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Abstract

Search query understanding is a trending topic in the field of Information Retrieval (IR).
The goal is to learn higher-level representations for the intents or concepts behind a search
query and utilize these representations to further enhance down-stream services like content
recommendation. There are several challenges associated with search query understanding.
First of which is the Lexical Chase problem, where the surrounding context of a query
could not be accurately established by considering only the words in the query. Second, we
need an efficient way to build context representations for search queries in the open-domain,
which could encapsulate massive amounts of entities and knowledge. Third, we must ensure
that down-streams tasks are indeed benefiting from these representations.

The rapid advancements of deep machine learning models introduce new possibilities for
tackling these challenges. In this thesis, we begin by investigating whether word-by-word
deep generative models provide a unique yet feasible alternative approach for enhancing
the process of query understanding and recommendation. We first attempt to directly
generate search queries from long news documents, which is of great value to search engines
and recommenders in terms of locating potential target users and ranking content. By
combining a hierarchical Recurrent Neural Network (RNN) encoder with a sentence-level
and a keyword-level Graph Convolutional Networks (GCNs), we build structural document
representations. A Transformer based decoder incorporates each feature stream through
the Multi-Head Attention mechanism.

Next, we study generative query recommendation from short inputs, e.g. queries and
document titles. We partition the task of query generation into two simpler sub-problems,
namely, relevant words discovery and context-aware query generation. In the first stage,
an RNN-based Relevant Words Generator shortlists a dynamic vocabulary of contextually
relevant words, which eases the learning process for the attentional Sequence-to-Sequence
(Seq2Seq) model in the second stage. Overall, our proposed framework achieves better per-
formance and alleviates the issue of high resource-consumption in many generative language

models.
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Finally, we study the problem of relatedness matching between a search query and a
large set of high-level concepts. We re-adopt the Relevant Words Generator from previous
work as an enhanced shortlisting scheme and meta-fine-tune a BERT matching model for
fine-grained relatedness classification. By employing four closely related tasks and training
under the Reptile algorithm, we achieve zero-shot transfer learning on the problem of query-
concept matching.

On real-world datasets provided by our industry research partner, Tencent, we show that
deep learning models learn better representations for search queries, and our approaches
competitively outperform many popular baselines. Furthermore, we conduct various abla-

tion tests and case studies to verify the usefulness of each proposed component.

iii



Preface

All datasets used for experimentation are provided by Tencent, which is part of an interna-
tional research collaboration between Dr. Di Niu’s group at the University of Alberta and
the Platform Content Group of Tencent.

Chapter 2 of this thesis has been published as Fred X. Han, Di Niu, Kunfeng Lai,
Weidong Guo, Yancheng He and Yu Xu. “Inferring Search Queries from Web Documents via
a Graph-Augmented Sequence to Attention Network.” In Proceedings of the 2019 World
Wide Web Conference (WWW ’19). I was responsible for model design, experimentation
as well as manuscript composition. Dr. Di Niu, who is the supervisory author, assisted
with problem formation and contributed to manuscript edits. Weidong Guo, Kunfeng Lai
assisted with data collection and problem formation.

Chapter 3 of this thesis has been published as Fred X. Han, Di Niu, Haolan Chen, Kun-
feng Lai, Yancheng He and Yu Xu. “A Deep Generative Approach to Search Extrapolation
and Recommendation.” In Proceedings of KDD ’19. ACM, 2019. I was responsible for
model design, experimentation and manuscript composition. Dr. Di Niu was the super-
visory author who assisted with problem formation and contributed to manuscript edits.

Haolan Chen assisted with data collection and problem formation.

iv



Acknowledgments

During my study as a Master of Science student at the University of Alberta, I have received
enormous guidance and support from my supervisor, Dr. Di Niu, who introduced me to the
field of machine learning, data mining, and natural language processing. Dr. Niu’s expertise
and passion motivated me to overcome the obstacles in my research. He also taught me to
always be open to new ideas, believe in yourself and never be afraid to explore. 1 would
like to give my sincerest gratitude to Dr. Niu for making my graduate study fulfilling and
enjoyable.

I would also like to express my appreciation to all the wonderful people I have met at
the Platform and Content Group, Tencent, during my research internship, especially to
Haolan Chen, Kunfeng Lai, and Weidong Guo for their attentive help and support. They
showed me how the knowledge I learned in class could be applied to real-world problems
and improve the experience of millions of users.

Furthermore, I would like to thank my group members, Bang Liu, Mingjun Zhao,
Yaochen Hu, Chenglin Li, and many others, for creating a harmonious work environment,
and for always be willing to sharing their knowledge and experiences, as well as discussing
new potential approaches with me.

Last but not least, I would like to thank my family; my dearest wife, Qianyu Zhang,
for her unconditional love and support; my father Hua Han and my mother Xiuyun Wu for

their constant trust and encouragement. This thesis would not be possible without them.



Contents

Abstract

Preface

Acknowledgments

Table of Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2

Motivation . . . . . . . . . e e e e e e e e e

Research Roadmap . . . . . . . . . . . . . . . . ... ... ...

2 Inferring Queries from Documents

2.1
2.2
2.3
24

2.5

Introduction . . . . . . . . . L e e
Problem Definition . . . . . . . . . . ... .
Review of Related Literature . . . . ... ... ... ... ... .......
Model . . . . . . e e e e e
2.4.1 Hierarchical Bi-directional RNN . . . ... ... ... ........
2.4.2 Sentence-Level GCN . . . . . .. . ... ... ... ... ...
243 Keyword-Level GCN . . . . . .. . . . .. ... ... ... . .....
2.4.4 'Transformer Decoder . . . . . . . . ... ... ... ... ... ....
2.4.5 The Complete Model . . . . . . . . . . . ... ... ... .. .....
Experimentation . . . . . . . . . . . ... .. ...
251 Dataset . . . . . . . . e e e
2.5.2 Experimental Setup . . ... ... .. ... ... ... ... ..
2.5.3 Results & Discussion . . . . . . . . . . ... ... ... ...
254 Ablation Study . . . . . . . . . ...

vi

ii

v

vi

1x

(=R - B ST



3 Generative Query Recommendation 18

3.1 Introduction . . . . . . . . . . . e e e e 18
3.2 Review of Related Literature . . . . . ... ... ... .. .......... 20
3.21 Generative Models . . . . . . ... ... ... ... e 20
3.2.2 Query Expansion & Generation . . . . . .. .. ... ... ...... 21
3.2.3 Query Reformulation . . . . . ... ... ... ... .......... 22

3.3 Model . . . . e e e e 22
3.3.1 Relevant Words Generator . . . . . ... .. ... ... ........ 22
3.3.2 Dual-Vocab Seq2Seq . . . . . . . . . . . ... 24

3.4 Deriving Data from Click Graphs . . . . . . . . ... . ... ... ...... 27
3.5 Experimentation . . . . . . . . . . . ... ... 28
3.5.1 Dataset & Pre-processing . . . . . . . . . . . . e 29
3.5.2 General Experimental Setup. . . . . . . ... ... ... .. ..... 30
3.5.3 Training and Evaluating the RWG Model . . . . . . ... ... ... 31
3.5.4 Training the DV-Seq2Seq Model . . . . . .. . . ... ... ..... 31
3.5.5 Baseline Models . ... ... ... ... ... ... ... . ... 31
3.5.6 Evaluation Metrics . . . . . . .. . .. .. ... ... . e 32

3.6 Evaluation. . . . . . . . . . . e e e 32
3.6.1 Performanceanalysis . . . . . ... ... ... . ... ......... 32
36.2 CaseStudy . . . ... . . . . . .. . e 33

4 Matching Queries to Concepts 39
4.1 Introduction . . . . . . . . . . . e e e 39
4.1.1 Knowledge Conceptualization . . . . . . ... ... ... ....... 39
4.1.2 The Query-Concept Matching Problem . . ... .. ... ...... 41

4.2 Review of Related Literature . . . . ... ... ... ... .. ........ 42
4.2.1 Word Representations . . . . ... ... ... . ... ......... 42
4.2.2 Text Matching . .. ... .. ... .. ... ... ... ... ... 42
4.2.3 Meta-Learning . . . . . . . . . . . . . ... 44

4.3 Framework . . . . . . . e e 44
4.3.1 Shortlisting by Relevant Words . . . . . . . ... ... ... ..... 45
4.3.2 Meta-Learned Matching Model . . . . . . .. .. ... ... ..... 48

4.4 Data Collection from Click Graphs . . . . . . . ... ... ... ....... 50
441 Relevant Words Data . . . . ... ... ... .. ... ........ 51
4.4.2 Meta-learning Data . . . . . ... ... ... ... ... ... 51

4.5 Experimentation . . . . . . . . .. . ... ... 52
451 Datasets . . . . . . .. e e e e 52

452 Baseline Models . ... ... ... ... . ... ... ... 0., 52
453 Training . . . . . . . . . . . L e e e e e e e 54
454 Offline Evaluation . . . ... ... ... ... ... ... ... .... 55

vii



4.5.5 Human Evaluation . . . . . . . . . . . . . . . . e 56

4.6 Performance Analysis . . . . . . . . . . . . . ... 57
4.6.1 Offline Evaluation Results . . . . . . .. . ... ... ... ...... 57

4.6.2 Human Evaluation Results . . . . . ... ... ... ... ...... 58

4.6.3 CaseStudies . . . . . . . . . . e 58

5 Summary and Conclusions 61
5.1 Contributions . . . . . . . . . . . e e e e e e e e 61
5.2 Directions for Future Work . . . . . . . . . . . . .. ... .. 62
Bibliography 63

viii



List of Figures

2.1

2.2

3.1
3.2

3.3

3.4

3.5

4.1

4.2

An example illustrating the differences between topics, keywords, summaries
and queries. Note that the keyword “attractions” appears in the content and
all outputs, whereas the rest of the query words are inferred from the context
of the article. . . . . . . . . . . e

Complete overview of our proposed G-S2A model. . . . . . ... ... ...

An example of query recommendation in the Google search engine. . . . . .
Qur proposed two-stage generative framework. For simplicity, only one de-
coding stepisshown. . . . . . . . . . .. ... ... ...
An illustration of the Multi-Head Attentional Relevant Words Selector (RWS)
module with 4 heads. . . . . . . .. . ... ... ...
An example showing two sibling queries discovered with (a) one document
hop and (b) two document hops, as highlighted inred. . . . . .. ... ...
Percentage distribution of unique out-going edges from queries (a) and aver-

age ratio of secondary edge weights vs. the highest weights (b) in the click
graph. . . . . . e

The training (a) and testing (b) procedures for our query-concept matching
framework. . . . . . .. e
Comparison of the interpretability of conventional shortlisting schemes (a)
vs. our approach (b). Relevant words highlighted in red help provide more

insight on selection process of candidate concepts. . . . ... ... ... ..

18

23

26

28

30

46

48



List of Tables

2.1
2.2
2.3

3.1
3.2
3.3
3.4

3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6

4.7

Dataset information . . . . . . ... ... ... ... .. e 14
Performance of various models on the test set . . . . . . ... ... ..... 17
Ablation study results . . . . . . . . ... L 17
Statistical information on datasets generated from our click graph. . . . . . 29
Examples of RWG and query-to-query generation training data. . . . . . . . 34
Top recall rates of the RWG model on the test set. . . . . ... ... .... 35
Percentage of OOV words in output that appears in either the input query

or input query + top-20 RWG results, with an output vocabulary size of 20K. 35

Performance of query-to-query generation on the test set. . . . .. ... .. 36
Performance of document-title-to-query generation on the test set. . . . . . 37
Queries generated by CopyNet-40K and RWG+DV-Seq2Seq-40K, in the query-
to-query generation task. . . . . . . . . . . . . ... ... 38
Statistical information on datasets for training the RWG model. . . . . . . 53
Statistical information on datasets for meta-fine-tuning BERT. . . . . . .. 53
Top-N recall scores on the RWG testset. . . . . ... ... ... ...... 55
Offline evaluation results using our complete click graph. . . . . . . ... .. 56
Human evaluation results on 206 randomly selected test instances. . . . . . 57
Comparison of the top-10 words found by the RWG model and the TAL
pre-trained word embeddings. . . . . .. . .. ... ... 59
Comparison of the top-3 concepts matched by our proposed framework and

competitive baselinemodels. . . . . . ... ... ... L. 60



Chapter 1

Introduction

1.1 Motivation

While past research efforts mainly focus on improving the relevance matching between
search queries and candidate resources, we argue that to further enhance user experiences
in modern search engines, news feed applications and recommendation systems, the key
is to develop a better understanding of the high-level concepts behind every search query,
which would help uncover more hidden user interests and benefit down-stream services.
For example, by issuing the query RAV4 fuel efficiency, the user may only want plain fuel
economy numbers, but more often, he/she is interested in fuel-efficient SUVs in general.
An intelligent recommender would provide more articles under this concept, allowing the
user to discover more interesting facts and entities, therefore, leading to an increase in click-
through. To achieve such functionality, the recommender should have the knowledge that
RAV4 is an entity under the concept of fuel-efficient SUVs, which is extremely challenging
due to the vastness of open-domain knowledge.

Fortunately, the advancements of deep learning models may open up new possibilities for
improving search query understanding. In this thesis, we employ deep learning to enhance
the two crucial steps of search query understanding, namely, query context representation
and utilization. In the first step, the goal is to identify the high-level intents or concepts
behind every search query, then consolidate them into condensed representations. Deep
learning have been proven to be effective at representation learning in the field of Computer
Vision [LeCun et al., 2015], Natural Language Processing[Vaswani et al., 2017; Devlin et al.,
2018; Peters et al., 2018] and Information Retrieval [Severyn and Moschitti, 2015; Palangi
et al., 2016; Liu et al., 2015]. Therefore, we adopt competitive deep models to encode search
queries into fix-sized vectors, where each vector serves as a generalizable representation and
reflects the overall context. The second step requires us to efficiently utilize the learned
representations to improve down-stream tasks. To tackle these challenges, we focus on
the recommendation task and study two unique approaches. First, we learn an implicit
mapping from context vectors to words with deep generative language models. By directly

generating queries in a word-by-word fashion, we improve the recommendation of related



documents and queries. Second, with the help of knowledge conceptualization, we study the
matching problem between the representations of a query and a concept. By improving the
matching quality, we could discover more related queries for an input search query through
its matched concepts and recommend them to the user.

Qur evaluations are conducted on two large datasets provided our industry partner Ten-
cent, including 120K instances of query-document pairs and 8 days of click histories from the
QQ mobile browser spanning the November and December of 2018. We evaluate our pro-
posed deep learning approaches on these datasets to showcase their competitiveness against
other popular baselines. Furthermore, we conduct case studies and human evaluations to

verify that the results from our approaches match well with human intuition.

1.2 Research Roadmap

We investigate three concrete problems related to search query understanding. First, since
most queries contain only a few words, they are known to suffer from the Lezical Chase
problem [Riezler and Liu, 2010], where the surrounding context cannot be accurately estab-
lished by considering only the words in the queries. In the example query from the previous
section, we would not know that RAV4 is an SUV, or that it is under the Toyota brand,
without sufficient background knowledge. Therefore, we first take a backward approach,
that is, we work from our resources, e.g. news documents, and attempt to develop a better
understanding of search queries by reverse-engineering the most probable queries for them.
Chapter. 2 depicts our detailed solution to this problem. The primary benefit of deriving
queries from documents is that we are less likely to encounter the Lexical Chase problem
because long documents often provide enough context for learning stable representations.
However, longer inputs carry more noises and require careful feature extraction, which is
the main challenge we tackle in Chapter. 2.

Second, a more conventional approach to address the Lexical Chase problem is Query
Expansion (QE), where a system actively searches for more related entities. We follow this
idea and design a novel two-stage generative framework for query recommendation. Based
on an input query or a document title, a set of relevant words is generated in the first
stage, which constitutes a dynamic vocabulary. After this step of context completion, an
attentional Sequence-to-Sequence (Seq2Seq) model processes this vocabulary and selects
the appropriate words for the final output query. The two-stage setup effectively mitigates
the issue of high VRAM consumption and long training time associated with large output
vocabularies. Chapter. 3 describes this process in detail.

Third, We study the problem of tagging related high-level concepts to queries in Chap-
ter. 4. A concept could be a keyword, a short phrase or a complete sentence that associates
real-word entities under the isA relation. We acquire a set of more than 150K concepts
from Tencent, which is mined with a combination of bootstrapping, heuristic and machine

learning approaches [Liu et al., 2019b]. Our goal is to locate the best-matching concepts



for a search query, which would enable us to recommend other queries under the same
concepts. Due to the size of the concept set, it would be impossible to manually label suffi-
cient amounts of unbiased data for each concept. This motivates our adoption of the Reptile
[Nichol et al., 2018] meta-learning algorithm, under which we meta-fine-tune a BERT [Devlin
et al., 2018] matching model and achieve zero-shot transfer learning on the query-concept
matching task. We also re-apply the Relevant Words Generator (RWG) from Chapter. 3
and design a novel shortlisting scheme, which is superior at finding the related concepts for
a query from a large candidate set, compared to pre-trained wording embeddings [Song et
al., 2018¢| or deep contextualized representations [Peters et al., 2018].

Chapter. 5 summarizes our contributions. We then review unsolved challenges and

discuss potential directions for future research.



Chapter 2

Inferring Queries from Documents

2.1 Introduction

Search engines handle a massive amount of natural language queries every second. Although
a search query is commonly made up of only a few words, it can reflect the user’s intent
as well as the theme of the retrieved documents on a conceptual-level. In this chapter, we
consider a reverse problem of web search, which is to infer the natural language query that
leads to the click-through of a web document. Automatically reverse-engineering search
queries from documents is of great values to personalization in search and news feed apps
for a number of reasons. First, a search query usually reveals the conceptual theme of
the article retrieved by the query and thus can assist information retrieval and personalized
recommendation. Second, we can discover trending topics broadly discussed on the Internet
by looking at search queries. Natural language search queries, such as “best SUVs under
50k” and “jobs with least competitions”, are more fine-grained than keywords and topics.
As a result, concepts represented by these queries provide a unique angle to reveal user
interests, as compared to pre-defined topics or key phrases. In the meantime, a query is
still less specific than a headline or abstract of the document—a query covers a number
of matching articles. Thus, generated queries also serve as excellent labels for fine-grained
text classification and clustering.

A natural, conventional method to tag documents with search queries is to check query-
document pairs in the click-through logs of a search engine. The first document a user
clicks and spends some time reading can be viewed as a positive match to the query, while
the remaining documents retrieved by the query may or may not be a match, depending
on the search engine. As a result, the positive query-document pairs generated this way
would only cover a small portion of all available documents. This fact motivates the need
to reverse-engineer the best query for a given document via a generative machine learning
model, such that documents can be automatically tagged with the matching search queries,
which can in turn enhance personalized search experience and recommender performance.

We first formally define the problem of search query generation from web documents

and show that it is unique as compared to other similar Natural Language Processing



(NLP) tasks. We propose a deep learning model called Graph-augmented Sequence to
Attention network (G-S2A) to solve this problem. To better capture the most important
concepts within a document, in G-S2A, we extend the existing hierarchical Recurrent Neural
Network (RNN) based encoder [Serban et al., 2016] by novelly incorporating two Graph
Convolutional Networks (GCN) [Kipf and Welling, 2016], namely, a sentence-level GCN that
produces a condensed graphical representation of a document, and a keyword-level GCN,
which emphasizes on the interactions among critical keywords in a document. Subsequently,
an attentional Transformer-based [Vaswani et al., 2017] decoder, which is more efficient to
train, is adopted to attend over different types of the document representations to generate
a natural language query.

We evaluate the proposed generative model on a real-world query-document dataset
collected from the Tencent news engine in the QQ mobile browser. Extensive evaluation
results suggest that by adopting a number of innovations in the encoding and decoding
processes, G-S2A outperforms a number of generative baselines, including the widely pop-
ular Seq2Seq model with copying and attention mechanisms and a hierarchical RNN-based
generative model [Serban et al., 2016], on all variants of ROUGE [Lin, 2004] and BLEU
[Papineni et al., 2002] scores as well as the Exact Match (EM) ratio.

2.2 Problem Definition

The goal of search query generation is to reverse-engineer appropriate queries from a given
piece of text. The term appropriate means that the generated query should be similar to
what a human user would type into a search engine, and then he/she would click on the input
text. By doing this, the user implicitly creates an input-query pair. In our problem setting,
the input is a long document. We also limit the scope of this work to generate a single best
query only and leave multi-query generation as future work. We model the search query
generation task as a sequence-to-sequence learning problem [Sutskever et al., 2014], where
given an input text sequence T' with n tokens {tq,ts,...,t,}, the objective is to maximize
the conditional probability of generating query sequence @ with m tokens {¢, g2, ..., qgm}

We argue that the problem of search query generation is different from existing NLP
tasks such as summarization, keyword extraction and topic detection. Fig. 2.1 is an example
from our training data that best illustrates the differences. We use TextRank [Mihalcea
and Tarau, 2004] to extract the keywords and the l-sentence summary. We manually
determine the topics and translate the article content from Chinese to English. We discuss
the differences from other tasks separately.

Summarization: We believe search query generation and automatic summarization
share the same starting point—both tasks attempt to gain a deeper understanding on the
document context. The key difference between them lies in the output length. Summa-
rization consolidates a document into a shorter summary of one or several sentences. Each

summary is unique to the document itself and captures its most salient information. In



Content (Shortened): Heihe City, located in the northwestern part of
Heilongjiang Province, has the reputation of the doors of Europe and
Asia... Famous attractions include Wudalianchi, Sino-Russian National
Customs Park, ... is a national AAAAA scenic spot global geological park.

Topics: Heihe city, attractions, parks

Keywords: Wudalianchi, city, world, reputation, Jinhe, national, lake,
park, attractions

1-Sentence Summary: Famous attractions include Wudalianchi,
Sino-Russian National Customs Park, Shaoguan East Film and Television
Base, Jinhe Grand Canyon, and Ancient City.

Query: Tourist attractlons worth visiting in Heihe

Figure 2.1: An example illustrating the differences between topics, keywords, summaries
and queries. Note that the keyword “attractions” appears in the content and all outputs,
whereas the rest of the query words are inferred from the context of the article.

contrast, a query crafted in our problem is much more concise, usually consisting of only a
few words. A query does not need to summarize a document accurately, but rather, should
match the document on a higher conceptual-level. Consider the summary and query in
Fig. 2.1. Here the query does not contain any details about tourist attractions in Heihe,
but the document is still a good match to this query because they matched on the concept
of “Heihe tourist attractions”.

Keyword & key-phrase extraction: The key distinguishing factor here is that query
generation relies on semantic understanding while keyword extraction does not. If a word
in a search query also appears in the matching document, then it is likely to be a keyword.
However, the reverse is not true, as shown in Fig. 2.1. A document could have many
keywords or key-phrases. Yet, simply assembling some of them would not produce an
appropriate query. The reason is that a generated query needs to properly and semantically
“grasp” the central concept discussed in a document, whereas in keyword & key-phrase
extraction we only need to determine whether a word or a phrase is important.

Topic detection: The boundary between topic detection and search query generation
lies in their granularities. A traditionally perceived topic is usually predefined, such as
“signs of pregnancy”, “baby foods”, “in-door plants”, while a good fraction of queries are
very specific, such as “early pregnancy signs”, “recipes for three-year-old babies”, “best in-
door plants for lazy people”, which automatically discovers finer-grained topics that people
pay more attention to.

In essence, the problem of search query generation is different from yet is related to all
previously compared tasks. Therefore, a good model for our problem should first develop
a strong understanding of the article context. Then, it should be able to accurately ex-
tract critical query terms from the content as well as infer the corresponding higher-level
conceptual terms to produce a concise natural language query. In Sec. 2.4, we design our

generative query inference model taking these challenges into consideration.



2.3 Review of Related Literature

In this section, we review the literature in closely related fields including text summarization,
keyword extraction, query-document matching, topic models, as well as the advancements
of Graph Neural Networks (GNN).

Summarization: Traditional summarization approaches like TextRank [Mihalcea and
Tarau, 2004], LexRank [Erkan and Radev, 2004], and LSA [Landauer et al., 1998| are extrac-
tive based, where a ranking metric is evaluated on the entire document and salient sentences
are selected as summaries. With the advancement of deep learning methods, more accurate
extractive models like [Nallapati et al., 2017; Cheng and Lapata, 2016; Paulus et al., 2017]
are able to learn more useful latent features, and they easily outperform traditional meth-
ods. On the other hand, generative summarization models are attracting increased attention
due to their potential in generating diverse and interesting summaries. Most representative
works on generative models include [Nallapati et al., 2016], which is the first to apply an
Encoder-Decoder RNN architecture with an attention mechanism to summarization. And
[See et al., 2017] further refines this framework by adding a pointer network to permit copy
and a coverage mechanism to prevent output repetition. [Tan et al., 2017] introduces a
hierarchical Encoder-Decoder with a graph attention mechanism to better capture multi-
granularity features in a document, which offers great inspiration to our work. Other works
such as [Liu et al., 2018¢; Gehrmann et al., 2018; Liu et al., 2018d] attempt to improves sum-
mary quality from the perspective of semantic relations, bottoms-up key-phrase selection
and multi-document clustering.

Keyword & Key-phrase Extraction: As another classic NLP task, unsupervised
keyword & key-phrase extraction methods like [Mihalcea and Tarau, 2004; Rose et al., 2010;
Liu et al., 2009; Litvak et al., 2011] are all single document-oriented. In other words, in the
context of only the current document, they rank all the words according to different criteria
and select the top candidates as keywords. They are fast but do not explicitly learn and
generalize from past extractions. In contrast, supervised approaches such as [Frank et al.,
1999; Turney, 2000] initially model this task as a binary classification problem, where key-
phrases are distinguished from non-key-phrases, and the model is able to generalize across
different documents. Then, statistical machine learning methods like Naive Bayes [Uzun,
2005], Conditional Random Fields (CRFs) [Zhang, 2008] and Support Vector Machines
(SVMs) [Zhang et al., 2006] have been applied to learn from more useful input features like
TF-IDF scores, Part-of-Speech (POS) tags and syntactical functions.

We would also like to point out that many extraction techniques [Mihalcea and Tarau,
2004; Litvak et al., 2011; Daille, 2013] propose that a document should be represented as a
graph, in order to discover key dependencies among words. In the query generation problem,
if a query word appears in the document, then it is likely to be a keyword of the document.
This motivates us to also consider a graphical representation in our model.

Query-Doc Matching & Query Generation: Another field relevant to our problem



is query-document matching, where the best query for a document is selected from a set
of candidate queries. Trivial approaches simply compute an aggregated similarity score
between query and document word embeddings. Metrics like cosine similarity, TF-IDF
similarity or Okapi BM25 [Robertson et al., 2009]. Many deep learning models have also
been proposed, including DSSM [Huang et al., 2013|, C-DSSM [Shen et al., 2014], ARC-
I [Hu et al., 2014], DeepMatch [Lu and Li, 2013] and MatchPyramid [Pang et al., 2016].
These methods are either representation-based that focus on feature extraction from text, or
interaction-based that emphasize pair-wise matching. The MGAN [Zhang et al., 2018] is a
novel framework specifically for query-document matching. It models a long document as a
keyword distance graph, where each vertex is a keyword and edge weights are the inverses of
distances between keyword pairs. On two learn-to-rank datasets, MGAN achieves excellent
performance. This work inspires us to employ the Graph Convolutional Network (GCN)
[Kipf and Welling, 2016] when building document graphical representations. The only
related work on search query generation, to the best of our knowledge, is [Wang et al., 2018].
It proposes a multi-tasking sequence-to-sequence model that simultaneously perform title
compression and query generation on E-commerce product titles.

Topic Models: Conventional methods for topic modelling take either probabilistic,
Singular Value Decomposition (SVD) based, or matrix factorization based approaches [Blei
et al., 2003; Hofmann, 2000; Arora et al., 2012]. Deep learning based methods have also
been proposed, [Maaloe et al., 2015] applies Deep Belief Nets (DBN) to discover topics
from digital media content. [Lauly et al., 2017] applies deep neural networks to bag-of-
words document representations and achieve state-of-the-art topic modelling performance.
[Zheng et al., 2016] further extends the model to multimodal data. A common characteristic
of these approaches is that the generated topic is always a single word or phrase.

Graph Neural Networks: Graph Neural Networks (GNNs) are a family of neural
networks specially designed to capture features from graphs. [Gori et al., 2005; Scarselli
et al., 2009] each introduces an early GNN variant. And they both propose to encode a
graph in a vertex-by-vertex fashion, where each vertex is represented by its own features,
neighbouring vertices and edges. [Li et al., 2015] augments the GNN by employing a Gated
Recurrent Unit [Chung et al., 2014] to unroll graph recurrence and to enable sequential
outputs. Graph Convolutional Networks (GCNs) [Kipf and Welling, 2016] utilize a fast
approximate convolution technique when aggregating vertices. Unlike the Gated GNN, the
output of a GCN has the same dimension as the input, which is a desirable characteristic
for our work. There are also a number of GNN based generative models, Graph2Seq [Xu
et al., 2018] follows the encoder-decoder setup, but replaces the encoder with a GNN and
experiments with three light-weight vertex aggregators. [Song et al., 20184 is another model
designed to generate sequences from Abstract-Meaning-Representation (AMR) [Banarescu
et al., 2013] graphs. The Graph2Seq model proposed by [Venkatakrishnan et al., 2018]

tackles a different challenge. It represents vertices as time-series, which is highly scalable



to large graphs or dynamically growing graphs.

2.4 Model

In this section, we present a detailed description of the proposed G-S2A network. Fig. 2.2

is a complete illustration of the model.
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Figure 2.2: Complete overview of our proposed G-S2A model.

2.4.1 Hierarchical Bi-directional RNIN

To reveal the sequential structure of a document, we first utilize a hierarchical RNN-based
encoder [Tan et al., 2017; Serban et al., 2016] to model the document, where the lower-
level RNN encodes each sentence word-by-word into a single vector, while the higher-level
RNN aggregates all sentence vectors to create a paragraph representation. We believe the
hierarchical RNN is an effective approach for learning crucial sequential dependencies among
the sentences. Specifically, given a document D composed of n sentences {S1, S2,...Sn }, and
assume the ith sentence contains j words i.e. {w1,ws,...w;}. We generate the single vector
representation for S; using a Bi-directional Gated Recurrent Unit (GRU) [Chung et al., 2014]
network. The output of a GRU h’ in one direction for a sequence of words from w; upto

w; is expressed as:



27 = g(W,x? + U,hi™ 1), (2.1)

TI:J r + r = 3 2.2
J W,x/ + U,h?/ ™!

A':ttm xJ + r o hi~” , 2.3
R (W x) 4+ Up(r! @ /!

hi=(1-z)oh ! +2 0k (2.4)

Where 2/ is known as the update gate, r/ is known as the reset gate. o is the sigmoid
activation, F&j is the proposed activation and h’ is the output of the network for sequence j.
Also, ® denotes element-wise multiplication, W,y and U, , s are trainable weights. For
a bi-directional GRU, the input sequence is simply reversed and feed through the network
again. In this case the output is produced by concatenating hf';ewd and hf;wd'

In our model, we first utilize a word-level Bi-GRU to encode all words in a sentence. We
concatenate the last states from two directions into a 1-D sentence representation. Next, we
join all the sentence vectors on the first axis to form a 2-D representation for a document.
This 2-D vector is then fed into another sentence-level Bi-GRU. The goal here is to learn
crucial sequential dependencies among the sentences. For instance, one sentence logically
infers the next sentence, or the second sentence refers to entities in the first sentence.
We include the classic hierarchical Bi-GRU in our encoder because we agree that natural
language is sequential in nature. However, for long documents, graphical representations

are also worth exploring, we present those components in the next two sub-sections.

2.4.2 Sentence-Level GCN

In order to capture more complex semantic structures beyond sequential dependencies, we
further represent a document as a graph G, = {V, E¢}, where the vertices V; correspond to
sentences and the edges F; represent some connections between sentences. Our sentence-
level Graph Convolutional Network (GCN) [Kipf and Welling, 2016] is partially established
on top of the word-level Bi-GRU from Sec. 2.4.1. Specifically, the feature of a vertex input to
the GCN is the sentence vector produced by the word-level Bi-GRU. Here, we do not create
a graphical representation for a sentence. There are two motivations behind this design.
The first motivation is computational efficiency, as it is costly to generate graphs for each
sentence. Second, we believe a sentence-level document graph representation, where each
node corresponds to a sentence, is the most intuitive. Therefore, we need each node feature
to fully capture the meaning of the sentence, which is already achieved by the word-level
Bi-GRU, and there may not exist a useful graphical structure in a shorter sentence.

Each edge weight in our sentence-level document graph reflects the percentage of word

overlaps between a pair of sentences, which is determined by dividing the number of unique
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overlapping words against the total number of unique words in both sentences. The intuition
here is that similar sentences have more overlapping words and thus a higher edge weight
between them. At this point, we have created a new feature map that captures the pair-
wise sentence similarities within a document. Next, a multi-layer GCN learns from such
sentence interactions by iteratively convolving on the features of a node and its neighbors.

This operation is defined by the following update rule:
H™! = (D 2AD 2H'W?), (2.5)

where H'! is the output of the previous GCN layer. For the first layer, H is simply the
input vertex features, i.e., the sentence vectors produced by the word-level Bi-GRU. Ais
the adjacency matrix constructed based on edge weights, which is symmetrical. D is a
diagonal degree matrix where D;; = Zj A;j. o is the sigmoid activation function. Wt is the
set of trainable weights in layer I. We refer interested readers to [Kipf and Welling, 2016]
for more GCN-related details.

2.4.3 Keyword-Level GCN

As has been mentioned in Sec. 2.2, if a query word appears in a document, it is usually also
a keyword for that document. Therefore, in addition to the sentence-level abstractions, we
should permit the decoder to learn from keyword-related information directly. To this end,
we further augment our model with a document keyword distance graph similar to [Zhang
et al., 2018].

In the keyword distance graph Grw = {Vikw, Erw}, €ach vertex feature is the embedding
vector of a keyword, and the edge weight between two vertices is the inverse average distance
among the keywords. Specifically, for unique keywords k; and k;, we first locate all of their
occurrences in the document. Next, we calculate the pair-wise distance between each pair
of occurrences by counting the number of words between them. In other words, if there is
no word between two occurrences, the distance is 1; if there is one word in-between, then
the distance is 2, and so forth. We take the inverse of the average pair-wise distance. The
intuition here is that keywords that are closer to each other are more closely related. Thus,

their edge weight is higher in the keyword distance graph. Mathematically, this is expressed

* 1
m
ij 3 dyj
=1

where w;; is the edge weight between keywords k; and k;, and m is the total number of
pair-wise keyword occurrences in the document. After the graph construction, we feed the
node and edge features to a keyword-level GCN. The output is an enhanced keyword-level

representation, which embodies the graphical keyword interactions within a document.
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2.4.4 Transformer Decoder

Our decoder network is a uni-directional Transformer [Vaswani et al., 2017] with two addi-
tional attention blocks for the GCN outputs. The Transformer is an alternative approach
to RNNs for modeling sequential data. As illustrated in figure 2.2, the input to the decoder
are word embedding vectors of partially generated user query. Then, we add positional
encoding values to capture word-level location information. These values are pre-computed

from sine and cosine waves at different frequencies,

. pos
PE(;DOS,Q@) = S%n(m), (2.7)
pos
PBtpos211) = 0500001/ oac ) (28)

pos is the word position, 7 is the ith dimension of the input feature. d,,,4e; is the total
number of dimensions in the input feature.

The core component of the Transformer decoder is the Multi-Head Attention module,
which is made up of parallel layers of the Scaled Dot-Product Attention. On 2-D sequential
feature maps @, K, and V', the Scaled Dot-Product Attention defines the operation of query
Q@ attending on value V through keys K as the following,

Attention(Q, K, V) = Softmax(Q—KT)V (2.9)
V.

dy, is the feature dimension of K. The output of this operation has the same shape
as the input query ). The difference is ) now incorporates information from value V
through attention. Notice that there are no trainable weights here. For the masked self-
attention block in figure 2.2, @@, K, V all correspond to the partially generated user query
vector. The purpose of the mask is to prevent the decoder from attending subsequent
positions during training, which makes the Transformer uni-directional. For the remaining
attention modules, @ is the partially generated user query vector, K and V are the output
representations from the encoder, specifically, the sentence-level sequential embedding, the
sentence-level graph embedding and the word-level keyword embedding. The Multi-Head
Attention module equally divides the feature dimension of @), K and V into h heads,
producing a set of {Q;, K;,Vi} with ¢ ranging from 1 to h. Then, a feed-forward layer is
added to Q;, K; and V;, which allows the network to learn and adjust these inputs. Finally,
the output from each head is concatenated to recreate the original feature dimension and

feed through one more layer of feed-forward network. This process is expressed as,

MH-Attn(Q, K, V) = g7(Concat{Attn; (¢2(Q1), ¢¥ (K1), gV (1)), ...
Attnn (g} (Qnr), an(Kn), gh(Va)}).
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Attn corresponds to the Scaled Dot-Product Attention. g is a one layer feed-forward net-
work. After completing all the attention operations, the output passes through a Position-
wise Feed-Forward Network (FFN), which consists of two linear layers with a ReLU activa-

tion in-between,

FFN(z) = max(0, Wiz + b;)W5 + bs. (2.10)

We choose the Transformer decoder instead of a traditional RNN-based decoder for three
reasons. First, the Transformer decoder is more light-weight since it does not maintain a
hidden state. Second, the Multi-Head Attention operations are able to execute in parallel,
which means that we can feed the entire output sequence through the network to train
one batch. This is much more efficient compared to a traditional RNN decoder, where
the decoder learns from the output in a word-by-word fashion. Third, the Transformer is
more versatile due to its modularized internal structure, which permits us to incorporate
more features easily. In our model, we simply declare two additional Multi-Head Attention

modules to attend on sentence-level and keyword-level graphical features.

2.4.5 The Complete Model

We connect the components as depicted by Fig. 2.2. The word-level Bi-GRU first encodes
each sentence in a document. Then, the aggregated sentence vectors propagate to the
sentence-level Bi-GRU and sentence-level GCN for further learning. We believe this hier-
archical encoding scheme combined with the additional sentence-level graphical embedding
allow our model to better understand the interactions within a document. On the other
hand, the graphical embedding produced by the keyword-level GCN lets the decoder directly
attend on potential query words while maintaining awareness of the document context at
the same time, which aids the query term selection and generation process.

In addition to the aforementioned components, we also apply a single Mazx-Pooling layer
onto all encoder outputs, since empirically, we find that the Multi-Head Attention mecha-
nism in the decoder performs poorly when attending on long target sequences. Although
we have already condensed document representations at the sentence and keyword levels, in
reality, a query can be inferred from an even more compact representation—Max-Pooling

serves as another stage of significance filtration before decoding.

2.5 Experimentation

In this section, we present the experimental setup and compare results of our model on a

real-world Chinese query document dataset against a number of generative baselines.
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Table 2.1: Dataset information

Train size 120773
Dev size 10000
Test size 10000
Average document length 286.8
Number of unique queries 10420
Min query length 2
Max query length 11
Average query length 3.2
Document vocabulary 479K
Query vocabulary 9.2K
Average doc-query word overlap 1.85

2.5.1 Dataset

A suitable dataset for our problem should contain the content of documents and the match-
ing queries. Unfortunately, we cannot locate a publicly available dataset that meets this
criteria. Summarization datasets like CNN or DailyMail [Hermann et al., 2015] are not
suitable because their summaries are too long to be considered queries. Query-document
matching datasets like Ohsumed [Hersh et al., 1994] contains too few queries, whereas
datasets with enough unique user queries, such as the NFCorpus [Boteva et al., 2016|, have
too few unique documents. The lack of a suitable dataset is another evidence that the
search query generation problem is new and is less studied.

Therefore, we work with our industry partners at Tencent to create a Chinese query-
document dataset, which includes real search queries collected anonymously from the QQ
mobile browser. Compared with user queries entered from a computer, queries in our dataset
are even more concise. The documents in this dataset mainly consist of news articles or blog
posts provided by the Tencent news engine. We construct the query-document pairs using
the passive method from Sec. 2.1, where the first article the user clicks and spends some
time reading is considered a matching document. Train, development, and test sets are

randomly divided. Table 2.1 lists the important statistical information about our dataset.

2.5.2 Experimental Setup

We adopt the word-overlap based ROUGE [Lin, 2004] and BLEU [Papineni et al., 2002]
metrics, which are widely used in summarization and machine translation tasks. Here, we
report the macro-averaged ROUGE-1, 2, L, BLEU-1 to 4 scores. Each metric variant cumu-
latively considers n-gram (1 to 4) or longest common sub-sequence (L) overlaps. ROUGE-1
is also the metric used to select the best performing model on the development set. ROUGE
and BLEU scores reflect how well a generated sequence captures the truth sequence, with
higher scores indicating better performance. Additionally, we report the Exact Match (EM)
percentages. Because the search queries are a lot more concise, we are interested in how

many generated queries match the truth exactly.
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We tokenize documents and queries with the Stanford CoreNLP tool [Manning et al.,
2014b]. We limit the document word length at 300, All characters are lower-cased. All
numbers are replaced with a # symbol. We construct the vocabulary by first combining
the document and query vocabularies, then take the top 40000 most frequent words. In
every experiment, we train a word embedding layer from scratch, and share it among the
encoder and decoder.

For our model, we set the hidden layers of GCNs, the hidden layers of Bi-GRUs, as well
as the attention dimension of the decoder to the same value. The position-wise feed-forward
dimension is set to be 4 times this value. We also set a global dropout probability for all
components. We fix the number of GCN and Transformer layers to 2, and the number
of Bi-GRU layers to 1. The word embedding dimension is set to 300. The Max-Pooling
window is set to 2. The number of Transformer attention heads is set to 8. We tune the
global hidden size and dropout probability on the development set.

We use the Noam Optimizer [Vaswani et al., 2017] with a warm-up steps of 2000 and
a label-smoothing constant of 0.1 for training. Our model converges in 100 epochs, where
each epoch takes approximately 10 minutes with a mini-batch size of 128 on a GTX1070
GPU. Finally, We compare our model with the following baselines. For all RNN baselines
we tune their hidden layer sizes and the dropout probability on the development set and
choose the best performing model for testing.

TextRank-kw is a simple keyword extractor based on the TextRank [Mihalcea and
Tarau, 2004] method. We include three keyword & key-phrase extraction baselines to prove
that search query generation is a more challenging task. We set the number of target
keywords to 8.

TextRank-kw-cheat is also a TextRank-based keyword extractor. However, for this
baseline we provide the number of words in the truth queries as additional clues.

TextRank-kp is a TextRank-based key-phrase extractor. We extract the most salient
key-phrase from the document and use it as the generated query. TextRank baselines do
not require training.

Seq2Seqg-Attn is the classic encoder-decoder model [Sutskever et al., 2014] with the
general attention mechanism [Luong et al., 2015]. We feed the entire document as one
sequence into the model. We implement this baseline with a Bi-GRU encoder and a Uni-
GRU attentional decoder.

Seq2Seqg-Attn-Copy further incorporates the copy mechanism [Gu et al., 2016], which
allows the model to directly copy important words from the input. Consider the fact that
many query words also appears in the document, as indicated in Table 2.1. We believe this
baseline is a strong competitor. Similar to the previous baseline, we use a Bi-GRU for the
encoder and a Uni-GRU for the decoder.

HRED is a RNN-based hierarchical encoder-decoder model proposed by [Serban et al.,

2016]. Our implementation uses a hierarchical Bi-GRU as the encoder, which is essentially,
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the same hierarchical sequential encoder in our model. The decoder is a Uni-GRU.
Transformer is the new generative model proposed by [Vaswani et al., 2017]. We fix

the number of encoder and decoder layers to 6 and the number of attention heads to 8.

We tune the attention dimension and dropout probability. The position-wise feed-forward

dimension is set to be 4 times of the attention dimension.

2.5.3 Results & Discussion

In addition to the metrics mentioned in Sec. 2.5.2, we report the number of trainable weights
(#Weights) in every supervised model. We believe the number of trainable weights is critical
factor to consider in real-world applications, because a large model often implies a higher
cost of training.

The best hidden size for G-S2A is 128. As we can observe in Table 2.2, G-S2A outper-
forms all baselines on all metrics, which proves the effectiveness of the proposed additional
components. We also note that the performance for keyword extractors are far worse than
other models, which indicates that they are not suitable for our problem. Therefore, search
query generation and keyword & key-phrase extraction are different problems.

Another interesting conclusion we could draw from Table 2.2 is that hierarchical models
like HRED and G-S2A achieve better performance, but have less trainable weights. We
believe this is because the hierarchical encoders break down long documents at an intuitive
sentence-level, which effectively exposes its structural information. Other models without

the hierarchical design would need to learn such information with more trainable weights.

2.5.4 Ablation Study

We further evaluate G-S2A through an ablation study and report the changes in ROUGE-1
and ROUGE-L scores.

S2A only contains the hierarchical Bi-GRU encoder and the attentional Transformer
decoder. We remove the two GCNs and the Max-Pooling layer from G-S2A to create this
model.

S2A+sGCN incorporates the sentence-level GCN.

S2A+sGCN+kwGCN further includes the keyword-level GCN, yet without the Max-
Pooling layer.

From Table 2.3, we observe that S2A initially outperforms the HRED model. We believe
this is attributed to the Multi-Head Attention mechanism, which the HRED lacks. With
the addition of more components, the performance of the model consistently improves. This
proves our initial claim that exploring sentence-level and keyword-level graphical represen-

tations for long documents is extremely helpful in the search query generation task.
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Chapter 3

Generative Query
Recommendation

3.1 Introduction

It is an essential ability for a modern search engine to extrapolate beyond the input query
and recommend related queries that appeal to the user’s interests, therefore improving
his/her search experience. Google displays a list of recommended search queries in the
“Searches related to” at the bottom of the results page, as illustrated in Figure. 3.1. Yahoo!
offers a similar list of other query recommendations in “Also Try” before all the results.

Search recommendation is different from query rewrite [Antonellis et al., 2008; Riezler and

Searches related to what is a diet for weight loss

7 day diet plan for weight loss simple meal plan to lose weight
quick weight loss diet plan how to lose weight at home
weight loss foods welght loss tips

how to lose weight fast in 2 weeks best weight loss diet

Go gle >

12 3 45678 910 Next

Figure 3.1: An example of query recommendation in the Google search engine.

Liu, 2010; He et al., 2016], the goal of which is to reformulate a search query into a new query
that is easier for the search engine to process while still maintaining the overall meaning. In
contrast, for example, if we input “what is a diet for weight loss” in Google, we get search
recommendations such as “how to lose weight at home”, and “7 day diet plan for weight
loss.” These suggested queries do not necessarily have the same meaning as the original
query but are intended to attract the user’s attention and boost click-through rates. For
the same reason, many news feed apps including Tencent QQ Browser, may also provide
several recommended search queries at the end of an article, aiming to prolong a user’s

activity and increase click-through rates.
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It is a natural idea to identify related searches by analyzing the search logs, which
form the click graph, a colossal, bipartite graph that records the documents that have been
clicked on in response to past queries. For instance, Tencent QQ Browser! typically records
approximately 100 million click histories per day, where each log instance consists of a
user query and a document title which the user clicked. Although rich information about
connections among queries and connections between queries and documents can be dug out
from the click graph through extensive link analysis techniques [Antonellis et al., 2008; Jeh
and Widom, 2002], heavily relying on data mining performed on the click graph (possibly
with the help of semantic analysis) may yield limited search recommendation performance,
mainly due to two reasons:

First, the click graph is inherently sparse. Only for very hot topics, e.g., “weight loss”,
“trade war”, etc., a document is connected with multiple queries and a query may lead to
the clicks of different documents. However, the vast majority of documents are retrieved by
only a couple of queries, while most queries lead to the clicks of a single dominant document.
This is also the reason that in most search engines, not all queries or articles would have
a related query suggestion. Second, such a graph mining approach critically depends on
the existence of highly similar queries in the click graph, while that is not always the case
due to the flexibility of natural language. Similarly, the click graph cannot encapsulate all
possible document titles as new documents are being generated on the web every day.

We argue that a deep generative model can serve as a generalizable alternative that
overcomes the limitations of the graph analysis mentioned above. However, text generation
based on the widely popular Seq2Seq models [Sutskever et al., 2014] suffers from a well-
known weakness—the training complexity in the open-domain, i.e., the vocabulary that is
of interest to a search engine or a content feeds app is too large such that the model must
be trained on overwhelmingly large datasets to yield any reasonable performance. To a
certain degree, CopyNet [Gu et al., 2016] alleviates this issue by encouraging the model to
directly copy some words from the input query. However, such verbatim copying seriously
undermines the opportunities of query expansion, which causes the model to simply rephrase
an input query instead of suggesting related queries that the user will find interesting.

To tackle these challenges, we propose a two-stage generative framework to be used for
related search query recommendation in the Tencent QQ Browser. In essence, we break
down related query generation into two stages, context discovery and context-aware query
generation, which are summarized as follows:

First, given either a user query or a document title, we propose a Relevant Words
Generation model (RWG) to extrapolate the query or document into a set of relevant
keywords. For instance, relevant words for query fuel-efficient SUVs include gas-mileage,
cars, money-saving, price, etc. The proposed RWG discovers additional latent semantical

relations among words and learns context-dependent word co-occurrence patterns from

!Tencent QQ Browser has the largest market share in the Chinese mobile browser market with more than
100 million daily active users.
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similar queries.

Second, to generate the target query for recommendation, we propose the Dual-Vocabulary
Sequence-to-Sequence (DV-Seq2Seq) model. It maintains two output vocabularies: a static
vocabulary consisting of top X most frequent words, and a dynamic vocabulary composed
of the input query words and relevant words discovered by the RWG model. During genera-
tion, DV-Seq2Seq selects the next predicted word from one of the two vocabularies with an
attention mechanism based on a Multi-Head Attentional Relevant Words Selector (RWS)
module, which is inspired by the Transformer [Vaswani et al., 2017].

Finally, we propose and describe an automatic procedure to generate the training data
required by our two-stage framework, by analyzing word relations and the rich click behavior
present in a large click graph constructed from 8 days of click logs. We evaluate our
framework with around 1 million records for the RWG model, 1 million records for the
query-to-query generation task and 500K records for the title-to-query generation task. We
compare our proposed framework against several Seq2Seq generative baselines including
the CopyNet. Evaluation results suggest that our approach outperforms all baselines on
metrics including BLEU-n [Papineni et al., 2002, ROUGE-n [Lin, 2004] and Exact Match
(EM) ratio. We show in Sec. 3.5 and Sec. 3.6 that our proposed approach also strikes a good
balance between performance, time-complexity, and interpretability. The two-stage division
of labor in our proposed approach mitigates the need for a large output vocabulary when
generating each query word, which is often the bottleneck of performance and training time
in Seq2Seq models [Jean et al., 2014]. In addition, the latent contextual information of a
query or document discovered by the RWG model in the first stage can also be transferable
to other tasks. Furthermore, We conduct case studies on the generated queries to further
illustrate the superiority of the proposed generative learning framework as a solution to

related query recommendation.

3.2 Review of Related Literature

Our work draws inspiration from several research achievements in the field of Natural Lan-

guage Processing (NLP), deep learning and Information Retrieval (IR).

3.2.1 Generative Models

Generative models construct phrases and sentences from an output vocabulary in a word-by-
word fashion. The most popular generative models follow a sequence-to-sequence (Seq2Seq)
architecture and composes of an Encoder Recurrent Neural Network (RNN) and a Decoder
RNN [Sutskever et al., 2014]. Seq2Seq models are proven to be performant in a number of
NLP tasks like Automatic Summarization [Liu et al., 2018¢|, Dialogue Systems [Shang et
al., 2015] and Reading Comprehension [Zhou et al., 2017; Liu et al., 20194].

The most influential augmentation to the Seq2Seq model is the attention mechanism
[Bahdanau et al., 2014; Luong et al., 2015], where the next decoder output is combined
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with a weighted sum of encoder hidden representations. The copy mechanism (CopyNet)
[Gu et al., 2016] is another useful augmentation. It permits the decoder to directly copy
words from the input, which allows the model to generate words that are not from the
static output vocabulary. CopyNet is a major inspiration to our work, in fact, we discuss
in Sec. 3.3 that it is a special case of employing a dynamic output vocabulary, where the
contextually relevant words are only taken from the input. [Vaswani et al., 2017] proposes a
new generative model called the Transformer, which relies only on a Multi-Head Attention
mechanism to directly learn complex semantic relations among words. Even without an
RNN, the Transformer achieves state-of-the-art performance on multiple NLP tasks [Devlin
et al., 2018].

The idea of incorporating a dynamic output vocabulary into generative models has
been touched upon by prior researches, with [Wu et al., 2018] being the most relevant work
on this subject. The main difference is between [Wu et al., 2018] and our model is that
[Wu et al., 2018] constructs an end-to-end trainable Seq2Seq chatbot that jointly learns
output generation and dynamic vocabulary selection. Although an end-to-end model may
appear simpler, we argue that it is less practical for real-world applications. First, an
end-to-end model with a dynamic vocabulary is trickier to train, since the loss function
needs to be carefully designed. Second, it is more difficult to control the quality of the
dynamic vocabulary. In [Wu et al., 2018], the loss on dynamic vocabulary construction is
approximated with Monte Carlo sampling, which means the performance of the model is
sensitive to the sample size. Third, dynamic vocabulary within an end-to-end model is less
likely to be transferable to other tasks. Therefore, we explicitly assign the tasks of dynamic
vocabulary generation and query generation to two models and train each individually.

Other works on machine translation [Jean et al., 2014; L'Hostis et al., 2016; Mi et
al., 2016] leverage bilingual word co-occurrence and word alignment features to find the
semantically related words. However, such features are often task-specific. To the best of
our knowledge, we are the first to apply a generative Seq2Seq model with a dynamic output

vocabulary to search query recommendation.

3.2.2 Query Expansion & Generation

Query Expansion (QE) is classic research topic in IR. The goal of QE is to expand around
the context of a search query and discover additional keywords or concepts, which is closely
related to the problem of related query recommendation. [Xu and Croft, 2017] is an early
work that jointly combines word context features from the query and the retrieved doc-
uments. [Cui et al., 2002] is the first work to propose a probabilistic query expansion
approach. [Fonseca et al., 2005] relies on association rules to build a query relation graph,
then extract relevant concepts to expand on the input query. [Jones et al., 2006] retrieves
the expansion candidates by considering word co-occurrences during a click session. [Gao
et al., 2012; Gao and Nie, 2012; Riezler et al., 2008] train SMT models to learn word and
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phrase correspondence features from large amounts of click-through data.

Direct generation of queries using Seq2Seq models is attracting increased attention. [Liu
et al., 2018d] incorporates an additional pointer decoder to directly copy words from the
input text. [Wang et al., 2018] proposes a multi-tasking Seq2Seq model for title compres-
sion and query generation on E-commerce product titles. [Yin et al, 2017] and [He et
al., 2016] perform direct query-to-query generations, while [Han et al., 2019] combines a
hierarchical Encoder and a Graph Convolutional Network (GCN) to generate queries from

long documents.

3.2.3 Query Reformulation

Unlike Query Expansion, Query Reformulation studies the procedure of re-writing a search
query into a new query, such that the overall meaning is maintained but the new query is
easier for the search engine to process. Query reformation techniques improve the search
results displayed to the user and are commonly benchmarked using ranking quality metrics
like the nDCG scores [Jarvelin and Kekéldinen, 2002]. The earliest query reformulation
approaches focus on query term deletion [Jones and Fain, 2003] or substitution [Terra and
Clarke, 2004]. Clustering based [Beeferman and Berger, 2000; Wen et al., 2002] and active-
learning based [Zhang et al., 2007] methods have also been explored. In the meantime, direct
analysis on click graphs is attracting increased attention. SimRank [Jeh and Widom, 2002]
is a method for computing query similarities from links within a click graph. [Antonellis
et al., 2008] extends SimRank by considering the link weights and supporting similarity
evidences. It then utilizes the proposed metric to select re-write candidates to improve the
click-through rates on ads. [Riezler and Liu, 2010] uses Statistical Machine Translation
(SMT) methods that map query re-writing into a translation problem. [He et al., 2016]
employs a Long Short Term Memory (LSTM) [Gers et al., 1999] network to achieve fully
generative query re-writing. It demonstrates that deep neural network models outperform
traditional statistical machine translation approaches, thus proving their feasibility for the

query reformulation task.

3.3 Model

In this section, we review the details of our proposed related search query recommendation

framework, as depicted in Fig. 3.2.

3.3.1 Relevant Words Generator

As identified by other works [Riezler and Liu, 2010; Liu et al., 20184d], a major issue limiting
query understanding is the problem of incomplete context, also known as the Lexical Chase
problem [Riezler and Liu, 2010]. For search queries, this problem is commonly caused

by missing keywords, or unknown Named-Entities. For example, in the query “xs max
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Figure 3.2: Our proposed two-stage generative framework. For simplicity, only one decoding
step is shown.

price”, the user is referring to “Apple iPhone”. However, when building a generative search
recommendation model, if the word “xs” is not in the output vocabulary and we do not
explicitly specify that “xs” is related to “Apple iPhone”, the model will then generate
solely from “max price”, which often results in poor performance. To provide a more
refined context, we design a novel Relevant Words Generator (RWG) to infer additional
keywords given a query. It maintains a large output vocabulary to learn a more complete,
context-dependent word co-occurrence pattern. This alleviates the prediction difficulty of
the second stage Seq2Seq model, allowing it to carry a much smaller output vocabulary,
which in turn improves performance and training efficiency.

Formally, we define the problem of relevant words generation as given an input query
Q of n words, Q = {w?,wg‘), ,'wn} and a large vocabulary of Vpw o words. We learn
a model fpw to maximize the probability of a relevant words set Rg of ¢ words, Rg =

{wl, wl, .. .wk}. This objective consolidates into
t

Orwe = argmaxy [[ P(wil@; 6), (3.1)
i=1

for every w; € Rg. Note that R could contain words from Q.

We employ a Bi-directional Gated Recurrent Unit (GRU) [Chung et al, 2014] as a
context encoder. For a query @, we first embed each of its words, then feed the embedding
vectors into the Bi-GRU one by one in forward and reverse directions. The output hidden
states from both directions are concatenated together to form the context vector of ). Next,
we feed this vector through a fully-connected [Rosenblatt, 1961] + Softmax layer to project
into a Vpw g-dimensional space.

For input query @, we train the model to maximize the probability of in Rg in a single
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iteration, by minimizing the Binary Cross-Entropy between the output distribution and the
binary target distribution. During inference, we take the top-k predicted words as relevant

words for the next stage, where k is a hyper-parameter.

3.3.2 Dual-Vocab Seq2Seq

Formally, we define the problem of context-aware query generation as given an input se-

quence I = {w{, wé, ...w;:}, either a search query or a document title, and given a set of

relevant words Ry = {w{%, wéq, ...*ng}, our model fseg25¢q predicts an output search query
O = {w?, w20, w}?} in a word-by-word fashion, by maximizing the following conditional

probability distribution:

h
argmaxQH P(w?|w£1,w£2,...w?,Q, Rq; 6). (3.2)
i=1
The only difference between (3.2) and the traditional Seq2Seq learning objective [Sutskever
et al., 2014] is the incorporation of Rg.

Similar to the RWG, our Seq2Seq model also adopts a Bi-GRU encoder for the input
sequence I. We denote the output context vector from the encoder as C', with a dimension
of n x 2d, where d is the hidden size of the Bi-GRU. In the decoder, when predicting the ith
output word w}, we combine features from three sources: 1) the encoder context vector Cy,
2) the embedding vector ewe | of the previously decoded word, and 3) the relevant words
set Rg.

Since Rg has been generated from a much larger vocabulary in the RWG model, it
likely contains words that are out-of-vocabulary (OOV) for the Seq2Seq model. Therefore,
we cannot define a fixed-size fully-connected + Softmax projection output layer. Instead,
we need an architecture that outputs a probability distribution over vocabularies of varying
sizes and contents. Conveniently, the attention mechanism [Bahdanau et al., 2014; Luong
et al., 2015; Vaswani et al., 2017] achieves this. A generalized version of the attention

mechanism can be written as

¢ = o f(hPe«-CT)), (3.3)

R = Y oslel, (3.4)
j=1

hPe — g(h¢, nPe), (3.5)

where hP¢® denotes the current hidden state of the decoder. o denotes a Softmax layer.
“." represents matrix multiplication. ¢; is a 1 x n dimensional vector of attention scores
which captures the importance of each word in the input sequence for the ith output word.
Furthermore, j in (3.4) indexes the jth element in ¢; and the jth row of C;. And f and

g are customized operations. In general, the attention mechanism first computes attention
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scores over C7 and use them to calculate a weighted sum of C7, i.e. a weighted context hic
which is then combined with the previous hidden state.

¢; already resembles a probability distribution over the words in I, because its values are
between 0 and 1. The CopyNet [Gu et al., 2016| takes advantage of this by treating each
attention score as a probability of copying over the corresponding word. We propose that the
CopyNet already provides all the necessary construct for handling a dynamic vocabulary.
In fact, it is a special case where all the relevant words inside the dynamic vocabulary are
from the input sequence. After experimenting with several network architectures, we find
that simply concatenating the relevant words after the input sequence and then utilizing
the copy mechanism on this new sequence achieves the best performance. Therefore, this
concatenated new sequence constitutes the dynamic vocabulary. For the ease of reference,
we re-name our copy mechanism the relevant words selector (RWS). Different from the
original CopyNet [Gu et al., 2016], we adopt a variant of the Multi-Head Attention proposed
by [Vaswani et al., 2017] to formulate a novel Multi-Head attentional RWS module. We
discuss its details in the following subsection.

The backbone of our decoder is a uni-directional GRU, which is initialized with the last

hidden state of the encoder. A single decoding step involves the following operations,

hCRU — GRU([ews shC.1]), (3.6)
hC, PPV — RWS( hGRV ), (3.7)
P;SV = of( Mazm( [ews l;h@C}h@GRU] ) ), (38)

where [| represents the concatenation of vectors. P%D V' denotes the probability distribution
over the dynamic vocabulary and P‘f V' is the probability distribution over the static vocabu-
lary. eyo | and h?_l are the previous word embedding and weighted context vectors. Maz,,
stands for a Maxpooling layer with a window of m. of is the standard fully-connected +
Softmax projection setup. We use a special Start-of-Sequence token as the first input word
to the decoder and initialize hS to all zeros.

l;hg_l]. The output of the GRU propa-

gates through the RWS module, during which the probability distribution over the dynamic

In a decoding step, the GRU learns from [ew;;a

vocabulary will be generated. Next, we make a large concatenated vector [ewe 1;h?; h? ]
from 3 vectors, namely, the input word embedding, the attention-weighted context vector
and the output of the GRU. To reduce the model size and prevent overfitting, we down-size
this vector through a Max-pooling layer. Finally, in a standard fully-connected + softmax
projection setup, we get the probability distribution over the static vocabulary.

An important decision for the model is which vocabulary to select for output. After the

execution of (3.6) and (3.7), we perform the following operation alongside (3.8),

PPV =sig f( [RT;RTEY]), (3.9)
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where sig f is a fully-connected layer followed by a Sigmoid activation. The output is a
scalar probability value for choosing the next output word from the dynamic vocabulary.
We train on the CopyNet objective functions, where the loss from RWS corresponds to the
copy loss, while the loss from word prediction on the static vocabulary corresponds to the

generative loss. We omit details on these objectives and refer interested readers to [Gu et
al., 2016].

Multi-Head Attentional RWS

The computational workload of the attention mechanism increases as more words are added
to the input. Specifically, the matrix multiplications in (3.3) and (3.4) become slow and
memory-hungry. Therefore, we adopt the Multi-Head Attention from [Vaswani et al., 2017].
It addresses this issue by first dividing each input vector into h heads. Then, it executes
h head-to-head attentions in parallel, where each matrix multiplication is performed on a
dimension that is A times smaller. The Multi-Head setup significantly speeds up attention

computation with no performance degradation [Vaswani et al., 2017].
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Figure 3.3: An illustration of the Multi-Head Attentional Relevant Words Selector (RWS)
module with 4 heads.

Since our decoder already includes a strong GRU learner, we further simplify the Multi-
Head Attention to construct a Multi-Head Attentional RWS module, as illustrated by

Fig. 3.3. Instead of three inputs [Vaswani et al., 2017], our module takes in h? € and
C';. We also remove the last Feedforward layer after the concatenation of heads. From

repeated experiments, we found that our module achieves similar performance compared
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to the original Multi-Head Attention. To generate a probability distribution over the dy-
namic vocabulary, we compute a weighted sum of the pre-Softmax attention heads through

a fully-connected layer, followed by a Softmax projection.

3.4 Deriving Data from Click Graphs

We now introduce how to automatically retrieve training data from a click graph for both
stages of our framework. Given an undirected, bipartite click graph G consisting of query
vertices Vy, document title vertices Vp, and weighted edges E/, where the weight of an edge
e(g,d) represents how many clicks of document d are attributed to query ¢, we define the

K-hop sibling queries set SX ¢ Vi as a set of query vertices such that

1. S¥ contains at least two unique queries;
2. There exists a shortest path on G between any two queries in SK.

3. The maximum number of title vertices in Vp passed through by any shortest path in
SK is K.

Additionally, we define the set of document titles passed through by queries in SX as
D(SK ). With this setup, two queries in SK are likely to be semantically related, where the
value of K determines the degree of relatedness. Fig . 3.4 is an example of two semantically
related queries. As we can observe, with K = 1, the sibling queries are more likely to be
semantically identical. When K increases, we discover additional related queries. After
determining an appropriate value for K through statistical analysis, we discover all the S&
clusters within G. To reduce noise and computational cost, we limit the number of out-
going edges by keeping only the top-p weighted edges in G for each query vertex, where a
weight is the number of times that click occurs. We also constrain that each query can only
appear in one cluster to avoid conflicts during data generation. If a query appears in more
than one sibling set, we re-assign it to the set where the weight of the connecting edge is
the highest and prune its other out-going edges.

Next, we separately retrieve training data for both stages of our framework:

Relevant Words Discovery. For every query Q in a sibling set SX, we define its
corresponding relevant words set R¢ as the keywords from all queries in SK . Therefore, we
have a single target Rg for all queries in Sk.

Target Query Selection. To constrain the training data size, for every sibling set S
we select a query from it as the representative of the set, which will be the target query to
generate for all other queries in SX, and similarly, for all document titles in D(SK ) as well.
We also constrain that each unique document title can have only one corresponding target
query by randomly pruning repeated entries.

The representative query for a sibling set SX is select based on the following criteria:
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Figure 3.4: An example showing two sibling queries discovered with (a) one document hop
and (b) two document hops, as highlighted in red.

e The cumulative weight of outgoing edges of a query is a strong indicator for its pop-
ularity, generalizability and correctness. We compute the sum of weights of outgoing
edges for every query in SX and normalize the results between 0 and 1. We denote

this score caick.

e The number of words in a query usually reflects its specificity. We want to constrain
the complexity of target queries. Therefore, we normalize the number of words for
every query in SK between 0 and 1, and record a score ¢jep, as 1 minus its normalized

length.

o The percentage of overlapping keywords between keywords in a query in SK and
keywords in document titles from D(.S K ) is a strong indicator of relatedness. Similarly,

we normalize this measure for every query among SX between 0 and 1, denoted by

Coverlap-
We compute a final score for each query ¢ € SX by taking a weighted sum of all features
scores, namely,
Cfina.l(@) =« Cd,ick(fi') + B clen (Q) +y Ccmerla.p(@.): (3-10)

where the weights are hyper-parameters and the query with the highest score is selected as

the representative.

3.5 Experimentation

We present the detailed experimental procedures 2 and results here. Table. 3.5 records the

results for query-to-query generation while Table. 3.6 showcases the results for document

2Code is available at: https://github.com/xuefeil /RWG_DV-Seq2Seq
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Table 3.1: Statistical information on datasets generated from our click graph.

RWG Query-to-Query Title-to-Query
Train  Dev Test | Train Dev Test | Train Dev Test
Size 894K 99K 99K | 894K 99K 99K | 530K 88K 88K
Avg # of words in inputs 5.08 5.04 5.05 5.08 5.04 5.05 | 11.40 1137 11.34

Avg # of words in outputs 9.29 10.03 10.04 | 421 420 419 | 4.27 4.21 4.20
Avg # of overlapping words | 2.19 217 2.18 198 199 198 | 242 2.46 2.45
Input vocabulary 209K 62K 62K | 209K 62K 62K | 210K 74K 74K
Output vocabulary 17TK 84K 83K | 143K 51K 51K | 143K 51K 51K

title-to-query generation.

3.5.1 Dataset & Pre-processing

We collect 8 days of anonymous click logs recorded in the Tencent QQ mobile browser, which
spans November and December, 2018. It contains over 800 million query to document-title

entries in Chinese. We first execute the following sequential pre-processing steps:
1. We remove vulgar entries using a tool developed by Tencent.

2. We remove entries that do not contain any Chinese words in either the query or the
title.

3. We remove entries that contain more than 25 words in either the query or the docu-

ment title.

4. To reduce noises generated by misclicks, we remove entries that appears less than 2

times.

About 6.5 million entries remain after the above steps. Next, we build a click graph and
apply the data retrieval steps in Sec. 3.4.

To select the most appropriate K and p values, i.e., the number of document hops and
top-p query out-going edges, when building the sibling sets SX, we first analyze the edge
properties of the click graph. Fig. 3.5 showcase two insightful distributions, (a) reports
the percentage of queries with the corresponding number of unique out-going edges. We
conclude that most queries (82.84%) only has a single corresponding document. However,
a sizable portion (11.71%) of queries click two distinct documents. Second, in the case of
more than one unique out-going edges, we investigate the differences among their weights,
i.e. the number of times that click occurred. (b) suggests that on average, the second-
largest weights (rank 2) are 0.76 times the largest weights (rank 1), which means that these
edges are likely leading to another highly relevant document. Combining these statistics,
we select K = 2 and p = 2. For simplicity, we define keywords as any verb or noun that are

not stop-words.
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Figure 3.5: Percentage distribution of unique out-going edges from queries (a) and average
ratio of secondary edge weights vs. the highest weights (b) in the click graph.

For weights a, 3,7 in (3.10), their purpose is to balance the three scores and prevent any
one of them from dominating the results. Therefore, we manually sampled 1000 sibling sets
and examined the representatives. After trying several combinations, we found that a setup
of a =04, 8 = 0.3, v = 0.3 well balances all three scores. We then generate data for relevant
words discovery, query-to-query generation and title-to-query generation. Table. 3.1 reports
statistical information on the three generated datasets. Table. 3.2 showcases examples of
training data. Observe that all the retrieved words and queries are closely related to the

input.

3.5.2 General Experimental Setup

We implement our two-stage framework using PyTorch 0.4[Paszke et al., 2017]. We initialize
all word embedding layers with the pre-trained, 200d Tencent AILab Chinese embedding
[Song et al., 2018b] and allow each layer to be further fine-tuned. We select top-X most
frequent words in the training output when building a limited static vocabulary of size X
and replace all out-of-vocabulary words with OOV tokens.

We train all models using the Adam optimizer [Kingma and Ba, 2014] with an initial
learn-rate of 0.01 and apply a simple learn-rate decay strategy: If the train/dev loss of
one epoch is higher than the previous epoch, decay the learn rate by 0.9, lower-bounded
by a minimum learn-rate of le — 4. For generative models, we choose the BLEU-4 score
as the metric for selecting the best hyper-parameters and terminate training if the dev set
performance does not improve for 5 consecutive epochs. For all models, we decode using

beam-search with a beam-width of 2 during parameter-tuning and a beam-width of 4 during
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testing.

3.5.3 Training and Evaluating the RWG Model

We train the RWG model first by minimizing the Binary Cross-Entropy loss. The input and
output word embedding dimensions are set to 209K and 177K, as indicated in Table. 3.1.
We employ top-100 recall rate, i.e. the percentage of truth relevant words that appear in the
top-100 predictions, as the metric for selecting the best hyper-parameters. We found that a
hidden size of 512 for the Bi-GRU works best on the dev set. The RWG model converges in
35 epochs, with a batch size of 256 on an Nvidia GTX-1070 GPU. Each epoch takes about
30 minutes. We report the average top-|T|, top-2|T|, top-50, top-100 and top-500 recall
rates on the test set in Table. 3.3, where |T'| is the number of truth relevant words for an
input query.

Consider the fact from Table. 3.1 that the average number of relevant words per input
query is around 10, we believe 20 is an appropriate choice for the top-k words to append
after the input.

Table. 3.4 provides additional insights on the effectiveness of the RWG model. Observe
that for the training data of the query to query generative task, only 43.85% of Out-Of-
Vocabulary words, i.e. words that are not in the static vocabulary, appear in the input query,
which suggests that even if a CopyNet model learns to copy all OOV words in the input,
there would still be more than 60% of unknown OOV words, which would significantly
hinder the overall performance. Comparatively, with the RWG model more than 80% of
OO0V words are covered. As a result, the second stage model would simply have more

materials to learn from.

3.5.4 Training the DV-Seq2Seq Model

We train two DV-Seq2Seq models for query-to-query and title-to-query generation tasks.
We use the same RWG model to generate the top-20 relevant words. We found that an
encoder GRU hidden size of 256 works well on both tasks. For regularization, we utilize a
Dropout [Srivastava et al., 2014] probability of 0.1 in the decoder.

We test two model variants, one with a static vocabulary size of 20K and another with a
static vocabulary size of 40K. On the query-to-query generation task, our models converge
in about 60 epochs, and 10 more epochs are needed to on the document-title-to-query task.
RWG+DV-5Seq2Seq-20K model variants are trained with a batch size of 64 on an Nvidia
GTX-1070 GPU, where each epoch takes about 90 minutes, while the 40K variants are

trained with a batch size of 32 and each epoch costs 120 minutes.

3.5.5 Baseline Models

We compare our generative framework against the following baseline models. We found an

encoder hidden size of 256 for all baseline models also results in the best performance on
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the dev set, without running into memory problems. We also utilize a Dropout probability
of 0.1 in the decoder of all baseline models.

Seq2Seq-X: Seq2Seq is the original sequence-to-sequence generative model [Sutskever
et al., 2014]. We implement this baseline with a Bi-GRU encoder and a Uni-GRU decoder.
X denotes the output vocabulary size. We experiment with several sizes to test its effect
on the performance. When X = full, we use the complete output vocabulary.

Seq2Seqg-Attn- full: We augment the Seq2Seq model with the general attention mech-
anism from [Luong et al., 2015]. We do not vary the vocabulary size for this baseline because
the attention mechanism does not operate on the output vocabulary. Therefore, we expect
the results of varying output vocabulary sizes to be similar to Seq2Seq.

CopyNet-X: We adopt the CopyNet implementation from [Zhou et al., 2017]. We
cannot include a full variant here because the copy mechanism is only useful where there

are OOV words in the target query.

3.5.6 Ewvaluation Metrics

We report and compare performance on the following metrics:

BLEU-1,2,3,4: BLEU-n [Papineni et al., 2002] is a widely adopted word-overlap
metric for evaluating generative models. n means that variant considers at most n-gram
overlaps. We reported the macro-averaged BLEU-1, 2, 3,4 scores on the test set. Higher
BLEU-n scores indicate more overlapping words between the generated output and truth.

ROUGE-1,2,L: ROUGE-n|[Lin, 2004] is another popular word-overlap metric. We
report the macro-averaged uni-gram, bi-gram, and the longest common sub-sequence (L)
variants of ROUGE. Similar to BLEU, higher scores indicate better performance.

Exact Match (EM): We are also interested in the average ratio of generated queries
that exactly match the truth queries.

% OOV: The generation of OOV tokens significantly limits the real-world applicability
of a generative model, since it usually renders the entire output useless. We examine the
percentage of OOV among all the generated words. Smaller % OOV indicate less OOV are

generated, but not necessarily, better performance.

3.6 Evaluation
3.6.1 Performance analysis

We begin by analyzing the effect of output vocabulary sizes. From Tables. 3.5 and 3.6, we
notice that limiting the output vocabulary size often improves the performance. This makes
sense because it alleviates the prediction difficulty of the projection layer. However, when
the vocabulary size is too small, i.e. 20K, the BLEU, ROUGE, and EM scores decrease.
This is likely caused by a large number of generated OOV tokens, as indicated by the

increase in % OOV. Therefore, it is beneficial to try several output vocabulary sizes when
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training generative models, to find the balancing point between the best performance and
the least number of OOV tokens.

On both tasks, our best model variant with a 40K static vocabulary outperforms all
baseline models on all metrics excluding % OOV. This proves the effectiveness of employing
two vocabularies, i.e. a static output vocabulary with a fully-connected + Softmax projec-
tion layer and a context-aware dynamic vocabulary with an attention + copy mechanism,
in a generative Seq2Seq model. A dual-vocabulary setup also results in considerably less
OO0V tokens in the output, compared to a standard Seq2Seq model or a CopyNet with the
same sized static vocabulary.

Additionally, our approach achieves better performance on the title-to-query generation
task, even if the first stage RWG model is trained on query/relevant words data. This sug-
gests that the RWG model is able to learn useful, generalizable, context word co-occurrence
patterns, and not just overfitting to the input.

As for the time-complexity, our two-stage framework is more efficient to train and use,
because the RWG does not have sequential decoding steps and the DV-Seq2Seq has a smaller
output vocabulary. Each stage can be trained on a consumer-grade GPU like the GTX-
1070 with 8GB of VRAM. During decoding, our framework only needs to project to a large
vocabulary once in the RWG, whereas end-to-end baselines with larger output vocabularies,
such as the Seq2Seq- full, Seq2Seq-Attn- full need to perform this time-consuming operation
in every step. Even on a GPU with twice the VRAM, like the Nvidia Tesla-P100, these
baselines can only train with a maximum batch size of 16.

Furthermore, our proposed framework offers better interpretability, because relevant
words generated by the RWG are directly appended to the inputs for the next stage, hence,

they are fully visible to the end-users and be customized to suit a variety of applications.

3.6.2 Case Study

We conduct a simple case study on the query-to-query generation task. In Table. 3.7,
we compare the outputs from two strong competitors, i.e. CopyNet-40K and RWG+DV-
Seq2Seq-40K.

Consider the first two cases in Table. 3.7. Our model generated higher quality queries
compared with CopyNet-40K. We believe this is attributed to the relevant words provided
by the RWG model, because output words such as Apple, or Kirin 970 (another CPU
model) are not from the original input query. Even if the target query does not include any
additional words, such as case 3, our model still outperforms the competitor. We speculate
that the additional relevant words also helped to better define the overall context. In other
words, the decoder in our model has access to more conceptually-related clues through the

attention mechanism, therefore, its outputs are much more predictable.
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Table 3.3: Top recall rates of the RWG model on the test set.

Top-|T| Top-2|T| Top-50 Top-100 Top-500
0.6522 0.7704 0.7967 0.8555 0.9207

Table 3.4: Percentage of OOV words in output that appears in either the input query or
input query + top-20 RWG results, with an output vocabulary size of 20K.

Query to Query | Title to Query
Train  Dev Test Train  Dev Test

Input words only 43.85 44.14 4398 53.75 5442 54.09
Input + top-20 81.19 56.47 56.43 59.70 58.74 58.86
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Chapter 4

Matching Queries to Concepts

4.1 Introduction
4.1.1 Knowledge Conceptualization

In this chapter, we propose a matching-based approach to discover all related high-level
concepts for a search query. The formal definition for concepts is first introduced in [Liu et
al., 20195]. To better fit the context of matching, we summarize and rephrase the formal

definition here as follows:

e A concept is a short text label which could be a keyword, a short phrase or a short

sentence.

A concept associates one or more text entities under the isA relation.

e A query or a document could be tagged with multiple matching concepts.

Concepts are extracted from news documents and search queries with a combination
of bootstrapping, heuristic, as well as supervised learning methods [Liu et al., 2019|.

The concept set considered in this chapter contains 159, 148 unique concepts.

A concept is comprehensive enough such that it covers many matching text entities. A

concept is also specific enough so that it only covers entities of the same isA relation.

For example, search queries containing specific bands of fuel-efficient SUVs falls natu-
rally under the concept of fuel-efficient SUVs, and search queries like “Resident Evil film
2018" match well with the concept of zombie mouvies or the concept of popular movies in
2018. Conversely, topic words such as “movies”, “SUVs” or “entertainment” are not use-
ful concepts under the above definition. Because of their broadness, they cover a massive
amount of entities and lose the ability to embody useful knowledge. Ultimately, the goal
behind conceptualization is to create a tractable abstraction for the entities in the open-
domain. Under such an abstraction, the problem of search query understanding translates

to finding all the matching concepts, i.e. a text matching problem. Down-stream tasks like
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recommending related queries are also significantly simplified by this abstraction. Given an
input query, we would select other queries from its matched concepts for recommendation.

One might argue that there are many existing approaches to the problem of knowledge
abstraction, such as topic modelling, keyword /key-phrase extraction, and structured Knowl-
edge Graphs [Auer et al., 2007]. Next, we compare conceptualization to these approaches
to demonstrate why it is the more suitable method for enhancing query understanding.

Conceptualization vs. Topic modelling: As we mentioned before, one major draw-
back of topics is their broadness. Topics like “entertainment”, “sports”, or “games” could
potentially cover millions of articles or queries, which do not provide sufficient resolutions
for the down-stream tasks. Take query recommendation as an example; a user browsing for
sports cars may not be interested in economy cars, even though both concepts fall under the
topic of cars. Another way to relate conceptualization to topic modelling is that concepts
could be visualized as more refined topics. However, as the number of topics increases,
many topic modelling techniques [Blei et al., 2003] fail due to the curse of dimensionality.

Conceptualization vs. Keyword/key-phrase extraction: While words in a con-
cept are likely to be keywords in the matching document or query, the inverse is usually
not true. A long document may contain many keywords or key-phrases, but not all of them
would appear in a matching concept or even be related to the concept. For example, an
article under the concept of “hot zombie movies” may contain relevant keywords like “film”
or “horror”, but there may also be unrelated keywords like “directors” or “box-office”.
Readers of this article are more likely to be interested in the zombie movies versus the di-
rectors. If we employ keyword/key-phrase extraction instead of concepts, the down-stream
tasks would need to further prune the irrelevant keywords, which could hurt the overall
performance.

Conceptualization vs. Knowledge Graphs: Structured knowledge graphs like DB-
Pedia [Auer et al., 2007] indeed provide a cleaner and more accurate knowledge represen-
tation. However, this comes at the cost of more time and resource spend on knowledge
cleaning and graph construction. Additionally, most knowledge graphs are limited in which
they only capture concrete facts and relations from well-structured Wikipedia sites. In con-
trast, the web is continuously evolving at a rapid pace, where a popular search query today
may be forgotten entirely in the next month. Knowledge graphs are excellent at presenting
clean entities under formalized relations, but not at adapting to constant changes in user
interests. For example, if a new dance move suddenly goes viral, conceptualization would
enable us to create a concept for it and immediately cover matching queries and articles. We
could also discover connections between it and other entities by analyzing concepts under
the same article or query. In comparison, a knowledge graph would first need to create a new
entity. Then, for this new entity to be useful for down-stream tasks, the knowledge graph

must work out its relations to other entities, which could be extremely time-consuming.
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4.1.2 The Query-Concept Matching Problem

Although knowledge conceptualization simplifies search query understanding into a text
matching problem, it is still unrealistic to directly match every input against all 159, 148
concepts. Therefore, we must adopt a coarse-to-fine approach where we first shortlist a
much smaller set of candidates based on the input query, then, the matching model deter-
mines the relatedness between the input and each candidate concept. However, in doing so,
we introduce another potential performance bottleneck. If the scheme is unable to select
the most related concepts, it would cripple the performance of the entire system. Utilizing
pre-trained word embeddings, conventional shortlisting schemes pre-compute a vector rep-
resentation for each candidate and rely on fast similarity searches [Johnson et al., 2017] to
retrieve the potential candidates for an input. We argue that pre-trained, general-purpose
word embeddings are not the most suitable representations for concepts. Because these
embeddings are trained on a large corpus of Wikipedia or news data, they only capture the
most general degree of relatedness among words. Additionally, word embeddings do not
incorporate the context of the surrounding words or the sequence, which results in inaccu-
rate representations. For instance, in the concept “hot zombie movies”, it is clear that the
word “zombie” and “movie” should contribute more to the concept representation. With
pre-trained word embeddings, we could not achieve such context-dependent term weighting.

To improve the shortlisting stage, We re-adopt the Relevant Words Generator (RWG)
model from Chapter. 3. Given an input query, we retrieve the top-k relevant concept words
and select concepts with the most word-overlaps. Intuitively, the RWG model functions as
an adaptation layer on top of pre-trained word embeddings, and it has three advantages
compared to the conventional scheme. First, the RWG model learns a projection between
queries and concept words, which achieves a preliminary form of query understanding.
Second, the output space of RWG is much smaller compared to the pre-trained word em-
beddings because we only need to project over words that appear in concepts. As a result,
training is fast and resource-efficient. Third, since the RWG model explicitly outputs k rele-
vant concept words, it provides better interpretability to the end-users, i.e. end-users could
understand why a concept is chosen as a potential candidate by examining the generated
relevant words.

In the matching stage, the goal is to predict the relationship between a query and a

concept as either related or not related. We formally define relatedness as,

Definition 1 A search query is related to a concept only if there exists a isA relationship

among them.

For example, “Toyota RAV4” is-a “fuel-efficient SUV”. Due to the number of candidate
concepts, it is impossible to manually-label sufficient amount of unbiased training data.
Inspired by [Finn et al., 2017; Nichol et al., 2018|, we meta-fine-tune a pre-trained BERT
model on 4 highly-similar tasks, namely, query-query matching, query-title matching, title-

title matching and the matching between a query and a relevant word. Utilizing the Reptile
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algorithm [Nichol et al., 2018], we achieve zero-shot, two-way classification on the problem

of query-concept matching.

4.2 Review of Related Literature

Our work draws inspirations from several trending fields. In this section, we begin by
reviewing related literature on vectorized word representations, which is highly-relevant to

our RWG model. We then survey influential works on text matching and meta-learning.

4.2.1 Word Representations

Representing words by vectors is a classic research problem in the field of Natural Language
Processing. The main idea is that we train each word in a large corpus to have a vector
representation that is more similar to its surround words. Word2Vec [Mikolov et al., 2013]
is one of the most influential works on word embedding learning. It leverages Continuous
Bag-Of -Words (CBOW) and Skip-Gram (SG) models as well as sub/negative sampling to
learn generalizable representations. Glove [Pennington et al., 2014] embeddings are learned
by combining global matrix factorization methods with local context windows. FastText
[Bojanowski et al., 2017] augments the Skip-Gram (SG) model with sub-word information
which results in faster training. While the Tencent AI Lab embedding [Song et al., 20185]
focuses on adding directional information about neighboring words to the Skip-Gram (SG)
model. Other approaches like [Faruqui et al., 2014; Kiela et al., 2015; Nguyen et al., 2016; Yu
and Dredze, 2014] enhance the learned embeddings by utilizing external knowledge or adding
supervised objectives.

One issue that is not addressed by the pre-trained word embeddings is that the same
word might have different meanings under a different context. To this end, contextualized
word embeddings are proposed where the representation for a word is influenced by other
words in the sequence. [McCann et al., 2017] directly adopts an LSTM encoder from a
sequence-to-sequence model trained on neural machine translation as a context enhancer
for pre-trained word embeddings. ELMo [Peters et al., 2018] is another popular approach
where a Bi-LSTM is trained as with a language model objective, and contextualized word
embeddings are derived from its hidden states. Both of these works are similar to the
idea behind our RWG model. The main difference is that our RWG model is designed
for contextualized word generation where the output vocabulary is usually much smaller

compared to the vocabularies of general-purpose word representations.

4.2.2 Text Matching

Based on their internal structures, text matching models could be classified as either
representation-based or interaction-based. The focus of a representation-based matching

model is to improve feature extraction. Several layers of neural networks are constructed
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on top of each input vector to extract the most salient information, then an aggregation
module output the final score by combining the input representations. The Deep Semantic
Similarity Model (DSSM) [Huang et al., 2013] constructs 5 layers of feedforward neural
network to process each input, then the cosine similarity between the input representations
is returned as the matching score. CDSSM [Shen et al., 2014] replaces the feedforward
layers of DSSM with convolution layers to improve generalization. MultiGranCNN [Yin
and Schiitze, 2015] enables the comparison of multigranular representations. CNTN [Qiu
and Huang, 2015] models the interaction of encoded sentence vectors through an additional
tensor layer. Later research works adopt a Siamese-architecture [Liu et al., 2018b; Mueller
and Thyagarajan, 2016] for pairwise representation learning, where a shared convolutional
or recurrent feature extractor further improves generalization.

In contrast, interaction-based matching models first establish the crossing of input fea-
tures, which enable one input to incorporate useful information from another. Next, deep
feature extraction layers are employed to capture the most insightful interactions and derive
the output score. In pairwise matching tasks, interaction-based models like ARC-II [Hu et
al., 2014], MatchPyramid [Pang et al., 2016], DRMM [Guo et al., 2016] and MIX [Chen et
al., 2018] often construct matching matrices between input features. Next, several layers of
convolution and feedforward operations are performed over these matrices to select the most
salient interactions. To the best of our knowledge, there has been no concrete conclusion
on the superiority of representation-based or interaction-based methods.

Alternatively, We could classify text matching models by the length of the targeted
inputs. While most models are designed for the matching between short text inputs, such
as matching queries to document titles, there exist other families of models that facilitate the
matching for short vs. long, or long vs. long text inputs. For example, [Zhang et al., 2018]
directly matches search queries to news documents, and [Liu et al., 2018a| accomplishes
matching between long news articles with Graph Convolutional Networks.

Based on the type of outputs, text matching models perform either semantic or relevance
matching, where semantic matching models such as DSSM, CDSSM, ARC-II and MIX
output a score indicating the overall similarity between a pair of inputs. Relevance matching
instead focus on the ranking of inputs, e.g. ranking documents according to their relevance
to a query for Ad-hoc retrieval. DRMM [Guo et al., 2016] is a representative model for
relevance matching, where the local-interactions between terms in a query and a document
is mapped to fixed-length matching histograms. Next, a deep feedforward network learns
the hierarchical matching patterns and computes a relevance score. Our meta-fine-tuned
matching model classifies the relatedness between a query and a concept, which is a binary
semantic matching problem since the similarity score is either 0 or 1.

General-purpose deep language models like BERT [Devlin et al., 2018], ERNIE [Sun
et al., 2019], GPT-2 [Radford et al., 2019] and XLNet [Yang et al., 2019] attain revolu-

tionary progress on Natural Language Understanding. On several benchmark tasks, their
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performance exceeds human intelligence [Devlin et al., 2018]. The success of these models
proves that the pre-training of deep neural networks on large open-domain corpus helps the
extraction of generalizable linguistic knowledge. Therefore, we could effortlessly transform
a pre-trained deep language model into a text matching model by fine-tuning on labelled

matching data.

4.2.3 Meta-Learning

Meta-learning studies the problem of learning how to learn [Thrun and Pratt, 2012; Naik and
Mammone, 1992]. Early works focus on the design of meta-trainers, i.e. a model that learns
how to train another model such that it performs better on a given task [Schmidhuber, 1992;
Bengio et al., 1992]. [Andrychowicz et al., 2016] transfers this idea to deep neural networks
and proposes an optimizer-optimizee setup, where each component is optimized by gradient-
descent. [Li and Malik, 2016] follows a guided policy search strategy and automatically
learns the optimization procedure for updating a model. Meta-learning is also studied as a
promising solution to few-shot classification problems, where a model learns to recognize new
classes given a limited amount of training data for each class. [Ravi and Larochelle, 2016]
proposes an LSTM meta-learner to learn an optimization procedure for few-shot image
classification. [Li et al., 2017] instead develops an SGD-like meta-learning process and also
experiment on few-shot regression and reinforcement learning problems. MAML [Finn et
al., 2017] is another popular approach which does not impose a constraint on the architecture
of the learner. Finally, Reptile [Nichol et al., 2018], i.e. the approach adopted in this chapter,
simplifies the learning process of MAML by conducting first-order gradient updates on the
meta-learner.

Meta-leaning could also be achieved with non-parametric methods. [Koch et al., 2015]
trains a Siamese network to classify whether two images are from the same class, which
implicitly functions as a meta-learner. During meta-testing, the network compares the
new, unseen input to each input in the meta-training set. Matching networks [Vinyals et
al., 2016] refines this idea by imitating the meta-testing procedure during meta-training,
where the learned embedding of a test input is compared to embedding vectors of inputs
from known classes, and the most matching class is selected by the method of weighted
k-nearest-neighbors. Prototypical Networks [Snell et al., 2017] learn an entirely new metric
space for comparing the similarities between inputs. [Sung et al, 2018] proposes that

separating embedding learning and relation matching further improves the performance.

4.3 Framework

We first formalize the learning objective for the problem of search query understanding
under knowledge conceptualization. Suppose that we are given a fixed set C' consisting of
m unique concepts, i.e. C = {c1,¢2,...cm}. For a search query g drawn from a distribution

p(q), suppose that there exists a non-empty set Cf C C, where each concept in CYf is a
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match to g according to Definition. 1. Our goal is to learn a model f such that,

arg max H p(cilg,C; f) = argmax Z log p(cilg, C; f). (4.1)

cieCy cieCy

The main issue when learning f under Eq. 4.1 is that the cost of training scales linearly
with m, which is why a shortlisting mechanism is needed when m is large. Let us define
a shortlisting model g, which takes in the query ¢ and the complete concept set C, then
outputs a new set C¢ € C. Mathematically, g solves for the following problem,

min max|CF N1 €Y, 1C7] < €] < O], (42)
which states that an useful g retains more matching concepts in C¢. In reality, g is often
created without any training, and it relies on pre-computed vector representations for fast
similarity search. In our case, the most conventional way to setup ¢ is to utilize pre-trained
word embeddings and pre-compute the Mean-of-Word-Embeddings (MoWE) representation
for a concept c.

With the addition of g, the original objective from Eq. 4.1 becomes more tractable since
|Cd| < |C], and it is expressed as,

argmax Y log p(cilg, CY; f). (4.3)

CY
To transform Eq. 4.3 into a text matching problem, we define the relatedness between a
concept and a query as r. In our problem setting, r is a binary label of either 0 or 1. And

the objective becomes,

arg max Z log p(re,c;|a,ci; f). (4.4)

! ceCy
Figure. 4.1 depicts our training and testing procedure. To better locate candidate con-
cepts, we learn a Relevant Words Generator model to enhance the shortlisting procedure.
Since there is no labelled data for directly learning f, we meta-learn an approximation to
f in the second stage. In the end, our two-stage framework is evaluated on the problem of

query-concept matching.

4.3.1 Shortlisting by Relevant Words

As we mentioned before, a major weakness of pre-trained embedding-based schemes is
that the global context is not taken into consideration. Although deep contextualized
representations such as ELMo [Peters et al., 2018] already addresses this weakness, we
argue that most contextualized word embeddings are trained on Wikipedia or news data
and do not generalize well to the query-concept matching problem. Therefore, we learn
an additional adaptation model on top of pre-trained word embeddings to provide more

accurate representations.
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Figure 4.1: The training (a) and testing (b) procedures for our query-concept matching
framework.

We first extend the formal definition for a concept ¢, where ¢ is further partitioned
into a sequence of words, i.e. ¢ = {wf,w§, w§,...}. Similarly, a query g is represented by
qg= {wl,wg, ’wg, ..}. Next, let Vo be a vocabulary of all the unique words that appear in
concepts. We observe that when the number of unique concepts, m, is sufficiently large,
m > |Vg|. This is an intuitive observation since if m is sufficiently large, when we add
a new concept to C there is a high probability that all of its words are already in V.
In other words, |Viz| does not increase linearly with m. Therefore, as opposed to directly
selecting candidate concepts from C, we approach from a different perspective and search
for the most related concept words in |V¢|. Fortunately, we addressed a similar problem
in Section. 3.3.1, where a Relevant Words Generator (RWG) is introduced to tackle the
Lezical Chase problem. We propose that to perform shortlisting on |V¢| is equivalent
to performing context-completion for the input query in the domain of V. Together,
these factors motivate us to apply the RWG model here as the very first step of concept
shortlisting.

We now define the learning objective for the RWG model in our problem setting. Given
an input query g of n words, i.e. ¢ = {w{,wi,...,w?}, and |V|. We learn 6 such that the

log probabilities of the words which are relevant to g, are maximized. Suppose that the

46



set R? contains all the true relevant words of ¢, we could then learn # with the following
objective,
arg max Z log p(we|q; 6), (4.5)

weERY
where the generated relevant words i.e. we, are limited to only words that appear in |V¢|.

As indicated by Figure. 4.1, the Relevant Words Generator is constructed the same
way as in Section. 3.3.1. Where a Bi-directional Gated Recurrent Unit (GRU) [Chung et
al., 2014] encodes a query word-by-word to learn its context representation, from which
a fully-connected projection layer followed by a Softmax operation produces a probability
distribution over all words in V. In essence, the RWG model learns an explicit mapping
from query context vectors to concept words, and it is analogous to the way humans think.
For example, when a knowledgeable person hears the query “Resident Evil”, highly-relevant
words like “game”, “zombie”, “film” would immediately pop up in his/her mind. Further-
more, if the same person is then asked to find the most matching concepts for the query,
he/she would naturally choose the concepts that have the most overlaps with the aforemen-
tioned relevant words, like “zombie games” or “zombie films”. Consequently, to shortlist
concepts, we adopt a simple overlap-based matching approach.

Let us define }éz as the set of predicted relevant words for a query ¢, which is constructed
by taking the top-k results from the output probability distribution of the RWG model. We
then define (f'g as the set of all concepts where each concept has at least one word that is
in H;g Finally, we define 6'3 as the output set of candidate concepts, where ég C ég For
each concept ¢ € (f'g, we define the overlap score as the percentage of unique words in ¢
that are also in ﬁz, ie.

score(c)

3" Awe, RY), (4.6)

wee{c}

I}I

where {c} denotes the set of unique words in ¢ and )v.('wc, Rk) is simple indicator function
which returns 1 if w, is in Rq and 0 otherwise. To get Cg, we rank the candidates in Cq by
their overlap scores, and filter out candidates with scores less than a predefined threshold

7, which is expressed as,
cl= {c|ce Cg, score(c) > v} (4.7)

The general objective of shortlisting (Eq. 4.2) is stable only if C{ is non-empty, which is
an over-optimistic assumption in real-world applications. In fact, no matter how compre-
hensive C is, there would always be queries that are not related to any concepts. Hence,
in addition to pruning unrelated concepts for an input query, another important goal is
to reject such outliers. Compared to conventional schemes, our approach is also superior
in achieving this goal. For the ill-formed query “tree chair doctor”, the RWG model is
unable to learn a stable context, which means the BA’E is more likely to contain completely

irrelevant words like “hospital”, “table”, or “forest”, and concepts in ég would have limited
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-

word-overlaps with Rg Setting a large v would filter out all the candidate concepts, which
effectively rejects the ill-formed query. To handle the same ill-formed query in a conven-
tional scheme, one would need to define a similarity threshold and reject the input if no
concepts could meet this threshold. We argue that it is a lot trickier to set a generalizable
similarity threshold than -, and we show in Sec. 4.5 that simply setting v = 1.0 produces

competitive results.

Related Concepts

@ 1. cheesecake recipes

2. cupcake ingredients
_ Black-box 3. bread recipes
Similarity Searching

How to bake cheesecake © 77 7| Concepts (b)

Relevant Words
Related Concepts

1. cheesecake
Relevant 2. baklery Shortlisting by 1. cheesecallke recipes
Words 3. recipe word-overlal 2. cupcake ingredients
ps }
Generator 4. cupcake 3. bread recipes
5. ingredient

Figure 4.2: Comparison of the interpretability of conventional shortlisting schemes (a) vs.
our approach (b). Relevant words highlighted in red help provide more insight on selection
process of candidate concepts.

Last but not least, our approach further enhances the interpretability of the shortlisting
process. Consider the comparison in Fig. 4.2. Conventional method (a) does not provide
any clues on the selection and ranking process. For example, it is difficult to understand why
the concept of “cupcake ingredients” is more similar to the input than “bread recipes”. In
contrast, by explicitly generating a set of relevant words, our approach offers more evidence.
End-users would know that “cheesecake recipes” and “cupcake ingredients” is ranked higher

in the output set because all of their words are highly-relevant to the input query.

4.3.2 Meta-Learned Matching Model

Without labelled training data, we could not directly learn f under Eq. 4.4. Fortunately,
since a significant portion of concepts is extracted from click histories [Liu et al., 20198], it is
reasonable to assume that there exist distributional similarities between the task of query-
concept matching and other tasks derived from a click graph, e.g. query-query relatedness
matching. For this reason, we take a meta-learning approach and learn a model ¢ such that
¢ performs well on all matching tasks derived from a click graph.

A key assumption behind optimization-based meta-learning algorithms [Finn et al.,

48



2017; Nichol et al., 2018] is that under a machine learning problem, there exists a dis-
tribution of tasks p(7). And it is possible for a model ¢ to adapt to p(7) as opposed to a
sampled task 7;, by minimizing the following loss function [Finn et al., 2017],

min D L(¢ — aVeL(e, DIreim), Diesty, (4.8)
Ti~p(T)

where DIT" and D! are the train and test set for the i-th task, and « is the meta-learning
rate. The intuition behind Eq. 4.8 is that we meta-learn a model ¢, by learning how training
¢ on a task 7; affects its generalizability on a held-out test set from the same task. We
repeat this process on several tasks sampled from p(7) to learn ¢. A successful ¢ would
have low test error on every task, i.e. ¢ adapts well to the underlying distribution p(7).
The main advantage of model ¢ is that for an unseen task 7; sampled from p(7), we
could directly transfer ¢ to 7; and expect decent performance from it. If a small amount
of labelled data is available for 7;, ¢ also provides the best possible starting point for

fine-tuning a new model g?), which is known as the adaptation [Finn et al., 2017],

b = a:rg(r;la,x log p(¢|D§me_mﬂe, o). (4.9)

With a large number of concepts, it becomes impossible to manually label an unbiased
dataset, even for fine-tuning purposes. Consequently, we do not perform any adaptation
here and use ¢ for the zero-shot classification of query-concept pairs.

In Eq. 4.8, the V symbol suggests that to minimize this loss by gradient-descent, we
need to perform a second-order differentiation, which often imposes a burden on training,
especially in deep models. For this reason, we utilize Reptile [Nichol et al., 2018], a first-
order meta-learning algorithm to learn ¢. Reptile simplifies Eq. 4.8 by converting the outer
loss function into a step in the direction of V 4L(¢, ngm) after K batches of training on
7:. Reptile speeds up learning and eliminates the need for test sets, i.e. D:** in Eq. 4.8.
Similar to conventional supervised training, Reptile iteratively updates a model, where
every iteration is made up of a task-learning phase followed by a meta-learning phase. In
the task-learning phase, we first make a copy of the current model, then, we sample a new
task and train the copied model by performing K steps of gradient-descent on this task,
where K > 1. In the meta-learning phase, we update the original model by the difference
between its current weights and the weights of the copied model after task-learning, which

is expressed by,
¢ + ¢+ald— ), (4.10)

where ¢ is the copied model after the task-learning phase and « is the meta-learning rate.
It is also worth mentioning that if K = 1, Reptile is equivalent to sequentially training a
model on all available tasks. However, for all K > 1, Reptile converges to entirely different
solutions [Nichol et al., 2018].
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Under the definition of Reptile, the objective for query-concept matching becomes the

objective for the task-learning phase,

arg max Z log p(ru,,u,|wi, uj; ?), (4.11)

¢ ﬂi,ﬂjeU
where u;, u; and U denote the two input candidates and the training data for the current
task, respectively. 7y, ,, is still a label of 0 or 1. The meta-learning objective for our

problem setting is
arg max log p(¢|D™?), (4.12)
(]

where D™t — [pirain plrain | 14 e it encapsulates all the tasks used for training ¢.
To establish a good starting point for learning ¢, we utilized the pre-trained BERT
model [Devlin et al., 2018|, which is shown to capture generalizable linguistic knowledge
that could be easily transferred to other tasks through fine-tuning. BERT contains 12 layers
of Transformer [Vaswani et al., 2017] blocks, where each block has a hidden dimension of
768. We convert a pre-trained, general-purpose BERT model into a deep matching model by
first concatenating the input candidates u;, u; from Eq. 4.11 into one sequence, separated by
a [SEP] token. Then, we append a FeedForward layer after BERT to project its output into
a 2-dimensional space. The matching result is a binary label of 0 or 1, where 1 indicates
the two inputs are deemed matched under the definition in Sec. 4.1.2. To learn ¢, we
meta-fine-tune BERT under the Reptile-learning procedures defined by Eq. 4.11 and 4.12.

4.4 Data Collection from Click Graphs

A click graph is a bipartite graph, where each vertex corresponds to either a search query or
a document title. An edge between a query vertex and a title vertex indicate that the user
who issued the query clicked on the corresponding title. For search engines, click graph data
are abundantly available and easy-to-retrieve. For instance, the QQ mobile browser from
Tencent records over 100 million query-document clicks on a daily basis. We believe click
graphs naturally reflect the degree relatedness between various entities in the open-domain.
After issuing a search query, a user browses the returned document titles and chooses the
documents that match his/her intents, and the same intent may also be expressed by other
search queries. Therefore, starting from a query vertex, we could potentially reach many
neighboring queries or titles by hopping the edges. We assume that a fewer number of hops
between two vertices indicate a higher degree of relatedness.

Under this assumption, we collect the training data by following a k-hop Breadth-First-
Search (BFS) strategy on a click graph. We define 1 hop as going from a query vertex to a
neighboring query vertex through a title vertex, or vice versa. We build upon the definitions
in Sec. 3.4 and further define the k-hop neighbors set for a vertex v in a click graph G as

S[t_’]’k, where [.| determines the type of vertices to include. For instance, S[g]]( includes only
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neighboring queries while 5['5],(31 includes both queries and document titles. Regardless of

whether v is query or a title, S[t_’]’k satisfies the following conditions,

v,k .
® S5 Is non-empty.

e There exists a shortest path in G between any two vertices in S[t_’]’k.

e The number of edges passed by any shortest path is no more than 2k.

Each edge e in G is also weighted, where the weight reflects the number of times that
click occurred. We use the same click graph from Chapter. 3, which is constructed using
8-days of click logs from the QQ mobile browser. We apply the same pre-processing steps,

as mentioned in Sec. 3.4, where for every query we only keep the top-3 outgoing edges.

4.4.1 Relevant Words Data

To acquire training data for the RWG model, we follow a similar procedure as described in
Sec. 3.4. For a query g from G, we first discover its 3-hop neighboring queries set, i.e. S['g?.
We then define the set of targets relevant words for g as RE. Next, we iterate through every
query ¢ in S[%? and perform Part-Of-Speech (POS) tagging utilizing the StanfordCoreNLP
tagger [Manning et al., 20144d]. For every word w in ¢, We add it to R} only if it satisfies

the following conditions,
1. wisin Vg, i.e. w is a concept word.
2. w has a POS tag of Named Entity (NR), Noun (NN), or Verb (VV).

After checking every ¢, we add ¢ and R{ as a new training instance for the RWG model
if 'Rf is non-empty and contains no more than 100 words. Finally, we repeat the above
process for every query in the click graph to derive the complete dataset, from which we

then split train, dev and test sets.

4.4.2 Meta-learning Data

Meta-learning requires a set of tasks which are all sampled from the same underlying task
distribution, as stated in Eq. 4.12. And in Eq. 4.11 we constrain the type of each task to
the binary classification of relatedness between two inputs. Under these requirements, we

propose the following tasks,

¢ Query-to-query (Q2Q), where the goal is to classify whether two queries are related.
For a query g from G, we create positive matching instances by randomly pairing ¢
with 3 of its neighbors in &, %2 Tn the next two tasks, positive instances are created

Q"
in the same fashion, only with different inputs and 2-hop neighbor sets.

e Query-to-title (Q2T). Whether a query is related to a document title.
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o Title-to-title (T2T), where we classify whether two document titles are related.

e Query/title-to-word (QT2W), which is inspired by the relevant word generation
task. The first input is a sequence, either a query or a title, and the second input is a
word. The goal is to classify whether the word is relevant to the sequence. We create
positive instances by pairing the input v to all the derivable relevant words in S[E?T]’
following the same procedure in Sec. 4.4.1. However, the relevant words here are no

longer constrained by condition 1 from Sec. 4.4.1.

We argue that search queries @ and document titles T' follow different underlying distri-
butions, i.e. p(Q) = p(T'), because in general, a query reflects a user’s intent for a specific
type of resource, while a title is a concise summary of the document content. Therefore, it
is beneficial for our model to learn from both Q2Q and T2T tasks.

We sample negative instances by randomly selecting other inputs of the same type, which
is similar to one of the original training task of BERT [Devlin et al., 2018]. For example,
for a positive pair ¢ — g7 from the Q2Q task, we randomly select a g~ from all unique
queries (). The same procedure is applied to the Q2T and T2T tasks. For the QT2W task,
we randomly choose 3 words from all possible relevant words to create 3 negative pairs for

every positive pair.

4.5 Experimentation
4.5.1 Datasets

Before we extract any training data from our click graph, we first randomly sample 400, 000
queries from it as the held-out test set. After removing queries that contain invalid charac-
ters, we get 398, 447 test queries. To avoid information leakage, we then prune these queries
and their corresponding links from the click graph. Finally, we extract training data by
following the approaches in Sec. 4.4.

Table. 4.1 and 4.2 provide general statistical information on the datasets used for learn-
ing the RWG and BERT matching model, respectively. To ensure that every task con-
tributes evenly to the meta-learning process, we constrain the train/dev set of each task to

have the same size by randomly pruning larger datasets.

4.5.2 Baseline Models

We compare our proposed framework against the following baseline models.

MoWE. This baseline follows the conventional Mean-of-Word-Embeddings setup. We
utilize the Tencent Al Lab pre-trained Chinese word embedding [Song et al., 2018b]. We set
a cosine similarity threshold of 0.7 as the decision boundary. In other words, for every input
query, we find the most similar concepts and only keep a concept if its cosine similarity with
the input query is larger than or equal to 0.7. We adopt the FAISS [Johnson et al., 2017]

tool for fast similarity searches.
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Table 4.1: Statistical information on datasets for training the RWG model.

‘ Train ‘ Dev ‘ Test

Size 7.9M | 980K | 880K
Avg # of words in inputs | 6.95 | 6.94 | 6.94
Avg # of relevant words 494 | 494 | 493

Input vocabulary size 435,642
Output vocabulary size 18,717

Table 4.2: Statistical information on datasets for meta-fine-tuning BERT.

Q2Q Q2T T2T QT2W
Train Dev | Train Dev | Train Dev | Train Dev
Size 4.85M 539K | 4.85M 539K | 4.85M 539K | 4.85M 539K
Avg # of words in inputs | 4.65 4.65 7.78 7.78 | 10.87 10.87 | 4.06 4.06
Vocabulary size 406K 162K | 755K 245K | 586K 235K | 222K 63K

ELMo-pre-trained. As a contextualized representation, ELMo [Peters et al., 2018§]
incorporates the context of the sequence when generating word embeddings. We use the
pre-trained Chinese ELMo model with a hidden layer size of 1024, which is provided by
[Che et al., 2018; Fares et al., 2017]. The procedure to select the matching concepts is the
same as the MoWE baseline, where a fixed decision threshold of 0.7 is applied.

BERT-pre-trained. We are interested in how much of the generalizable knowledge
learn by the pre-trained BERT language model could directly transfer to the problem of
query-concept matching. Therefore, we set up a pre-trained BERT-base model ! in the
same fashion as the ELMo-pre-trained baseline, where the output of the last Transformer
layer is taken as the sequence representation.

BoW. In the Bag-of-Words baseline, we directly match concepts from words in the
query. The relatedness of each concept is scored in the same way as described in Sec. 4.3.1.
The BoW baseline is essentially our proposed first stage without the RWG model.

RW. The Relevant Words (RW) baseline is our proposed first stage. Here, we directly
use the shortlisted concepts as the matching results. This baseline serves as an ablation
comparison to help verify the effectiveness of the second stage models.

In addition to the above baselines, we report the performance of the following two-stage

frameworks.

MoWE-BERT-fine-tune. We additionally fine-tune a pre-trained BERT-base model

We use the pretrained Chinese BERT model from https://github.com/huggingface/
pytorch-transformers
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as a matching model on only the Q2Q task. We then pair it with a MoWE shortlisting
scheme, which is constructed the same way as the MoWE baseline except that we do not
set a similarity threshold here.

RW-BERT-fine-tune. In this baseline, we adopt the same fine-tuned BERT model
from MoWE-BERT-fine-tune and instead pair it with our proposed RW first stage.

Following the naming conventions above, we refer to our proposed two-stage framework
as RW-BERT-meta. For all the two-stage setups, we limited the first stage to only pass
the top-10 most similar concepts to the second stage. For all the RW setups, we take the
top-15 predicted relevant words and set v = 1.0. The decision threshold for all second stage

classifiers is 0.5.

4.5.3 Training

We implement both stages of our model using Pytorch [Paszke et al., 2017] 0.4 and train
them with the Adam [Kingma and Ba, 2014] optimizer.

Training the RWG model

We train the RWG model by minimizing the Binary Cross-Entropy loss on the target rel-
evant words. The input and output vocabulary sizes are set to the values presented in
Table. 4.1. We initialize the embedding layers with the Tencent AI Lab [Song et al., 20185
200d pre-trained embedding and allow them to be further trained. We choose the top-100
recall rate, i.e. the percentage of truth words that appear in the top-100 predictions, as the
metric for hyper-parameter tuning. We select a hidden size of 2048 for the Bi-GRU and a
Dropout [Srivastava et al., 2014] rate of 0.5. For the optimizer, We set an initial learn-rate
of 0.001 and follow a simple learn-rate decay strategy: If the train/dev loss of the current
epoch is higher than the previous epoch, decay the learn-rate by 0.5, where the minimum
learn-rate is set to 0.0001. The RWG model converges in 20 epochs, with a batch size of
256 on an Nvidia RTX-2080Ti GPU. Each epoch takes approximately 90 minutes to finish.

Meta-fine-tuning BERT

We meta-fine-tune the pre-trained BERT-base model under the Reptile algorithm [Nichol
et al., 2018], where the objective for each task is to minimize the Cross-Entropy loss on
the predicted labels. We choose a fixed task-learn-rate of 0.0001 for the optimizer, and a
fixed meta-learn-rate of 0.1. On two RTX-2080Ti GPUs, we carry out the meta-fine-tuning
with a batch size of 32, and we terminate the process if the loss on the development set
does not change by more than 0.01 between two epochs. In the end, our BERT-meta model
converges in 5 epochs with an average classification accuracy of 95.5% on the dev sets, and

each epoch takes approximately one day to complete.
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Table 4.3: Top-N recall scores on the RWG test set.

‘Coverage Top-10 Top-20 Top-50 Top-100 Top-500

ELMo Embedding 1.0 0.139 0.169 0.216 0.258 0.383
TAL Embedding 0.957 0.411 0.461 0.523 0.567 0.668
RWG ‘ 0.884* 0.726 0.783 0.843 0.882 0.951

*The coverage is not 100% because we reject inputs that contain Out-Of-Vocabulary (OOV) words.

4.5.4 Offline Evaluation

We conduct two types of offline evaluations. First, we evaluate the RWG model on its own
held-out test set. Next, we propose a new approach for evaluating query-concept matching

results on a click graph.

Evaluating the RWG model

As a sanity check, we want to showcase that our RWG model is learning the word relevance
features conveyed in a click graph. We also wish to demonstrate that such features cannot
be accurately captured by other word representations. Therefore, we report the top-N recall
scores on the test set of the RWG model, where the input to the model is a query, and the
target output is a set of relevant words. We define top-IN recall score as the percentage of
truth relevant words that appear in the top-N predicted words.

Next, we compare our approach to the Tencent AI Lab (TAL) pre-trained embeddings
and the pre-trained ELMo representations. For these baselines, the query representation
is the mean of its word embeddings, and we find the top-IN most similar words to it. We
also report the coverage to ensure that the recall scores are reliable. Table. 4.3 reports the

results of this experiment.

Offline evaluation using click graphs

As we mentioned before, it is difficult to manually label an unbiased query-concept matching
dataset due to the overwhelming number of available concepts. To mitigate this problem,
we propose an automatic procedure to evaluate the results of query-concept matching. We
first note that many concepts are also popular queries. Therefore, some concepts could
exist in our click graph as query vertices. In fact, on our click graph, we found that it
contains 2997 concepts as queries. Next, under our previous assumption, the hop distance
between two vertices is a rough estimate for their relatedness. Combining these intuitions,
we argue that if a concept is a good match to a query, and they are in the same click graph,
then they should be within a certain number of hops from each other. Although the exact

hop distance may not be a reliable measure for the relatedness, we could still get a rough

55



Table 4.4: Offline evaluation results using our complete click graph.

‘ # supports ‘ Avg # hops ‘ MAP ‘ MAR

MoWE 1661 4.77 0.639 | 0.769
ELMo-pre-trained 1446 4.90 0.627 | 0.624
BERT-pre-trained 1029 5.56 0.528 | 1.000
BoW 2641 4.99 0.364 | 0.819
RW 2420 5.68 0.368 | 0.748
MoWE-BERT-fine-tune 1661 4.77 0.217 | 0.950
RW-BERT-fine-tune 1690 5.16 0.674 | 0.960
RW-BERT-meta | 1892 | 561 | 0.801 | 0.916

estimate for the Mean-Average Precision (MAP) and Mean-Average-Recall (MAR) metrics.

To summarize our strategy, we assume the truth label between a concept and a query is
1 if both are in our click graph, and they could reach each other within 10 hops. Note that
the click graph used for evaluation here is the original graph, i.e. it contains all the test
queries. With truth labels, we could compute the macro-averaged MAP and MAR scores

for the query-concept matching results, which are defined as,

N
1 TP;
MAP =% ZH TP, + FP;’ (4.13)
N
1 TP;
MAR = — _— 414
T ue

where N is the number of results with positive predictions. TP, FP, FN denotes true-
positives, false-positives and false negatives.
Table. 4.4 reports these metrics, the average number of hops between a query and a

concept, as well as the number of queries that contributed to the computations.

4.5.5 Human Evaluation

Without a labelled test set, offline evaluation alone is not sufficient in revealing the real
performance. We argue that human judgment is a more reliable evaluation metric. There-
fore, we randomly select 206 test instances where every model outputs a different matching
value. We then take the top-3 matched concepts of every model according to either the
cosine similarities (MoWE, ELMo-pre-trained, BERT-pre-trained), the predicted probabil-
ities (two-stage frameworks), or the overlap-scores (RW and BoW) 2. Finally, we hire 2
human judges and assign each judge to asses half of the test instances according to the

following criteria,

2We randomly take 3 concepts if there are more than 3 top concepts with the same score
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Table 4.5: Human evaluation results on 206 randomly selected test instances.

# of #of0s | #ofls | #of2s | Total

concepts . . .

matched assigned | assigned | assigned | score
MoWE 562 307 192 63 318
ELMo-pre-trained 538 401 104 33 170
BERT-pre-trained 623 524 85 14 113
BoW 589 295 216 78 372
RW 617 255 250 112 474
MoWE-BERT-fine-tune 618 471 125 22 169
RW-BERT-fine-tune 488 176 200 112 424
RW-BERT-meta 517 137 238 142 522

e For a test instance, the judge reviews the top-3 concepts of each model, then assign a

score for each concept.

e A concept receives a score of 2 if there exists a isA relation between it and the input
query. If a concept only match part of the query, for example, if the query “Resident
Evil background story” is matched to the concept “zombie movies”, then the judge
assigns a score of 1 for this concept. Otherwise, for every non-related concept, a score

of 0 is assigned.

e On a test instance, the maximum attainable score for a model is 6, and the minimum

score is 0.

We report the results of human evaluation in Table. 4.5. In Sec. 4.6, We discuss the im-
plications behind these results and conduct case studies to get a more intuitive visualization

on the performance of the competing models.

4.6 Performance Analysis

4.6.1 Offline Evaluation Results

We begin with the RWG test results in Table. 4.3. The RWG model easily outperforms
the other two pre-trained word representations, which proves our original claim that the
word-relatedness derived from a click graph is different from the word similarities learned
by pre-trained embeddings.

For the matching results, we first observe in Table. 4.4 that most models achieve high
MAR scores, which means that most models are unlikely to miss-classify matching concepts
as non-matching. However, we see a wide range of MAP scores, where a lower MAP

score indicates that a model tends to classify more non-matching concepts as matching.
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Specifically, the MoWE-BERT-fine-tune baseline scores lowest on the metric. We suspect
that this is because we do not set a similarity threshold for the first stage, which means
the second stage alone need to filter out all the non-matching concepts and rejects difficult
inputs. Clearly, fine-tuning BERT on the Q2(Q task does not learn enough transferable
knowledge for this goal. As a comparison, by replacing the first stage with our proposed
module, the MAP score improves significantly in the RW-BERT-fine-tune baseline.
Among the single-stage baselines, we observe that MoWE with a similarity threshold of
0.7 performs the best, while pre-trained, deep contextualized representations like ELMo or
BERT have difficulties transferring their knowledge to our problem setting. This implies
that the problem of query-concept matching requires unique contextual representations for
the input sequences. Additionally, we observe that the RW baseline performs worse than
the BoW baseline. We suspect that, while the imaginative nature of the RWG model
enables us to discover of additional relevant words, it could “wander-off” too far and match
completely irrelevant concepts. Therefore, we employ the meta-fine-tuned BERT model as
another stage of quality assurance to effectively prune all the non-matches. In the end, our

proposed framework outperforms all other baselines by a large margin on the MAP metric.

4.6.2 Human Evaluation Results

According to Table. 4.5, our framework obtains the highest total score and also receives
more 2s than the baselines, which means that it discovers isA relationships more accurately.
Specifically, compared to the RW baseline, our framework finds less matching concepts
overall (517 vs. 617) but with a higher total score. Therefore, the proposed matching
model serves its purpose well as a quality assurance stage for the RW shortlisting scheme.
Compared to RW-BERT-fine-tune baseline, we also prove the effectiveness of the Reptile

meta-learning algorithm on learning a more generalizable text matching model.

4.6.3 Case Studies

In Table. 4.6, we show representative examples of the top-10 relevant words generated by
our RWG model and compared with the top-10 most similar words found by the Tencent
AT Lab (TAL) word embeddings. We show the original query and relevant words in Chinese
and their English translations.

In general, our RWG model produces words that are related to the input on a higher
conceptual-level, especially for the highlighted words. In comparison, the cosine similarity
search based on word embeddings discovers words that are related only to certain words
in the input. For instance, in the first row of Table. 4.6, our RWG model knows that
“RongWei rx5” is a car, and the query is asking for tutorials on how to project displays
between a cell phone and a car. Therefore, it discovers conceptually relevant words like
)

car”, “inter-connect” and “tutorial”, while in the baseline approach, the meaning of the

query is not captured, and the majority of related words are only similar to “screen”.
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Another representative case is the input query “Girl group fox”, two seemingly unrelated
entities that convey a unique meaning when put together. In this case, “fox” actually refers
to a champion named Ahri from the game League-of-Legends, who is a nine-tailed fox.
And “Girl group” refers to a popular skin for Ahri at that time. Without this background
knowledge, the TAL baseline only finds similar words to “Girl group”, whereas the RWG
model could successfully uncover keywords related to the game. Overall, Table. 4.6 provides
valuable evidence on the usefulness of the RWG model.

Table 4.6: Comparison of the top-10 words found by the RWG model and the TAL pre-
trained word embeddings.

Input query | Model | Top-10 words

FEL, FHL, BRET, 1%, BRAE, Wi, R, EEK, #E, KB
ERrxSELES FHLRE | RWG | RongWei, cellphone, project, car, screen, forum, question,

RongWei rx5 project- inter-connect, tutorial, big-screen
cellphone screen EKEE, BoREE, BEF, 7217, MHPE, koobee, amoled, ZHIBE, T B,
TAL B

ink screen, display screen, screen, RAM, curved screen, koobee,
amoled, bezel-less display, folding display, screen projection

Wz, &9, B8, 577, 55, &%, I, 6F#, 3, £8

BR 7t RWG | method, food, fishing, technique, bass, recipe, efficacy, Wiki, soup,
Sour soup bass delicacy

=171, KR, , f, , AChE, =2 GEf WEA,

TAL soup-stock, diced pepper, duck meat, mackerel, fish fillet,

spotted silver carp, sliced ginger, butter fish, Amur catfish,

dried scallop

W, ik, B, B, ER, 6, TR, B, 2T, PR
pegzit] vl RWG | girl group, skin, see, league, picture, champion, fox, game,
Gril group fox buddy, Ahri

FH, apink, 50, L4 0T, exo, twice, L P, snh48, BH, FFETF
TAL Suzy, spink, Suzy Bae, Taeyeon, exo, twice, girl group, snh 48,

boy group, Park Ji-yeon

W, B, 70T, 7E28, T2, WK, B# B, 08, K

PRGN i, 50 72 R RWG | evaluation, software, analysis, online, download, test, wiki,
Personality test- personality, psychology, growth
free version Iin, TH, AR, B, AR, B, B, ma hs, i

TAL physique, competition, character, brow-shape, talent, personality,

stress-test, blood type, test, emotional quotient

We now examine how well the RWG model and the BERT matching model cooperate
together. In Table. 4.7, we show the top-3 matched concepts for every test query. Due to
space concerns, we compare our results to only a few competitive baselines models.

Overall, our model is superior at both finding related candidates and picking out the
best matching concepts. Consider the first instance of Table. 4.7, here, Omen and Legion
are gaming laptop models from HP and Lenovo, respectively. Our proposed RW stage ac-
curately discovers this relation. Then, the second stage reliably filters out non-matching
concepts such as “Laptop keyboard”. In contrast, the RW-BERT-fine-tune baseline mistak-
enly prunes the best matching concept, “Gaming laptop”, from the shortlisted candidates.
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Table 4.7: Comparison of the top-3 concepts matched by our proposed framework and
competitive baseline models.

Input query | Model | Matched concepts
B (0K R AR R g laptop, ptop

R ECAER, ZiARWEE, BEZCARME

Omen and Legion RW Gaming laptop, Laptop keyboard, Lenovo laptop
MoWE HECE N
Legion novel
RW-BERT-fine-tune | D0 CIc Al
Lenovo laptop
B E R

R B
Wallpaper size-
modification

RW-BERT-meta

Picture modification software

BEREE. FIBIGEF

RW Picture modification software,
Cellphone modification software
MoWE Frak B
new television wall
ROTHEEER, O, Bk
Bow Size reference chart, Modify online game,

Modification software

BT b 53 B AR
Innovation-
entrepreneurship-
proposal template

RW-BERT-meta

RZECNERIFR, RFEEANE
University student entrepreneurship proposal,
University student entrepreneurship

ONEFEE. AFEANE, RFEENLITIF

Young entrepreneur,

RW University student entrepreneurship
University student entrepreneurship proposal
REEBNLTRIF, T AR pptiER, pptiEii

MoWE University student entrepreneurship proposal,

Resume ppt template, Ppt template

RW-BERT-fine-tune

REFEONE, REFD Y], RZEANLTIFH
University student entrepreneurship,
University activity planning,

University student entrepreneurship proposal
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Chapter 5

Summary and Conclusions

5.1 Contributions

In this thesis, we propose three novel approaches under the topic of search query under-
standing. The focus of search query understanding is to develop a better representation for
the intents behind a query and efficiently utilize them to enhance down-stream services.

We start by creatively taking a backward strategy where the most probable search query
is inferred from a document. Under this setting, we develop a better understanding of
search queries by learning to generate them in a word-by-word fashion. We combine several
deep learning architectures, such as Hierarchical Recurrent Encoders, Graph Convolution
Networks (GCNs) and Transformers into the G-S2A generative model. The idea is to explore
graphical document representations, then utilize them to develop a deeper understanding
on the context of the document, which in turn would improve the process of query term
selection & inference. With the addition of a sentence-level GCN and a keyword-level
GCN to learn from the corresponding document graphs, our G-S2A outperforms several
competitive baselines on BLEU-1,2,3,4, ROUGE-1, 2, L and Exact Match (EM) metrics.

Next, we introduce a two-stage learning framework for related queries generation. We
first retrieve massive amounts of training data from a click graph. Then, our framework
breaks down related query generation from input queries as well as document titles into
two steps, namely, relevant words discovery, which alleviates the Lexical Chase problem,
and context-aware query generation, which improves the process of query understanding
and recommendation. We carefully design a Relevant Words Generator (RWG) model
and a Dual-Vocabulary sequence-to-sequence (DV-Seq2Seq) model for each sub-problem.
Together, our framework balances performance, time-complexity and interpretability. A
RWG+DV-Seq2Seq setup with a 40K static output vocabulary surpasses all baseline mod-
els on both query-to-query and title-to-query generation, also in terms of BLEU-1,2, 3,4,
ROUGE-1,2, L and Exact Match (EM) metrics. Together with the G-S2A model, we verify
the feasibility and practicality of deep generative models for the problem of search query
understanding.

In Chapter. 4, we take a text-matching approach. We acquire a set of more than 150K
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concepts from our industry partner, which serves as an abstraction for the massive amount
of knowledge in the open-domain. Under this abstraction, we transform the problem of
search query understanding to the problem of query-concept matching. To this end, we first
re-adopt the RWG model to construct a new shortlisting scheme. With no labelled data,
We meta-fine-tune a pre-trained BERT model into a competitive matching model using the
Reptile meta-learning algorithm. By conducting both offline and human evaluations, we
prove the superiority of our proposed two-stage matching framework against conventional
and deep learning baselines. To the best of our knowledge, we are the first to apply the
Reptile meta-learning algorithm to fine-tune a deep text matching model.

In summary, we approach search query understanding from generative and text-matching
perspectives. We test deep learning models and propose novel modifications or frameworks
to further improve their performance. We prove that deep learning indeed opens up many

exciting new possibilities for this field.

5.2 Directions for Future Work

We propose the following directions for future research,

e A major challenge for deep generative language models is how to achieve better quality
control on the outputs. The same issue also exists for query generation, i.e. how to

ensure the generated queries are fluent and grammatically correct.

e Although the Relevant Words Generator model proves to be extremely useful, it is
actually biased by word frequencies and the click position bias. To create an unbiased
RWG, one could adopt related ideas from works on generalized word representations

and learning-to-rank tasks.

e To simplify computation, we do not incorporate the weights on the edges of the click
graph when gathering data or training our models. However, these weights may
provide additional insights on relatedness. For instance, one could further classify the
degree of relatedness beyond a binary label based on the cumulative edges weights

between two vertices.

o It would be interesting to see how a structure similar to the Matching Network [Vinyals
et al., 2016], with a non-parametric matching metric, would perform in comparison

to our meta-fine-tuned BERT matching model.

e The success of pre-trained deep language models like BERT makes us wonder whether
it is possible to train a generalizable deep representation for queries. Since click graph
data is easy to retrieve and abundantly available, one might be able to train deep

query language models based on the hop distances and edge weights.
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