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Abstract 

Maintaining water quality is essential for overall watershed health. The One Water approach 

recognizes the interconnectedness of water resources, emphasizing the importance of integrated water 

resource management. A key threat to water quality is fecal contamination from human and non-human 

sources. Traditionally, fecal indicator bacteria (FIB) have been used for contamination analysis, but 

combining FIB with other microbial indicators (e.g., microbial source tracking [MST] markers) and a set 

of chemical indicators (e.g., micropollutants) offers multiple lines of evidence to assess fecal 

contamination sources in aquatic environments. The main objective of this thesis was to identify baseline 

conditions of microbial and chemical indicators at three sites near Calgary along the Bow River (BR): 1) 

an upstream source water site (BR2), 2) an urban site (BR3), and 3) a site downstream of the City’s three 

wastewater treatment plants (WWTPs) (BR4). This thesis also developed site-specific fingerprints 

comprising a set of microbial and chemical indicators that differentiate samples from the three sites. Data 

processing and visualization of three FIB, 9 MST markers, and 56 chemical indicators collected from 

2018 to 2023 were completed using the Python programming language. Parameters with less than seven 

numerical detections were excluded. Preliminary analysis indicated that the data was mostly non-normal 

(via the Shapiro-Wilk, D’Agostino’s K2, and Jarque Bera normality tests). Hence the log10 data 

transformation was used, with the exception of BR2-spring, which utilized the 1/x transformation. The 

Pearson correlation method was applied to the data in addition to the Ward clustering linkage method. 

Analysis of the microbial and chemical indicators revealed distinct patterns at the three sample sites. BR4 

had the highest diversity of indicators, while BR2 showed minimal impacts. The presence of FIB, MST 

markers, and chemical indicators at all sites indicates varying levels of human and non-human fecal 

contamination. Six chemical indicators (caffeine, N,N-diethyl-meta-toluamide [DEET], metformin, O-

Desmethyl-venlafaxine [ODV], sucralose, sulfamethoxazole [SMX]) were consistently detected. Total 

coliforms were positively correlated with the flow at all sites, likely due to increased inputs during high-

flow events (i.e., flow enrichment). However, sucralose was found to be inversely correlated with the 
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flow, highlighting dilution effects. Overall, enterococci had higher median concentrations compared to the 

other FIB, and sucralose dominated the detected chemical indicators across all datasets. The presence of 

MST markers varied across the sites, with Rum2Bac (ruminant) dominating at BR2, CG01 (Canada 

goose) at BR3, and HF183 (human) at BR4. Additional relationships were revealed during the correlation 

and cluster analysis. For instance, at BR2 total coliforms and several chemical indicators (including 

metformin, ODV, and sucralose) were negatively correlated indicating different sources and/or pathways 

of entry into BR2. Additionally, the clustering analysis identified three primary clusters: 1) a chemical 

indicator cluster (ODV, metformin, sucralose), 2) a FIB cluster (E. coli, total coliforms), and 3) a 

combination of microbial and chemical indicators (caffeine, enterococci, Rum2Bac, DEET, SMX), 

suggesting potential co-occurrence of these indicators. Increased correlations between E. coli and 

enterococci as well as between total coliforms and caffeine from BR2 to BR3 were observed. Three of the 

four main clusters at BR3 contained microbial and chemical indicators, while one cluster was limited to 

chemical indicators exclusively. Downstream of the WWTPs at BR4, strong positive correlations were 

seen between E. coli and chemical indicators, while HF183, HumM2 (human), and total coliforms were 

negatively correlated with various chemical indicators, aligning with previous studies related to 

wastewater discharges. The diverse array of chemical indicators at BR4 also underscores the cumulative 

impacts of wastewater discharges at the site. The FIB (E. coli, total coliforms, enterococci), Rum2Bac, 

metformin, ODV, and sucralose are recommended indicators for site-specific fingerprinting due to their 

presence at all sites. Additionally, CG01, HF183, HumM2, caffeine, carbamazepine and diclofenac were 

added to the site-specific fingerprinting recommendations due to their unique presence at BR3 and BR4, 

indicating that their detection at elevated levels at BR2 can trigger additional source water protection 

initiatives. 
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Chapter 1 – Introduction 

1.1 Background 

The multi-barrier approach (MBA) to drinking water is a comprehensive strategy for ensuring the 

safety and quality of drinking water from source to tap [1]. Water-borne disease outbreaks in Walkerton, 

ON and North Battleford, SK highlighted the critical need for this approach and brought it to the forefront 

of water management in Canada [2], [3], [4]. Designed to have integrated approaches and points of 

intervention, MBA consists of three primary components: 1) source water protection (SWP), 2) drinking 

water treatment, and 3) drinking water distribution. SWP is a critical first step in MBA as it safeguards the 

quality and quantity at its source (e.g., lakes, rivers, groundwater, reservoirs) to prevent potential 

contamination and depletion. At its core, SWP recognizes that protecting water at the source is more 

economically effective compared to relying solely on water treatment and purification [5], [6]. However, 

traditional approaches to water management by treating stormwater, wastewater, and drinking water as 

separate entities have been unable to address the challenges posed by rapid population growth, 

urbanization, and climate change. The One Water paradigm offers a more holistic approach by 

recognizing the interdependence of water resources while promoting integrated management strategies 

[7], [8], [9]. This approach aligns with the principles of MBA, which emphasizes the importance of 

protecting water at its source and integrating impacts from stormwater and (un)treated wastewater 

discharges. 

Water supplies around the globe, including in many Canadian urban centres, continue to 

encounter significant challenges due to rapid population growth. For example, as cities continue to 

expand, source water quality may be compromised when the distance between wastewater discharge 

points and drinking water sources is reduced [10], [11]. Stormwater stemming from drainage surfaces 

(e.g., overland transport) and urban drainage systems (e.g., stormwater outfalls) may also impact source 

water quality by transporting high contaminant loads with limited treatment during wet-weather events 

[12], [13]. These conditions are further exacerbated by climate change-induced stressors, such as 
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droughts, heavy rainfall, rising temperatures, and increased wildfires, therefore, incorporating climate 

change adaptation measures within SWP plans remains a major challenge faced by municipalities 

worldwide [4], [14]. 

The City of Calgary in southern AB, Canada has taken a proactive approach to addressing risks to 

its source waters by implementing an SWP Plan (2015-2018) and adopting an SWP Policy (2020) which 

integrates watershed protection into future land use changes [5], [15]. Among the SWP Plan’s goals is to 

manage stormwater effectively. As was common in many large cities, combined drainage pipes involving 

both sanitary (domestic sewage) and storm drainage were originally built in Calgary in 1890. However, 

the separation of these systems took place between the 1920s and 1960s [16]. Though Calgary utilizes 

separated sewer systems today, the literature suggests that storm drainage systems can be contaminated 

with untreated wastewater, particularly when they experience dry-weather flow conditions [17], [18], 

[19]. Cross-connections between the sewage systems as well as leakages from aging or deteriorating 

sewer systems may transport pollutants into the stormwater system or natural environment without 

treatment [20]. 

The potential for contamination from sewage systems into stormwater systems underscores the 

importance of accurate detections when identifying the origins of fecal pollution within water supplies 

and urban catchments. Fecal source tracking is important in the context of Calgary’s SWP plan given the 

inputs of stormwater into its source waters (i.e., Glenmore [Elbow River (ER)] and Bearspaw [Bow River 

(BR)] reservoirs). Source water microbial quality is highly variable and influenced by climate and 

hydrometeorological events such as rainfall, snowmelt, bypasses, and sanitary sewer overflows during 

storm events [21], [22], [23]. For many years, fecal indicator bacteria (FIB) (e.g., E. coli, fecal coliforms, 

enterococci) have been used as surrogates for potentially harmful pathogens in environmental waters, 

however, they do not discriminate among the many possible sources [24], [25]. Hence, host-associated 

microbial source tracking (MST) methods have evolved to identify the originating host species such as 
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birds, humans, cattle or a combination by utilizing various human and non-human-associated microbial 

markers [26], [27], [28].  

Other studies have also utilized chemical source tracking (CST) tools to assess fecal 

contamination [28], [29]. While CST can include a broad range of chemicals including human-specific 

fecal sterols and stanols and other human biomarkers, the utility of pairing MST data with wastewater 

micropollutants, such as pharmaceuticals (e.g., antidepressants, anti-inflammatories), personal care 

products (e.g., antibacterials), endocrine disrupting compounds (e.g., natural and synthetic hormones), 

and other household/industrial chemicals (e.g., flame retardants), can serve a dual purpose [20], [28], 

[24]. Since 2018, the City of Calgary has monitored micropollutants to determine baseline conditions and 

how they behave in the BR and ER watersheds [5]. Although micropollutant monitoring is not mandatory 

for water utilities in Canada, some jurisdictions have established human health (e.g., perfluoroalkylated 

substances [PFAS]) and environmental guidelines (e.g., birth control pill ingredients), which promote a 

more prudent approach towards water quality management. Most micropollutants are derived mainly 

from domestic uses and some remain persistent during wastewater treatment (e.g., metformin 

[antidiabetic], sucralose [artificial sweetener]) [31]. Therefore, pairing these datasets with MST results 

can provide multiple lines of evidence to detect sources and impacts of (un)treated sewage and support 

risk assessments. Most micropollutants are also frequently detected in surface waters and some chemicals 

exhibit greater source specificity and geographical stability in comparison to most established MST tools 

currently used [29], [32], [33]. However, there is no consensus on a single fecal source tracking tool that 

water utilities should employ. Each one has its advantages and limitations, but both tools remain 

complementary methods for identifying the source(s) of fecal contamination in water systems. 

 

1.2 Problem Statement 

 The City of Calgary measured 56 micropollutants (see Table 3.5) as well as microbial indicators 

including general fecal indicators (3 FIB [culture-dependent, see Table 3.3] and 9 host-associated 
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microbial markers [i.e., MST - molecular techniques, see Table 3.4]) at three sites along the BR near 

Calgary from 2018 to 2023 (Figure 1.1). Given the highly urbanized land use and diverse pollution inputs 

into the BR, whether the microbial surface water quality indicators correlate with the micropollutant data 

is unclear. Each of these sites are influenced by distinct land use patterns, contributing to a unique 

combination of indicators (i.e., fingerprint) due to varying inputs resulting in differences in presence and 

concentrations. In this thesis, a composite fingerprint includes a unique combination of FIB, MST 

markers, and chemical indicators specific to the site that can be linked to a particular fecal contamination 

source. 

 

 

 

Figure 1.1 Map of research sites along the Bow River (BR) near Calgary. PF = Policeman’s Flats. 
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1.2 Thesis Objectives 

 The main purpose of this thesis is to use microbial and chemical indicators to identify baseline 

conditions of anthropogenic fecal contamination at three sites along the BR near Calgary. To achieve this, 

the following objectives were developed:  

i. investigate relationships between the microbial and chemical markers at three distinct (yet 

hydrologically connected) sites in and around Calgary consisting of 1) an upstream source water 

site (BR2), 2) an intermediate urban site (BR3), and 3) a cumulative downstream site that 

receives treated municipal wastewaters (BR4); 

ii. develop a composite fingerprint comprising traditional fecal (FIB), microbial (MST) markers and 

chemical (CST) indicators to differentiate between samples taken from the three sites; and 

iii. provide initial recommendations for monitoring approaches that can be utilized by the City of 

Calgary when assessing domestic sewage contamination along the BR. 

 

1.3 Thesis Scope 

 Although microbial and micropollutant data have been measured at 11 sites in the ER and BR 

watersheds [31], this thesis focuses on only three sites (BR2, BR3, BR4) to test the composite fingerprint 

hypothesis, which suggests that each site has unique FIB, MST, and CST profiles that can be used to 

differentiate water samples. Site descriptions are provided below. Chapter 2 is a literature review on 

source water microbial quality and fecal source tracking tools. Chapter 3 explains the methodology 

including database management, data filtering, data visualization, hierarchical clustering, statistical, 

correlation and clustering analyses. Chapter 4 discusses the results and outcomes related to developing a 

composite fingerprint. Finally, Chapter 5 summarizes the key messages and outlines recommendations for 

future work. 
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1.4 Site Descriptions 

As of 2022, the City of Calgary in southern AB, Canada had a population of 1.4 million [34]. Its 

drinking water is mainly supplied by the BR and the ER source watersheds. The ER supplies 40% of 

Calgary’s drinking water and feeds into the Glenmore Reservoir (GR), a human-made lake that provides 

flood protection, serves as a non-motorized boating and recreational area, and is the intake source for the 

Glenmore Water Treatment Plant [5], [35], [36]. The remaining 60% of the City’s drinking water is 

supplied by the BR, which is treated and distributed by the Bearspaw Water Treatment Plant [36].   

Briefly, three monitoring sites (see Table 3.2) were selected among the 36 active watershed 

surface water quality monitoring locations within and around Calgary [37]. Site selection was curated to 

include sites with relatively different impacts, potentially allowing for clear identification of variations 

when identifying the distinct fingerprint for each site.  

The most upstream site, BR2, is the intake source of the Bearspaw Water Treatment Plant, and it 

receives water from the BR which flows through smaller communities such as Canmore and Cochrane, 

AB [36], [38]. Since the nearest wastewater plant discharge point upstream of BR2 is ~66 km away from 

Calgary, potential sewage contamination containing high concentrations of persistent chemicals (i.e. 

pharmaceuticals, antidepressants) would likely originate from cross-connections with stormwater or 

septic fields from residential areas. As a result, this site is expected to have the least number of detections 

and magnitudes of microbial indicators and micropollutants. 

BR3 is located within the City boundary and is impacted by the surrounding high-density 

residential and core commercial activities [39]. It also receives inputs from Nose Creek (NC), the BR, and 

the lower ER through 287 stormwater outfalls within Calgary. NC is known to be contaminated since it 

carries stormwater from Airdrie, AB, and is also impacted by the urban runoff from Calgary International 

Airport [40], [41]. In addition, the site is influenced by treated wastewater from Crossfield, AB 

(population: 3,599) [42], which is stored in a sewage lagoon and discharged once per year for 21 

consecutive days within the timeframe of April 1st and November 30th [43], [44]. This site is expected to 
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reflect influences of high urbanization and both older (i.e., upstream wastewater treatment plant [WWTP] 

discharges) and untreated wastewater (i.e., NC inputs, stormwater cross-connections with sanitary 

sewers).  

 The third site, BR4, is located downstream of Calgary’s three WWTPs: 1) Fish Creek, 2) Pine 

Creek, and 3) Bonnybrook. A prior study at these sites indicated a high frequency and magnitude of 

micropollutant detections along the BR and therefore likely provides a unique chemical (i.e., 

micropollutant) fingerprint [31]. The three WWTPs also utilize disinfection prior to discharge into the BR 

which is different from the type of sewage that BR3 might be exposed to. Based on this hypothesis, the 

MST fingerprint at BR4 may vary due to the limited micropollutant removal by the WWTPs. 
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Chapter 2 – Literature Review 

2.1 Concept and Applications of the One Water Approach 

 Water quality management is critical for the provision of safe drinking water [45], [46] and the 

presence of contaminants in water has been shown to have negative impacts on human health with the 

potential to harm ecosystems [47]. However, effectively managing these substances can pose significant 

challenges. Traditional urban water management (UWM) strategies have relied on segregated systems 

required for drinking water treatment, stormwater drainage, and wastewater collection. Such systems 

were viewed as advantageous due to the cost-effectiveness of large-scale construction and the ability for 

water service trends to be monitored individually [7], [48]. Yet, these approaches have been experiencing 

stressors caused by various factors including population growth and climate change impacts (i.e., 

heatwaves, wildfires, floods) [8]. This confluence of factors has resulted in rising water demand in 

addition to declines in water availability and water quality in communities.  

 One innovative approach that has been proposed as a potential solution to address the limitations 

of traditional UWM systems is the concept of One Water. The One Water approach proposes that urban 

water (i.e., stormwater, groundwater, surface water, drinking water, wastewater) be viewed and treated as 

part of one interconnected system rather than in terms of separate management systems [7], [8], [9]. A 

more integrated approach to UWM would be to promote strategies to harvest stormwater, reduce water 

usage, and minimize waste generation through six guiding principles: 1) recognizing the value of all types 

of water, 2) utilizing strategies with multiple benefits, 3) investing in systems-based approaches, 4) 

implementing fit-for-purpose water use, 5) developing adaptive infrastructure, and 6) engaging the 

appropriate stakeholders [9]. By viewing all types of water and their by-products as resources, this 

approach can improve water security while promoting financial resilience and supporting the circular 

economy [7]. However, various barriers can hinder the adoption of the One Water approach. These 

include institutional barriers (i.e., fragmented government structures, outdated regulations), limited public 
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knowledge, political processes, inadequate resources, and a lack of necessary infrastructure. These 

obstacles, in addition to economic and policy considerations, underscore the need for collaborative efforts 

in order for the successful implementation of the One Water approach [49], [50]. 

The One Water guiding principles outline best practices for water policies and management 

strategies, reflecting shared values around water as a vital resource. These principles provide a framework 

for developing sustainable and equitable water management systems [51]. The first guiding principle 

recognizes the inherent values of all types of water. Such value can be categorized as economic, 

environmental, and social. Economic value is derived from the fact that water is key in the development 

and production processes within the natural resource sector, and underestimating the economic value of 

water has caused negative economic and environmental impacts (i.e., inefficient water use, resource 

depletion, release of untreated wastewater, etc.) [52]. The environmental value of water is seen in its 

regulation of water resources and facilitation of filtration, storage, and flow regulation. The worth of 

water is also connected with its role in sustaining life, as it is a fundamental part of organisms and is 

essential to life on Earth, while recreational, cultural, and spiritual attributes associated with water 

contribute to its social value [53]. Recognizing these values highlights the need for a holistic water 

management approach, treating all types of water (groundwater, surface water, stormwater, wastewater, 

and drinking water) as critical resources [9]. This approach includes integrating stormwater and 

wastewater treatment, reducing freshwater withdrawals, and treating and reusing certain waters (i.e., 

stormwater, greywater, wastewater). The implementation of this principle would require a shift from 

segregated water management systems to integrated strategies, understanding the connections between 

various water bodies and developing new, comprehensive management approaches [54].     

The second principle emphasizes that multiple benefits are required within water management. 

Such an approach promotes environmental sustainability and can strengthen community resilience by 

optimizing available resources once water resources (i.e., wastewater, stormwater) have been integrated 

[9], [55]. One example is energy recovery from wastewater to produce heat and electricity while reducing 
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greenhouse gas emissions from the wastewater treatment process [8]. A circular economy approach to 

water values the resource for its various applications, unlike traditional methods which view water as a 

linear resource from source to end use [55]. The potential benefits from the implementation of this 

approach are dependent on the water resources available as well as the needs of the community (i.e. 

environmental, economic, or social) to address current challenges while ensuring water quality and 

security for future generations [8], [9], [54], [55]. 

System-based approaches, the third principle of the One Water framework, view water as a 

complex and interconnected system. Recognizing the interconnections from water resources to 

infrastructure and ecosystems enables the creation of effective and sustainable solutions [9], [55]. These 

solutions may include installing water-efficient appliances to reduce consumption, conducting water 

usage audits, optimizing infrastructure, and developing public awareness campaigns to promote water 

conservation and resource protection. From an industrial perspective, adopting water-efficient 

technologies, minimizing waste, and investing in watershed protection programs are key system-based 

approaches that can be used to implement the One Water concept [8], [54]. The successful 

implementation of system-based approaches at individual, community, and industrial levels along with 

collaboration among stakeholders, is essential for ensuring environmental health and sustainability of 

water resources [8], [9], [54], [55].  

The fit-for-purpose principle tailors water treatment based on intended use, rather than uniformly 

treating all water to drinking water quality standards. This approach yields multiple advantages, including 

reducing treatment costs and energy consumption while also minimizing waste generation. Applications 

can include using reclaimed water for irrigation, industrial processes, and other non-potable purposes 

when high-quality water is not necessary [8], [54]. One example of this is using domestic reclaimed water 

for toilets and urinals in residential and commercial settings [56], [57], [58]. While successful water reuse 

projects have demonstrated the potential to address the challenges of increasing water scarcity and 

elevated water demands, high initial costs and delayed benefits have been barriers to widespread 
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implementation [58]. Therefore, a long-term perspective, strategic planning and stakeholder collaboration 

are essential for developing efficient water management systems [8], [9], [57], [58]. 

Developing adaptive or flexible infrastructure is the fifth principle in the One Water approach, 

essential for navigating the uncertainties caused by climate change. Traditional and aging infrastructure 

lacks the capacity to adjust to evolving conditions and demands, while adaptive systems are designed to 

meet new challenges [9]. Examples of this include: 1) incorporating green infrastructure (i.e., rain 

gardens, green roofs) and low-impact developments (LIDs) to manage and improve water quality in urban 

settings and 2) designing water and wastewater facilities with modular components that can be expanded 

or modified to accommodate changing water conditions [8], [55], [59]. Investing in adaptive 

infrastructure also promotes equity and resilience to climate change and other external impacts, while 

reducing long-term costs and enhancing water security [8], [9], [54], [60]. 

The sixth and final principle of the One Water approach is stakeholder engagement, which 

necessitates the collaboration of various groups, including community members, industry representatives, 

water professionals, and government agencies [8], [9]. This collaboration brings together diverse 

perspectives and expertise to enhance decision-making and develop appropriate solutions. Unlike the One 

Water approach, traditional segregated UWM systems do not prioritize stakeholder engagement 

collaboration, impacting resource allocation, the quality of water services, and overall sustainability [61]. 

Shared decision-making and emphasizing partnerships between the appropriate stakeholders allow for the 

development of resilient and sustainable water management systems [8], [9], [61]. 

Many locations around the world have developed sustainability and/or action plans, which 

include initiatives allowing them to actively transition to the One Water approach (e.g., Chicago, IL, 

USA; Copenhagen, Denmark; New York, NY, USA; Phoenix, AZ, USA; Rotterdam, Netherlands; 

Singapore; Sydney, Australia) [62], [63], [64], [65], [66], [67], [68], [69]. Table 2.1 outlines the One 

Water initiatives both proposed and implemented at the locations mentioned, as well as the targeted 

principles. It is clear that initiatives vary between locations due to their unique needs, resources, and 
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environmental conditions. The City of Calgary is one Canadian city that has begun to incorporate 

elements of the One Water approach into its water management strategy by identifying initiatives and 

priority actions required to maintain water security [70]. Climate change-related impacts (i.e. elevated 

temperatures, droughts, wildfires), regulatory requirements, population and economic growth have been 

identified as posing potential risks to the City’s water security [70], [71]. The City articulates the need to 

develop a sustainable and resilient water supply system by planning for various demand scenarios, 

collaborating with stakeholders, and utilizing adaptive management approaches to maintain water security 

[70].   

Table 2.1 One Water case studies in North America, Europe, and Australasia along with the guiding 
principles associated with the specific initiatives. 

Location One Water initiative Guiding 
principle Description Reference 

Chicago, IL, 
USA 

Strengthen gray and green 
infrastructure to withstand 
climate change 

2, 3, 5 Improve emergency response, adopt 
sustainable practices, and protect 
infrastructure from future impacts 

[62] 

 Improve water resource 
management and 
coordination 

1, 3, 5, 6 Increase collaboration, data-driven 
decision-making, and planning 
across agencies 

 

 Improve water resource 
management and 
coordination 

2, 3, 6 Utilize collaboration, data sharing, 
and planning across agencies and 
stakeholders to improve water 
resource management 

 

 Incorporate water resource 
management into local 
planning 

1, 2, 3 Promote sustainable development, 
and protect water quality, quantity 
and ecosystems through local 
planning 

 

 Create and implement 
multi-objective watershed 
plans 

2, 3, 6 Focus on watershed-based 
approaches, data-driven decision-
making and stakeholder 
collaboration 

 

 Optimize water 
infrastructure investment 

2, 3, 5, 6 Prioritize existing infrastructure, 
invest in resource recovery, promote 
stakeholder collaboration 

 

 Maintain and invest in 
gray and green 
infrastructure 

2, 3, 5 Invest in and maintain green 
infrastructure to enhance flood 
resilience 

 

 Incorporate water supply 
and demand 
considerations into local 
and regional planning 

2, 3, 5, 6 Protect water quality by aligning 
land use planning with water 
resource management  
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Location One Water initiative Guiding 
principle Description Reference 

Chicago, IL, 
USA 

Strengthen regional water 
supply management 

2, 3, 5, 6 Implement sustainable water 
management strategies through data 
sharing and collaborative planning 

[62] 

 Maintain drinking water 
infrastructure and manage 
demand 

2, 4, 5, 6 Invest in and maintain drinking 
water infrastructure, promote water 
conservation, and explore alternative 
water sources 

 

Copenhagen, 
Denmark 

Energy production – 
carbon neutral district 
heating 

4 Reduce water consumption by using 
alternative cooling methods 

[63] 

 Energy production – 
carbon neutral utilities 

2 Optimizing heating systems by 
using biogas from wastewater 
treatment, reducing carbon 
emissions 

 

 City administration 
initiatives – training and 
information 

6 Facilitating a program which allows 
young individuals to learn about 
water-related issues 

 

 City administration 
initiatives – City of 
Copenhagen’s woodlands 

1, 3, 5, 6 Safeguard water resources by 
expanding tree coverage in water 
catchments and around drinking 
water wells 

 

New York, 
NY, USA 

Protecting wastewater 
treatment facilities from 
storm surges 

2, 3, 5 Safeguard public health, protect the 
environment, prevent damages 
caused by future storms 

[64] 

 Improving and expanding 
drainage infrastructure 

2, 3, 5 Improve drainage infrastructure and 
incorporate green infrastructure to 
mitigate flooding risks 

 

 Promoting redundancy and 
flexibility to ensure a 
constant supply of high-
quality water 

2, 3, 5 Use the MBA, incorporate 
redundancy, and leverage advanced 
technologies to safeguard water 
supplies 

 

Phoenix, 
AZ, USA 

Celebrate and protect 
rivers, washes, and 
waterways 

1, 2, 3, 5, 
6 

Preserve natural waterways, 
improve public access, and 
collaborate with stakeholders to 
protect water resources 

[65] 

 Manage and plan for 
efficient delivery of safe 
and reliable water supplies 

1, 2, 3, 4, 
5, 6 

Ensure reliable, high-quality water 
is available to the public by 
promoting efficient water use, 
investing in infrastructure, and 
collaborating with stakeholders 

 

 Managing stormwater 
efficiently and 
economically while 
minimizing stormwater 
pollution 

2, 3, 5 Improve stormwater management 
through innovative practices, the 
development of new and green 
infrastructure, and public 
engagement 
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Location One Water initiative Guiding 
principle Description Reference 

Phoenix, 
AZ, USA 

Treat, manage and use 
wastewater and related 
infrastructure efficiently 
and economically 

1, 2, 3, 4, 
5, 6 

Promote sustainable development, 
infrastructure investment, and water 
reuse while minimizing 
environmental impacts 

[65] 

Rotterdam, 
Netherlands 

Changing the water 
narrative 

1, 6 Rebranding water from a nuisance 
to an opportunity by reshaping the 
narrative and engaging various 
stakeholders 

[66] 

 Cross-sectoral 
collaboration 

2, 3, 6 Address urban challenges through 
cross-sectoral collaboration and 
generating innovative solutions 

 Co-production of 
knowledge 

6 Engage diverse stakeholders to 
address gaps in the knowledge and 
develop new ways to address water 
management 

 Experiential evidence-
based learning 

2, 3, 6 Showcase projects highlighting 
novel water management solutions 
while engaging the public 

 Strategic use of trusted 
science 

3, 6 Invest in large-scale research 
projects to accelerate water 
management transformation 

 Fostering and investing in 
networks 

1, 3, 6 Foster knowledge sharing and 
collaboration from stakeholders 
across cities 

 Generating business from 
science-based innovation 

1, 2, 3, 5, 
6 

Use water as an economic driver to 
develop sustainable water 
management 

Singapore NEWater 1, 2, 3, 4, 
5, 6 

Investing in advanced technologies, 
strong governance, and public 
engagement to transform treated 
wastewater into a high-quality water 
resource 

[67], [68] 

Sydney, 
Australia 

Decentralized water 
master plan 

1, 2, 3 Reduce potable water consumption, 
improve water quality, and enhance 
urban resilience by implementing 
decentralized management strategies 

[69] 

 Stormwater harvesting and 
reuse 

1, 2, 3 Capturing and utilizing stormwater 
for irrigation and other purposes 

 

 Water efficiency programs 1, 4 Encourage water-saving measures in 
residential, commercial, and 
industrial sectors 

 

 Foster relationships 
between the public and 
private sectors 

6 Encourage public and private sectors 
to collaborate to develop and 
operate water recycling 
infrastructure 

 

 Green infrastructure 1, 2, 3 Integrate natural elements into urban 
environments to improve water 
quality and manage stormwater 
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2.2 The Multibarrier Approach (MBA) in Water Quality Management 
 

While the One Water approach adopts a holistic view by valuing all types of water as essential 

resources, the MBA ensures the safety of drinking water from the source to the consumers through five 

key elements: 1) source water protection, 2) effective water treatment, 3) reliable distribution systems, 4) 

continuous water quality monitoring, and 5) prompt responses to poor water quality [72], [73]. Employing 

multiple barriers minimizes the risk of waterborne contamination in the event that one barrier fails [74], 

[75]. Since public health and safety are paramount, the MBA is crucial for water utilities to maintain high 

water quality and prevent contamination [75]. While the MBA differs from the One Water approach, its 

strategies can be used to align with One Water principles. For instance, ensuring the safety of reclaimed or 

reused water for human consumption involves a combination of more advanced treatment processes, 

rigorous monitoring, and strict regulatory standards [76].  

The MBA has been brought to the forefront of water quality management in Canada in light of 

the water-borne outbreaks in Walkerton, ON and North Battleford, SK [77]. The water crisis in Walkerton 

was caused by E. coli contamination from local farmland as a result of inadequate infrastructure and 

reporting, while the North Battleford water crisis was caused by insufficient wastewater treatment 

allowing Cryptosporidium to be released into the drinking water [2], [3]. As a result of these outbreaks, 

many individuals became ill, and seven individuals tragically died in Walkerton. The significant impact of 

these events prompted the development of the “Guidance on the Multi-Barrier Approach to Safe Drinking 

Water” (2004) as well as strong recommendations to rigorously implement MBA [73], [74], [76]. Such 

outbreaks in Canada and around the world highlight the need for an MBA in water quality management to 

ensure robust systems are in place to prevent contamination and safeguard public health [78]. 
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2.3 Source Water Protection (SWP) Strategies 
 

SWP is a key component of a successful MBA, aiming to safeguard drinking water sources from 

potential pollution [4], [79]. Watershed protection strategies vary depending on the type of source water 

available (i.e., surface water or groundwater) for municipal, industrial, and agricultural purposes. SWP 

strategies can be separated into two main categories: 1) LID which focuses on stormwater impacts on 

source waters, and 2) best management practices (BMPs) that manage impacts of industrial, municipal, 

and agricultural activities [79]. LID promotes the decentralization of on-site stormwater management 

through a wide range of technologies such as open bioswales, stormwater retention and detention ponds, 

green roofs, and erosion control. These technologies increase infiltration potential and allow for the 

removal of pollutants including, nutrients, heavy metals, and pathogens. Due to the diverse technologies 

available, LID can be implemented in both microscale and macroscale environments [80]. By contrast, 

BMPs are a broader category of SWP strategies that address water quality and hydrology challenges in 

industrial, urban, and agricultural areas. Examples of BMPs for SWP include constructed wetlands, 

bioretention systems, and nutrient management [79], [81].  

SWP is an effective drinking water quality management strategy that reduces the entry of 

pathogens and chemicals into source waters, improving source water quality and reducing treatment costs 

and public health risks [79], [82], [83], [84]. Hence, efforts related to MST and CST can significantly 

enhance SWP management by identifying the origins of contamination. These techniques provide precise 

information about the sources and pathways of pollutants, enabling targeted and effective management 

strategies.  

 

2.4 Microbial Source Tracking (MST) Methods to Indicate Fecal Contamination 

 As public health is a main driver for maintaining water quality, one strategy to identify fecal 

contamination and inform microbial risk assessment is to utilize a set of methodologies in environmental 

water quality microbiology to determine the origin of fecal pollution [85], [86], [87]. Early MST 
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methodologies were developed as a result of social and legal pressures [87] and attempted to discriminate 

between human and non-human fecal sources in environmental waters using microbial indicators such as 

fecal streptococci (i.e., Enterococcus), E. coli, and DNA genetic markers (i.e. Bacteroides, MST markers) 

[88], [89], [90], [91]. While FIB are valuable microbial indicators, they can originate from various human 

and non-human sources. Therefore the combination of FIB and more host-specific (i.e., cow, ruminant, 

seagull, dog) microbial (i.e., MST) markers are required for source attribution [24], [87].  

 There are two main categories of MST methodologies: 1) culture-dependent and 2) culture-

independent. Culture-dependent methods require the cultivation of the bacteria in a laboratory prior to 

analysis. One example of a culture-dependent method is standard FIB analysis, first established in the late 

1800s, which is a technique where the indicator bacteria (i.e., E. coli, total/fecal coliforms, Enterococcus) 

are enumerated [92], [93]. The three classical culturing methods used to enumerate and analyze FIB are 1) 

presence-absence tests, 2) the most probable number (MPN) method, and 3) membrane filtration. 

Presence-absence tests rely on fluorescent changes within the sample after it has been exposed to an 

enzyme substrate. A fluorogenic or chromogenic signal indicates the presence of the target FIB and no 

change signifies that the target FIB is not present in the sample. Prior to the development of the 

membrane filtration method, the MPN approach was used, which reports a statistical estimate of the 

number of FIB present in the sample. For the membrane filtration method, the water sample is filtered 

through a membrane with a diameter of 47 mm, retaining the FIB on its surface [93]. These culture-

dependent methods are inexpensive, sensitive, and effectively amplify the target indicator. However, the 

lack of uniformly distributed bacteria, inadequate growth conditions and the varying growth rates of the 

indicators can pose a challenge [93], [94]. Culture-independent methods have evolved to incorporate 

deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) extraction from the samples directly [26], [86], 

[87], [95]. Unlike culture-dependent methods, culture-independent methods have the ability to identify 

larger portions of the target microbial community, however, they can be less accurate when determining 

the number of viable microbes present in the sample [96].      
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Culture-dependent and independent MST methodologies can be further classified as library-

dependent and library-independent. Library-dependent methods require the development of a reference 

library of fecal profiles (i.e. FIB and fecal strains) from target hosts present in and around the watershed 

which may serve as a potential source of fecal contamination. Phenotypic (i.e., biochemical) or genotypic 

profiles of the fecal bacteria collected are stored in such libraries, allowing researchers to use the 

distinguishing characteristics of the profiles within the library to identify contaminant sources in water 

samples collected from the watershed [24], [86], [87], [97], [98]. Here, considerations regarding the 

geographic and temporal stability of the library must be accounted for. 

 Molecular species diversities have been shown to result in variations in library profiles in 

instances of enterococci antibiotic resistance and certain strains of E. coli. Since different strains of 

indicator organisms have varying temporal stabilities, indicators must be selected based on their relevance 

within the context of the target host(s) of the watershed as well as the long-term stability of the indicators 

in the library, limiting temporal variations within profiled populations [87]. While not all phenotypic and 

genotypic MST methods are quantitative, they still allow for the identification of contamination from host 

groups. Additional limitations include the fact that reference strains are to be cultivated, and a geographic 

and temporal-specific reference library must be developed [87], [99]. 

 Library-independent MST methods often rely on initial reference libraries for the characterization 

of host-specific markers from samples. Once the markers have been validated, they can be used as 

microbial indicators in similar environments, eliminating the need for the continual development of 

libraries for unique watersheds [100]. For example, this method allows researchers to target specific 

regions of the 16S ribosomal RNA (rRNA) gene in MST markers since they originate from human and 

non-human intestines (e.g., HF183 [human], CG01 [Canada goose], Rum2Bac [ruminant]). Unlike 

library-dependent methods, library-independent methods target specific markers associated with host 

groups [24], [86], [100]. Regardless of the approach, culture-dependent and culture-independent methods 

can be applied to library-independent MST. Table 2.2 outlines the common microbial methods for fecal 
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source tracking. Culture-dependent methods for FIB (i.e., E, coli, enterococci), various polymerase chain 

reaction (PCR) methods and automated enzymatic methods have been listed in the Guideline for 

Canadian Recreational Water Quality microbiological sampling and analysis technical document by 

Health Canada [101]. Various culture-based (i.e., cell culture assays, membrane filtration, presence-

absence tests) and molecular-based (i.e. PCR) methods are proposed in the Canadian Drinking Water 

Quality bacteriological and microbiological parameter guide documents for Giardia, Cryptosporidium, 

enteric viruses, enterococci, E. coli, and total coliforms [102].    
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Table 2.2 Common library-dependent and independent molecular microbial source tracking (MST) 
methods (adapted from [26]). PCR = Polymerase chain reaction. 
  

Culture 
dependency 

Library 
dependency Category Approach Description Reference 

Culture-
dependent 

Library-
dependent 

Phenotypic Antibiotic 
resistance 

Gut bacteria from various host 
animals develop unique antibiotic 
resistance patterns in response to 
varying antibiotic exposures 

[26], [87], 
[95], [103] 

 Carbon source 
utilization 

Comparison of the unique 
patterns created when the target 
organism consumes carbon and 
nitrogen substrates 

[26], [95], 
[103] 

 Genotypic Repetitive 
element 

sequence-based 
PCR (rep-PCR) 

Uses PCR to amplify repetitive 
DNA sequences, resulting in 
strain-specific banding patterns 

[87], [95], 
[103] 

 Pulsed-field gel 
electrophoresis 

(PFGE) 

Separates DNA molecules by 
using agarose gel and alternating 
electric fields to analyze the 
microbial genome directly 

[26], [87], 
[95], [103] 

 Ribotyping Digestion of restriction enzymes 
is used to analyze variations in 
rRNA genes when differentiating 
between strain-specific branding 
patterns 

[26], [87], 
[95], [103] 

Culture-
dependent 

Library-
independent 

Phenotypic 
or 

genotypic 

Bacteriophage Distinguish between human and 
non-human fecal contamination 
based on the presence of the E. 
coli bacteriophage (F+RNA 
coliphage)  

[95] 

 Bacterial 
culture 

Isolating and growing fecal 
indicator bacteria cultures 

[26], [95] 

Culture-
independent 

Library-
independent 

Genotypic Host-specific 
bacterial PCR 

Uses PCR to extract, amplify, and 
identify fecal sources based on 
target sequences in bacterial 
DNA (e.g. Bacteroides, 
Enterococcus) 

[95] 

 Host-specific 
viral PCR 

Analyzes signature genes (e.g., 
16S rRNA, antibiotic resistance) 
in fecal bacteria to differentiate 
between human and non-human 
sources 

[26], [95] 

 Host-specific 
quantitative 
PCR (qPCR) 

Combines conventional PCR 
techniques of amplifying host-
specific markers in fecal bacteria 
with quantification of the bacteria 

[95], [103] 
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2.5 Chemical Source Tracking (CST) Methods 

 CST has been employed to identify the presence of anthropogenic fecal pollution in 

environmental waters [28], [87]. Many of these substances have anthropogenic origins and can provide 

unique signals depending on the land use within the area. Though using CST as a fecal source tracking 

method has emerged as an area of research in the last few decades, less focus has been placed on refining 

CST for such applications compared to FIB and MST methods [87], [104], [105]. 

Since there is no singular chemical that can serve as an indicator of anthropogenic pollution in all 

aquatic environments, four categories of chemical compounds have shown to have potential when 

identifying the presence of anthropogenic pollution: 1) pharmaceuticals and personal care products 

(PPCPs), 2) fecal sterols and stanols, 3) optical brighteners (OBs)/fluorescent whitening agents (FWAs), 

and 4) common wastewater tracers (i.e. caffeine, sucralose) [28], [87], [106]. 

PPCPs have been used as chemical indicators due to their unique presence in treated and 

untreated wastewater, though their concentrations may vary. While methodologies for PPCP measurement 

are considered to be reliable, standardized extraction procedures are still under development. In addition, 

analytical equipment (i.e., liquid/gas chromatography, mass spectrometry) and training costs may 

contribute to higher analytical costs compared to MST approaches [87]. Analgesics and anti-

inflammatories (i.e., acetaminophen, ibuprofen, naproxen), antibacterials (i.e., triclocarban, triclosan), 

antidiabetics (i.e., metformin), antiepileptics (i.e., carbamazepine), beta-blockers (i.e., propranolol), and 

insect repellants (i.e., N,N-diethyl-meta-toluamide [DEET]) are a few of the PPCPs that have been 

detected in wastewater effluents and stormwater outfalls [28], [87], [107]. Research has shown that 

PPCPs can impact aquatic ecosystems and affect the growth and reproduction of aquatic populations. 

However, the persistence and degradation of these micropollutants as well as their public health impacts 

remains an ongoing area of research, further demonstrating the need to monitor for PPCPs from human 

wastewater pollution in the environment [87], [108].  
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Fecal sterols and stanols are another set of chemicals directly associated with sewage. Originating 

from the metabolism of dietary plant and animal sterols by enteric bacteria, sterols are part of the lipids 

family and are key components of cell membranes within eukaryotic organisms. Once consumed, dietary 

sterols are converted into stanols by bacteria within the intestine, while some sterols remain unchanged 

[104], [109], [110]. Both sterols and stanols are then excreted in animal and human waste, where they 

bind to particulate matter. Though fecal sterols have been shown to degrade in aerobic conditions, they 

have been detected in sediments [87], [111]. Since the metabolism of sterols produces end products that 

vary based on the diet and gut bacteria of the host, fecal sterol and stanol ratios can be analyzed to 

differentiate between human and non-human waste. For instance, approximately 60% of human stanols 

are comprised of sterol cholesterol which has been metabolized into 5 β-stanol, while non-human waste 

contains lower amounts of 5 β-stanol and contains wider ranges of sterol metabolic byproducts [112], 

[113]. Fecal sterol and stanol ratios can suggest that human sewage may be present and complement 

common water quality indicators (i.e., E. coli) in water quality analysis [114]. However, specialized 

equipment, a lack of standardized methods, and dilution concerns in large water bodies limit the 

widespread application of fecal sterols/stanols in CST [87]. 

OBs, also known as FWAs, are organic compounds found in laundry detergents which absorb 

ultraviolet (UV) light and re-emit light between the blue and indigo portions of the visible spectrum, 

enhancing the appearance of whites and brighter colours by counteracting yellow colours within the 

fabrics [87], [115], [116]. In addition to laundry detergents, OBs have been applied to textiles, plastics, 

synthetic fibres, and paper in medical, chemical, and petroleum-related applications [115]. Even though 

OBs have been known to photo-degrade once exposed to UV light and be removed by other means of 

disinfection (i.e. chlorination), they have been detected in wastewater effluents. Since OBs are not 

naturally occurring within the environment, they are clear indicators of anthropogenic pollution [87], 

[115], [116], therefore, they are a good candidate when identifying the presence of wastewater 

contamination in water due to their presence in household and industrial products. Additional analysis 
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may be required to determine whether the contamination contains human fecal matter. Detection methods 

currently available are simple and cost-effective, and results can be obtained quickly compared to the tests 

used to determine the presence of other micropollutants. However, OB dilution and in-stream 

fate/transport in large water bodies can lead to interference from other chemicals, highlighting the need 

for additional research to improve the accuracy and reliability of OBs as CST indicators [87], [105]. 

Caffeine (1,3,7-trimethylxanthine or C8H10N4O2) is a naturally occurring alkaloid stimulant found 

in various beverages (i.e., coffee, tea), food products, and medications, representing another potential 

chemical marker for anthropogenic contamination [87], [117]. It has been considered as a potential 

indicator of pollution due to its high consumption rates and subsequent releases into the wastewater 

system [117], [118], [119], [120]. Although caffeine has a half-life of 12 days when exposed to natural 

light [87], it has a half-life between 100 and 240 days when in water, demonstrating its potential 

persistence within aquatic environments [117], [120], [121]. Current detection methods for caffeine are 

highly sensitive, allowing for detection at low concentrations, and the presence of caffeine in water allows 

for the detection of recent contamination events, unlike certain microbial indicators (e.g., fecal coliforms). 

However, the natural degradation of caffeine in the environment as well as the presence of sources 

containing caffeine (i.e., coffee and tea vegetation) may affect detection, highlighting the need for 

additional indicators to be used in conjunction with caffeine [87], [117], [122].  

In addition to the substances discussed above, many other chemical markers have been explored 

as potential source trackers for domestic sewage. These markers include but are not limited to, bile acids, 

polychlorinated biphenyls (PCBs), artificial sweeteners (i.e., acesulfame, sucralose), flame retardants, 

flavourants, fragrances, perfluorinated compounds (PFCs), pesticides and herbicides, petroleum 

hydrocarbons, plasticizers (i.e., bisphenol A [BPA], bisphenol S [BPS]), polycyclic aromatic 

hydrocarbons (PAHs), preservatives, solvents, and surfactants [87], [123], [124], [125], [126]. Persistence 

and detection of these compounds are variable within the environment, and their presence may not always 

be indicative of domestic sewage contamination. The broad range of chemical indicators that are being 
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analyzed for their potential as anthropogenic indicators demonstrates the need for multiple markers when 

determining the presence or absence of human fecal contamination. Hence, no single marker will be 

suitable for all cases; CST is dependent on site-specific factors, such as location, land use, and naturally 

occurring substances in the environment. 

 

2.6 Integration of traditional (FIB), MST and CST Methods for Fecal Source Indication  
 

A combination of traditional FIB, MST and CST methods has been proposed as a more reliable 

approach when determining the presence of anthropogenic contamination, as it utilizes multiple water 

quality indicators with varying persistence and fates within aquatic environments [28], [87], [127], [128]. 

Traditional methods have relied on E. coli or fecal coliforms; however, these do not differentiate between 

human and non-human sources. New microbial methods (i.e., MST) utilizing host-specific markers to 

identify fecal contamination sources were developed to address this limitation. CST complements MST 

by focusing on chemical indicators (i.e., PPCPs) associated with human waste [129], [130], [131]. Table 

2.3 lists the advantages and limitations of MST and CST methods. 
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Table 2.3 Advantages and limitations of microbial source tracking (MST) and chemical source tracking 
(CST) methods when employed separately. 
 

Approach Advantages Limitations Reference 
MST Traditional Simple and cost-

effective 
 
Standardized protocols 
 
Easy interpretability of 
results 

Inability to differentiate 
between human and non-
human sources 
 
Potential 
underestimation of 
contamination due to 
non-culturable bacteria 

[85], [86], 
[87] 

 Molecular Culture-
dependent 

Increased ability to 
differentiate between 
human and nonhuman 
sources 
 
Ability to detect non-
culturable bacteria 

The process of culturing 
the bacteria may be 
time-consuming 
 
Not as accurate for all 
sources 

[85], [86], 
[87], [88], 
[89], [90], 

[91], [132], 
[133], [134] 

 Molecular Culture-
independent 

Increased specificity 
and sensitivity 
 
Rapid analysis time 

Requires specialized 
equipment and expertise 
 
Increased cost compared 
to traditional MST 
methods 

[85], [86], 
[87], [95], 

[96], [100], 
[101], [102], 

[103] 

CST  Not affected by non-
culturability or 
regrowth 
 
Can provide 
information regarding 
contaminant sources 
(i.e., pharmaceuticals, 
artificial sweeteners) 

Site-specific-
effectiveness is 
dependent on proper 
indicator selection based 
on location, land use, 
and naturally occurring 
substances 
 
Persistence and fate in 
the environment are 
variable 
 
Increased cost compared 
to traditional MST 

[28], [87], 
[104], [105], 
[106], [135] 

 

MST and CST encompass a wide range of indicators, and their respective limitations highlight the 

need for a combined approach to identify domestic sewage contamination. Leveraging the strengths of 

both methods can provide a comprehensive understanding of the presence and source of fecal 

contamination in aquatic environments. The combined approach can further improve the accuracy and 

effectiveness of fecal source identification [129], [130]. Figures 2.1 and 2.2 present the geographical 
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distribution of 28 case studies that employ a combined MST and CST approach to identify domestic 

sewage contamination in aquatic environments.  

 

Figure 2.1 Geographic distribution of studies which utilize a combined microbial source (MST) and 
chemical source tracking (CST) approach. 

 

 

Figure 2.2 Geographic distribution of studies in Canada and the USA which utilize a combined microbial 
source (MST) and chemical source tracking (CST) approach. 
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A review of the 28 case studies which employed microbial and CST methods identified E. coli as the 

most prevalent microbial indicator (27 studies). Enterococci/Enterococcus and HF183 were also 

commonly employed (10 and 11 studies, respectively). Among the chemical indicators, caffeine was the 

most frequently analyzed (21 studies), followed by carbamazepine (16 studies) and acetaminophen (11 

studies). The frequency of indicator usage in the case studies is shown in Figure 2.3. 

 

 

Figure 2.3 Most commonly used microbial and chemical indicators across analyzed case studies. 

 

E. coli and enterococci are well-established fecal contamination indicators that have been used to 

determine the microbiological quality of water [106], [136] and inform public health decisions due to 

their strong relationship with gastrointestinal illnesses [131]. However, their inability to differentiate 

between human and non-human fecal sources limits their effectiveness in identifying contamination 

origins [137], [138]. To address this limitation, HF183 was often used as a microbial marker indicative of 

human fecal pollution [139], [140]. This marker, which targets bacteria found in the human gut, has 

shown improved specificity compared to traditional FIB. However, its short half-life of 0.4-8 days can 
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limit its applicability [140]. Therefore, it is recommended that HF183 be used in conjunction with other 

microbial indicators to obtain a more comprehensive assessment of the fecal pollution profile. 

The case studies explored various chemical indicators to identify their potential as fecal pollution 

markers. Acetaminophen, a widely used pharmaceutical, has emerged as a promising fecal marker due to 

its frequent occurrence in wastewater effluents [33], [139], [141]. Caffeine, the most commonly analyzed 

chemical indicator in the case studies, has been used as an indication of recent untreated wastewater 

discharges due to its frequent consumption within the population and rapid biodegradation in the 

environment [106], [131]. Carbamazepine has also been identified as a potential indicator of human fecal 

contamination in aquatic environments since its persistence can indicate the presence of older untreated 

sewage [140], [142].  

To overcome the limitations of individual indicators, a combined approach has been recommended in 

the literature [106], [129], [143]. The integration of microbial and CST methods provides a more 

comprehensive understanding of the fecal contamination sources, timings, and extent of pollution present 

at study sites, enhancing the accuracy and reliability of the analysis. While the ideal set of indicators 

varies based on site-specific conditions, the consensus within the literature is that an integrated approach 

offers enhanced source identification, and differentiation between recent and historical contamination, 

resulting in improved decision-making for water quality management [28], [106], [136]. Table 2.4 

summarizes the 28 case studies that have employed a combined MST and CST approach to identify 

human fecal contamination in diverse aquatic environments. 
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Table 2.4 Studies which have employed a combined microbial and chemical source tracking (CST) approach. CSO: Combined sewer overflow. 
FIB: Fecal indicator bacteria. PPCPs: Pharmaceuticals and personal care products. WWTP: Wastewater treatment plant.  

Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

Toronto, ON, 
Canada 

River B. dorei 
B. thetaiotaomicron 
Bac32 
Bif. Adolescentis 
CF128 
Catellicoccus marimammalium 
Clostridium perfringens 
CowM2 
DG37 
E. coli (culturable and Ampr 
[Ampicillin-resistant]) 
Eu. rectale 
F. prausnitzii 
GenBactF3 
Gull2/tc 
HF183 
P. acnes 
R. bromii 
S. epidermidis 
Turicibacter sanguinis 
qGull4 

Caffeine 
Carbamazepine 
Codeine 
Cotinine 
Acetaminophen  
Acesulfame 

Sewage contamination is present. Potential sources 
include WWTPs, sewage cross-connections in 
stormwater systems, or leaking septic systems. 
 
Caution should be used when using Ampr E. coli as an 
indicator. 
 
The presence of caffeine, cotinine, and acetaminophen 
indicates recent raw sewage contamination, while 
carbamazepine is a possible indicator of older sewage 
contamination. 
 
CST markers did not always correlate with human 
microbial markers. 

[28] 

AZ, CO, GA, 
IA, KS, MN, 

NV, NJ, NY, SD, 
USA 

WWTP discharges E. coli 
Enterococci 

110 chemical indicators tested 
Most common chemical indicators 
included: 
1,4-dichlorobenzene  
1,7-dimethylxanthine  
3,4-dichlorophenyl isocyanate  
4-nonylphenol diethoxylate  
4-nonylphenol monoethoxylate  
4-octylphenol diethoxylate  
5-methyl-1H-benzotriazle  
Acetaminophen  
Benzophenone  
Bisphenol A (BPA) 
Caffeine  
Carbamazepine  
Cholesterol  
Codeine 
Coprostanol 

The concentrations of most chemical indicators and 
the number of chemical indicators detected near the 
WWTPs decreased downstream, suggesting that in-
stream degradation (dilution, biodegradation, sorption) 
occurs as they are transported downstream. 
 
Fire retardants and fecal and plant sterols were 
detected the most frequently, while the frequency of 
detection varied for the chemical groups (i.e., cotinine 
vs ibuprofen within the non-prescription drug group). 
 
The ratio of coprostanol-to-cholesterol in WWTP 
effluents and downstream indicates human waste 
contamination. 

[131] 
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Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

AZ, CO, GA, 
IA, KS, MN, 

NV, NJ, NY, SD, 
USA 

WWTP discharges Listed on previous page Cotinine 
Dehydronifedipine  
Diazinon 
Diltiazem 
Diphenhydramine 
Ethanol,2-butoxy-,phosphate 
Ethyl citrate 
Galaxolide (HHCB) 
N,N-diethyl-m-toluamide (DEET) 
Pentachlorophenol 
Phenol 
Sitosterol 
Sulfamethoxazole 
Tonalide (AHTN) 
Tri(2-chloroethyl) phosphate (TCEP) 
Tri(dichlorisopropyl) phosphate 
Tributyl phosphate 
Triclosan 
Trimethoprim 
Triphenyl phosphate 

Since E. coli and enterococci are not human-specific 
microbial indicators, they are not reliable when 
attempting to identify the presence of human fecal 
contamination. 
 
Of the 35 chemical indicators most frequently 
detected, five emerged as potentially effective tracers: 
two pharmaceuticals (carbamazepine, 
diphenhydramine), coprostanol, OBs, and caffeine. 

[131] 

GA, KS, MI, 
NC, NJ, OH, 
SD, TN, TX, 

VA, USA 

Rivers, lakes, springs E. coli 
Enterococci 
Fecal coliforms 

1,7-dimethylxanthine 
4-tert-octylphenol 
5-methyl-1H-benzotriazole 
Benzophenone 
Beta-sitosterol 
Bromacil 
Caffeine 
Carbamazepine 
Chlorpyrifos 
Cholesterol 
Ciprofloxacin 
Codeine 
Coprostanol 
Cotinine 
Dehydronifedipine 
Diazinon 
Diethoxynonylphenol-total 
Diethoxyoctylphenol-total 
Diltiazem 
Enrofloxacin 
Erythromycin H2O 
Ethanol 2-butoxy-phosphate 
Ethyl citrate 

Fecal pollution was indicated by gene-based and/or 
chemical markers rather than FIB. 
 
Strong suggestion to utilize multiple fecal source 
indicators with variable persistence/fate to strategize 
decisions specific to the site. 
 
Environmental persistence and conditions during the 
sampling period may influence FIB concentration and 
the occurrence of certain indicators, resulting in 
inconsistencies within the data. 
 
Select chemical and gene-based indicators were 
present when the FIB standards were met. 
 
 

[129] 
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Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

GA, KS, MI, 
NC, NJ, OH, 
SD, TN, TX, 

VA, USA 

Rivers, lakes, springs Listed on previous page Fluoxetine 
Galaxolide (HHCB) 
Indole 
Metalaxyl 
Methyl salicylate 
Metolachlor 
N,N,-diethyl-toluamide (DEET) 
Para-cresol 
Prometon 
Sarafloxacin 
Skatol 
Tetrachloroethylene 
Tonalide (AHTN) 
Tri(2-chloroethyl) phosphate (TCEP) 
Tri(dichlorisopropyl) phosphate 
Tributyl phosphate 
Triclosan 
Trimethoprim 

Listed on previous page 
 

[129] 

Justiçou, Pen an 
Traon and La 

Fresnaye 
catchments, 

France 
 

Headwater and 
coastal catchments 

E. coli 
Enterococci 
HF183 
Pig2Bac 
Rum2Bac 
 
 
 

Bstanol 
Hstanol 
Pstanol 

The source(s) of fecal contamination were identified 
for 83% of all samples when the combination of MST 
and CST markers was used. 
 
Concentrations of E. coli were impacted by rainfall 
and catchment size. The small urban catchment 
showed no modification of E. coli concentrations due 
to a constant source, while the larger catchment 
showed an increase in E. coli concentrations when rain 
intensity increased. 
 
Rainfall events led to higher detection rates of bovine 
markers across all catchments. 

[136] 

Brisbane, 
Sydney, and 
Melbourne, 
Australia 

Catchments Adenovirus 
E. coli 
Enterococcus 
HF183 
nifH 
Polyomavirus 

Acesulfame  
Caffeine 
Paracetamol 
Salicylic acid 
 

Sewage-associated markers were found at all sites. 
HF183 and acesulfame were detected in 96% of 
stormwater samples, while caffeine was detected in 
91% of samples. 
 
The results from the combined MST and CST 
approach demonstrated that human contamination was 
the main source of contamination in the urban 
catchments. The presence of chemical indicators at 
trace levels (μg/L) is an indication of a recent raw 
sewage release. 

[106] 
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Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

Kleinmond, 
South Africa 

Rainwater harvesting 
tanks and gutter 

systems 

Adenovirus 
HF183 
 

Acetaminophen 
Caffeine 
Salicylic acid 
 

HF183 and the human adenovirus were detected in 
samples from rainwater harvesting tanks and gutter 
systems, suggesting fecal contamination of the 
rainwater. 
 
Caffeine, salicylic acid and acetaminophen were 
detected in the samples, indicating human 
contamination. 
 
HF183 had a concurrence of 57.5% and caffeine had a 
concurrence of 82.5%. 

[139] 

Avon River, 
Christchurch, 
New Zealand 

River Atypical colonies/total coliforms 
(AC/TC) 
B. adol 
Campylobacter 
Clostridium 
Cryptosporidium 
Dog 
E. coli 
GenBac3 
Giardia 
HumBac 
HumM3 
Phage 
Wildfowl 

Avian-associated steroid ratios: P1, 
Av1, Av2 
FWAs 
General steroid ratios: F1, F2 
Herbivore: R1 
Human-associated steroid ratios: H1, 
H2, H3, H4, H5, H6 

A combination of microbial and steroid tests indicated 
the presence of human sewage contamination. 
 
While PCR tests are rapid and less labour-intensive, 
steroid markers provide long-term storage stability as 
well as the ability to distinguish human from non-
human sources. 
 
Steroid markers can detect historical human sewage 
contamination in sediments, including when the 
discharge events have ceased. 

[137] 

Ås and Ski, 
Norway 

Rural creek and urban 
stream 

Anthropogenic DNA marker 
(Anthropog.) 
E. coli 
Zoogenic DNA marker (Zoog.) 
 

2-hydroxyibuprofen 
4-hydroxydiclofenac 
Atenolol 
Bisphenol A (BPA) 
Caffeine 
Carbamazepine 
Carboxyibuprofen 
Chloramphenicol 
Diclofenac 
Erythromycin 
Furosemide 
Gabapentin 
Hydrochlorothiazide 
Ibuprofen 
Iohexol 
Ketoprofen 
Metoprolol 

The urban stream contained human fecal 
contamination while the rural stream was affected by 
animal and environmental (i.e., non-human) sources. 
 
PPCPs were more prevalent in the urban stream and 
correlated strongly with human markers. 
 
Eutrophication-causing nutrients (i.e., total nitrogen 
and total phosphorus) were linked to fecal pollution 
sources (human sources for the urban stream and 
animal/environmental sources for the rural stream). 
 
 
 
 

[138] 
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Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

Ås and Ski, 
Norway 

Rural creek and urban 
stream 

Listed on previous page 
 

Naproxen 
O-desmethylnaproxen 
Paracetamol 
Saccharin 
Tramadol 
Venlafaxine 

Listed on previous page [138] 

Greater 
Montréal area, 
QC, Canada 

Creek watersheds E. coli 
Fecal coliforms 
HF183 
Human mitochondrial DNA 
(Hmt) 
 

Acetaminophen  
Carbamazepine 
Caffeine 
Theophylline 
 

Human fecal contamination was detected in all 
samples, indicating the presence of sanitary sewer 
cross-connections within the watersheds sampled. 
 
Fecal coliforms and alternative markers (i.e., HF183, 
Hmt, caffeine, theophylline, and acetaminophen) 
showed significant correlations. 
 
There were significant correlations between E. coli, 
caffeine and theophylline. 
 
Due to the limitations of the E. coli threshold, an index 
that pinpoints cross-connections and ranks drainage 
basins for remediation is a more reliable method to 
determine sites that require rehabilitation. 

[142] 

Canada Engineered urban 
canal 

E. coli 
Fecal coliforms 

Acetaminophen  
Carbamazepine 
Caffeine 
Theophylline 
 

Due to its low temporal variability, E. coli is the best 
indicator of the exfiltration (release of groundwater 
from the channel) of wastewater and fecal discharges 
from sewers. 
 
Carbamazepine, caffeine, and theophylline degrade 
and can be diluted in surface water, therefore, they are 
not ideal indicators of exfiltration. 
 
High concentrations of acetaminophen corresponded 
with concentrations of E. coli in water samples, and 
acetaminophen can be an indicator of past discharges 
in sediments. 

[33] 
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Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

Lee County, FL, 
USA 

Drainage ditches, 
canals, creeks 

E. coli 
Enterococci 
HF183 
 

Acetaminophen 
Carbamazepine 
Ibuprofen 
Naproxen 
Sucralose 

Septic systems located adjacent to waterbodies can 
contaminate surface waters. 
 
The majority of the fecal bacteria originated from 
anthropogenic waste since HF183 was positively 
correlated with E. coli and enterococci. 
 
Sucralose detections indicated that contamination from 
human waste was present at the sites. 
 
Detections of pharmaceutical pain relievers (i.e., 
acetaminophen, ibuprofen, naproxen) further indicated 
the presence of human contamination. 
 
Increased infections of V. vulnificus, which has been 
associated with fecal bacteria, can become elevated 
when human wastewater is present in warm coastal 
waters, particularly following coastal storms and 
heavy runoff. 

[140] 

Greater 
Montréal area, 
QC, Canada 

Combined sewer 
overflow (CSO) 

outfalls, receiving 
river, sewer system 
and WWTP effluent 

E. coli 
 

Acetaminophen  
Carbamazepine 
Caffeine 
Theophylline 
 

Differences in E. coli and chemical indicator 
concentrations varied between sampling sites due to 
land use and population. 
 
Concentrations of carbamazepine, caffeine, and 
theophylline at the WWTP inlet fluctuated daily as a 
result of human activity. 
 
The concentration of acetaminophen remained 
relatively constant, indicating that it may be a suitable 
WWTP tracer for raw sewage in CSOs. 
 
Seasonal variabilities were observed; however, the 
study did not observe high dilution as a result of 
snowmelt. 
 
Dilution of stormwater caused by CSOs was observed. 

[144] 

Greater 
Montréal area, 
QC, Canada 

Urban catchment E. coli Carbamazepine The simulation model showed that sewage is the main 
source of E. coli contamination in urban water 
supplies. 
 
Carbamazepine is a stable tracer of sewage 
contamination since it was not present in stormwater. 

[145] 
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Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

Paranaguá and 
Guaratuba bays, 

Brazil 

Subtropical estuaries E. coli 
Enterococci 

Coprostanol  
Linear alkylbenzenes (LABs) 
 

No relationships were found between the microbial 
and chemical indicators when linear models 
(statistical) were applied. However, relationships 
between microbial indicators and coprostanol were 
observed when logistic regression was applied. 
 
It was hypothesized that temperature can affect the 
relationships between microbial indicators and 
coprostanol due to varying threshold values in 
different climates. Increased concentrations of 
enterococci were observed in the winter, and low 
concentrations were observed in the summer. 

[146] 

Milwaukee, WI, 
USA 

Streams Adenovirus group A 
Adenovirus groups A-F 
Adenovirus groups C, D, F 
Campylobacter jejuni 
Cryptosporidium spp. 
Enteropathogenic E. coli (eae 
gene) 
Enterovirus 
Hepatitis A virus 
Human Bacteroides 
Human Lachnospiraceae 3 
Human Polyomavirus 
Norovirus genogroup I 
Norovirus genogroup II 
Pepper mild mottle virus 
Rotavirus group A (NSP3 gene) 
Rotavirus group A (VP1 gene) 
Rotavirus group C 
Salmonella (invA gene) 
Salmonella (ttr gene) 
Shiga toxin 1-producing bacteria 
(stx1 gene) 
Shiga toxin 2-producing bacteria 
(stx2 gene) 
sHSV 

106 chemical indicators tested within 
the following categories: 
Analgesic-Anti-inflammatory: 15 
Anesthetic: 1 
Antacid: 4 
Anthelmintic: 1 
Anti-parkinson: 1 
Antiallergen: 1 
Antianxiety: 1 
Antibiotic: 5 
Anticonvulsant: 2 
Antidepressant-Neurochemical 
Modulation: 17 
Antidepressant: 3 
Antidiarrheal: 1 
Antifungal: 2 
Antihistamine: 3 
Antihistamine: 1 
Antihyperglycemic: 1 
Antihypertensive: 1 
Antimalarial: 1 
Antitussive: 1 
Antiviral: 7 
Anxiolytic, sedative: 1 
Asthma Relief: 4 
Cardiovascular Care: 15 
Chemotherapeutic: 3 
Chronic Condition: 1 
Corticosteroid: 2 
Degradate: 2 
Estrogen inhibitor: 1 

Many of the markers were not adequate as sewage 
contamination markers due to their lack of sensitivity. 
 
Chemical indicators had increased temporal variability 
compared to microbial indicators. 
 
Chemical indicators correlated with each other and 
were more consistent when estimating sewage 
pollution compared to microbial indicators. 
 
Multiple lines of evidence in monitoring and research 
are recommended when using indicators to determine 
the presence of human fecal contamination in water 
systems. 
 
Five human sewage indicators were detected 
consistently: pepper mild mottle virus, human 
Bacteroides, human Lachnospiracaea, acetaminophen, 
and metformin. 

[147] 
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Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

Milwaukee, WI, 
USA 

Streams Listed on previous page Estrogen: 1 
Opioid: 2 
Stimulant: 5 

Listed on previous page [147] 

Germany, 
Austria, 

Slovakia, 
Hungary, Serbia, 

Croatia, 
Romania, 
Bulgaria, 

Republic of 
Moldova, 
Ukraine 

River AllBac 
BacHum 
BacR 
Cl. perfringens 
E. coli 
Enterococci 
HF183II 
Pig2Bac 
 
 

49 chemical indicators tested 
including:  
4-acetylaminoantipyrine 
4-formylaminoantipyrine 
Artificial sweeteners 
Benzotriazoles 
Betablockers 
Caffeine 
Carbamazepine 
Clofibric acid 
Cytostatic drugs and other 
pharmaceuticals 
Iodinated X-ray contrast media 
Lipid-lowering drugs 
Nonsteroidal anti-inflammatory 
drugs 
Salicyclic acid 

High concentrations of E. coli were observed due to 
the influence of WWTPs. 
 
Certain E. coli trends cannot be explained (i.e., lower 
concentrations after the merge of tributaries, massive 
increases). 
 
Underestimation and processing errors may have 
impacted the enterococci data. 
 
HF183II, BacHum and E. coli were strongly 
correlated, indicating that the fecal pollution originated 
from human hosts. 
 
No strong correlations were observed between 
traditional fecal indicators, ruminant, and pig-
associated markers. 
 
Regression analysis shows no detectable relationships 
between caffeine with genetic or bacterial markers, 
while a relationship between HF183II and 
carbamazepine was identified. 

[148] 

Helena Valley, 
MT, USA 

Groundwater Coliphage, male-specific 
Coliphage, somatic 
E. coli 
Enterococci 
Total coliforms 
 
 

17-alpha-estradiol 
17-alpha-ethynyl-estradiol 
17-beta-estradiol 
Androstenedione 
Atrazine 
Bisphenol A (BPA) 
Caffeine 
Carbamazepine 
DEET 
Diazepam 
Diclofenac 
Diethylstilbestrol 
Dilantin 
Estriol 
Estrone 
Fluoxetine 
Gemfibrozil 

Most frequently detected PPCPs include 
sulfamethoxazole, atrazine, carbamazepine, dilantin 
and diclofenac. 
 
It is hypothesized that atrazine is present in domestic 
wastewater since it correlates strongly with chloride 
and total dissolved solids (which are domestic 
wastewater discharge indicators). 
 
Poor correlations were observed between microbial 
indicators and PPCPs. 
 
Coliphages are not suitable indicators of fecal 
contamination in groundwater due to their lack of 
detection alongside PPCPs. 

[149] 
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Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

Helena Valley, 
MT, USA 

Groundwater Listed on previous page Hydrocodone 
Ibuprofen 
Meprobamate 
Naproxen 
Oxybenzone 
Pentoxifylline 
Progesterone 
Sulfamethoxazole 
Testosterone 
Triclosan 
Trimethoprim 

Listed on previous page [149] 

St. Lucia, 
Caribbean 

River watershed BacBovine 
BacGeneral 
BacHuman 
E. coli 
Total coliforms 
 

Acetaminophen 
Caffeine 
Fluconazole 
Ibuprofen 
Metformin 
Sucralose 

Increased total coliforms and E. coli concentrations 
from river grab samples did not coincide with 
concentrations detected, indicating additional pollution 
sources are contributing to the bay.  
 
The majority of microbial contamination in the river 
originated from non-human sources (i.e., ruminants 
and other warm-blooded animals). 
 
Areas of increased contamination were located near 
areas where pit latrines are used and open defecation is 
practiced, likely causing the increased detection of 
chemical indicators. 
 
Correlations between sucralose, caffeine, and 
BacHuman indicate human fecal contamination. 

[150] 

Gwelup and 
Jandakot 

borefields, Perth, 
Australia 

Production bores, 
monitoring bores, 

surface water 

Clostridium perfringens 
E. coli 
Enterococci 
F-RNA coliphages 
Faecal streptococci 
Presumptive sulphite-reducing 
clostridia (SRCs) 
Somatic coliphages 

8 faecal sterols 
4 hormones 
Caffeine 

Microbial indicator concentrations were highest at the 
basins and lowest at the production bores. 
 
Aquifer filtration resulted in bacterial indicator 
concentrations decreasing by 4-5 orders of magnitude 
while cholesterol concentrations decreased by 3 orders 
of magnitude. 
 
Enterococci is a more sensitive indicator compared to 
E. coli. 
 
It was observed that the physicochemical indicators 
(i.e., pH, dissolved oxygen [DO], etc.) were not 
adequate surrogates for microbial indicators. 

[151] 
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Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

Mille Île’s river, 
greater Montréal 

area, QC, 
Canada 

River BomtDNA 
E. coli 
HF183 
HumtDNA 
PomtDNA 
Total coliforms 

Acetaminophen 
Caffeine 
Carbamazepine 
Dihydro-carbamazepine 
Theophylline 

One snowmelt/rainfall event resulted in elevated E. 
coli and HF183 concentrations, indicating that CSOs 
and/or the municipal water resource water recovery 
facility may have contributed to the elevated 
concentrations of raw sewage. 
 
It was observed that HF183 was the most sensitive 
marker to wet-weather and dry-weather overflows 
compared to all other indicators. 
 
E. coli and HF183 concentrations peaked during a 
contamination event, demonstrating that human 
sewage was the primary source of contamination. 
 
Caffeine, theophylline and carbamazepine peaked 
earlier than E. coli and other human markers, 
highlighting their potential as early CSO discharge 
indicators. 
 
Concentrations of caffeine and theophylline decreased 
during wet weather events while carbamazepine 
concentrations remained high, showing that 
carbamazepine is an indicator suitable for detecting 
human sewage contamination in wet weather 
conditions. 

[141] 

Grand River 
Watershed, ON, 

Canada 

River watershed BacBov 
BacGen 
BacHum 
E. coli 
 
 

Acesulfame-K 
Caffeine 
Carbamazepine 
Gemfibrozil 
Ibuprofen 
Naproxen 
Sulfamethoxazole 

Multiple anthropogenic tracers were found at the 
downstream sites throughout the sampling period, 
strongly indicating the presence of domestic 
wastewater impacts. 
 
Elevated concentrations of BacHum and BacBov were 
found close to areas used for agricultural purposes. 
 
The highest concentrations of pharmaceuticals were 
found at sites where there was an elevated abundance 
of FIB and human markers. 
 
It was hypothesized that low concentrations of organic 
compounds were due to groundwater removal or low 
consumption rates in communities near the sample 
sites. 

[152] 
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Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

Santa Barbara, 
CA, USA 

Storm drains and 
creeks 

E. coli 
Enterococci 
Enterococcus spp. 
HF183 
Methanobrevibacter smithii 
Total coliforms 
 

Caffeine 
Cotinine 

The first study to directly compare the accuracy of 
canine responses to laboratory-based methods for 
detecting human waste in creeks and storm drains. 
 
The dogs accurately detected the presence of human 
waste contamination (70% for Dog 1 and 100% for 
Dog 2), demonstrating that canine scent detection is a 
viable method for anthropogenic waste detection. 
 
No false negatives were observed; however, both dogs 
indicated that human waste was present in four 
samples where human waste was not present. 
 
Canine responses were associated with certain assays 
(HF183 for Dog 1, HF183 and caffeine for Dog 2). 

[153] 

Gryteland 
stream, Norway 

Stream (also known 
as a catchment) 

Coliforms 
E. coli 
Human Bacteroidales 
Non-human Bacteroidales 

46 chemical indicators tested 
Most common chemical indicators 
included: 
2-hydroxy-ibuprofen 
Bisphenol A (BPA) 
Caffeine 
Carboxy-ibuprofen 
Gabapentin 
Ibuprofen 
Paracetamol 
Saccharin 

The first Norwegian study to use MST to track 
pollution sources in water runoff collected in a natural 
wetland system. 
 
Bacteroidales DNA profiling methods were effective 
when distinguishing between human and non-human 
pollution sources. 
 
A strong positive correlation was seen between PPCPs 
and human Bacteroidales, while PPCPs were not 
correlated with high concentrations of E. coli. The 
most frequently detected PPCP was gabapentin. 
 
The nature-based treatment system was seen to remove 
E. coli, while PPCPs were unaffected. 

[154] 

Toronto, ON, 
Canada 

River watershed E. coli 
GooseMt 
Gull4 
HF183 
HuMt 

Acesulfame K 
Acetaminophen 
Caffeine 
Carbamazepine 
Codeine 
Cotinine 
Paraxanthine 
Sucralose 
Theophylline 

Microbial indicators were observed to be useful tools 
when interpreting elevated concentrations of E. coli in 
samples. 
 
HF183 was detected in all samples from the Don River 
and associated outfalls. 
 
The presence of sewage contamination was indicated 
by the detection of HF183 with chemical markers (i.e., 
caffeine, acesulfame). 

[155] 
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Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

Toronto, ON, 
Canada 

River watershed Listed on previous page Listed on previous page Increases in concentrations of E. coli and human DNA 
markers were observed during wet weather events. 
 
During dry weather flows, HF183, caffeine, 
acesulfame, and carbamazepine were detected at 
harbour CSO outfalls, which may be the result of CSO 
cross-connections. 

[155] 

Greater 
Montréal area, 
QC, Canada 

Storm outfalls and 
storm sewer sub-

catchments 

E. coli 
GenBac 
HF183 
Total coliforms 
 

Acetaminophen 
Caffeine 
Carbamazepine 
Theophylline 

High detections of HF183, caffeine and theophylline 
across all samples suggest the infiltration of sanitary 
sewer contamination into the storm pipe system. 
 
The utilization of traditional indicators to determine 
fecal pollution sources was found to be insufficient, 
suggesting that the combination of traditional 
indicators with human markers is necessary. 
 
It was determined that HF183, caffeine, and 
theophylline are indicative of human waste 
contamination from cross-connections, and 
carbamazepine indicates sewer exfiltration 
contamination. 
 
Positive correlations between HF183 and E. coli 
suggested that human fecal pollution was present. 

[156] 

Kauai, HI, USA WWTP effluent and 
perennial streams 

E. coli 
Enterococci  
Total coliforms 
 

Sucralose Average sucralose concentrations in the WWTP 
effluents were 39,167 ng/L (~9 ng/L/person), 
demonstrating its potential use as an indicator of water 
contaminated with wastewater. 
 
Enterococci concentrations exceeded the standards in 
all streams analyzed. 
 
It was observed that concentrations of FIB were not 
dependent on the presence of sucralose, however, 
using sucralose and enterococci can indicate the risk of 
human-related pathogens in recreational waters and 
drinking water.  

[157] 
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Location Aquatic 
environment Microbial indicators Chemical indicators Key findings Reference 

Lake Ontario, 
Toronto, ON, 

Canada 

Lake C. perfringens 
Cryptosporidium 
E. coli 
Giardia 

2-OH-carbamazepine 
Acesulfame 
Aspartame 
Caffeine 
Carbamazepine 
Sucralose 

Significant correlations were observed between 
caffeine, carbamazepine, 2-OH-carbamazepine, 
Giardia, E. coli, and C. perfringens in raw sewage 
samples collected during wet weather events, 
indicating that these indicators are indicative of raw 
sewage discharges. Weak, yet significant, correlations 
were seen between flowrate, Giardia, E. coli, and C. 
perfringens. 
 
Carbamazepine and 2-OH-carbamazepine were 
positively correlated with flowrate, while total 
suspended solids and acesulfame were negatively 
correlated with flowrate. This indicates that 
acesulfame is diluted by high flows. 
 
It was determined that carbamazepine and 2-OH-
carbamazepine are the most suitable indicators when 
determining the presence of human fecal 
contamination during wet weather conditions. 

[158] 

Ythan and Don 
rivers, Scotland 

Catchments E. coli  
Fecal coliforms 
Total coliforms 
 

Acesulfame 
Caffeine 
Saccharin 
Sucralose 
Tryptophan 

Positive correlations were seen between fecal 
coliforms, E. coli, total phosphorous, caffeine, and 
saccharine, demonstrating the potential for these 
indicators to be used as fecal discharge tracers. 
 
Positive correlations were also seen between caffeine, 
artificial sweeteners, coliforms, E. coli, and total 
phosphorous, suggesting that the chemical indicators 
can be used as reliable effluent discharge tracers. 
 
It was determined that a combination of physical and 
chemical tracing approaches is needed when 
evaluating the presence of septic tank effluents.   

[143] 
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Chapter 3 – Methodology 

3.1 Data Collection 

 The data used for this study was provided by the City of Calgary and spanned from 2018 to 2023 

(see Tables 3.2 – 3.5).  The dataset contained three main categories of parameters: 1) FIB (i.e., E. coli, 

total coliforms, enterococci) (see Table 3.3), 2) MST markers (see Table 3.4), and 3) micropollutants (i.e., 

chemical indicators) (see Table 3.5). The frequency of data collection as well as the number of data points 

provided by the City of Calgary for BR2, BR3, BR4, and PF are listed in Table 3.2. 

Table 3.3 presents the detection limits for the FIB analyzed by the City of Calgary. Note that the 

detection limit for enterococci cannot be determined due to the nature of the enterococci qPCR assay (US 

EPA Method 1611). This method uses amplification to detect the DNA of enterococci bacteria (lsrRNA, 

23S rRNA) in water samples, which is reported as calibrator cell equivalents (CCEs) rather than a 

quantitative measurement based on a standard curve [159]. The qPCR assay detects both viable and non-

viable bacterial cells and is preferred over traditional culture methods due to its rapidity and specificity 

[159]. The usage of CCEs has been shown to accurately predict the relationship between enterococci and 

gastrointestinal illnesses, which indicate risks to human health, making it the preferred metric for 

assessing enterococci levels [160]. MST markers are shed by warm-blooded hosts, such as humans, 

ruminants, and birds. Table 3.4 lists the target genes and assay names used to identify fecal sources from 

the microbial markers provided in the dataset from the City of Calgary. Micropollutants monitored fell 

into the following broad classifications: 1) hormones/contraceptives, 2) industrial compounds, 3) 

pharmaceuticals, and 4) WWTP tracers (see Table 3.5).  

 

3.2 Data Visualization 

 The Python programming language, which was executed within the Jupyter Notebook 

environment accessed through the Anaconda distribution, was used to process and generate visualizations 

of the dataset. Python provides flexibility and a broader spectrum of analytical capabilities, making it 
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ideal for data-driven research [161]. Jupyter Notebooks are interactive collaborative platforms that allow 

for the execution of code in modular cells and provide immediate visualization of results. Preprocessing 

of the dataset via Python included removing non-numerical values, omitting unnecessary columns, and 

converting the data to numerical values for analysis. The main Python libraries and modules utilized as 

well as their functions are summarized in Table 3.1. Sample Python codes used to analyze and visualize 

the data can be found in Appendix A.  

  

Table 3.1 Functions of Python libraries and modules used for data analysis. 

Python library/module Version Function Reference 
Pandas 1.5.3 Data analysis and manipulation [162] 
Seaborn 0.12.2 Generating statistical visualizations [163] 

Matplotlib 3.7.1 Plotting static and interactive graphics [164] 
OS 3.10.9 Accessing files within the local operating system [165] 
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Table 3.2 Site information and parameters monitored where microbial and chemical indicators were sampled. Data points considered are limited 
to sample dates where both microbial and micropollutant sampling took place. a) CowM3 and Pig2Bac sampling ended in 2021/2022. The 
remaining MST markers were sampled from 2018 – 2023. b) Sampling of certain micropollutants ended in 2021/2022 (see section 4.1). c) 
Micropollutant sampling did not take place during 2023 (see section 4.1). BR: Bow River. CCE: Calibrator cell equivalents. FIB: Fecal indicator 
bacteria. MPN: Most probable number. MST: Microbial source tracking. PF: Policeman’s Flats. 

Site 
Designation Site Name Latitude Longitude Parameters Unit 

Number of data 
points from 2018 to 

2023 
BR2 Bearspaw Source 

Water 
51.09971 -114.228 Enterococci, FIB CCE/100 mL 49 

E. coli and total coliforms, FIB MPN/100 mL 49 
MST markers (9 genetic markers, 

see Table 3.4) 
Copies/100 mL 29-49a 

Chemical indicators (56 
substances, see Table 3.5) 

ng/L 28-49b 

BR3  Bow River 
Cushing Bridge 

51.03857 -114.013 Enterococci, FIB CCE/100 mL 48 
E. coli and total coliforms, FIB MPN/100 mL 48 

MST markers (9 genetic markers, 
see Table 3.4) 

Copies/100 mL 39-48a 

Chemical indicators (56 
substances, see Table 3.5) 

ng/L 37-48c 

BR4  Bow River 
Upstream of 

Highwood River 

50.81972 -113.796 Enterococci, FIB CCE/100 mL 46 
E. coli and total coliforms, FIB MPN/100 mL 46 

MST markers (9 genetic markers, 
see Table 3.4) 

Copies/100 mL 31-46a 

Chemical indicators (56 
substances, see Table 3.5) 

ng/L 31-46b 

BR4 - PF Policeman’s Flats 50.841969 - 113.9511340 Enterococci, FIB CCE/100 mL 8 
E. coli and total coliforms, FIB MPN/100 mL 8 

MST markers (9 genetic markers, 
see Table 3.4) 

Copies/100 mL 4-8a 

Chemical indicators (56 
substances, see Table 3.5) 

ng/L 2-8b 
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Table 3.3 Detection limits of the fecal indicator bacteria (FIB) monitored by the City of Calgary.       
CCE: Calibrator cell equivalents. MPN: Most probable number. a) There is no reportable limit for 
Enterococcus CCE/100 mL. All values are reported. 

Component Detection Limit  Units 
E. coli <1 MPN/100 mL 

Enterococcia - CCE/100 mL 
Total coliforms <1 MPN/100 mL 

 

Table 3.4 Culture-dependent and library-independent microbial source tracking (MST) markers 
monitored by the City of Calgary. Quantitative polymerase chain reaction (qPCR) was used to conduct 
the assays listed. rRNA: Ribosomal RNA. Reporting limit: 1200 Copies/100 mL. 

Target host Target gene Assay References 
Canada 
goose 

16S rRNA CGO1 (or CG01) [166], [167], 
[168] 

Cow Sialic acid-specific 9-O-acetylesterase 
secretory protein homolog 

CowM3 [87], [169], 
[170] 

Dog Long chain fatty acid -CoA ligase Dog3 [168], [171] 
Human 16S rRNA HF183 [87], [168] 

 Cell surface-associated genes HumM2 [87] 
Muskrat 16S rRNA MuBac [85], [168] 

Pig 16S rRNA Pig2Bac (or Pig-2-
Bac) 

[87] 

Ruminant 16S rRNA Rum2Bac (or Rum-
2-Bac) 

[85], [168] 

Seagull 16S rRNA LeeSG (or LeeSg) [168], [172] 
 

Table 3.5 List of micropollutants monitored by the City of Calgary (adapted from [31]). BPA: Bisphenol 
A. BPS: Bisphenol S. DEET: N,N-diethyl-meta-toluamide. PFOA: Perfluorooctanoic acid.                 
PFOS: Perfluorooctanesulfonic acid. TCEP: Tris(2-carboxyethyl) phosphine. TCPP: Tris(chloropropyl) 
phosphate. WWTP: Wastewater treatment plant. 

Compound Broad Classification Subcategory Reporting Limit (ng/L) 
17α-Estradiol Hormone/Contraceptive Hormone 10 

17α-Ethynylestradiol Hormone/Contraceptive Contraceptive 0.8 
17β-Estradiol Hormone/Contraceptive Hormone 10 

Androstenedione Hormone/Contraceptive Hormone 2 
Equilenin Hormone/Contraceptive Hormone 5 
Equilin Hormone/Contraceptive Hormone 5 
Estriol Hormone/Contraceptive Hormone 5 
Estrone Hormone/Contraceptive Hormone 5 

Norethindrone Hormone/Contraceptive Contraceptive 5 
Norgestimate Hormone/Contraceptive Contraceptive 5 
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Compound Broad Classification Subcategory Reporting Limit (ng/L) 
Progesterone Hormone/Contraceptive Hormone 2 
Testosterone Hormone/Contraceptive Hormone 2 

4-n-Nonylphenol Industrial Compounds Industrial Surfactant 10 
4-t-Octylphenol Industrial Compounds Industrial Surfactant 100 

Benzyl butyl phthalate Industrial Compounds Plasticizer 20 
BPA Industrial Compounds Plasticizer 50 
BPS Industrial Compounds Plasticizer 5 

Cotinine Industrial Compounds Cotinine 1 
DEET Industrial Compounds Insect Repellent 5 

Di-n-octyl phthalate Industrial Compounds Plasticizer 100 
Di(2-ethylhexyl) phthalate Industrial Compounds Plasticizer 1500 

Dibutyl phthalate Industrial Compounds Plasticizer 300 
Diethyl phthalate Industrial Compounds Plasticizer 50 

Dimethyl phthalate Industrial Compounds Insect Repellent 100 
PFOA Industrial Compounds Industrial Surfactant 10 
PFOS Industrial Compounds Industrial Surfactant 20 
TCEP Industrial Compounds Flame Retardant 5 
TCPP Industrial Compounds Flame Retardant 50 

Triclosan Industrial Compounds Antibacterial Agent 10 
Acetaminophen Pharmaceutical Analgesic 5 

Atenolol Pharmaceutical Cardiovascular Drugs 5 
Carbamazepine Pharmaceutical Antiepileptic 1 

Citalopram Pharmaceutical Antidepressant 20 
Clarithromycin Pharmaceutical Antibiotic 5 

Codeine Pharmaceutical Opiate 10 
Diclofenac Pharmaceutical Analgesic 5 

Erythromycin Pharmaceutical Antibiotic 2 
Fluoxetine Pharmaceutical Antidepressant 5 

Gemfibrozil Pharmaceutical Cardiovascular Drugs 5 
Ibuprofen Pharmaceutical Analgesic 10 
Metformin Pharmaceutical Antidiabetic 5 
Naproxen Pharmaceutical Analgesic 5 
Nifedipine Pharmaceutical Cardiovascular Drugs 5 

Norfluoxetine Pharmaceutical Antidepressant 
(metabolite) 

5 
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Compound Broad Classification Subcategory Reporting Limit (ng/L) 
O-Desmethyl-venlafaxine Pharmaceutical Antidepressant 

(metabolite) 
1 

Pantoprazole Pharmaceutical Acid Reducer 5 
Primidone Pharmaceutical Antiepileptic 1 

Propranolol Pharmaceutical Cardiovascular Drugs 5 
Salbutamol Pharmaceutical Others 5 

Sulfamethoxazole Pharmaceutical Antibiotic 1 
Trimethoprim Pharmaceutical Antibiotic 1 
Venlafaxine Pharmaceutical Antidepressant 1 
Zopiclone Pharmaceutical Others 10 

Acesulfame WWTP Tracer Artificial Sweetener 50 
Caffeine WWTP Tracer Stimulant 5 
Sucralose WWTP Tracer Artificial Sweetener 10 

 

3.3. General Analysis Workflow 

 Data filtering and clean-up were completed prior to data processing in Python. First, values that 

were below the reporting limits (RLs) were excluded from the analysis. Although substitution of censored 

data (i.e., data < RLs) with its RL or ½ RL is common practice, this approach produces poor estimates 

[173]. Maximum likelihood (MLE) and Kaplan-Meier (KM) techniques are example alternatives 

employed for substitution [174], [175], but this is outside the scope of this thesis. Hence, it was deemed 

more appropriate to exclude the data rather than to substitute as information from the original dataset may 

be modified through substitution.  

 Parameters with fewer than seven numerical detections were excluded from the analysis, and 

values below the RLs or detection limits were converted to “Not a Number” (NaN) values in Python. 

Although there is no consensus related to the sample size required for correlation analysis in water 

quality, a minimum of n = 5 for Pearson correlation analysis and n ≥ 7 for regression analysis (straight 

line model only) have been recommended [176]. Sample sizes for the three sites across all datasets are 

listed in Table B.1 of Appendix B. 
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 Pearson and Spearman correlation coefficients are the most frequently employed in water quality 

correlation analysis (see section 3.3.2), with Pearson requiring data to be normal for it to be a valid 

approach. Furthermore, preliminary data processing suggested that the datasets were mostly non-normal 

and subsequent data transformation was completed and checked for normality: 1) log10, 2) 1 x⁄ , 3) √x
2 , 

and 4) x2. The normality of the dataset was analyzed following each transformation method using the 

Shapiro-Wilk, D’Agostino’s K2, and Jarque Bera normality tests (see section 3.3.1). The data 

transformation method which yielded the highest number of normalities was selected. The same approach 

was applied when analyzing seasonal data for each site. Once the data transformation methods were 

selected, the appropriate correlation methods and clustering linkage methods were identified. A 

visualization of the steps involved in this workflow is shown in Figure 3.1. Further information regarding 

normality, correlation and clustering linkage method selection are described in the following sections. 

 

Figure 3.1 Data analysis flow chart. Boxes highlighted in red indicate the final approaches used. 
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Preliminary visualizations were used to gain an initial understanding of the dataset provided. 

Presence/absence plots were used to identify the detection of parameters over the sampling period. 

Temporal variations of representative parameters from the FIB, MST markers, and chemical indicators 

were observed through time series plots and their relationship with the flow of the BR was analyzed. Box 

plots were utilized to visualize data distributions at each site. Individual box plots, representing the 

interquartile range (IQR), median, and minimum and maximum data points (shown within the whiskers), 

were used to assess data normality and skewness. The IQR is illustrated by the rectangles in each plot 

where smaller IQRs indicate consistent data and larger IQRs show that the data points have a larger 

spread [177], [178], [179]. For normally distributed data, the median is located in the centre of the box 

plot and the whiskers are equal in length. Right-skewed distributions exhibit a median in the lower part of 

the box plot with a lower whisker shorter than the upper whisker. A left-skewed distribution is 

characterized by a median in the upper part of the box plot with a longer lower whisker and a shorter 

upper whisker [180], [181]. Analysis of the dataset as a whole and seasonally was conducted for each site 

to determine overall and seasonal trends and accurately interpret site-specific and seasonal variations. 

Using the start dates of the seasons as defined by the National Research Council of Canada (i.e., Spring: 

March 20, Summer: June 20/21, Fall: September 22/23, Winter: December 21/22) [182], the overall 

datasets for each site were manually sorted into the seasons using Microsoft Excel. 

 

3.3.1 Normality Tests 

The equations used to calculate normality for the Shapiro Wilk, D’Agostino’s K2 and Jarque Bera 

tests are outlined in Table 3.6, however, these calculations were performed using Python (see Appendix 

A). Using multiple normality tests is recommended in the literature, as relying on the results of a single 

test may not provide a comprehensive assessment of the data [183], [184], [185]. The Shapiro-Wilk test is 

one of the most common normality tests and is ideal for small to moderate sample sizes (n < 50) [184], 

[186]. Using this approach, a dataset's normality is determined by comparing the ordered sample values to 
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the expected values from a normal distribution. A W statistic value of 1 indicates that the data is likely 

normal, while a value closer to 0 rejects the normality null hypothesis [193]. The D’Agostino’s K2 and 

Jarque-Bera tests determine departures from normality based on the skewness and kurtosis of a dataset 

[183], [188], [189], [190], [191]. D’Agostino’s K2 test can be used for small to moderate sample sizes     

(n < 20), and the Jarque-Bera test is more accurate with larger sample sizes [189], [190]. Skewness refers 

to the extent to which the distribution is symmetrical, while kurtosis measures the dispersion of the data 

from the normal distribution [179].  

 

Table 3.6 Shapiro-Wilk, D’Agostino’s K2 and Jarque-Bera normality test equations [192], [193]. 

Normality test Equation Description of variables 
Shapiro-Wilk 

𝑊 =  
(∑ 𝑎𝑖𝑥(𝑖)

𝑛
𝑖=1 )

2

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 

where (𝑎1, … , 𝑎𝑛) =  
𝑚𝑇𝑉−1

(𝑚𝑇𝑉−1𝑉−1𝑚)1/2 

𝑥𝑖 = ith order statistic 
�̅� = (𝑥1 + ⋯ + 𝑥𝑛 𝑛⁄  = sample mean 
𝑚 = (𝑚1, … , 𝑚𝑛)𝑇 and 𝑚1, … , 𝑚𝑛 = the 
expected order statistics 
𝑉= covariance matrix of the order 
statistics sampled from the normal 
population 

D’Agostino’s K2 
𝑍1(𝑔1) = 𝛿𝑙𝑛 (

𝑔1

𝛼√𝜇2
+ √

𝑔1
2

𝛼2𝜇2
+ 1) 

where 𝑊2 = √2𝛾2 + 4 − 1, 
𝛿 = 1/√𝑙𝑛𝑊, 

𝛼2 = 2/(𝑊2 − 1) 

𝑔1 = transformation for sample skewness 
𝛼 and 𝛿 = constants 
𝜇2 = 𝜇2(𝑔1) = variance of 𝑔1 
𝛾2 = 𝛾2(𝑔1) = kurtosis of 𝑔1 

Jarque-Bera 𝐽𝐵 =  𝑛[(𝑏1) 6 + (𝑏2 − 3)2 24⁄⁄ ] 𝑛 = sample size 
𝑏1 = skewness 
𝑏2 = kurtosis 

 

 

The normality of the datasets for each site (BR2, BR3, BR4), both as a whole and seasonally, was 

assessed using the Shapiro-Wilk, D’Agostino’s K2 and Jarque-Bera tests following various data 

transformations. The SciPy “stats” library submodule (version 0.13.5) was utilized to access the 

necessary statistical functions. Each parameter was analyzed using the three normality tests, providing a 

statistic and corresponding p-value. Parameters with a p-value greater than 0.05 were deemed significant 
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[194], [195]. This process was repeated for each data transformation considered. Transformation methods 

resulting in the highest portion of parameters classified as “Normal” were selected. Sample Python code 

for the Shapiro-Wilk normality test can be found in Appendix A. 

 

3.3.2 Correlation Method Selection 

 Correlation analysis identifies the relationship between variables [196], with positive correlations 

(i.e., +1) indicating that as one variable increases, the second variable tends to increase as well, while 

negative correlations (i.e., -1) show that as one variable increases, the second variable decreases [197]. 

The three correlation methods available when using the “.corr” function (version 1.5.3) in Python are 1) 

Pearson, 2) Spearman, and 3) Kendall. Pearson is employed when the data is normally distributed while 

Spearman and Kendall are used when the data is non-parametric, or not normally distributed [198].  

A brief literature review suggested that Spearman and Pearson are commonly used correlation 

methods in water quality analysis [199], [200], [201], [202], [203]. The Pearson correlation method was 

selected for datasets for each site (overall and seasonally) that were considered to be normal following the 

appropriate data transformation. This tailored approach to the dataset was employed to enhance the 

reliability of the results generated by the correlation matrices. 

While correlation strength criteria have been developed within the scientific community, there is 

no general consensus on a universally accepted standard. As illustrated in Table 3.7, a wide range of 

correlation strength interpretations for correlation strength exist [204], [205], [206], [207]. For the 

purposes of this thesis, the correlation coefficients are categorized as weak (0 to 0.3), low (0.3 to 0.5), 

moderate (0.5 to 0.7), strong (0.7 to 0.99), or perfect (1) based on the absolute value of the Pearson 

correlation coefficient (R2). This will be used for any discussions related to correlation.  
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Table 3.7 Correlation strength interpretations across various studies and what was employed for this 
thesis. R2: Pearson correlation coefficient. 

Correlation strength 
interpretation 

|R2| 
coefficient Reference 

This study 
Correlation strength 

interpretation 
|R2| 

coefficient 
Little or (very) weak 0 to 0.29 [204] Weak 0 to 0.3 

 0 to 0.3 [205]   
 0 to 0.3 [206]   
 0 to 0.2 [207]   

Low or weak 0.3 to 0.49 [204] Low 0.3 to 0.5 
 0.3 to 0.5 [206]   
 0.2 to 0.4 [207]   

Moderate 0.5 to 0.69 [204] Moderate 0.5 to 0.7 
 0.3 to 0.7 [205]   
 0.5 to 0.7 [206]   
 0.4 to 0.6 [207]   

High or strong 0.7 to 0.89 [204] Strong 0.7 to 0.99 
 0.7 to 1 [205]   
 0.7 to 1 [206]   
 0.6 to 0.8 [207]   

Very high/strong or perfect 0.9 to 1 [204] Perfect 1 
 1 [205]   
 0.8 to 1 [207]   

 

 

3.3.3 Clustering Linkage Method Selection 

 Hierarchical clustering, a type of unsupervised machine learning, was used to group similar data 

into clusters based on a specified similarity or distance metric [208]. This technique is unsupervised since 

it does not follow explicit instructions. Instead, it identifies patterns and relationships within the data 

based on a specified method (i.e., single, average, Ward) [209]. Dendrograms are one type of visualization 

generated using clustering analysis. Shorter cluster distances indicate that there are similarities between 

parameters, while larger cluster distances suggest dissimilarities between parameters [210]. Figure 3.2 

demonstrates this concept, where parameters f and g are similar due to their shorter cluster distance, while 

parameters h and i are dissimilar due to their larger cluster distance [208], [211]. 
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Figure 3.2 Visual representation of hierarchical clustering of 9 parameters (a-i) forming three clusters 
(adapted from [212]). 

 

 The determination of “short” and “large” cluster distances is data-dependent and requires the 

identification of a threshold distance in order to identify main clusters [213]. All clusters below the 

threshold distance will be considered similar, while those above the threshold are dissimilar. Such 

thresholds are determined through the subjective analysis of the dendrogram and selecting a point that 

reflects the desired level of granularity, aiding with the identification of patterns and relationships within 

the dataset. 

 There are two main categories of hierarchical clustering: 1) agglomerative and 2) divisive. 

Agglomerative hierarchical clustering considers each data point to be an individual cluster and groups the 

data into larger clusters, with the entire data set being the last cluster [214], [215]. This is opposite to 

divisive hierarchical clustering, which first assumes that the entire dataset is the first cluster, then 

proceeds to group the data into smaller clusters until each data point is considered to be individual 

clusters [215], [216]. This concept is illustrated in Figure 3.3 [215], [217], [218]. 
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Figure 3.3 Visual representation of agglomerative and divisive hierarchical clustering of 9 parameters 
(a-i) (adapted from [215], [217], [218]). 

 

 Within the Python code, the “clustermap” function (version 0.12.2) was used to visualize the 

hierarchical sorting of a dataset by utilizing a specific linkage method. There are seven linkage methods 

available when using the “clustermap” function: 1) single, 2) complete, 3) average, 4) centroid, 5) 

median, 6) Ward, and 7) weighted. These 7 methods are the most commonly used agglomerative 

hierarchical methods and incorporate both graphical and geometric methodologies [215]. Descriptions, 

advantages, disadvantages and visual representations of the linkage methods are listed in Table 3.8 [215], 

[217], [219], [220]. 
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Table 3.8 Summary of the agglomerative hierarchical clustering linkage methods (adapted from [215], 
[217], [219], [220]). 

Linkage 
method 

Description Advantages Disadvantages Visual representation 

Single Measures the 
similarity between 
clusters by 
prioritizing regions 
where the clusters 
are closest 

Can effectively 
handle 
nonelliptical and 
elongated clusters 

Sensitive to noise 
and outliers 

 
Complete Defined by the 

distance between 
the farthest 
members of 
neighbour clusters 

Can produce 
compact clusters 

Sensitive to noise 
and outliers 

 
Average 

(weighted 
and 

unweighted) 

Average distance 
between clusters is 
taken as the 
average distances 
between all data 
point pairs 

Performs well 
with ball-shaped 
clusters 

Computationally 
expensive for large 
datasets 

 
Centroid Measures similarity 

between clusters by 
comparing 
centroids and 
merging clusters 
based on centroid 
similarities 

Performs well 
with compact data 
structures 

Assumes Euclidean 
distance; sensitive 
to differences in 
cluster sizes 

 
Median Uses Euclidean 

distance between 
weighted centroids 
of the clusters to 
measure similarities 
 

Alleviates 
disadvantages of 
the centroid 
linkage method; 
performs well 
with elongated 
data structures 

Not suitable for 
correlation 
coefficients 

- 

Ward Computes the sum 
of squares error 
(ESS) when 
merging clusters 

Effectively 
identifies dense 
spherical clusters 
amidst 
background noise 

Determination of 
the minimum ESS 
is not guaranteed 
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Cluster maps for all sites were generated using the linkage methods listed in Table 3.8. 

Preliminary analysis showed minimal differences among these methods, therefore, Ward linkage was 

selected due to its frequent use and effectiveness for water quality data, as observed in the literature. 

Studies by Trábert et al., Tiri et al., Ukpatu et al., and Guzman et al. have applied the Ward method when 

analyzing the water quality of the Danube River in Budapest, the Koudiat Medouar Watershed in Algeria, 

the Okoro River Estuary in Nigeria, and across the United States, respectively [221], [222], [223], [224]. 

Tiri et al. and Ukpatu et al. explicitly indicated Ward’s ability to produce distinctive groups and detect 

multivariate patterns and relationships across seasons for various water quality parameters [222], [223]. 

Since hierarchical clustering is also used for exploratory data analysis, it is ideal for investigating 

the utility of microbial indicators and micropollutants of interest [212]. The outcomes of the correlation 

matrices and cluster maps will inform the decision as to which parameters should be included in the 

composite fingerprint for each site.  
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Chapter 4 – Results and Discussions 

This chapter explores the qualitative and quantitative relationships between FIB, MST markers 

and chemical indicators at the BR2, BR3, and BR4 sites along the BR. These relationships were analyzed 

through the generation of presence/absence plots, time series plots, box plots, correlation matrices, and 

cluster maps. The chapter then discusses the applicability and effectiveness of combining microbial and 

chemical indicators to identify the presence of human sewage pollution in source waters and aquatic 

environments. The chapter concludes with a proposed composite fingerprint specific to the three sites.  

 

4.1. Frequency of Detection – Presence/Absence 

Presence/absence plots (Figures 4.1 – 4.3) summarize the number of detections (for parameters 

with n ≥ 7) and non-detections for all target indicators during the 2018 – 2023 sampling period. The 

sequence of sites with the lowest to highest number of detections as per the criteria developed in this 

thesis is BR2 (10 parameters) < BR3 (16) < BR4 (33), which is consistent with the hypothesis that sites 

near treated effluent discharge points (which also services larger populations) are likely to have more 

frequent detections of microbial and chemical indicators. For instance, BR2 (source water) is downstream 

of small communities with a combined population of only ~35,650 [42], whereas BR4 is located 

approximately ~3.22 – 14.20 km downstream of Calgary’s three WWTPs servicing over one million 

residents. Additionally, since these sites are located sequentially downstream, the most downstream site 

(BR4) is expected to accumulate more impacts from anthropogenic (urban) activities. 

All three FIB (E. coli, enterococci, and total coliforms) were consistently detected at the three 

sites (i.e., 100% at all sites), with the exception of E. coli at BR2 which was only detected 44.90% over 

the sampling period. Overall, frequent FIB detections were expected as they are ubiquitous in the 

environment since they originate from fecal and non-fecal sources. However, BR2 is a source water site 

which is considered to be the least impacted than the other sites. 
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Figure 4.1 Presence/absence plot for BR2. Red indicates presence and blue indicates that the parameter 
was not detected or was below the reporting limit. Sampling that includes all indicators began in October 
2018. Indicators which met the numerical detection limit (n  ≥ 7) for BR4 are shown here for comparison. 
Indicator sample sizes for BR2 can be found in Table B.1 of Appendix B. BPS: Bisphenol S. DEET: N,N-
diethyl-meta-toluamide. NS: Not sampled. ODV: O-Desmethyl venlafaxine. SMX: Sulfamethoxazole. 
TCEP: Tris(2-carboxyethyl)phosphine. TCPP: Tris(chloropropyl) phosphate. 

Figure 4.2 Presence/absence plot for BR3. Red indicates presence and blue indicates that the parameter 
was not detected or was below the reporting limit. Sampling that includes all indicators began in October 
2018. Indicators which met the numerical detection limit (n  ≥ 7) for BR4 are shown here for comparison. 
Indicator sample sizes for BR3 can be found in Table B.1 of Appendix B. Sampling of chemical indicators 
was discontinued at BR3 in 2023. BPS: Bisphenol S. DEET: N,N-diethyl-meta-toluamide. NS: Not 
sampled. ODV: O-Desmethyl venlafaxine. SMX: Sulfamethoxazole. TCEP: Tris(2-
carboxyethyl)phosphine. TCPP: Tris(chloropropyl) phosphate.  
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Figure 4.3 Presence/absence plot for BR4. Red indicates presence and blue indicates that the parameter 
was not detected or was below the reporting limit. Sampling that includes all indicators began in October 
2018. Indicator sample sizes for BR4 can be found in Table B.1 of Appendix B. Only a select set of 
chemical indicators were considered from 2022 to 2023 (acetaminophen, BPS, BPA, caffeine, cotinine, 
DEET, diclofenac, metformin, ODV, sucralose, TCEP). BPS: Bisphenol S. DEET: N,N-diethyl-meta-
toluamide. NS: Not sampled. ODV: O-Desmethyl venlafaxine. SMX: Sulfamethoxazole. TCEP: Tris(2-
carboxyethyl)phosphine. TCPP: Tris(chloropropyl) phosphate. 

As for monitoring of the MST markers, Rum2Bac (ruminant) was detected more than seven times 

at all three sites. Given the frequent sightings of white-tailed deer, mule deer, and occasional moose in 

Calgary, the widespread detection of Rum2Bac at all three sites is likely attributed to the presence of these 

ruminant species. A 2017–2018 report noted that the majority of wildlife activity within the city is 

dominated by deer species (78% of events), further supporting the frequent occurrence of Rum2Bac at the 

three sites [225].  

CG01 (Canada goose) and LeeSG (seagull) were detected more than seven times at BR3 and 

BR4, but only ≤ four times at BR2. Both gulls and geese have been known to gather along the BR [226]. 

Their presence may be influenced by warmer waters from storm sewers, food availability (i.e., spring 

insect hatchings, fish remaining from snowmelt), and nesting sites [226], [227], [228]. The higher 

frequency of detection of CG01 and LeeSG at BR3 and BR4 compared to BR2 suggests a more localized 

distribution, potentially influenced by land use patterns and the location of wildlife habitats. For example, 
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the Inglewood Bird Sanctuary, located approximately 1 km downstream of BR3, is known to host the 

Canada goose and a variety of gull species, with some of these species passing through the area during the 

migration period [229].  

At BR2, six chemical indicators (caffeine, DEET, metformin, O-Desmethyl-venlafaxine [ODV], 

sucralose, sulfamethoxazole [SMX]) were measured at least seven times throughout the monitoring 

period (Figure 4.1). Since caffeine degrades quickly in aquatic environments, its detection at low 

concentrations (as in the case of BR2) could suggest that it is a remnant of an older release or that a site is 

located in the far-field zone of a WWTP discharge [141], [155]. Regardless of its source, the sporadic 

detection of caffeine at BR2 indicates that the site is minimally impacted by anthropogenic activities, 

reinforcing BR2 as a high-quality source water for Calgary [230]. Additionally, the detection of other 

chemical indicators, including insect repellent (DEET), pharmaceuticals (metformin, ODV, SMX), and an 

artificial sweetener (sucralose) suggests that BR2 may be influenced by persistent anthropogenic 

activities. Hence, BR2 and areas further upstream will require regular monitoring as populations outside 

of Calgary continue to grow and additional discharges (i.e., treated effluent) into the BR upstream may be 

approved. 

Although there is no effluent discharge near BR3, it receives inputs from NC (~1.3 km above 

BR3), a tributary that is impacted by seasonal sewage lagoon discharge (Crossfield, population: 3,599) 

[42] and runoff from the Calgary International Airport [231]. As a result, higher detection frequencies of 

microbial and chemical indicators were observed at BR3 (Figure 4.2). There are also 287 stormwater 

outfalls upstream of BR3 and cross-connections with the sanitary sewer network can lead to transfer of 

untreated sewage via leaks or infiltration. Furthermore, in addition to the FIB and other non-human 

markers (i.e., ruminants, geese, gull), HF183 (human marker) was detected at least seven times (Figure 

4.2). The detection of HF183 at BR3 further suggests a potential source of untreated sewage 

contamination. More specifically, HF183 has been identified as a sensitive human fecal marker [57] and 

can be used in tandem with FIB to trace human fecal signals in the watershed network [232].  
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 The detection of all six chemical indicators previously identified at BR2 were also present at 

BR3, with the addition of a pharmaceutical (acetaminophen), and industrial compounds (bisphenol S 

[BPS], cotinine). The increasing presence of pharmaceuticals and industrial compounds, often released 

into the environment through wastewater effluents and other anthropogenic sources, can pose risks to 

aquatic ecosystems; however, their human health impacts are not fully understood [233], [234], [235], 

[236]. While chemical indicators such as caffeine, carbamazepine and cotinine have been identified as 

potential indicators of human sewage (i.e., caffeine as an indication of recent untreated sewage and 

carbamazepine being an indication of older untreated sewage releases), the presence of BPS, DEET, 

metformin, ODV, SMX, and their association with human sewage is less established (see Table 2.4). The 

number of numerical detections increased for caffeine (11/49 to 30/48), DEET (8/49 to 20/48), and SMX 

(16/49 to 18/48), while numerical detections decreased for metformin (47/49 to 44/48), ODV (26/49 to 

20/48), and sucralose (49/49 to 46/48) between BR2 and BR3. This result suggests that BR3 may 

experience a higher frequency of more recent untreated sewage releases, as indicated by the increased 

detections of caffeine, and the presence of chemical indicators which were absent from BR2. The increase 

in chemical indicators at BR3 is consistent with the site’s exposure to high-density residential and 

commercial activities. The unique combination of human and non-human MST markers as well as the 

presence of various chemical indicators highlights the complex nature of potential contamination at BR3. 

At BR4, a wide variety of microbial and chemical indicators were detected, including HF183, 

HumM2 (human marker), Rum2Bac, LeeSG, CG01, and 25 chemical indicators (Figure 4.3). Similar to 

BR3, all six chemical indicators previously identified at BR2 were also present at BR4, demonstrating the 

persistence of these contaminants in the downstream environment. Furthermore, a more diverse range of 

chemical indicators was observed at BR4, including a higher abundance of antidepressants (n=3), 

artificial sweeteners (2), antibiotics (4), analgesics (4), cardiovascular drugs (2), antiepileptics (2), opiates 

(1), and flame retardants (2). This result suggests that the downstream site is exposed to a broader 

spectrum of contaminants, likely due to the cumulative impact of multiple WWTP discharges as well as 

stormwater outfalls. However, the cumulative stormwater discharges are likely masked by the substantial 
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impact of the wastewater discharges. Previous research has identified high levels of chemical indicators 

(i.e., micropollutants) at this site, which aligns with the characteristics of the sample site location, being 

downstream of multiple WWTPs [31]. While the presence of these chemical indicators does not 

necessarily indicate direct human sewage contamination, the limited removal capabilities of the WWTPs 

in addition to stormwater are likely contributing to the detection of a wider range of chemical indicators at 

BR4. The presence of a diverse array of MST markers, including two human-specific markers, further 

supports the hypothesis that the downstream environment is impacted by treated sewage discharges.  

Overall, the presence/absence plots demonstrate the distinct characteristics of the three sites, as 

evidenced by several unique microbial and chemical indicators at each location. While these plots provide 

the frequency of detection for various microbial and chemical indicators at the sites, they do not offer 

information regarding the magnitude of these detections. This limitation necessitates further exploration 

of spatio-temporal trends to develop a better understanding of the water quality along the BR. 

 

4.2. Parameter Relationships with Flow 

 The temporal trends of the water quality parameters for the three study sites are presented in 

Figures  4.4 – 4.6. For this analysis, only representative indicators frequently detected at all sites were 

used to determine preliminary temporal patterns. For instance, enterococci and total coliforms were 

selected since they were the most frequently detected FIB (100% at all three sites). HF183 and CG01 

were the predominant human- and non-human-associated MST markers, with detection frequencies 

increasing from BR2 (10.20% and 8.16% respectively) to BR4 (96.30% and 46.30% respectively). 

Sucralose was the most widely detected chemical indicator (100% at BR2 and BR4, 95.84% at BR3) at 

median concentrations above 26 ng/L (see Tables B.2 – B.4 in Appendix B). 

Furthermore, given that BR flow shows a temporal pattern, the five parameters were compared 

with the flow at the time of sampling (Water Survey of Canada, Bow River at Calgary, Gauge ID: 

05BH004) to identify seasonality within the dataset via a correlation analysis (R2). The BR in particular 
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experiences low flow during the fall and winter, gradually rising in early spring (April - May) and 

peaking from mid to late June due to rainfall and glacial snowmelt. Hence, this distinct pattern can inform 

whether the presence of both microbial and chemical indicators is flow-enriched (i.e., higher 

concentrations at high flow conditions) or dominated by dilution patterns (i.e., lower concentrations at 

low flow). 

Enterococci exhibited weak/low negative correlations while total coliforms showed low/moderate 

positive correlations with the BR flow at all sites (see Table 4.1). HF183 demonstrated weak/low negative 

correlations with the flow at BR3 (R2: -0.35) and BR4 (R2: -0.11). In contrast, sucralose displayed strong 

negative correlations with the flow at all three sample sites (BR2 R2: -0.81, BR3 R2: -0.70, BR4 R2: -

0.88). These findings suggest that the temporal variations of these indicators, particularly sucralose and 

total coliforms, may be influenced by hydrological conditions. For example, high flow conditions (e.g., 

spring snowmelt, rainfall events) can lead to increased levels of total coliforms in the BR, indicating its 

non-specificity to a particular source (i.e., can be from human sewage [point] or from other animals 

[diffused]). The total coliform trends also align with historical trends observed along the BR from 1951 – 

1994, where total coliforms were found to have a positive dependency on the flow [237]. This result also 

indicates that the relationship between total coliforms and flow in the BR has remained relatively 

consistent over time, potentially as a result of increased bacterial inputs from runoff during higher flow 

events [237].  

 

Table 4.1 Pearson correlation coefficients (R2) between Bow River (BR) flow and five representative 
parameters. 

 BR2 BR3 BR4 
Enterococci -0.13 -0.32 -0.17 
Total coliforms 0.60 0.39 0.51 
HF183 - -0.35 -0.11 
CG01 - -0.42 0.18 
Sucralose -0.81 -0.70 -0.88 
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Figure 4.4 Time series for enterococci, total coliforms, HF183, CG01 and sucralose at BR2. Vertical 
lines indicate periods of non-detection. Data points between vertical lines represent numerical detections. 
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Figure 4.5 Time series for enterococci, total coliforms, HF183, CG01 and sucralose at BR3. Vertical 
lines indicate periods of non-detection. Data points between vertical lines represent numerical detections. 
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Figure 4.6 Time series for enterococci, total coliforms, HF183, CG01 and sucralose at BR4. Vertical 
lines indicate periods of non-detection. Data points between vertical lines represent numerical detections. 
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While the relationship of river flow with total coliforms is straightforward, it appears to be more 

complex for other FIB (e.g., enterococci, Figures 4.4 – 4.6). Previous studies often associate higher FIB 

concentrations with high-flow events and lower FIB concentrations with low-flow events [238], [239], 

[240], [241], but the findings suggest a more nuanced relationship at BR2. For instance, enterococci 

displayed a weak to moderate negative correlation with the flow at BR2, BR3, and BR4 (R2: -0.13, -0.32, 

-0.17, respectively), indicating that other factors (i.e. dilution) may influence enterococci concentrations 

at the site.  

The increase in negative correlation between enterococci from BR2 to BR3 also points to a 

potential point-source contamination in the area, including the stormwater outfalls within the sampling 

locations. At BR4, enterococci concentrations occasionally decreased prior to flow peaks, while total 

coliforms exhibited greater consistency (Figure 4.6). However, a weak negative correlation between 

enterococci and flow (R2: -0.17) indicates that factors other than flow may be more influential to 

enterococci at this location.  

Sucralose exhibited a clear inverse relationship with the flow at all three sites (BR2 R2: -0.81, 

BR3 R2: -0.70, BR4 R2: -0.88), where higher concentrations were observed during low-flow events and 

lower concentrations were observed during high-flow events (Figures 4.4 – 4.6). This relationship is 

consistent with the findings of previous studies which indicate that dilution is a primary contributor to 

contaminant fate/transport in large riverine systems [31], [242], [243]. Since sucralose is widely used and 

is known to be a persistent chemical within aquatic environments, its detection at all three sites highlights 

the widespread distribution of this anthropogenic indicator along the BR [140], [157], [244], [245]. 

Although not presented in Figure 4.6, the BR flow was found to have a moderate positive correlation with 

LeeSG (R2: 0.55) and total coliforms (R2: 0.51) at BR4. However, the BR flow was negatively correlated 

with all chemical indicators except for BPS (R2: 0.52), citalopram (R2: 0.30), and DEET (R2: 0.30). Of 

these five parameters, total coliforms and DEET had the highest numerical detections (100% and 83.34%, 

respectively). The positive correlation between total coliforms and flow suggests that increased flow rates 

may be associated with higher levels of total coliforms in the wastewater effluent due to wastewater 
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discharges or overflows. The negative correlations between flow and most chemical indicators align with 

findings from other studies that suggest that dilution and river processes can impact the levels of chemical 

indicators in aquatic environments [31], [242], [243]. 

  

4.3. Seasonal Differences in Magnitude 

 Box plots were used as a visual exploratory tool to compare concentration magnitudes (including 

uncensored data) among all parameters that had ≥ 7 detections at each site (Figures 4.7 – 4.9). The 

median concentration, first quartile (Q1), third quartile (Q3), IQR, and skewness for the three sites overall 

and seasonally are listed in Tables B.2 – B.4 in Appendix B. Among the FIB, enterococci consistently 

exhibited the highest median concentrations overall (BR2: 79.00 CCE/100 mL, BR3: 1,411.16 CCE/100 

mL, BR4: 9,385.00 CCE/100 mL) and the highest IQRs (BR2: 123.20, BR3: 2,646.93, BR4: 13,294.47) 

at all three sampling sites, indicating that the enterococci data had a wider spread (i.e., increased 

variation) compared to the other FIB. As for MST markers, the indicators with the highest median 

concentrations at each site overall were Rum2Bac at BR2 (3,715.00 Copies/100 mL), CG01 at BR3 

(15,189.00 Copies/100 mL), and HF183 at BR4 (40,107.00 Copies/100 mL). Sucralose had the highest 

median concentrations of all chemical indicators at all sites (BR2: 46.60 ng/L, BR3 overall: 39.02 ng/L, 

BR4: 2,300.00 ng/L). Chemical indicators at BR4 generally had higher median concentrations compared 

to BR2 and BR3, due to the influence of incomplete removal through the WWTPs upstream from the site.  
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(a) 

(b) (c) 

(d) (e) 

Figure 4.7 Box plots of parameters with n ≥ 7 numerical detections for the (a) overall, (b) spring, (c) 
summer, (d) fall, and (e) winter data at BR2. *MPN/100 mL: E. coli, total coliforms; CCE/100 mL: 
Enterococci; Copies/100 mL: Microbial source tracking (MST) markers; ng/L: chemical indicators. 
MPN: Most probable number. CCE: Calibrator cell equivalent. DEET: N,N-diethyl-meta-toluamide. 
ODV: O-Desmethyl-venlafaxine. SMX: Sulfamethoxazole. 
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(a) 

(b) (c) 

(d) (e) 

Figure 4.8 Box plots of parameters with n ≥ 7 numerical detections for the (a) overall, (b) spring, (c) 
summer, (d) fall, and (e) winter data at BR3. *MPN/100 mL: E. coli, total coliforms; CCE/100 mL: 
Enterococci; Copies/100 mL: Microbial source tracking (MST) markers; ng/L: chemical indicators. 
MPN: Most probable number. CCE: Calibrator cell equivalent. BPS: Bisphenol S. DEET: N,N-diethyl-
meta-toluamide. ODV: O-Desmethyl-venlafaxine. SMX: Sulfamethoxazole. 
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(a) 

(b) (c) 

(d) (e) 

Figure 4.9 Box plots of parameters with n ≥ 7 numerical detections for the (a) overall, (b) spring, (c) 
summer, (d) fall, and (e) winter data at BR4. *MPN/100 mL: E. coli, total coliforms; CCE/100 mL: 
Enterococci; Copies/100 mL: Microbial source tracking (MST) markers; ng/L: chemical indicators. 
MPN: Most probable number. CCE: Calibrator cell equivalent. BPS: Bisphenol S. DEET: N,N-diethyl-
meta-toluamide. ODV: O-Desmethyl-venlafaxine. SMX: Sulfamethoxazole. TCEP: Tris(2-
carboxyethyl)phosphine. TCPP: Tris(chloropropyl) phosphate. 
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Furthermore, the boxplots for spring, summer, fall, and winter data for BR2 (Figures 4.7b – 4.7e) 

showed distinct patterns in the distribution of microbial and chemical indicators. For instance, E. coli was 

limited to the overall and summer datasets, with a consistent median concentration of 3.10 MPN/100 mL. 

The dataset also exhibited a tendency towards right-skewed distributions, with the exception of total 

coliforms (winter: -0.063), metformin (fall: -0.303), and ODV (overall: -0.145, winter: -1.036). For E. 

coli, a slightly lower IQR (6.95) overall compared to the summer (7.70) was observed, suggesting greater 

variability in the summer. The widest concentration range for enterococci was observed in the fall (IQR: 

226.58), followed by the spring (IQR: 178.22). The winter dataset exhibited the least skewness (0.095), 

while the fall dataset had the highest median concentration (193.37 MPN/100 mL) and exhibited a more 

balanced distribution (skewness: 1.284). The highest median concentration for total coliforms was 

observed in the summer (69.10 MPN/100 mL) where the largest IQR (121.00) for the parameter was also 

seen. Rum2Bac, with analysis unique only to the overall dataset (n ≥ 7), had a wider concentration range 

(IQR: 2,530.00) compared to the other microbial indicators. Note that filtering of data to only include 

detections that are ≥ 7 may be biased when looking at seasonal changes. Nonetheless, the presence of a 

non-human marker aligns with the understanding that the site has minimal human impacts, therefore the 

main source of fecal contamination likely originates from wild animals, particularly in surface waters 

with strong SWP [246].  

As for the chemical indicators, ODV showed a narrow IQR (0.88) and low skewness (-0.146) 

overall but had distinct skewness characteristics across the fall and winter at BR2 (0.404 and -1.036, 

respectively). The higher detection rates in the fall (70%) and winter (100%) suggest that several factors 

influence its presence in the aquatic environment. Since ODV is a human metabolite of venlafaxine (an 

antidepressant), its elevated appearance in the winter months may be due to the fact that the half-life of 

venlafaxine is longer in the winter as a result of reduced sunlight exposure, leading to a longer 

degradation process [247]. Increased antidepressant prescription and usage during the fall and winter 

months, as observed in various Canadian studies, may also contribute to the seasonal detection of ODV 

[248]. 
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Sucralose and metformin maintained relatively higher concentrations and more normal 

distributions compared to the other chemical indicators at BR2, with sucralose showing a wider 

concentration range in the overall dataset (IQR: 25.40) and varying median concentrations across the 

seasons. The highest median concentration was observed in the winter at 58.38 ng/L. SMX had lower 

concentrations compared to the other chemical indicators, with an overall median of 1.70 ng/L and a 

small IQR (0.48), however, elevated positive skewness was seen in the fall (2.109). The presence of 

metformin, ODV, sucralose, and SMX highlights their persistence in aquatic environments even in source 

water [244], [249], [250], [251]. The lower concentrations of these chemical indicators at BR2 compared 

to BR3 and BR4 suggest that their primary source may be located upstream (i.e. WWTP, sewage lagoon). 

The seasonal boxplots for BR3 (Figure 4.8b – 4.8e) illustrate the influence of seasonality on the 

presence of microbial and chemical indicators. This is highlighted by the absence of MST markers during 

the summer, and the presence of migratory bird markers in the fall and winter. Metformin and sucralose 

were consistently detected throughout all seasons, with caffeine being limited to the spring and fall, 

DEET being limited to the summer, and ODV and SMX being present in the fall and winter. Like BR2, 

the BR3 dataset demonstrated right-skewed distributions for the majority of indicators, with the exception 

of acetaminophen (overall: -0.262) and ODV (winter: -0.476). 

Overall at BR3 (Figure 4.8a), E. coli exhibited the lowest concentration among the FIB with a 

few outliers. The largest median concentration was seen in the summer (47.30 MPN/100 mL), with the 

lowest and highest IQRs being observed in the spring (14.55) and winter (76.35), respectively, suggesting 

greater variability in the winter data. Total coliforms displayed a wider concentration range overall (IQR: 

334.20) compared to E. coli (IQR: 62.83), with a right-skewed distribution (3.413), indicating a tendency 

towards higher levels. Enterococci demonstrated the highest median concentration (1,411.16 CCE/100 

mL) and IQR (2,646.93) of the FIB overall, indicating significant distribution variability. Based on the 

2024 Health Canada Guidelines for Canadian recreational water quality, FIB concentrations that exceed  

≤ 235 E. coli cfu/100 mL and ≤ 1,000 enterococci CCE/100 mL can present elevated health risks to the 
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public [101]. The concentrations of E. coli and enterococci exceeded these guidelines four (8.34%) and 27 

(56.25%) times, respectively, within the overall dataset. Seasonally, E. coli and enterococci exceedances 

occurred 18.18% and 36.36% in the spring, 0% and 27.27% in the summer, 6.67% and 66.67% in the fall, 

and 9.09% and 90.90% in the winter, respectively. While E. coli levels exceeded the guideline only a few 

times, the frequent exceedance of the enterococci guideline suggests a higher likelihood of fecal 

contamination. Neither FIB are indicative of human contamination exclusively, however, other studies 

have noted that when FIB exceed such guidelines, this is often caused by sewage contamination [252]. In 

contrast, the presence of FIB was observed to be below these guidelines at BR2. Since the presence of 

fecal indicators does not always directly correlate with sewage contamination, this highlights the need to 

use both microbial and chemical indicators when determining the presence of contamination [253]. The 

increase in FIB concentrations from BR2 to BR3 aligns with the observation that stormwater is a 

potentially significant source of FIB, specifically E. coli, in urban sites from sewage and stormwater 

inputs [254].  

HF183, Rum2Bac, LeeSG, and CG01 were detected at BR3, however, Rum2Bac did not meet the 

numerical detection criteria (n ≥ 7) in the seasonal datasets. Rum2Bac had the lowest median 

concentration (2,235.00 Copies/100 mL) and IQR (1,836.00) compared to the other MST markers, while 

also displaying the largest skewness (3.318). CG01 had the largest median concentration overall 

(15,189.00 Copies/100 mL), followed by HF183 (3,480.00 Copies/100 mL) and LeeSG (3,165.00 

Copies/100 mL). The presence of HF183 at BR3 is another indication of human sewage contamination at 

the site [255]. This pattern of elevated levels of human and non-human markers at the site aligns with 

previous findings, which suggest widespread sewage contamination in urban stormwater systems are 

associated with factors such as aging infrastructure, the presence of cross-connections, illicit discharges, 

and CSOs [147], [156], [168].  

Of the chemical indicators detected at BR3, caffeine and sucralose had the highest concentrations 

overall (caffeine median: 20.75 ng/L, sucralose median: 39.02 ng/L) and seasonally (spring: 16.60 ng/L, 
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33.32 ng/L; summer: N/A, 26.40 ng/L; fall: 23.00 ng/L, 44.30 ng/L; winter: N/A, 45.45 ng/L 

respectively). While both were right-skewed, sucralose was closest to a normal distribution overall 

(skewness: 0.194). Similar to BR2, metformin and sucralose were detected across all seasons, with 

median sucralose concentrations exceeding those of metformin. In addition, overall median 

concentrations of caffeine (6.70 to 20.75 ng/L) and DEET (12.90 to 13.44 ng/L) increased, while the 

concentrations of metformin (17.00 to 14.55 ng/L), ODV (2.00 to 1.51 ng/L), sucralose (46.60 to 39.02 

ng/L), and SMX (1.70 to 1.60 ng/L) decreased from BR2 to BR3. The increase in concentration and 

detection of acetaminophen (8.70 ng/L, 14.58%), BPS (11.65 ng/L, 25.00%), caffeine (20.75 ng/L, 

62.50%), and cotinine (2.15 ng/L, 29.17%) are indicative of anthropogenic influences, demonstrating the 

potential for human contamination impacts at the site.  

At BR4, E. coli consistently exhibited the lowest concentrations among the FIB across all datasets 

(Figures 4.9a – 4.9e). Similar median E. coli concentrations were seen at BR3 (44.10 MPN/100 mL) and 

BR4 (40.70 MPN/100 mL), and while the overall dataset at BR4 suggested a right-skewed distribution 

(4.036), seasonal variations were apparent. For instance, a left-skewed distribution during the winter       

(-0.554) suggests higher concentrations during the sampling period. Total coliforms showed a broader 

distribution compared to E. coli, with a larger IQR (E. coli IQR: 61.48, total coliforms IQR: 653.43) and a 

more pronounced right-skewness overall (5.179), indicating greater variability within the data. The 

highest median concentration for total coliforms was observed in the summer (925.40 MPN/100 mL) and 

the lowest median concentration in winter (387.70 MPN/100 mL). Similar to BR3, enterococci had the 

highest magnitude of concentrations of the FIB across the overall and seasonal datasets. The highest 

overall median concentration for enterococci was observed at BR4 (BR2: 79.00 CCE/100 mL, BR3: 

1,411.16 CCE/100 mL, BR4: 9,385.00 CCE/100 mL). This indicates a higher prevalence of enterococci at 

BR4 may be due to wastewater treatment efficiency and upstream levels in the BR. Many studies have 

noted that enterococci are more resistant to environmental impacts (i.e., sunlight, salinity conditions) and 

wastewater treatment processes, resulting in elevated concentrations in wastewater effluents [256]. The 
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winter dataset revealed the largest median concentration (17,022.98 CCE/100 mL), followed by the spring 

(9,015.00 CCE/100 mL), fall (6,901.95 CCE/100 mL), and summer (2,580.00 CCE/100 mL) datasets, 

indicating seasonal variations. The skewness between datasets for enterococci remained relatively 

consistent, indicating a prevalence towards higher values.  

Human MST markers were a major component of the microbial indicators at BR4 (Figures 4.9a – 

4.9e), with HF183 demonstrating higher overall median concentrations (40,107.00 Copies/100 mL) 

compared to BR3 (3,480 Copies/100 mL). The distribution of HF183 was right-skewed, with the highest 

skewness value being seen for the overall dataset (2.712), suggesting a concentration of data points 

toward lower values, likely influenced by the conversion of non-detects to zeroes. Other markers, 

including HumM2 (85.19%), Rum2Bac (25.93%), LeeSG (31.48%), and CG01 (46.30%) were seen at 

BR4 and were less abundant compared to HF183 (96.30%). These markers also exhibited right-skewed 

distributions, with skewness ranging from 0.381 to 3.338. Seasonal variances were evident within the 

MST markers. The presence of both HF183 and HumM2 at this site reflects human fecal contamination 

stemming from either WWTPs or stormwater outfalls. While HF183 remained the dominant marker 

throughout the datasets, CG01 was the only non-human MST marker to meet the detection criteria in the 

fall and winter, suggesting environmental factors may influence its distribution within the aquatic 

environment. The increase in median MST marker concentrations during the winter, particularly for 

HumM2 (12,134.00 Copies/100 mL), may be attributed to reduced dilution effects caused by ice 

formation in the BR, a decline in the decay of MST markers in response to reduced sunlight, and lower 

rates of biological activity due to cooler temperatures [257]. However, it has also been noted that 

increased concentrations of human-associated markers in wastewater effluents during the winter can 

indicate poor WWTP performance [257]. 

Sucralose emerged as the predominant chemical indicator across all BR4 datasets with 

consistently high median concentrations ranging from 1,680 ng/L (summer) to 3,135 ng/L (winter) 

(Figures 4.9b – 4.9e). These concentrations were elevated compared to the other sample sites and reflect 
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the characteristics of sucralose as a domestic wastewater tracer [258]. The overall distribution of 

sucralose was right-skewed with the exception of the spring dataset which exhibited left-skewness (-

0.108). Additional chemical indicators were observed at BR4 compared to BR2 and BR3 as a result of 

BR4 being downstream of three WWTPs. This aligns with our understanding of the sample site and the 

trends seen in the literature, as WWTPs are inefficient at removing micropollutants which cause WWTP 

effluents to be the main sources of micropollutants in aquatic environments [259], [260]. The occurrence 

of the chemical indicators typically varies between studies due to site characteristics, land use, population, 

and water consumption trends [261]. Similar to the FIB and MST markers, seasonal variances were 

observed regarding the chemical indicators at BR4. The highest number of chemical indicators that met 

the detection criteria was observed in the fall, followed by equal numbers of chemical indicators in the 

spring and summer, with the winter showing the fewest chemical indicators. Peak concentrations of the 

chemical indicators varied across seasons, suggesting that a multitude of factors influence their presence 

and distribution within the aquatic environment (i.e., effluent concentration variabilities, seasonal 

fluctuations, dilution, degradation, consumption rates) [262], [263], [264]. 

Overall, it is clear that although the sites are hydrologically connected (upstream to downstream), 

the presence of microbial and chemical indicators varies. To identify ideal indicators for site-specific 

fingerprints, correlation and cluster analysis were employed to examine additional relationships among 

the parameters. 

4.4. Correlation Analyses – Data Transformation and Normality Test Results 

A preliminary assessment of normality (see section 3.3) indicated that the datasets were non-

normal, suggesting that data transformations are needed for subsequent statistical analyses (e.g., use of 

Pearson correlation coefficient for normal datasets only). The final decisions on data transformations, 

correlation, and clustering linkage methods are summarized in Table 4.2. Logarithm transformations were 

primarily applied to improve data normality, except for BR2-spring where the 1/x transformation was 
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used. The results of the normality tests are presented as a ratio of the number of parameters that were 

normally distributed after data transformation to the total number of parameters tested for the dataset. As 

can be observed, the data transformation improved the normality of datasets, with 50 – 100 % of the 

datasets conforming to normality. While the Shapiro-Wilk test returned the lowest normality results (BR2 

all: 5/10, BR3 all: 11/16, BR4 all: 14/33), the use of two additional normality tests (D’Agostino’s K2, 

Jarque-Bera) provided multiple lines of evidence to support data transformation approaches. Based on the 

results, the Pearson correlation method on transformed datasets was used as the more appropriate method, 

followed by the Ward agglomerative clustering linkage method (see section 3.3.2).   
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Table 4.2 Summary of data transformation, correlation, and clustering linkage methods selected for each site. a) The log10, 1/x, and √x data 
transformations generated the same normality test results. The log10 transformation was chosen since it is used most often across all sites and 
seasons. b) The log10 and √x data transformations generated the same normality test results. The log10 transformation was chosen since it is used 
most often across all sites and seasons. c) The log10 and √x data transformations generated the same normality test results. The log10 
transformation was chosen since it is used most often across all sites and seasons. N/A: D’Agostino’s K2 normality test requires all parameters to 
have a minimum of 8 numerical values. Any parameter with 7 numerical detections caused the test to fail. 

Data 
transformation 

Normality test Correlation 
method 

Clustering 
linkage method Shapiro-Wilk D’Agostino’s K2 Jarque-Bera 

BR2 All log10 5/10 7/10 8/10 Pearson Ward 
Spring 1/x 2/4 ¾ 4/4 Pearson Ward 

Summer log10 6/6 5/6 6/6 Pearson Ward 
Fall log10

a 5/6 N/A 6/6 Pearson Ward 
Winter log10

b 6/6 N/A 6/6 Pearson Ward 
BR3 All log10 11/16 N/A 13/16 Pearson Ward 

Spring log10 6/7 6/7 7/7 Pearson Ward 
Summer log10

c 6/6 6/6 6/6 Pearson Ward 
Fall log10

 9/11 N/A 9/11 Pearson Ward 
Winter log10 8/9 N/A 8/9 Pearson Ward 

BR4 All log10 14/33 N/A 26/33 Pearson Ward 
Spring log10 19/22 N/A 22/22 Pearson Ward 

Summer log10 20/22 N/A 21/22 Pearson Ward 
Fall log10 23/27 24/27 25/27 Pearson Ward 

Winter log10 20/22 N/A 22/22 Pearson Ward 
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4.5. Correlation and Cluster Analysis for Site-Specific Fingerprinting of Fecal Indicators 

4.5.1 BR2 – Source Water 

When considering all datasets from 2018 – 2023, the correlation analysis of the combined BR2 

dataset revealed perfect positive correlations between E. coli and caffeine, Rum2Bac and DEET, and a 

strong positive correlation between Rum2Bac and SMX (0.99) (Figure 4.10a). Correlations between 

parameters are pairwise, therefore the correlations are only examined when the two parameters in 

question are present. While the correlation analysis shows strong and perfect relationships between 

certain parameters, the low detection rates of these parameters at the site (E. coli: 44.90%, Rum2Bac: 

20.41%, caffeine: 22.45%, DEET: 16.33%, SMX: 32.65%) suggest that these correlations may be an 

artifact of the analysis. Hence, caution must be exercised when interpreting the results.  

E. coli and caffeine demonstrated a perfect positive correlation. Daneshvar et al. also observed a

positive relationship between fecal coliform and caffeine (Spearman correlation: 0.45) when they 

examined the Greater Montréal area source waters [265]. This finding aligns with the growing body of 

evidence supporting caffeine as a potential indicator of fecal contamination [28], [141], [143], [155]. 

Nevertheless, the degradation of caffeine in aquatic environments, as discussed earlier (see section 2.5), 

necessitates caution, i.e., only elevated caffeine levels at BR2 (e.g., ~3x higher than the median 

concentrations at BR2) may suggest substantial fecal contamination, and confirmation should be sought 

through the analysis of additional fecal indicators (e.g., FIB, MST markers).  

Although there have been many studies which analyze the correlations between microbial 

markers, studies which use a combined MST and CST approach rarely explore correlations between 

parameters quantitatively (see Table 2.4) or consider temporal factors when assessing contaminant levels 

(as most are completed as one-time sampling campaigns) [141]. Correlation analyses performed indicate 

moderate correlations between E. coli and total coliforms (0.62) as well as between enterococci and 

DEET (0.51) (Figure 4.10a). In contrast, strong negative correlations were shown between E. coli and 

both ODV (-0.83) and sucralose (-0.75). Similarly, moderate negative correlations were observed between 
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(a) (b) 
Spring Summer 

Fall Winter 

Figure 4.10 Correlation and clustering of the (a) overall and (b) seasonal data for BR2. DEET: N,N-diethyl-meta-toluamide. ODV: O-Desmethyl-
venlafaxine. SMX: Sulfamethoxazole. 
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enterococci and ODV (-0.53) and total coliforms with metformin (-0.50) ODV (-0.69), and sucralose       

(-0.60). The observed negative correlation between total coliforms and sucralose is noteworthy given the 

positive moderate correlation between total coliforms and flow (0.60) and the strong negative correlation 

between sucralose and flow (-0.81) as indicated earlier. In addition, the flow was also negatively 

correlated with all six chemical indicators at BR2 (caffeine: -0.042, DEET: -0.69, metformin: -0.35, ODV: 

-0.64, sucralose: -0.81, SMX: -0.33). This suggests point-source origins of the chemical indicators, i.e.,

low dilution during low-flow events which can elevate dissolved contaminant concentrations. As noted in 

the literature, contaminants entering a waterway are likely to be retained longer during low-flow 

conditions compared to the rapid transit and dilution that occur under high-flow conditions [266], [267]. 

This result further indicates that under low-flow conditions, the detection of chemical substances in 

source waters may be a more dominant indicator. In contrast, microbial indicators could carry greater 

significance as markers of fecal contamination during high-flow and runoff events.  

These relationships also exist when examining the datasets seasonally (Figure 4.10b). For 

instance, during the spring, strong negative correlations were found between total coliforms and both 

metformin (-0.82) and sucralose (-0.69), showing an increased relationship compared to the overall 

dataset. A strong positive correlation emerged between E. coli and enterococci (0.85) during the summer, 

indicating a strong direct relationship between the two parameters. This finding aligns with a previous 

study [33] which observed seasonal variations in E. coli concentrations, such as an increase in 

concentrations from the winter to the summer at a water treatment plant intake. However, this seasonal 

pattern was not observed at a secondary water treatment plant intake site, suggesting that local factors and 

waterbody characteristics influence the seasonal variations in E. coli levels [33]. The correlation between 

E. coli and enterococci during the summer at BR2 may also be influenced by the fact that E. coli only met

the numerical detection limit during the overall and summer datasets, limiting the ability to assess 

relationships between the two parameters in other seasons. Moderate correlations were also seen between 

enterococci and DEET (0.51), E. coli and both total coliforms (0.57) and sucralose (-0.63). The fall was 

characterized by a moderate negative correlation between enterococci and ODV (-0.60). The winter 
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displayed moderate positive correlations between metformin and ODV (0.59), sucralose (0.69), and SMX 

(0.57). Finally, it appears that the fall dataset is the primary driver of the overall dataset, as evidenced by 

the high degree of similarity between the correlation trends observed in the fall and the overall datasets. 

Considering the combined dataset at BR2, three primary clusters emerged: 1) a chemical indicator 

cluster consisting of ODV, metformin, and sucralose, 2) an FIB cluster comprised of E. coli and total 

coliforms, and 3) a combination of microbial and chemical indicators including caffeine, enterococci, 

Rum2Bac, DEET, and SMX (Figure 4.10a). Upon examining the seasonal cluster maps (Figure 4.10b), 

the spring dataset exhibited one chemical indicator cluster (metformin and sucralose), and one FIB cluster 

(enterococci and total coliforms). Similar to the overall dataset, parameters within each cluster 

demonstrated positive correlations, suggesting potential co-occurrence in the environment. The summer 

dataset demonstrated an association between all three FIB while metformin, DEET, and sucralose formed 

a separate cluster, mirroring the clustering observed in the overall and spring datasets. This pattern 

reinforces the tendency for FIB and chemical indicators to form independent clusters at BR2. In the fall, a 

gradual expansion of a cluster initiated by metformin and SMX was observed, encompassing additional 

parameters as the cluster grew. Lastly, the winter dataset displayed clear divisions of clusters, with one 

group containing SMX, metformin and ODV, and the other comprising sucralose, enterococci, and total 

coliforms. This is the first instance in the seasonal data where both microbial and chemical indicators are 

found in an independent cluster.  

Despite several relationships observed via clustering, the consistent clustering of metformin with 

sucralose suggests a potential common source or similar environmental factors influencing their 

distribution at BR2. Similar to sucralose, studies have found that metformin is persistent in the 

environment [147], [148], with metformin being reported as the second most frequently detected 

pharmaceutical in rivers around the world as of 2022 [268]. As observed earlier in the section, metformin 

is also detected at BR3 and BR4 which supports the inclusion of metformin in fingerprinting approaches. 

What sets BR2 apart from the other sample sites is the unique relationship between metformin and 

enterococci. Metformin, an antidiabetic, can be attributed to anthropogenic sources, and the clustering of 
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metformin with enterococci would strengthen the indication of fecal contamination at the site. This 

combination of indicators, particularly their frequent negative correlations, suggests a specific interaction 

(i.e., environmental factors favouring the persistence of one indicator over the other) or pollution source 

that is not as prevalent at other sites.   

4.5.2 BR3 – Urban Site 

The correlation analysis of BR3 showed an increase in complexity in the relationships between 

parameters at the sample site compared to BR2 (Figure 4.11). Overall, strong positive correlations were 

seen between LeeSG and CG01 (0.77), LeeSG and acetaminophen (0.95), LeeSG and DEET (0.75), 

enterococci and CG01 (0.72), BPS and ODV (0.76), BPS and DEET (0.70), BPS and Rum2Bac (0.79), 

acetaminophen and DEET (0.88), and Rum2Bac and cotinine (0.93). A perfect positive correlation was 

observed between BPS and acetaminophen. On the other hand, strong negative correlations were seen 

between CG01 and BPS (-0.83), Rum2Bac and ODV (-0.70), as well as between acetaminophen and 

SMX (-0.92). However, similar to BR2, many of these relationships may be an artifact of the analysis 

since the detection rates of these parameters ranged from 14.58 to 41.67% (CG01: 45.84%, LeeSG: 

29.17%, Rum2Bac: 33.34%, acetaminophen: 14.58%, BPS: 25.00%, cotinine: 29.17%, DEET: 41.67%, 

ODV: 41.67%, SMX: 37.50%), with the exception of enterococci, which was consistently detected.  

Other studies which have analyzed relationships between microbial and chemical indicators at 

urban sites often express that the water quality at such sites can be influenced by various sources (i.e., 

stormwater runoff, aging infrastructure, CSOs, cross-connections). Similar to BR2, total coliforms and 

sucralose were negatively correlated overall (-0.48) while flow and total coliforms were positively 

correlated (0.39). In addition, the flow was positively correlated with LeeSG (0.50) and had both positive 

and negative correlations with the chemical indicators. This mirrors the trends seen in the literature, 

where many factors influence the presence of chemical indicators in addition to flow. 
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(a) (b) 
Spring Summer 

Fall Winter 

Figure 4.11 Correlation and clustering of the (a) overall and (b) seasonal data for BR3. BPS: Bisphenol S. DEET: N,N-diethyl-meta-toluamide. 
ODV: O-Desmethyl-venlafaxine. SMX: Sulfamethoxazole. 
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From the overall dataset, Rum2Bac and LeeSG emerged as MST markers with significant 

relationships with both FIB and chemical indicators. Rum2Bac exhibited moderate positive relationships 

with multiple chemical indicators, including acetaminophen (0.61), and SMX (0.63), as well as strong 

positive correlations with BPS (0.79) and cotinine (0.93). In the BR2 overall correlation matrix (Figure 

4.10a), Rum2Bac was strongly correlated with SMX (0.99) and perfectly correlated with DEET, which 

contrasts the moderate and weak correlations seen in BR3 between Rum2Bac, SMX (0.63), and DEET 

(0.27), respectively. With a higher number of detections of Rum2Bac at BR3 (33.34%) compared to BR2 

(20.41%), the correlation analysis becomes more robust. 

These findings also indicate that the relationships between MST markers and micropollutants are 

site-specific and may be influenced by land use and hydrological conditions. From the literature review, 

only one study identified Rum2Bac as a microbial indicator of interest when analyzing the relationships 

between microbial and chemical indicators [136]. The study identified rainfall as a key factor influencing 

the transport of the ruminant marker, emphasizing the role of catchment characteristics in this process. 

Though the catchments studied were predominantly in rural settings, the correlations between Rum2Bac 

and rainfall suggest that rainfall-driven events may contribute to contaminant travel and mobilization 

within aquatic environments [136]. 

In contrast, LeeSG was characterized by moderate negative concentrations with HF183 (-0.56), 

BPS (-0.68), sucralose (-0.58), and SMX (-0.69). CG01, the second marker for a bird host, was also 

negatively correlated with BPS (-0.83) and SMX (-0.49). The seagull-host marker also showed moderate 

positive correlations with total coliforms (0.52) and ODV (0.54), as well as strong positive correlations 

with CG01 (0.77), acetaminophen (0.95) and DEET (0.75). While previous studies have found significant 

associations between seagull markers and E. coli in rivers, one study which investigated sources of fecal 

contamination in the Humber River, ON, reported Spearman correlation coefficients ranging from 0.23 to 

0.75 between the gull marker and several chemical indicators, including acetaminophen, acesulfame, 

caffeine, carbamazepine, codeine, and cotinine in a river environment [28]. 
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Additional relationships within the overall dataset for BR3 revealed moderate positive 

correlations between E. coli and both enterococci (0.53) and total coliforms (0.58) (Figure 4.11a). 

Increased correlations between E. coli and enterococci from BR2 to BR3 are potential indicators of 

increased human contamination inputs. Moderate to strong correlations between CG01 with E. coli (0.58) 

and enterococci (0.72) highlight that the site is impacted by human and non-human fecal sources. The 

increased relationship from BR2 to BR3 between total coliforms and caffeine (BR2: -0.20, BR3: 0.52) is 

an additional indication of human fecal pollution. As previously mentioned, caffeine has been identified 

as a potential sewage-associated marker since it is often linked to human contamination and degrades 

rapidly in the environment. The observed positive correlation between total coliforms and caffeine at BR3 

suggests recent inputs of untreated sewage at this site. This correlation alludes to the use of caffeine as a 

marker for recent untreated effluent discharges as indicated in Table 2.4. 

Two of the relationships seen in the overall dataset (LeeSG and CG01, LeeSG and SMX) are seen 

in the fall since it is the primary driver of the overall correlation and clustering as it has the largest dataset 

of the seasons (n = 15) (Figure 4.11b). During the spring, strong positive correlations were seen between 

sucralose and metformin (0.79), and E. coli and total coliforms (0.75). Strong negative correlations also 

emerged between E. coli and HF183 (-0.58), total coliforms and HF183 (-0.53), as well as between total 

coliforms and sucralose (-0.65). The relationship between E. coli and total coliforms decreases slightly 

during the summer (0.71), and metformin and DEET are found to have a strong positive relationship 

(0.75). This aligns with our understanding that DEET is predominantly used and detected during the 

summer. However, DEET is negatively correlated with total coliforms (-0.70). The positive relationship 

between DEET and metformin is an additional indication of anthropogenic impacts at BR3. In the fall, 

strong positive correlations are seen between LeeSG, caffeine (0.83) and CG01 (0.77), CG01 with 

caffeine (0.91), E. coli (0.77), enterococci (0.73), and total coliforms (0.76). In addition, strong 

relationships were also found between total coliforms and caffeine (0.79), and E. coli and enterococci 

(0.82). Similar to caffeine, metformin has been identified as a sewage indicator to trace human-related 
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pharmaceutical contamination in aquatic environments [147], [249], [269], [270]. Therefore, the low to 

moderate relationships between metformin, E. coli (0.30) and total coliforms (0.53) are an additional 

indication of sewage impacts at BR3. In contrast, moderate negative correlations were observed between 

LeeSG, SMX (-0.69), and sucralose (-0.61), as well as caffeine and SMX (-0.64). The winter displayed a 

strong positive correlation between enterococci and CG01 (0.95), and a strong negative correlation 

between E. coli and ODV (-0.91).  

The overall cluster analysis at BR3 revealed four main clusters (Figure 4.11a). The first cluster 

encompasses a diverse group of microbial and chemical indicators including LeeSG, total coliforms, 

caffeine, enterococci, E. coli, and CG01. Within this cluster, a sub-grouping emerged between 

enterococci, E. coli, and CG01, while total coliforms and caffeine formed another distinct sub-cluster. The 

second cluster consisted of multiple chemical indicators (BPS, ODV, acetaminophen, and DEET). 

Cotinine and Rum2Bac formed a solitary cluster, and the fourth cluster comprised SMX, HF183, 

metformin, and sucralose, with metformin and sucralose forming a distinct sub-cluster. Similar to the 

overall and seasonal cluster maps for BR2, the majority of parameters that formed clusters were positively 

correlated. In addition, several parameter pairs found in clusters at BR2 were also observed to cluster 

together at BR3, including total coliforms and E. coli, caffeine and enterococci, and sucralose and 

metformin. The fact that these parameters appeared in clusters at both sites indicates potential similarities 

regarding environmental conditions and persistent contaminant sources. The detection, correlation, and 

clustering of compounds such as metformin and sucralose, both known for their persistence in aquatic 

environments, at both BR2 and BR3 imply that these contaminants may originate from sources located 

further upstream or from additional inputs (i.e., stormwater outfalls, CSOs, WWTP effluents, 

anthropogenic activities) [31], [271]. 

The spring dataset at BR3 yielded two primary clusters: 1) comprising HF183, metformin, and 

sucralose, and 2) comprising of the FIB and caffeine (Figure 4.11b). During the summer, two primary 

clusters also emerged: 1) containing the FIB, and 2) consisting of sucralose, DEET, and metformin. Of the 
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seasonal data, the microbial and chemical indicators cluster separately from each other in the summer and 

the winter. The fall was characterized by three clusters: 1) with ODV, LeeSG, caffeine, CG01, and the 

FIB, 2) including HF183 and SMX, and 3) comprising metformin and sucralose. The majority of the 

parameters in the first cluster of the fall data are also found in the first cluster of the overall data. Lastly, 

the winter data also contains three clusters: 1) containing the FIB and CG01, 2) with metformin, HF183, 

and sucralose, and 3) comprising ODV and SMX. The second and third clusters combine to create a larger 

cluster, and this is similar to the indicators present in the second cluster of the overall dataset. These 

seasonal cluster maps for the sample site provide a more focused relationship between the parameters, 

highlighting the relationships between FIB, HF183, metformin, caffeine, and sucralose. These seasonal 

clustering patterns, in addition to the positive correlations observed, highlight the strong association 

between microbial and chemical indicators, suggesting potential human sewage contamination as a source 

of these contaminants at BR3. 

While HF183 is not exclusively found at BR3, its presence in an urban site is noteworthy since it 

is indicative of human fecal contamination. Coupled with its positive correlation with various FIB, MST 

markers, and chemical indicators overall and seasonally, HF183 is a potential indicator that can be used 

for fingerprinting at BR3. The clustering of HF183 and sucralose in the overall dataset combined with the 

larger magnitude of their correlations both overall and seasonally compared to BR4 reinforces their 

uniqueness as indicators. Therefore, HF183 and sucralose are strong candidates for fingerprinting 

indicators at BR3.   
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4.5.3 BR4 – Downstream of WWTPs 

Figure 4.12 illustrates the relationships between microbial and chemical indicators within the 

overall data at BR4, downstream of the City of Calgary’s three WWTPs. As previously stated, the 

increased detection of chemical indicators aligns with the site’s characteristics since Calgary’s WWTPs 

are not capable of complete chemical removal prior to discharge into the BR, contributing to their 

elevated presence in the receiving water [259], [260]. Similar to BR2 and BR3, strong to perfect 

correlations between Rum2Bac, LeeSG, CG01, and other parameters may again be a result of artifacts of 

the analysis as a result of their low detection rates (Rum2Bac: 25.93%, LeeSG: 31.48%, CG01: 46.30%) 

within the overall dataset. Moderate positive correlations were seen between HF183 and enterococci 

(0.69) and between total coliforms and flow (0.51). Positive correlations were also observed between      

E. coli, erythromycin (0.77) and propranolol (0.55). In contrast, negative moderate to strong correlations

were seen between HF183 and citalopram (-0.61), HumM2 and propranolol (-0.58), as well as between 

total coliforms and multiple chemical indicators. These findings align with previous research at sites 

downstream of WWTPs, which have reported positive correlations between HF183 and enterococci [141], 

and positive Spearman correlations between E. coli, caffeine, codeine, cotinine, and acetaminophen [28]. 

The positive correlation between FIB and HF183, as well as the increased presence of chemical indicators 

is not surprising since BR4 is significantly impacted by wastewater discharges. 

In the overall data (Figure 4.12), low positive correlations were found between E. coli and both 

Enterococci (0.36) and total coliforms (0.32). These relationships are lower than those observed in BR2 

and BR3, suggesting that diverse pollution sources, rather than human sewage contamination, impact the 

site. Furthermore, moderate and strong positive correlations were seen between E. coli, propranolol (0.55) 

and erythromycin (0.77), respectively, while a moderate positive correlation was observed between 

enterococci and HF183 (0.69). The increased correlation between enterococci and HF183 from BR3 

(0.23) to BR4 (0.69) may reflect the presence of viable and non-viable bacteria detected in wastewater 

effluents, given the known association of elevated HF183 concentrations with WWTP effluents [272]. 
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Figure 4.12 Correlation and clustering of the overall data for BR4. BPS: Bisphenol S. DEET: N,N-
diethyl-meta-toluamide. ODV: O-Desmethyl-venlafaxine. SMX: Sulfamethoxazole. TCEP: Tris(2-
carboxyethyl)phosphine. TCPP: Tris(chloropropyl) phosphate. 
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Total coliforms exhibited negative correlations with several chemical indicators, including 

acesulfame (-0.53), carbamazepine (-0.60), clarithromycin (-0.55), codeine (-0.70), primidone (-0.60), 

trimethoprim (-0.61), and venlafaxine (-0.51). While the relationship between total coliforms and 

chemical indicators within WWTP effluents has not been studied extensively, these findings suggest that 

flow conditions may contribute to the relationships. This phenomenon may also apply to the relationship 

between HumM2 and propranolol (-0.58). In addition, the correlation between total coliforms and 

caffeine decreased from BR3 (0.52) to BR4 (-0.04). It is currently difficult to assess whether this is 

mainly due to treated effluent discharge as there are also stormwater outfalls between BR3 and BR4.  

Contrasting patterns were observed regarding the correlations between Rum2Bac, LeeSG, and 

chemical indicators. Rum2Bac displayed moderate to perfect positive correlations with multiple chemical 

indicators, while LeeSG exhibited numerous moderate to strong negative correlations with the chemical 

indicators. A strong negative correlation between LeeSG and CG01 (-0.92) was also observed. These 

differing relationships between the MST markers and chemical indicators point to divergent behaviour of 

ruminant, seagull, and Canada goose species in the aquatic environment at BR4.  

The seasonal correlation matrices for BR4 are shown in Figure 4.13. The general trends observed 

in the overall correlation analysis persisted across all seasons, however, the strengths of these correlations 

varied. This highlights the dynamic interactions between indicators at the site throughout the year. 

Although the summer exhibited strong similarities to the overall dataset, specifically regarding the 

chemical indicators, the larger sample size in the fall (n = 16) likely contributed more significantly to the 

overall correlation patterns. E. coli exhibited positive correlations with total coliforms across all seasons 

except for fall (spring: 0.62, summer: 0.67, fall: -0.22, winter: 0.46). The highest positive correlations 

between E. coli, FIB, and MST markers were observed during the summer, coinciding with the most 

pronounced negative correlations between E. coli and several chemical indicators. In contrast, E. coli 

demonstrated positive correlations with a broad range of chemical indicators during the fall. 
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Spring Summer 

Fall Winter 

Figure 4.13 Correlation and clustering of the seasonal data for BR4. BPS: Bisphenol S. DEET: N,N-
diethyl-meta-toluamide. ODV: O-Desmethyl-venlafaxine. SMX: Sulfamethoxazole. TCEP: Tris(2-
carboxyethyl)phosphine. TCPP: Tris(chloropropyl) phosphate. 



94 
 

Throughout all seasons (Figure 4.13), enterococci exhibited consistent moderate to strong 

positive correlations with HF183 (spring: 0.69, summer: 0.73, fall: 0.63, winter: 0.67). The strongest 

correlation occurred during the summer, coinciding with the highest negative correlations between 

enterococci and the majority of the chemical indicators. Similar to E. coli and enterococci, total coliforms 

displayed the highest positive correlations with FIB and MST markers during the summer, coinciding 

with the most pronounced negative correlations with the chemical indicators. It was also observed that 

total coliforms were negatively correlated with E. coli (-0.22), enterococci (-0.53), and HF183 (-0.42) 

during the fall, while these parameters were positively correlated during the summer (0.67, 0.43, 0.55, 

respectively). HF183 and HumM2 displayed similar correlations to the FIB. These relationships may be a 

result of variations in flow, WWTP effluent discharge, growth rates, as well as environmental impacts 

(i.e., rainfall, and ice formation). 

CG01, primarily detected during the fall and winter, exhibited positive correlations with 

carbamazepine, SMX, tris(2-carboxyethyl)phosphine (TCEP), tris(chloropropyl) phosphate (TCPP), and 

venlafaxine, while negative correlations were seen with HumM2, atenolol, ODV, sucralose, and 

trimethoprim across both seasons to varying degrees, with the highest correlations being seen during the 

winter. As previously discussed, seasonal environmental factors (i.e., ice formation, snowmelt) may 

influence the distribution and detection of CG01 [273], [274], [246].  

The chemical indicators demonstrated the highest positive correlations amongst themselves 

during the spring, followed by the summer. While generally positively correlated in the winter, the lowest 

positive correlation and most negative relationships between chemical indicators were observed during 

this season. DEET consistently exhibited negative correlations with most parameters, except during the 

summer.  

The cluster analysis for the overall BR4 dataset revealed a complex pattern as a result of the 

elevated number of microbial and chemical indicators detected at the site (Figure 4.12). Six distinct 

clusters emerged. The first, which included LeeSG, total coliforms, BPS, and DEET, suggested potential 



95 
 

relationships between both microbial and chemical indicators. The second cluster comprised a wide range 

of pharmaceuticals in addition to sucralose, highlighting the prevalence of micropollutants at the site. The 

third cluster consisted of Rum2Bac, CG01, and three pharmaceuticals. The fourth cluster grouped 

acetaminophen, TCPP, caffeine, and TCEP, all chemical indicators, once again indicating the co-

occurrence of chemical indicators at BR4. E. coli, HumM2, enterococci, and HF183 were found in the 

fifth cluster, and the sixth cluster grouped ibuprofen, atenolol, cotinine, acesulfame, and metformin. The 

presence of multiple clusters encompassing both microbial and chemical indicators at BR4 suggests a 

higher degree of anthropogenic impact compared to the other sites. This is consistent with the expectation 

that these compounds are often co-released within WWTP effluents. While some similarities exist, such 

as the presence of FIB and chemical indicators clustering at all three sites, the co-occurrence of diverse 

compounds and unique microbial and chemical interactions at BR4 indicates a distinct contaminant 

profile unique to WWTP effluents.  

Considering the seasonal cluster maps for BR4 (Figure 4.13), the spring and summer both 

contained a dominant cluster encompassing a wide range of chemical indicators, namely pharmaceuticals, 

suggesting consistent inputs of these compounds into the BR during these seasons. Microbial indicators 

(E. coli, enterococci, total coliforms, HF183, HumM2) clustered together during these two seasons, 

however, the correlations between them were more pronounced during the summer, showcasing seasonal 

variations in their behaviours within the environment. Both the fall and winter exhibited more fragmented 

clustering patterns characterized by multiple small clusters, suggesting increased variability in the 

presence of microbial and chemical indicators. This is shown through the fact that microbial indicators 

were present in clusters along with chemical indicators, whereas microbial indicators formed separate 

clusters during the spring and summer months. 

 As a marker associated with human fecal contamination, HumM2’s exclusive presence at BR4 

emphasizes its relevance as a specific indicator for this location. HumM2 is a less sensitive human marker 

compared to HF183 [232], therefore, its presence at BR4 is indicative of elevated levels of anthropogenic 
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contamination [168]. While diclofenac was detected in all samples taken at BR4, it is not specific to 

humans as it is also used as a veterinary drug [275]. Therefore, carbamazepine and metformin are ideal 

chemical indicators for fingerprinting at this site due to their high detection rate (79.63% and 98.15%, 

respectively), association with anthropogenic activities, and previous research highlighting the 

pharmaceuticals as indicators of wastewater in the aquatic environment [140], [142]. 

 

4.5.4 Recommended Site-Specific Composite Fingerprints 

 The analysis of the presence/absence, time series, box plots, correlations and clustering reveal the 

similarity and uniqueness of microbial and chemical indicators across the three sample sites. The 

development of baseline trends supports the utility of multiple indicators that can be used to understand 

fecal contamination in the BR. These site-specific composite fingerprints will be useful in future 

monitoring campaigns and will support decisions related to Calgary’s SWP plan and One Water 

approaches. Many of the parameters recommended are monitored regularly by the City of Calgary as part 

of regulatory compliance (e.g., FIB) [256]. While 56 micropollutants comprise a comprehensive list, it is 

economical to focus on a few as high-throughput chemical analysis is an expensive and labour-intensive 

undertaking. For BR2 (source water site), if chemical indicators are found at elevated concentrations (e.g., 

~3x the median concentration) and/or human markers are present, this may trigger concern and can be 

used to aid decisions related to sewage contamination. The fall was the most influential season due to 

elevated detections (BR2: 10/49, BR3: 15/48, BR4: 16/54).  

The purpose of the site-specific fingerprints is to differentiate between water samples taken at the 

three sites based on the indicators present. The use of these fingerprints will allow for a more targeted 

analysis of domestic sewage contamination along the BR by reducing the list of indicators analyzed by 

the City of Calgary. Deviations from the expected indicators within samples can be used to inform 

additional monitoring of fecal contamination at the sites. Including a limited set of indicators in sampling 

campaigns will allow for more frequent sampling (i.e., by potentially eliminating the need for a holding 



97 
 

time) and more effective resource allocation based on the City’s needs. Table 4.3 outlines the 

recommended site-specific fingerprints for BR2, BR3, and BR4 in addition to the rationales for the 

inclusion of each microbial and chemical indicator. These fingerprints are specific to the three sites 

analyzed along the BR and are not representative of other watersheds.  

The common microbial and chemical indicator candidates for all sites are: 1) three traditional 

FIB, 2) Rum2Bac, and 3) metformin, sucralose, and ODV. The FIB were chosen for all sites due to their 

known association with fecal matter, high detection rates, and existing monitoring plans as part of 

regulatory compliance. Rum2Bac was selected because it was the only MST marker detected at BR2, and 

CG01 was chosen for BR3 and BR4 because it had the highest median concentration of the non-human 

MST markers at both sites. The two human markers (HF183 and HumM2) are also included since HF183 

had the highest detection rate among the MST markers at BR3 in addition to the highest median 

concentrations at BR4, while HumM2 was exclusive to BR4. Caffeine was added for BR3 and BR4 

fingerprinting due to its frequent detection at the downstream sites. Lastly, carbamazepine and diclofenac 

were included due to their elevated and unique presence at BR4 as well as their inclusion in existing and 

proposed water quality guidelines (i.e., Alberta Surface Waters guideline for carbamazepine and proposed 

EU guideline for diclofenac) [276], [277].  
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Table 4.3 Candidate microbial and chemical indicators for site-specific fingerprinting. FIB: Fecal indicator bacteria. MST: Microbial source 
tracking. ODV: O-Desmethyl-venlafaxine.   

Sample 
Site 

FIB MST markers Chemical indicators Season of 
importance  Candidates Rationale Candidates Rationale Candidates Rationale 

BR2 E. coli, Monitored 
daily by the 
City of 
Calgary 

Rum2Bac No human markers 
present 

Metformin, Environmental persistence; 
relationships between 
metformin and sucralose 
indicate similar sources 

Fall 
total 

coliforms 
sucralose, 

ODV 

Enterococci Public health-
related 
guidance 

 

BR3 E. coli, 
total 

coliforms 
 

Enterococci 

Monitored 
monthly by 
the City of 
Calgary 
Public health-
related 
guidance 

Rum2Bac 
CG01 

 
 

HF183 

Consistent detections 
Highest median 
concentrations of the 
MST markers 
Human marker 
indicating human fecal 
contamination 

Caffeine Increased median 
concentrations from BR2 to 
BR3 suggest urban inputs 

Fall 

Metformin, 
sucralose 

Consistent positive correlation 
and clustering; high detection 
rates 

ODV Increased detections from BR2 
to BR3 

BR4 E. coli, 
total 

coliforms 
 

Enterococci 

Monitored 
monthly by 
the City of 
Calgary 
Public health-
related 
guidance 

Rum2Bac 
CG01 

 
 

HF183, 
HumM2 

Consistent detections 
Highest median 
concentrations of the 
non-human markers 
Human markers 
indicating human fecal 
contamination and/or 
wastewater effluent 

Caffeine, 
ODV 

Increased concentrations and 
detections from BR3 to BR4 

Fall 

Carbamazepine High detection rates; 
substance of concern in the 
Environmental Quality 
Guidelines for Alberta Surface 
Waters [276] 

Diclofenac Consistent detection; often 
exceeds the EU Water 
Framework Directive's 
proposed guidance value      
(50 ng/L) [277] 

  Metformin, 
sucralose 

High detection rates; 
consistent positive correlation 
and clustering 
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Chapter 5 – Conclusions and Recommendations 

This study focused on the analysis of three FIB, 9 MST markers and 56 micropollutants (i.e., 

chemical indicators) at the following sites near Calgary along the BR from 2018 to 2023: 1) an upstream 

source water site (BR2), an intermediate urban site (BR3), and a site which experiences the cumulative 

effects of the City’s three WWTPs (BR4). BR2, being a source water site, had the lowest number of 

parameters detected, while BR4, located downstream of the WWTPs, exhibited the highest number of 

parameters, reflecting the accumulation of substances in the BR. FIB and non-human markers were 

detected at all three sites. Rum2Bac was the only MST marker present at BR2, while Rum2Bac, LeeSG, 

and CG01 were found at BR3 and BR4. The presence of the ruminant marker at all three sites reflects 

significant ruminant (i.e., deer) activity. Detections of Canada goose and gull markers at BR3 and BR4 

may be influenced by habitat, food availability, and nesting in proximity to the sampling sites. HF183 was 

detected at BR3 and BR4, while HumM2 was found exclusively at BR4, indicating human impacts at 

both sites. Six chemical indicators were found across all three sample sites (caffeine, DEET, metformin, 

ODV, sucralose, SMX), demonstrating persistent anthropogenic impacts within the BR. The increased 

presence of chemical indicators at BR3 and BR4 is likely due to recent untreated sewage releases (i.e., 

caffeine) and cumulative impacts of multiple WWTP discharges, respectively. Comparing the most 

commonly found indicators across all sites (enterococci, total coliforms, HF183, CG01, and sucralose) to 

the BR flow, total coliform concentrations showed low to moderate positive correlations while sucralose 

had strong negative correlations. These relationships suggest that total coliforms are enriched while 

sucralose is diluted during high-flow conditions. 

 Box plot analysis revealed that enterococci had the highest median concentration magnitude 

among the FIB. While MST markers varied by site, HF183 was prevalent at BR4, likely indicating 

wastewater effluent impacts. Rum2Bac was the only MST marker at BR2 and CG01 was the dominant 

MST marker at BR3, reflecting wildlife activities at both sites. Enterococci often exceeded Health 

Canada’s recreational water quality guidelines at BR3, suggesting a higher likelihood of fecal 
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contamination and public health risks. Sucralose was the most prevalent chemical indicator at all sites, 

particularly at BR4, likely due to incomplete removal during the wastewater treatment processes 

upstream.  

 Correlation and cluster analysis revealed complex interactions between microbial and chemical 

indicators at the sample sites. BR2 showed moderate to strong negative correlations between E. coli, 

ODV, and sucralose, enterococci and ODV, as well as between total coliforms, ODV, metformin, and 

sucralose. These negative relationships likely reflect similar point-source origins. Distinct clusters were 

often found, with only one cluster containing both microbial and chemical indicators in the overall and 

winter datasets. At BR3, significant relationships emerged between Rum2Bac, LeeSG, FIB, and chemical 

indicators. Increased correlations between E. coli and enterococci from BR2 to BR3 highlight the impact 

of various fecal sources, while the increased relationship between total coliforms and caffeine points to 

human contamination. The majority of the overall clusters were a combination of microbial and chemical 

indicators, with only one cluster containing only chemical indicators. This was also observed seasonally, 

with the exception of the summer dataset where microbial and chemical indicators clustered separately. 

BR4 was characterized by positive correlations between FIB and HF183, as well as between E. coli, 

erythromycin and propranolol. HF183 and total coliforms both demonstrated negative correlations with 

various chemical indicators. The positive relationship between HF183 and FIB as well as the increased 

presence of chemical indicators at BR4 suggest wastewater discharge impacts rather than point-source 

contamination. Clusters containing microbial and chemical indicators as well as a combination of 

indicators were observed in the overall BR4 dataset. A dominant pharmaceutical cluster was observed in 

the spring and summer, while more fragmented cluster patterns were seen during the fall and winter. The 

fall was the seasonal driver of the overall datasets at all three sites due to the elevated number of 

detections.  

This work showcases the potential for the relationships between microbial indicators and 

micropollutants to be used as indications of domestic sewage pollution in aquatic environments. In 
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addition, this analysis provides a baseline of microbial and chemical indicators present at three sites along 

the BR which can be utilized by the City of Calgary when monitoring domestic sewage contamination. 

The following recommendations have been summarized for future research related to fecal 

contamination near the City of Calgary along the BR: 

• Monitor three FIB (E. coli, total coliforms, enterococci), 4 MST markers (Rum2Bac, CG01, 

HF183, HumM2), and 6 micropollutants (caffeine, carbamazepine, diclofenac, metformin, 

sucralose, and ODV) for site-specific fingerprinting due to their presence (unique or 

persistent) and prevalence.  

• Investigate relationships between traditional water quality parameters (i.e., pH, temperature, 

total suspended solids [TSS], DO). 

• Expand monitoring to include sites a) upstream of BR2 to develop a comprehensive 

understanding of the influences of septic, stormwater, and wastewater impacts, b) along NC 

to differentiate between NC point-source and stormwater influences at BR3, and c) 

immediately upstream of the WWTPs to identify the impact of wastewater discharge 

(including removal efficiencies) on the presence and concentrations of chemical indicators at 

BR4.  
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Appendix A: Sample Python Codes for BR2 
 

Importing and processing the data 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
import os 
import numpy as np 
 
os.chdir(r"G:\Shared drives\Arlos Lab\5_StudentFolders\JaimeHicks\Databases") 
AllData = pd.read_excel('FINAL Micro and ESOC data (2018-2024).xlsx', 
sheet_name='BR2') 
AllData = pd.DataFrame(AllData).set_index('Sample Date') 
drop_columns = [] 
for x in AllData: 
    if AllData[x]["Numerical detections:"] < 7: 
        drop_columns.append(x) 
for x in drop_columns: 
    AllData = AllData.drop(columns=x) 
FilteredData =AllData.drop('Numerical detections:') 
FilteredData=FilteredData.apply(pd.to_numeric, errors='coerce') 
 

Data transformation (log10) 
FilteredData =AllData.drop('Numerical detections:') 
FilteredData=FilteredData.apply(pd.to_numeric, errors='coerce').apply(lambda 
x: np.log10(x+1)) 
 
Data transformation (1/x) 
FilteredData =AllData.drop('Numerical detections:') 
FilteredData=FilteredData.apply(pd.to_numeric, errors='coerce').apply(lambda 
x: 1/(x + 1)) 
 

Shapiro-Wilk Normality test 
import scipy 
from scipy import stats 
normality_test=[] 
normal_count=0 
notnormal_count=0 
import pprint 
 
for col in FilteredData.columns: 
    stat,p=stats.shapiro(FilteredData[col].dropna())   
    results='%s,Statistics(W)= %e, p = %e' % (col,stat, p ) 
    if p>0.05: 
        comment='Normal' 
        normal_count+=1 
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    else: 
        comment='Not Normal' 
        notnormal_count+=1 
    total=normal_count+notnormal_count 
    results='%s,Statistics(W)= %e, p = %e,%s' % (col,stat, p,comment )     
    normality_test.append(results) 
 
pprint.pprint(list(normality_test)) 
print('The number of substances that are normal based on Shapiro-Wilk test is 
%i out of %i.'% (normal_count,total)) 
 
 
Presence/absence plot 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
import numpy as np 
import os 
from matplotlib.colors import LinearSegmentedColormap 
 
os.chdir(r"G:\Shared drives\Arlos Lab\5_StudentFolders\JaimeHicks\Databases") 
data = pd.read_excel('Final Micro and ESOC data (2018-2024).xlsx', 
sheet_name='BR2 for PresenceAbsence') 
data['Sample Date'] = pd.to_datetime(data['Sample Date'], errors='coerce') 
 
data.rename(columns={'E. coli MPN': 'E. coli', 'Total Coliforms MPN': 'Total 
coliforms', 'O-Desmethyl-venlafaxine': 'ODV',  
                     'Sulfamethoxazole':'SMX', 'Entero1':'Enterococci', 
'Bisphenol S': 'BPS'}, inplace=True) 
 
desired_order = ['E. coli', 'Enterococci', 'Total coliforms', 'HF183', 
'HumM2', 'Rum2Bac', 'LeeSG', 'CG01', 'Acesulfame',  
                 'Acetaminophen', 'Atenolol', 'BPS', 'Caffeine', 
'Carbamazepine', 'Citalopram', 'Clarithromycin',  
                 'Codeine', 'Cotinine', 'DEET', 'Diclofenac', 'Erythromycin', 
'Ibuprofen', 'Metformin', 'Naproxen',  
                 'ODV', 'Primidone', 'Propranolol', 'Sucralose', 'SMX', 
'TCEP', 'TCPP',  
                 'Trimethoprim', 'Venlafaxine'] 
variables = desired_order 
data[variables] = data[variables].apply(pd.to_numeric, errors='coerce') 
 
def convert_to_binary(x): 
    if isinstance(x, str) or pd.isna(x): 
        return 0  # Set strings or NaNs to 0 
    elif x > 0: 
        return 1  # Set values greater than 0 to 1 
    elif x == 0: 
        return 0  # Special marker for 0 values 
    return 0  # Default case 
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def determine_overlay(x): 
    if x == 0: 
        return "NS" 
    return "" 
 
data_binary = data[variables].applymap(lambda x: convert_to_binary(x)) 
overlay_info = data[variables].applymap(lambda x: determine_overlay(x)) 
data[variables] = data_binary 
data_binary['Sample Date'] = data['Sample Date'] 
data_binary.set_index('Sample Date', inplace=True) 
data_binary.index = data_binary.index.strftime('%Y-%m-%d') 
 
colors = ["#A4BDFF", "#F25E5E"]  # NaN = blue, Numerical = red 
n_bins = 2  # Number of bins 
custom_cmap = LinearSegmentedColormap.from_list("custom_colormap", colors, 
N=n_bins) 
 
plt.figure(figsize=(35, 15)) 
ax = sns.heatmap(data_binary.T, cmap=custom_cmap, cbar=False, 
annot=overlay_info.T, fmt='', annot_kws={"size": 20,                                                                                                       
"fontname": "Arial"}) 
 
yticks = ax.get_yticks() 
ax.set_yticklabels(['E. coli', 'Enterococci', 'Total coliforms', 'HF183', 
'HumM2', 'Rum2Bac', 'LeeSG', 'CG01', 'Acesulfame',  
                 'Acetaminophen', 'Atenolol', 'BPS', 'Caffeine', 
'Carbamazepine', 'Citalopram', 'Clarithromycin',  
                 'Codeine', 'Cotinine', 'DEET', 'Diclofenac', 'Erythromycin', 
'Ibuprofen', 'Metformin', 'Naproxen',  
                 'ODV', 'Primidone', 'Propranolol', 'Sucralose', 'SMX', 
'TCEP', 'TCPP',  
                 'Trimethoprim', 'Venlafaxine'],  
                   fontsize=25, fontname='Arial') 
yticklabels = plt.yticks()[1] 
for label in yticklabels: 
    if label.get_text() in ['E. coli']: 
        label.set_fontstyle('italic') 
plt.xticks(rotation=45, ha='right', fontsize=20, fontname='Arial') 
plt.xlabel('') 
plt.grid(color='gray', linestyle='-', linewidth=0.5) 
plt.show() 
 
Enterococci time/series plot  
import pandas as pd 
import matplotlib.pyplot as plt 
import matplotlib.dates as mdates 
 
data = pd.read_excel('Final Micro and ESOC data (2018-2024).xlsx', 
sheet_name='BR2 + flow') 
data = data[data['Sample Date'] != 'Numerical detections:'] 
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data['Sample Date'] = pd.to_datetime(data['Sample Date'], errors='coerce') 
 
concentration_variables = [ 
     'Enterococci', 
    # 'Total coliforms', 
    # 'HF183', 
    # 'CG01', 
    # 'Sucralose' 
] 
flow_variable = 'Flow' 
unit_mapping = { 'HF183': 'Copies/100 mL', 'CG01': 'Copies/100 mL',     
'Total coliforms': 'MPN/100 mL', 'Flow': 'm³/s', 'Enterococci': 'CCE/100 mL'} 
 
data[concentration_variables + [flow_variable]] = 
data[concentration_variables + [flow_variable]].apply(pd.to_numeric, 
errors='coerce').fillna(0)                                                                                                       
data.set_index('Sample Date', inplace=True) 
width = 35   
height = 9   
plt.rcParams['font.family'] = 'Arial' 
fig, ax = plt.subplots(figsize=(width, height)) 
filtered_data = data[[concentration_variables[0], flow_variable]] 
 
 
if not filtered_data.empty: 
    ax.plot(filtered_data.index, filtered_data[concentration_variables[0]], 
marker='o', label=concentration_variables[0], color='gray', linewidth=3, 
markersize=10)     
    ax.set_yscale('log') 
    ax.set_ylabel(f'Concentration (log 
{unit_mapping.get(concentration_variables[0], "ng/L")})', fontsize=35, 
color='gray') 
    ax.set_ylim(0.1, 1e6) 
    ticks = [0.1, 1, 10, 100, 1000, 10000] 
    ax.set_yticks(ticks) 
    ax.get_yaxis().set_major_formatter(plt.ScalarFormatter()) 
    ax.get_yaxis().set_minor_formatter(plt.NullFormatter()) 
    ax.tick_params(axis='y', which='both', labelsize=35) 
    ax2 = ax.twinx() 
    ax2.plot(filtered_data.index, filtered_data[flow_variable], marker='o', 
label='Flow', color='#4c7cfc', linewidth=3, markersize=10)          
    ax2.set_ylabel(f'{flow_variable} ({unit_mapping.get(flow_variable)})', 
fontsize=35, color='#4c7cfc') 
    ax2.set_ylim(0, 340) 
    ax2.tick_params(axis='y', which='both', labelsize=35) 
    ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m')) 
    ax.xaxis.set_major_locator(mdates.MonthLocator()) 
    ax.tick_params(axis='x', labelsize=25, rotation=45) 
 
    for tick in ax.get_xticklabels(): 
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        tick.set_rotation(45) 
        tick.set_ha('right') 
        tick.set_fontsize('25') 
    ax2.legend(['Flow'], loc='upper left', fontsize=35) 
 
fig.tight_layout() 
plt.subplots_adjust(bottom=0.2) 
plt.show() 
 
Overall box plot 
import pandas as pd 

import seaborn as sns 

import matplotlib.pyplot as plt 

import numpy as np 

import os 

 

os.chdir(r"G:\Shared drives\Arlos Lab\5_StudentFolders\JaimeHicks\Databases") 

AllData = pd.read_excel('Final Micro and ESOC data (2018-2024).xlsx', 

sheet_name='BR2') 

AllData = pd.DataFrame(AllData).set_index('Sample Date') 

drop_columns = [] 

 

for x in AllData: 

    if AllData[x]["Numerical detections:"] < 7: 

        drop_columns.append(x) 

 

for x in drop_columns: 

    AllData = AllData.drop(columns=x) 
     

FilteredData =AllData.drop('Numerical detections:') 

FilteredData = FilteredData.apply(pd.to_numeric, errors='coerce') 

FilteredData = FilteredData.fillna(0) 

melted_data = pd.melt(FilteredData.reset_index(), id_vars=['Sample Date'], 

var_name='Variable', value_name='Concentration') 

melted_data['Variable'] = melted_data['Variable'].replace({ 

    'E. coli MPN': 'E. coli', 

    'Total Coliforms MPN': 'Total coliforms', 

    'Entero1': 'Enterococci', 

    'O-Desmethyl-venlafaxine': 'ODV', 

    'Sulfamethoxazole': 'SMX' 

}) 

 

min_value = melted_data['Concentration'].min(skipna=True)  # Get minimum non-

negative value 

melted_data['Concentration'] = np.where(melted_data['Concentration'] < 0, 
min_value, melted_data['Concentration']) 
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y_min = -0.1  

y_max = 1e6 

 
palette = {'E. coli': '#a4bdff', 'Total coliforms': '#a4bdff', 'Enterococci': 

'#a4bdff', 'HF183': '#ffd71a', 'Rum2Bac': '#ffd71a', 'CG01': '#ffd71a', 

'Caffeine': '#91ebb2', 'DEET': '#91ebb2', 'Metformin': '#91ebb2', 'ODV': 

'#91ebb2', 'Sucralose': '#91ebb2', 'SMX': '#91ebb2'} 

 

order = ['E. coli', 'Total coliforms', 'Enterococci', 'Rum2Bac', 'Caffeine',     
'DEET', 'Metformin', 'ODV', 'Sucralose', 'SMX'] 

 

plt.figure(figsize=(25, 12)) 

plt.rcParams['font.family'] = 'Arial' 

sns.boxplot(data=melted_data, x='Variable', y='Concentration', 

palette=palette, order=order, boxprops={'edgecolor': 'black'}, 
             medianprops={'color': 'black'}, 

             whiskerprops={'color': 'black'}) 

 

sns.stripplot(data=melted_data, x='Variable', y='Concentration', 

color='gray', order=order, size=5, jitter=True, 

             edgecolor='grey') 
 

legend_handles = [plt.Rectangle((0, 0), 1, 1, color='#a4bdff', label='FIB'), 

                 plt.Rectangle((0, 0), 1, 1, color='#ffd71a', label='MST 

markers'), 

                 plt.Rectangle((0, 0), 1, 1, color='#91ebb2', label='Chemical 

indicators')] 

 

plt.legend(handles=legend_handles, loc='upper right', prop={'size': 25, 

'family': 'Arial'}) 

        

plt.yscale('symlog') 

plt.ylim(y_min, y_max) 

plt.xlabel('') 

plt.ylabel('Concentration*', fontsize=25, fontname='Arial') 

 

xticklabels = plt.xticks()[1]  

for label in xticklabels: 

    if label.get_text() in ['E. coli']: 
        label.set_fontstyle('italic') 

 

plt.xticks(np.arange(len(order)), xticklabels, rotation=0, fontsize=25, 

fontname='Arial') 

plt.yticks(fontsize=25, fontname='Arial') 

plt.tight_layout() 

plt.show() 



125 
 

Overall correlation and clustering 
import seaborn as sns 
import matplotlib.pyplot as plt 
correlation_matrix = FilteredData.corr(method='pearson') 
 
replaced_labels = { 
    'E. coli MPN': 'E. coli', 
    'Entero1': 'Enterococci', 
    'Total Coliforms MPN': 'Total coliforms', 
    'O-Desmethyl-venlafaxine': 'ODV', 
    'Sulfamethoxazole': 'SMX', 
    'Bisphenol S': 'BPS' 
} 
correlation_matrix = correlation_matrix.rename(columns=replaced_labels, 
index=replaced_labels) 
 
plt.figure(figsize=(5, 5)) 
heatmap = sns.heatmap(correlation_matrix, annot=True, cmap='RdYlBu_r', vmin=-
1, vmax=1, center=0, linewidths=.5, annot_kws={"size": 10})                    
colorbar = heatmap.collections[0].colorbar 
colorbar.ax.tick_params(labelsize=20) 
plt.xticks(fontsize=20, rotation=45, ha='right')   
plt.yticks(fontsize=20, rotation=0)   
plt.show() 
 
plt.rcParams['font.family'] = "arial" 
plt.figure(figsize=(20, 20)) 
correlation_matrix = correlation_matrix.fillna(0) 
cluster_map = sns.clustermap(correlation_matrix, vmin=-1, vmax=1, 
method="ward", annot=True, cmap="RdYlBu_r", annot_kws={"size": 15})                 
 
for ax in [cluster_map.ax_row_dendrogram, cluster_map.ax_col_dendrogram]: 
    for line in ax.collections: 
        line.set_linewidth(2)   
 
plt.setp(cluster_map.ax_heatmap.yaxis.get_majorticklabels(), fontsize=20, 
rotation=0)   
plt.setp(cluster_map.ax_heatmap.xaxis.get_majorticklabels(), fontsize=20, 
rotation=45, ha="right")   
 
for label in cluster_map.ax_heatmap.get_xticklabels(): 
    if label.get_text() in ['E. coli']: 
        label.set_fontstyle('italic') 
for label in cluster_map.ax_heatmap.get_yticklabels(): 
    if label.get_text() in ['E. coli']: 
        label.set_fontstyle('italic') 
colorbar = cluster_map.cax 
colorbar.yaxis.set_tick_params(labelsize=20) 
colorbar.yaxis.label.set_size(20) 
plt.show() 
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Appendix B: Supplementary Information 

Table B.1 Sample sizes for all sites across all datasets. DEET: N,N-diethyl-meta-toluamide. PFOA: Perfluorooctanoic acid. PFOS: 
Perfluorooctanesulfonic acid. TCEP: Tris(2-carboxyethyl)phosphine. TCPP: Tris(chloropropyl) phosphate. 
 

  BR2 BR3 BR4 
  All Spring Summer Fall Winter All Spring Summer Fall Winter All Spring Summer Fall Winter 
Fecal indicator 
bacteria (FIB) 

E. coli 22 6 13 2 1 48 11 11 15 11 54 14 14 16 10 
Enterococci 49 12 15 10 12 48 11 11 15 11 54 14 14 16 10 
Total coliforms 49 12 15 10 12 48 11 11 15 11 54 14 14 16 10 

Microbial 
source tracking 
(MST) markers 

CG01 4 0 1 2 1 22 3 0 9 10 25 5 1 9 10 
CowM3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Dog3 0 0 0 0 0 2 1 1 0 0 6 1 2 1 2 
LeeSG 0 0 0 0 0 14 3 4 7 0 17 6 6 4 1 
MuBac 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 
Pig2Bac 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
Rum2Bac 10 4 3 1 2 16 3 6 4 3 14 3 3 5 3 
HF183 5 1 1 0 3 38 8 6 14 10 52 13 13 16 10 
HumM2 2 0 0 0 2 4 1 1 1 1 46 13 12 11 10 

Micropollutants 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

17a-Estradiol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
17a-
Ethynylestradiol 

0 0 0 0 0 2 1 0 0 1 2 2 0 0 0 

17b-Estradiol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4-n-Nonylphenol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4-t-Octylphenol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Acesulfame 0 0 0 0 0 1 0 0 0 1 30 7 8 11 4 
Acetaminophen 0 0 0 0 0 7 1 0 4 2 42 9 10 15 8 
Androstenedione 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
Atenolol 0 0 0 0 0 1 0 0 1 0 35 8 6 14 7 
Benzyl butyl 
phthalate 

0 0 0 0 0 2 1 1 0 0 2 0 2 0 0 

Bisphenol A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Bisphenol S 0 0 0 0 0 12 4 4 3 1 28 6 4 9 9 
Caffeine 11 3 6 1 1 30 9 5 11 5 52 13 13 16 10 
Carbamazepine 1 0 0 0 1 0 0 0 0 0 43 10 11 15 7 
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Micropollutants 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 BR2 BR3 BR4 
 All Spring Summer Fall Winter All Spring Summer Fall Winter All Spring Summer Fall Winter 
Citalopram 0 0 0 0 0 0 0 0 0 0 11 1 1 5 4 
Clarithromycin 0 0 0 0 0 0 0 0 0 0 24 5 6 9 4 
Codeine 0 0 0 0 0 1 0 0 1 0 38 8 10 13 7 
Cotinine 0 0 0 0 0 14 3 1 6 4 51 13 14 14 10 
DEET 8 0 8 0 0 20 2 10 6 2 45 10 13 12 10 
Di(2-ethylhexyl) 
phthalate 

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 

Dibutyl phthalate 2 0 2 0 0 2 0 2 0 0 3 1 2 0 0 
Diclofenac 0 0 0 0 0 0 0 0 0 0 54 14 14 16 10 
Diethyl phthalate 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 
Dimethyl 
phthalate 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Di-n-octyl 
phthalate 

1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 

Equilenin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Equilin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Erythromycin 0 0 0 0 0 0 0 0 0 0 7 1 1 3 2 
Estriol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Estrone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Fluoxetine 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gemfibrozil 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2 
Ibuprofen 0 0 0 0 0 1 0 1 0 0 9 2 1 2 4 
Metformin 47 12 13 10 12 44 11 9 14 10 53 13 14 16 10 
Naproxen 0 0 0 0 0 0 0 0 0 0 34 9 5 13 7 
Nifedipine 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Norethindrone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Norfluoxetine 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Norgestimate 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
O-Desmethyl-
venlafaxine 

26 4 3 7 12 20 2 0 8 10 54 14 14 16 10 

Pantoprazole 0 0 0 0 0 0 0 0 0 0 4 0 1 3 0 
PFOA 2 0 2 0 0 1 0 1 0 0 3 0 2 1 0 
PFOS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Primidone 0 0 0 0 0 0 0 0 0 0 30 6 8 12 4 
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Micropollutants 
 

 BR2 BR3 BR4 
 All Spring Summer Fall Winter All Spring Summer Fall Winter All Spring Summer Fall Winter 
Progesterone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Propranolol 0 0 0 0 0 0 0 0 0 0 7 0 0 4 3 
Salbutamol 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Sucralose 49 12 15 10 12 46 10 11 15 10 54 14 14 16 10 
Sulfamethoxazole 16 2 0 7 7 18 1 0 10 7 42 11 10 14 7 
TCEP 3 0 2 1 0 4 1 2 1 0 45 8 12 15 10 
TCPP 0 0 0 0 0 0 0 0 0 0 23 3 7 9 4 
Testosterone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Triclosan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Trimethoprim 0 0 0 0 0 0 0 0 0 0 44 11 11 15 7 
Venlafaxine 5 1 0 2 2 2 0 0 1 1 32 7 9 12 4 
Zopiclone 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
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Table B.2 BR2 statistics. DEET: N,N-diethyl-meta-toluamide. IQR: Interquartile range. 

Parameter Data type Median First 
quartile (Q1) 

Third 
quartile (Q3) IQR Skewness 

E. coli Overall 3.100 1.000 7.950 6.950 2.039 
Summer 3.100 2.000 9.700 7.700 2.207 

Enterococci Overall 79.004 36.571 159.770 123.199 5.889 
Spring 53.066 33.800 212.015 178.215 3.325 

Summer 62.100 32.350 136.298 103.948 2.394 
Fall 193.373 129.887 356.463 226.576 1.284 

Winter 74.752 37.712 129.161 91.450 0.095 
Total coliforms Overall 22.800 13.200 67.700 54.500 2.975 

Spring 21.250 16.525 44.000 27.475 2.779 
Summer 69.100 46.150 167.150 121.000 2.166 

Fall 22.350 14.275 45.150 30.875 2.224 
Winter 10.300 7.875 11.550 3.675 -0.063 

Rum2Bac Overall 3715.000 2805.000 5335.000 2530.000 0.454 
Caffeine Overall 6.700 6.143 13.300 7.157 3.052 
DEET Overall 12.900 11.850 15.375 3.525 2.402 

Summer 12.900 11.850 15.375 3.525 2.402 
Metformin Overall 17.000 13.250 20.945 7.695 0.984 

Spring 21.964 13.050 31.850 18.800 0.077 
Summer 13.900 12.700 15.400 2.700 0.553 

Fall 17.050 12.650 20.400 7.750 -0.303 
Winter 17.450 16.850 24.025 7.175 1.198 

O-Desmethyl-
venlafaxine 

Overall 2.000 1.425 2.300 0.875 -0.146 
Fall 1.700 1.377 2.100 0.723 0.404 

Winter 2.347 2.100 2.499 0.399 -1.036 
Sucralose Overall 46.600 34.700 60.100 25.400 0.657 

Spring 47.300 32.000 53.200 21.200 0.252 
Summer 31.600 20.250 42.650 22.400 1.037 

Fall 48.450 44.525 58.987 14.462 0.565 
Winter 58.375 49.125 64.748 15.623 1.968 

Sulfamethoxazole Overall 1.700 1.450 1.925 0.475 0.915 
Fall 1.800 1.550 1.850 0.300 2.109 

Winter 1.900 1.450 2.207 0.757 0.169 
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Table B.3 BR3 statistics. DEET: N,N-diethyl-meta-toluamide. IQR: Interquartile range. 

Parameter Data 
type Median 

First 
quartile 

(Q1) 

Third 
quartile 

(Q3) 
IQR Skewness 

E. coli Overall 44.100 20.000 82.825 62.825 6.448 
Spring 18.700 14.100 28.650 14.550 2.174 

Summer 47.300 32.900 69.900 37.000 0.808 
Fall 44.100 22.350 88.050 65.700 3.852 

Winter 62.000 47.650 124.000 76.350 1.914 
Enterococci Overall 1411.156 295.508 2942.436 2646.928 6.629 

Spring 326.000 170.500 1310.396 1139.896 0.722 
Summer 681.839 227.500 1627.332 1399.832 1.027 

Fall 2412.075 690.895 4294.083 3603.188 3.829 
 Winter 2560.000 1712.780 4215.000 2502.220 2.585 
Total coliforms Overall 290.900 140.925 475.125 334.200 3.413 

Spring 218.700 112.100 476.600 364.500 3.224 
Summer 648.800 346.800 1251.500 904.700 1.533 

Fall 248.100 138.750 347.450 208.700 3.131 
Winter 218.700 148.150 317.750 169.600 3.225 

HF183 Overall 3480.000 1941.000 5700.000 3759.000 2.613 
Spring 3030.000 1876.500 4984.500 3108.000 0.571 

Fall 3180.000 2092.500 5765.000 3672.500 1.101 
Winter 4065.000 3306.000 6741.000 3435.000 2.250 

Rum2Bac Overall 2235.000 1555.500 3391.500 1836.000 3.318 
LeeSG Overall 3165.000 1665.000 4379.500 2714.500 0.880 

Fall 2570.000 1710.000 4198.000 2488.000 1.278 
CG01 Overall 15189.000 6141.000 30280.500 24139.500 3.069 

Fall 31800.000 18462.000 43600.000 25138.000 2.510 
Winter 13130.000 6610.500 17923.500 11313.000 3.071 

Acetaminophen Overall 8.700 7.112 10.650 3.538 -0.262 
Bisphenol S Overall 11.650 7.500 104.870 97.370 2.877 
Caffeine Overall 20.750 10.219 30.650 20.431 2.198 
 Spring 16.600 9.400 32.766 23.366 1.969 
 Fall 23.000 16.100 34.752 18.652 1.740 
Cotinine Overall 2.150 1.266 2.733 1.467 1.516 
DEET Overall 13.442 9.700 23.850 14.150 0.879 
 Summer 15.250 10.050 22.300 12.250 0.962 
Metformin Overall 14.550 11.525 18.700 7.175 1.191 

Spring 15.400 11.634 23.200 11.566 0.859 
Summer 12.100 11.000 12.700 1.700 1.567 

Fall 14.100 11.575 21.100 9.525 0.380 
Winter 17.400 15.200 18.425 3.225 1.056 

O-Desmethyl-
venlafaxine 

Overall 1.505 1.275 1.925 0.650 0.135 
Fall 1.400 1.175 1.607 0.432 0.471 

Winter 1.800 1.525 2.100 0.575 -0.476 
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Parameter Data 
type Median 

First 
quartile 

(Q1) 

Third 
quartile 

(Q3) 
IQR Skewness 

Sucralose Overall 39.021 27.175 50.571 23.396 0.194 
Spring 33.321 21.000 50.600 29.600 0.414 

Summer 26.400 17.050 32.100 15.050 1.692 
Fall 44.300 36.200 52.302 16.102 0.015 

 Winter 45.450 40.775 51.049 10.274 0.727 
Sulfamethoxazole Overall 1.600 1.400 1.980 0.580 0.956 

Fall 1.550 1.400 1.775 0.375 1.588 
Winter 1.700 1.500 2.440 0.940 0.247 
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Table B.4 BR4 statistics. DEET: N,N-diethyl-meta-toluamide. IQR: Interquartile range. TCEP: Tris(2-
carboxyethyl)phosphine. TCPP: Tris(chloropropyl) phosphate. 

Parameter Data 
type Median First quartile 

(Q1) 
Third quartile 

(Q3) IQR Skewness 

E. coli Overall 40.700 22.875 84.350 61.475 4.036 
 Spring 32.350 18.675 55.250 36.575 2.535 
 Summer 38.200 17.850 86.975 69.125 0.883 
 Fall 36.150 20.925 70.100 49.175 0.963 
 Winter 80.450 54.850 97.350 42.500 -0.554 
Enterococci Overall 9385.000 3890.000 17184.470 13294.470 1.926 
 Spring 9015.000 3998.143 18406.956 14408.814 1.833 
 Summer 2580.000 1953.912 8559.735 6605.823 1.754 
 Fall 6901.949 4585.567 14567.933 9982.366 1.758 
 Winter 17022.980 15087.599 27917.626 12830.028 1.697 
Total coliforms Overall 596.250 312.075 965.500 653.425 5.179 
 Spring 532.350 277.900 1264.300 986.400 3.547 
 Summer 925.400 770.100 2229.075 1458.975 3.096 
 Fall 448.150 299.575 703.925 404.350 1.813 
 Winter 387.700 257.350 604.675 347.325 0.906 
HF183 Overall 40107.000 17370.000 88447.000 71077.000 2.712 
 Spring 69800.000 34068.000 133260.000 99192.000 0.381 
 Summer 24222.000 11200.000 38970.000 27770.000 1.458 
 Fall 45010.000 15639.000 65268.000 49629.000 1.745 
 Winter 53750.000 36744.000 157237.500 120493.500 1.603 
HumM2 Overall 5478.000 3350.000 15057.000 11707.000 3.338 
 Spring 6620.000 4890.000 40980.000 36090.000 2.582 
 Summer 3884.000 2940.000 5049.000 2109.000 3.047 
 Fall 5460.000 2585.000 11408.000 8823.000 2.098 
 Winter 12134.000 7127.000 15057.000 7930.000 2.779 
Rum2Bac Overall 2541.000 1911.000 4392.500 2481.500 1.938 
LeeSG Overall 2990.000 1800.000 6820.000 5020.000 1.298 
CG01 Overall 5460.000 2676.000 20040.000 17364.000 2.217 
 Fall 16100.000 8178.000 28920.000 20742.000 0.452 
 Winter 3832.000 2697.000 11461.500 8764.500 1.602 
Acesulfame Overall 245.500 142.500 539.000 396.500 1.401 
 Spring 488.000 392.651 843.095 450.443 0.902 
 Summer 139.500 109.625 160.000 50.375 -0.102 
 Fall 205.000 145.000 319.500 174.500 1.886 
Acetaminophen Overall 10.000 6.825 13.900 7.075 2.157 
 Spring 8.900 8.200 13.600 5.400 0.949 
 Summer 6.850 5.925 16.800 10.875 1.880 
 Fall 11.000 7.554 14.250 6.696 2.451 
 Winter 11.700 10.100 13.775 3.675 1.729 
Atenolol Overall 11.720 8.800 15.550 6.750 0.359 
 Spring 12.374 9.831 13.541 3.710 -1.111 
 Fall 11.060 9.075 14.700 5.625 0.422 
 Winter 17.200 16.300 18.550 2.250 0.271 
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Parameter Data 
type Median First quartile 

(Q1) 
Third 

quartile (Q3) IQR Skewness 

Bisphenol S Overall 11.750 7.450 45.475 38.025 2.735 
 Fall 9.000 6.300 23.300 17.000 1.183 
 Winter 10.400 7.700 11.900 4.200 1.048 
Caffeine Overall 38.650 14.500 72.025 57.525 6.070 
 Spring 45.500 13.464 71.500 58.036 3.379 
 Summer 18.300 12.000 48.100 36.100 1.258 
 Fall 26.900 20.425 72.275 51.850 2.196 
 Winter 46.800 23.200 81.025 57.825 0.172 
Carbamazepine Overall 25.200 17.000 37.700 20.700 0.376 
 Spring 22.300 14.903 25.895 10.992 0.251 
 Summer 16.700 9.000 21.600 12.600 1.370 
 Fall 33.600 26.650 41.400 14.750 0.320 
 Winter 39.100 22.050 42.500 20.450 -0.174 
Citalopram Overall 25.058 23.900 26.900 3.000 2.508 
Clarithromycin Overall 15.950 13.175 43.552 30.377 1.315 
 Fall 20.800 13.900 51.400 37.500 1.119 
Codeine Overall 59.600 41.775 79.950 38.175 1.088 
 Spring 61.066 27.544 79.980 52.435 0.848 
 Summer 23.150 12.175 42.525 30.350 1.966 
 Fall 60.300 54.400 77.100 22.700 2.957 
 Winter 82.800 77.100 95.100 18.000 1.590 
Cotinine Overall 5.106 3.100 9.300 6.200 1.563 
 Spring 5.300 2.800 10.200 7.400 0.422 
 Summer 3.100 1.700 4.000 2.300 0.707 
 Fall 5.550 3.850 8.099 4.249 1.867 
 Winter 15.000 8.925 17.975 9.050 0.393 
DEET Overall 19.616 14.400 39.000 24.600 3.384 
 Spring 19.958 16.521 26.350 9.829 2.181 
 Summer 45.300 24.900 106.000 81.100 1.654 
 Fall 14.650 9.250 17.725 8.475 2.975 
 Winter 17.000 15.750 20.700 4.950 2.934 
Diclofenac Overall 209.500 139.356 305.000 165.644 0.486 
 Spring 153.712 69.650 190.058 120.408 0.235 
 Summer 118.000 69.050 200.500 131.450 0.612 
 Fall 270.500 208.000 368.000 160.000 0.763 
 Winter 368.000 274.750 420.250 145.500 -0.399 
Erythromycin Overall 2.600 2.400 4.750 2.350 1.944 
Ibuprofen Overall 11.400 10.600 15.300 4.700 0.892 
Metformin Overall 696.000 442.000 1200.000 758.000 0.630 
 Spring 920.000 509.100 1430.000 920.900 0.367 
 Summer 395.500 335.500 489.250 153.750 -0.867 
 Fall 714.000 504.000 1003.750 499.750 1.113 
 Winter 1445.000 1227.500 1537.500 310.000 -0.526 
Naproxen Overall 12.500 9.560 16.150 6.590 1.287 
 Spring 8.722 8.300 16.200 7.900 0.556 
 Fall 12.600 10.300 16.000 5.700 0.124 
 Winter 13.800 12.350 18.700 6.350 1.718 
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Parameter Data 
type Median First quartile 

(Q1) 
Third 

quartile (Q3) IQR Skewness 

O-Desmethyl-
venlafaxine 

Overall 157.000 105.250 230.250 125.000 2.062 
Spring 142.590 58.300 157.000 98.700 -0.455 

Summer 90.900 54.525 135.750 81.225 1.906 
Fall 195.000 149.000 246.250 97.250 3.106 

Winter 245.500 201.000 290.250 89.250 0.582 
Primidone Overall 4.700 3.025 6.250 3.225 -0.035 
 Summer 2.350 1.575 3.225 1.650 1.029 
 Fall 5.795 4.375 6.800 2.425 -0.296 
Propranolol Overall 5.700 5.400 7.100 1.700 2.638 
Sucralose Overall 2300.000 1726.898 2832.000 1105.102 0.583 
 Spring 2025.000 835.500 2460.000 1624.500 -0.108 
 Summer 1680.000 795.250 2202.500 1407.250 0.311 
 Fall 2653.000 1972.500 2942.500 970.000 0.352 
 Winter 3135.000 2702.500 3832.500 1130.000 1.745 
Sulfamethoxazole Overall 15.401 9.800 27.300 17.500 0.175 
 Spring 10.100 4.321 13.451 9.129 0.610 
 Summer 10.550 7.475 18.650 11.175 0.581 
 Fall 28.050 24.352 29.800 5.448 -0.507 
 Winter 24.900 11.750 30.000 18.250 -0.256 
TCEP Overall 14.400 10.500 16.800 6.300 1.289 
 Spring 12.500 10.850 16.735 5.885 1.439 
 Summer 12.450 7.550 15.825 8.275 1.930 
 Fall 15.400 10.650 17.000 6.350 0.740 
TCPP Overall 121.000 107.500 161.000 53.500 3.550 
 Summer 106.000 79.300 111.000 31.700 -0.917 
 Fall 129.000 114.000 158.000 44.000 0.879 
 Winter 14.650 12.725 17.775 5.050 -0.042 
Trimethoprim Overall 17.773 9.775 24.800 15.025 0.184 
 Spring 12.914 7.000 17.773 10.773 0.748 
 Summer 9.700 5.200 11.050 5.850 1.512 
 Fall 19.700 17.874 27.150 9.277 0.360 
 Winter 25.200 24.900 26.050 1.150 1.224 
Venlafaxine Overall 36.949 23.700 54.050 30.350 0.441 
 Spring 25.509 13.850 45.849 31.999 0.643 
 Summer 20.700 15.100 29.500 14.400 0.890 
 Fall 50.100 35.400 57.325 21.925 1.007 

 

 


