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Abstract

Information transfer between a microwave field and light, also known as microwave-to-

optical transduction, is a key area of research in quantum communication technology

aimed at developing an interface between the superconducting processing devices op-

erating at microwave frequencies and optical photons used for transferring quantum

information over distance. Atomic vapors offer a good platform for such interfaces

since they naturally support transitions at microwave and optical frequencies. In

this work, we explored microwave-to-optical transduction in rubidium ensembles. We

proposed a transduction method based on microwave-optical double resonance, where

we can control the ensemble optical properties via non-linear interactions with a mi-

crowave magnetic field. With this method, we demonstrate the transduction of an

audio signal from frequency-modulated and amplitude-modulated microwave fields

to optical intensity modulation. We also present a protocol for engineering atomic

spin polarization with microwave-assisted optical pumping and consider its applica-

tions for polarization-selective frequency conversion and microwave-controlled optical

rotation.
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⟩︁
via off-resonant

excitation to
⃓⃓
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Chapter 1

Introduction

The physics of interactions between electromagnetic fields and atoms and molecules,

known as atomic and molecular optics, greatly impacted modern technology and

fundamental science. In the first half of the 20th century, attempts to explain the

rich structure of the emission spectrum of hydrogen lead to the creation of whole new

areas of science, such as quantum mechanics and quantum electrodynamics. Later,

research on microwave transitions in molecules resulted in the creation of the maser

- the first source of coherent radiation and a precursor of the laser, the technology

that shaped the world as we know it. These new technologies provided us with

high-precision spectroscopy tools allowing even better measurements of atomic and

molecular structures, fundamental constants, and properties of elementary particles.

These new tools were then adapted to control atomic properties. The effect of

electromagnetic radiation on atomic motion was used to create the coldest matter

in the universe and to study its unique macroscopic quantum properties. The effect

of electromagnetic fields on the atomic quantum state provided us with several gen-

erations of the most accurate clocks, and precise and portable electromagnetic field

sensors. Nowadays, due to the ever-increasing precision and accuracy with which

atomic motion and quantum states can be manipulated, the field of atomic optics is

gaining influence in quantum information and communication by providing promising

platforms for quantum processing, quantum simulation, and storage and transduction
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of quantum information.

During my doctoral research, I investigated microwave-to-optical transduction in

rubidium vapor and its applications for magnetometry and quantum communications.

In the context of this work, we refer to transduction as a modulation transfer between

two electromagnetic fields. In our case, we implement transduction via nonlinear

interactions between the electric-field component of laser light and the magnetic-field

component of a microwave field in a rubidium vapor. The transduction idea builds

upon the fact that the vapor’s optical properties, such as absorption and dispersion,

depend on the quantum states of the atoms interacting with light, while the atomic

quantum states depend on the microwave field applied to the vapor. The main focus

of my work was to develop tools for controlling the optical properties of a rubidium

vapor via microwave interactions for microwave-to-optical transduction with several

potential applications discussed below.

1.1 Applications

Microwave-to-optical transduction in atomic vapors plays a significant role in mod-

ern technology, including precise magnetometry, microwave frequency and power stan-

dards, conversion of radio signals to optical intensity signals, and shows great promise

in quantum information science. Below we review state of the art in these techniques

and discuss their relevance to our research.

1.1.1 Quantum computing

Unlike classical information, which consists of discrete zeros and ones, quantum infor-

mation relies on a quantum system’s ability to simultaneously be in several orthogonal

quantum states, allowing encoding of information in a superposition of zeros and ones.

As a result, a computer based on quantum-information principles can perform certain

computational tasks at unprecedented speeds compared to classical computers [1, 2].

In addition, quantum information gives access to novel cryptography tools, improving
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the security of communication [3].

Currently, some of the most promising candidates for a processing unit in a quan-

tum computer operate in the microwave range [4], including superconducting cir-

cuits [5, 6], solid-state spins [7, 8], and trapped atoms [9–12] and ions [13]. At the

same time, the long-distance transfer of quantum information mostly relies on opti-

cal photons [14–16]. To bridge the gap between the two, one needs a system that

can coherently transfer quantum information between the two frequency ranges [17].

Several different systems can potentially implement such wavelength conversion, e.g.,

optomechanical systems [18–20], spin ensembles in solid-state devices [21–24], electro-

optical modulators [25, 26], magnons [27], and atomic ensembles [28–32].

Rubidium vapors naturally support transitions at microwave and optical frequen-

cies, making them a good platform for microwave-to-optical wavelength conversion.

Besides, rubidium ensembles can be cooled below 1 µK, which offers a good coher-

ence time for storing quantum information [33, 34]. By studying microwave-to-optical

transduction in rubidium vapors, we hope to get one step closer to realizing quantum

information transfer between these frequency domains.

1.1.2 Frequency standards

Transduction of microwave frequency modulation to the optical intensity in alkali

vapor cells is used in compact frequency standards [35–38], i.e., devices providing

stable signal serving as a frequency reference for calibration and frequency-locking.

The transduction is based on the microwave-optical double resonance [39], where the

two fields are close to resonance with the corresponding atomic transitions. Due to

non-linear interactions between the microwave and optical fields, the optical absorp-

tion experiences a resonance when the microwave frequency matches a frequency of

one of several hyperfine transitions. Because the transition frequency depends only

on the fundamental constants, it can serve as a frequency reference providing the

frequency standard. The transduction based on the double resonance can operate in
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a continuous-wave regime, simplifying the experimental setup and making the fre-

quency standards based on this technique relatively compact, portable, and versatile.

We will cover the physics of atomic transitions and the microwave-optical double

resonance in Chapter 2 and Chapter 3.

1.1.3 AC magnetometry and power standards

The double-resonance setup discussed above also allows the transduction of microwave

phase modulation to the optical intensity. In the case of harmonic modulation, the op-

tical intensity varies periodically, with its spectrum depending on the relation between

the microwave power and the modulation frequency. The optical signal response to

varying the modulation frequency depends only on the microwave power and funda-

mental constants [see Chapter 5], providing a precise measure of the microwave power.

Originally this technique was proposed to provide a microwave power standard [40–

42], but nowadays, it is widely used for measuring the amplitude of the microwave

magnetic field [43–49].

1.1.4 Radio-over-fiber communication

Another common application of microwave-to-optical transduction in atomic vapors is

radio-over-fiber communications [50–61]. Here, an analog or a digital signal encoded

as a frequency, amplitude, or phase modulation of a microwave field is transferred to

an optical carrier. The atomic vapor cell here serves as both the receiving and the

demodulating device, which is lightweight and electrically isolated [51].

1.2 Novelty of this work

This work aims to bring together various types and applications of the microwave-

to-optical transduction discussed above under a single theoretical framework with an

emphasis on the quantum nature of the process. During the research, we made the

following contributions to the field:
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• We adapted the double-resonance technique for radio-over-fiber applications,

where this effect was used in room-temperature rubidium inside a microwave

cavity to transduce an audio signal encoded as frequency and amplitude mod-

ulation of the microwave field to the intensity modulation of laser light. In

a proof-of-principle experiment, we demonstrated the transduction for a mi-

crowave carrier transmitted via cable and free space. The experimental setup

in our method is simpler and more suitable for real-life applications than the

one used in the conventional technique based on electromagnetically-induced

transparency. The quantum nature of our technique makes it potentially ap-

plicable to quantum information. These results were published in [62] and are

discussed in detail in Chapter 4.

• Through numerical simulation and experiment, we studied the quantum-dynamics

of a two-level system driven by a phase-modulated field with a large modula-

tion index. Our findings could potentially improve the precision of microwave

magnetometry in systems with limited interrogation time, making it feasible

for the ultracold atoms, as demonstrated in our proof-of-principle experiments.

These results were published in [63]. Chapter 5 provides the relevant theory

and details of the experiment and simulation.

• We showed that microwave-optical double resonance can be used for frequency

conversion based on optical switching. Within this approach, we also intro-

duced a microwave-assisted optical pumping technique that allows controlling

the population of specific Zeeman sublevels in the ground state. In Chapter 6,

we describe the technique and show that it can be used for polarization-selective

frequency conversion and microwave control of optical rotation.
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Chapter 2

Background

In our experiments, we study how rubidium vapor interacts with electromagnetic fields

at microwave and optical frequencies simultaneously. In particular, we are interested

how one interaction can affect the other one. By examining what effect the variation

in microwave parameters has on optical properties such as absorption and dispersion,

we develop tools for microwave-to-optical signal transduction. In our setup, we use

optical and microwave fields with frequencies close to resonance with electric-dipole

and magnetic-dipole transitions in the rubidium-87 (87Rb) isotope, respectively.

In this chapter, we discuss a brief overview of the relevant concepts in atomic

optical physics to provide essential background and context for my research. To

begin with, we introduce the energy-level structure of 87Rb (and hydrogen-like atoms

in general) and provide a description of the main physical effects contributing to

it. Next, we move on to level splitting due to magnetic-dipole interaction with a

weak external static magnetic field (the linear Zeeman effect), which gives rise to a

family of microwave transitions observed and employed in later chapters. Finally, we

introduce the theory of atomic transitions due to interactions with external oscillating

electric and magnetic fields and conclude by discussing ensemble effects on quantum

evolution.
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2.1 Energy levels

Atomic optical physics studies interactions between an electromagnetic field and a

single atom or ion, several atoms or ions, or a macroscopic ensemble of neutral1 atoms

weakly-interacting with each other. In our experiments, we work with ensembles of

neutral atoms in the form of dilute vapor either at room temperature or laser-cooled.

In contrast to condensed-matter systems, weak interactions between atoms within

such ensembles do not significantly alter each atom’s energy-level structure. Thus, all

atoms within the ensemble have approximately the same energy-level structure and

interact with external fields independently. This fact allows us to model an ensemble

interacting with an external electromagnetic field as a single atom and to treat the

ensemble effects phenomenologically (see Section 2.4).

When we describe the energy of an atom in atomic optical physics, we mostly focus

on the energy of its electrons. As an alkali metal element, 87Rb has an odd number

of electrons, with a single unpaired electron above a closed core of filled electron

shells (see Figure 2.1). Compared to the outer electron, the core is very robust under

the influence of external fields. Below, we refer to this outer electron when we discuss

the energy structure of alkali atoms. Because the closed core effectively neutralizes

the positive nuclear charge of all but one proton, the energy level structure is similar

to that of a hydrogen atom. In a nutshell, the energy levels can be represented as

a gross structure due to Coulomb interaction with the nuclear electric charge, which

splits into the fine structure due to spin-orbit interaction, and is further split into the

hyperfine structure due to magnetic interaction with the nucleus.

1This is an intended tautology frequently used in the field to highlight the difference from charged
ions, which employ a completely distinct set of experimental tools. In this manuscript, unless
explicitly specified, all atoms are presumed to possess a neutral total electric charge.
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Figure 2.1: Illustration of a hydrogen atom and an alkali atom, using 7Li as an
example. In the case of 7Li, two inner electrons form a closed core that neutralizes
the positive electric charge of two protons.

2.1.1 Gross structure

As was discussed above, the closed electronic core reduces the effective nuclear charge

interacting with the outer electron. As a result, the gross structure energy levels due

to Coulomb interaction are similar to those of a hydrogen atom and are given by [64]

E(n, l) = −2πℏc
R∞

(n− δl)2
, (2.1)

where n is the principal quantum number, l is the orbital quantum number, ℏ is the

reduced Planck constant, c is the speed of light in vacuum, and R∞ is the Rydberg

constant. The quantum defect δl takes into account the fact that the outer electron

can penetrate into the core, which reduces the screening effect. The penetration depth

depends on the shape of the wavefunction, determined by l, with the highest contri-

bution for the s-state where l = 0. In 87Rb , the lowest energy level is characterized

by n = 5 and l = 0 with quantum defect δs = 3.19 [64].

2.1.2 Good quantum numbers

Before moving on to the next-order corrections to the electron’s energy, I would like

to introduce a concept of “good” quantum numbers. This is terminology which is

usually used in atomic physics to describe fine and hyperfine structures of atoms. An
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eigenvalue a of a quantum operator Â is considered a good quantum number if Â

(approximately) commutes with the atomic Hamiltonian. In this case, because the

expectation value of Â, which coincides with a, does not evolve in time, it provides a

good way to describe a quantum state at any given moment. Good quantum numbers

are analogous to constants of motion in classical mechanics [64].

2.1.3 Fine structure

Taking into account the electron’s magnetic moment associated with its spin splits

the gross levels into a manifold know as the fine structure. When the electron moves

through the nuclear electric field, it experiences an effective magnetic field propor-

tional to the electron’s speed.

This effect can be qualitatively understood in terms of the Bohr model of a hydro-

gen atom if we move to the electron’s reference frame, as is shown in Figure 2.2. In

this frame, the nucleus orbits around the electron with an orbital angular momentum

−l, where l is the electron’s orbital momentum vector in the nuclear frame. Since the

nucleus is charged, its motion creates a magnetic field aligned with its orbital mo-

mentum. Because the electron’s orbital angular momentum determines the direction

and magnitude of this field, its effect on the atom’s energy due to magnetic-dipole

interaction with the electron’s spin s is called spin-orbit coupling. It can be expressed

as an additional term in the Hamiltonian [65]:

Ĥso = Afsl̂ · ŝ = Afs

(︂
l̂xŝx + l̂yŝy + l̂z ŝz

)︂
, (2.2)

where Afs is the constant describing the strength of the coupling. Note that, even

though the above model provides us with the correct qualitative dependence of the

energy on l · s, in order to calculate the coupling strength, we would need a fully

relativistic treatment [66].

The spin-orbit coupling term Ĥso commutes with l̂
2
and ŝ2, but not l̂z and ŝz,

meaning that l and s are good quantum numbers, but mz and ms are not2. On the

2See Appendix A for more details on angular momentum operators and their eigenvalues.
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Figure 2.2: Toy model for the spin-orbit coupling in the Hydrogen atom. (a) In the
nuclear reference frame, the electron circles around the nucleus with momentum p.
(b) In the electron’s reference frame, the nucleus circles around the electron with
momentum −p. This motion produces magnetic field B with the magnetic dipole
associated with the electron’s spin s.

other hand, if we define the electron’s total angular momentum as ĵ = l̂+ ŝ, then ĵ
2

and ĵz commute with Ĥso, and both j and mj are good quantum numbers.

Therefore, the spin-orbit interaction splits the energy levels according to the value

of j. In the ground state of an alkali atom, the total angular momentum includes the

electron’s spin only, so the ground-state level does not split due to spin-orbit coupling.

On the other hand, the first excited state with l = 1 splits into a doublet with j1 = 1/2

and j2 = 3/2. Following the standard spectroscopic notation, we refer to the transi-

tion lines between these doublet states and the ground state as the D1 and D2 lines,

respectively. In 87Rb the wavelength of the D1 line is approximately 794.978 nm [67],

and the wavelength of the D2 line is approximately 780.241 nm [67].

In the fully relativistic treatment, there are other terms that contribute to the

Hamiltonian on the same order as the spin-orbit coupling, namely the second-order

relativistic correction to the kinetic energy and zitterbewegung [66]. Another en-

ergy shift of the same order comes from the quantum electrodynamics and is known

as the Lamb shift [68]. All these effects do not provide any additional insight for

understanding the fine structure of alkalies and are not discussed here.

2.1.4 Hyperfine structure

Because protons and neutrons have magnetic moments associated with their spins,

the nucleus possesses a magnetic dipole moment proportional to the total nuclear
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spin I. This nuclear magnetic moment interacts with the magnetic field produced by

the electron’s motion and magnetic dipole moment. The additional energy due to

this interaction is given by [69]

Ĥhfs = AhfsÎ · ĵ = Ahfs

(︂
Îxĵx + Îy ĵy + Îz ĵz

)︂
, (2.3)

where Ahfs is the isotope- and transition-specific constant determining the interaction

strength. This interaction causes the fine-structure levels to split according to the

value F of the total atomic angular momentum3 F̂ = ĵ + Î, with the new levels

forming the hyperfine structure. The hyperfine levels are characterized by new good

quantum numbers F and mF , while mj is no longer a good quantum number. For us,

of a special interest is the hyperfine structure of the ground state in alkali elements.

In the absence of external fields, it consists of two energy levels corresponding to

F1 = |I − 1/2| and F2 = |I + 1/2|. The nuclear spin of 87Rb is 3/2, which gives the

ground-state levels with F1 = 1 and F2 = 2, respectively, that are separated by a

transition at a microwave frequency of 6.83468261090429(9) GHz [67]. The hyperfine

structure of the D1 and D2 lines is shown in Figure 2.3.

For heavy elements like Rb, taking into account the finite size of the nucleus leads to

noticeable corrections to the hyperfine structure, such as the isotope volume shift [69]

and electric-quadrupole interaction between the electron and the nucleus [67]. These

effects do not play an important role in our experiments; therefore, we will omit their

details.

2.2 Linear Zeeman effect

In a static magnetic field B, a system with magnetic dipole moment µ acquires

energy HZ = −µ · B. For a quantum system, it is usually convenient to choose the

z-axis along the direction of the magnetic field vector and consider the quantum-state

3Here we use lower case letters for parameters describing a single particle, i.e., an electron, while
the capital letters correspond to systems of many particles, such as a nucleus or an atom.
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Figure 2.3: The hyperfine structure of the D1 and D2 lines in87Rb . Arrows in-
dicate the energy splitting between levels in units of frequency and wavelength.
Electric-dipole and magnetic-dipole transitions are labeled as E1 and M1, respec-
tively. Adapted from [67].
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evolution in the basis of eigenstates of µ̂z. We are interested in the low-field limit,

where the interaction energy is much smaller than the hyperfine coupling, and we can

treat it as a perturbation. In this case, the magnetic dipole moment is coupled to the

atom’s total angular momentum, and the magnetic energy can be expressed in terms

of the good quantum numbers F and mF as

Ez = gFmFµBB, (2.4)

where µB is the Bohr’s magneton, and

gF =

[︃
1 +

j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)

]︃ [︃
F (F + 1) + j(j + 1)− I(I + 1)

2F (F + 1)

]︃
(2.5)

is the Landé g-factor.

As a result, a hyperfine level |F ⟩ splits into 2F + 1 sublevels |F,mF ⟩, with mF =

{−F,−F + 1, . . . , F}, and the energy difference between two neighboring sublevels

is given by gFµBB. This phenomenon is known as the linear Zeeman effect and we

refer to the new states as Zeeman sublevels. As the magnetic energy µBB becomes

comparable with the hyperfine coupling strength Ahfs, higher-order terms of B have

to be taken into account, and mF is no longer a good quantum number.

In the ground state of alkalis, Eq. 2.5 reduces to gF = ±1/(s + I), with the

negative value corresponding to the lower energy level. In 87Rb, the ground state

g-factors are ±1/2, leading to Zeeman splitting between two neighboring sublevels

by ∆EZ = ±2πℏB × (0.70 MHz/G) [67], where ℏ is the reduced Planck constant

measured in the SI units, and B is measured in Gauss. Despite its small value

compared to the linewidth of the optical transitions in Rb, the linear Zeeman splitting

can be resolved through the microwave-optical double-resonance spectroscopy and

plays an important role in our experiments, as will be discussed in Chapter 3.

2.3 Transitions due to oscillating fields

An electron within an atom can change its energy and quantum state due to inter-

actions with an oscillating electric or magnetic field. Most experiments in atomic
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optical physics employ transitions due to electric-dipole and magnetic-dipole interac-

tions with an external field. This chapter will focus on these transitions in the case

of a monochromatic field, which allows solving the quantum dynamics analytically.

2.3.1 Selection rules

An electromagnetic field can drive a transition between two atomic states only if the

following conditions are satisfied.

1. The driving frequency is sufficiently close to the energy difference (in frequency

units) between the two states. This condition is analogous to the resonance

condition in a driven classical harmonic oscillator.

2. The result of the action of the coupling operator V̂ on the initial state |i⟩ has

a nonzero projection on the final state |f⟩, i.e., ⟨f | V̂ |i⟩ ≠ 0. In atomic optical

physics, this condition is usually formulated as a set of the so-called “selection

rules”.

Below we present the selection rules for electric-dipole and magnetic-dipole transi-

tions.

Electric-dipole (E1) transitions

When the wavelength of the electromagnetic field is much larger than the atomic

dimensions, the leading term in the interaction between the atom and electromagnetic

field is the interaction between the electric component of the field, E(t), and the

induced electric dipole of the atom. Such transitions are known as electric-dipole or

E1 transitions.

For our purposes, it sufficient to consider the interaction in a semi-classical picture,

where we describe atomic parameters using quantum operators but treat the field as

a classical vector. In this picture the interaction term is given by

V̂ d = −er̂ · E(t), (2.6)
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Allowed Exceptions

∆l = ±1 ∆F = 0, ±1 ∆mF = 0, if F ′ = F and mF = 0

∆j = 0, ±1 ∆mF = 0, ±1

Table 2.1: Selection rules for E1 transitions in a hydrogen-like atom [70]. Only
transitions that satisfy all criteria in the left-hand table, except those indicated in
the right-hand table, are allowed. Transitions with ∆mF = 0 and ∆mF = ±1 are
allowed only in the case of π-polarized and σ±-polarized fields, respectively.

where e is the absolute value of the elementary charge, and r̂ is the position of the

interacting electron with respect to the nucleus.

The selection rules for E1 transitions are given in Table 2.14. Their unique feature

is that the electron orbital number must change by ±1, which a consequence of the

parity of the electric-dipole interaction. The rest of the rules can be understood as

conservation laws for a single-photon absorption or emission. Transitions that do not

satisfy the selection rules are usually referred to as “forbidden.”

Magnetic-dipole (M1) transitions

In a similar way, an oscillating magnetic field B(t) interacting with the atomic mag-

netic moment µ can lead to magnetic-dipole (M1) transitions. In this case, the

semi-classical interaction term is V̂ m = −µ̂ · B, with the selection rules provided in

Table 2.2. Unlike E1 transitions, M1 transitions require that neither the principle

Allowed Exceptions

∆n = 0, ∆l = 0 ∆F = 0, ±1 ∆mF = 0, if F ′ = F and mF = 0

∆j = 0, ±1 ∆mF = 0, ±1

Table 2.2: Selection rules for M1 transitions in hydrogen-like atoms [70]. Only tran-
sitions that satisfy all criteria in the left-hand table, except those indicated in the
right-hand table, are allowed. Transitions with ∆mF = 0 and ∆mF = ±1 are allowed
only in the case of π-polarized and σ±-polarized fields, respectively.

nor the orbital quantum numbers of the electronic wave function change. Classically,

4Polarization types are discussed in Appendix B
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it can be explained by the fact that the magnetic-dipole interaction cannot change

either the electron’s kinetic or Coulomb energies. Besides, the opposite parities of the

electric-dipole and the magnetic-dipole operators guarantee that the corresponding

transitions are mutually exclusive. As a result, only one or neither of them can be

allowed between two given states. In our experiments, E1 transitions correspond to

optical frequency range and connect states from different fine-structure levels. Mean-

while, M1 transitions due to microwave fields are used to couple the two hyperfine

levels of the ground state.

2.3.2 Quantum evolution

To show how the atomic state evolves during a transition, we will consider only two

atomic levels and assume that the frequency of the electromagnetic field driving this

transition is close to the transition frequency. This is known as the two-level system

approximation, and it is sufficient to understand most of the effects in atomic optical

physics.

Experimentally, it is impossible to have a fully isolated atomic system since there

will always be some interactions with the environment and the vacuum electromag-

netic field. These interactions lead to spontaneous transitions between quantum states

and quantum decoherence of the wavefunction. We will call these processes relaxation

and consider their effect on the two-level system evolution phenomenologically. Qual-

itatively, depending on how the coupling strength ΩR between the driving field and

the two-level system compares to the relaxation rate Γ, we can separate two limiting

cases:

1. ΩR ≫ Γ. In this case, the system undergoes coherent Rabi oscillations be-

tween the two states [71]. In our experimental setup, it can be observed in M1

transitions.

2. ΩR < Γ. In this case, after a couple of oscillations, the system reaches a steady-
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state, a statistical mixture of the two levels that provide a balance between

excitation and relaxation. Experimentally, this regime is observed in E1 tran-

sitions as resonance fluorescence [72].

We will treat these two cases separately, starting with the more straightforward case

of the Rabi oscillations, and then extending to the resonance fluorescence case.

Rabi oscillations

Here we consider a quantum system of two orthogonal non-degenerate levels |1⟩ and

|2⟩ separated by ℏω, that are coupled by the interaction term V̂ cos [(ω + δ)t], such

that the diagonal terms are zero, i.e., V11 = V22 = 0, and the off-diagonal terms are

equal, i.e., V12 = V21. For now, we assume that |1⟩ and |2⟩ form a complete basis,

and there is no relaxation between these levels. The Hamiltonian of this system in a

matrix form is given by

Ĥ =
ℏω
2

⎛⎝1 0

0 −1

⎞⎠+
ℏΩR

2

⎛⎝0 1

1 0

⎞⎠ cos [(ω + δ)t] =
ℏω
2
σ̂z + ℏΩRσ̂x cos [(ω + δ)t] ,

(2.7)

where σ̂x and σ̂z are the Pauli matrices in the basis of |1⟩ and |2⟩, and ΩR = V12/ℏ is

the coupling strength, also know as the Rabi frequency.

In general, the system’s quantum state is defined as a time-dependent vector |ψ(t)⟩

in the basis of |1⟩ and |2⟩. We will describe the two-level system in terms of the

pseudo-spin ν, also known as the Bloch vector, defined as

ν(t) = ⟨σ̂⟩(t) = ⟨ψ(t)| σ̂ |ψ(t)⟩ , (2.8)

where σ̂ is a three-dimensional vector whose components are the Pauli matrices.

In this definition, the x and y components of the pseudo-spin are proportional to

the real and imaginary parts of the coherence between the two levels, respectively.

The z component equals the population inversion |⟨2|ψ(t)⟩|2−|⟨1|ψ(t)⟩|2. Note that

the pseudo-spin coefficients are real numbers, and they uniquely define the quantum
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state |ψ(t)⟩. A set of all possible pseudo-spin vectors forms a sphere of unit radius,

known as the Bloch sphere.

Next, we will rewrite5 the two-level Hamiltonian as a linear combination of the

Pauli matrices and the unit-matrix 1̂ i.e,

Ĥ =
ℏ
2

(︁
Ω01̂ + Ωxσ̂x + Ωyσ̂y + Ωzσ̂z

)︁
=

ℏ
2

(︁
Ω01̂ +Ω · σ̂

)︁
, (2.9)

where Ω is a real vector that we will call the pseudo-field. It can be shown that the

evolution of a two-level system in terms of the pseudo-spin and pseudo-field satis-

fies [73]

ν̇(t) = Ω(t)× ν(t), (2.10)

which is analogous to the classical equation describing a gyromagnetic system in-

teracting with a time-dependent magnetic field. In the case of a time-independent

Hamiltonian, the pseudo-spin precesses around the axis of Ω [see Figure 2.4(a)] at a

frequency Ω = |Ω|.

Let us consider the Hamiltonian in Eq. 2.7 when ΩR = 0, so there are no time-

dependent terms. In this case ν precesses around the z-axis at a frequency ω. We can

simplify the problem by going to a frame of reference rotating around the z-axis at

frequency ω + δ in the direction of precession. Mathematically, such transformation

is given by a unitary operator

Û(t) = exp

[︃
−i(ω + δ)t

σ̂z

2

]︃
= 1̂ cos

ω + δ

2
t− iσ̂z sin

ω + δ

2
t. (2.11)

In the rotating frame, the original Hamiltonian from Eq. 2.7 is replaced with

Ĥ
′
= Û

−1
ĤÛ + iℏ

d

dt

(︂
Û

−1
)︂
Û =

ℏ
2

(︂
ΩRσ̂x − δσ̂z + Ŵ (t)

)︂
, (2.12)

where Ŵ (t) = σ̂x cos [2(ω + δ)t] + σ̂y sin [2(ω + δ)t] corresponds to a pseudo-field ro-

tating in the new frame around the z-axis at a frequency 2(ω + δ). Provided that

5This can be done for any Hermitian operator from the 2D matrix space.
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Figure 2.4: Evolution of a two-level system in the rotating frame due to the rotating-
wave Hamiltonian in Eq. 2.13 for two values of detuning δ = 0 (blue circles) and
δ = −1.2 × ΩR (red squares). The simulation is done in QuTiP [74, 75]. For the
simulation, the system is initially in state |1⟩, and we use units such that ℏΩR = 1.
(a) Pseudo-spin precession on the Bloch sphere around the pseudo-field vector. The
pseudo-field direction is indicated with an arrow. (b) Rabi oscillations of the excited
state population.

√︁
Ω2

R + δ2 ≪ ω, the effect of the counter-rotating term Ŵ can be neglected, resulting

in the Hamiltonian

Ĥ
′
=

ℏ
2
(ΩRσ̂x − δσ̂z) . (2.13)

In the laboratory frame, this is equivalent to replacing the linearly-polarized field with

a rotating field, so this approximation is known as the rotating-wave approximation.

In the rotating-wave approximation, the evolution of a two-level system in the

rotating frame is a precession of the pseudo-spin around the pseudo-field vector Ω′ =

(ΩR, 0,−δ). If at t = 0 the system is in state |1⟩, the probability of the system being

measured in state |2⟩ oscillates in time as

P2(t) = |⟨2|ψ(t)⟩|2 = νz(t) + 1

2
=

Ω2
R

Ω2
R + δ2

sin2

√︁
Ω2

R + δ2

2
t. (2.14)
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These oscillations are known as the Rabi oscillations and are depicted in Figure 2.4(b).

On resonance, the system’s population harmonically oscillates between the two states

at the Rabi frequency ΩR. Note that this probability does not depend on the reference

frame, and is the same if we measure the system in the laboratory frame.

Damped Rabi oscillations

Whenever there is relaxation or decoherence in a quantum system, we can no longer

use a single wavefunction to describe the system’s state. Instead, the system is

characterized by a statistical mixture of wavefunctions, known as a mixed state.

Mathematically, a mixed quantum state can be described in terms of the density

matrix ρ̂ =
∑︁

k pk |ψk⟩ ⟨ψk|, where pk is the probability of the system being in a state

|ψk⟩.

The density matrix evolution in an open system is given by the Lindblad master

equation [76]

d

dt
ρ̂ = − i

ℏ

[︂
Ĥ, ρ̂

]︂
+
∑︂
n

1

2

(︂
2L̂nρ̂L̂

†
n − ρ̂L̂

†
nL̂n − L̂

†
nL̂nρ̂

)︂
, (2.15)

where L̂n are referred to as collapse operators, and the summation goes over all re-

laxation processes. The decay of the population from state |2⟩ to state |1⟩ at rate γ1

is described by collapse operator L̂1 =
√
γ1 |1⟩ ⟨2|. In terms of the pseudo-spin vec-

tor, which is redefined below, this type of relaxation affects the z-component and is

therefore known as longitudinal relaxation. According to Eq. 2.15, longitudinal re-

laxation at rate γ1 is accompanied by the damping of the off-diagonal density matrix

elements, known as transverse relaxation, at rate γ1/2. In some situations, quantum

systems can have transverse relaxation between two levels that does not affect their

populations. In this case, the collapse operator is given by L̂2 =

√︃
γ2
2
σ̂z, where γ2 is

the transverse relaxation rate.

For a mixed state, the pseudo-spin definition from Eq. 2.8 should be generalised as

ν(t) = ⟨σ̂⟩(t) = Tr [ρ̂(t) · σ̂] , (2.16)
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where the pseudo-spin components have the same physical meaning as before. The

two-level system master equation in terms of the pseudo-spin has the following form:

ν̇(t) = Ω(t)× ν(t)−

⎛⎜⎜⎜⎝
Γ2νx

Γ2νy

Γ1νz

⎞⎟⎟⎟⎠−

⎛⎜⎜⎜⎝
0

0

Γ1

⎞⎟⎟⎟⎠ , (2.17)

where Γ1 and Γ2 are the total longitudinal and transverse relaxation rates, respec-

tively. If the pseudo-field Ω does not depend on time, Eq. 2.17 has the stationary

solution ν(t) = νs, such that νṡ (t) = 0, known as the steady-state. In the case of

Γ1 ̸= 0, the steady-state does not depend on the initial conditions and is uniquely

defined by the pseudo-field and the relaxation rates. For the Hamiltonian in Eq. 2.13,

the steady-state pseudo-spin is given by

νs =
−1

Γ2
2 + δ2 + Ω2

R
Γ2

Γ1

⎛⎜⎜⎜⎝
ΩRδ

ΩRΓ2

Γ2
2 + δ2

⎞⎟⎟⎟⎠ . (2.18)

The pseudo-spin evolution is a spiraling motion from the original state towards

νs, as is shown in Figure 2.5(a). The analytical solution for population inversion for

atoms starting in state |1⟩ is given by [77]

νz(t) = νs,z − (1 + νs,z)e
−Γ2t

(︃
cosΩ′t+

Γ2

Ω′ sinΩ
′t

)︃
, (2.19)

where Ω′ =
√︁

Ω2
R + δ2 [see Figure 2.5(b)]. The excited state population in this case

undergoes damped oscillations until it reaches its steady-state value

ρ22,s =
1

2

Ω2
R
Γ2

Γ1

Γ2
2 + δ2 + Ω2

R

(︂
Γ2

Γ1

)︂ . (2.20)

According to 2.19, cycles of the damped Rabi oscillations can be observed only when

Ω′ > Γ2. In our experiments, this condition is satisfied for microwave magnetic-

dipole transitions between the two hyperfine ground levels, which allows observing

the damped Rabi oscillations as a change in transmission for a resonant light, as will

be described in Chapter 3.
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Figure 2.5: Evolution of a two-level system with longitudinal relaxation in the rotating
frame due to the rotating-wave Hamiltonian in Eq. 2.13 for two values of the Rabi
frequency ΩR = 3×Γ1 (blue circles) and ΩR = 0.4×Γ1 (red squares). The simulation
is done in QuTiP [74, 75]. For the simulation, the system is initially in state |1⟩,
and we use units such that ℏΓ1 = 1 and Γ1 = 2Γ2 = δ. The pseudo-field direction
is along x-axis. (a) Damped pseudo-spin precession on the Bloch sphere around the
pseudo-field direction towards the steady-state vector (the steady states are indicated
with arrows) (b) Damped Rabi oscillations of the excited state population.

Resonance fluorescence

In the case of optical E1 transitions, there is always transverse and longitudinal relax-

ation due to spontaneous emission. For the D1 and D2 lines in Rb, the spontaneous

emission rate Γsp is on the order of 2π× MHz, which makes observing the Rabi oscil-

lations a non-trivial experimental task that requires relatively large optical intensities

and fast detection [78]. In our experiments, we work in a regime where the optical

Rabi frequency is much less than the spontaneous emission rate. In this case, the

quantum system reaches the steady state directly, as is shown in Figure 2.5. In this

state, the system continuously absorbs and emits light at a rate Γspρ22,s, which results

in a fluorescence signal that has a Lorentzian shape in terms of the detuning with a

peak at δ = 0. The same shape has the absorption coefficient, which is proportional
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to νy.

Usually, there is more than one level the excited state can decay to, in which case

the two-level approximation is no longer valid. Nevertheless, the results obtained

above can provide a good starting point for describing the three-level dynamics.

2.3.3 Optical pumping

Optical pumping is a multilevel effect that can act as a tool for creating a population

imbalance between quantum states of an atomic ensemble via interaction with a

“pump” light. Here we present the most common optical pumping schemes that rely

on transferring the population to states that do not interact with the pump light.

σ+

F = 1
m  = -1F m  = 0F m  = 1F

m  = -1F m  = 0F m  = 1F
F' = 1

(b)(a)

Pump
Spontaneous 
Decay

F' = 2

F = 1

F = 2

Dark State Dark State

Гb Гd

Figure 2.6: Optical pumping schematics. (a) Optical pumping in a Λ-type three-level
system. Light resonant with |F = 2⟩ → |F ′ = 2⟩ transition optically pumps atoms to
an off-resonant dark state |F = 1⟩. (b) Optical pumping in a system with degenerate
Zeeman sublevels. σ+-polarized pump transfers atoms to a Zeeman state with the
highest mF , which does not interact with the pump due to selection rules.

Figure 2.6(a) illustrates the optical pumping principle in the case of a Λ-type

three-level system excited by a monochromatic optical field. The key component for

creating the population imbalance is the existence of a “dark” state - a ground state

that does not interact with the driving field. The other ground state that is coupled

to the field, is known as the “bright” state. If there is a significant energy splitting

between the two ground states, the dark state occurs naturally, provided that the

pump field frequency is on resonance with a transition between one of the ground
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states and the excited state. According to Eq. 2.20, the large detuning between the

driving field and the second transition leads to negligible excitation of the second

ground state, making it dark. In the example depicted in Figure 2.6(a), the pump

light resonant with |F = 2⟩ → |F ′ = 2⟩ transfers atoms from |F = 2⟩ to the excited

state, where they can spontaneously decay to either ground state. Atoms that decay

into |F = 2⟩ state continue to absorb light until the whole population is accumulated

by the off-resonant dark state |F = 1⟩. The optical pumping rate can be estimated

as a product of the probability of being in the excited state and the decay rate to the

dark state. Provided that the Rabi frequency is much smaller than the spontaneous

emission rate in Eq. 2.20, the optical pumping rate for resonant excitation is given by

Γp =
Ω2

R

Γ2
b

Γd, (2.21)

where Γb and Γd and are the rates of emission to the bright and dark states, respec-

tively. Here we used the fact that for spontaneous emission Γ1 = 2Γ2.

The optical pumping can also be achieved in a degenerate ground-state level if

the pump light is polarized. In this case, one of the sublevels becomes dark if it

does not interact with the driving field due to the selection rules. For example, a

circularly polarized light optically pumps the atomic population to a single Zeeman

sublevel, as is shown in Figure 2.6(b). Here, the absorption of a photon changes

the atomic magnetic number mF by one. After several cycles of excitation followed

by spontaneous emission, the atomic population accumulates in the dark state that

corresponds to either the highest or the lowest mF depending on the circularity of

the pump field.

2.4 Ensemble effects

So far, we have considered a quantum system as if it was a single particle. This

approximation may be valid for an ensemble of identical particles, provided all par-

ticles interact with the driving field and the environment in the same way. In this
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case, these interactions have the same effect on the ensemble’s quantum state as on

the quantum state of each individual particle. One example of such effects is the

homogeneous broadening of the fluorescence and absorption resonances due to spon-

taneous emission. For E1-transitions, spontaneous emission leads to relaxation that

broadens the resonance line according to Eq. 2.20. For atoms of the same isotope,

this relaxation happens at the same rate. As a result, during the interaction with the

external field, all atoms are in a state with the same density matrix. The ensemble

resonance line, representing the steady-state fraction of atoms in the excited state, is

the same as ρ22,s of an individual atom.

If different parts of the ensemble interact with an external field differently, for

example, due to atomic motion or the field inhomogeneity, they will end up in different

states with different resonance lines. In terms of the ensemble, these effects can

be taken into account as an additional relaxation or a shift and broadening of the

resonance line. Below we will discuss some examples of these effects relevant to our

experiments.

2.4.1 Doppler broadening

Due to the Doppler effect, atoms that move relative to each other interact with a

traveling electromagnetic wave differently. In thermal atomic ensembles, it leads to

a significant inhomogeneous broadening of optical transitions, known as the Doppler

broadening.

To illustrate this effect, let us consider a single atom moving in the laboratory frame

with velocity v that interacts with a traveling wave with a wave-vector k, as is shown

in Figure 2.7(a). In a non-relativistic case, the frequency of the field in the atomic

rest frame is shifted by −k · v. As a result, the resonance line of a moving atom is

frequency-shifted with respect to the stationary atom’s line. The value and sign of the

this shift is proportional to the atom’s velocity component along the wave-vector [see

Figure 2.7(b)]. Atoms, whose velocities differ only by an infinitesimal value, have the

25



same resonance lines. We will call this group of atoms a velocity class. The fact that

different velocity classes have different resonance frequencies in the laboratory frame

leads to a broadening of the ensemble resonance, known as the Doppler broadening.
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Figure 2.7: (a) Illustration of three different atomic velocity classes defined with
respect to the wave-vector k of a driving optical field. The ensemble temperature
determines the fraction of atoms in a particular velocity class. (b) Resonance lines
for three different velocity classes (solid curves) weighted by the corresponding frac-
tions of atoms in those velocity classes, as is determined by the Maxwell-Boltzmann
distribution (black dashed curve). The central line corresponds to the zero-velocity
class.

In a thermal ensemble, atoms occupy velocity classes according to the Maxwell-

Boltzmann distribution

gMB(v) =

√︃
m

2πkBT
exp

(︃
− mv2

2kBT

)︃
, (2.22)

where gMB(v) is the fraction of atoms in a velocity class v, m is the atom’s mass,

T is the ensemble temperature, and kB is the Boltzmann constant. Assuming that

the only source of relaxation is the spontaneous decay, for each velocity class the

resonance line is a Lorentzian centered around δ0 = −kv:

L(δ, v) =
Ω2

RΓsp

Γ2
sp + 4(δ − kv)2 + 2Ω2

R

, (2.23)

where δ is the detuning from the resonance of the zero-velocity class. The ensemble

resonance line will be a sum of contributions from all velocity classes, weighted by the
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fraction of atoms occupying that velocity class. Mathematically, it can be expressed

as a convolution

gV(δ) =

∫︂ +∞

−∞
L(δ, v)gMB(v)dv, (2.24)

known as the Voight profile. Physically, gV(δ) corresponds to the steady-state fraction

of the excited atoms in the ensemble driven by a field detuned from the zero-velocity

class resonance by δ. In the case when kBT ≫ ℏΓsp, gV(δ) can be approximated by a

Gaussian with characteristic width proportional to
√
T .

In a room-temperature 87Rb vapor, the Doppler broadening, defined as the full

width at half maximum of the Voigt profile, for D1 and D2 lines is on the order of

2π× 100 MHz, which is much larger than the hyperfine splitting in the excited state.

As a result, a single laser field cannot resolve transitions to different hyperfine states

for states originating from the same ground level. On the other hand, the Doppler

shift for microwave fields is negligible because of a small k. Thus, combining optical

and microwave transitions in the double-resonance imaging, as will be discussed in

Chapter 3, allows us to resolve hyperfine transitions whose linewidth is of many orders

of magnitude smaller than the Doppler width of the optical line.

2.4.2 Transverse relaxation due to inhomogeneous static field

In this section, we want to describe how an external field’s inhomogeneity leads to

transverse relaxation in an ensemble. As an example, we will consider an ensemble

of two-level systems in an inhomogeneous magnetic field. We assume that at least

one of the levels is susceptible to the linear Zeeman effect, and there are no other

interactions or relaxations in the ensemble. According to Eq. 2.10, the two-level

system evolution is a precession of the pseudo-spin around the pseudo-field. In our

case, the pseudo-field vector is proportional to the magnetic field.

Next, we assume that the magnetic field vector points in one direction everywhere,

but its magnitude varies across the spatial extent of the ensemble. In this situation, all
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Figure 2.8: Illustration of a spatially-inhomogeneous magnetic field (a) Pseudo-spins
at different locations experience different magnetic field, which affects their precession
frequencies. (b) Misalignment of the individual pseudo-spins due to the difference in
angular frequencies leads to a decrease in the transverse component of the average
pseudo-spin ν̄.

pseudo-spins precess around the same axis, but their precession frequency varies across

the ensemble, as is shown in Figure 2.8(a). As a result, after some time, the transverse

pseudo-spin components of different parts in the ensemble diverge, causing a reduction

in the average transverse component, as is illustrated in Figure 2.8(b). Effectively,

this is equivalent to transverse relaxation of the ensemble pseudo-spin, even though

there is no relaxation for each individual two-level system. The same effect occurs for

any pseudo-field Ω, that is spatially inhomogeneous across an ensemble of two-level

systems.

2.4.3 Relaxation due to thermal motion

Another type of inhomogeneous relaxation occurs if the external field is spatially

limited and occupies a smaller volume, which we will call the interrogation region,

than the size of the ensemble. In this case, only a part of the ensemble interacts with

the field at a given time. When describing the quantum state of the ensemble, we can

focus our attention only on this interacting part and treat the rest of the ensemble as

the environment. In this case, in terms of the interrogated ensemble, the exchange of

particles between the interrogation region and the environment acts as a relaxation.
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Figure 2.9 illustrates this idea using a hypothetical pump and probe experiment

broken into stages. Here the interrogation region is defined as the space occupied by

the laser beam. Let us assume, that before the experiment all atoms in the cell are

in state |1⟩. During the first stage [see Figure 2.9(a)], a laser pulse optically pumps

all atoms within the interrogation region into state |2⟩, in which case the quantum

state of the ensemble within the interrogation region is ρ̂1 = |2⟩ ⟨2|.

(a) Optical pumping (b) Mixing (c) Probing

Figure 2.9: Illustration of the concept of relaxation due to thermal motion. (a) A
laser pulse pumps atoms into state |2⟩, represented by red circles. (b) Atoms in states
|1⟩ (blue circles) and |2⟩ mix via thermal motion. (c) When probed with the same
laser beam, the ensemble population of state |2⟩ after mixing is less than right after
the optical pumping, meaning that thermal motion act as a relaxation. In all figures
the interrogation region is enclosed by the dashed rectangle.

Next, we let atoms fully mix via to thermal motion [see Figure 2.9(b)] and probe

the ensemble with the same beam [see Figure 2.9(c)]. If we assume that atomic state is

preserved and that the atoms are uniformly distributed across the cell, the fraction of

atoms found in the state |2⟩ is given by the ratio of the interrogation region volume

to the total volume of the cell. In terms of the interrogation, the thermal motion

results in the relaxation of the ensemble to the state

ρ̂2 =

(︃
1− Vi

Vc

)︃
|1⟩ ⟨1|+ Vi

Vc
|2⟩ ⟨2| , (2.25)

where Vi and Vc are the volumes of the interrogation region and the cell, respectively.

If the atomic state is affected by the collisions with other atoms and with the cell

wall, the relaxation is directed toward the density matrix of thermal equilibrium, e.g.,

ρ̂ = |1⟩ ⟨1|.
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Chapter 3

Microwave-optical double
resonance

In this chapter we present the microwave-optical double resonance - a phenomenon at

the core of our transduction experiments. The double resonance method originates in

spectroscopy [39], where it allows detection of hard-to-observe microwave and radio-

frequency transitions via their effect on the absorption of light in the sample medium.

In the context of our experiment, double resonance manifests itself as a change in the

absorption of a resonant optical field in a rubidium vapor as a result of a non-linear

coupling to a magnetic component of a microwave field resonant with a hyperfine

transition. This effect is the strongest when both fields are on resonance with their

corresponding transitions, giving the technique its name.

We begin by introducing the physical principle and theoretical model of the double

resonance method. Next, we describe the apparatus and experimental procedures.

Finally, we present a set of measurements performed to characterize our experimental

system and develop a better understanding of the technique. These results provided

us with essential insights leading to the development of our method of microwave-

to-optical transduction, and they lay the foundation of the work presented in the

remaining chapters.

30



3.1 Principle

To illustrate the double resonance principle, let us consider a lambda-type three-level

system with two ground-state levels |1⟩ and |2⟩, and an excited state |e⟩. The ground

levels are connected by an M1 microwave transition, and each of them can couple

to the excited state via an E1 optical transition. As was discussed in Section 2.3.3,

an oscillating electric field resonant with the |2⟩ → |e⟩ transition will optically pump

the atomic population to the dark state |1⟩, and the medium becomes transparent

for this field [Figure 3.1(a)]. We will call this field the “probe”. If a microwave field

is simultaneously driving the |1⟩ → |2⟩ transition, then for the total field, |2⟩ is no

longer a dark state, and the atomic population is redistributed between |1⟩ and |2⟩ to

achieve a balance between the microwave drive and the optical pumping. As a result,

the medium is not fully transparent for the probe, with the transmission coefficient T

depending on the microwave parameters [Figure 3.1(b)].

(b)(a)

Probe

MW

|e

|1

|2

Spontaneous 
DecayProbe

Spontaneous 
Decay

|1

|2

|e  

Dark State

Probe Probe T < 1T ≈ 1

Probe only Double resonance

Figure 3.1: Schematics of the double resonance in a three-level Λ system. (a) The
probe field resonant with |2⟩ → |e⟩ transition optically pumps the atomic population
to the dark state |1⟩, which results in an increased steady-state transmission T . (b) A
microwave field driving |1⟩ → |2⟩ creates coherence and redistributes the atomic pop-
ulation between the ground-state levels. In this case the probe transmission depends
on the microwave parameters.
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In the case of a dilute vapor, the probe transmission linearly depends on the atomic

population in state |2⟩, corresponding to the density-matrix element ρ22. It can be

seen from the Beer-Lambert law, where the transmission is given by

T = e−nρ22lσ ≈ 1− nρ22lσ, (3.1)

where n is the vapor density, l is the optical path length, and σ is the absorption

cross-section.

If the optical pumping rate Γp (see Eq. 2.21) is much larger than the microwave

Rabi frequency, we can exclude the excited state |e⟩ from the description of the sys-

tem’s dynamics by treating the optical pumping as a longitudinal relaxation from |2⟩

to |1⟩ at the rate Γp. In this two-level approximation, the steady-state population

in level |2⟩ is described by Eq. 2.20, which is a Lorentzian centered at the resonance

frequency of the |1⟩ → |2⟩ transition. By combining Eq. 2.20 and Eq. 3.1, we can

see that the steady-state probe transmission depends on the microwave detuning as

a negative Lorentzian, with a dip when the microwave field is on resonance with the

corresponding transition. This allows detection of microwave transitions with an op-

tical signal, which can be used to measure a static magnetic field (see Section 3.6.2)

or to provide a microwave frequency standard [35–38]. The fact that the probe trans-

mission is linear in ρ22 provides the basis for the microwave-to-optical transduction.

3.2 Experimental setup

Figure 3.2 illustrates the experimental setup for the double-resonance imaging and

microwave-to-optical transduction in warm atomic vapors in our experiments (the

setup for the cold-atom experiment will be described in Chapter 5). Below I describe

the key components of the setup.
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Figure 3.2: Schematics of the experimental setup for microwave to optical trans-
duction experiments in warm rubidium vapor. Helmoltz coils for bias fields are not
shown. Relative dimensions of the components are not preserved. The signal from
radio-frequency (RF) source provides modulation input for the microwave source and
triggers the oscilloscope. Points A and B indicate holes drilled for optical access. The
inset shows the cavity cross-section in the yz plane.

3.2.1 Vacuum system

The rubidium vapor is prepared in a stainless-steel vacuum system connected to a

vapor cell located inside a microwave cavity The system was initially assembled by

Clinton Potts and Timothy Lee and later modified by Timothy and myself. ConFlat

technology provides the sealing for the connections between components. The system

is evacuated with a turbopump connected via an angle- or a gate-valve.

3.2.2 Vapor cell

The transduction is realized in a quartz cell, centered inside a high-Q copper mi-

crowave cavity. The cell’s location and dimensions are chosen to enclose the region
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where the microwave field is most strongly localized. The cell’s dimension along x, y,

and z axes are 30, 12.5, and 12.5 mm, respectively. A hollow “stem” is attached to

one end of the cell and connected to the rest of the vacuum system via a bellows,

with the connections sealed with Viton o-rings. The cavity has a pair of holes drilled

across its body (at points A and B in Figure 3.2) to provide optical access to the cell.

3.2.3 Microwave cavity

We use the cavity, designed and manufactured by Clinton Potts, to amplify the

magnetic-field component of the microwave field. The cavity has a cylindrical shape

and supports the TE011 mode [79] at around 6.8 GHz, with the magnetic field oscil-

lating along the x-axis. The cavity length with both caps is around 57 mm, and we

can tune the exact resonance frequency by adjusting the position of one of the caps.

The inner and outer diameters are 58 and 68 mm, respectively. The copper’s high

quality and surface treatment provide the cavity with a quality factor of Q ≈ 27000

at room temperature. As a result, the microwave field can be transmitted to the

cavity via SMA cable or over free space via antennas directly from the microwave

source without an intermediate amplification. A pair of holes were drilled across the

cavity body to provide optical access to the cell.

3.2.4 Rubidium source

We introduce the atoms to the system by running an electric current through a

dispenser: a metallic strip containing the rubidium salt of chromic acid (Rb2CrO4).

The heat produced by the electric current breaks down the salt, and the released Rb

vapor fills the whole system. By changing the electric current, we can control Rb’s

steady-state concentration in the system.
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3.2.5 Optical probe

For the optical probe, we use light from an external-cavity diode laser at around

780.24 nm derived from the optical system used in ultracold atom experiments carried

out in our lab [80–83]. In Section 3.5 we discuss the particular optical transitions used

for the probe. The laser operates in a continuous-wave regime at constant frequency

and power, with the setup for optical frequency and power control described in [81].

We used optical power in range from 10 to 300 µW, with a typical beam waist around

2 mm. A fast amplified photodetector (PD1 in Figure 3.2) converts the probe power

transmitted through the cell to a voltage signal, which is then displayed and recorded

on a digital oscillograph. For a typical probe power of 10−20 µWwe set the detector’s

amplification to 60 dB.

3.2.6 Electronics

Depending on the availability, we borrowed from the Davis lab the following mi-

crowave sources from Berkeley Nucleonics’: either model 845 or model 865. For

microwave modulation we used an external signal from radio-frequency source Agi-

lent 33220A. We use the same signal also as the oscilloscope trigger for the optical

signal detection and averaging.

To control the static magnetic field in the vapor cell, we use a solenoid wrapped

around the cavity and two pairs of Helmholtz coils whose axes are orthogonal to

each other and the cavity axis. The typical currents are on the order of 10 mA, and

are adjusted by observing the double-resonance signal of Zeeman level described in

Section 3.6.2. The typical magnetic field magnitude is on the order of 0.1 G.

3.2.7 Buffer gas compatibility

Vapor-cell atomic microwave frequency standards are usually filled with a buffer

gas [84], consisting of atomic or molecular species or a mixture of species weakly

interacting with the atoms of interest. A buffer gas effectively “freezes” the thermal
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motion of the atoms, increasing the microwave interrogation time, reducing Doppler

broadening, and suppressing the relaxation due to spin-flipping collision with the cell

walls. On the other hand, collisions with the buffer gas lead to a pressure-dependent

shift of the transition frequency and broadening of the resonance.

Our warm-atoms system supports a buffer gas injection, but several trials with

dry nitrogen as a buffer gas did not show any benefits for our experimental pur-

poses. While it needs additional investigation, we were satisfied with our system’s

performance and did not use any buffer gas in our experiments.

3.3 System preparation

Before assembling the vacuum system, the inner walls of its stainless steel components

need to be properly cleaned and dried. The cleaning procedure that we follow in our

lab is described in [80]. We evacuate the air from the system with a turbopump. To

desorb water residues and other contaminants from the inner walls, we “bake” the

system by wrapping metallic parts with heater tape and aluminum foil and gradually

raising the temperature to 1000C. During the bake, we also run about 3 A of current

through the dispenser to desorb contaminants. Typically, we bake the system for a

day or over the weekend after each time the dispenser is replaced. Before we stop

baking, we activate the dispenser by gradually increasing the current to 5 A. At this

point, laser absorption and fluorescence can be observed in the test chamber. We

finish baking by gradually lowering the temperature, closing the pump valve, and

switching off the pump.

During the first experimental trial, we could not detect any absorption of the

light coming through the cavity and vapor cell, which was an indicator of low Rb

concentration there. We speculated that the most probable causes of this problem

could be the absorption of atoms by the cell walls or a high differential pressure

due to a narrow connection between the vapor cell and the system. Since the latter

problem would require a redesign of the system, we decided to focus on the other issue.
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Fortunately for us, a similar problem was encountered in the experimental set up for

Rb-based atomic clock described in [85], where the proposed solution was curing the

cell with rubidium. We decided to give it a try and performed curing by running

the dispenser at 6.4 A overnight while keeping the system at 50 0C. After that, we

were able to observe the absorption in the vapor cell. Since then, the dispenser had

performed as intended producing rubidium as the current is applied.

3.4 System troubleshooting

In this section, we discuss some issues we encountered in the experimental setup

described above and the actions we took to analyze and resolve those issues.

3.4.1 Test chamber

During our first experimental trials, we had issues with detecting any absorption signal

in the vapor cell, so we introduced a small test chamber connected via a Tee to the

dispenser and the bellows. Because of good optical access and a higher optical density

compared to the cell, the chamber gives a better absorption signal to characterize the

dispenser performance. To produce this signal, we divide the probe into two beams

with a beamsplitter [“BS” in Figure 3.2] before the cavity and send one of the beams

through the test chamber towards photodetector PD2. In addition, the test chamber’s

top window allows observing resonance fluorescence with a near-infrared viewer [see

Figure 3.3(a)], which gives a quick check of the laser frequency stability or suggests

that there is no rubidium in the system.

3.4.2 Rb dispenser issues

We noticed that in our system, the dispenser performance degrades over time, as we

needed to increase the electric current to maintain the absorption signal. Additionally,

the time interval between applying the current and observing an increase in the

probe absorption increased. At some point, the dispenser stopped releasing rubidium
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(a) (b)

Figure 3.3: (a)Fluorescence from a laser beam in the characterization chamber ob-
served with a near-infrared viewer. The beam is highlighted with a red dashed curve.
The picture is taken on a smartphone camera. (b) A white residue can be seen at the
end of the bellows connecting the vapor cell to the vacuum system. The red arrow
indicates a large residue conglomerate.

and had to be replaced. We were able to prolong the dispenser’s lifetime to one

month by pumping out the system overnight with the dispenser current set to 3 A.

Yet, this lifespan is inferior compared to the ultrahigh-vacuum systems for cold-atom

experiments [80] where a single dispenser can operate for years.

The most probable potential reason for the dispenser degradation is the high pres-

ence of reactive gaseous contaminants, such as oxygen, that would chemically interact

with an activated dispenser. To test for the leaks in the system, we ran a couple of

helium leak-checks. In this procedure, we connected our system to a pump with a

built-in helium detector and sprayed helium gas around the connections between the

system’s parts. Because the helium has the smallest atomic size among the elements,

it would infiltrate the system through the location of the leak and reach the detector.

In our case, no leak was detected, and we were not able to identify the exact cause

of the problem. Another possible explanation is that our system did not operate

under ultra-high vacuum conditions, which would require more advanced pumping

and sealing technology. Practically, it means that even though there is no apparent

leak in the system, smaller atoms or molecules can penetrate one by one, causing

38



degradation in the long term.

While we continued with our measurements replacing the dispensers as needed, we

decided to replace our cell with a custom-made sealed cell filled with enriched 87Rb

for the next generation of experiments. As we installed the new cell in December

2020, we discovered a white residue at the ends of the bellows [see Figure 3.3(b)].

The residue is likely to be rubidium hydroxide that forms when rubidium interacts

with water, and whose description matches the observed appearance of the residue.

3.5 Atomic transitions for the double resonance

measurements

In our experiments, we use a double-resonance configuration with the microwave field

coupling the two hyperfine levels |F = 1⟩ and |F = 2⟩ of the 87Rb ground state, and

an optical probe that couples the |F = 2⟩ state with one of the hyperfine states of

5P3/2 level. Because our probe was provided by the laser used in the cold-atom quan-

tum memory experiment, in order to run both experiments simultaneously, we used

a frequency in between the |F = 2⟩ → |F ′ = 2⟩ and |F = 2⟩ → |F ′ = 3⟩ transitions.

Even though this frequency does not seem to be a perfect choice for optical pumping

necessary to observe the double resonance, to our surprise and our labmates’ envy, it

produced more than a satisfactory double-resonance feature.

To explain why the seemingly off-resonant probe works, we need to consider Doppler

broadening. As was discussed in Section 2.4.1, atoms are distributed over many veloc-

ity classes in thermal vapor. The Doppler shift compensates for the optical detuning

from a particular transition for several velocity classes. In our case, there are three

velocity classes for which the probe is on resonance with the corresponding transi-

tion, as is shown in Figure 3.4(a). Here, the probe optically pumps velocity classes v1

and v2 into |F = 1⟩ state [see Figure 3.4(b)] in a process known as “velocity-selective

optical pumping” [86–88], and atoms from these velocity classes contribute to the

double-resonance signal. Because of the selection rules that forbid spontaneous emis-
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Figure 3.4: Illustration of velocity-selective optical pumping and velocity classes con-
tributing to the double-resonance signal. (a) Schematics of the relevant levels. Dotted
arrow indicates the probe frequency in the laboratory frame. Solid arrows show tran-
sitions resonant with the probe in three velocity classes. (b) Black solid curves show
atomic population in states |F = 2⟩ (top) and |F = 1⟩ (bottom) as a function of the
atomic velocity along the probe’s wavevector (the horizontal axis is not to scale). The
probe is on resonance with transitions |F = 2⟩ → |F ′ = 1⟩, |F = 2⟩ → |F ′ = 2⟩, and
|F = 2⟩ → |F ′ = 3⟩ in velocity classes v1, v2, and v3, respectively. Due to selection
rules, only velocity classes v1 and v2 are optically pumped to |F = 1⟩. Velocity class
v3 contributes to the absorption, but not to the double-resonance signal.

sion from |F ′ = 3⟩ to |F = 1⟩ (see Section 2.3.1), atoms in velocity class v3 do not

undergo optical pumping and continuously scatter the probe.

Because the Doppler shift at microwave frequencies is negligible, the microwave

field interacts with all velocity-classes simultaneously. Combined with the velocity-

selective optical pumping, this effectively makes the double-resonance imaging a

Doppler-free technique.
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3.6 Experimental characterization

This section presents our experimental investigation of various aspects of the microwave-

optical double resonance that we carried out to learn more about this phenomenon

and characterize the atom-cavity coupling. In all of these experiments, the probe

laser operates in the continuous-wave regime. The transmission signal is obtained by

digitally averaging several samples triggered by the signal that was used to modulate

the microwave field.

3.6.1 Optical pumping and Rabi oscillations

As was discussed in Section 3.1, double-resonance imaging can be considered as a

combination of optical pumping and coherent dynamics due to magnetic-dipole cou-

pling by the microwave field. We can observe both effects by continuously monitoring

the probe transmission as we switch the microwave interaction on and off. The latter

is achieved by modulating the microwave frequency with a square-wave voltage signal.

We set the modulation parameters so that the field is on resonance with the clock

transition when the voltage is high and is far off-resonance when the voltage is low.

In the second case, we effectively switch the interaction off.
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Figure 3.5: (a) Probe transmission (red solid) due to periodic square modulation (blue
dashed) of the microwave field in the continuous-wave regime. (b) The Rabi frequency
as a function of the microwave power. Red dashed line shows the linear fit. The Rabi
frequency was determined via the fast Fourier transform.
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The resulting optical signal is shown in Figure 3.5(a). When the microwave field is

on resonance, a series of oscillations in the probe transmission are observed. Fig-

ure 3.5(b) shows a linear relationship between the oscillation frequency and the

square-root value of the input microwave power, and thus the magnitude of the oscil-

lating magnetic field, suggesting these are the Rabi oscillations. Due to relaxation in

the vapor, the oscillations damp out to a steady-state level, where the optical pump-

ing is balanced by the microwave driving. As the microwave interaction is switched

off, the optical pumping transfers the atomic population to the dark state, increasing

the probe transmission.

3.6.2 Double-resonance imaging for Zeeman spectroscopy and
scalar magnetometry

The double resonance enables the detection of the microwave transitions between

Zeeman sublevels of the hyperfine ground levels, and estimation of their transition

frequencies. Below we demonstrate how the structure of the observed signal allows

us to estimate the magnitude of the external static magnetic field. We use this

information to adjust the microwave parameters and bias magnetic fields for optimal

signal transduction.

Zeeman levels

Figure 3.6(a) shows the Zeeman structure of the 87Rb ground state with all possible

microwave M1 transitions. Each F -level has 2F + 1 Zeeman sublevels, resulting

in nine transitions that satisfy the M1 selection rules [see Section 2.3.1]. We detect

these transitions with a conventional double-resonance technique [89] by performing a

symmetrical linear sweep of the microwave frequency through the hyperfine splitting

value of 6.834 682 612 910 GHz. The linear sweep is achieved with a saw-tooth

modulation. Figure 3.6(b) shows the results for two cases: a typical ambient magnetic

field and a bias-canceled field. We assume that for a sufficiently slow frequency

sweep, the atomic population quasi-statically follows the frequency-dependent steady
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state. Each microwave transition results in a Lorentzian-shaped dip in the probe

transmission centered at the transition frequency. The validity of this assumption

will be discussed in Section 3.6.4.
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Figure 3.6: (a) Zeeman level structure of 87Rb hyperfine ground state (see Figure 2.3).
Purple lines indicate possible microwave M1 transitions. Transitions indicated by
crossing lines have the same frequency and contribute to the same double-resonance
dip. Numerical value next to a line shows the transition strength relative to the clock
transition |F = 1,mF = 0⟩ → |F ′ = 2,m′

F = 0⟩. (b) Contentious-wave optical trans-
mission during a linear microwave frequency sweep. The x-axis shows the detuning
from the frequency of 6.834 682 610 904 GHz. When the ambient magnetic field is
canceled, all transitions are degenerate and contribute to a single peak.

A constant magnetic field splits Zeeman sublevels [see Section 2.2], introduc-

ing a difference in the transitions’ frequencies, which results in several observed

transmission resonances, seen as “dips”. The central resonance corresponds to the

|F = 1,mF = 0⟩ → |F ′ = 2,m′
F = 0⟩ transition. This transition is insensitive to the

linear Zeeman shift and has the largest matrix element [see Section 3.6.3], making it

the transition of choice for the microwave atomic clocks, and it is therefore referred to

as the “clock transition.” Each pair of crossing lines from Figure 3.6(a) corresponds

to transitions experiencing the same frequency shifts with respect to the clock transi-

tion, which contribute to the same resonances. This reduces the number of observed

resonances from nine to seven.
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Scalar magnetometry

The distance between double-resonance dips during the microwave frequency scan

depends on the magnitude of the applied static magnetic field, making this technique

suitable for scalar magnetometry - a procedure for finding the magnitude of the

magnetic field. In a weak static magnetic field B, the double-resonance dips are

separated by the Larmor frequency

ωL =
µBB

2ℏ
, (3.2)

which allows us to find the magnetic field magnitude B from the frequency separa-

tion and fundamental constants. If there is no external magnetic field, both hyperfine

ground states are degenerate, and a single transmission resonance dip is observed.

This technique can be employed to assist in canceling out stray magnetic fields or sin-

gling out a particular microwave transition in magnetic-field sensitive experiments [90]

where, due to physical constraints, the magnetic field can not be measured directly

with a magnetometer.

3.6.3 Relative depth of double-resonance dips

As can be seen in Figure 3.6(b), the depth of the double-resonance transmission signal

varies from transition to transition. This implies that different transitions couple to

the microwave field with different strengths. Below we discuss the three main factors

contributing to these differences: the transition matrix element, cavity resonance and

bandwidth, and the orientation of the external field with respect to the cavity axis.

Matrix element

As was discussed in Section 2.3.2, the coupling between two atomic levels due to

the interaction with an external electromagnetic field is proportional to the matrix

element of the quantum operator describing this interaction, calculated between the

two coupled quantum states. The magnetic-dipole interaction term for a microwave
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field with vector b is characterized by the operator

V̂ m = −µ̂ · b =

(︄
|gs|

ŝ

ℏ
+ |gl|

l̂

ℏ
− gI

me

mp

Î

ℏ

)︄
µBb, (3.3)

where mp is mass of a proton, gs ≈ −2 and gl ≈ −1 are electron’s spin and orbital g-

factors respectively, gI is the nuclear g-factor, and the angular momentum operators

are given in units of ℏ. We use absolute values of the electron’s g-factor to avoid

confusion between different conventions, keeping in mind that the electron’s magnetic

moments are always antiparallel to the corresponding angular momenta. Because

me/mp ≪ 1, we ignore the last term in (3.3).

If we consider the case of ground states of alkali metals only, in which case l = 0,

the coupling operator becomes

V̂ m =
2µB

ℏ
ŝ · b =

2µB

ℏ
(bτ ŝz + b⊥ŝx) , (3.4)

where bτ is the vector component tangential to the quantization axis (usually set

by a static magnetic field causing splitting of Zeeman levels), and b⊥ is the com-

ponent perpendicular to the quantization axis. The tangential component bτ drives

π-transitions, contributing to three of the seven resonance dips in Figure 3.6(b), while

the transverse component b⊥ drives σ±-transitions contributing to the remaining four

resonance dips.

The matrix element for the π-transitions between the two alkali ground-state levels

is given by [91]

Mπ =

⃓⃓⃓⃓⟨︃
F + 1,mF

⃓⃓⃓⃓
ŝz
ℏ

⃓⃓⃓⃓
F,mF

⟩︃⃓⃓⃓⃓
= (I + 1/2)

√︂
(I + 1/2)2 −m2

F =
√︂

1− g2Fm
2
F,

(3.5)

where gF is the Landé g-factor defined in Eq. 2.5. For the clock transition mF = 0,

and the matrix element does not depend on the nuclear spin I, and is the same for

all alkali atoms.

For the σ±-transitions between the two alkali ground states, the matrix element is
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given by [91]

Mσ =

⃓⃓⃓⃓⟨︃
F + 1,mF

⃓⃓⃓⃓
ŝx
ℏ

⃓⃓⃓⃓
F,mF ± 1

⟩︃⃓⃓⃓⃓
=

1

2I + 1

√︃
(I ∓mF)2 −

1

4
. (3.6)

The matrix elements for each microwave transition in our case are indicated in Fig-

ure 3.6(a). From equations 3.5 and 3.6 it can be shown that the clock transition

has the largest matrix element. Thus, all other parameters being equal, it gives the

largest double-resonance absorption.

Magnetic field orientation

As was discussed above, we have three types of transitions driven by different mi-

crowave field polarization components, defined with respect to the quantization axis

[see Appendix B for more details on polarization]. In the lab frame, the microwave

field is linearly polarized along the cavity axis, so its polarization with respect to the

static magnetic field B depends on the angle θ between B and the cavity axis [See

Figure 3.7(a)]. As a result, the Rabi frequency for the π transitions is given by

Ωπ =
1

2
Mπ(mF)µBbτ =

1

2
Mπ(mF)µBb| cos θ|, (3.7)

while for the σ±-transitions, the Rabi frequency is

Ωσ =
1

2
Mσ(mF,mF′)µBb⊥ =

1

2
Mσ(mF,mF′)µBb| sin θ|, (3.8)

where Mπ and Mσ are the matrix elements from Eq. 3.5 and Eq.3.6, respectively, and

the prefactors come from the rotating-wave approximation.

Figure 3.7(b) shows the double-resonance scan in two limiting cases of the magnetic

field orientation. Here, we first tune the bias magnetic field to cancel out the ambient

field and then apply excessive field in a direction either parallel or perpendicular to

the cavity axis. In the parallel case, θ = 0, the microwave field has only a tangential

component: b = bτ . In this case, we observe only three peaks corresponding to

the π-transitions and separated by 2ωL. In the perpendicular case, the microwave

field has only a transverse component: b = b⊥. In this case, we expect to observe
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Figure 3.7: (a) Orientation of the microwave field vector b and a static magnetic field
B. The microwave field oscillates along the cavity axis indicated by the dashed line.
With respect to the quantization axis, vector b can be decomposed into tangential
bτ = b cos θ and transverse b⊥ = b sin θ components driving the π- and σ±-transitions,
respectively. (b) Double-resonance spectrum for two orientations of the bias magnetic
field, plotted as a function of the microwave detuning from the clock transition. Blue
solid curve corresponds to the case when the bias field is perpendicular to the cavity
axis. Red dashed represents parallel orientation.

only four peaks corresponding to σ±-transitions, while in fact, we can see the central

peak corresponding to the clock transition. A possible explanation is the bias field’s

inhomogeneity that does not completely cancel the ambient magnetic field along the

cavity axis. Because the clock transition has the largest matrix element, and its

frequency is the closest to the cavity resonance, it results in a signal that is sufficiently

strong to be noticeable.

Cavity resonance and linewidth

We use a high-Q cavity to amplify the microwave field and increase the coupling

strength. A downside of this approach is the small cavity linewidth, which is an

inevitable consequence of the high Q-factor. As a result, only microwave fields at

frequencies close to the cavity resonance are enhanced, while the fields at other fre-

quencies are suppressed. In terms of the double-resonance spectrum, it means that

the depth of a transmission dip depends on how close the corresponding transition is
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Figure 3.8: Double-resonance spectrum as a function of the microwave detuning from
the clock transition for two values of the cavity resonance frequency. When the cavity
resonance frequency matches the frequency of the clock transition (blue solid curve),
the observed spectrum is symmetric. In the case when the cavity resonance frequency
is higher than the clock transition frequency (red dashed curve), the spectrum is tilted
towards higher-frequency transitions.

to the cavity resonance.

In our cavity, we can mechanically adjust the resonance frequency by moving one

of the endcaps. This might be useful if we want to selectively enhance a particular

transition, which is usually the clock transition. Figure 3.8 shows that the mismatch

between the cavity resonance and the clock transition frequency results in an asym-

metric shape of the double-resonance scan (red). This measurement provides a quick

way to detect a shift of the cavity resonance from the clock transition.

3.6.4 Signal shape and frequency-sweeping rate

When we were discussing the shape of the double-resonance signal above, we as-

sumed the atomic population stays in the steady-state as the microwave frequency

is varied. In this case, each microwave transition provides a Lorentzian dip in trans-

mission, which is symmetric with respect to the transition frequency. When we first

obtained the double-resonance spectrum, the observed dips did not have the expected

symmetry, which was a puzzle at that time. A closer investigation showed that the
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asymmetry does not depend on the actual microwave frequency or the direction of the

frequency sweep [see Figure 3.9(a)], which was a hint that the issue was an artifact

of our measuring approach.
Tr

an
sm

is
si

on
 (

a.
u
.)

Microwave detuning (MHz)
-0.8 0 0.8 0

sweepsweep

-0.8

= 0.5 MHz/ms
Rs= 0.1 MHz/ms
Rs
RsR = 1 MHz/ms

Tr
an

sm
is

si
on

 (
a.

u
.)

Microwave detuning (MHz)
−1.5 −1 −0.5 0 0.5 1 1.5

Constant sweep duration

Tr
an

sm
is

si
on

Time

(a) (b)

(d) (c)

Tr
an

sm
is

si
on

 (
a.

u
.)

Microwave detuning (MHz)
−1.5 −1 −0.5 0 0.5 1 1.5

Constant sweep span

= 0.5 MHz/ms
Rs= 0.1 MHz/ms
Rs
RsR = 1 MHz/ms

Figure 3.9: (a) Double-resonance signal during the back-and-forth frequency sweep.
The dashed blue line indicates the triangular modulating signal. The modulation
repetition rate is 120 Hz. (b) Double-resonance signal for a constant frequency sweep
duration of 20 ms for three different values of the frequency sweep rate Rs. The rate
is varied by adjusting the frequency span. (c) Double-resonance signal for a constant
frequency span of 2 MHz for three different values of the frequency sweep rate Rs.
The rate is varied by adjusting the sweep duration. (d) Hypothetical correspondence
between the signals shown in (a) and Figure 3.5(a).

Below we demonstrate that the asymmetry arises at a higher microwave frequency

sweeping rate, which suggests that in this case, the atomic population does not have

sufficient time to keep up with the changing steady-state. In our setup, we control
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the microwave frequency with an external sawtooth voltage with a constant repetition

rate. This gives us two different ways to control the sweeping rate. For the measure-

ments shown in Figure 3.9(b), we change the sweep duration by varying the control

signal repetition rate, while keeping the frequency span constant. For the results

shown in Figure 3.9(c), we vary the frequency span at a constant sweep duration. In

both cases, a symmetric signal is observed at a lower sweeping rate.

In order to explain the asymmetric shape, we would like to highlight the resem-

blance between the two parts of the double-resonance dip in the high-rate case with

the double-resonance signal at the falling and rising edges in the case of square-pulse

modulation shown in Figure 3.9(d). This suggests that as the frequency is swept

towards the resonance of the corresponding transition, the dynamics are dominated

by the microwave drive, while after the frequency crossed the resonance, the main

contribution is from the optical pumping. A slow sweeping rate allows the atomic

population to quasi-statically follow the steady-state where these two processes are

balanced.

To see how close the double-resonance signal is to an actual steady-state transmis-

sion during a linear sweep, we measure the latter directly. As it turns out, measuring

the actual steady-state transmission in our setup is complicated. All our double-

resonance measurements are done in AC coupling regime of the oscilloscope, where

any constant offset of the voltage signal is filtered out. This is necessary because

the double-resonance signal is only a very small correction to a constant transmission

level (see Eq. 3.1), and our oscilloscope can not resolve the signal in DC coupling

regime.

To overcome this issue and estimate the shape of the steady-state transmission in

the AC regime, we use square-pulse frequency modulation [see Figure 3.10(a)]. As the

reference point, we use the transmission signal on resonance. For the case of a positive

microwave detuning, we set up the modulation parameters so that the low signal of

the square-pulse train corresponds to the resonance frequency, while the high signal
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Figure 3.10: (a) Example measurement for the data-point corresponding to transmis-
sion (red solid) at the frequency detuning ∆fµ = 100 kHz. The blue dashed curve
shows the frequency-modulation signal with the low level corresponding to the reso-
nance frequency. The modulation rate is chosen to allow the transmission to reach
the steady state. The blue and black arrows correspond to data point coordinate in
(b). (b) Comparison between the double-resonance transmission during a linear sweep
(green solid) and the steady-state transmission measured “by hand” (red dots). Red
dashed curve corresponds to Lorentzian fit through the steady-state values. Both
signals are normalized so that zero and one correspond to the lowest and highest
transmission values, respectively. The star and horizontal dotted line correspond to
the reference transmission for the steady-state measurements.

shifts the frequency proportionally to its value. We adjust the pulse duration to allow

the transmission signal to level off. We use the difference between the maximal and

minimal values of the transmission signal as an estimate for the steady-state value at

the corresponding microwave detuning with respect to the resonance value. We do the

same procedure for the case of negative detuning by reversing the sign of the square

pulses. Figure 3.11(b) shows the normalized steady-state transmission estimated in

this way, which is in a good agreement with the corresponding continuous-wave signal.

The square indicates the data point corresponding to the signal from (a).

3.6.5 AC magnetometry with a phase-modulated field

Even though we can directly estimate the strength of the microwave coupling by mea-

suring the frequency of the Rabi oscillations, this method’s precision depends on the
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number of the observed Rabi cycles, which is limited by relaxation processes. Because

of the straightforward relationship between the Rabi frequency and the magnitude

of the oscillating magnetic field, the process of finding the Rabi frequency is com-

monly referred to as the AC magnetometry. Below we discuss how we can extend the

precision of AC magnetometry by using a phase-modulated microwave field.

First, let us consider a phase-modulated magnetic field

b(t) = b cos[ωt+ θ(t)] = b cos(ωt+m sinωmt) (3.9)

where ω is the carrier frequency, ωm is the modulation frequency, and m is the mod-

ulation depth. Here, the quadrature phase θ(t), is what we refer to as “the phase”.

The time-independent rotating-wave Hamiltonian Ĥ
′
in Eq. 2.13, now needs to be

replaced with a time-dependent periodic Hamiltonian

˜︁Hˆ (t) = ℏ
2

(︂
ΩRσ̂x − [δ + θ̇(t)]σ̂z

)︂
= Ĥ

′
− ℏ

2
σ̂zmωm cosωmt. (3.10)

It was mathematically proved [92] that an open quantum system driven by a periodic

Hamiltonian with period T has a dynamic steady-state solution ρs(t), such that ρs(t+

T ) = ρs(t), where the “dynamic steady state” refers to the time-dependent quantum

state at times much larger than the relaxation time. Practically, for us it means that

applying a phase-modulated microwave would result in a periodic steady state with

an arbitrary large number of cycles instead of a few Rabi oscillations decaying to a

constant level.

Figures 3.11(a) and 3.11(b) show the double-resonance optical transmission for

the case of a phase-modulated microwave field. As is expected, it is periodic, and

its spectrum consists of spectral components at multiples of ωm [see Figure 3.11(c)].

The spectrum has two curious features. First, the relationship between the ampli-

tudes of the odd and even harmonics depends on the carrier detuning δ. Surprisingly,

when δ = 0, the spectrum contains only even harmonics [see Figure 3.11(d)]. Sec-

ond, the amplitudes of the spectral components show a resonant behavior when their
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Figure 3.11: (a) Double-resonance signal (red solid curve) of the dynamic steady
state for microwave phase modulation θ(t) = m sinωmt (blue dashed curve), with
m = 2π and ωm/2π = 15 kHz, and the carrier detuning δ = 10 kHz. (b) Same as in
(a), except δ = 0. (c-d) Fast Fourier transform of the signal in (a-b). The integer
numbers next to the peaks indicate harmonics of ωm the peaks correspond to. Plots
are on a semi-logarithmic scale. For δ = 0, the odd harmonics are suppressed.

frequencies are close to the Rabi frequency [93, 94]. For a two-level system, the

analytical form of the Rabi resonance lines can be obtained in the small-signal ap-

proximation [41], where m <
√︁

2Γ1/ωm and ωm ≫ Γ2. Under these conditions, the

dynamic steady-state population contains only two harmonics, with the excited state

population given by [41]

ρ22,s(t) = P1 cos(ωmt+ ϕ1) + P2 sin(2ωmt+ ϕ2), (3.11)
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with amplitudes

P1 =
m
2
ωmΩ

2
Rδ[︂

Γ2
2 + δ2 + Γ2

Γ1
Ω2

R

]︂√︂
(ω2

m − Ω2
R)

2
+ Γ2

1ω
2
m

, (3.12)

P2 =

(︁
m
2

)︁2
ωmΩ

2
RΓ2[︂

Γ2
2 + δ2 + Γ2

Γ1
Ω2

R

]︂√︂
(ω2

m − 4Ω2
R)

2
+ 4Γ2

1ω
2
m

, (3.13)

and quadrature phases

ϕ1 = − tan−1

[︃
Ω2

R − ω2
m

Γ1ωm

]︃
, ϕ2 = tan−1

[︃
Ω2

R − 4ω2
m

2Γ1ωm

]︃
. (3.14)

In agreement with Figure 3.11(d), Eq. 3.12 predicts the disappearance of the first

harmonics when δ = 0. In addition, according to Eq 3.12 and Eq 3.13, amplitudes P1

and P2 experience enhancement, known as the “Rabi resonances,” when the frequency

of the corresponding harmonic is resonant with the Rabi frequency, ωm = ΩR and

2ωm = ΩR, respectively. The Rabi resonances allow finding the Rabi frequency by

scanning ωm, which is widely used for microwave AC magnetometry inside cavities [46,

95], waveguides [42, 43, 96], and in free space [45, 46, 48, 49, 97].
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Figure 3.12: (a) Amplitude of the second harmonics as a function of the modulation
frequency of phase modulation for three values of the microwave power. Measured
on the clock transition with m = π. (b) Extracted Rabi frequency as a function of
the square-root value of the microwave power. Linear fit (red dashed) gives a slope
of 58.6 kHz/mW1/2.

Figure 3.12(a) shows the second-harmonics Rabi resonance in our system obtained

with a lock-in amplifier for several microwave power values. Here, the lock-in amplifier
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serves as a source of the control signal for the phase modulation at ωm and as a

spectral analyzer of the double-resonance transmission. For the latter, the lock-in

amplifier integrates the photodetector voltage with an internal sinusoidal reference at

twice the modulation frequency and applies a DC filter to the result. The outcome is a

DC voltage proportional to the amplitude of the analyzed signal’s spectral component

at the reference frequency 2ωm. In our case, the lock-in amplifier automatically adjusts

the integration time during the analysis as it scans ωm. Figure 3.12(b) shows the

expected linear dependence between the square-root value of the microwave power

and ΩR extracted from the location of the Rabi resonance peak.

Meditations on the nature of the spectrum

For a long time, we could not find a comprehensive theory that would explain the

spectra observed in Figure 3.11(a-b) neither in literature nor in discussions with our

colleagues working on similar experiments. Especially curious is the fact that the

dynamic steady-state contains only even harmonics when the carrier is on resonance.

Even though Eq. 3.12 describes this behavior for the first harmonics, it is a rather

mathematical result that does not provide an understanding of the essence of this

phenomenon. Here we propose a qualitative explanation of the observed spectra,

which is based on the insights we gained from the experiments on microwave-to-

optical transduction.

We begin by noticing that according to Eq. 5.1, the phase modulation θ(t) effec-

tively acts as a perturbation to the carrier detuning, which we take into account by

introducing the effective detuning δ̃(t) = δ+ θ̇(t). Next, we assume that the modula-

tion period is much larger than the response time of the two-level system, which allows

the system’s quantum state to quasistatically follows the instantaneous steady state,

which we define as a stationary solution of Eq. 2.17 with the pseudo-field Ω(t) treated

as a time-varying parameter. The instantaneous steady-state population P (δ, t) of
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the excited level is obtained by substituting δ with δ̃(t) in Eq. 2.20, yielding

P (δ, t) = ρ22,s[δ + θ̇(t)] =
1

2

Ω2
R
Γ2

Γ1

Γ2
2 + [δ + θ̇(t)]2 + Ω2

R
Γ2

Γ1

. (3.15)

Expanding Eq. 3.15 in a series of θ̇(t) = mωm cosωmt results in

P (δ, t) = P (δ) +
+∞∑︂
n=1

P (n)(δ)

n!
(mωm cosωmt)

n, (3.16)

whose spectrum consists of integer harmonics of ωm, explaining the experimental

spectrum in Figure 3.11(c). For example, the component corresponding to n = 4 is

given by

P4(δ, t) =
P (4)(δ)

4!
m4ω4

m cos4(ωmt) =
P (4)(δ)

4!
m4ω4

m

(︃
3

8
+

1

2
cos 2ωmt+

1

8
cos 4ωmt

)︃
,

whose spectrum consists of the second and fourth harmonics. Since P (δ) is an even

function, its odd-order derivatives P (2k+1)(δ) are odd functions, and thus

P (2k+1)(0) = 0. (3.17)

As a result, when δ = 0, the right-hand side of Eq. 3.16 has only even powers of

cosωmt, whose spectra include even harmonics only, explaining the absence of the

odd harmonics in Figure 3.11(d).

We would like to stress out that our results obtained in the quasi-static approx-

imation qualitatively agree with the experimental spectra but do not capture the

resonance behavior of the spectral components, which can be considered as a result

of the interplay between the dynamics of the instantaneous steady state and the

two-level system response [94].
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Chapter 4

Microwave-to-optical transduction
of an audio signal

This chapter presents our results on the transduction of an audio signal from a mi-

crowave to an optical carrier, which was published in Ref. [62]. For the transduction,

we developed a novel method based on the microwave-to-optical double resonance,

with the audio signal encoded as either frequency or amplitude modulation. This

approach makes the technique readily available for radio-over-fiber communications

with a simpler and more robust experimental setup compared to previous atom-based

audio transduction techniques.

This chapter’s content follows that of the publication rather closely, with more

details and discussions provided here. We begin by briefly introducing the field of

radio-over-fiber communications in Section 4.1. Next, we describe the principle of our

transduction technique in Section 4.2 and the experimental setup in Section 4.3. After

that, we present the measurements used to characterize our method in Section 4.4 and

the final results of the audio signal transduction in Section 4.5. Finally, we discuss

our method’s practical advantage and feasibility compared to other techniques in

Section 4.6, and provide a brief overview and possible future directions in Section 4.7.
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4.1 Introduction and motivation

This experiment was motivated by the field of radio-over-fiber (RoF) communica-

tions [98], and atomic radio [51] in particular. The primary motivation for the radio-

over-fiber communication technologies is a growing demand in wireless communication

operating in GHz frequency range with a trend toward microwaves (in some literature

referred to as radio waves) with frequencies of 20− 30 GHz and higher [99, 100]. The

challenge encountered by this trend is that electromagnetic waves at these frequen-

cies do not penetrate efficiently through walls and experience significant attenuation

when propagating in cables, which limits their suitability in home-area networks and

urban areas. The RoF approach addresses this problem by mapping the radio signal

to an optical carrier, which can access hard-to-reach areas via optical fiber. A device

performing the conversion is known as a transducer or an optical antenna.

Room-temperature alkali vapors are promising candidates for microwave-to-optical

transducers in RoF applications. In these systems, there have been recently demon-

strated successful transduction of amplitude (AM) and frequency (FM) modulated

analog signals [51, 53, 57], AM and FM digitized signals [54, 56, 58, 101, 102], and even

music recording [61, 103]. All these experiments use microwave electric-dipole tran-

sitions between highly excited atomic states, known as the Rydberg states. Atoms

in Rydberg states have large AC electric polarizability and couple strongly to the

electric-field component of the microwave field. This coupling results in the Autler-

Townes splitting of the coupled levels, which depends on the magnitude and frequency

detuning of the microwave field. Modulating these microwave parameters leads to

modulation of the splitting, which is mapped onto the intensity of a probe laser beam

via electromagnetically-induced transparency created by a second higher-frequency

laser addressing one of the involved Rydberg states. Below we propose an alternative

signal transduction method based on magnetic-dipole coupling, which increases the

repertoire of atom-based transducers for RoF applications.
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4.2 Principle

In our approach, microwave-to-optical transduction is based on the double-resonance

scheme discussed in Chapter 3, where a room-temperature rubidium vapor simultane-

ously interacts with resonant or near-resonant optical electric and microwave magnetic

fields E(t) and b(t), respectively. To explain the transduction principle, we will use

the same three-level model, as in Figure 3.1 . The microwave field couples |g1⟩ and

|g2⟩ states from the hyperfine ground state of 87Rb, which can be either the degen-

erate levels |F = 1⟩ and |F = 2⟩ or isolated Zeeman sublevels, e.g, |F = 1,mF = 0⟩

and |F = 2,mF = 0⟩. Qualitatively, the transduction performs equally well in both

cases, but the degenerate case gives a better signal-to-noise ratio since all transitions

contribute to a single double-resonance dip. The optical field couples |g2⟩ to an ex-

cited state |e⟩ and serves both as the optical pump and the probe. The experimental

details and parameters used in this chapter will be given in the following section.

As was discussed in Section 3.1, if the optical and microwave parameters are kept

constant, the atomic population reaches a steady state that determines how much

light is transmitted. In a dilute vapor, the transmitted optical intensity is propor-

tional to the steady-state population and depends on the microwave parameters. As

we have also seen in Chapter 3, time variation in the microwave parameters leads

to dynamic change in the transmitted optical signal. Provided that the variation is

sufficiently slow, the signal follows the analytical shape of the steady-state popula-

tion. In addition, in the case of the variation δX(t) of a microwave parameter X is

sufficiently small, the optical transmission linearly follows the variation:

T [X + δX(t)] ≈ T (X) +
∂T

∂X
δX(t). (4.1)

This linear relationship allows us to transduce a baseband signal by encoding it in the

microwave modulation δX(t). The idea here is similar to the principle of frequency-

modulation spectroscopy [104], except in our case, the derivative is obtained through

an auxiliary field, rather than modulating the probe itself.
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The double-resonance scheme allows signal encoding as either a frequency or an

amplitude modulation. This fact is evident from the Hamiltonian

Ĥ = H0
ˆ − d̂ · E(t)− µ̂ · b(t), (4.2)

where H0
ˆ is the atomic Hamiltonian, and d̂ and µ̂ are the electric and magnetic

dipole operators, respectively. For the harmonic fields E(t) = E0 cos(ωoptt+ϕopt) and

b(t) = b0 cos(ωµt+ϕµ), the three-level rotating-wave Hamiltonian takes the following

form:

Ĥ =
ℏ
2

⎛⎜⎜⎜⎝
2∆opt Ωopte

−iϕopt 0

Ωopte
iϕopt 0 ΩRe

−iϕµ

0 ΩRe
iϕµ 2∆µ

⎞⎟⎟⎟⎠ , (4.3)

where ∆opt and ∆µ are the optical and microwave detunings respectively, and Ωopt and

ΩR are the optical and microwave Rabi frequencies, respectively. The Hamiltonian

is given in a rotating basis obtained from {|e⟩ , |g2⟩ , |g1⟩}T by applying the following

transform:

Û(t) =

⎛⎜⎜⎜⎝
eiωoptt 0 0

0 1 0

0 0 eiωµt

⎞⎟⎟⎟⎠ . (4.4)

In the above Hamiltonian, modulation of the microwave amplitude and frequency

affects ΩR and ∆µ, respectively. As was discussed in Section 3.6.5, the phase-

modulation’s effect on the optical transmission is proportional to the modulation

signal’s derivative, which makes this type of modulation too complicated for signal

transduction.

Figure 4.1 illustrates the principle of the AM and FM transduction in terms of the

double-resonance profile. In the AM case, the modulating signal V (t) changes the

microwave magnetic field amplitude, such that

bAM(t) = b0[1 +mAMV (t)] cos(ωµt+ ϕµ), (4.5)
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Figure 4.1: Illustration of the AM and FM transduction principles in terms of the
double-resonance profile. (a) In the AM case, the modulating signal V (t) modulates
the depth of the resonance profile. Effectively, the transmission level (indicated by
the dot) travels between profiles of different depths. (b) In the FM case, V (t) mod-
ulates the microwave carrier detuning ∆µ, so the transmission level glides along the
resonance profile.

where mAM is the relative amplitude-modulation sensitivity [see Appendix C for more

details on modulation]. This results in the following modulation of the Rabi frequency:

ΩR(t) = ΩR,0 [1 +mAM · V (t)] , (4.6)

where ΩR,0 is the value of unmodulated Rabi frequency. In terms of the resonance

profile, the amplitude modulation at a constant carrier frequency is equivalent to

modulating the resonance depth [see Figure 4.1(a)]. The resulting modulation of

optical transmission is given by

TAM(t) ≈ T0 +mAMV (t)ΩR,0

(︃
∂T

∂ΩR

)︃
, (4.7)

which is linearly proportional to the modulating signal V (t).

In the FM case, the affected parameter is the microwave carrier frequency, so that

bFM(t) = b0 cos[ωµt+mFMV (t) · t+ ϕµ], (4.8)

where mFM is the frequency-modulation sensitivity. As a result, the microwave de-
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tuning in the Hamiltonian is modulated as

∆µ(t) → ∆µ,0 +mFMV (t), (4.9)

The resulting transmission is given by

TFM(t) ≈ T0 +mFMV (t)

(︃
∂T

∂∆µ

)︃
. (4.10)

The frequency modulation at constant microwave amplitude is equivalent to gliding

back-and-forth along the resonance line [see Figure 4.1(b)]. As a result, for efficient

transduction the microwave carrier frequency must be off-resonance, where the deriva-

tive ∂T/∂∆µ is non-zero. The characterization of the optical response to microwave

modulation, including the dependence of the transduction coefficients kAM = ∂T/∂ΩR

and kFM = ∂T/∂∆µ on the microwave parameters, will be discussed in Section 4.4.

4.3 Setup

b{V(t)}

Rb Cell

Signal Source

Microwave
Source Photodiode

Cavity

Optical 
Probe

Microphone
Input

Recorded Signal

Figure 4.2: Experimental setup. An audio signal V (t) is applied to the external
modulation input of a microwave frequency source. The modulated microwave field
is transmitted via cable (solid) or antenna (dashed) to a microwave cavity with a
vapor cell inside. The atomic vapor transduces the modulation from the microwave
carrier to the optical probe intensity, which is converted to voltage via a photodiode
(Thorlabs PDA36A) and recorded via a microphone input of a laptop. Figure adapted
from [62].

Figure 4.2 shows a schematic of the experimental setup. The main part of the

setup is the same as in Chapter 3 with the audio transduction implemented in a room-

temperature 87Rb vapor cell inside a microwave cavity. The optical probe addresses
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a transition within the D2-line at around 780 nm [see Section 3.5 for more details].

The microwave power and carrier frequency vary depending on the measurement with

the exact values indicated in the caption of the corresponding figure. In all cases, the

detuning ∆µ is given with respect to f0 = 6.834 682 610 GHz.

The microwave field is modulated by the microwave source itself in the “external

modulation” regime, where the modulating signal V (t) is applied to the corresponding

modulation input of the microwave source. The way the modulation is applied is

slightly different in the FM and AM cases. In the FM case, we set the microwave

power and the carrier frequency directly, and by adjusting the frequency-modulation

sensitivity mFM, we set the deviation of the output microwave frequency from the

carrier frequency, with typical values used ranging 10− 200 kHz/V. In the AM case,

we still set the microwave power and the carrier frequency directly, but this time the

amplitude-modulation sensitivity mAM sets the relative deviation, as was shown in

Eq. 4.5. Neither of our microwave sources provided sensible results as we varied mAM,

so we chose to work with Berkeley Nucleonics 845, which we calibrated by looking at

the relative amplitude of the sideband frequency components on a spectral analyzer.

From this calibration we extracted a value of mAM = 15%/V.

Depending on the measurement, we used different sources for the modulating signal

V (t). For the single-frequency response measurements in Section 4.4.1, the signal was

derived from an RF source Agilent 33220A. For the measurements of transduction

coefficients presented in Section 4.4.2 and signal bandwidth presented in Section 4.4.3,

we used the Zurich Instruments HF2LI lock-in amplifier. For the audio transduction,

we originally obtained the audio signal in the form of electric voltage from a laptop’s

headphone output. In order to apply the audio signal to the modulation input of

the microwave source, we cut off one speaker from a headphones pair and soldered

the corresponding contacts to a BNC jack. To record the transduced signal from

the optical field, we applied the photodetector voltage to the microphone input of a

laptop. To do that, we cut off the wire from another pair of headphones and soldered
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its microphone contacts to another BNC jack. For the signal recording and editing

we used the free software Audacity.

In the spirit of radio-over-fiber applications, we demonstrated successful transduc-

tion with the microwave field transmitted to the cavity via air. For this purpose,

we used FXUWB10.01 3-10GHz Ultra Wideband Flex Antennas from Taoglas con-

nected to the microwave source and the cavity, as the transmitter and the receiver,

respectively.

4.4 Transduction characterization

4.4.1 Single-frequency response
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Figure 4.3: Single-frequency responses of optical transmission (grey) in the presence
of microwave fields modulated at ωm/2π = 500 Hz (red dashed) with input microwave
power P = 2 dBm corresponding to ΩR/2π = 74 kHz. (a) Sinusoidal and (b) square-
wave amplitude modulation with modulation sensitivity mAM = 15%/V measured at
∆µ/2π = −5 kHz. (c) Sinusoidal and (d) square-wave frequency modulation with
modulation sensitivity of mFM = 40 kHz/V, measured at ∆µ/2π = 95 kHz. AM and
FM depictions are not to scale. Figure reprinted from [62].

To analyze the performance potential and limitations of our method, we carried

out a range of measurements, starting with the optical response to a periodic mod-
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ulation, which is shown in Figure 4.3. All measurements here are done using the

clock transition, which is separated from adjacent transition via the Zeeman effect

from an applied static magnetic field. The microwave power was set to P = 2 dBm,

corresponding to ΩR/2π = 74 kHz. Here and below, we calculate the Rabi frequency

from corresponding to the microwave power value using

ΩR = 2π × 10P [dBm]/20 × 58.6 kHz, (4.11)

obtained from the calibration Section 3.6.5.

As is expected from Eq. 4.1, in the case of a harmonic modulating signal V (t) =

V0 sinωmt, both AM and FM responses [Figure 4.3(a, c)] are harmonic oscillations at

ωm and slightly out of phase with respect to V (t). A response due to a square-pulse

modulation V (t) = V0sgn[sin(ωmt)] [Figure 4.3(b, d)] shows that in both cases there

is a finite response time for the optical signal. As a result, the amplitudes and relative

phases of the optical signal in both AM and FM cases depend on ωm, which limits

the transduction bandwidth, as will be discussed in Section 4.4.3.

4.4.2 Double-resonance profile and transduction coefficients

To provide some context for the bandwidth characterization, we begin with measuring

the profile of the microwave-optical double-resonance line, shown in Figure 4.4(a). We

performed these measurements on the clock transition isolated with a bias magnetic

field. The measurements are done for three values of the microwave power: −10, 0,

and +10 dBm, corresponding to ΩR/2π of 18, 60, and 180 kHz, respectively. The

optical signal is obtained in a continuous-wave regime while the microwave frequency

is swept by an external saw-tooth signal at a 50 Hz repetition rate. In all cases, the

FM-modulation sensitivity is set to mFM = 1.33 501 MHz/V. For a better resolution

for each power value, we adjust the span of the frequency sweep by adjusting the peak-

to-peak value of the saw-tooth voltage, which in turn affects the sweeping rate. These

peak-to-peak values are ±2, ±1, and ±0.5 V, with the larger values corresponding to

65



a higher microwave power. In each case, we make sure that the sweeping rate is low

enough to provide a symmetric resonance profile [see Section 3.6.4 for the discussion

of the relationship between the observed resonance profile and the frequency-sweep

rate].

Next, we analyze the transduction coefficients kFM = ∂T/∂∆µ and kAM = ∂T/∂ΩR

obtained via lock-in detection. In both cases, the corresponding microwave parameter

is modulated by a sinusoidal voltage

V (t) = Voff + V0 sinωmt (4.12)

provided by the lock-in amplifier. We keep the amplitude V0 constant, and vary either

the voltage offset Voff or the modulation frequency ωm as a parameter. The modulation

results in an oscillating optical signal, similar to the one shown in Figure 4.3(a,c).

On the lock-in amplifier, this optical signal is mixed with V (t), which allows us to

extract the amplitude and phase of the signal’s spectral component at ωm. According

to Eq. 4.7 and Eq. 4.10, the amplitude is proportional to the transduction coefficient,

provided that V0 is sufficiently small. For the kFM and kAM measurements discussed

below, we program the lock-in amplifier to scan either parameter of V (t), performing

lock-in detection for each parameter value. The duration of V (t) is automatically set

by the amplifier, depending on the value of ωm.

Figure 4.4(b) shows kFM as a function of the microwave carrier detuning for the

same three values of microwave power as in Figure 4.4(a). For each set of measure-

ments, we vary the detuning by varying Voff from −0.5 V to 0.5 V, while keeping

mFM = 1.33 501 MHz/V, V0 = 0.1 V and ωm/2π = 1 kHz constant. The microwave

source is operating in the DC-coupling regime of FM modulation, sensitive to the

DC offset of the modulating voltage. According to Eq. 4.9, the resulting microwave

detuning is given by

∆µ(t) = ∆µ,0 +mFM [Voff + V0 sinωmt] = ∆̃µ,0 +mFMV0 sinωmt, (4.13)
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Figure 4.4: Microwave-to-optical transduction calibrations, varying microwave power
[Rabi frequencies ΩR/2π = 18 kHz (green), 60 kHz (blue), and 180 kHz (purple)] and
modulation frequency for FM (b-c) and AM (e-f) signals. Symbols indicate identical
conditions across subfigures within FM, AM categories. (a) Optical probe transmis-
sion vs. microwave detuning; (b) lock-in detection signal amplitude for 1-kHz-FM
modulated signals, including absolute-value amplitude response (filled) and single-
quadrature response (open); (c) lock-in detection amplitude for ΩR/2π = 180 kHz
at FM modulation frequencies ωm/2π = 0.1 kHz (pink), 1 kHz (purple), and 10 kHz
(navy). (d) Amplitude response during AM at 1 kHz vs change ∆(ΩR) from the nom-
inal Rabi frequency, ΩR,0, where the value of ∆µ for each ΩR,0 is chosen to maximize
the AM response measured in (e); (e) absolute-value lock-in detection amplitude for
1-kHz-AM modulated signals; (f) amplitude response, as in (c), for AM modulation
when ΩR/2π = 180 kHz. Figure adapted from [62].
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where ∆̃µ,0 = ∆µ,0 +mFMVoff is the new value of the carrier detuning shifted by Voff .

Physically, ∆̃µ,0 in Eq. 4.13 represents the same entity as ∆µ in Figure 4.4(a), which

is a location on the resonance profile. For this reason, we label it simply as ∆µ in

Figure 4.4(b,c,e,f).

Figure 4.4(c) shows the same measurements for P = −10 dBm and three values

of the modulation frequency. The fact that the higher modulation frequencies do

not affect the peak’s position indicates that at these modulation frequencies, the

transduction is still in the linear regime where the higher-order harmonics of ωm are

negligible. As is expected, the shape of the curves in Figure 4.4(b-c) corresponds to

that of the first-order derivatives of the curves in Figure 4.4(a).

To obtain kAM as a function of the microwave detuning shown in Figure 4.4(e,f),

we operate the microwave source in both FM and AM regimes simultaneously. Each

modulation type uses its own modulating input: the AM input receives a sinusoidal

signal with no offset, and the FM input receives a constant voltage. These two signals

are provided by two separate channels of the lock-in amplifier. As before, the lock-in

amplifier scans the constant voltage, and for each value, it mixes the photodetector

signal with the sinusoidal modulating signal to retrieve the parameters of the spectral

component at ωm. The resulting graphs show nontrivial dependence on the microwave

detuning with prominent peaks that can be used to optimize the signal.

These results suggest that to optimize the transduction efficiency, we need to choose

microwave parameters corresponding to peak values of kFM(∆µ) and kAM(∆µ). Not

only does it give a stronger signal, but it also guarantees that the next-order correc-

tions to the signal are suppressed because the second-order derivative is zero. These

peak values on the graphs are indicated with special markers.

Figure 4.4(d) shows how kAM depends on the Rabi frequency ΩR. For these mea-

surements, the microwave source operates only in the AM regime with the modulation

input as in Eq. 4.12. Unlike the FM case, the modulating signal in the AM regime does

not allow us to control the amplitude directly but only relative to the unmodulated
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value. According to Eq. 4.6, the modulated Rabi frequency is given by

ΩR(t) = ΩR,0 [1 +mAM · Voff +mAMV0 sinωmt] . (4.14)

To see what effect the voltage offset has on the Rabi frequency, we set V0 = 0 in

Eq. 4.14 yielding

mAMVoff =
ΩR(Voff)− ΩR,0

ΩR,0

=
∆ΩR

ΩR,0

, (4.15)

which is what we plot on the x-axis in Figure 4.4(d). For each power level, we choose

∆µ that corresponds to a peak in Figure 4.4(e). The graphs show broad plateaus,

suggesting that kAM is insensitive to small power fluctuations.

4.4.3 Bandwidth measurements
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Figure 4.5: Modulation-frequency bandwidth measurements for three values of mi-
crowave power corresponding to the following Rabi frequencies: ΩR/2π = 18 kHz
(green), 60 kHz (blue), and 180 kHz (purple). (a) FM transduction coefficient vs. the
modulation frequency, measured at the detuning with largest amplitude response. (b)
AM-transduction coefficient vs. the modulation frequency, measured at the detuning
with largest amplitude response. For each type of modulation, markers corresponds
to data points from Figure 4.4 measured at the same microwave parameters. Figure
adapted from [62].

Next, we estimate the signal bandwidth of the transduction for the optimal pa-

rameters obtained above. Figure 4.5 shows the transduction coefficients as a function
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of ωm for three values of the microwave power. These measurements are performed

via lock-in detection in the same fashion as in the previous section. For each value of

microwave power, we use the value of ∆µ that maximizes the corresponding transduc-

tion coefficient in Figure 4.4(b,e). We use the same markers as in Figure 4.4 for the

data points corresponding to the same microwave parameters as the marked points

in Figure 4.4. From Figure 4.5, we estimate the modulation frequency bandwidth to

be on the order of 1 kHz, which is consistent with the square-wave modulation re-

sponse measurements in Section 4.4.1 that give a typical response time of about 1 ms.

The shape of the observed curve resembles the frequency-response curve of a driven

damped harmonic oscillator. It is also similar to the shape of the Rabi resonance

discussed in Section 3.6.5, which is probably a manifestation of similar origin of these

phenomena.

Before moving on to the main results, we would like to highlight the difference be-

tween the modulation-frequency bandwidth discussed above and the carrier-frequency

bandwidth. The modulation-frequency bandwidth determines what frequency com-

ponents of the transduced audio signal can be efficiently converted. This is different

from the carrier frequency bandwidth, which determines what microwave frequencies

can be used for efficient signal transmission. In our setup, the carrier-frequency band-

width is ultimately limited by the cavity linewidth. Within this limit, this bandwidth

can be extended by operating on magneto-sensitive hyperfine transitions whose fre-

quencies can be adjusted with external static magnetic fields. If the carrier-frequency

bandwidth is an issue, it might be advantageous to increase the cavity linewidth while

sacrificing the Q-factor and coupling strength.

4.5 Transduction results

Figure 4.6 shows our proof-of-concept results on the microwave-to-optical transduc-

tion of an audio signal in both AM and FM regimes. The baseband signal corre-

sponds to a license-free song and is shown in Figure 4.6(a), where the voltage from
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the headphone output was applied directly to the microphone input. We demonstrate

successful transduction not only when the microwave is transmitted to the cavity via

cable [Figure 4.6(b,d)] but also when it is transmitted via air between two antennas

separated by 30 cm.
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Figure 4.6: Audio signal transduction. (a) Original audio signal V (t) used to mod-
ulate the microwave carrier ωµ. (b, c) Optical transmission of amplitude modu-
lated signal at ωµ/2π = 6.834 682 610-GHz [transmitted via cable (b) and 30-cm-
separated antennas (c)] for microwave input power P = −5 dBm and mAM = 15%/V .
(d, e) Optical transmission of frequency modulated signal at mFM = 150 kHz/V.
(d) Signal transmitted over cable for microwave input power P = −10 dBm and
ωµ/2π = 6.834 874 610-GHz. (e) Signal transmitted over 30-cm-separated antennas
for MW input power P = +8 dBm and ωµ/2π = 6.834 877 610-GHz. In all cases, a
static bias magnetic field is applied to cancel stray magnetic fields. Figure adapted
from [62].

For the recordings shown in Figure 4.6(b-e), we pass the photodetector voltage

through two AC filters that cut off DC voltage offset and AC frequency components

above 20 MHz. For the sake of experimental integrity, we made sure that the recording

software did not perform any signal editing, such as digital filtering or noise reduction.

However, we note that using these techniques greatly improves the signal quality.

To monitor the transduction quality in real time, we applied the photovoltage to a

speaker and an oscilloscope, which allowed us to listen to the resulting signal and see
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its shape. In each scenario, we choose the microwave parameters that provide the best

audio signal clarity and most symmetric waveform. We note the optimal parameters

obtained in this case are different from those maximizing the transduction coefficients

in the previous section, which requires additional investigation.

4.6 Practicality and feasibility of our method

In this section, we would like to discuss how our transduction method compares

to atomic transducers based on the electric-dipole interaction coupling to Rydberg

states. First, our method requires only a single 780 nm laser, while the Rydberg-based

approach in the case of 87Rb additionally uses a 480 nm laser, which makes the setup

significantly more expensive and complicates optical alignment and stabilization. Sec-

ond, at the time of writing this manuscript, other Rydberg-based methods have only

demonstrated transduction in vapor cells that are directly exposed to the traveling

microwave field. Practically, it means that the location and orientation of the vapor

cell with respect to the microwave field is critical for good reception, while the precise

alignment of the probe and coupling beams required for the electromagnetically-

induced transparency significantly limits the portability of the setup. In our case,

the microwaves are picked up by an antenna non-rigidly attached to the cavity. This

allows optimizing the reception by adjusting the antenna while keeping the vapor cell

stationary. Finally, the Rydberg states are highly susceptible to stray electric fields,

which is not the case in our approach.

The main drawback of our method is the limited option concerning the choice of

the carrier frequency. In our case, it is tied to the ground-state hyperfine splitting

of our atom of choice, while the electric-dipole approach allows switching between a

broad range of carrier frequencies without any alterations to the setup by choosing

different pairs of Rydberg states [51]. Still, our approach is feasible if the device

needs to operate at a particular known carrier frequency. In this case, this frequency

can be addressed by carefully choosing the atomic species with the closest transition
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frequency, which can be further shifted by external magnetic or electric fields, while

selecting appropriate cavity dimensions.

4.7 Conclusions and outlook

In conclusion, we developed a novel method for microwave-to-optical transduction

for radio-over-fiber application and demonstrated proof-of-principle transduction of

an audio signal in FM and AM regimes. Our approach is based on cavity-enhanced

magnetic-dipole interaction between the microwave field and an alkali atomic vapor

and requires an easier and cheaper setup compared to atomic transducers based on

the electric-dipole coupling. Via lock-in detection, we characterized the transduction

performance and bandwidth that show non-trivial dependence on several microwave

parameters.
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Figure 4.7: Schematics of the proposed microwave-to-telecom transduction prin-
ciple in 87Rb. (a) In the absence of a microwave field, 780 nm light tuned to⃓⃓
5S1/2, F = 2

⟩︁
→
⃓⃓
5P3/2, F = 3

⟩︁
transition optically pumps atomic population into

the dark state
⃓⃓
5S1/2, F = 1

⟩︁
via off-resonant excitation to

⃓⃓
5P3/2, F = 2

⟩︁
state. (b)

Microwave (MW) field creates non-zero population of state
⃓⃓
5S1/2, F = 2

⟩︁
and 780 nm

light creates non-zero population of
⃓⃓
5P3/2, F = 3

⟩︁
. The latter affects absorptive and

dispersive properties of
⃓⃓
5P3/2, F = 3

⟩︁
→
⃓⃓
4D5/2, F = 4

⟩︁
transition at 1529 nm.

We believe that the transduction method presented here can be further extended.

First, for practical applications, the simplest dipole antennas used in our setup for
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microwave transmission and reception can be replaced with horn antennas to re-

duce the power losses during transmission. Second, Figure 4.3(b,d) suggests that the

method is readily available for digital FM and AM signal encoding. Third, as will be

discussed in Chapter 6, with a microwave field, we can control not only absorptive

but also dispersive properties of the atomic vapor, which suggests this method can

be extended to encode information using phase-shift keying [54, 58, 105]. Finally,

we believe it is possible to upgrade our method for transduction from microwaves to

telecom C-band light at 1529 nm. Figure 4.7 illustrates the transduction principle

with the relevant levels and transitions. In recent experiments on Faraday lasing in

Rb vapors [106, 107], it was shown that with 780 nm, it is possible to alter optical

properties of 87Rb vapor at 1529 nm, corresponding to 5P3/2 → 4D5/2 transition.

This is done by creating a non-zero population [108] in the excited 5P3/2 state with

780 nm light. Through a two-photon transition, this population will be affected by a

microwave magnetic field coupled to the ground-state hyperfine levels, which provides

opportunities for microwave-to-telecom transduction using the same principle as the

original method.
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Chapter 5

AC magnetometry in cold atoms

This Chapter presents our investigation of the dynamics of a two-level system with

a phase-modulated coupling going beyond the standard approaches based on the

small-signal approximation. Chronologically, this was the first project completed

during my Ph.D. program, done while waiting for the warm-atom apparatus com-

ponents from Chapters 3-4. It started out as an attempt to numerically simulate

the Rabi resonance in a two-level system with phase-modulated coupling used in ex-

periments on AC-magnetometry in warm atoms, such as described in Section 3.6.5.

The resulting dynamic steady state showed a much richer spectrum than that re-

ported in the literature. As it turned out, the high modulation depth is what made

the difference, and lowering its value in the simulation yielded the only two har-

monics expected from the literature. Curious if this was a physical result and not

just a numerical artifact, I convinced my colleagues, who were at that time work-

ing indefatigably on the quantum memory experiments [109], to let me use their

ultracold-atom apparatus to make a set of proof-of-principle measurements. The

apparatus had the capability of driving the hyperfine transitions with a microwave

system set up by Christian Prosko [110], but it was not consistently used. Together

with Taras Hrushevskyi, during the last week of 2017, we readjusted the microwave

system and tweaked the ultracold-apparatus settings to observe the first microwave-

optical double-resonance signal in cold atoms. In the case of the strongly-modulated
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phase of the microwave field, the observations were not too different from the simula-

tions, at least qualitatively. These findings motivated further research of the quantum

dynamics in this setup and its possible practical applications, which we published in

Phys. Rev. A 99, 043402 (2019) [63].

The content of this Chapter rather closely follows that of Ref. [63], with some

additional details and discussions. Since this was our first attempt to study the

double-resonance, we were still developing our understanding and intuition of this

phenomenon. As a result, some of our research directions were exploratory and spo-

radic. In the following narrative, I tried to preserve our original logic and motivation

while establishing connections to the theoretical framework presented in Chapter 3.

After a brief introduction in Section 5.2, we discuss our results of the numerical sim-

ulation of a two-level system driven by a phase-modulated coupling. Section 5.3 and

Section 5.4 describe the experimental setup and results, respectively.

5.1 Introduction

This project expands upon the “atomic candle” technique, which exploits the Rabi

resonances arising in a double-resonance signal in a two-level system driven by a

phase-modulated microwave field [see Chapter 3 for the description of these phe-

nomena]. It was first developed in warm atomic vapors for microwave power sta-

bilization [111] and later modified for warm-atom AC magnetometry. The practi-

cality of the atomic candle technique for AC magnetometry was demonstrated in-

side microwave cavities [46, 95], inside microwave wave-guides [42, 43, 96], and in

free space [45, 46, 48, 49, 97, 112]. It was also shown that using multi-species va-

por cells [46] and external static magnetic fields [95] extends the AC-magnetometry

bandwidth and allows using of the vapor cell as a vector network analyzer.

All these experiments were demonstrated in warm-atoms with continuous-wave

laser and microwave interrogation. In this case, the phase-modulated microwave can

be operated in the small-signal regime where the microwave signal is dominated by the
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first two harmonics of the modulation frequency, allowing a straight-forward analytical

solution. In our approach, we explore the cases of interaction beyond the small-

signal approximation. Even though we did not aim for any practical applications at

the beginning of this project, we present our findings in the context of a possible

adaptation of the atomic-candle AC magnetometry for cold-atom ensembles.

Probe

Atomic Cloud

(a) t = 0

(b) t > 0, thermal expansion (c) t > 0, hole-burning 

Figure 5.1: Illustration of two processes limiting optical interrogation time in a cloud
of cold atoms. (a) Right after the laser-cooling stage, a dense atomic cloud efficiently
absorbs the optical probe. (b) Thermal expansion decreases the number of interro-
gated atoms. (c) Momentum transfer after absorbing a photon from the probe burns
a hole in the cloud, reducing the number of interrogated atoms. In real experiments,
both processes happen simultaneously.

The use of the atomic candle-technique in cold atoms faces the following challenges.

First, the double-resonance imaging can not be applied during the magneto-optical

trapping and optical molasses cooling [will be described in Section 5.2]. The reason

is that during these stages, the atoms interact with a bichromatic laser field and

undergo continuous excitation-emission cycles, which compromises the theoretical

framework of the double-resonance imaging. As a result, the interrogation should

be performed after the cooling stage. In this situation, the interrogation time is

limited due to the thermal expansion of the atomic cloud [see Figure 5.1(b)] and a

hole-burning caused by a momentum transfer from the probe laser [see Figure 5.1(c)].
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The limited interrogation time dramatically reduces the method’s sensitivity due to

a small number of observed cycles. This chapter investigates how going beyond the

small-signal regime and focusing on a higher-order harmonic can help overcome this

challenge and make the technique applicable for cold-atom systems.

5.2 Numerical simulation

5.2.1 Theoretical model

To simulate the atomic response to a phase-modulated magnetic field, we use a two-

level model. The excited state |2⟩ corresponds to a Zeeman sublevel from level F = 2,

and the ground state |1⟩ corresponds to a Zeeman sublevel from level F = 1. We

assume that the microwave field couples only these two levels and that the coupling op-

erator V̂ has only off-diagonal matrix elements, such that ⟨1| V̂ |2⟩ = ⟨2| V̂ |1⟩ = ℏΩR.

For a phase-modulated field b(t) = b0 cos[ωt+θ(t)], the two-level system Hamiltonian

in the rotating-wave approximation is given by

Ĥ(t) =
ℏ
2

(︂
ΩRσ̂x − [δ + θ̇(t)]σ̂z

)︂
, (5.1)

where δ is the carrier-frequency detuning from the two-level resonance. For the rest

of this Chapter, we will always assume harmonic phase modulation

θ(t) = m sinωmt, (5.2)

where m is the modulation depth, and ωm is the modulation frequency. We do not

directly include in the model the interaction with the optical probe but take into

account its effect on the quantum state as the transverse and longitudinal relaxation.

Assuming that the rotating-wave approximation is valid, we describe the evolution

of the two-level system using the pseudo-spin approach introduced in Section 2.3.2.
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In terms of the pseudo-spin components, Eq. 2.17 can be written as

ν̇x = [δ + θ̇(t)]vy − Γ2νx, (5.3)

ν̇y = −[δ + θ̇(t)]νx + ΩRνz − Γ2νy, (5.4)

ν̇z = −ΩRνy − Γ1[νz + 1], (5.5)

where Γ1 and Γ2 are the longitudinal and transverse relaxation rates, respectively.

We are particularly interested in the level populations, which can be found using the

fact that vz = ρ22 − ρ11 and ρ22 + ρ11 = 1. We solve Eqs. 5.3-5.5 in Python 2.7 using

the built-in integration function odeint from the SciPy package.

5.2.2 Time evolution: weak modulation
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Figure 5.2: (a) Simulated evolution of the ground-state population in a two-level
system driven by phase-modulated field. The simulation is done for m = 1, ωm =
δ = 0.5ΩR, and Γ1 = 2Γ2 = ΩR. The dashed line indicates the steady-state level for
a two-level system by a field with the same parameters with no modulation. (b) Fast
Fourier Transform of the simulated steady-state population oscillations for δ = 0.1ωm

(blue solid curve) and δ = 0 (red dashed), with the rest of the parameters the same
as in (a). Figure adapted from [63].

Figure 5.2(a) shows the numerical solution of Eqs. 5.3-5.5 in terms of the ground-

state population for relatively weak modulation depth. In this case, the dynamic

steady-state population oscillates around its unmodulated value. This fact can be

considered as rationale for the small-signal approximation, which we already encoun-

tered in Section 3.6.5. In this approximation, θ̇(t) is treated as a perturbation [41],
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which allows us to rewrite the steady-state pseudo-spin component and the population

as

ρ22(t) = ρ22,0 + ρ22,m(t), (5.6)

νx(t) = νx,0 + νx,m(t), (5.7)

νy(t) = νy,0 + νy,m(t), (5.8)

where ρ22,0, νx,0, νy,0 are the steady-state value with no modulation, and ρ22,m, νx,m, νy,m

describe the correction due to the phase modulation.

From Eqs. 5.3-5.5, it follows that the dynamic part of the steady-state population

is given by

ρ̈22,m + Γ1ρ̇22,m+Ω2
Rρ22,m =

ΩR

2

[︂
Γ2νy,m + (δ + θ̇)νx,m + θ̇νx,0

]︂
. (5.9)

Here, the left-hand side describes damped harmonic oscillations, while the right-hand

side can be interpreted as the driving force caused by the phase modulation and coher-

ence between the levels (described by νx and νy). In the small-signal approximation,

defined by the conditions m <
√︁

2Γ1/ωm and Γ2 ≪ ωm, Eq. 5.9 has an analytical

solution, given by Eq. 3.11.

According to the analytical solution, the dynamic steady-state is comprised of

oscillations at two harmonics of the modulation frequency, with the first harmonic

vanishing when the driving field is exactly on resonance. Figure 5.2 (b) shows the spec-

tra of the dynamic steady-state population ρ11, simulated for δ = 0 and δ = 0.1ωm,

which are dominated by first and second harmonics. In agreement with the analytical

predictions, the first harmonic disappears when the carrier is on resonance. The simu-

lation shows that the dynamic steady-state spectrum also contains higher-order third

and fourth harmonics. This is probably due to the fact that the relaxation rates are

comparable with the modulation frequency violating the small-signal approximation.

Below we investigate the behavior of these higher-order harmonics on the modulation

in the strong-modulation regime.
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5.2.3 Time evolution: strong modulation
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Figure 5.3: (a) Simulated evolution of the ground-state population in a two-level
system driven by phase-modulated field. The simulation is done for m = 6, ΩR =
1.5ωm, δ = 0 , and Γ1 = 2Γ2 = 0.8ωm. The dashed line indicates the steady-state
level for a two-level system by a field with the same parameters with no modulation.
(b) Fast Fourier Transform of the simulated steady-state population oscillations for
δ = ωm (blue solid curve) and δ = 0 (red dashed), with the rest of the parameters
the same as in (a). Figure adapted from [63].

A general solution for the steady-state dynamics of a two-level system driven by a

phase-modulated field was obtained in Ref. [113] for the case of Γ1 = Γ2. Yet, there is

no simple analytical form for the case of strong modulation and arbitrary relaxation

rates, so we study this case numerically.

Figure 5.3(a) shows the population in the ground state simulated for m = 6 ra-

dians. Unlike the case of weak modulation, the average value of the dynamic part

is significantly shifted from the unmodulated steady-state level, meaning the effect

of phase modulation can no longer be treated as a perturbation. The calculated

spectrum in Figure 5.3(b) shows that the dynamic steady state consists of integer

oscillations at multiples of the modulation frequency:

ρ11(t) =
∑︂
n

Pn sin(nωmt+ ϕn), (5.10)

where n is a positive integer number, and ϕn is the relative phase of the particu-

lar harmonic. Similarly to the weak-modulation case, all odd harmonics disappear
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when δ = 0.

5.2.4 Rabi resonances

In this section, we examine the resonances behavior of the amplitudes of the second

and fourth harmonics simulated for δ = 0. For the analysis, we take the steady-state

part of the population evolution, corresponding to t ≫ 1/Γ1. From these data, we

extract amplitudes an and bn of the quadrature components of the oscillations using

an =
1

N

N∑︂
k=1

ρ11(tk) sinnωmtk, (5.11)

bn =
1

N

N∑︂
k=1

ρ11(tk) cosnωmtk, (5.12)

where tk are evenly spaced time points, and N is the total number of points in the

analyzed data set. The overall amplitude of the nth harmonic is given by

Pn = 2
√
a2 + b2. (5.13)

Eqs. 5.11-5.12 represent a numerical implementation of the principle of lock-in

detection. It relies on the fact that, for n ̸= m,

lim
T→∞

1

T

∫︂ T

0

sin(nωt) sin(mωt)dt = lim
T→∞

1

T

∫︂ T

0

sin(nωt) cos(mωt)dt = 0, (5.14)

and

lim
T→∞

1

T

∫︂ T

0

sin(nωt) cos(nωt)dt = 0. (5.15)

Because in our case, N is finite, the contribution to Pn from the unwanted harmonics

is small but noticeable. To reduce this contribution, we perform numerical spectral

filtering to the data set before extracting an and bn. During the filtering stage, we

apply the Fast Fourier Transform (FFT), null the unwanted harmonics in the Fourier

domain, and apply the inverse transform. To eliminate the numerical artifacts arising

from the finite duration of the analyzed signal, we additionally apply a Hamming

window after the inverse FFT. The functions for the FFT and Hamming window

were taken from the SciPy and NumPy libraries, respectively.
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Low relaxation rate

Figures 5.4(a) shows the extracted amplitudes P2 and P4 in the case when Γ1,Γ2 ≪ ωm

and m = 0.25. In the simulation, we vary the Rabi frequency while keeping the

modulation frequency constant. The second harmonic shows a resonant behavior

around ΩR = 2ωm, which is in agreement with analytical results in the small-signal

approximation. The fourth harmonic shows two peaks: one around ΩR = 2ωm and

the other one around ΩR = 4ωm. The second peak is similar to a frequency response

of a damped harmonic oscillator with natural frequency ΩR driven at frequency 4ωm,

and that is what we expected by analogy to the Rabi resonances of the first and

second harmonics. The origin of the fourth-harmonic resonance at ΩR = 2ωm is

unknown, and the fact that we apply digital filtering before extracting the amplitudes

guarantees that there is no contribution from other frequency components. Note that

both fourth-harmonic peaks are three orders of magnitude lower than the second-

harmonic peak.

Figure 5.4(b) shows that as we increase the modulation index, all resonances shift

towards lower values of ΩR/ωm with respect to their weak-modulation positions. Fig-

ure 5.4(c) depicts how the shifts’ magnitudes depend on the modulation depth, show-

ing that the location of the 4ωm peak is not affected as strongly as that of the 2ωm

peaks. Besides, the 2ωm peaks experience a distortion in their shape, leading to an

increased linewidth.

Another effect of the higher modulation depth is the increased peak amplitudes.

Figure 5.4(d) shows heights of the second-harmonic peak (i.e., P2,r) and of the higher-

frequency fourth-harmonic peak (i.e., P4,r), as a function of m. As is expected from

the small-signal approximation, P2,r shows a quadratic dependence on m at weak

modulation, which is no longer the case at larger m. Meanwhile, P4,r scales as the

fourth power of the modulation depth. This fact provided us the original insight for

our argument towards the possible origin of the harmonics as the series expansion of
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Figure 5.4: Rabi resonances for second (P2) and fourth (P4) harmonics for (a) m =
0.25 and (b) m = 2. The amplitude of the fourth harmonic is scaled as indicated. As
the modulation depth is increased, the peaks experience a shift with respect to their
original positions ΩR = 2ωm and ΩR = 4ωm, indicated as ∆2 and ∆4, respectively. (c)
Shifts of the peaks as a function of the modulation index. (d) Heights of the resonance
peaks as a function of the modulation depth. For the fourth harmonic, we use the
right-hand peak. Curves indicate the power dependence on m. In all graphs, the
simulation was made for δ = 0, and Γ1 = 2Γ2 = 0.08ωm. Figure adapted from [63].

the double-resonance signal, presented at the end of Section 3.6.5.

In summary, using the strong modulation in a low-relaxation regime leads to a

higher peak amplitudes and thus might be used to improve the signal-to-noise ratio. In

this setup, the higher-frequency fourth-harmonic Rabi resonance shows a larger height

and lower width, making it a better candidate for the AC-magnetometry applications.

High relaxation rate

From the small-signal approximation, we expect the second-harmonic resonance to

widen as the relaxation rates increase. This is what we observe in Figure 5.5(a),

and this effect holds true for the fourth harmonic as well, for which the two peaks

now overlap. Even in the case of weak modulation, the second-harmonic resonance

is significantly distorted from a Lorentzian shape, signifying that the small-signal
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approximation is no longer valid. Yet, the peak’s position is almost unchanged. In a

strong-modulation regime, shown in Figure 5.5(b), the broadening and distortion of

the resonance line make the technique unsuitable for applications in magnetometry

or power standards.
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Figure 5.5: Rabi resonances for second (P2) and fourth (P4) harmonics for (a) m =
0.25 and (b) m = 6. The amplitude of the fourth harmonic is scaled as indicated. As
the modulation depth is increased, the peaks experience a shift with respect to their
original positions ΩR = 2ωm ΩR = 4ωm, which is indicated as ∆2 and ∆4, respectively.
In all graphs, the simulation was made for δ = 0, and Γ1 = 2Γ2 = 0.8ωm. Figure
adapted from [63].

5.3 Experimental setup

The experiment was done in the ultracold atom apparatus designed for quantum

simulations with 87Rb Bose-Einstein condensates. The apparatus itself is described in

great detail in Taras Hrushevskyi’s M.Sc. thesis [81], so here we will briefly cover only

the main components relevant to our measurements. The experimental measurements

are done in a vapor cell attached to an ultrahigh vacuum system. The system is

designed to maintain the pressure inside the cell below 10−11 Torr, with 87Rb atoms

introduced to the cell in a controlled manner. The cell provides optical access for

several laser beams. The laser system for the frequency stabilization and control is

analogous to the one used in the warm-atom experiment. The static magnetic field in
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Figure 5.6: (a) Schematics of the laser beams arrangement and transitions for the
magneto-optical trapping and the optical molasses. During the optical molasses, we
switch off the current in the anti-Helmholtz coils and sweep the cooling laser detuning.
(b) Schematics of the microwave setup and transitions for double-resonance imaging.
Figure (b) was adapted from [63].

the cell is controlled with three pairs of coils in Helmholtz configuration aligned along

three orthogonal axes. An additional pair of coils in the anti-Helmholtz configuration

is used for creating a quadrupole magnetic field during the magneto-optical trapping,

as will be described below.

The experiment consists of several steps continuously following one another in a

cycling manner. After the last step is completed, the cycle repeats itself. For the

control and automation of the experimental parameters and steps, we use LabView

software. The experimental steps are described below in their corresponding order.
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The utilized laser-cooling techniques are introduced very briefly. More details on their

working principles can be found in my M.Sc. thesis [80].

5.3.1 Magneto-optical trapping

The first step is the magneto-optical trapping, schematically shown in Figure 5.6(a).

Here, the anti-Helmholtz coils create a quadrupole magnetic field with a node in

the center of the cell. The exact position of the node is adjusted with three pairs

of Helmholtz coils. The magneto-optical trap is created by three pairs of counter-

propagating laser beams, referred to as the “cooling light,” intersecting at the mag-

netic field’s node. One pair is aligned along the field’s axis of symmetry, and the

other beams are lying in the perpendicular plane. All cooling beams are derived from

the same laser and have the same frequency and approximately the same power. The

idea is to set up the laser frequency and the polarization of each beam in such a way

that the laser-atom interaction creates an effective potential well, confining atoms in

the trap, and an effective viscous force, reducing the average kinetic energy of atoms

in the trap.

Both trapping and dissipation effects happen simultaneously and originate from the

imbalance in the number of photons scattered from the counter-propagating beams.

To create an effective friction force, we want the atoms to scatter more photons from

the laser beams traveling in the direction opposite to the atomic velocity. In order to

achieve this, the laser frequency is red-detuned from |F = 2⟩ → |F ′ = 3⟩ transition

of the D2-line. Due to the Doppler shift, the frequency of the oncoming beams is

closer to the resonance in the atomic frame, resulting in a higher scattering rate. The

resulting force vector is opposite to the atomic velocity, slowing the atoms down in a

process known as the Doppler cooling.

To create a trapping potential, we want the laser beams to push the atoms towards

their intersection, serving as the trap center. This spatial preference results from the

presence of a quadrupole magnetic field, which shifts the atomic energy levels due to
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the Zeeman effect. The sign and value of the shift for each Zeeman sublevel depend on

the atom’s location with respect to the field’s node. The polarization for each beam is

chosen in such a way that a combination of the Zeeman shift, which counterbalances

the optical detuning, and the selection rules guarantee that the photon scattering

rate is higher for the beams pushing the atoms towards the trap center.

During interaction with the cooling light, there is a finite excitation probability

for the atoms to undergo off-resonant transition |F = 2⟩ → |F ′ = 2⟩, after which

they can spontaneously decay to |F = 1⟩. This results in optical pumping of the

atoms to state |F = 1⟩, in which they no longer interact with the cooling beams. To

contentiously restore the population in |F = 2⟩, a low-power “repump” beam resonant

with |F = 1⟩ → |F ′ = 2⟩ is applied.

As a result of the magneto-optical trapping, an atomic cloud forms in the trap,

which has a higher density and lower temperature compared to the rest of the vapor

in the cell. The typical duration of this step in our experiment is 5 − 10 seconds,

resulting in the cloud with atom number on the order of 109 and the temperature on

the order of 100 µK.

5.3.2 Optical molasses cooling

For the second step, we switch off the quadrupole field and sweep the cooling light

frequency. It improves the efficiency of the Doppler cooling and adds an additional

dissipation mechanism known as polarization-gradient cooling [114], which decreases

the cloud’s temperature down to 70 µK. In terms of the effect on the atomic motion,

the region where the laser beams overlap act as a viscous medium, and is called the

“optical molasses”. Because there is no restoring force anymore, the atoms eventually

diffuse out of the cooling region, so the typical duration of this step is relatively short,

on the order of 10 ms. At the end of this stage, we turn off the repump light 1 ms

before switching off the cooling beams to optically pump the atoms into |F = 1⟩ state

for the following microwave-optical double-resonance imaging. In our case, the typical
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atom number after the optical molasses cooling is on the order of 108.

5.3.3 Double-resonance imaging

The final step of the experimental cycle is the interrogation of the atomic ensemble by

a microwave magnetic field. The magnetic interaction effect on the atomic population

is evaluated through the microwave-optical double-resonance imaging of state |F = 2⟩.

The imaging principle is the same as described in Chapter 3, except in this case, the

atomic population starts in |F = 1⟩. The population of |F = 2⟩ is sampled with

probe light resonant with |F = 2⟩ → |F ′ = 2⟩ transition, which is the transition

typically used for absorption imaging in cold-atom experiments. Because the Doppler

broadening effect in cold atoms is greatly reduced compared to the thermal vapor,

we assume that, unlike in Section 3.5, the probe addresses only a single transition.

The microwave field is provided by SRS SG384 microwave source with built-in

phase modulation connected to a wave-guide pointing at the cell, as is schematically

shown in Figure 5.6(b). Before the wave-guide, the field goes through an external

amplifier providing microwave power at the output of about 2 W. We keep the mi-

crowave field applied during the experiment and control the interaction by adjusting

the microwave detuning. During the cooling stage, it is shifted 100 MHz away from

the atomic resonance, so the field does not affect atomic states. During the magne-

tometry step, the microwave is mixed with a 100-MHz signal, so one of the produced

side-bands is resonant with the atomic transition. A detailed description of the mi-

crowave setup can be found in the undergraduate report by Christian Prosko [110].

5.4 Experimental results

First, we demonstrate the double-resonance imaging in a laser-cooled atomic cloud

as it expands after being released from the optical molasses. Figure 5.7(a) shows the

transmitted probe power in the case when the microwave is on resonance, and no

modulation is applied. In this case, we can observe a few Rabi oscillations before
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the population reaches the steady-state, whose spectrum does not show any distinct

oscillations. The steady-state signal shows a slight slope, which we will further investi-

gate and discuss below. Figure 5.7(b) corresponds to the case of a strongly modulated

field, whose carrier frequency is slightly off-resonance from the hyperfine transition.

In agreement with the simulations, the observed signal shows consistently maintained

oscillations at integer multiples of the modulation frequency. In Figure 5.7(c), we use

the same microwave parameters, but the carrier is now on resonance. In this case,

the odd harmonics in the spectrum are suppressed.
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Figure 5.7: Transmission (blue curve) of a 46 µW probe in the double-resonance
imaging of a laser-cooled atomic cloud released from the optical molasses. At t = 0
atomic population is in F = 1. For clarity, we show only the first 1.2 ms out of
a total of 5 ms of expansion. The red dashed curve corresponds to the numerical
fit. The insets show the Fast Fourier transform applied to the signal’s tail, where
the Rabi oscillations are damped out. Each spectral component is labeled with an
integer number, corresponding to the harmonic of ωm. In all insets, axes have the
same scaling. (a) Unmodulated microwave field on resonance. (b) ωm/2π = 4 kHz,
m = 2π, δ/2π = 7 kHz; (c) ωm/2π = 4 kHz, m = 2π, δ ≈ 0. Figure adapted from [63].

To show that we can qualitatively interpret the observed signals as a response of

a damped harmonic oscillator with natural frequency ΩR driven at multiples of ωm,

we fit the data in Figure 5.7 with function

f(t) =
√︁
A2 + (Bt)2 + C1e

−Γ1t + C2e
−Γ2t sin2

(︃
ΩR

2
t+ ϕ

)︃
+

6∑︂
n=1

Pn sin(nωmt+ ϕn).

(5.16)
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In this model, the first term takes into account the change in the cloud’s density

due to interaction with the probe, where A corresponds to the initial density and

B corresponds to the hole-burning rate. The second and third terms describe the

Rabi oscillations with longitudinal and transverse relaxation at rates Γ1 and Γ2, re-

spectively, where parameters C1 and C2 are the proportionality coefficients between

the level population and observed signal, and ϕ is the quadrature phase of the Rabi

oscillations. The last terms describe oscillations at the harmonics of the modula-

tion frequency, where Pn and ϕn are the steady-state amplitude and phase of the nth

harmonic. Based on the FFT spectrum, we keep only six harmonics in the fit.
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Figure 5.8: Rabi resonances for the amplitudes of the second (red squares) and fourth
(blue circles) harmonics form = 2π, δ ≈ 0, and the probe power of 46 µW. Each point
and its error bar correspond to an average and variance of five values extracted from a
tail of a double-resonance signal, respectively. The vertical dashed lines correspond to
the modulation frequency values satisfying 2ωm = ΩR and 4ωm = ΩR. The points were
obtained by two numerical methods: (a) using numerical lock-in detection (Eqs. 5.11-
5.13); (b) from fitting the observed signal to Eq. 5.16. Figure adapted from [63].

We would like to highlight the fact that the presented results correspond to a single

experimental cycle. In general, there is a discrepancy in the observed spectra with the

relative peaks’ height varying among consecutive experimental cycles with the same

parameters. We believe this is due to variations and noise in the radio-frequency mixer

response, resulting in the variations in the value of the carrier-frequency detuning.
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For the analysis of the Rabi resonances presented below, we use values of amplitudes

averaged over several cycles.

To analyze the Rabi-resonance behavior of the second and fourth harmonics, we

look at their amplitudes as we vary the modulation frequency at constant microwave

and probe power. The results are shown in Figure 5.8, where we extracted the

amplitudes using two numerical methods: Figure 5.8(a) shows the values found by

the digital lock-in detection (Eqs. 5.11-5.12), Figure 5.8(b) shows the values found

from the fit to Eq. 5.16. Both methods are in a qualitative agreement with each other,

showing that the amplitudes of both harmonics peak as the modulation frequency is

scanned through ΩR/2 = 2π × (3.8 ± 0.3) kHz, where ΩR was determined from the

data corresponding to the unmodulated field. The uncertainty in ΩR corresponds to

the variance of several data points and probably, in the same way as the uncertainties

in the harmonics’ amplitudes, originates from the variation of the radio-frequency

mixer response time. From the fit of the unmodulated response, we extracted the

relaxation rates as Γ1 = (2.0± 0.1)× 10 s−1 and Γ2 = (0.97± 0.04)× 10 s−1, which

are on the same order of magnitude as ΩR and ωm, corresponding to the regime of

high relaxation. Even though this regime is of no practical interest, the experimental

observations seem to qualitatively agree with our simulations. The fact that the

measured relaxation rates satisfy within uncertainty the relation Γ1 = 2Γ2 suggests

that the transverse relaxation is a consequence of the longitudinal relaxation, and

there is no additional inhomogeneous contribution.

To test whether the observed steady-state slope is due to thermal expansion or

hole-burning by the probe, we perform the double-resonance imaging for several val-

ues of the probe power. Figure 5.9(a,b) shows that reducing the probe power from

0.54 µW down to 0.06 µW exterminates the slope, suggesting that it was caused by

the probe. In addition, lower probe power results in a reduced relaxation rate allowing

to observe more Rabi oscillations. This is a manifestation of a transition from over-

damped to underdamped oscillations. Figure 5.9(c) provides results of a simulation
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Figure 5.9: (a,b) recorded double-resonance signal for the probe power of (a) 0.54 µW,
and (b) 0.06 µW, for the cases of a phase-modulated (red) and unmodulated (blue)
microwave field. The microwave source power is 10 dBm, and the modulation fre-
quency is ωm/2π = 4 kHz. (c) Simulation of the two-level system response to a
phase-modulated microwave field in the underdamped case corresponding to (b), with
simulation parameters ΩR = 2ωm and Γ1 = 2Γ2 = 0.02ωm. Figure adapted from [63].

for the underdamped case, which shows a good qualitative agreement with the data

in Figure 5.9(b). The simulation of the overdamped case was shown in Figures 5.2-

5.3, where the theoretical model assumed a constant atomic density, so the simulated

results do not show a steady-state slope.

The effect of the probe power on relaxation can be explained by optical pumping

transferring the atomic population from |2⟩ to |1⟩, which is equivalent to a longitudinal

relaxation in a two-level system. A similar effect was also observed in Ref. [41], where

an increase in the optical probe power (meaning an increase in the optical pumping

rate) leads to broadening of the Rabi resonance. Note that using a higher probe

power has its benefits: it provides a significantly better signal-to-noise ratio, and

the increased relaxation makes the system reach the steady-state faster, allowing to

sample more steady-state oscillations. From a practical point of view, the optimal

probe power will be determined as a trade-off between the aforementioned benefits

and its hole-burning effect.
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5.5 Conclusions

In conclusion, we investigated the behavior of a two-level system driven by phase-

modulated coupling in the regimes where there is no analytical solution to the prob-

lem. Via numerical simulation, we demonstrated that the dynamic steady state con-

sists of oscillations at multiples of the modulation frequency, with only even harmonics

present when the carrier frequency is exactly on resonance with the two-level transi-

tion. The analysis of the amplitude of the fourth harmonic shows that it experiences

two resonances as the modulation frequency is varied. At lower modulation depth

and relaxation rates, the peaks are located at ΩR = 2ωm and ΩR = 4ωm, but they

experience a shift as the modulation depth is increased. The peak at ΩR = 4ωm

has a quartic dependence of its height on the modulation depth. Besides, it shows

a smaller linewidth and shift compared to the second-harmonic resonance. All these

facts combined suggest that the fourth-harmonic resonance might be a promising al-

ternative for the atomic-candle applications and AC-magnetometry in systems with

a weak absorption signal and limited interrogation time, such as cold atoms.

Experimentally, we performed contentious-wave measurements of the population

transfer in a cold atomic ensemble due to interaction with a microwave magnetic

field. In the case of a strongly phase-modulated microwave field, the observed spec-

trum of the steady-state oscillations contains multiple harmonics of the modulation

frequency. To our knowledge, this is the first recorded observation double-resonance

in cold atoms and the first observation of high-order harmonics in a phase-modulated

double-resonance signal in an atomic vapor. The observed qualitative behavior of the

harmonics is in agreement with our simulations.

All in all, our findings improved our understanding of the dynamics of a two-level

system driven by a modulated field, and provided us with value insights that we used

for the transduction experiments in Chapter 4.
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Chapter 6

Microwave-controlled optical
switching, and optical polarization
rotation.

This chapter presents the results from our most recent project finished in sum-

mer 2020. This project started out as an attempt to modify the microwave-optical

double-resonance scheme described in previous chapters for microwave-to-optical fre-

quency conversion, i.e., an increase in the optical transmission due to applying a

resonant microwave field. In the beginning, we experimentally realized the con-

version in the double-resonance setup for an additional optical field in the form of

microwave-controlled optical switching. Next, a closer theoretical evaluation of our

approach showed that the level structure of 87Rb offers an optical transition experi-

encing dichroism, which could make the optical switching polarization-selective. To

describe this effect, we introduced a multi-level model going beyond the three-level

approximation. In this new model, we discovered that in the non-degenerate case,

combined microwave and optical coupling in the double-resonance arrangement leads

to a transfer of atomic population between the Zeeman sublevels in the F = 1 ground

state. With this effect, which we call microwave-assisted optical pumping, we propose

a method of creating spin polarization or alignment in an atomic ensemble by address-

ing specific microwave-transitions. Finally, while trying to experimentally confirm the

occurrence of the microwave-assisted optical pumping, we accidentally discovered op-
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tical rotation that depends on the microwave frequency. To our knowledge, this is

the first observation of the optical rotation induced by a microwave magnetic field,

at least in an atomic vapor.

This chapter presents the concepts and results in a logical order. We begin by

introducing the field of optical switching and magneto-optical rotation in the atomic

vapors in Section 6.1. Next, we describe the principles of the microwave-assisted

optical pumping in Section 6.3 and its implementation in a polarization-selective

microwave-to-optical conversion in Section 6.2. In Section 6.4, we present our experi-

mental results demonstrating the microwave-controlled optical switching and optical

rotation.

6.1 Introduction

The experiment discussed in this chapter can be conceptually divided into two parts.

In the first part, we show the applicability of the microwave-optical double resonance

for optical switching and frequency conversion. In the context of this chapter, we will

use the term “optical switching” to denote a process of controlled switching on and

off the absorption of an optical field in a device, which we will call the optical switch.

Atomic vapors offer a good platform for all-optical switching, where the control is im-

plemented by applying additional optical fields. Typically, the all-optical switching

in thermal atomic vapors is implemented using electromagnetically-induced trans-

parency (EIT) in three-level [115] and multi-level [116] systems. Optical switching

controlled by a single photon was demonstrated in cold atoms using Rydberg exci-

tations [117–119] and cavity-enhanced EIT [120]. It was also demonstrated that the

phase of a microwave magnetic field can be used as a control signal in an EIT-based

optical switch [121], in which case the magnetic-dipole interaction with the microwave

field interferes with the EIT established by two optical fields.

In the case when applying the control field leads to an increase in the probe trans-

mission through the switch, the optical switching can be considered as a frequency-
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conversion process: the control field at one frequency is converted to the probe field

at another frequency. For example, the EIT-based optical switch from Ref. [115] is

a frequency conversion between two optical fields. While the double-resonance effect

considered in previous chapters can be used for optical switching, we do not consider

it a frequency conversion because, in this case, applying a microwave field leads to

absorption of the optical probe. Later in this chapter we will show that this effect is

reversed for an additional optical field leading to the microwave-to-optical frequency

conversion, which for a specific optical transition can be polarization-selective. We

will also present a model of microwave-assisted optical pumping that shows potential

for engineering macroscopic spin polarization of the atomic ensemble.

In the second part of the experiment, we demonstrate a magneto-optical rotation of

an off-resonant laser field polarization induced by the microwave field in the extended

double-resonance setup, with the angle of rotation depending on the microwave pa-

rameters. The magneto-optical rotation results from the circular birefringence due

to the spin polarization in an atomic ensemble, and it is widely used in optical mag-

netometers [122–128] as a passive tool to non-destructively monitor the evolution

of atomic spin-polarization created by optical pumping, which allows extracting pa-

rameters of the ambient static or slowly-varying magnetic field. In our setup, the

magneto-optical rotation is used to control the optical polarization, bringing new

prospects for microwave-to-optical transduction.

6.2 Microwave-to-optical transdcution via double

resonance

Here we propose a microwave-controlled optical switch based on the microwave-optical

double resonance in a thermal atomic vapor. Figure 6.1(a) illustrates the operation

principle in terms of the same three-level system as we used to introduce the double-

resonance in Section 3.1. Here, the switching is performed for the probe resonant with

|1⟩ → |e⟩ transition. The population in |1⟩ is controlled by a continuously running
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Figure 6.1: Schematics of the microwave-controlled optical switch in a three-level
system. (a) With no microwave field the switch is in the OFF-state where the probe is
fully absorbed. (b) Applying the microwave field reduces the steady-state population
of |1⟩ and puts the switch in the ON-state, where some of the probe is transmitted.

strong pump light resonant with |2⟩ → |e⟩ and a microwave field coupling |1⟩ and |2⟩,

which acts as a control signal turning the switch on and off.

When the microwave field is not applied, all atomic population is optically pumped

into |1⟩. We assume that in this regime the vapor optical density is enough to fully

absorb the probe, corresponding to the OFF-state of the switch. Applying the mi-

crowave field reduces the steady-state population of |1⟩ enough to make the vapor

transmit some of the probe power, corresponding to the ON-state of the switch. Unlike

in the optical switching schemes based on electromagnetically-induced transparency,

in our approach, the probe and pump do not have to form a closed λ-system and can

address different excited states. On a single-photon level, the switch operation cor-

responds to the destruction of one microwave photon and the creation of one optical

photon and thus can be considered microwave-to-optical frequency conversion.

The three-level model presented above can be applied to a 87Rb atom when there

are no external static fields, and the hyperfine levels are degenerate. In this case,

states |1⟩ and |2⟩ correspond to the hyperfine ground states |F = 1⟩ and |F = 2⟩,

respectively, and the microwave field couples to all Zeeman sublevels of |F = 1⟩ at

once. In a non-degenerate case, the microwave field can at most couple to two Zeeman

sublevels of |F = 1⟩, which leads to an accumulation of the atomic population in
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the uncoupled sublevels via a process that we will call microwave-assisted optical

pumping. Below we take a closer look at the process of microwave-assisted optical

pumping and its possible applications.

6.3 Microwave-assisted optical pumping

(a) Optical pumping

Dark states Dark state

Pump

(b) MA optical pumping

2 1

3

e

2 1

3

e

Pump

Figure 6.2: Principle of the optical pumping (a) and microwave-assisted (MA) optical
pumping (b) in a four-level system.

To illustrate the principle of microwave-assisted optical pumping, we use a four-

level toy model shown in Figure 6.2. In this model, |e⟩ represents an excited state,

and |1⟩, |2⟩, and |3⟩ are the ground states. We assume that all three ground states can

be coupled to |e⟩ via an electric-dipole transition and that states |2⟩ and |3⟩ can be

coupled to each other via a microwave magnetic-dipole transition. When the pump

field drives the |3⟩ → |e⟩ transition, the atomic population accumulates in states

|2⟩ and |1⟩ due to optical pumping [Figure 6.2(a)]. Note that we assume that the

energy differences between state |3⟩ and the other ground states are large enough, so

that the optical field does not excite |1⟩ and |2⟩, making them dark states. When

we simultaneously apply a microwave field that couples |2⟩ and |3⟩, state |2⟩ is no

longer a dark state for the combined microwave and optical electromagnetic field. As

a result, the population of |2⟩ undergoes the |2⟩ → |3⟩ → |e⟩ transition, after which it

spontaneously decays to any of three ground states. After several excitation-emission
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cycles all atomic population is accumulated in the dark state |1⟩, decoupled from the

electromagnetic fields [see Figure 6.2(b)].

(a) Microwave field parallel to the quantization axis

(b) Microwave field perpendicular to the quantization axis

(c) AM microwave field perpendicular to the quantization axis

= 1Fm =Fm 0

= 1Fm = 1Fm
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Figure 6.3: Possible population distributions between Zeeman sub-levels of level F =
1 which can be created by microwave-assisted optical pumping. All sub-levels of level
F = 2 are assumed to be coupled to the optical field (not shown). (a) In the case
when the microwave field vector is parallel to the quantization axis, we can selectively
empty out a particular mF -state by controlling the microwave frequency (the case of
|F = 1,mF = −1⟩ is not shown). (b) Using a microwave field perpendicular to the
quantization axis allows to empty out or fully occupy |F = 1,mF = ±1⟩-states (the
case of |F = 1,mF = −1⟩ is not shown) depending on the microwave frequency. (c) If
a microwave field perpendicular to the quantization axis is amplitude modulated at
twice the Larmor frequency will empty out |F = 1,mF = −1⟩ and |F = 1,mF = 1⟩
states, without affecting |F = 1,mF = 0⟩.

In the case of 87Rb, we have more than four levels, but the same principle ap-
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plies, and the atomic population accumulates in the ground-state Zeeman sublevels

uncoupled from the microwave field. Figure 6.3 shows possible population distribu-

tions between Zeeman sublevels of level F = 1, which can be created by microwave-

assisted optical pumping, assuming that all sublevels of level F = 2 are coupled

to the pump field1. By choosing the microwave frequency and polarization, we can

fully occupy or clear particular Zeeman sublevels. This can be used to create spin-

oriented states |F = 1,mF = ±1⟩, and a spin-aligned state, in which |F = 1,mF = 1⟩

and |F = 1,mF = −1⟩ are populated equally. Potentially, we can create atomic spin-

polarization transverse to the quantization field by using an amplitude or frequency

modulation of the microwave field to generate sidebands coupled to |F = 1,mF = 1⟩ →

|F = 1,mF = 2⟩ and |F = 1,mF = −1⟩ → |F = 1,mF = −2⟩ [see Figure 6.3(c)]. In

this case, the microwave field vector is perpendicular to the quantization axis, the

carrier frequency is resonant with the clock transition, and the modulation frequency

is twice the Larmor frequency. Due to the selection rules, the carrier wave does not

drive the clock transition, and the atomic population should accumulate in the state

|F = 1,mF = 0⟩.

Microwave-assisted optical pumping can make the microwave-to-optical frequency

conversion polarization-selective, as is shown in Figure 6.4. Here, the probe is tuned

to the |F = 1⟩ → |F = 0⟩ transition in 87Rb. Because level |F ′ = 0⟩ has only one

Zeeman state mF = 0, each Zeeman sublevel of |F = 1⟩ can absorb only a single

component of the probe polarization, as is determined by the selection rules [see

Figure 6.4(a)]. We assume that the optical density of the vapor is enough to fully

absorb each polarization component. Selectively clearing out a particular Zeeman

sublevel via microwave-assisted optical pumping will make the vapor transparent to

the corresponding polarization component [see Figure 6.4(a)]. Note that the redis-

tributed population makes the vapor even more opaque for the other polarization

1This assumption is valid since the linewidth of the D2-line is larger than the typical Zeeman
spitting in our experiments.
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Figure 6.4: Polarization-selective microwave-controlled optical switch in |F = 1⟩ state
of 87Rb. Optical pump is not shown. Solid and dashed arrows represent transmitted
and absorbed component, respectively. (a) With no microwave field, the atomic pop-
ulation is distributed equally between the Zeeman sublevels, fully absorbing all three
polarization components of the probe resonant with |F = 1 → |F = 0⟩⟩. (b) Driv-
ing the |F = 1,mF = 1⟩ → |F = 2,mF = 1⟩ transition, make the vapor transparent
for σ−-polarization component of the probe. (c) Driving the |F = 1,mF = −1⟩ →
|F = 2,mF = −1⟩ transition, make the vapor transparent for σ+-polarization compo-
nent of the probe.

components. Thus, with this approach, the atomic vapor can act as an optical switch

for a particular probe polarization while blocking other polarization components. In

addition, modulating the microwave frequency between different hyperfine transition

should lead to the modulation of the transmitted probe polarization: e.g, switching

the microwave frequency between the |F = 1,mF = −1⟩ → |F = 2,mF = −1⟩ and

|F = 1,mF = 1⟩ → |F = 2,mF = 1⟩ transitions will modulate the transmitted probe

polarization between σ+ and σ−, respectively.

In thermal vapors, thermal motion (Section 2.4.3), inter-atomic collisions, and

collisions with the cell wall can lead to significant spin relaxation. In this case,

microwave-assisted optical pumping does not transfer the whole atomic population

to the dark state and does not completely clear out the coupled states. Nevertheless,

the steady-state population of the dark state is larger than that of the coupled states,

leading to some observable effects, as we will show in the next section.
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6.4 Experiment

6.4.1 Setup

Probe

Pump

F'=3

F'=2

F'=1
F'=0Rb

x

y

(a) BB

PBS1Probe

BB PD1
BS

WP

Pump

PBS2

PD2

(b)

F=2

F=1
MW

Figure 6.5: (a) Schematics of the optical setup. The labels are described in the main
text. x and y axes indicate the horizontal plane. The vacuum system is not shown.
(b) Optical transitions used in the experiment.

For the experimental demonstration of the microwave-to-optical frequency conver-

sion we use the same warm-atom system as in Chapters 3 and 4. The setup schematics

is shown in Figure 6.5(a). Inside the cell, the probe and pump beam are counter-

propagating. To overlap the two beams on one side of the cavity and to separate

them on the other side, we use a polarization beam splitter (labeled as PBS1) and a

50/50 beam splitter (labeled as BS). Before PBS1, the probe is polarized vertically

(perpendicular to the horizontal plane indicated by x and y axes), so PBS1 reflects

the full probe power. After that, the probe goes through a wave plate (labeled as

WP), which is either a quarter-wave plate or a half-wave plate. The wave plate allows

us to control the probe polarization inside the cell. After the cell, the 50/50 beam

splitter reflects half of the probe power, which is now separate from the pump beam.

We use this type of beam splitter to preserve the probe polarization. A second polar-

izing beam splitter (PBS2) splits the vertical and horizontal polarization-components

of the reflected probe between two photodetectors (PD1 and PD2). Both photode-
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tectors are from Thorlabs, model PDA36A. As in Chapters 3 and 4, we monitor and

record only the AC part of the photodetectors’ signal on the oscilloscope (not shown).

To terminate the stray beams coming out of the beam splitters, we use beam blockers

(labeled as BB). Three pairs of coils (not shown) in Helmholtz configuration allow

us to control the static magnetic field inside the cell. Figure 6.5(b) shows the atomic

transitions for the pump and probe fields. For the probe we use a weak beam resonant

with |F = 1⟩ → |F ′ = 0⟩ transition. Its typical power is 10−100 µW. For the optical

pumping we use |F = 2⟩ → |F ′ = 2⟩ transition with typical power of 1− 2 mW.

6.4.2 Frequency conversion

We begin with proof-of-principle measurements of microwave-to-optical frequency

conversion of a circularly-polarized probe. Figure 6.6(a) shows the photo-detection

signals as the microwave frequency is linearly swept through the hyperfine resonance

in the case when the static magnetic field in the cell is aligned with the probe beam.

In contrast with the double-resonance measurements from Chapter 3, here, the op-

tical transmission is increased whenever the microwave field is on resonance with a

hyperfine transition, which is a manifestation of the frequency conversion introduced

in Section 6.2. Because the microwave magnetic field is perpendicular to the static

field, only four peaks are observed. The observed feature is asymmetric with respect

to the clock transition frequency, and the asymmetry is reversed if we reverse the

direction of the static field (not shown). We believe this may be evidence of the

uneven distribution of the atomic population between the Zeeman sublevels shown in

Figure 6.6(b). Because the probe is σ+-polarized, it can be absorbed only by atoms in

level |F = 1,mF = −1⟩, whose population is lowered when the microwave detuning

is negative and increased when the detuning is positive. When the magnetic field

direction is reversed, the probe becomes σ−-polarized with respect to the magnetic-

field vector and can couple only to |F = 1,mF = 1⟩ state, so the observed absorption

pattern is reversed (not shown).
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Figure 6.6: (a) Optical signal during a microwave frequency scan detected by PD1 and
PD2 for circularly polarized probe in case when the static magnetic field B is parallel
to the probe beam. Inset shown the orientation of the static magnetic-field vector and
the polarization of the probe electric-field vector E with respect to x and y axes from
Figure 6.5(a). The probe polarization lies in the xz plane. The microwave detuning
is given with respect to the clock transition. (b) Schematics of the microwave (blue
arrows) and probe (yellow arrow) transitions, and the expected relative distribution
of the atomic population between Zeeman substates corresponding to peaks I and
II from (a). The probe polarization is indicated with respect to the static magnetic
field. The pump is not shown. (c) and (d) are same as (a) and (b), except the static
magnetic field is perpendicular to xy-plane. Signals in (a) and (c) are shown on the
same scale. Microwave source power output is −10 dBm. The frequency sweeping
rate is 35.5 Hz.

Figure 6.6(c) shows the same measurement in the case when the static field is

applied vertically. Figure 6.6(d) shows the atomic population distribution and optical
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transitions if the quantization axis is chosen along the direction of the static field. In

this case, the linear electric-field component of the probe that is parallel to x drives

σ±-transitions, while the vertical component drives the π-transition. This population

distribution is symmetric in terms of the microwave detuning, so the observed signal

is also symmetric. Because the probe couples to all three transitions, the observed

signal is stronger than when the magnetic field is parallel to the probe.

Even though the measurements shown in Figure 6.6 support our model of microwave-

to-optical frequency conversion, the signal shown in Figure 6.6(a) does not fully match

our expectations for microwave-assisted optical pumping. If the atomic distribution

shown in Figure 6.6(b) is correct, we would not expect to observe peak II at all

or even see a decrease in optical transmission compared to the transmission level

corresponding to the off-resonant microwave field, since the population transfer to

|F = 1,mF = −1⟩ resulted from the microwave-assisted optical pumping should pro-

vide a higher optical density for σ+-polarized probe compared to the off-resonant case.

A possible reason for the observed discrepancy is a misalignment of the probe wave-

vector and the magnetic-field vector, in which case the probe polarization with respect

to the quantization axis is not fully circular. In addition, a significant part of the op-

tical signal might be arising from the velocity classes resonant with F = 1 → F ′ = 1

and F = 1 → F ′ = 2 transitions, for which all Zeeman sublevels of |F = 1⟩ will couple

to the probe and contribute to the absorption. To further test that the microwave

field creates asymmetric population distribution, in the next section, we look at the

optical rotation.

6.4.3 Microwave-controlled optical rotation

The optical absorption in a medium is interconnected with dispersion - the frequency

dependence of the phase-velocity of light in the medium, which is characterized by

the refractive index. The fact that the microwave field in the above setup affects

the optical absorption suggests that it also has an effect on the dispersion. We use
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this effect to demonstrate that the microwave-assisted optical pumping creates an

uneven population distribution between Zeeman levels, which results in a circular

birefringence of the atomic vapor and an optical rotation of the probe polarization.

To observe the optical rotation, we use the same setup as for the absorption mea-

surements in Figure 6.6(a), except now the probe is linearly polarized and its fre-

quency is far red-detuned from |F = 1⟩ → |F = 0⟩ transition, where its absorption

is reduced and the dispersion is enhanced. In this setup the probe frequency is not

locked, and we set it by hand to the lower-frequency edge of the Doppler-broadened

absorption peak of the D2-line originating in the F = 1 level. With a half-wave

plate, we set the probe polarization at 45 degrees with respect to the x-axis (−45 de-

grees with respect to the z-axis), in which case PBS2 splits the probe power equally

between the two photodetectors. In this setup, the optical rotation will result in

opposite changes in the photo-voltage of the two detectors without affecting the total

optical power.

To explain the origin of the optical rotation, we choose the quantization axis along

the static magnetic field, which is parallel to the probe beam. With respect to this

axis, the probe electric-field vector is in equal superposition σ+- and σ−-polarized

fields, which couple only to |F = 1,mF = −1⟩ and |F = 1,mF = 1⟩ states, respec-

tively. Assuming that the single-atom refraction index is the same for each transition,

the ensemble refractive index for each transition is proportional to the population at

the corresponding level. As a result, the phase difference between the two polariza-

tions leaving the ensemble is given by

∆ϕ = kL(nσ+ − nσ−) = kLn[N(mF = −1)−N(mF = 1)], (6.1)

where k is the wavenumber, L and the distance that the light travels in the medium,

n is the single-atom refraction index, and N(mF = −1) and N(mF = 1) are the num-

bers of atoms in states |F = 1,mF = −1⟩ and |F = 1,mF = 1⟩ states, respectively.

This phase difference determines the angle by which the linear optical polarization is
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rotated. While at thermal equilibrium atomic vapors are isotropic and thus do not

show any birefringence, here, the population difference in states |F = 1,mF = −1⟩

and |F = 1,mF = 1⟩ corresponds to macroscopic spin polarization of the vapor, mak-

ing it anisotropic.

The optical rotation due to spin polarization of atomic vapor discussed above

corresponds to paramagnetic Faraday rotation [129], which is different from the dia-

magnetic Faraday rotation, where the optical rotation angle is proportional to the

magnitude of a strong static magnetic field applied parallel to the optical beam [130].

In the case of diamagnetic Faraday rotation, transitions corresponding to different

circular polarization experience different frequency shifts due to the interaction with

the static magnetic field leading to the circular birefringence. In atomic vapors, both

effects are typically referred to as Faraday rotation without specifying the type.
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Figure 6.7: (a) Optical rotation during the microwave frequency scan detected as a
change in the photovoltage on detectors PD1 and PD2. The green curve corresponds
to the sum of the two voltages. Microwave detuning is given with respect to the
clock transition. The microwave source is set to −10 dBm, the microwave frequency
is scanned at a rate of 35 Hz. The estimated optical rotation angle corresponding
to peak I is around 0.025 mrad. (b) Schematics of the microwave (blue arrows) and
probe (yellow arrow) transitions, and the expected relative distribution of the atomic
population between Zeeman substates corresponding to peaks I and II from (a). The
pump is not shown.

Figure 6.7(a) shows the AC parts of the photovoltage from PD1 and PD2 during
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the microwave frequency sweep. Whenever the microwave field is on resonance with

an allowed hyperfine transition, it results in a positive voltage change from one detec-

tor and a negative change from the other, indicating the optical rotation. The sum of

the two voltages is not exactly zero and corresponds to the part of the signal coming

from frequency conversion. The fact that the signal from each detector is antisym-

metric with respect to the clock-transition frequency means that the direction of the

polarization rotation depends on the sign of the microwave detuning. According to

Eq. 6.1, this is a consequence of a change in the sign of the difference in popula-

tions of levels |F = 1,mF = −1⟩ and |F = 1,mF = 1⟩. Figure 6.7(b) schematically

shows the population distribution for peaks I and II. Due to a higher population

of |F = 1,mF = +1⟩ in the case of peak I, σ−-polarization component experiences

larger a refractive index and acquires a phase delay relative to the σ+-polarization

component, so the linear polarization rotates towards the horizontal axis, and more

optical power goes to PD2. If we turn off the pump light or set its frequency off-

resonance, the observed signal feature disappears, which suggests that the observed

circular birefringence of the vapor results from the optical pumping by the pump light

and not from the non-linear interaction with the probe itself.

6.5 Conclusions and outlook

We have demonstrated proof-of-principle microwave-to-optical frequency conversion

based on optical switching in a double-resonance arrangement. For practical appli-

cations, the switching should provide a good signal contrast between ON and OFF

regimes, which requires a high optical density for the probe beam. The optical den-

sity can be improved by increasing the atomic density in the cell and by increasing

the length of the geometrical path that the probe travels in the cell. To improve the

atomic density, we are replacing the current cell with a sealed vapor cell filled with

enriched 87Rb. To increase the path length covered by the probe inside the vapor cell,

the probe can be sent along the cell axis rather than across. This approach would
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require a different cavity design that provides optical access through the cavity faces.

In addition, we proposed a technique of microwave-assisted optical pumping that

can be used for engineering spin polarization in atomic vapors leading to optical

dichroism and birefringence. We provided experimental evidence for circular dichro-

ism for light resonant with |F = 1 → F ′ = 0⟩ transition and circular birefringence for

light red-detuned from the D2-line. The optical dichroism can be potentially used

for polarization-selective optical switching and microwave-to-optical frequency con-

version. The birefringence leads to the optical rotation, allowing us to manipulate

the probe polarization by varying parameters of the microwave field. To our knowl-

edge, this is the first demonstration of microwave control of optical rotation, at least

in atomic vapors, and the first discussion of the phenomenon of microwave-assisted

optical pumping. The microwave-controlled optical rotation can be used for optical

switching based on polarization rotation [131] and pulse carving [132]. With the prin-

ciples of microwave-to-optical transduction for radio-over-fiber applications developed

in Chapter 4, we can also use this effect to encode a signal in the optical polarization

angle, e.g., in the microwave-to-telecom transducer proposed in Section 4.7.

We believe that the results discussed in this chapter add a valuable contribution

to the toolbox for atomic microwave-optical interfaces for information and communi-

cation technologies.
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Chapter 7

Conclusions and future directions

In this thesis, we presented our results on realizing various types of microwave-to-

optical transduction in rubidium vapor. In our transduction approach, we build upon

the non-linear interaction between optical electric field and microwave magnetic field

in a double-resonance setup.

In Chapter 3, we showed that the cavity-based approach provides a simple yet

efficient method for enhancing the magnetic-dipole coupling between the microwave

field and the atomic magnetic moment and demonstrated a rigorous experimental

study of the double resonance in a thermal rubidium vapor inside a microwave cavity.

In Chapter 4, we introduced a novel method of transducing an audio signal from

a frequency- and amplitude-modulated microwave field to optical intensity. With a

proof-of-principle experiment, we demonstrated that the method is ready for radio-

over-fiber communications. In addition, we proposed an atom-based microwave-to-

telecom transducer relying on similar principles.

In Chapter 5, we presented our numerical and experimental study of quantum

dynamics of a two-level system driven by a microwave field with harmonic phase

modulation at arbitrary modulation depth. We hope that our results made a valuable

contribution towards the continuing investigation of fundamental and applied aspects

of quantum system dynamics [133].

In Chapter 6, we proposed and realized a novel method for microwave-to-optical
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frequency conversion in atomic vapors based on optical switching controlled by a

microwave field. We also proposed a scheme for microwave-assisted optical pump-

ing, which can be used for creating and manipulating the spin polarization of an

atomic ensemble. Through measurements of the optical dichroism and birefringence,

we experimentally demonstrated that the spin polarization created with this method

depends on the microwave frequency, which can be used for polarization-selective

microwave-to-optical frequency conversion and microwave control of optical polariza-

tion.

For each project, we included possible extensions and spin-off applications at the

end of the corresponding chapter. So far, all our transduction results are of semi-

classical nature, with the transduction is realized between classical field via quantum

dynamics in atomic vapor, so the general direction for all projects is to move towards

quantized fields, particularly expanding the proposed transduction methods for a

single-photon operation. This would require a thorough theoretical investigation of

the quantum aspects of the proposed transduction mechanism and consideration of

alternative experimental designs.

One of the important aspects of transduction that we did not look at in detail is the

spin relaxation in the atomic vapor and the limitations it imposes on the transduction

efficiency. This can be approached by using the buffer gas capabilities that our warm-

atom apparatus offers to look at how the buffer gas type and pressure affect relaxation

and transduction. For this purpose, the system needs to be provided with better

vacuum sealing and to be upgraded to incorporate a pressure gauge measuring the

total pressure inside.

Currently, our group is working on designing portable transducers based on vapor

cells coupled to microwave resonators. One approach is to use a sealed vapor cell

supported inside a microwave cavity by a dielectric material. In this project, Myles

Ruether has been analyzing how the support’s shape and dielectric properties affect

cavity resonance. Another approach is to use microfabricated vapor cells, which are
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currently studied and developed by Brittany Lu.

To move towards quantum transduction, together with the Davis lab we are cur-

rently building a hybrid system that will integrate cold atoms and cryogenically-cooled

microwave devices. The work on the cold-atom apparatus for this system was started

by Michelle Sullivan and is currently lead by Taras Hrushevskyi.

All in all, we believe our results make a valuable contribution to the growing library

of novel devices and methods for microwave-to-optical transduction being developed

at the University of Alberta and worldwide. These technologies will advance the field

of classical and quantum information and communications by providing a platform

for interfacing microwave-frequency qubits with optical photons. Such interface will

allow long-distance transfer of quantum information between separated microwave-

frequency qubits and integrating microwave and optical quantum information proto-

cols.
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[39] W. Demtröder, “Optical Pumping and Double-Resonance Techniques,” in Laser
Spectroscopy: Basic Concepts and Instrumentation. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pp. 552–593. doi: 10.1007/978-3-662-08260-7 10.

[40] J. G. Coffer and J. C. Camparo, “Atomic stabilization of field intensity us-
ing Rabi resonances,” Physical Review A - Atomic, Molecular, and Optical
Physics, vol. 62, no. 1, p. 9, 2000. doi: 10.1103/PhysRevA.62.013812.

[41] J. G. Coffer, B Sickmiller, A Presser, and J. C. Camparo, “Line shapes of
atomic-candle-type Rabi resonances,” Physical Review A - Atomic, Molecular,
and Optical Physics, vol. 66, no. 2, p. 7, 2002. doi: 10.1103/PhysRevA.66.
023806.

[42] M. Kinoshita, K. Shimaoka, and K. Komiyama, “Determination of the Mi-
crowave Field Strength Using the Rabi Oscillation for a New Microwave Power
Standard,” IEEE Transactions on Instrumentation and Measurement, vol. 58,
no. 4, pp. 1114–1119, 2009. doi: 10.1109/TIM.2008.2010677.

117

https://doi.org/10.1103/PhysRevLett.103.233602
https://doi.org/10.1038/s41467-018-04458-4
https://doi.org/10.1038/s41467-018-04458-4
https://doi.org/10.1109/FCS.2012.6243654
https://doi.org/10.1088/0960-1317/22/2/025013
https://doi.org/10.1088/0960-1317/22/2/025013
https://doi.org/10.1088/0031-8949/2012/T149/014013
https://doi.org/10.1088/0031-8949/2012/T149/014013
https://doi.org/10.1109/TUFFC.2013.005955
https://doi.org/10.1007/978-3-662-08260-7_10
https://doi.org/10.1103/PhysRevA.62.013812
https://doi.org/10.1103/PhysRevA.66.023806
https://doi.org/10.1103/PhysRevA.66.023806
https://doi.org/10.1109/TIM.2008.2010677


[43] M. Kinoshita, K. Shimaoka, and Y. Shimada, “Optimization of the atomic
candle signal for the precise measurement of microwave power,” IEEE Trans-
actions on Instrumentation and Measurement, vol. 62, no. 6, pp. 1807–1813,
2013. doi: 10.1109/TIM.2013.2239071.

[44] F. Sun, J. Ma, Q. Bai, X. Huang, B. Gao, and D. Hou, “Measuring mi-
crowave cavity response using atomic Rabi resonances,” Applied Physics Let-
ters, vol. 111, no. 5, p. 051 103, 2017. doi: 10.1063/1.4997302.

[45] M. Kinoshita and M. Ishii, “Electromagnetic field sensor based on atomic
candle,” in IEEE Transactions on Instrumentation and Measurement, vol. 66,
2017, pp. 1592–1597. doi: 10.1109/TIM.2017.2661618.

[46] F. Y. Sun, D Hou, Q. S. Bai, and X. H. Huang, “Rabi resonance in Cs atoms
and its application to microwave magnetic field measurement,” J. Phys. Com-
mun. J. Phys. Commun, vol. 2, no. 1, p. 015 008, 2018. doi: 10.1088/2399-
6528/aaa11f.

[47] F. Sun, Z. Jiang, J. Qu, Z. Song, J. Ma, and D. Hou, “Tunable Microwave
Magnetic Field Detection based on Rabi Resonance with a Single Cesium-
Rubidium Hybrid Vapor Cell,” Citation: Appl. Phys. Lett, vol. 113, p. 164 101,
2018. doi: 10.1063/1.5051025.

[48] H. Shi, J. Ma, X. Li, J. Liu, C. Li, and S. Zhang, “A Quantum-Based Microwave
Magnetic Field Sensor,” Sensors, vol. 18, no. 10, p. 3288, 2018. doi: 10.3390/
s18103288.

[49] X. Liu, Z. Jiang, J. Qu, D. Hou, X. Huang, and F. Sun, “Microwave mag-
netic field detection based on Cs vapor cell in free space,” Review of Scientific
Instruments, vol. 89, no. 6, p. 063 104, 2018. doi: 10.1063/1.5029986.

[50] K. C. Cox, D. H. Meyer, F. K. Fatemi, and P. D. Kunz, “Quantum-Limited
Atomic Receiver in the Electrically Small Regime,” PHYSICAL REVIEW
LETTERS, vol. 121, p. 110 502, 2018. doi: 10.1103/PhysRevLett.121.110502.

[51] A. B. Deb and N. Kjærgaard, “Radio-over-fiber using an optical antenna
based on Rydberg states of atoms,” Applied Physics Letters, vol. 112, no. 21,
p. 211 106, 2018. doi: 10.1063/1.5031033.

[52] Y. Jiao, X. Han, J. Fan, G. Raithel, J. Zhao, and S. Jia, “Atom-based quantum
receiver for amplitude- and frequency-modulated baseband signals in high-
frequency radio communication,” 2018.

[53] D. A. Anderson, R. E. Sapiro, and G. Raithel, “An atomic receiver for AM and
FM radio communication,” IEEE Transactions on Antennas and Propagation,
pp. 1–1, 2020. doi: 10.1109/TAP.2020.2987112.

[54] D. H. Meyer, K. C. Cox, F. K. Fatemi, and P. D. Kunz, “Digital communica-
tion with Rydberg atoms and amplitude-modulated microwave fields,” Applied
Physics Letters, vol. 112, no. 21, 2018. doi: 10.1063/1.5028357.

118

https://doi.org/10.1109/TIM.2013.2239071
https://doi.org/10.1063/1.4997302
https://doi.org/10.1109/TIM.2017.2661618
https://doi.org/10.1088/2399-6528/aaa11f
https://doi.org/10.1088/2399-6528/aaa11f
https://doi.org/10.1063/1.5051025
https://doi.org/10.3390/s18103288
https://doi.org/10.3390/s18103288
https://doi.org/10.1063/1.5029986
https://doi.org/10.1103/PhysRevLett.121.110502
https://doi.org/10.1063/1.5031033
https://doi.org/10.1109/TAP.2020.2987112
https://doi.org/10.1063/1.5028357


[55] C. L. Holloway, M. T. Simons, A. H. Haddab, C. J. Williams, and M. W.
Holloway, “A ”real-time” guitar recording using Rydberg atoms and electro-
magnetically induced transparency: Quantum physics meets music,” AIP Ad-
vances, vol. 9, no. 6, p. 065 110, 2019. doi: 10.1063/1.5099036.

[56] Z. Song, H. Liu, X. Liu, W. Zhang, H. Zou, J. Zhang, and J. Qu, “Rydberg-
atom-based digital communication using a continuously tunable radio-frequency
carrier,” Optics Express, vol. 27, no. 6, p. 8848, 2019. doi: 10.1364/oe.27.
008848.

[57] Y. Jiao, X. Han, J. Fan, G. Raithel, J. Zhao, and S. Jia, “Atom-based re-
ceiver for amplitude-modulated baseband signals in high-frequency radio com-
munication,” Applied Physics Express, vol. 12, no. 12, p. 126 002, 2019. doi:
10.7567/1882-0786/ab5463.

[58] C. L. Holloway, M. T. Simons, J. A. Gordon, and D. Novotny, “Detecting
and receiving phase-modulated signals with a rydberg atom-based receiver,”
IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 9, pp. 1853–
1857, 2019. doi: 10.1109/LAWP.2019.2931450.

[59] J. A. Gordon, M. T. Simons, A. H. Haddab, and C. L. Holloway, “Weak
electric-field detection with sub-1 Hz resolution at radio frequencies using a
Rydberg atom-based mixer,” AIP Advances, vol. 9, no. 4, 2019. doi: 10.1063/
1.5095633.

[60] M. T. Simons, A. H. Haddab, J. A. Gordon, and C. L. Holloway, “A Rydberg
atom-based mixer: Measuring the phase of a radio frequency wave,” Applied
Physics Letters, vol. 114, no. 11, p. 114 101, 2019. doi: 10.1063/1.5088821.

[61] C. L. Holloway, M. T. Simons, A. H. Haddab, C. J. Williams, and M. W.
Holloway, “A ”real-time” guitar recording using Rydberg atoms and electro-
magnetically induced transparency: Quantum physics meets music,” AIP Ad-
vances, vol. 9, no. 6, 2019. doi: 10.1063/1.5099036.

[62] A. Tretiakov, C. A. Potts, T. S. Lee, M. J. Thiessen, J. P. Davis, and L. J.
LeBlanc, “Atomic microwave-to-optical signal transduction via magnetic-field
coupling in a resonant microwave cavity,” Applied Physics Letters, vol. 116,
no. 16, p. 164 101, 2020. doi: 10.1063/1.5144616.

[63] A. Tretiakov and L. J. LeBlanc, “Microwave Rabi resonances beyond the small-
signal regime,” Physical Review A, vol. 99, no. 4, p. 043 402, 2019. doi: 10.
1103/PhysRevA.99.043402.

[64] C. J. Foot, “Atomic physics,” in. Oxford: Oxford University Press, 2005, ch. 4.

[65] D. J. Griffiths and D. F. Schroeter, “Introduction to quantum mechanics,” in.
Cambridge University Press, 2017, ch. 6.

[66] C Cohen-Tannoudji, B Diu, and F Laloë, “Quantum mechanics.,” in. New
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Appendix A: Angular momentum
operators

In this appendix we present some definitions and conventions concerning the angular

momentum operators that we use throughout the thesis. As an example we will

consider the total atomic angular momentum operator F̂. Each component of F̂

corresponds to the projection of the angular momentum on the corresponding axis. In

general, atomic quantum states are described in terms of Hermitian operators F̂ z and

F2̂ = F 2 = F 2
x + F 2

y + F 2
z , corresponding to the projection of the angular momentum

vector on the z-axis and the square of the vector’s magnitude, respectively. Operators

F̂ z and F̂
2
commute with each other and have common eigenstates |F,mF ⟩, such that

F̂ z |F,mF ⟩ = ℏmF |F,mF ⟩ , (A.1)

and

F̂
2
|F,mF ⟩ = ℏ2F (F + 1) |F,mF ⟩ , (A.2)

where mF = −F,−F + 1, . . . , F − 1, F , both mF and F are dimensionless, and F is

positive.

When the atomic energy does not depend on mF , we typically describe the atomic

state in terms of level |F ⟩, which refers to a set of all quantum states that differ only

in mF .
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Appendix B: Polarization in
atomic transitions

In this Appendix we provide more details on the polarization of oscillating fields

involved in the atomic transitions. The polarization type is indicated with respect to

a particular quantization axis, which is typically along the z-axis.

z

b

z

b

z

z
b

z
b
xx

z b
x

b

(a)

θ

b = bσ-

b = bπcosθ
+ [ bσ+ + bσ-]sinθ b = bπ+ [ bσ+ + bσ-]

b = bσ+b = bπ

2
1

2
1b = [ bσ+ + bσ-]2

1

(b) (c)

(d) (e) (f)

Figure B.1: Several examples of polarization of field b with respect to the z-axis.

A linearly-polarized field is π-polarized with respect to the z-axis, if its vector is

parallel to the z-axis [see Figure B.1(a)]:

bπ(t) = zb0 cos(ωt+ ϕ). (B.1)

A circularly-polarized field is σ-polarized with respect to the z-axis, if its vector
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rotates around the z-axis in the perpendicular plane [see Figure B.1(b,c)]:

bσ±(t) = xb0 cos(ωt+ ϕ)± yb0 sin(ωt+ ϕ). (B.2)

In general, any polarization is a linear combination of π and σ± polarization com-

ponents. For example, a linearly-polarized field whose vector is perpendicular to

z-axis [see Figure B.1(d)] is an equal superposition of two fields that are σ+- and

σ−-polarized with respect to the z-axis:

b(t) = xb0 cos(ωt+ ϕ) =
1

2
[xb0 cos(ωt+ ϕ) + yb0 sin(ωt+ ϕ)] (B.3)

+
1

2
[xb0 cos(ωt+ ϕ)− yb0 sin(ωt+ ϕ)] =

1

2
bσ+(t) +

1

2
bσ−(t). (B.4)

If the vector of a linearly-polarized field makes an arbitrary angle θ with respect to

the z-axis [see Figure B.1(e)], the z-component corresponds to the π-polarization and

the x component with respect to the z-axis is an equal superposition of σ+ and σ−

polarization components. The total polarization with respect to the z is

b(t) = bπ(t) cos θ +
1

2
[bσ+(t) + bσ−(t)] sin θ. (B.5)

Finally, if the field is circularly-polarized in the plane parallel to the z-axis [see Fig-

ure B.1(f)], the polarization with respect to the z-axis is

b(t) = xb0 cos(ωt+ ϕ)± zb0 sin(ωt+ ϕ) =
1

2
[bσ+(t) + bσ−(t)]± bπ(t). (B.6)
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Appendix C: Modulated signals

In this appendix we provide illustrative examples of the amplitude, frequency, and

phase modulation.

(a)

A=1A=1/2A=1
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Figure C.1: Examples of different types of modulation. (a) Square-wave amplitude
modulation between A = 1 and A = 0.5 at the modulation frequency is ωm. The
carrier frequency is ω0 = ωm. (b) Square-wave frequency modulation between ω =
2ωm and ω = 4ωm. (c) Square-wave phase modulation between ϕ = 0 and ϕ = π.
Red solid curves correspond to the signal s(t), blue dashed curves correspond to the
modulating signal.

The amplitude-modulated (AM) signal is given by

s(t) = A(t) sin[ω0t+ ϕ0], (C.1)

where the frequency ω0 and the quadrature phase ϕ0 are constant, and the amplitude

A(t) is a function of time given by

A(t) = A0 [1 +mAMV (t)] , (C.2)

where A0 is the unmodulated amplitude, mAM is the amplitude-modulation index,
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and V (t) is the modulating signal. Figure C.1(a) shows the signal whose amplitude

is modulated between A0 and A0/2 with periodic square-wave pulses.

The frequency-modulated (FM) signal is given by

s(t) = A0 sin[ω(t)t+ ϕ0], (C.3)

where

ω(t) = ω0 +mFMV (t), (C.4)

mFM is the frequency-modulation index. Figure C.1(b) shows the signal whose fre-

quency is modulated between ω0 and 2ω0 with periodic square-wave pulses.

The phase-modulated (PM) signal is given by

s(t) = A0 sin[ω0t+ ϕ(t)], (C.5)

where

ϕ(t) = ϕ0 +mPMV (t), (C.6)

where mPM is the phase-modulation index. Figure C.1(c) shows the signal whose

frequency is modulated between 0 and π with periodic square-wave pulses.

129


	Introduction
	Applications
	Quantum computing
	Frequency standards 
	AC magnetometry and power standards
	Radio-over-fiber communication

	Novelty of this work

	Background
	Energy levels
	Gross structure
	Good quantum numbers
	Fine structure
	Hyperfine structure

	Linear Zeeman effect
	Transitions due to oscillating fields
	Selection rules
	Quantum evolution
	Optical pumping

	Ensemble effects
	Doppler broadening
	Transverse relaxation due to inhomogeneous static field
	Relaxation due to thermal motion


	Microwave-optical double resonance
	Principle
	Experimental setup
	Vacuum system
	Vapor cell
	Microwave cavity
	Rubidium source
	Optical probe
	Electronics
	Buffer gas compatibility

	System preparation
	System troubleshooting
	Test chamber
	Rb dispenser issues

	Atomic transitions for the double resonance measurements
	Experimental characterization
	Optical pumping and Rabi oscillations
	Double-resonance imaging for Zeeman spectroscopy and scalar magnetometry
	Relative depth of double-resonance dips
	Signal shape and frequency-sweeping rate
	AC magnetometry with a phase-modulated field


	Microwave-to-optical transduction of an audio signal
	Introduction and motivation
	Principle
	Setup
	Transduction characterization
	Single-frequency response
	Double-resonance profile and transduction coefficients
	Bandwidth measurements

	Transduction results
	Practicality and feasibility of our method
	Conclusions and outlook

	AC magnetometry in cold atoms
	Introduction
	Numerical simulation
	Theoretical model
	Time evolution: weak modulation
	Time evolution: strong modulation
	Rabi resonances

	Experimental setup
	Magneto-optical trapping
	Optical molasses cooling
	Double-resonance imaging

	Experimental results
	Conclusions

	Microwave-controlled optical switching, and optical polarization rotation.
	Introduction
	Microwave-to-optical transdcution via double resonance
	Microwave-assisted optical pumping
	Experiment
	Setup
	Frequency conversion
	Microwave-controlled optical rotation

	Conclusions and outlook

	Conclusions and future directions
	Bibliography
	Appendix A: Angular momentum operators
	Appendix B: Polarization in atomic transitions
	Appendix C: Modulated signals

