions for all unknown parameters. To simulate an RGP test, an analytical solution, a semi-

analytical solution, or a numerical model shall be adopted. To conduct the point estimation, an 

objective function is formulated with the observed and predicted data. In-situ horizontal stress 

and rock properties can be estimated by minimizing the objective function. Statistics of the 

estimated parameters are obtained with the statistical assessment methods presented by Zheng 

et al. (2021). 

6.3.1 Objective function 

To carry out the inverse analysis of RGP tests, an objective function needs to be defined. In this 

study, an unweighted nonlinear least squares (NLLS) error function can be formulated to conduct 

point estimation. The NLLS error function is formulated as the objective function in the search 
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process of optimization algorithms (Ahmed et al., 2015; Papon, 2012; Yin, 2016). The unweighted 

NLLS performance function is expressed as: 

𝑀𝑆𝐸 =
1

𝑛
∑ [𝑌𝑖 − �̂�𝑖(𝑏𝑖)]

2𝑛
𝑖=1   (6.1) 

where MSE denotes the mean squared errors, 𝑌𝑖 denotes observed data, �̂�𝑖 denotes predicted 

data, 𝑛 denotes the number of observed data, and 𝑏𝑖 represents a parameter to be estimated; 

�̂�𝑖(𝑏𝑖) represents a nonlinear function of 𝑏𝑖 for the simulation of an RGP test. In the statistical 

inverse analysis, an optimizer must be coupled with a computational model to find the 

minimization of the MSE as formulated in Equation 6.1. In-situ horizontal stresses and rock 

properties are then estimated through the minimization of Equation 6.1. 

6.3.2 Statistical inverse analysis method 

The objective of the statistical inverse analysis is to estimate the parameters by minimizing the 

objective function and their confidence intervals through statistical assessments. In this process, 

The random variables generated in the optimization process reproduced the potential parameter 

uncertainties. The Jacobian matrix and CIs are derived from the optimization to evaluate the 

variability of the predicted horizontal stress and rock properties. A workflow in Figure 6.1 

demonstrates the statistical inverse approach for analyzing RGP testing data. 

By following the procedures illustrated in Figure 6.1, we can identify the best estimates of 

geotechnical properties, in-situ stress magnitudes and orientations in deep geological formations 

from RGP tests. At the same time, estimation uncertainties can be efficiently quantified with 

mean and statistics after statistical assessments. 

Although the methodologies between the analyses of an RGP and SBP (Jefferies, 1988; Zheng et 

al., 2021) are identical, there are some differences in the selections of optimizers and constitutive 

models as well as modelling approaches owing to differences in tools and downhole testing 

conditions. For example, a global optimization algorithm, the SS, is first used to find the optimal 

parameters at the expansion stage due to high-dimensional inputs. In the following stages, e.g., 

hold tests, unloading-reloading, and contraction stages, the simplex algorithm is used for runtime 

efficiency. Also, a semi-analytical solution (Zhou et al., 2015) is implemented in the 
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computational model to simulate a biaxial in-situ stress field. For numerical modelling, a whole 

instead of a quarter cylindrical cavity geometry is adopted in the finite-difference model.  In 

addition, the modified strain-hardening/softening constitutive model is proposed in this study to 

reproduce the pore pressure and stress responses of clay shale to the loading and unloading 

pressures during the RGP test. 

 

Figure 6.1 Flow chart of statistical inverse analysis of an RGP test 

6.3.3 Modelling approaches for the RGP tests in clay shale 

The methodology for an SBP analysis presented by Zheng et al. (2021) can be used in the inverse 

analyses of RGP tests. However, modelling approaches for the RGP tests shall be further studied 

to accommodate the differences between an SBP and the RGP regarding the test depth, 
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deployment procedure, ground disturbance, and materials (soil and rock) around the borehole 

wall.  

The depths of the RGP tests performed in the Westgate, Joli Fou, and Clearwater formations of 

the Colorado group vary from 260 m to 450 m (RG2, 2016). The vertical stress can be integrated 

with the density log along with other major parameters reported by Schlumberger (2014). 

According to Zadeh (2016), the Westgate formation consists of a wedge of non-calcareous 

mudstone and siltstone, which are categorized as hard soils-soft rocks. Given the clay shale 

permeability measured from laboratory testing (Schlumberger, 2014; Zadeh, 2016) and the 

loading rate of 5 to 10 kPa/s, the RGP tests are performed under partially drained conditions (Liu, 

2015).  Undrained cavity expansion conditions are usually assumed in the derivation of analytical 

and semi-analytical solutions for pressuremeter testing in clay (Gibson and Anderson, 1961; 

Jefferies, 1988; Zhou et al., 2015). Considering only a minimum loss (0.1% to 10%) of excess pore 

pressure (RG2, 2016) during the RGP tests, the undrained condition assumption is still considered 

to be valid.  By examining the RGP testing curves, there is a pressure hold test following the initial 

expansion. However, the analytical and semi-analytical solutions cannot simulate the hold test 

and the following stages. Alternatively, the finite-difference modelling can numerically reproduce 

the complete RGP testing curve by following the same stress paths. Undrained conditions are 

assumed in all stages except for the hold test, which is under drained deformation and simulated 

with fluid-mechanical coupling techniques. 

Through the discussion above, the clay shale around the borehole wall deforms instantaneously 

in response to applied pressure changes in the expansion, unload-reload loops, and contraction 

stages in an RGP test. At the same time, excess pore pressure is generated as a result of 

mechanical deformations.  

In the analytical and semi-analytical solutions, the strength of clay shale around the borehole wall 

is represented by the Tresca model with a cohesion equal to undrained shear strength Su and 

friction angle φ=0°. However, this technique is restricted to a plane-strain problem with a very 

soft matrix, such as soft clay. According to Zadeh (2016), the geological materials in the Colorado 

group are clay shales, described as either hard soils or soft rock. Hence, the Tresca model may 
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not properly represent the constitutive behaviour of clay shales around the borehole wall. In this 

study, the undrained response of materials is simulated in an effective-stress space under a no-

flow condition (Itasca, 2011). Under the no-flow condition, the clay shale is treated as porous 

rock, and the Biot coefficient is applied to account for the stiffness of the material matrix. Drained 

properties, such as bulk modulus 𝐾′, cohesion 𝑐′ and friction angle 𝜑′, are used in the undrained 

analysis. Thus, the modified strain-hardening/softening model (see Section 6.3.5) is used to 

model the clay shale around the borehole wall. Finally, the fluid flow calculation is turned off to 

simulate the undrained response while the clay shale undergoes instantaneous deformation. In 

this case, the fluid around the borehole area reacts to mechanical deformations with changes in 

pore pressure, which can be simulated using the wet simulation method.  

6.3.4 Simulation of the hold tests 

Due to the large system volume and unexpected leakage, the nitrogen gas pressure failed to be 

kept constant during the hold tests (Liu et al., 2019). Therefore, the pressure applied to the 

contour of the borehole varies with time. Regarding Figure 2.8 (Liu, 2015), the loading rate is 

small enough to cause the response of clay shale in the borehole vicinity in a drained condition.  

In such a case, the clay shale consolidates for 10 seconds under each incremental load applied by 

the RGP membrane. Changes in pore pressure generate volumetric changes, and reversely, 

volumetric changes lead to the evolution of pore pressure. A closed-form solution (Detournay 

and Cheng, 1988) is unable to describe the ‘unsuccessful’ hold tests because the hold pressure is 

not constant. Hence, a fully fluid-mechanical coupled numerical analysis needs to be performed 

to simulate the process. 

6.3.5 Modified strain-hardening/softening model 

Based on the Mohr-Coulomb model, Vermeer and de Borst (1984) proposed a strain-

hardening/softening (SS) model,  where geotechnical material properties may harden or soften 

after the onset of plastic yield. Therefore, piecewise-linear functions are used to define 

softening/hardening bahviors of parameters (cohesion, friction, and dilation) in terms of the 

plastic shear strain increment Δ𝑒𝑝𝑠 (Itasca, 2011): 
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Δ𝑒𝑝𝑠 =
1

√2
√(Δ𝑒1

𝑝𝑠 − Δ𝑒𝑚
𝑝𝑠)2 + (Δ𝑒𝑚

𝑝𝑠)2 + (Δ𝑒3
𝑝𝑠 − Δ𝑒𝑚

𝑝𝑠)2 (6.2) 

where Δ𝑒𝑚
𝑝𝑠 =

1

3
(Δ𝑒1

𝑝𝑠 + Δ𝑒3
𝑝𝑠) denotes the volumetric plastic shear strain increment. 

Unlike the Mohr-Coulomb model, where properties are assumed to remain constant, the SS 

model typically defines a piecewise-linear function in the form of a table (Itasca, 2011):  

table “cohesion” 0, 20e6, 0.01, 10e6 

where the table defines two line segments:  

1). ‘20e6’ denotes that the initial cohesion is 20 MPa at 𝑒𝑝𝑠 of 0;  

2). ‘10e6’ represents that the softened cohesion of 10 MPa when 𝑒𝑝𝑠  is 0.01. The cohesion 

remains constant for 𝑒𝑝𝑠 greater than 0.01. 

According to Itasca (2011), the specified values in the Table, e.g., 0.01 and  10e6, need to be 

determined by back-analysis of the post-failure behavior of a specimen in a triaxial or uniaxial 

test. However, determining these specified values with acceptable accuracy can be challenging. 

This is because, in practice, factors like sample scale effects, stress paths, boundary conditions, 

measurement errors, and the oversimplification of back-analysis modelling can lead to 

inconsistencies in the specified values between laboratory and in-situ tests.  

Another problem is that the SS model assumes a constant Young’s modulus, which may not align 

with the findings of modulus degradation in the degraded zone near the borehole wall in RGP 

tests, as reported by Liu et al. (2019).  

Therefore, based on the SS model, the modified strain-hardening/softening model (modified SS) 

is proposed for the simulation of the RGP test in this research. 

6.3.5.1 Formulation of the modified strain-hardening/softening model 

Due to the brittleness of clay shales described as hard soils or soft rocks, damage can be induced 

by micro-cracks in plastic zones around the borehole during expansion and load-unload loops in 

an RGP test. Modulus degradation was discussed in the non-linear analysis of concrete by 

Lubliner et al. (1989). A scalar damage variable 𝑑𝑚 between 0 and 1 is introduced to account for 
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the modulus degradation of concrete. Similarly, the modulus degradation of clay shales can also 

be described in the same way in the modified SS, as shown in Equation 6.3, 

𝐸 =  (1 − 𝑑𝑚)𝐸0 (6.3) 

where 𝐸0 represents the initial Young’s modulus. 

To account for the strength softening or hardening effect in unloading during the contraction 

phase, Jefferies (1988) introduced a simple fraction β of the loading strength: 

𝑆𝑢𝑐 = 𝛽𝑠𝑢𝑆𝑢 (6.4) 

where 𝑆𝑢𝑐 denotes the softened or hardened undrained shear strength.  

To simulate the clay shale behaviors undergoing undrained deformation, unsuccessful hold test 

and unloading/loading in the RGP test, softened/hardened variables are introduced in the 

modified SS model: 

1). Stiffness degradation is implemented in the numerical formulation, shown in Equation 6.3. 

2). Softened/hardened cohesion 𝑐", friction angle 𝜙" and dilation angle  𝜓" are calculated as: 

𝑐" = 𝛽𝑐𝑐"
0 (6.5) 

𝜙" = 𝛽𝜙𝜙"
0
 (6.6) 

𝜓" = 𝛽𝜓𝜓"
0
 (6.7) 

where 𝛽𝑐, 𝛽𝜙 , and 𝛽𝜓 represent softened/hardened variables; 𝑐"
0, 𝜙"

0
 and 𝜓"

0
 represent initial 

undamaged values. 

According to the discussion above, FISH functions corresponding to Equation 6.3 and Equations 

6.5 to 6.7 can be written as: 

zone.prop(zp,'young')= (1.0-d)*E0 

zone.prop(zp,'cohesion')=(beta_c)*Su 

zone.prop(zp,'friction')=(beta_phi)*Phi 

zone.prop(zp,'dilation')=(beta_psi)*Psi 
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where d, beta_c, beta_phi and beta_psi usually range from 0.1 to 1.0 during softening, and 

greater than 1.0 during hardening. E0, Su, Phi and Psi are initial geotechnical properties. Instead 

of determining 𝑒𝑝𝑠 and its corresponding softened/hardened property value in the piecewise-

linear function, only the softened/hardened variables (d, beta_c, beta_phi and beta_psi) are 

needed for each loading increment or several loading increments. The FISH functions above can 

be easily implemented in FLAC2D/3D.  

The difference between the SS and modified SS models lies in the fact that the piecewise-linear 

function in the SS model updates material properties at each timestep. In contrast, the FISH 

function in the modified SS model updates material properties at each loading increment or every 

several loading increments, depending on how we define model properties in the RGP numerical 

model. For example,  the softened undrained shear strength is assumed to be constant 

throughout the entire unloading stage, as suggested by Jefferies (1988). Another distinction is 

that model properties in the SS model are updated in each zone, whereas an average value is 

assigned in the entire degraded zone in the modified SS model (see Figure 6.2). In essence, the 

modified SS model is an approximation of the SS model. Compared to the SS model, the modified 

SS model is much easier to implement without the need for back-analysis of laboratory tests to 

obtain the piecewise function, as is required for the SS model.  

6.3.5.2 Implementation of the modified strain-hardening/softening model 

Liu et al. (2019) discussed the radial and azimuthal anisotropies of borehole stiffness under a 

biaxial horizontal stress field. In this study, the presence of anisotropy is extended to borehole 

shear strength as well. To account for the radial and azimuthal anisotropies of borehole material,  

the modified SS model for RGP tests can be implemented in terms of radial boundary and 

azimuthal zoning: 

1). The red solid line in Figure 6.2 divides the geometry of the numerical model into two radially 

distinct zones: a). the degraded zone; and b). the elastic zone. The ‘zone.state()’ FISH function 

can check whether a zone is in an elastic or plastic state.  With the ‘zone.state()’ FISH function, 

the geometry of a numerical model can be divided into elastic and plastic zones in the radial 

direction. The plastic zone exactly coincides with the degraded zone (see Figure 6.2). All 
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hardening and softening behaviours are assumed to occur within the degraded zone. Outside the 

boundary of the degraded zone, the material properties remain constant at their initial elastic 

values. The FISH function code that divides the degraded and elastic zones is: 

fish define modified_SS_Zoning 

local zp = zone.head 

  loop while zp # null 

    local rad = math.sqrt(zone.pos.x(zp)^2 + zone.pos.z(zp)^2) 

      if rad>0.041 then     

        if zone.state(zp,false)>0 then 

  if zone.isgroup(zp,'Zone A')==true then 

  zone.prop(zp,'young')= (1.0-d)*E0 

zone.prop(zp,'cohesion')=(beta_c)*Su 

zone.prop(zp,'friction')=(beta_phi)*Phi 

zone.prop(zp,'dilation')=(beta_psi)*Psi 

endif 

   endif 

      endif 

zp = zone.next(zp) 

    endloop 

end 

2). To reproduce the anisotropic borehole response under the biaxial horizontal stress field,  the 

plastic zone is discretized into three subzones in the azimuthal directions (e.g., Zone A, Zone B 

and Zone C, separated by blue solid lines), as shown in Figure 6.2. The FISH function code for 

azimuthal subzoning is: 

fish define subzoning 

    local zp = zone.head 

    loop while zp # null 

        local rad = math.sqrt(zone.pos.x(zp)^2 + zone.pos.z(zp)^2) 

        if rad<=2 then  

            fi = math.atan2(zone.pos.z(zp),zone.pos.x(zp))            

            if fi>=0 & fi<=math.pi/6. then 

                zone.group(zp) = 'Zone A'  

            else if fi>math.pi/6. & fi<=math.pi/3. then 

                zone.group(zp) = 'Zone B' 
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            else if fi>math.pi/3. & fi<=math.pi/2. then 

                zone.group(zp) = 'Zone C' 

            endif                

        endif 

        zp = zone.next(zp) 

    endloop                 

end 

 

Figure 6.2 Development of degraded zone for the RGP test simulated with the modified SS model 

Figure 6.2 illustrates the development of the plastic zone after an incremental loading during the 

RGP test in the Westgate formation. The boundary of the degraded zone is defined by the elastic-

plastic (EP) boundary. Outside of the EP boundary, the material stiffness and shear strength are 

unchanged or only slightly perturbed, given the stress and boundary conditions. In contrast, the 

property within each subzone is represented with a localized mean value for each incremental 

loading/unloading. The EP boundary is supposed to change under different incremental 

loading/unloading conditions. The task of inverse analysis is to find the optimal 
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softening/hardening variables for each subzone, which can be evaluated with the coupling of an 

optimizer and the modified SS model. The number of subzones can be divided azimuthally as 

many as needed. For example, there are three subzones for the Westgate Formation and six 

subzones for the Clearwater Formation. This method does not require defining the degraded 

properties in terms of Δ𝑒𝑝𝑠. Therefore, the anisotropy of clay shale properties can be evaluated 

discretely with a simply constitutive model. 

However, sudden changes in the material properties may cause disturbances in the model 

response when using the modified SS model. Sometimes, the numerical simulation fails to 

converge due to physical instability.  Therefore, the choice of softened variables should be made 

carefully, where the lower and upper bounds of the parameter must be reasonable. Another 

problem is that only the mean property value is evaluated in each subzone using the modified SS 

model.  If the property distribution in each subzone is of interest, the piecewise function can be 

used to replace the code line ‘zone. prop () = ’ in the FISH function ‘modified_SS_Zoning’ shown 

in Section 6.3.5.1.  

The RGP tests were conducted in an oversized pre-drilled borehole, leading to a full relief of in-

situ horizontal stress on the formation of the borehole (Mair and Wood, 1987). As a result, it is 

challenging to fully compensate for the disturbance caused by borehole drilling and the 

installation of the RGP tool through inverse analysis. Therefore, uncertainty quantification 

becomes indispensable to the statistical inverse analysis of the RGP test. 

6.4 Statistical analysis of RGP tests in Primrose-Wolf Lake SAGD Project 

The methodology discussed in Chapter 4 and the corrected RGP testing data in Chapter 3 is 

adopted in this case study to carry out point estimation and statistical assessments. The in-situ 

RGP tests were performed in 2016 at the Primrose-Wolf Lake oil sands field in Alberta, Canada.  

In total, five test intervals in the Westgate, Joli Fou and Clearwater formations are studied.  The 

objective of this case study is to apply the approaches proposed in Chapters 2 to 5 in the RGP 

tests in deep geological formations.  
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6.4.1 Project background 

The in-situ test borehole is located at the Primrose south field (legal location: UWI 104/05-36-

067-04W4) in the area of thermal oil sands facilities in Cold Lake, Alberta. Figure 6.3 illustrates 

the approximate location of the observation well B12, in which the RGP tests were performed in 

2016 by RG2 , the University of Alberta. 

 

 

Figure 6.3 Location of the RGP tests (UWI 104/05-36-067-04W4, adopted from Google Map 2022) 

6.4.2 RGP field test information 

In total, five test intervals in the Formations Westgate, Joli Fou and Clearwater were 

accomplished. The test depths vary approximately from 259 m to 450 m, which involves the 

Colorado and Manville geological groups. In the Colorado group, three RGP test intervals are in 

the Westgate and Joli Fou formations. The other two test pockets at deeper depths are in the 

Clearwater formation of the Manville group. The RGP test intervals are illustrated in Figure 6.4. 
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Data retrieved from B0T2 are discarded because the test is deemed unsuccessful (RG2, 2016). 

The details of the stratigraphic profile of groups and formations can be referred to in the report 

presented by Advanced Geotechnology (2001) and Liu et al. (2019). 

 

Figure 6.4 RGP tests at the Primrose-Wolf Lake oil sands field in 2016 (note: ∅ denotes the diameter of the 

borehole) 

6.4.3 Numerical simulation of an RGP test 

Besides the analytical and the semi-analytical solutions (Jefferies, 1988; Zhou et al., 2015), a 

finite-difference two-dimensional numerical model can simulate stress and strain responses to 

applied pressure increments during the RGP test. Due to the length-to-diameter ratio L/D = 6.2, 

the effect of finite pressuremeter length is neglected. Therefore, the RGP test in clay shale can 
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be treated as a cylindrical cavity expansion in a homogeneous, isotropic medium. Figure 6.5 

illustrates the two-dimensional plane-strain discretized domain and boundary conditions. To fit 

the differential radial displacements measured by six strain arms, a whole geometry, rather than 

a quarter of the borehole cavity plane, is modelled. The numerical model illustrated in Figure 6.5 

is adopted in the statistical inverse analysis of the RGP test.  

 

Figure 6.5 Two-dimensional finite-difference grid for the statistical inverse analysis of the RGP test 

Random variables, e.g., horizontal stress, shear modulus, and shear strength, are generated 

through an optimizer during the statistical analysis. These random variables are input parameters 

for the analytical, semi-analytical solutions, and finite-difference FLAC model. The objective 

function formulated as Equation 6.1 is solved by coupling the analytical, semi-analytical solutions, 

and the FLAC model with an optimizer in the inverse analyses. 
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6.4.4 Statistical inverse analysis of an RGP test 

The method discussed by Zheng et al. (2021) is adopted in the statistical inverse analysis of the 

RGP tests at the Primrose-Wolf Lake oil sands field. Results are presented separately regarding 

the computational model (analytical, semi-analytical solutions or numerical model) implemented 

in the analysis. Owing to undrained assumptions, both analytical and semi-analytical solutions 

are incapable of simulating the hold test. Therefore, only the expansion part of the testing curve 

can be simulated with analytical and semi-analytical solutions. At the same time, the numerical 

model can be used in both the expansion part and the whole complete curve, including expansion, 

hold, unload-reload loops, and contraction parts. 

6.4.4.1 Point estimation for expansion curve using analytical solutions assuming 

isotropic expansion 

A complete RGP test curve comprises expansion, hold, unload-reload loops, and contraction 

stages. To avoid the complexity of analyzing the complete curve, the expansion part can be 

separated from the complete curve for the point estimation while using the analytical solution. 

According to Figure 6.4, RGP tests were conducted in the Formations Westgate, Joli Fou, and 

Clearwater (black shale and grey shale) of the Colorado Group, respectively. The PDFs of initial 

parameter values (𝐸, 𝜎0, Su) for the point estimation are defined with previous publications, 

expert experience, and personal judgements (Advanced Geotechnology, 2001; Bell and Babcock, 

1986; RG2, 2016; Schlumberger 2014) as illustrated in Figure 6.6 to Figure 6.8, where PDFs follow 

uniform distributions. 
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Figure 6.6 Point estimates with expansion curve using analytical and semi-analytical solutions in Westgate 

Following the flow chart in Figure 6.1, a global optimization algorithm, the subset simulation (SS) 

is implemented to minimize the objective function (Equation 6.1). With the number of samples 

𝑁𝑠= 1000, intermediate conditional failure probability  𝑃(𝐹𝑖 ) = 0.1, and the maximum number 

of simulation levels 𝑁𝑙  = 10, the average in-situ horizontal stress and rock properties can be 

estimated with the expansion curve using the analytical solution proposed by Jefferies (1988) 

(Figure 6.6 to Figure 6.9).  Mean squared error (MSE) is used to quantify the goodness of fit to 

the measured data. The best fit for the tested four formations is the Westgate Formation, 

corresponding to the minimum value of MSE ( 1.1 × 10−6 ). The reason why the Westgate 

formation has the smallest MSE is owing to its shallowest test depth corresponding to the least 

measurement uncertainty during the RGP test. 
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Figure 6.7 Point estimates with expansion curve using analytical and semi-analytical solutions in Joli Fou 
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Figure 6.8 Point estimates with expansion curve using analytical and semi-analytical solutions in 

Clearwater black shale  
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Figure 6.9 Point estimates with expansion curve using analytical and semi-analytical solutions in 

Clearwater grey shale  

6.4.4.2  Point estimation for expansion curve using a semi-analytical solution 

To account for the differential radial displacements measured by six strain arms, an anisotropic 

horizontal stress state should be considered in a computational model.  The semi-analytical 

solution proposed by Zhou et al. (2015) can delineate the anisotropic behaviour of cavity 

expansion under biaxial boundary stress conditions. Compared to the analytical solution, the 

semi-analytical solution has four parameters, e.g., (𝐸, 𝜎ℎ, 𝑆𝑢) and the horizontal stress ratio 𝐾0 =

𝜎𝐻 𝜎ℎ⁄ , to be estimated. Initial parameters are assumed to be the random variables following the 

uniform distributions shown in Figure 6.6 to Figure 6.9. The point estimates of (𝐸, 𝜎ℎ, 𝑆𝑢, 𝐾0) can 

be derived from the inverse analysis of RGP tests using the semi-analytical solution coupled with 

the SS optimizer.  With the number of samples 𝑁𝑠 = 1000, intermediate conditional failure 
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probability  𝑃(𝐹𝑖) = 0.1, and the maximum number of simulation levels 𝑁𝑙 = 10, the results from 

the inverse analysis are also presented in Figure 6.6 to Figure 6.9. 

Although the semi-analytical solution takes 10 to 20 times longer than the analytical solution to 

accomplish one iteration of the function call, it is still much more efficient than a numerical model 

in an inverse analysis. A single run for the analytical solution takes approximately 0.01 seconds, 

whereas the semi-analytical solution takes 10 seconds, and the numerical model takes more than 

60 seconds, depending on the loading increments. 

According to Figure 6.6 to Figure 6.9, prediction with the semi-analytical solution generally has a 

greater MSE value than the analytical solution because the biaxial in-situ stress field is considered 

in the semi-analytical solution. Still, the model fit for the Westgate formation is the best, followed 

by the Clearwater black shale, Joli Fou, and Clearwater grey shale formations. The goodness of 

model fit depends on the choices of the computational model, the optimization algorithm, and 

the quality of the measured data. Noisy data would cause deviations in model fit owing to the 

uncertainties propagated from rock variability, measurement errors, and modelling. 

6.4.4.3  Point estimation for complete curve using the numerical model 

A complete RGP test curve comprises expansion, hold, unload-reload loops and contraction parts. 

To examine the effects of the hold, unload-reload loops and contraction parts on parameter 

estimation, the complete curve is analyzed in this section. Besides the analytical and semi-

analytical solutions, a numerical model shown in Figure 6.5 is used in the point estimates for the 

expansion curve.  The effective stress approach discussed in Section 6.3.3 is performed. The 

modified SS model (Section 6.3.5) reproduces the stress, strain, and pore pressure responses of 

clay shale in elastic and degraded zones to applied pressures. The lower and upper bounds of 

drained properties are illustrated in Figure 6.10 to Figure 6.13 are to constrain the random 

variables in the parameter optimization. 

A hybrid of the simplex and the global optimization algorithm SS is implemented in the point 

estimation for the complete curve using the numerical model. Other than the isotropic in-situ 

stress state, the biaxial in-situ horizontal stress is assumed here. In such a case, the anisotropy of 



 

 

131 

 

in-situ horizontal stress and rock properties are responsible for differential radial displacements 

measured by individual strain arms. Then, the minimum and maximum horizontal stresses can 

be estimated with arm displacements at multiple azimuthal directions by fitting an ellipse. At the 

same time, the orientation of the maximum horizontal stress can be determined by fitting the 

elliptical shape.  

The implementation of the modified SS model could estimate rock properties in both elastic and 

degraded zones, as shown in Figure 6.2. The estimated in-situ horizontal stresses and clay shale 

drained properties for the elastic zone (far-field) are illustrated in Figure 6.10 to Figure 6.13. It is 

shown that the estimated values are considerably different between the assumptions of in-situ 

stress state (e.g., isotropic and biaxial). The SS optimizer is applied in the expansion phase, and 

the simplex algorithm is applied in the following stages, including hold test, unload-reload loops, 

and contraction. To simulate a biaxial horizontal stress field, an elliptical borehole perimeter is 

assumed. Considering the stress regime in the Western Canadian sedimentary basin (Bell and 

Babcock, 1986), the deformed elliptical borehole perimeter is a reasonable assumption 

(Zhou et al., 2015) during an RGP test in the deep clay shale formation in Alberta, Canada. In 

addition, Figure 6.10 to Figure 6.13 display larger MSE values in the Clearwater formations than 

in the Westgate and Joli Fou formations, indicating prediction uncertainties increase with the 

RGP test depth.  

In Figure 6.10 to Figure 6.13, the azimuths of horizontal stress 𝜎𝐻 approximately agree with the 

orientation NE-SW reported by Bell and Babcock (1986), except for Joli Fou and Clearwater grey 

shale formations. The reason is probably due to the excessive disturbance of the pre-bored 

borehole during drilling and tool installation (Liu et al., 2019). There are no solutions yet to 

compensate for the disturbance fully. The future generation of the self-boring RGP tool can 

significantly reduce the influences and, therefore, the prediction of the azimuth of 𝜎𝐻 is expected 

to be more consistent with the reported orientation. Figure 6.14 shows the point estimates of 

hydraulic conductivities for the clay shale in the four test intervals. As there is no measured data 

for excess pore pressure, the inversed hydraulic conductivities may not represent the true values. 
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Still, hydraulic conductivity could be predicted more precisely if pore pressure is measured in an 

RGP test.  

 



 

 

133 

 

 

Figure 6.10 Point estimates for the elastic zone with the complete curve using the numerical model in 

Westgate 
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Figure 6.11 Point estimates for the elastic zone with the complete curve using the numerical model in Joli 

Fou  
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Figure 6.12 Point estimates for the elastic zone with the complete curve using the numerical model in 
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Clearwater black shale  
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Figure 6.13 Point estimates for the elastic zone with the complete curve using the numerical model in 

Clearwater grey shale 
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Figure 6.14 PDFs of initial hydraulic conductivity 𝑘 and point estimates with the complete curve using the 

numerical model: (a) Westgate, (b) Joli Fou, (c) Clearwater black shale, and (d) Clearwater grey shale 
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Even with only the expansion part and hold test of the RGP testing curve, the inverse analysis can 

still satisfactorily predict in-situ parameters in the elastic zone, which are identical to the point 

estimates shown in Figure 6.9 to Figure 6.14. It indicates that parameters in the elastic zone 

(Figure 6.2) are almost constant or only slightly perturbed throughout the whole RGP test. 

However, the inverse analysis of the complete curve helps to understand the constitutive 

behaviours of clay shale in degraded zones in response to pressure changes, whose results can 

be referred to in Appendix C. 

6.4.4.4  Statistical assessments of the RGP test 

Although the minimization of an objective function Equation 6.1 can be used to find the point 

estimates illustrated in Figures 6.6 to 6.13, the uniqueness of a solution in point estimation is not 

well addressed (Houlsby, 1989; Zheng et al., 2021). Uncertainties in an RGP test may come from 

disturbances caused by borehole drilling and tool deployment. Not to mention the errors that 

resulted from tool calibration, data process and computational modelling. In this section, the 

statistical assessment method proposed by Zheng et al. (2021) is applied to the uncertainty 

quantification of point estimation for an RGP test. Results show its capability in quantifying 

uncertainties for the statistical inverse analysis of the RGP test. 

Statistical assessments were carried out for the four RGP tests conducted in the Westgate, Joli 

Fou, and Clearwater formations. Table 6.1 summarizes the mean values and 95% CIs of 

(𝐸′, 𝜎ℎ, 𝜎𝐻 , 𝑐′, φ′) derived from the expansion curve using the numerical model. 

Mean values in Table 6.1 almost coincide with point estimates illustrated in Figure 6.10 to Figure 

6.13, implicating the uniqueness of point estimation using the numerical model is satisfactory. 

However, the mean values in Table 6.1 do not always agree with point estimates. In other words, 

there are other combinations of datasets to fit the RGP testing curve using the point estimation 

approaches discussed above. Alternatively, CIs predicted with the statistical assessment method 

can quantify the uncertainty of the derived parameters and reduce the solution's non-uniqueness. 

Thus, the target is to derive narrow CIs rather than "true values" from the parameter point 

estimation. The predicted CIs of (𝐸′, 𝜎ℎ, 𝜎𝐻, 𝑐′, φ′) can be used to quantify the uncertainty in the 

inverse analysis of an RGP test. 
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Table 6.1 Statistical assessments of parameters derived from expansion curve using the numerical model 

Formation Predicted values 
E’ 

(GPa) 

𝝈𝒉 

(MPa) 

𝝈𝑯 

(MPa) 

𝑐′ 

(MPa) 

𝜑′ 

Westgate mean 4.55 5.44 6.42 2.73 19.9 

95% CI (4.49, 4.62) (5.25, 5.64) (6.01, 6.90) (1.99, 3.47) (16.1, 23.8) 

Joli Fou mean 3.47 6.48 8.21 2.0 15.1 

95% CI (3.18, 3.77) (6.40, 6.55) (8.08, 8.35) (1.60, 2.40) (12.2, 17.9) 

Clearwater 

 black shale 

mean 3.10 8.68 13.2 1.86 20.4 

95% CI (2.97, 3.23) (8.05, 9.31) (12.1, 14.2) (1.68, 2.03) (18.9, 22.0) 

Clearwater 

 grey shale 

mean 2.39 7.73 13.4 1.49 19.7 

95% CI (2.06, 2.71) (6.89, 8.56) (11.9, 15.0) (1.22, 1.76) (17.1, 22.3) 

The complete expansion-contraction RGP testing curve is utilized in the following statistical 

assessment to study the effects of the unload-reload loops and the contraction part on the 

derived parameters. Table 6.2 summarizes the mean values and 95% CIs of (𝐸′, 𝜎ℎ, 𝜎𝐻 , 𝑐′, φ′) of 

the parameters derived from the complete curve using the numerical model. 

Table 6.2 Statistical assessments of parameters derived from complete curve using the numerical model 

Formation Predicted values 
E’ 

(GPa) 

𝝈𝒉 

(MPa) 

𝝈𝑯 

(MPa) 

𝑐′ 

(MPa) 
𝜑′ 

Westgate 
mean 4.56 5.44 6.44 2.74 20.0 

95% CI (4.55, 4.56) (5.41, 5.47) (6.38, 6.51) (2.68, 2.80) (19.6, 20.3) 

Joli Fou 
mean 3.47 6.49 8.25 2.01 15.1 

95% CI (3.41, 3.53) (6.47, 6.50) (8.23, 8.28) (1.99, 2.04) (14.8, 15.3) 

Clearwater 

Black Shale 

mean 3.10 8.68 13.2 1.86 20.4 

95% CI (3.06, 3.14) (8.56, 8.79) (13.0, 13.3) (1.78, 1.93) (19.7, 21.2) 

Clearwater 

Grey Shale 

mean 2.39 7.73 13.4 1.49 19.7 

95% CI (2.37, 2.41) (7.70, 7.76) (13.4, 13.5) (1.47, 1.51) (19.4, 20.0) 
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Mean values in Table 6.2 are approximately identical to Table 6.1, but 95% CIs are much narrower. 

This can be explained by the fact that more data points are included in the inverse analysis and 

mathematically reduce prediction uncertainties. However, due to the complexity of the RGP 

testing curves, data points in unload-reload loops may not be able to reduce the estimation 

uncertainties identified in Table 6.2, which is explained in detail in Section 6.4.4.5. 

6.4.4.5  Evaluation of the model fit with the coefficient of determination 

Although the statistics listed in Table 6.1 and Table 6.2 provide quantitative assessments of the 

inversed parameters, a visual comparison of predicted and observed curves is still meaningful in 

evaluating the model fit. The prediction bands calculated with the 95% CIs are plotted in Figure 

6.15 and Figure 6.16. The coefficient of determination (CoD), R2 is also calculated. 

The numerical modelling can reproduce the test curves with satisfactory accuracy (R2 > 0.97). 

Prediction uncertainties quantified in Table 6.1 can be illustrated in Figure 6.15 with prediction 

bands. The change of the prediction band represents the variability of uncertainty, which is the 

narrower the band is, the less the uncertainty is, and vice versa. 

Figure 6.15 illustrates the 95% CI prediction band for the expansion curve at the azimuthal 

orientation of 45º, representing those at any other direction. There is a very narrow prediction 

band at the early stage of the expansion curve, as shown in Figure 6.15a, showing that the 

uncertainty of predicted data is minimal at the beginning of the expansion and then gradually 

increases to the maximum at the end of the expansion for the RGP test in the Westgate formation. 

A similar trend wasn’t observed in other formations, implying that the RGP test in Westgate is 

more reliable than the others.  
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Note: (a) Westgate, (b) Joli Fou, (c) Clearwater black shale, and (d) Clearwater grey shale. 

Figure 6.15 Fit of observed to predicted data using the numerical modelling for the expansion curve at 45º 

Figure 6.16 illustrates the 95% CI prediction bands of the complete curves. Interestingly, the 

prediction bands are relatively narrow at the expansion stage, especially in Figure 6.16a 

(Westgate) and Figure 6.16d (Clearwater grey shale).  It can be explained that the observed data 

at the expansion stage are more reliable than those at the following stages. Figure 6.16 shows 

several unload-reload loops and hold tests between the expansion curve and the contraction 

curve. As Liu et al. (2019) pointed out, these hold tests were deemed unsuccessful due to 

nitrogen gas leakage and the large system volume. Still, more uncertainties could be generated 

in the following unload-reload loops because of the unstable supply of gas. As a result, it is 

suggested that an RGP test in deep formation should be conducted as simply as possible by 

including expansion and contraction parts only if the horizontal stress is most concerned.  
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Note: (a) Westgate, (b) Joli Fou, (c) Clearwater black shale, and (d) Clearwater grey shale. 

Figure 6.16 Fit of observed to predicted data using the numerical modelling for the complete curve at 45º 

In general, narrower prediction bands can be observed from the expansion part in Figure 6.16 

than in Figure 6.15. As more data points are involved in the statistical assessments, and 

mathematically, the uncertainties in the whole curve fitting are dramatically reduced. However, 

data points in unload-reload loops cannot reduce the prediction uncertainties. Consequently, 

prediction bands at the expansion stage in Figure 6.16 are mathematically narrow only rather 

than physically more certain. The prediction bands in Figure 6.15 are better than those in Figure 

6.16 to represent the true prediction intervals. The CIs should refer to Table 6.1 rather than Table 

6.2.  

If there are no unload-reload loops and hold tests in Figure 6.16, the contraction curve should be 

more reliable than the expansion part, as the effect of installation disturbance becomes minimal 

at this stage (Ferreira, 1992; Houlsby and Withers, 1988). 
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6.4.4.6  Profile of horizontal stress derived from statistical assessment method 

For an RGP test, the in-situ horizontal stress draws the most attention as the rock stiffness and 

strength can be evaluated by other types of in-situ tests. Schlumberger performed microfrac tests 

(CNRL, 2011) in Wells 11-11 and 11-12 at Primrose East, near this RGP testing site. The microfrac 

modular formation dynamics tester (MDT) was used to measure the minimum in-situ horizontal 

stress σh at various depths in the Colorado Group shales. The values of σh estimated with the 

MDT are plotted in Figure 6.17, together with the horizontal stress data points listed in Table 6.1. 

 

Figure 6.17 Profile of in-situ stresses derived from statistical assessment methods using the numerical 

model 

The mean values of (σh, σH) measure the magnitudes of the horizontal stresses at the test interval 

in each formation. Figure 6.17 illustrates the profile of the mean values of horizontal stresses 

derived from inverse analyses using numerical modelling. Through the discussion above, 
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uncertainties from the horizontal stresses are evaluated using the expansion curve. By 

conducting the proposed statistical assessment on the expansion curve, the variabilities of (σh, 

σH) are illustrated with the SD bars, which represent the 95% CIs of the predicted (σh, σH). By 

examining the length of SD bars, Joli Fou has the least uncertainty than other formations in terms 

of the derived horizontal stresses. Clearwater formations account for the most significant 

uncertainty in the evaluation of horizontal stresses. It can be easily seen that both the measured 

(MDT) and predicted data points lie within the ranges defined by the SD bars, showing that the 

proposed statistical assessment method can constrain the horizontal stresses estimated by the 

MDT and RGP tools.  

6.5 Summary and Conclusions 

This section explains using the inverse analysis of the RGP field test in the Primrose site through 

the analytical solution, semi-analytical solution, and numerical modelling coupled with the SS and 

Simplex optimization methods. To estimate in-situ parameter values, random variables are 

generated and passed into a computational model. After thousands of iterations, the minimum 

value of the objective function can be determined, which corresponds to the best in-situ 

parameter estimates. A case study presents the results of the inverse analysis of RGP tests at the 

Primrose-Wolf Lake oil sands field near Bonnyville, Alberta.   

Due to the assumption and limitations, only the expansion part of an RGP test curve was 

simulated in the inverse analysis using analytical and semi-analytical solutions. To fit the 

complete testing curve, a fluid-mechanical coupling technique using the effective stress approach 

in the finite-difference models was adopted in the numerical model. Drained material properties 

instead of undrained ones were used in numerical modelling.  

The analytical solution (Jefferies, 1988) is runtime efficient but unsuitable for simulating a 

complete RGP testing curve, including hold and unload-reload loops. Furthermore, the analytical 

solution can not simulate the in-situ stress anisotropy. Nevertheless, the semi-analytical solution 

can satisfactorily predict the minimum horizontal stress and probably overestimate the 
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maximum horizontal stress. The semi-analytical solution is preferred to a numerical model in an 

inverse analysis regarding the computing cost.  

Consolidation in a pressure hold test following the expansion stage cannot be solved with 

Jefferies’ and Zhou’s solutions because of their undrained assumption. The pressure variation 

during the ‘unsuccessful’ hold tests at the Primrose-Wolf Lake site prevented it from being solved 

analytically. Only a fluid-mechanical coupling technique can reproduce the process numerically. 

Without pore pressure measurement, the hydraulic conductivity derived from inverse analysis 

cannot be calibrated. Therefore, the k values listed in Figure 6.14 might not be predicted 

accurately.  

The modified SS model has advantages over the SS model while simulating the borehole wall 

responses to applied pressure. The material strain-hardening/softening behaviours can be 

quantified with hardened/softened variables, which can simplify the inverse analysis of the RGP 

test.  

Due to the existence of non-unique solutions, uncertainties from the RGP test and the inverse 

analysis should be quantified with statistics (mean and 95% CIs) using the proposed statistical 

assessment method. The predicted CIs constrain the variability of clay shale properties and 

horizontal stresses. Thus, the non-uniqueness of the solution can be partially reduced if it cannot 

be eliminated. Alternatively, the prediction bands in Figures 6.15 and 6.16 illustrate the 

variabilities of predicted arm displacements in response to the pressure increment in an RGP test. 

The width of the prediction band is the function of 95% CIs in Table 6.1 and Table 6.2.  Due to the 

unsuccessful hold tests, there are more uncertainties generated in unload-reload loops. Data 

points measured in unload-reload loops cannot physically reduce the solution's non-uniqueness. 

In such cases, statistics from the expansion curve (Table 6.1) are preferred to the ones from the 

complete curve (Table 6.2). 

Curve-fittings in upper Formations (Westgate and Joli Fou) are better than in lower Formations 

(Clearwater) due to the quality of measured data points. With the increase in testing depth, more 

uncertainties are expected to be encountered in the RGP test. Due to nitrogen gas leakage and 
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the large system volume in the RGP tests in deep formations, more uncertainties were 

encountered in the hold tests and the following unload-reload loops.  In such a case, data points 

measured in unload-reload loops cannot physically reduce the non-uniqueness of the solution. 

Therefore, the expansion curve predicts a more reasonable mean and narrower 95% CIs in the 

inverse analysis than the complete curve does. It is advised to conduct a simple test comprising 

the expansion and contraction parts only if the horizontal stress is paid interest.  

The statistical method described above can be extended to other engineering inverse analysis 

problems, such as pile load tests, landslide monitoring, and deep excavation open pits. 

In addition to the statistical inverse methods applied in this chapter, a Bayesian inverse analysis 

of the RGP tests at the Primrose – Wolf Lake oil sands field is discussed in Chapter 7. 
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7.0 BAYESIAN INVERSE ANALYSIS OF THE RGP TESTS AT PRIMROSE-WOLF LAKE 
OIL SANDS FIELD 

A reservoir geomechanical pressuremeter (RGP) was developed by the reservoir geomechanical 

research group (RG2 ) at the University of Alberta in 2016. As an in-situ testing tool, RGP was 

deployed into the downhole in three geological formations (Westgate, Joli Fou, and Clearwater) 

using industry-standard wireline technology (RG2, 2016; Liu et al., 2019). Bayesian inverse 

analysis of the RGP test comprises two parts: i) point estimation by the maximum a posteriori 

(MAP) method, and ii) statistical inference using Markov Chain Monte Carlo (MCMC) simulation. 

With the cell pressure and radial displacements measured during the RGP tests, in-situ horizontal 

stress and rock properties can be derived from the point estimation using the MAP method. 

However, Like deterministic methods, MAP may find non-unique solutions (Houlsby, 1989) due 

to a local optimizer used. To solve the problem of non-uniqueness encountered in the MAP 

analysis of the RGP test, Bayesian inference is introduced to estimate parameter mean and their 

statistics. Under the Bayesian paradigm, the highest density interval (HDI) can be inferred from 

Markov chain samples. To perform the Bayesian inference, a computational model (analytical) 

needs to be coupled with a sampling algorithm in MCMC simulations.  The mean and its statistics 

can be summarized with samples drawn from MCMC chains that distinguish from the frequentist 

perturbation method. After MCMC simulations, posterior belief from Bayesian inference can be 

continuously updated if new evidence is available, which makes the Bayesian inference superior 

to the traditional frequentist statistical methods. 

Finally, the goodness of curve fit is evaluated with the coefficient of determination R2. in addition, 

the highest density interval (HDI) of posterior distributions can also be obtained from the MCMC 

chains. 

7.1.1 Methodology 

The goal of an RGP test is to record the changes in the applied pressure and radial displacements 

during the expansion, contraction, hold, and loading/reloading stages. In addition, an RGP testing 

curve analysis is performed to estimate the values of in-situ horizontal stress and rock properties 

for geomechanical investigation. With observed data from the RGP test, point estimation with 
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the MAP method is usually first carried out and then followed by MCMC analysis. 

At the beginning of the point estimation, the prior probability distribution for unknown 

parameters must be assumed. The proposed PDFs, such as uniform, normal, and log-normal 

distribution, represent a priori knowledge of rock properties and in-situ horizontal stress from 

previous publications, expert experience, and personal judgment. This study assumes uniform 

distributions for all unknown parameters. To simulate an RGP test, an analytical (closed-form) 

solution shall be adopted. To conduct the point estimation, an objective function shall be 

formulated with the observed and predicted data. In-situ horizontal stress and rock properties 

can be estimated by minimizing or maximizing the objective function.  

Statistics of the estimated parameters can be performed with the frequentist assessment 

methods presented by Zheng et al. (2021). Alternatively, Bayesian inference analysis can find the 

mean and its statistics by summarizing the posterior samples after MCMC simulations. As a result, 

a sampling algorithm, such as the Metropolis-Hastings (MH), No-U-Turn (NUTS) and slice sampler, 

needs to be coupled with a computational model in the MCMC simulation. The convergence of 

an MCMC chain often depends on the efficiency of a computational model and the selection of a 

sampler. 

7.1.2 Objective function 

To carry out the inverse analysis of RGP tests, an objective function needs to be defined. In the 

Bayesian method, a log-likelihood function can be formulated as the objective function in the 

searching process of a local optimization algorithm using MAP or the iterative convergence of 

MCMC chains. Given a normal distribution, the log-likelihood function ℓ can be defined as in 

Equation 7.1 (Taboga, 2017): 

ℓ(𝜇(𝜃), 𝜎2;  𝑦) = −
𝑛

2
𝑙𝑛(2𝜋) −

𝑛

2
𝑙𝑛(𝜎2) −

1

2𝜎2
∑ (𝑦𝑗 − 𝜇(𝜃))

2𝑛
𝑗=1   (7.1) 

where 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛 ) denotes observed data; 𝜇 indicates predicted data; 𝜃  denotes 

unknown parameters, and 𝜎  represents the standard deviation. 𝑛  represents the number of 

observed data from a pressuremeter test. The parameters 𝜃 can be estimated by maximizing the 

specific log-likelihood function ℓ̂ over the parameter space Θ: 
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𝜃 = arg max
𝜃∈Θ

ℓ̂(𝜇(𝜃), 𝜎2; 𝑦) (7.2) 

Similarly, log-likelihood functions for other distributions like Poisson, exponential, and student t 

distribution can be derived. The log-likelihood function like Equations 7.1 and 7.2 makes the MAP 

and MCMC analysis easier by implementing an analytical or numerical model in the Bayesian 

inference framework. 

7.1.3 Workflow of the Bayesian inverse analysis 

For the Bayesian methods, the dataset that maximizes the likelihood function with the BFGS 

optimizer in the MAP corresponds to the optimal point estimates; In MCMC sampling, a sampling 

algorithm, such as the NUTS and slice sampler, generates random variables defined by the prior 

PDFs. Those random variables are passed into the objective function formulated as a likelihood 

function. After many iterations, the convergence of MCMC chains could be evaluated with 

diagnostics criterion. Once the chain is converged, its elements can be accepted as samples from 

the target posterior distribution. As a result, posterior statistics can be summarized from those 

samples, from which the mean and 95% HDIs are statistically obtained. The workflow for the 

proposed Bayesian inference of the pressuremeter test is shown in Figure 7.1.  
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Figure 7.1 Flow chart of Bayesian Statistical inference of an RGP test. 

The framework of the Bayesian inference includes, but is not limited to, the following steps: (i) a 

priori knowledge of initial values and uncertainty quantification of input variables, (ii) selection 

of a computational model and coupling with an MCMC sampling algorithm, (iii) establishing a 

likelihood function as the objective function, (iv) identification of the optimal value (MAP) or the 

mean and its statistics from posterior distributions (MCMC) by maximizing the log-likelihood 

function, and (v) convergence diagnostics. 

7.1.4 Bayesian model building of RGP field tests 

Project background and RGP test information can be referred to in Sections 6.1 and 6.2. Because 

of the extremely high computational cost, it is impractical to adopt a numerical model in the 

Bayesian analysis. Therefore, only the analytical solution (Jefferies, 1988) is used in the Bayesian 

analysis. Random variables, e.g., horizontal stress, shear modulus, and shear strength, are 

generated through a sampling algorithm in the Bayesian inference. These random variables were 
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used as the input parameters for the analytical solution. The objective function formulated as 

Equation 7.1 is solved by coupling the analytical solution in Bayesian analyses. 

7.1.5 Results from Bayesian inverse analysis of RGP field tests 

The maximum a posterior (MAP) and the Bayesian inference with MCMC simulations can be 

performed for the RGP tests in the Primrose-Wolf oil sands project. Due to the limitation of the 

analytical solution, only the expansion part of an RGP test curve is simulated with the analytical 

solution.  

7.1.5.1 Point estimation with MAP using the analytical solution 

MAP is a point estimator in a Bayesian setting. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

optimization algorithm can find the maximum of the log-likelihood function ℓ  defined in 

Equation  7.1. Compared to the Bayesian inference with MCMC simulations, the MAP estimator 

is fast and efficient. However, only point values can be estimated without associated statistics.  

MAP is equivalent to maximum likelihood estimation (MLE), while prior follows a uniform 

distribution. However, as a local optimizer, BFGS in the MAP analysis can only find the local 

optimal parameter values, which are shown in Figure 7.2 to Figure 7.4.  

By examining Figure 7.2 to Figure 7.4, the MAP method can make essentially identical predictions 

to the results in Section 6.4.4 using the SS optimizer. However, although the MAP method is 

efficient, a point estimate can be biased in local regions. For example, MAP does not entirely 

coincide with the SS optimizer in terms of the parameter estimates for the Clearwater grey shale 

formation. Alternatively, the Bayesian inference with MCMC simulations can ensure the global 

minimum by sampling data from the posterior distribution. 
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Figure 7.2 PDFs of initial Young’s modulus 𝐸 and point estimates with MAP using the analytical solution: 

(a) Westgate (b) Joli Fou (c) Clearwater black shale and (d) Clearwater grey shale. 
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Figure 7.3 PDFs of initial horizontal stress 𝜎0 and point estimates with MAP using the analytical solution: 

(a) Westgate (b) Joli Fou (c) Clearwater black shale and (d) Clearwater grey shale 
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Figure 7.4 PDFs of initial shear strength 𝑆𝑢 and point estimates with MAP using the analytical solution: (a) 

Westgate, (b) Joli Fou, (c) Clearwater black shale and (d) Clearwater grey shale 

7.1.5.2 Bayesian inference with MCMC using the analytical solution 

Besides the point estimation with the MAP method, a complete Bayesian inference can obtain 

mean and posterior statistics through MCMC simulations. The No-U-Turn (NUTS) sampling 

algorithm is selected for the MCMC simulations using the analytical solution (Jefferies, 1988) for 

the expansion parts of RGP tests.  
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Figure 7.5 Probability density distributions of prior and posterior Young’s modulus E estimated with MCMC 

using the analytical solution: (a) Westgate, (b) Joli Fou, (c) Clearwater black shale, and (d) Clearwater gray 

shale. Note: ~𝑈(𝑎, 𝑏 ) denotes uniform distribution; ~𝑁(𝜇, 𝜎2 ) denotes normal distribution. 

Based on the gradient of the log posterior density, NUTS can achieve faster convergence than 

other samplers on high-dimensional problems. On the other side, NUTS may become slow in 

leapfrog if a scaling matrix parameter is not set as a reasonable value. Therefore, proper initial 

values can accelerate sampling in NUTS. Two chains, with 1000 draw iterations and 1000 tune 

samples for each chain, are simulated in the MCMC using the NUTS sampler coupled with the 

analytical solution (Jefferies 1988). Figure 7.5 to Figure 7.7 illustrate the histograms of posterior 

parameter samples, the PDFs of prior and posterior, and their statistics after Bayesian inference 

using MCMC simulation.  
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Figure 7.6 Probability density distributions of prior and posterior in-situ horizontal stress  𝜎ℎ0 estimated 

with MCMC using the analytical solution: (a) Westgate, (b) Joli Fou, (c) Clearwater black shale and (d) 

Clearwater grey shale.  

The mean values of posterior samples coincide with the point estimates by the SS optimizer and 

MAP method, except for the Clearwater grey shale formation owing to the existence of non-

unique solutions. The Bayesian inference approach provides not only the mean values but also 

their statistics summarized from the posterior samples after MCMC simulation. Therefore, 

uncertainty from the parameter estimation can be quantified with 95% HDI, which can partially 

solve the non-uniqueness problem while using a deterministic method. To quantitively diagnose 

convergence for MCMC simulation using a sampler, �̂�  (Gelman and Rubin, 1992; Brooks and 

Gelman, 1998) shall be examined. In Figure 7.5 to Figure 7.7, all the �̂� values are less than 1.1, 

which is deemed convergent for an MCMC simulation (Martin, 2016). 
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Figure 7.7 Probability density distributions of prior and posterior shear strength 𝑆𝑢 estimated with MCMC 

using the analytical solution: (a) Westgate, (b) Joli Fou, (c) Clearwater black shale and (d) Clearwater grey 

shale.  

7.1.5.3 Visualization of model fit and prediction uncertainty 

Although Figure 7.5 to Figure 7.7 illustrate the mean and statistics derived from the Bayesian 

inference method for the RGP tests, the match between the predicted and observed data should 

be visually examined as a final check. The goodness of curve fit shall be evaluated with the 

coefficient of determination R2. The highest density interval (HDI) of posterior distributions can 

also be obtained from the MCMC chains. Figure 7.8 displays the curve fit between the observed 

data and the predicted data. The 95% HDI (shaded bands in Figure 7.8), which is equivalent to 

the frequentist 95% CI, provides the lower and upper bounds of the predicted data. 
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The coefficients of determination R2 in Figure 7.8 are all greater than 0.99, indicating the 

analytical solution achieves an excellent fit for the RGP data. 
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Figure 7.8 Fit of observed data to predicted data using analytical solution after MCMC simulations: (a) 
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Westgate, (b) Joli Fou, (c) Clearwater black shale and (d) Clearwater grey shale. 

As the width of the 95% HDI bands in Figure 7.8 is narrow, the prediction uncertainty of the 

analytical solution can be neglected. Therefore, the analytical solution (Jefferies, 1988) applies to 

the Bayesian inference of RGP tests. 

7.1.5.4 Posterior distribution updated with other testing data 

According to Gelman and Rubin (1992), posterior belief from Bayesian inference can be 

continuously updated if new evidence is available, such as laboratory testing data. In this study, 

only triaxial compression tests on the specimens retrieved from the Westgate formation 

(Schlumberger, 2014) can be used as new evidence to update the posterior distributions of 

Young’s modulus 𝐸 . Because of the lack of testing data, posterior distributions of in-situ 

horizontal stress and shear strength cannot be updated. Also, new evidence from the Joli Fou 

and Clearwater formations is either insufficient or not provided. Therefore, posterior 

distributions for such parameters in the two geological formations are not updated either. The 

values of Young’s modulus 𝐸 presented in table R3 (Schlumberger, 2014) are used as the new 

evidence in Bayesian updating. The histogram of the triaxial testing data is shown in Figure 7.9. 
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Figure 7.9 New evidence for Bayesian updating the posterior distributions of Young’s modulus 𝐸 

Figure 7.10 shows the posterior distribution and updated belief of Young’s modulus 𝐸 using the 

analytical solution.  The mean and the lower and upper bounds of the updated 95% HDI are also 

illustrated.  

 

Figure 7.10 Updated posterior distribution and histogram of Young’s modulus using the new evidence 

The new evidence (triaxial data) updates the mean by moving the posterior distribution 𝐸 to the 

left in Figure 7.10 with a slightly higher probability density. Also, the updated normal curve has a 

narrower spread, implicating fewer uncertainties in the updated belief. 

If the new evidence includes in-situ horizontal stress and shear strength, the updates for these 

parameters can also be performed in the same way. In the Bayesian paradigm, the degree of 

belief is a function of observed data, sampling algorithms, computational models, and new 

evidence. The conclusion is subject to change with new data. Again, the new evidence shifts the 
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mean of the updated posterior, indicating that our belief is changing with new measurements. 

With new data in the future, Bayesian updating can be conveniently performed and serve as an 

open system compared to frequentist inference.  

7.2 Summary and Conclusions 

As an alternative to the deterministic and frequentist methods, Bayesian inference methods are 

adopted in the inverse analysis of RGP tests in the clay shale formations. The log-likelihood 

function in the Bayesian inference is formulated as an objective function with random variables 

following prior distributions, the observed and predicted data. The log-likelihood function can be 

implemented by following the flow chart shown in Figure 7.1. Point estimates can be obtained 

from MAP or mean value from the MCMC simulations by maximising the log-likelihood function. 

Point estimation and statistical assessments under the Bayesian paradigm are carried out using 

the MAP and MCMC simulations with the analytical solution (Jefferies, 1988). Parameter 

estimates from MAP with the analytical solution approximately agree with those from inverse 

analyses using the frequentist methods in Section 6.4.4.  

MAP is a fast and straightforward approach for obtaining point estimates. However, as the BFGS 

optimization algorithm in the MAP method is a local optimizer, the estimated parameters may 

be trapped in local minimums while in high dimensional posteriors. MCMC simulations using 

NUTS coupled with the analytical solution achieve the best performance. 

As the Bayesian inference approach is an open estimation system. One’s belief on the in-situ 

horizontal stress and rock properties is not fixed. Therefore, the Bayesian belief is subjected to 

changes upon new data available in the future. New evidence from field and laboratory tests 

makes the Bayesian approach distinguishable from the frequentist approach, whose belief 

cannot be updated without starting from scratch. 

Compared to the conventional pressuremeter interpretation methods, the proposed statistical 

inverse analysis can quantify the potential uncertainty and errors from ground properties and in-

situ horizontal stress.  
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The statistical assessments of the optimal parameters can evaluate the statistics defined by the 

SD and CIs. Also, the model fitness can be further evaluated with the coefficients of 

determination R2 and prediction intervals. The uncertainties propagated from rock properties 

and computational modelling can be quantified statistically. 

The Bayesian approach is an alternative method to conduct the inverse analysis of the RGP test. 

The MAP method can quickly find point estimates by maximizing the log-likelihood function ℓ 

defined in Equation 7.1. In comparison, the complete Bayesian inference can summarize mean 

parameter values and their statistics from the posterior samples after MCMC simulations. 

Bayesian inference is an open system, which is deemed an advantage over the frequentist 

statistical method. Posterior distributions can be continuously updated with new data (evidence) 

without starting from scratch. Therefore, parameter estimates using the present testing data are 

subject to changes with new observations from other laboratory and in-situ tests in the future. 

Due to the limitation of computing power, only the analytical solution in tandem with NUTS 

achieves satisfactory outcomes from the Bayesian inferences. More powerful computers and 

cloud computing techniques are expected to improve the performance of Bayesian inference 

using a numerical model in the foreseeable future. 

The Bayesian approach discussed in this paper has potential applications for other geotechnical 

projects, such as pile load tests, slope stability assessment, caprock integrity evaluation, and the 

mining industry, where data are continuously updated throughout a project's life span.  
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8.0 CONCLUSIONS AND RECOMMENDATION FOR FUTURE RESEARCH 

8.1 Conclusions 

1. Analysis of raw data can be done using deterministic or statistical methods. The 

deterministic method converts electrical signals into arm displacements, which are 

subsequently corrected to account for system compliance and membrane stiffness. 

However, this method doesn't adequately handle variability in RGP test curves, which 

results from measurement errors. In contrast, the statistical method, such as Bayesian 

linear regression, quantifies these uncertainties effectively. This model establishes the 

lower and upper bounds of arm displacements with a 95% confidence range, thereby 

quantifying uncertainty due to measurement errors. The study shows that the proposed 

Bayesian linear regression model can robustly address both random and systematic 

errors. 

2. The proposed statistical inverse analysis approach outperforms conventional 

pressuremeter interpretation methods by quantifying potential uncertainty and errors 

from ground properties and in-situ horizontal stress. The use of multiple optimizers to 

minimize the objective function reduces the degree of non-uniqueness. The complete 

curve, as opposed to just the expansion curve, predicts a more reasonable mean and 

narrower 95% confidence intervals in the inverse analysis. Non-unique solutions can be 

addressed using statistical assessment methods that evaluate statistics defined by 

standard deviation and confidence intervals. Additionally, model fitness can be further 

evaluated using R2 and prediction intervals. The study demonstrates that uncertainties 

propagated from ground properties and computational modelling can be statistically 

quantified using the proposed methodology. 

3. The Bayesian inference approach, using MCMC simulations, quantifies uncertainties 

arising from soil variability, measurement errors, and computational models. It 

integrates an analytical solution and a numerical model into the log-likelihood function 

to optimize the log-posterior. Among the tested algorithms, the slice sampling algorithm 

performs satisfactorily. Unlike frequentist methods, this approach directly summarizes 



 

 

166 

 

parameter statistics from posterior distribution samples, using the mean and 95% HDI 

to characterize uncertainty in parameter estimation. The model fit uncertainty can be 

visualized with a 95% HDI band. This Bayesian approach proves especially beneficial in 

projects involving time-series data. 

4. The proposed statistical inverse analysis surpasses traditional deterministic methods by 

quantifying potential uncertainties and errors from deep ground properties and 

anisotropic in-situ horizontal stresses using RGP tests. The modified strain-

hardening/softening model, which can be easily implemented with FISH functions in 

FLAC/FLAC3D, effectively characterizes rock softening/hardening behaviors in degraded 

zones. The Bayesian approach provides an alternative for RGP test inverse analysis. The 

MAP method can quickly find point estimates by maximizing the log-likelihood function. 

In contrast, complete Bayesian inference summarizes mean parameter values and their 

statistics from posterior samples after MCMC simulations. As an open system, Bayesian 

inference can continuously update posterior distributions with new data, offering an 

advantage over the frequentist method. 

8.2 Limitations of research 

This research's uncertainty quantification of the RGP testing curve has several limitations: 

1. Homogeneous geology: the research assumes a homogeneous geological setting, which may 

not accurately represent the natural variability and complexity of geological formations. 

2. Isotropy consideration: the study does not account for anisotropy, which refers to the 

directional dependence of rock properties. This could lead to oversimplified models that do not 

capture the true behavior of the subsurface materials. 

3. Fracture development and rock heterogeneities: the study does not consider the development 

of fractures and the heterogeneity of rocks in deep testing pockets, which can significantly impact 

the results. 
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4. Downhole temperatures and nearby production operations: the effects of varying downhole 

temperatures and nearby SAGD processes are not included, which could influence the testing 

outcomes. 

5. Validation of the modified SS model: more laboratory tests are needed to validate the modified 

SS model. 

6. Bayesian inference limitations: 

• Works well with a simplified numerical model or an analytical solution only. High 

computational resources are required for a complex numerical model. 

• MCMC simulation is time-consuming and practical only for a simple testing curve like the 

SBP test in Chapter 5 or the expansion part of RGP tests in Chapter 7. 

• The quality of new data (evidence) was not taken into consideration in Bayesian updating 

in Chapter 7. 

8.3 Future work 

Future uncertainty quantification of the RGP testing curve will consider additional factors, such 

as fractures and rock heterogeneities. The proposed modified SS model requires further 

mathematical deduction and validation with more field and laboratory data. Integration with 

other finite element analysis software like TEMP/W in GeoStudio, on platforms like Matlab or 

Python, will expand the applicability of the proposed uncertainty quantification approaches to 

various research fields, including thermal analysis. 

In addition to Bayesian inference methods, future studies could apply other machine learning 

methods, such as deep neural networks. 

In conclusion, the methodology and techniques used in this research can be further developed 

and easily implemented for other engineering uncertainty quantification practices and research. 

• Improvements to the hardware such as digital twins, sonic device, would help to acquire 

additional test data to constrain estimates of in-situ stress. 
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• This research was conducted with pre-bored pressuremeter procedures, but significant 

improvements in in-situ stress estimates would result from the development of a self-

boring RGP. 

• A new Bayesian updating method with new data quality assessment should be developed.  

8.4 Contributions 

• Addressed the non-uniqueness issues in pressuremeter parameter estimation using a 

frequentist statistical assessment method. 

• Applied Bayesian inference methods in parameter estimation with pressuremeter testing 

data, implementing an analytical or numerical model in the Bayesian framework. The 

advantage of the proposed Bayesian approach over frequentist statistical methods for in-

situ horizontal stress studies is its ability to continuously update beliefs with new data. 

• Proposed a modified SS model for simulating the constitutive behavior of borehole walls 

under pressure, eliminating the need for a user-defined piecewise-linear table. 

• Constructed a Python and Matlab platform using both frequentist and Bayesian modelling 

techniques to carry out parameter estimation and quantify the uncertainties of the 

estimated parameters utilzing the data from RGP tests in deep underground projects.  
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Appendix A Verification of the modified strain-hardening /softening model 
through THE interpretation of triaxial testing data 

In Chapter 6, the modified strain-hardening/softening (SS) model was utilized in numerical 

modelling to quantify the clay shale constitutive response to applied pressure in the RGP test. 

Although the goodness of fit to the RGP testing curve was satisfied, the validity of the modified 

SS model still needs to be verified with the data from other types of measurements, such as the 

triaxial compression test. Schlumberger (2014) reported triaxial compression tests on sample 

cores retrieved from the Westgate Formation. Therefore, data measured from the triaxial 

compression test on sample WG1-4(H) were chosen to validate the proposed modified SS model.  

A.1 Summary of the triaxial compression test on WG1-4(H) 

The sample core WG1-4(H) was collected at a depth of 287.03 m, with a dimension of 19 mm × 

38 mm (D×L) and the horizontal sample orientation. The standard consolidated-drained triaxial 

test was conducted at a controlled axial strain rate of 5 × 10−6 in/in/s.  The results of the triaxial 

test on sample WG1-4(H) are summarized in Table A.1. 

Table A.1 Summary of the triaxial compression test on WG1-4(H) 

Sample 
Bulk density 

(g/cm3) 

σ’3 

(MPa) 

σ'1 

(MPa) 

c’ 

 (MPa) 

𝜑′ 

(°) 

 𝜈𝟏
′  𝜈𝟐

′  

E’ 

(GPa) 

WG 1-4(H)  2.09 14 46 6 20  0.35 0.39 4.26 

Note: 𝑣1
′  is the Poisson’s ratio normal to the bedding plane; 𝑣2

′  is the Poisson’s ratio parallel to 
the bedding plane. 

Figure A.1 shows the specimen WG1-4(H) testing curve during the consolidated-drained triaxial 

test. The triaxial testing curve demonstrates a typical strain-softening behaviour after peak 

strength with a residual strength of 20 MPa. The workflow to fit the stress-strain curve 

numerically with a proper constitutive model is discussed below. As in previous chapters, the 

inverse analysis of the triaxial test can find the best-fit curve and derive the mechanical properties 

of specimen WG1-4(H).  
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Figure A.1 Specimen WG1-4(H) triaxial consolidated-drained testing curve 

A.2 Numerical modelling of the triaxial compression test on WG1-4(H) 

For the numerical simulation, the drained triaxial compression test on sample core WG1-4(H) is 

modelled with a FLAC3D (Itasca, 2011) cylindrical model shown in Figure A.2 . The dimensions of 

the cylinder are 19 mm in diameter and 38 mm in height, respectively.   

 

Figure A.2 FLAC3D model simulating the WG1-4(H) triaxial consolidated-drained test 
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The grid is fixed at the bottom of the cylinder. A uniform velocity boundary condition with a 

magnitude of 1 × 10−6 m/sec is applied in the y-direction at the top of the cylinder to induce 

axial compression. A constant lateral confining pressure 𝜎3
′ = 14  MPa is imposed on the 

perimeter of the cylinder. As the triaxial cell is vented to the atmosphere, no extra pore pressure 

should be generated during the drained triaxial test. 

A.3 Curve fitting of the triaxial compression test on WG1-4(H) 

To fit the testing curve shown in Figure A.1 , the numerical tests using the Mohr-Coulomb model, 

the SS model and the modified SS model are performed in the inverse analyses of the triaxial test. 

However, there are some differences from the previous inverse analyses of RGP tests. First, as 

the mechanical properties of the specimen are already presented in the report (Schlumberger, 

2014), it seems redundant to estimate all the parameter values again through inverse analysis. 

However, the anisotropy of Poisson’s ratio (e.g., 𝜈1
′  𝑎𝑛𝑑 𝜈2

′  in Table A.1) cannot be simulated with 

the Mohr-Coulomb model in FLAC3D. Therefore, an equivalent isotropic Poisson’s ratio must be 

determined using the inverse analysis approach. Second, the softening ratios of the stiffness and 

strength for the degraded material in the SS model and the modified SS model need to be 

estimated using inverse techniques. Third, due to the velocity boundary condition applied on the 

top of the cylinder, the objective function defined as in Equation 6.1 shall be modified accordingly.  

A.3.1 The objective function for the triaxial compression test 

In general, SSE, as defined in Equation 6.1, works well in the case of ordinate-based curve 

matching problems. However, while encountering the test curves simulated with uniform 

velocity boundary conditions in a triaxial test, the measured and predicted data points often do 

not coincide horizontally, which causes some data points to be ignored. Witowski (2011) 

introduced the partial curve mapping method to compute the area between measured and 

predicted curves. The objective function defined in Equation 6.1 should be reformulated by 

mapping the measured data points onto the predicted curve. The unweighted nonlinear least 

squares (NLLS) objective function can be modified as: 

𝑀𝑆𝐸 =
1

𝑛𝑡
∑ [𝑃𝑖 − �̂�𝑖(𝑏𝑖)]

2𝑛𝑡
𝑖=1  (A.1) 
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where 𝑃𝑖 denotes the measured pressure after mapping, �̂�𝑖 denotes the predicted pressure and 

𝑏𝑗  represents a parameter to be estimated, such as (𝐸′, 𝑐′, 𝜑′). �̂�𝑖(𝑏𝑖) represents a nonlinear 

function of 𝑏𝑗 for the simulation of a triaxial test. 𝐸′ represents the drained Young’s modulus, 𝑐′ 

indicates the drained cohesion and 𝜑′ denotes the drained friction angle. 𝑛𝑡  represents the total 

loading increments in the numerical simulation. The displacement variables in Equation 6.1 are 

substituted with the pressure variables in Equation A.1 owing to the displacement-controlled 

numerical simulation for the triaxial test. This study implements the SS optimiser to minimise the 

MSE formulated in Equation A.1. 

A.3.2 Inverse analysis of the triaxial test using the Mohr-Coulomb model 

With the geometry and boundary conditions described above, the Mohr-Coulomb model is 

coupled with the SS optimizer in the inverse analysis of the triaxial test. Thus, the isotropic 

Poisson’s ratio is the only parameter to be estimated. Given the normal and parallel Poisson’s 

ratios listed in Table A.1, the lower and upper bound of the equivalent isotropic Poisson’s ratio 

𝑣′ is between 0.1 and 0.4 in the inverse analysis.  

With the number of samples 𝑁𝑠 = 250, intermediate conditional failure probability  𝑃(𝐹𝑖 ) = 0.1, 

and the maximum number of simulation levels 𝑁𝑙 = 5, the value of 𝑣′ is estimated to be 0.21, 

with an MSE of 16.1. Figure A.3  illustrates the predicted and measured curves for WG1-4(H).  

Since the Mohr-Coulomb model is an ideal elastic-plastic model, the softening behaviour after 

peak strength can not be simulated. Therefore, the simulated stress-displacement curve shows a 

plateau after the peak.   
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Figure A.3 Predicted and measured curves for WG1-4(H) using the Mohr-Coulomb model 

A.3.3 Inverse analysis of the triaxial test using strain-hardening/softening model 

To simulate the softening phase after the peak (Figure A.3), the strain—hardening/softening (SS) 

model (Itasca, 2011) is implemented in the inverse analysis of the triaxial test. According to the 

manual (Itasca, 2011), the material hardening/softening properties in the SS model are user-

defined piecewise-linear functions of plastic strain increments 𝛥𝑒𝑝𝑠. However, as discussed in 

Section 6.3.5, the hardening and softening variables (Equations 6.4 to 6.7) are difficult to be 

defined with a trial-and-error method.   

The material properties hardened or softened with 𝛥𝑒𝑝𝑠  are cohesion, friction angle, dilation 

angle and tensile strength (Itasca, 2011).  Due to the potential development of fissures in the clay 

shale specimen during the triaxial test, cohesion is most susceptible to change. Thus, the user-

defined piecewise-linear table is defined below. 
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Table A.2 Piecewise-linear strain hardening/softening property in WG1-4(H) 

𝛥𝒆𝒑𝒔 0 0.05 0.1 1 

Cohesion 

(MPa) 
6 𝟔 × 𝜷𝒄𝟏 𝟔 × 𝜷𝒄𝟐 𝟔 × 𝜷𝒄𝟐 

Note: 𝛽
𝑐1

 and 𝛽
𝑐2

 are the coefficients of hardened or softened property 

The lower and upper bounds of 𝛽𝑐1, 𝛽𝑐2 and 𝑣′ for the inverse analysis are defined in Table A.3. 

Table A.3 Lower and upper bounds for the inverse analysis of triaxial test WG1-4(H) using the SS model 

Parameter 𝒗′ 𝛽
𝒄𝟏

 𝛽
𝒄𝟐

 

Lower bound 0.1 0.75 0.2 

Upper bound 0.4 1.25 0.4 

With the number of samples 𝑁𝑠 = 250, intermediate conditional failure probability  𝑃(𝐹𝑖 ) = 0.1, 

and the maximum number of simulation levels 𝑁𝑙 = 10, the inverse analysis was performed 

using the SS optimizer coupled with the SS model. Table A.4 lists the estimated values with an 

MSE of 3.92. Figure A.4  illustrates the predicted and measured curves for WG1-4(H).   

Table A.4 Results from the inverse analysis of triaxial test WG1-4(H) using the SS model 

Parameter 𝒗′ 𝛽
𝒄𝟏

 𝛽
𝒄𝟐

 MSE 

Estimated 

value 
0.14 0.90 0.30 3.92 

The Poisson’s ratio 𝑣′ estimated from the SS model equals 0.14, compared to 0.21 from the 

Mohr-Coulomb model. The non-uniqueness of the solution is caused by the deterministic 

approach used in the inverse analysis. Statistical assessments can be used to address this problem. 
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Figure A.4 Predicted and measured curves for WG1-4(H) using the SS model 

The curve fit in Figure A.4  is substantially improved by visual comparison than Figure A.3 . Also, 

the MSE values (e.g., 3.92 vs. 16.1) can confirm the improvement of model fit by the SS model 

than the Mohr-Coulomb model. However, because the accuracy of hardened/softened 

properties defined by 𝛥𝑒𝑝𝑠 is highly dependent upon the user-defined piecewise-linear functions, 

the non-unique piecewise-linear functions defined in the SS model may cause more problems if 

not properly defined. 

A.3.4 Inverse analysis of the triaxial test using the modified strain-hardening/softening 
model 

The modified SS model is explained in Section 6.3.5 in Chapter 6. For a modified SS model, user-

defined piecewise-linear functions are not required. Instead, the material strain-

hardening/softening behaviours in the modified SS model are described with strain-

hardened/softened variables, which are functions of plastic indicators (e.g., 0, 1 and 2 in FLAC3D) 

rather than plastic strain increments 𝛥𝑒𝑝𝑠. With the implementation of plastic indicators in a 
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numerical model, the difficulties in defining the hardened/softened variables are overcome.  In 

essence, the zones in the modified SS model are discretized with elastic and plastic areas, which 

can approximate the material hardening/softening properties defined by 𝛥𝑒𝑝𝑠.  Therefore, the 

modified SS model can significantly simplify the inverse analysis without losing accuracy.  

As mentioned above, only cohesion is most susceptible to softening with the increase of axial 

strain for specimen WG1-4(H). The degraded variable of cohesion defined by Equation 6.5 is  𝛽𝑐. 

The lower and upper bounds of 𝑣′ and 𝛽𝑐  for the inverse analysis are defined in Table A.5. 

Table A.5 Lower and upper bounds for the inverse analysis of triaxial test WG1-4(H) using the modified SS 

model 

Parameter 𝒗′ 𝛽
𝒄
 

Lower bound 0.1 0.1 

Upper bound 0.4 0.5 

With the number of samples 𝑁𝑠 = 250, intermediate conditional failure probability  𝑃(𝐹𝑖 ) = 0.1, 

and the maximum number of simulation levels 𝑁𝑙 = 10, the inverse analysis was performed 

using the SS optimizer coupled with the modified SS model. Table A.6 lists the estimated values 

after the inverse analysis. 

Table A.6 Results from the inverse analysis of triaxial test WG1-4(H) using the modified SS model 

Parameter 𝒗′ 𝛽
𝒄
 MSE 

Estimated 

value 
0.13 0.36 3.23 

The degraded variable 𝛽𝑐  is 0.36, which means the cohesion of this specimen has been softened 

more than 60% after the peak. Figure A.5  illustrates the predicted and measured curves for WG1-

4(H), indicating a better model fit than Figure A.4 .  Besides visual comparisons, the MSE of 3.2 

can also justify the best curve fit by the modified SS model in the inverse analyses.  
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Figure A.5 Predicted and measured curves for WG1-4(H) using the modified SS model 

The Poisson’s ratio 𝑣′ estimated from the modified SS model equals 0.13, the SS model 0.14, and 

the Mohr-Coulomb model 0.21, respectively. Non-uniqueness cannot be eliminated with the 

deterministic optimization approach used in the inverse analysis. Statistical assessments are 

expected to address this non-uniqueness problem. However, the objective of Appendix A is to 

verify the advantages of the modified SS model over the other two constitutive models in the 

model fit for a triaxial test. Uncertainty quantification of the inverse analysis for the triaxial test 

shall be further studied in the future.  

A.4 Summary and Conclusion 

The SS optimizer performs inverse analyses of the triaxial test on specimen WG1-4(H). The 

Poisson’s ratio 𝑣′ and the softening variables are derived from the inverse analyses. Due to the 

velocity boundary conditions, the measured and predicted data points often do not coincide 

horizontally. Then, the curve mapping method is used to compare the measured curve with the 

predicted curves. As a result, the objective function (Equation A.1) is formulated with the MSE in 
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terms of pressure. Through the inverse analyses, the advantages of the modified SS model over 

the SS model and the Mohr-Coulomb model in the curve fitting are verified with the values of 

MSE and visual comparisons. In addition, the modified SS model is validated by its convenience 

and applicability. 
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Appendix B Optimization algorithms for inverse analysis and interpretation of 
SBP tests using conventional deterministic method 

B.1 Optimization algorithms for inverse analysis 

To solve the objective functions, the Gauss–Newton algorithm (GNA) can be used as a modified 

Newton’s method for determining the minimum of a function. Here, the LMA is used to find the 

local minimum for the objective function (Levenberg, 1944; Morrison, 1960; Marquardt, 1963): 

(𝐽𝑇𝐽 + 𝐼𝜆)𝛿 = 𝐽𝑇[𝑦 − 𝑓(𝑏)]  (B.1) 

where 𝐼 represents the identity matrix. The LMA can converge to a local minimum (Conn, 2000) 

but not necessarily the global minimum. With the Jacobian matrix calculated in the iterative 

procedure, statistical assessment upon the identified parameter values can be efficiently 

conducted. 

Rather than searching along a line in one direction in the LMA, the trust-region algorithm (TRA) 

explores the vicinity of the trust region. TRAs are a class of iterative methods for nonlinear 

optimization problems which have been extensively studied for decades (Yuan, 2015; 

Conn, 2000). To minimize the objective function, 𝑓(𝑥), 𝑥 ∈ 𝑋, a trial step can be computed by 

solving the following trust-region subproblem: 

min
𝑑

[𝑞(𝑑), 𝑑 ∈ 𝑁] (B.2) 

where 𝑞 represents an approximation of the objective function f(x), 𝑑 indicates a trial step, and 

𝑁 denotes a region of trust. 

Usually, 𝑞  is approximated by a quadratic function, and the trust-region neighbourhood is 

generally spherical or ellipsoidal (Moré, 1978). Due to the constraint of the trust region, the TRA 

can be applied in cases of negative curvature of an objective function and ill-conditioned 

problems (Yuan, 2015). To accelerate the quadratic convergence, Coleman and Li (1994) 

proposed a piecewise reflective line search at each iteration to modify the TRA. The modified TRA 

is called the trust-region reflective algorithm (TRRA). 
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SS was initially developed for seismic risk analysis of building structures subjected to stochastic 

earthquake motions (Au and Wang, 2014).  As an alternative to the MCS, SS is a Monte Carlo 

methodology that takes advantage of the Markov Chain Monte Carlo (MCMC) method and a 

simple evolutionary strategy (Schueller, 2009). Like other optimization algorithms using heuristic 

techniques, the SS algorithm is based on a stochastic search algorithm for global optimization 

problems. SS is more efficient than MCS, particularly when using a computationally costly 

numerical model. In the SS algorithm, the failure probability of a rare event can be estimated by 

multiplication of a sequence of conditional failure probabilities of intermediate events, which can 

be evaluated as follows: 

Given a failure event 𝐹, let 𝐹1 ⊃ 𝐹2 ⊃ ⋯ ⊃ 𝐹𝑚 = 𝐹 be a decreasing sequence of failure events, 

𝑃𝐹 = 𝑃(𝐹𝑚) = 𝑃(⋂ 𝐹𝑖
𝑚
𝑖=1 ) = 𝑃(𝐹1) ∏ 𝑃(𝐹𝑖+1|𝐹𝑖)𝑚−1

𝑖=1  (B.3) 

where 𝑃𝐹 denotes the probability of failure; 𝑃(𝐹𝑖 ) represents the failure probability of an 

intermediate event; and {𝑃(𝐹𝑖+1|𝐹𝑖): 𝑖 = 1,2, … 𝑚 − 1} denotes the conditional probabilities 

(Au and Wang, 2014).  

B.2 Interpretation of SBP tests using conventional deterministic methods 

Conventional methods are first applied to interpret the SBP tests, which can verify the 

effectiveness of the results from the inverse analysis. Geotechnical data from triaxial tests 

(Jefferies, 1987) are also deduced to constrain the range of estimated parameters.  

B.2.1 Interpretation of SBP tests using graphical plotting and linear fit regression methods 

With the assistance of constructing lines, 𝜎ℎ , 𝐺 , and 𝑆𝑢  can be deduced by examining a 

pressuremeter testing curve (Gibson and Anderson, 1961; Houlsby and Withers, 1988; Marsland 

and Randolph, 1977).  

The lift-off method is usually applicable to identify the horizontal stress, 𝜎ℎ , for SBP tests, 

although it is criticized for its subjectivity (Clarke, 1995; Mair and Wood, 1987). To reduce the 

subjectivity, Jefferies (1987) improved the lift-off method by introducing a modified inspection 

technique. It is believed that 𝜎ℎ lies at a stress lower than the yield stress, 𝜎ℎ𝑦. Therefore, the 

method needs to identify 𝜎ℎ𝑦  by the first observation of excess pore pressure change or 
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inspection of the pressuremeter-displacement curve. Thus, 𝜎ℎ0  can be located from the 

intersection of the constructed instrument stiffness line and the gradient line determined by the 

unloading–reloading cycle. From Figure B.1, 𝜎ℎ0  is evaluated as 1690 kPa using the modified 

inspection technique, which lies in the range of 1670 ± 30 kPa reported by Jefferies (1987).  

According to Mair and Wood (1987), 𝑆𝑢  can be deduced from the slope of a straight line by 

plotting the SBP data as 𝑝 ∶  ln (∆𝑉 𝑉⁄ ) . Alternatively, the slope of a straight line can be 

determined through the linear fit regression by use of Origin 2020 (OriginLab, 2020). The benefit 

of using this approach is to reduce subjectivity, and therefore, results become repeatable. The 

undrained shear strength 𝑆𝑢  is identified in Figure B.2 as 182 ± 7.6 kPa. Similarly, the shear 

modulus, 𝐺, can be determined as 49 540 ± 1378 kPa, which is one-half of the fitted slope value 

in Figure B.3 (Mair and Wood, 1987).  

B.2.3 Interpretation of triaxial tests using graphical plotting methods 

Jefferies (1988) reported an anisotropically consolidated undrained triaxial test with shear stress 

reversal. The initial Young’s modulus, 𝐸𝑖, and the secant modulus at 50% strength, 𝐸50, can be 

inferred from the line construction on the triaxial testing curve. Figure B.4 indicates that 𝐸𝑖 and 

𝐸50  is 41 200 kPa and 33 700 kPa, corresponding to 𝐺𝑖  = 13 730 kPa and 𝐺50  = 11 230 kPa, 

respectively. 

At the same time, the shear strength, 𝑆𝑢, in loading and unloading is identified as 238 kPa and 

191 kPa from the peak positive and negative deviatoric stresses. In addition, the softening 

coefficient, 𝛽, defined in Equation 4.3 is 0.8 by calculating the ratio of shear strength in loading 

to unloading. 

Table B.1 summarizes the results from the interpretation of both SBP and triaxial tests. Compared 

to the triaxial test, 𝐺 deduced from the unloading–reloading loop seems to be overestimated.  

This may be due to the drainage taking place near the probe during this stage (Clarke, 1995), 

which could exaggerate the deduced value of 𝐺. The undrained shear strength, 𝑆𝑢, can refer to 

Table B.1. 
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Table B.1 Results from the conventional interpretation of SBP and triaxial tests 

Method 
𝝈𝒉𝟎 

(kPa) 

𝑮 

(kPa) 

𝑺𝒖 

(kPa) 

Modified inspection on the SBP test curve 1690 - - 

Linear fit regression of the SBP test curve - 49 540 ± 1378 182 ± 7.6 

Line construction on the triaxial test curve - 
13 730 (𝐺𝑖) 

11 230 (𝐺50) 

238 (loading)* 

191 (unloading) 

*Note: The ratio of shear strength in loading to unloading 𝛽 is calculated as 191/238 = 0.8 

 

Figure B.1 Identification of the horizontal stress 𝝈𝒉𝟎 using graphical plotting method (reproduced from 

Jefferies, 1987) 



 

 

194 

 

 

Figure B.2 Identification of the undrained shear strength 𝑺𝒖 using the linear fitting method 

 

Figure B.3 Identification of the shear modulus 𝑮 using the linear fitting regression method 
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Figure B.4 Identification of the Young’s modulus 𝑬 using the line construction method 
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Appendix C Stiffness and strength of clay shale in the plastic zones 

Figure C.1 to Figure C.12 illustrate the variations of stiffness and shear strength of clay shale in 

the plastic zones (degraded zone defined in Figure 6.2) at all stages during RGP testing, e.g., 

expansion, hold, unload-reload loops and contraction. Before the installation of the RGP tool, 

stress relief occurs in the oversized pre-drilled borehole. Therefore, borehole breakouts can 

occur if the stress concentration around the borehole exceeds the strength of the rock (Zoback, 

2010). During an RGP test, the rubber membrane is expanded against the borehole wall at the 

expansion stage, followed by a hold test, unload-reload loops, and contraction. As a result, strain-

softening or strain-hardening of clay shale can occur around the borehole wall.   

 

Figure C.1 Variation of Young’s modulus in degraded zone estimated from the complete curve in Westgate 

formation 

In the Westgate formation, Young’s modulus remains constant in the expansion and hold test 

stages until the 1st unload-reload loop. The two unload-reload loops cause Young’s modulus to 

degrade azimuthally from Zone A to Zone C, which is in response to biaxial in-situ stresses and 

borehole stiffness anisotropy (Liu et al., 2020). Young’s modulus fluctuates more than 50% 

between 1st unload and contraction, indicating drastic variations of material stiffness around the 
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borehole during the RGP test. The degraded stiffness implicates a strain-softening behaviour of 

clay shale in the Westgate formation. Figure C.2 and Figure C.3 demonstrate the variations of 

shear strength in RGP testing, which are caused by the same reasons mentioned above. The 

reduction of cohesion can be observed in the hold test and reload. And recovery of cohesion in 

unloads and contraction, which might be explained by the closure of cracks and fissures in the 

vicinity of the borehole during unloading and contraction. Compared to cohesion, friction angles 

vary much less in all the stages. Consequently, there exists uncertainty in the modelling of an RGP 

test. 

 

Figure C.2 Variation of cohesion in degraded zone estimated from the complete curve in Westgate  



 

 

198 

 

 

Figure C.3 Variation of friction angle in degraded zone estimated from the complete curve in Westgate  

In Figure C.4, there are drastic azimuthal variations of Young’s moduli in Zone A in expansion, 

hold test, and 1st reload, which can be explained by a flat oval-shaped borehole in the Joli Fou 

formation. This flatness of the deformed borehole may result from local heterogeneity, and the 

inversed Young’s moduli may not represent the true value for Zone A in expansion, hold test and 

1st reload.  
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Figure C.4 Variation of Young’s moduli in degraded zone estimated from the complete curve in Joli Fou  

 

Figure C.5 Variation of cohesion in degraded zone estimated from the complete curve in Joli Fou  

Figure C.5 shows no clear trend of variations with reference to the distributions of inversed 

cohesion values. At the same time, Figure C.6 shows a uniform pattern of friction angle variation. 
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Figure C.6 Variation of friction angle in degraded zone estimated from the complete curve in Joli Fou 

 

Figure C.7 Variation of Young’s moduli in degraded zone estimated from the complete curve in Clearwater 

black 
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Figure C.8 Variation of cohesion in degraded zone estimated from the complete curve in Clearwater black 

 

Figure C.9 Variation of friction angle in degraded zone estimated from the complete curve in Clearwater 

black 

Contrary to the Westgate formation, clay shale in the Clearwater black shale formation implicates 

a strain-hardening behaviour for Young’s moduli, according to Figure C.7, except for Zone A. 
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However, at the end of RGP testing, both cohesion and friction angle recover from softening 

(Figures C.8 and C.9).  

 

Figure C.10 Variation of Young’s modulus in degraded zone estimated from the complete curve in 

Clearwater grey  

 

Figure C.11 Variation of cohesion in degraded zone estimated from the complete curve in Clearwater grey 
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Figure C.12 Variation of friction angle in degraded zone estimated from the complete curve in Clearwater 

grey  

A similar conclusion can be made for the Clearwater grey shale formation. This observation can 

be explained as being due to the high clay content in the Clearwater clay shale (Liu et al., 2020). 

Although dramatic changes in material properties are observed in the degraded zones in all RGP 

testing stages, there are no significant variations of stiffness and shear strength in the elastic 

zone, which can be understood owing to the far field. In other words, the expansion of the rubber 

membrane can only result in the variation of material properties in the degraded zone, as shown 

in Figure 6.2. Beyond the EP boundary, the in-situ properties would not be affected by the 

pressure applied by the RGP.  

 


