
Sequence-based Approaches to Course Recommender
Systems

by

Ren Wang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Ren Wang, 2017

Abstract

A curriculum is a planned sequence of instructions or a view of the student’s

experiences in terms of the educator’s or school’s instructional goals. How-

ever, the guidance provided by the curriculum is limited and both student and

course counsellor struggle with the question of choosing a suitable course at

a proper time. Many researchers have focused on making course recommen-

dations with traditional data mining technologies, yet they failed to take a

student’s history path of taking courses into consideration. In this thesis, we

study sequence-based approaches for the course recommender system. First,

we implement a course recommender system based on three different sequence

related approaches: process mining, dependency graph and sequential pat-

tern mining. Then, we evaluate the impact of the recommender system on

undergraduate students in higher education. The result shows that all three

methods can improve the performance of students in a certain scale while the

approach based on dependency graph contributes most.

ii

Table of Contents

List of Tables iv

List of Figures v

List of Algorithms vi

Glossary vii

1 Introduction 1

2 Recommender System 5
2.1 Review of Recommender System 5
2.2 Course Recommender System Structure 7

3 Course Recommender System based on Process Mining 10
3.1 Review of Process Mining . 10
3.2 Implementation of Course Recommender System based on Pro-

cess Mining . 17

4 Course Recommender System based on Dependency Graph 25
4.1 Review of Dependency Graph 25
4.2 Implementation of Course Recommender System based on De-

pendency Graph . 29

5 Course Recommender System based on Sequential Pattern
Mining 37
5.1 Review of Sequential Pattern Mining 37
5.2 Implementation of Course Recommender System based on Se-

quential Pattern Mining . 41

6 Course Recommender System Miscellany 48

7 Experiments 51
7.1 Data Simulator . 51
7.2 Course Recommender System Tuning 55
7.3 Result Analysis . 58
7.4 Course Recommender System GUI 65

8 Conclusions and Future Work 68

Bibliography 70

iii

List of Tables

3.1 Course histories of studentA and studentB 21

4.1 A sample dataset of the original DG discovery approach . . . 34

5.1 Data sequences of four customers over four days 38
5.2 An example sequence database 42

7.1 200 students’ average GPA varied by different thresholds of
GPA and similarity in CRS based on PM 56

7.2 200 students’ average GPA varied by different Pi+ and Pi− con-
fidence thresholds in CRS based on DG 58

7.3 200 students’ average GPA varied by different support thresh-
olds in CRS based on SPM . 58

7.4 200 students’ average GPAs varied by the year of starting CRS
in different approaches . 59

7.5 200 students’ average GPAs varied by the number of training
students of CRS in different approaches 60

7.6 200 students’ average graduation terms varied by the year of
starting CRS based on DG with the full “speedup” setting . . 61

7.7 The top 5 GPA contribution courses and graduation time con-
tribution courses . 63

iv

List of Figures

2.1 The overall structure of all entities’ interactions in our CRS . 8
2.2 Three main approaches inside our CRS 9

3.1 A Petri net modelling the handling of compensation requests . 11
3.2 Positions of three main types of PM: discovery, conformance,

and enhancement [53] . 13
3.3 An example log in XES format 14
3.4 PM conformance illustration [53] 15
3.5 An example of two types of processes 18
3.6 The rationale behind our PM algorithm 20
3.7 Footprint tables of studentA and studentB 23
3.8 The overall workflow of our CRS based on PM algorithm . . . 23

4.1 An example of DG . 26
4.2 Relations of event logs, the Petri net and the foortprint table . 27
4.3 Typical process choice patterns and corresponding footprints . 28
4.4 An example of course DG . 31
4.5 A learner’s interaction with DG learning system 31
4.6 The rationale behind the original DG algorithm 32
4.7 Projected datasets of the sample dataset 34
4.8 The rationale behind our DG algorithm 35
4.9 The overall workflow of our CRS based on DG algorithm . . . 36

5.1 The overall workflow of our CRS based on SPM algorithm . . 47

6.1 The overall workflow of our CRS that combines all three sequence-
based algorithms . 50

7.1 200 students’ average GPAs varied by the year of starting CRS
in different approaches . 60

7.2 200 students’ average GPAs varied by the number of training
students of CRS in different approaches 61

7.3 200 students’ average graduation terms varied by the year of
starting CRS based on DG with the full “speedup” setting . . 62

7.4 The DG of courses with edge colours representing discovery
sources . 64

7.5 The paths of successful students filtered from the 1500 training
students with the weight of edges representing the number of
students . 64

7.6 GUI of CRS . 66
7.7 GUI of one specific course recommendation 66
7.8 GUI of course record simulator 67

v

List of Algorithms

1 Algorithm of CRS based on PM 21
2 Algorithm of computing the similarity of two course history

sequences . 22
3 Algorithm of original DG discovery 33
4 Algorithm of CRS based on DG 36
5 Algorithm of PrefixSpan . 45
6 Algorithm of CRS based on SPM 46
7 Algorithm of data generation of taking courses by students . . 53
8 Algorithm of adding courses for one student at a specific term 54

vi

Glossary

Apriori-based Approach A SPM approach based on the fact that if a se-
quence is not frequent, then none of the super-sequences of it is frequent.

Business Process Management (BPM) A discipline that combines knowl-
edge from information technology and knowledge from management sci-
ences and applies this to operational business processes.

Casual Footprint Approach A conformance checking technique in PM that
compares two processes with footprint tables.

Collaborative Filtering Approach Recommending a user the items that
other users with similar tastes liked in the past.

Confidence An indication of how often the rule has been found to be true in
the database.

Content-based Approach Recommending an item that is similar to an-
other item a user or a customer has already taken.

Course History The sequence of a student taking each course including
course information and the student’s performance on that course.

Course Recommender System (CRS) A recommender system that seeks
to recommend the “ideal” courses for a student.

Curriculum The lessons and academic content taught in a school or in a spe-
cific course or program. It often refers specifically to a planned sequence
of instruction, or to a view of the student’s experiences in terms of the
educator’s or school’s instructional goals.

Data Mining The computational process of discovering valuable informa-
tion, patterns mostly, in large data sets involving methods including
artificial intelligence, machine learning, statistics, and database systems.

Dependency Graph (DG) One of the notations to represent a workflow
model. It is the most widely used notation because of its simplicity.

Dependency Graph Algorithm (DGA) An algorithm that recommends learn-
ing resources based on DG.

Footprint Table A table that records the relations of different activities in
process models or event logs.

Fuzzy Mining An process discovery algorithm in PM that can handle the
problems of incomplete data and outliers.

vii

GUI (Graphic User Interface) A visual way of interacting with a computer
using items such as windows, icons, and menus, used by most modern
operating systems.

Item A general term used to denote what the system recommends to users
based on users’ preference and information.

Key Courses Courses that must be taken in order to graduate for students.
Key courses may not show up in the mandatory list of a department’s
curriculum guideline.

Learning Objectives Brief statements that describe what students will be
expected to learn by the end of the study.

Learning Outcomes The actual outcomes of students learning by the end
of they study.

Petri Net One of the representations of process model which is consisted by
transitions, places and tokens.

PrefixSpan Algorithm The most widely used SPM algorithm which is based
on building projected databases.

Process Mining (PM) An emerging technique that can discover the real se-
quence of various activities from an event log, compare different processes
and ultimately identify the bottleneck of an existing process and hence
improve it.

Process Model A sequence of operations composed by related, structured
activities or tasks to produce a specific service or product or to fulfill a
particular goal.

Program of Study An academic plan developed by the school to help stu-
dents move towards the learning objectives.

Recommender System (RS) A technique and a tool providing suggestions
for items valuable to users.

Sequential Pattern A frequent sequence whose statistical significance in the
database is above a user-specified threshold.

Sequential Pattern Mining (SPM) A data mining technique of finding all
the sequential patterns given a database.

Support An indication of how frequently the itemset appears in the database.

The Alpha Algorithm The first process discovery algorithm in PM but it
cannot handle the problems of incomplete data and outliers properly.

Workflow Model See process model.

viii

Chapter 1

Introduction

The term program of study is defined as an academic plan developed by the

school to help students move towards the learning objectives, which are brief

statements that describe what students will be expected to learn by the end of

the study. The term curriculum is defined as the lessons and academic content

taught in a school or program. More often, it refers specifically to a planned

sequence of instructions, or to a view of the student’s experiences and this

definition is similar with the program of study. But, the learning outcomes, the

actual outcomes of students’ learning, may not match the learning objectives.

To bridge the gap, some constraints are imposed in the program of study or the

narrow definition of the curriculum. Examples are what courses to take at a

specific time and prerequisite course relations. However, the guidance provided

by the curriculum is very limited. It only tells students some restrictions

they must follow. Students are often confused by liberal course options that

are not strictly imposed by the curriculum. They can consult their course

counsellor with regard to the course selection, but even for course counsellors,

they may not have a clear clue of which course is proper for a specific student.

Moreover, such advice is time-consuming to be performed manually. Due to

this predicament, both students and course counsellors, or educators in a broad

view, would appreciate a course recommender system (CRS) to help students

achieve their goals and exert their potentials by recommending “ideal” courses

for students.

A recommendation of learning resources relies on the recommender system

1

technique in essence. A recommender system (RS) is a technique and software

tool providing suggestions of items valuable for users. The typical approaches

to build a recommendation system are content-based approaches and collab-

orative filtering approaches. A content-based approach is to recommend an

item that is similar to another item a user or a customer has already taken

or purchased. But, how do we know two items are similar? On one hand,

we can train the recommender system with past data to build some feature

vectors of all items. On the other hand, we can provide annotation manually

which is adding some structure or metadata to learning objects, in our case,

courses, to make both human and machine understand. Nonetheless, both

methods have their limitations. Normally, we do not have that much training

data compared with the products sold online to make feature vectors. Further-

more, annotating each course manually requires significant human efforts, and

standards may vary from person to person. Moreover, recommending a course

simply because it is “similar” to other courses taken by the student may not

be the right thing to do, even if it makes sense for purchased items. Another

traditional recommendation approach is collaborative filtering which relies on

both previous user ratings and ratings by others. This method is often used

in websites or software to provide product recommendations, such as movies,

books, etc.

However, both traditional recommendation approaches are not very appro-

priate for recommending courses due to one unique characteristic: the order

of students taking each course. It is not a very beneficial for student to learn

a more difficult course without the basic one first. Neglecting the order, there

can be a huge gap between the student’s course history and the course a rec-

ommender system recommends even if the system has found some similarities

by other approaches. In addition, some questions that students and educators

are eager to know can only be answered if we dive into the sequence of tak-

ing courses by students. For example, an educator may want to know what

is the “real” academic curriculum, if there are paths seldom used, if current

prerequisites make sense, if the particular curriculum constraints are obeyed,

or how courses from other departments affect courses inside the department.

2

The questions students may ask include but are not restricted to: how can I

finish my study as soon as possible? Is it more advantageous to take course A

before B or B before A? What is the best course for me to take this semester?

Will it improve my GPA if I take this course? Answering such questions to

both educators and students can greatly enhance the educational experience

and process. However, very few course recommender systems currently take

advantage of this unique sequence characteristic.

On one hand, students and course counsellors desperately need a course

recommender system that fully utilizes the sequence of a student’s course his-

tory. On the other hand, there is not an available tool to achieve that. This

missing link is the motivation of our work. The goal of our thesis is to prove

that sequence-based course recommender system is possible and specifically

we study three sequence-based approaches to build this recommender system.

Our thesis statements are as follows. First, a course recommender sys-

tem can be built. Second, such a recommender system can improve students’

performance. Third, recommender systems based on different approaches can

improve students’ performance in various scales. Fourth, this course recom-

mender system can also help course counsellors and educators to gain an in-

sight of the curriculum. My work and contribution include: 1. Exploiting the

possible solution to recommend courses with three sequence-based approaches,

2. Building a recommender system based on these three approaches, 3. Imple-

menting a simulator that mimics the course history of undergraduate students

in higher education which we cannot access due to ethical approval problems

and finally, 4. Comparing and analyzing the results of the recommender sys-

tem.

The feature that three approaches share is that all of them utilize the se-

quence of taking courses by students. The first approach our recommender

employs is process mining. Process mining is an emerging technique that can

discover the real sequence of various activities from an event log, compare dif-

ferent processes and ultimately identify the bottleneck of an existing process

and hence improve it. Utilizing the power of process mining, we recommend

courses to a student that successful students who have a similar course path

3

have taken. The next approach is based on the dependency graph. In [10],

the authors try to find dependencies among learning resources by the ratings

from students. We modify and improve that method to find the real pre-

requisite relations. Then we recommend courses to students based on what

prerequisite courses students have taken. The last approach our recommender

relies on is sequential pattern mining. Sequential pattern mining is to find

the frequent patterns that are above a certain threshold. By discovering the

frequent patterns that successful students have, we can lead the students who

need recommendation to greater success.

We conduct several experiments to evaluate our course recommender sys-

tems and to find the best recommendation approach. All three approaches can

improve students performance in different scales. The best recommendation

method is based on the dependency graph, and the number of recommended

courses accepted by students have a positive correlation with the performance.

Moreover, the course recommender system we build can speed up students’

graduation if set properly, and provide some useful insights for educators and

course counsellors.

In the next chapter we introduce the related research on recommender

systems both in general and in the field of education. For the next three

chapters, each will contain its own literature review in regard to the techniques

utilized. In Chapter 3, we give a background of process mining techniques

then we define our approach of building a course recommender system based

on process mining. Chapter 4 gives an introduction of the dependency graph

algorithm and then explains the recommender system built on that. A review

of sequential pattern mining is presented in Chapter 5 and then a recommender

system built by such method is exhibited. Chapter 6 discusses some other

aspects of our course recommender systems such as helping students graduate

quickly. Chapter 7 is about the course history simulator we implement, the

experiments we conduct and the result analysis of those experiments. In the

last chapter we conclude our thesis and indicate future work we need to do to

further enhance our course recommender system.

4

Chapter 2

Recommender System

2.1 Review of Recommender System

In this chapter we introduce the background information of data mining, es-

pecially in the area of recommender systems. Then we look at the role of

recommender systems in education.

The expanding capabilities of information systems and other systems that

depend on computing have grown greatly in recent years. Yet most of the

data stored is unstructured and organizations have problems dealing with this

data. Data mining is expected to resolve this issue in this information age.

Data mining is an interdisciplinary subfield of computer science. It is the

computational process of discovering valuable information, patterns mostly,

in large data sets involving methods including artificial intelligence, machine

learning, statistics, and database systems [9].

Among the various topics of data mining, recommender systems or rec-

ommendation systems are a major aspect on which this manuscript is based.

A recommender system (RS) is both a technique and a tool providing sug-

gestions for items valuable to users [40]. The suggestions relate to various

decision-making processes like what items to buy. “Item” is a general term

used to denote what the system recommends to users based on users’ prefer-

ence and information. Such needs become imperative especially in this digital

age with the explosive growth and variety of information available almost any-

where. By using an RS, a user can shun such overloaded information and

choose the most fitting item in ranking in most situations. One example of

5

why service providers may want to exploit this technique is boosting item

sales, which is arguably the most important function of an RS. A customer

will buy an item with a higher probability if he or she sees it. Another function

of RS is increasing users’ satisfaction. An RS can help customers find what

they want more easily and people like readily obtainable information. In our

case, building a course recommender system can not only improve students’

satisfaction and make them study with more initiative, but also benefit the

school, counsellors and educators overall.

The necessity of an RS is apparently indisputable, but how does an RS

work? According to [8], the taxonomy or the techniques of RS are as follows.

The two most frequently used methods are content-based approaches and col-

laborative filtering approaches. The content-based RS learns to recommend

items that are similar with the ones that the user liked in the past. The simi-

larity of items is calculated based on the features associated with the compared

items. For instance, if a user has positively rated a movie that belongs to the

comedy genre, then the system can learn to recommend other movies from this

genre. Collaborative filtering [44] approach is to recommend an active user the

items that other users having similar tastes liked in the past. The similarity

between the tastes of two users is calculated based on the similarity in the

rating history of users. This is the reason why [45] refers to collaborative fil-

tering as “people-to-people correlation”. Suppose people who rate bicycles as

good also tend to rate safe helmets as good, then it is logical for the system to

recommend a safe helmet to a new customer who just bought a bicycle rated

it as good. Collaborative filtering is considered to be the most popular and

widely implemented technique in RS.

Demographic profile of users can also be valuable to build an RS. For ex-

ample, users can be dispatched to particular websites based on their language,

country or even age [25]. Knowledge-based systems recommend items based

on specific domain knowledge about how certain item features meet users’

needs and preferences and, ultimately, how the item is useful for the user. A

community-based system [22] recommends items based on the preferences of

users’ friends. This technique follows the epigram “Tell me who your friends

6

are, and I will tell you who you are” [7]. This technique is very effective in

the rise of social network. If an RS is based on the combination of the above

mentioned techniques, it is considered to be a hybrid system. It can take the

advantages of technique A to fix the disadvantages of technique B.

RS also plays a significant role in education. Not long ago, RS was widely

used in commercial web system but was rarely deployed in the learning system.

The possibility of applying RS in education especially in the e-learning system

is brought in by [63]. Afterwards, many researchers have devoted to this area

and details can be found in [26]. The overall goal of most RS in education

is to improve students’ performance. This goal can be achieved in diverse

ways by recommending various things [50]. A common idea is to recommend

learning materials and resources such as papers, books and hyperlinks [48] [15]

[24]. Enrollment courses can also be recommended [35] [14]. However, most

RS only apply the techniques we introduced, i.e., content-based approaches

or collaborative filtering approaches. Utilizing sequences to improve students’

performance is seldom attempted. Nonetheless, the orders of how students

take courses often have a great impact on students’ understanding and overall

performance. This missing link is what this thesis tries to connect and fill.

2.2 Course Recommender System Structure

As stated, what we build is a course recommender system (CRS) that seeks

to recommend the “ideal” courses for students. The overall structure of all

entities’ interactions in our CRS is shown in Figure 2.1.

Interactions among entities can be categorized as follows:

• Curriculum and Students: Students are free to choose courses they like.

The curriculum can help students choose courses from the vast course op-

tions they have. The curriculum also indicates some compulsory courses

students must take in order to graduate.

• Students and Course history logs: Each course students take are recorded

in the course history log. Valuable information includes when students

7

Figure 2.1: The overall structure of all entities’ interactions in our CRS

take this course, how students perform and the order in which students

take courses.

• Course history logs and CRS: CRS extracts worthy information from the

course history log and analyzes it. CRS can summarize some underlying

patterns of successful students beneath the vast amount of data.

• Students and CRS: Students may still have questions about which course

to take since the guideline a curriculum can provide is very limited.

Students can now ask CRS by providing their course history, and CRS

will feedback a personalized course plan.

• CRS and Curriculum: The patterns mined by CRS can also be helpful

to educators. Educators can improve the curriculum by digging into the

patterns found by CRS.

In this thesis, we implement a CRS that can choose the “right” course for

each individual undergraduate students in higher education at a specific time

based on their past course history. The three sequence-based approaches our

CRS relies on are process mining, dependency graph and sequential pattern

mining respectively, which will be presented in detail in the following chapters.

8

Figure 2.2: Three main approaches inside our CRS

Their structure inside our CRS is shown in Figure 2.2. Each approach provides

course recommendations separately. In addition, another algorithm to provide

recommendations by merging their results is also implemented.

Measuring students’ competencies is a hard problem that many scholars

have debated. A model of dimensions of learning is built to assess student

learning achievements in [32]. Various scoring rubrics of student’s perfor-

mance criteria are discussed in [5]. The limitations of testing in an assess-

ment system are researched in [62]. Merits and weaknesses of using numerical

marks to assess students’ performance are presented in [11]. Finally, authors

in [43] analyzed interpretations of criteria-based assessment and grading in

higher education. As these papers studied, the assessment criteria of students’

competencies differ from teachers to teachers, students to students, school to

job market. Here we do not intend to argue what is best to gauge students.

Although numerous disadvantages in the grading system, there are no simple

solutions to replace it. Other student performance criteria are hard to measure

especially for a recommender system based on numbers like our CRS and they

are universal among different education institutions either. That is the reason

we utilize the grading system as a proxy for students’ competencies to check

whether our CRS works or not. We also implement an algorithm to speed up

students graduation by recommending key courses in the early terms which is

introduced in Chapter 6. In the future we can add more measurements into

our system.

9

Chapter 3

Course Recommender System

based on Process Mining

In this chapter we first present a general view of process mining which includes

discovery, conformance and enhancement. Then we go through how we utilize

the power of process mining to recommend courses to students in detail. Al-

though we present three sequence methods to improve students’ performance

in this thesis, they are all related to process mining in some way. We put this

chapter first and introduce it in more detail compared to others in order to

have a full background knowledge.

3.1 Review of Process Mining

The concept of data mining can be applied to many areas. One area could

be Business Process Management (BPM). BPM is a discipline that combines

knowledge from information technology and knowledge from management sci-

ences and applies this to operational business processes[52]. Much attention

has been drawn to this area due to the significance of its role in increasing

productivity and saving costs. For instance, by modelling a business process

and analyzing it using simulation, managers may get ideas on how to reduce

costs while improving service level. The core of BPM is business process model

or workflow model.

A process model is a sequence of operations composed by related, struc-

tured activities or tasks to produce a specific service or product, or to fulfill

10

tion. This makes it difficult to model one process in isolation. Also, workers

do not work at constant speed. The third problem is the abstraction level of

the model. Depending on the input data and the questions that need to be

answered, a suitable abstraction level is needed.

Thanks to the digital age when nearly all activities of a business are stored

in computers, one solution to the problems is to find out what really happened

from the massive data. Just like we utilize data mining to obtain the “real”

information hidden beneath the vast amount of data, process mining is what

is applied in this business process or workflow area. Process mining (PM) is

an emerging technique that can discover the real sequence of various activities

from an event log, compare different processes and ultimately find the bot-

tleneck of an existing process and hence improve it [53]. To be specific, PM

consists of extracting knowledge from event logs recorded by an information

system and discovering business process from these event logs, comparing pro-

cesses, and providing suggestions for improvements in these processes. PM

techniques are often used when there is not a formal description of the process

and it often can provide a visualization with a flowchart as a sequence of ac-

tivities. To conclude, the three main tasks of PM are discovery, conformance

and enhancement. Figure 3.2 shows the positions of three main types of PM:

discovery, conformance, and enhancement. PM can be deemed as part of data

mining, a specific direction that targets the process model, normally in the

business areas.

Getting and cleaning data, which are called event logs in PM, are always

the first step of PM. It is significant for three reasons. First, most of the

time we cannot directly handle the event logs because they are often messily

stored in the database. Second, there are some data that need to be filtered

or treated specially. Third, a universal form of event logs is needed if we

are going to apply standard PM approaches or software. Until recently, the

de facto standard for storing and exchanging events logs was MXML (Mining

eXtensible Markup Language). MXML emerged in 2003 and was later adopted

by the PM tool ProM [60]. It uses an XML-based syntax. The current standard

of event logs in PM field is XES which is the successor of MXML [19]. Based

12

using some standard patterns. However, most of the contribution is plain

theory and no real experiment is conducted. [36] directly targets curriculum

data and brings up a notion called curriculum mining. Similar with the three

components of PM, it clearly defines three main tasks of curriculum mining,

which are curriculum model discovery, curriculum model conformance checking

and curriculum model extensions. The authors explain vividly how curriculum

mining can answer some of the questions that teachers and administrators may

ask.

Researchers have also focused on educational data with PM, though not

particularly on curriculum data. One example is [6] in which the authors

present a platform, SoftLearn, that is able to discover complete, precise and

simple learning paths from event logs. The paths they find are the sequences

of a student’s behaviour during a specific week of one course, while our em-

phasis is curriculum mining which is the sequence of a student taking different

courses. Assessment data of online multiple choices is analyzed in [37]. Still,

it only focuses on events related to the flexibility of navigation feedback re-

quests for the question items. The modelling approach does not explain how

the navigation through different questions impact test results. Another exam-

ple is [46]. The authors try to explore the relationship between the students’

performance and regulatory activity during a computer-supported collabora-

tive learning task using PM. The result is that no major differences are found

in process models between high-achieving and low-achieving students. Again,

these papers among others are just showing the possibility to apply PM to

educational data.

Another area that PM is used is health care data. The process of patients

going through different departments of a hospital and doing different kinds of

examinations and treatments can be analyzed through PM. PM in this area

in general, especially the data type and some frequently asked questions, is

discussed in [29]. Simulated data of patients that require different specialties

(multidisciplinary patient) are analyzed in order to automatically discover the

workflow of the hospital in [30]. Similarly, [28] also aims to obtain meaningful

knowledge about “careflows”, e.g., to discover typical paths followed by par-

16

ticular groups of patients. Finally, some real stroke patients cases are dealt

with PM in [27] bearing the objective to discover the procedures for treating

them in different hospitals, and it demonstrates the applicability of PM in the

health-care domain.

Besides in education and hospital areas, scholars also attempt to apply

PM in many other areas. Authors discuss the possibilities of employing PM to

the human interaction in public works department with a goal of productivity

improvement [55]. Authors in [17] brought PM to machines instead of human,

i.e., remote servicing network of Philips Healthcare (formerly known as Philips

Medical Systems). They find some surprising discrepancies and improve test

scripts by analyzing deployed application usage data. Another example of

PM in machine is [42]. It is reducing the test period of manufacturers of

chip-making equipment by examining the unnecessary loops. PM can also be

helpful to many other areas such as web service [57] [54] and supply chain [31].

Currently, there are some tools available to help dive into PM immediately.

The most famous one is ProM[59]. It is a free software for academia mostly.

Another commercial PM tool is Disco [16], which has a very nice interface and

the analysis of it is straightforward. These tools shed light into data with PM

perspective. However, the insights they provide are too general and that is

the reason we have to build a tool targeting students’ data by ourselves.

3.2 Implementation of Course Recommender

System based on Process Mining

In this section we introduce our CRS based on PM, i.e., we recommend courses

to a student that successful students who have a similar course path have

taken. As briefly mentioned in the last section, PM is an emerging technique

that can discover the real sequence of various activities from an event log,

compare different processes and ultimately find the bottleneck of an existing

process and hence improve it. According to this definition, there are three

classes of PM techniques: discovery, conformance checking and enhancement.

In the discovery part, a PM discovery algorithm will attempt to identify the

17

Figure 3.5: An example of two types of processes

real orders of activities. However, our course data are different from typical

PM data at least in the following three aspects.

The first aspect is the order of the activities. Generally, in PM data, the

order of activities is relatively determined. One example is software devel-

opment. When we develop a software, the steps we often take are demands

analysis, system structure design, detail design, coding, testing, delivery and

maintenance. We cannot skip to testing without coding. Certainly, the pro-

cess in the real world is more complicated. We may skip or change the order of

some activities in reality, but there is a general order overall. However, this is

not the case for our data, the history of students taking courses. Students are

quite free to take the courses they like and they do not follow a specific order.

Granted that there are restrictions such as prerequisite courses or the courses

we need to take in order to graduate, these dependencies are relatively rare

compared with the number of courses available. To make it clearer, a normal

process would be like the left one of Figure 3.5, a graph with many branches

yet there is a relatively clear path. However, our data looks like the figure

on the right, a messy graph with no strict order, which is vividly called the

spaghetti process due to its intertwined property. The PM application papers

we mentioned before often face this kind of graph. Yet their solutions to this

problem are more from a statistical view rather the messy graph itself.

The second aspect is the dependency length. In the example of software

18

development, coding must be done before testing. If we are at the testing

phase, we may safely conclude that the design phase is already done. It is

because testing depends not only on coding but also on design since design

is before coding. This is an intuition of knowing which phase we are at in

the process. However, in the course history data, we do not have such a

long dependency. We may have a prerequisite requirement, e.g., we must take

CMPUT 174 and CMPUT 204 first in order to take CMPUT 304, but such

dependency is very short. We may conclude the phase of our study by the

starting number of the course, e.g., taking CMPUT 304 indicates the third

year, but such information is not general and accurate.

The third difference is the type of activities in the sequence. Data from

typical PM problem are the sequence of single activities, while in our case they

are the sequence of sets. Students can take several courses in the same term,

which makes it more difficult to represent in a graph.

For the reasons above, we do not attempt to build a dependency graph

in our PM method and we directly apply the second class of PM, namely

conformance checking, to our CRS. Our CRS can also be considered as the

enhancement class of PM since the goal of our CRS is to recommend courses

that can boost students performance.

The intuition behind our algorithm is to recommend the path that success-

ful students take, i.e., to recommend courses taken by the students who are

both successful and similar to our students who need help. This rationale is

shown in Figure 3.6. We achieve this by the steps in Algorithm 1.

Here is the explanation of the above algorithm. Suppose we have a log of

finished students and a student who needs recommendations. In the program,

we find all course histories of finished students whose GPA is above a certain

threshold. We define them as successful students and we do not take other

students, less successful students, into consideration. Next, we further filter

the results from successful students and only keep successful students who are

similar to this specific student based on a similarity metric. Now that we have

students who are both successful and similar to this student, we build a list

of all the courses those students take next. We call these courses candidate

19

Figure 3.6: The rationale behind our PM algorithm

courses. There are probably many candidate courses while only a limited

number of recommendations is needed. The last step is to rank them based on

some metrics and choose the top courses to recommend. The metrics can be

course GPA contribution, whether the course is a key course or not (courses

students must take) or a hybrid method. Details of such metrics are explained

in Chapter 6.

The method we use to compute the similarity between two students is

an improved version of the casual footprint approach. The casual footprint

approach is a conformance checking technique in PM that compares two pro-

cesses. In the original casual footprint approach, it first builds two footprint

tables that record the relations of different activities based on two process

models. Then it computes the number of differences between two footprint

tables. Our approach improves the original one in the following two aspects.

Firstly, we modify the approach to suit our data: the original approach is used

on two process models while our method applies to data directly which is the

sequence of sets. Secondly, we define some new relations among activities,

courses in our case, due to the special attributes of course history and the

sequence of set.

We define the following relations between two courses:

20

Algorithm 1 Algorithm of CRS based on PM
Input :

Logs L of finished students course history
Student stu who needs course recommendations

Execute :
1: Find all high GPA students from L as HS
2: Set candidate courses CC = ∅
3: for all stuHGPA in HS do

4: Apply Algorithm 2 to compute the similarity sim between stu and
stuHGPA

5: if sim is greater than a certain threshold then

6: Add courses that stuHGPA take next to CC
7: end if

8: end for

9: Rank CC based on selected metrics
10: Recommend the top courses from CC to stu

Table 3.1: Course histories of studentA and studentB
Student Term 1 Term 2 Term 3 Term 4

A 174 175 201, 208
B 174 175 204, 208 304

• Direct succession: x→ y iff x is directly followed by y

• Indirect succession: x→→ y iff x is indirectly followed by y

• Reverse direct succession: x← y iff y is directly followed by x

• Reverse indirect succession: x←← y iff y is directly followed by x

• Same term: x ‖ y iff x and y are in the same term

• Other: x#y for Initialization or if x and y have the same name

The example below illustrates these relations. Suppose we want to com-

pare the similarity between studentA and studentB whose course histories are

shown in Table 3.1. Then the relations between courses of studentA include

but are not limited to: 174#204 (204 is not in the course history of studentA),

174→ 175 (174 is immediately followed by 175), 174→→ 201 (174 is followed

but not directly by 201), 201←← 174.

21

With the relation terms defined, we can proceed to our improved version

of the footprint algorithm which computes the similarity of two course history

sequences.

Algorithm 2 Algorithm of computing the similarity of two course history
sequences
Input :

Course history sequence of the first student s1
Course history sequence of the first student s2

Output :
1: Truncate the longer sequence to the same length with the shorter sequence
2: Build two blank footprint tables that map between s1 and s2
3: Fill out two footprint tables based on s1 and s2
4: Calculate the total elements and the number of elements that are different
5: Compute the similarity
6: Return the similarity of s1 and s2

In most cases, finished students’ course histories are much longer than the

current students’. To eliminate this difference we truncate the longer sequence

to the same length of the shorter sequence. The next step is to build a one-

to-one mapping of all courses in both sequences. Our CRS computes the

above defined relations based on the two sequences and fills the relations in

the footprint table separately. Lastly, our CRS calculates differenceCount

which is the number of elements in footprint tables that s1 differs from s2, and

totalCount which is the total number of elements in one footprint table. With

those numbers, similarity is

similarity = 1− differenceCount

totalCount
.

Figure 3.7 is the footprint tables of studentA and studentB. The table does

not contain 304 since it has been truncated in the first step. differenceCount

is 12 and totalCount is 25 if we check the cells in both tables. Therefore, the

similarity between the two sequences is:

similarity = 1− 12
25

= 0.52

Figure 3.8 shows the whole algorithm workflow of our CRS based on PM.

When we were conducting the experiments, it took far too long to recommend

22

Figure 3.7: Footprint tables of studentA and studentB

Figure 3.8: The overall workflow of our CRS based on PM algorithm

23

courses to students, so we made some modifications to speed up the recom-

mendation process of this approach. Firstly, we used to recommend one course

to a student at a time even if several courses are needed in one term. The

number of repeating processes even in one term to one student would take

about four times. Now instead, we recommend the courses in one term to-

gether. Secondly, if we need to recommend courses to students who we have

recommended to before, we do not need to compare them to all other suc-

cessful students again. We only compare them to students who are similar to

them in the previous recommendation round. Because if a path is not similar

with another path before, it is not very possible to become similar by adding

another activity, provided that the path is already long enough. This is also

for the sake of less computation.

24

Chapter 4

Course Recommender System

based on Dependency Graph

In this section we look at our CRS based on the dependency graph. Some

algorithms of finding the dependency graph are reviewed. Broadly speaking,

we can categorize the dependency graph algorithm into the discovery part of

PM. Therefore, we introduce the discovery approaches in this chapter. We

choose and improve one of them to build our CRS.

4.1 Review of Dependency Graph

How to discover a process, which we did not go into detail in the last chapter,

is more closely related to this section, the dependency graph algorithm. By

examining the data, the result from process discovery is a workflow model

represented in a graph. The basic elements of this graph are sequences and

choices. Sequences define the order of each activity in the work and the choices

define in certain cases we choose one way over another. As long as a graph

model possesses these two elements, it can be a result of a process discovery,

just different notations. Examples of such graph models include Transition

System [56], Petri net [39], YAWL [49], Buisiness Process Modelling Nota-

tion (BPMN) [13], Event-Driven Process Chains (EPC) [34] and Dependency

Graph (DG). Surely, each notation has its own advantages and limitations.

The key things to be considered for a process notation are whether it can

represent concurrency, soundness and patterns (AND, OR, XOR etc.). These

25

Figure 4.1: An example of DG

functions are not strictly required since the best model is a model that is suit-

able for its task. As one of the notations, the dependency graph (DG) is the

simplest yet most widely used. Figure 4.1 is a DG example from with various

activities from a to i and edges with weights. The edges do not necessarily

have weights, but the key in a DG is edges connecting different activities to

demonstrates dependencies. Normally, the representation of a workflow model

does not affect how we analyze the problem too much and different notations

can be converted. Even though the following discovery methods introduced

often have a preferred result notation, it is not a big problem.

A primitive method to utilize data to discover DG is stated in [2]. It is an

algorithm that, given a log of unstructured executions of a process, generates a

graph model of the process. The dependency relation is based on the intuition

that for two activities A and B, if B follows A but A does not follow B,

then B is dependent on A. If they both follow each other in the data, they are

independent. This simple intuitive idea lays the foundation for many following

PM algorithms though this paper [2] itself leaves many complicated questions

unanswered.

In some situations, a DG is not enough to deal with the problems. A nota-

tion that is able to reveal concurrency and different choice features is needed,

and the Petri net [39] satisfies this criteria. To correspond with the Petri net, a

more complicated mining method is proposed: the Alpha Algorithm [58]. The

Alpha Algorithm is a widely known discovery approach that is represented in

26

Figure 4.3: Typical process choice patterns and corresponding footprints

similarly. Utilizing this principle, one can build a whole Petri net from the

footprint table that records the relations found in data.

With so many benefits being mentioned, the Alpha-algorithm has serious

problems with incomplete data or outliers. Due to such limitations, the Alpha-

algorithm is seldom applied with real data. In the real world, data tend to

be chaotic and disordered. Researchers in PM field vividly call the two dif-

ferent kinds of data as “Lasagna” and “Spaghetti” respectively. The Lasagna

process is structured, regular, controllable and repetitive. The opposite is the

Spaghetti process which represents unstructured, irregular, flexible and vari-

able. Most data in the real world belong to the latter genre which requires an

approach tolerating the messy situations. That is why in reality the heuristic

mining approach [61] and the fuzzy mining approach [18] are the most widely

used discovery techniques. They are resilient with incompleteness and out-

liers. Fuzzy mining is an improved version of heuristic mining and its idea is

as following:

1. Highly significant behaviour is preserved, i.e., contained in the simplified

model.

28

2. Less significant but highly correlated behaviour is aggregated, i.e., hid-

den in clusters within the simplified model.

3. Less significant and lowly correlated behaviour is abstracted from, i.e.,

removed from the simplified model.

We can imagine the fuzzy mining algorithm as a map and the type of map is

subject to our need. We may need a bicycle map instead of a driving map when

we are riding a bicycle. Similarly, a general overview of countries is preferred

instead of street details when we want to figure out the location structure of

countries. The word “fuzzy” means to omit certain details when they are not

important. That is exactly how “spaghetti” process should be dealt with. If

activities are very important, they should be preserved. If activities are not so

important but are highly correlated, they should be aggregated as one activity.

If activities are neither important or correlated, they should be ignored. These

rules are also applicable to the edges.

Other than the Alpha Algorithm and the fuzzy mining algorithm, some

researchers use genetic PM technique [12] and region based mining. Genetic

PM technique adopts an approach that mimics the process of natural evolu-

tion: treating process models as individuals and improving their quality by

combining them iteratively.

The approach we adopt is none of the above. Certainly, these approaches

have their advantages, but they are not quite suitable for our task. Our method

is based on [10]. We explain the limitations of approaches above, why we adopt

[10] and how we modify it to suit our case in the next section.

4.2 Implementation of Course Recommender

System based on Dependency Graph

In this section we introduce our CRS based on the dependency graph algorithm

(DGA). As we briefly mentioned in Chatper 2, one could provide recommen-

dations by two major approaches, namely, the content-based approach and the

collaborative filtering approach. However, in education these methods cannot

29

be applied well due to three limitations. One is the order. There is no point to

learn the advanced course without the basic one first. The second limitation

is the number of resources which is relatively finite in education. Compared

with the vast potential items like movies or products that we need to scan,

the learning resources, courses in our case, are limited in number. The last

method limitation is that recommending a course simply because it is “simi-

lar” to other courses taken by the student may not be the right thing to do,

even if it makes senses for purchased items.

The method which our CRS adopts is described in [10]. The authors de-

veloped an approach of recommending of learning resources for users based

on users’ previous feedback. It learns DG by users ratings. This method can

be applied to other resources. The goal of [10] is to resolve both limitations.

Specifically, it achieves this in three steps. The first step is growing the pool of

resources: gathering data. Users can take learning resources from the database

at will. The second step is obtaining the feedback. Learners are required to

give a rating or usefulness of the resources they used. The database evolves

by filtering learning objects with low ratings as time goes by. The third step

is mining the dependencies based on ratings. This mining is inspired by as-

sociation rule mining and sequential pattern analysis and we will introduce it

later in this section. The last step is generating intelligent suggestions based

on resources learners have seen, resources other learners have liked.

Consider an example of how to recommend resources to learners based on

what learners have seen. For this sample scenario we use the dependency graph

shown in Figure 4.4. The pool of resources contains eight resources which are

labeled A to H. Each edge in this graph represents a dependency among

resources. For example, E depends on either D or C. A special case is the

dependency for C, which depends on both A and B, but not in any particular

order. Each dependency represents what a learner should have seen in order

to find the current resource useful. All of these resources are targeted at a

particular topic. Now a learner who wishes to learn logs into the system for

the first time. Initially, the learner has not seen any resources, so the system

will select suitable resources for the learner to begin with. The dependency

30

Figure 4.4: An example of course DG

Figure 4.5: A learner’s interaction with DG learning system

graph is consulted and resources at the leaves, which are A, B and D, are

suggested to the learner. There are resources that the learner should not see

at this point as well, which are C and E, written next to these suggestions

in brackets. Finally, any resource that is not connected to the graph is not

hidden from the user and is added to the “other” list. Figure 4.5 (a) shows the

current state of the suggestions for the user. The learner selects resource B out

of the suggested resources. As the dependency graph contains a dependency

{ A, B} → C , it will suggest A next since B is considered to complement

A. This is reflected in Figure 4.5 (b). Figure 4.5 (c) shows that the learner

selected G, which does not change the suggestions. Once the learner has seen

the suggested resource A (Figure 4.5(d)), C is selected, shown in Figure 4.5

(e) and finally, E in Figure 4.5 (f).

The above analysis presumes that we have a DG prior to recommending

learning resources, yet this DG needs to be built. The following is the rationale

31

Figure 4.6: The rationale behind the original DG algorithm

behind the algorithm of mining a DG algorithm proposed by the authors and

it is illustrated in Figure 4.6.

1. Any positively rated item j that appears before a positively rated i

implies j is a dependency for i.

2. Any positively rated item j that appears before a negatively rated i

implies j is not a dependency for i.

3. Any negatively rated item j before i is ignored.

Based on these rationales, the specific steps of discovering the DG are

described as Algorithm 3.

Now we apply the steps above to a simple dataset shown in Table 4.1. The

first step is to take each item and find the items with a positive rating that

preceded them in each record. This is done for both positively and negatively

rated items. For example, the first record contains a positive B and there

is only one positive item, A, preceding it. Thus, considering only record 1,

PB+ = { A }. This relationship can be used to imply a dependency between

A and B, (A → B). Note that if in a subsequent record, we also find a (B

→ A) dependency, then this will cancel out the previous one, resulting in no

32

Algorithm 3 Algorithm of original DG discovery
Input :

Course material item set I
Execute :
1: for all item i from I do

2: Create two projected datasets Pi+ and Pi− for the positively and neg-
atively rated item i+ and i− respectively. A projected dataset for item
i is the set of positive items occur before i and in each sequence of the
source dataset.

3: Remove from Pi+ item sets in Pi− as they do not impact the ratings of
i, creating the potential dependency set Di

4: Find the smallest set of item sets from Di which describes the depen-
dencies.

5: end for

dependency between A and B. The project datasets for the three items, A, B

and C are shown in Figure 4.7.

Next, we work out Di which is defined as Pi+ with all itemsets of Pi−

removed. As i is not dependent on itemsets in Pi−, then by removing these

from Pi+ we only consider the items that may be dependent on i. For example,

if PA+ = { B,C,D }, PA− = { B,C }, then DA = { D } as this is the only

set of items that matters when A is not dependent on { B,C }.

After that we take the smallest subset of the potential dependencies, Di.

This involves finding the smallest set of items which cover the full dependencies

for the given item. Given any sequence X and Y if X is contained within Y ,

we can remove Y . For example, given that the current item is A, and X = B,

C and Y = { B,C,D } where { X, Y } belongs to DA, we can remove Y as X

is contained within Y . This means that A will be positive if positive items B

and C exist before it in sequence. As this subsequence exists in both X and

Y , we simply keep the smaller one of the two and discard the other. Finally,

we build the DG. Every item i is dependent on each item within Y , given Y

belongs to Di. For our example, A → B, B → C. Thus, the DG is A → B

→ C for our example.

Admittedly, there are several drawbacks of this method. Firstly, the de-

pendency structures authors tested are simply linear, bottom-up and bottom-

down. Both may lead to an over-estimated result. Secondly, authors do not

33

Table 4.1: A sample dataset of the original DG discovery approach
ID Feedback
1 A+, B+, C+

2 A+, C−, B+

3 B−, A+, C−

4 B−, C−, A+

5 C−, A+, B+

6 C−, B+, A+

Figure 4.7: Projected datasets of the sample dataset

utilize much of the context information, considering only ratings from learn-

ers. Last but not least, they do not mention how to eliminate the noise. For

example, they eliminate all the items Pi− from Pi+, but in real data there will

definitely be some noise.

Regardless of these drawbacks, the algorithm is considered innovative. We

propose an improved version of it as one of our approaches to recommend

courses. We choose this method for the reason that there are just too few

recommendation methods utilizing the sequence, especially in the education

field. The following aspects are changed to make the approach more suitable

to our case.

The first modification is rating. We cannot ask students to rate all the

courses they have taken. Besides, these ratings are not very reliable for build-

ing dependencies since the rating may come more from a preference mostly

instead of a relation. The indicator we built our dependencies upon is the

mark obtained by students in courses since mark is what how we evaluate our

CRS performance and we have explained this in Chapter 2. A good mark for

course i before a good mark of course j often implies course i is the prerequisite

34

Figure 4.8: The rationale behind our DG algorithm

of course j. This rationale is similar to the approach mentioned above. In ad-

dition to the original algorithm rationale, we also add a small variation in Pi−.

Once we decide to use the mark as a evaluation criteria, the next question will

be how good is positive and how bad is negative. Instead of using a universal

criteria, a more personalized conversion may be better. For instance, B+ may

be a good mark in common sense, but for a successful student whose mark is

A on average, B+ is not that good. Meanwhile, for a less successful student

whose average mark is only B, B+ is indeed a good mark. This characteristic

of students must be considered. Another improvement is support and con-

fidence thresholds. These two terms are used in association rule learning to

find interesting relations. The support is an indication of how frequently the

itemset appears in the database while the confidence is an indication of how

often the rule has been found to be true. One obvious problem of the original

algorithm is that the noise cannot be dealt with properly and thresholds can

solve it. When we are building the projected dataset a item is added into Pi+

only if the occurrence number satisfy the support and the confidence threshold

we set. After these modifications, the rationale behind our DG algorithm is

shown in Figure 4.8.

35

Algorithm 4 Algorithm of CRS based on DG
Input :

Logs L of finished students course history
Student stu who needs course recommendations

Execute :
1: Convert all marks of courses from L to positive or negative signs. The

standard may differ based on GPA
2: Build the projected dataset using Algorithm 3 with new modifications

applied.
3: Set candidate courses CC = ∅
4: Add courses whose prerequisites are finished to CC
5: Rank CC based on selected metrics
6: Recommend the top courses from CC to stu

Figure 4.9: The overall workflow of our CRS based on DG algorithm

Based on these rationales, we outline our algorithm of our CRS based on

DG in Algorithm 4. The CRS first learns dependencies from the finished

students’ course history. For a student who needs recommendations, the CRS

will check the previous course history of this student and compares his history

with the dependencies the CRS has learned. At the end, the CRS summarizes

the candidate courses that will be potentially recommended, ranks them, and

recommends the final result to this student. The overall workflow of our CRS

based on DG algorithm is shown in Figure 4.9.

36

Chapter 5

Course Recommender System

based on Sequential Pattern

Mining

Sequential pattern mining is an important data mining problem with broad

applications. It focuses mainly on sequence data. In the following section we

give a brief introduction of sequential pattern mining including some basic def-

initions and various approaches. Then we explain how we apply this sequence

technique in our CRS.

5.1 Review of Sequential Pattern Mining

Sequential pattern mining (SPM) deals with data represented as sequences (a

sequence contains sorted sets of items) [33]. In [4] the authors calls a database

a base of data sequences if it has the characteristics: sequence-id, transaction-

time and the item involved in the transaction. More precisely, each transaction

is a set of items (itemset or element) and each sequence is a list of transactions

ordered by transaction time. A sequential pattern is a frequent sequence whose

statistical significance in the database is above a user-specified threshold. SPM

is finding all the frequent sequences in the database. However, finding all the

patterns from huge data sets is a time-consuming task, i.e., the examination

of all possible combinations is intractable and new algorithms are needed. It

is obvious that SPM is applicable in a wide range since many types of data are

in a time-related format. It can be used to develop marketing strategies from

37

Table 5.1: Data sequences of four customers over four days
Cust June 04, 2004 June 05, 2004 June 06, 2004 June 07, 2004

C1 Camcorder, MiniDV Digital Camera MemCard USB Key

C2 Camcorder, MiniDV DVD Rec, DVD-R Video Soft

C3 DVD Rec, DVD-R MemCard Video Soft USB Key5

C4 Camcorder, MiniDV Laptop DVD Rec, DVD-R

a customer shopping database. By doing a web log analysis, patterns found

can be useful to better structure a company’s website for providing easier

access to the most popular links [23]. SPM can also be applied to intrusion

detection [21] and DNA sequences [65]. A good SPM algorithm should possess

the following features. First, it should be able to find the complete set of

patterns when possible, satisfying the minimum support threshold. Second, it

should be highly efficient, scalable, involving only a small number of database

scans. Lastly, it should be able to incorporate various kinds of user-specific

constraints.

Some definitions need to be cleared first to help us understand the various

problems and methods presented hereafter. We illustrate these definitions by

explaining an example from [33] shown in Table 5.1.

An item can be considered as the object bought by a customer, or the page

requested by the user of a website, etc. An itemset is the set of items that are

grouped by timestamp. For example, all the pages requested by a user on June

04, 2004. A data sequence is a sequence of itemsets associated with a customer.

In Table 5.1, the data sequence of C2 is the following: “(Camcorder, MiniDV)

(DVD Rec, DVD-R) (Video Soft) which means that the customer bought a

camcorder and miniDV the same day, followed by a DVD recorder and DVD-

R the day after, and finally a video software a few days later. A sequential

pattern is included in a data sequence. For instance “(MiniDV) (Video Soft)”

is included in the data sequence of C2, whereas “(DVD Rec) (Camcorder)” is

not included according to the order of the timestamps). The minimum support

is specified by the user and stands for the minimum number of occurrences

of a sequential pattern to be considered as frequent. A maximal frequent

sequential pattern is included in at least “minimum support” data sequences

and is not included in any other frequent sequential pattern. Table 5.1 gives

38

an example of four customers and their activities over four days in a shop.

With a minimum support of “50% ” a sequential pattern can be considered as

frequent if it occurs at least in the data sequences of two customers. In this

case a maximal SPM process will find three patterns:

• S1: (Camcorder, MiniDV) (DVD Rec, DVD-R)

• S2: (DVD Rec, DVD-R) (Video Soft)

• S3: (Memory Card) (USB Key)

One can observe that S1 is included in the data sequences of C2 and C4,

S2 is included in those of C2 and C3, and S3 in those of C1 and C2. Moreover,

the sequences do not have the same length, i.e., S1 has length 4, S2 has length

3 and S3 has a length of 2.

These basic definitions are essential for understanding SPM algorithms.

Generally speaking, there are two types of sequential mining approaches. One

is Apriori-based and the other one is pattern projection based.

The intuition of an Apriori-based approach is a simple fact that if a se-

quence S is not frequent, then none of the super-sequences of S is frequent.

If < ab > is infrequent, so is < (ac)b >. This approach is first stated in [4]

with a SPM concept introduction and an initial Apriori-like algorithm. Then

the problem and approach are improved in [47]. In [47], the GSP algorithm is

based on a breadth-first principle since it is an extension of the Apriori model

to the sequential aspect of the data. GSP uses the “Generating-Pruning”

method defined in [3] and performs in the following way. Initially, every item

in database is a candidate of length 1. Then for each level, i.e., sequences of

length k), scan database to collect support count for each candidate sequence.

After that, generate candidate length (k+1) sequences from length k frequent

sequences using Apriori. Finally, repeat the above process until neither fre-

quent sequence nor candidate can be found. One thing worth mentioning is

candidate generation. A candidate sequence of length (k+1) is generated from

two frequent sequences, s1 and s2, both having length k, if the subsequence

39

obtained by pruning the first item of s1 is the same as the subsequence ob-

tained by pruning the last item of s2. With the example in Table 5.1, and

k=2, let s1 be “(DVD Rec, DVD-R)” and s2 be “(DVDR) (Video Soft)”, then

the candidate sequence will be “(DVD Rec, DVD-R) (Video Soft)” since the

subsequence described above (common to s1 and s2) is “(DVDR)”.

Another method based on Apriori is SPADE which stands for Sequen-

tial PAttern Discovery using Equivalence classes [64]. The main idea in this

method is a clustering of the frequent sequences based on their common pre-

fixes and the enumeration of the candidate sequences. Thanks to a rewriting

of the database (loaded in main memory), SPADE needs only three database

scans in order to extract the sequential patterns.

Although Apriori based methods are the first solution to SPM problems,

several drawbacks hampered further use of this naive approach. First, it gen-

erates a huge set of candidates, especially 2-item candidate sequence. Second,

it requires multiple scans of database in mining since the length of each can-

didate grows by only one at each database scan. Third, it is inefficient for

mining long sequential patterns. It is almost unfeasible to discover a long

pattern from an exponential number of short candidates from which it grows.

A more efficient and common approach to solve SPM problem in practice is

pattern projection based. An original approach called FreeSpan is proposed in

[20] for mining sequential patterns by recursively projecting the data sequences

into smaller databases. It is the first algorithm considering the pattern pro-

jection method for mining sequential patterns. This work has been continued

with PrefixSpan which stands for Prefix-projected SPM, [38], based on a study

about the number of candidates proposed by a Generating-Pruning method.

Starting from the frequent items of the database, PrefixSpan generates pro-

jected databases with the remaining data-sequences. The projected databases

thus contain suffixes of the data sequences from the original database, grouped

by prefixes. The process is recursively repeated until no frequent item is found

in the projected database. At this level the frequent sequential pattern is the

path of frequent items driving to this projected database. The merit of this

method compared with Apriori approach is mainly efficiency. For PrefixSpan,

40

no candidate sequence needs to be generated and the projected databases keep

shrinking. The major cost is constructing projected databases which can be

enhanced in several ways. More details of this method are presented in the

next section and this is the one we adopt in our CRS.

5.2 Implementation of Course Recommender

System based on Sequential Pattern Min-

ing

In this section we discuss the concrete method of making course recommen-

dations based on SPM. As mentioned in the last section, the most widely

used SPM algorithm in practice is PrefixSpan [38] because of its efficiency.

The general idea of its predecessor algorithm FreeSpan [20] is to use frequent

items to recursively project sequence databases into a set of smaller projected

databases and grow subsequence fragments in each projected database. The

idea of the improved version PrefixSpan is to examine only the prefix subse-

quences and project only their corresponding postfix subsequences into Pro-

jected databases.

For the following part, we will try to formally define some concepts of SPM

and then we will unfold the algorithm of PrefixSpan [38].

Let I = { i1, i2, ..., in } be a set of all items. An itemset is a subset of

items. A sequence is an ordered list of itemsets. A sequence s is denoted by

〈s1, s2, ..., sl〉, where sj is an itemset, i.e., sj ⊆ I for 1 ≤ j ≤ l. sj is also

called an element of the sequence, and denoted as (x1x2...xm), where xk is an

item, i.e., xk ∈ I for 1 ≤ k ≤ m. For brevity, the brackets are omitted if

an element has only one item. That is, element (x) is written as x. An item

can occur at most once in an element of a sequence, but can occur multiple

times in different elements of a sequence. The number of instances of items

in a sequence is called the length of the sequence. A sequence with length l

is called an l-sequence. A sequence α = 〈a1, a2, ..., an〉 is called a subsequence

of another sequence β = 〈b1, b2, ..., bm〉 and β a super sequence of α denoted

as α v β if there exist integers 1 ≤ j1 < j2 < ... < jn ≤ m such that

41

Table 5.2: An example sequence database
Sequence id Sequence

10 〈a(abc)(ac)d(cf)〉
20 〈(ad)c(bc)(ae)〉
30 〈(ef)(ab)(df)cb〉
40 〈eg(af)cbc〉

a1 ⊆ bj1, a2 ⊆ bj2, ..., an ⊆ bjn.

A sequence database S is a set of tuples 〈sid, s〉, where sid is a sequence id

and s is a sequence. A tuple 〈sid, s〉 is said to contain a sequence α, if α is

a subsequence of s, i.e., α v s. The support of a sequence α in a database

S is the number of tuples in the database containing α, i.e. supportS(α) =

|{〈sid, s〉|(〈sid, s〉 ∈ S) ∧ (α v s)}|. It can be denoted as support(α) if the

sequence database is clear from the context. Given a positive integer ξ as the

support threshold, a sequence α is called a (frequent) sequential pattern in

sequence database S if the sequence is contained by at least ξ tuples in the

database, i.e., supportS(α) ≥ ξ. A sequential pattern with length l is called

an l-pattern.

Let us see an example of database S shown in Table 5.2 and set min support

= 2. The set of items in the database is {a, b, c, d, e, f, g}.

A sequence 〈a(abc)(ac)d(cf)〉 has five elements: (a), (abc), (ac), (d)and(cf),

where items a and c appear more than once respectively in different elements.

It is also a 9-sequence since there are 9 instances appearing in that sequence.

Item a happens three times in this sequence, so it contributes 3 to the length

of the sequence. However, the whole sequence 〈a(abc)(ac)d(cf)〉 contributes

only one to the support of 〈a〉. Also, sequence 〈a(bc)df〉 is a subsequence

of 〈a(abc)(ac)d(cf)〉. Since both sequences 10 and 30 contain subsequence

s = 〈(ab)c〉, s is a sequential pattern of length 3 (i.e., 3-pattern). Given S

and min support = 2, the support of each item is listed below in support

descending order (in the form of item:support). They are all frequent items

since all supports are greater than two.

f list = a : 4, b : 4, c : 4, d : 3, e : 3, f : 3

Above is the formal definitions of basic concepts of a sequence, we now

42

dive deeper into PrefixSpan. Since items within an element of a sequence

can be listed in any order, we assume they are listed in alphabetical order.

For example, the sequence in S with sequence id 10 in Table 5.2 is listed as

〈a(abc)(ac)d(cf)〉 instead of 〈a(bac)(ca)d(fc)〉. With such a convention, the

expression of a sequence is unique.

Given a sequence α = 〈e1e2...en〉, a sequence β = 〈e
′

1e
′

2...e
′

m〉(m ≤ n) is

called a prefix of α if and only if (1)e
′

i = ei for i ≤ m− 1; (2)e
′

m ⊆ em; and (3)

all the items in em − e
′

m are alphabetically after those in e
′

m.

Given sequences α and β such that β is a subsequence of α, i.e., β v α.

A subsequence α
′

of sequence α (i.e., α
′

v α) is called a projection of α with

regard to prefix β if and only if (1) α
′

has prefix β and (2) there exists no

proper super-sequence α
′′

of α
′

(i.e., α
′

v α
′′

but α
′

6= α
′′

) such that α
′′

is a

subsequence of α and also has prefix β.

Let α
′

= 〈e1e2...en〉 be the projection of α with regard to prefix β =

〈e1e2...em−1e
′

m〉 (m ≤ n). Sequence γ = 〈e
′′

mem+1...en〉 is called the postfix of α

with regard to prefix β, denoted as γ = α/β, where e
′′

m = (em − e
′

m). We also

denote α = β · γ. If β is not a subsequence of α, both projection and postfix

of α with regard to β are empty.

For example, 〈a〉, 〈aa〉, 〈a(ab)〉 and 〈a(abc)〉 are some prefixes of sequence

〈a(abc)(ac)d(cf)〉, but neither 〈ab〉 nor 〈a(bc)〉 is considered as a prefix. In

addition, 〈(abc)(ac)d(cf)〉 is the postfix of the same sequence with respect

to prefix 〈a〉, 〈(bc)(ac)d(cf)〉 is the postfix with respect to prefix 〈aa〉, and

(c)(ac)d(cf) is the postfix with respect to prefix 〈a(ab)〉.

For the same sequence database S in Table 5.2 with minsup = 2, sequential

patterns in S can be mined by a prefix-projections method in the following

steps.

Step 1: Find length-1 sequential patterns. Scan S once to find

all frequent items in sequences. Each of these frequent items is a length-1

sequential pattern. They are 〈a〉 : 4, 〈b〉 : 4, 〈c〉 : 4, 〈d〉 : 3, 〈e〉 : 3, and

〈f〉 : 3, where 〈pattern〉 : count represents the pattern and its associated

support count.

Step 2: Divide search space. The complete set of sequential patterns

43

can be partitioned into the following six subsets according to the six prefixes:

(1) the ones having prefix 〈a〉; ...; and (6) the ones having prefix 〈f〉.

Step 3: Find subsets of sequential patterns. The subsets of sequential

patterns can be mined by constructing corresponding projected databases and

mine each recursively.

For the clarity of the algorithm the mining process is explained as the

following part.

First, let us find sequential patterns having prefix 〈a〉. Only the sequences

containing 〈a〉 should be collected. Moreover, in a sequence containing 〈a〉,

only the subsequence prefixed with the first occurrence of 〈a〉 should be con-

sidered. For example, in sequence 〈(ef)(ab)(df)cb〉, only the subsequence

〈(b)(df)cb〉 should be considered for mining sequential patterns having pre-

fix 〈a〉. Notice that 〈(b)〉 means that the last element in the prefix, which

is a, together with b, form one element. As another example, only the sub-

sequence 〈(abc)(ac)d(cf)〉 of sequence 〈a(abc)(ac)d(cf)〉 should be considered.

Sequences in S containing 〈a〉 are projected with respect to 〈a〉 to form the 〈a〉-

projected database, which consists of four postfix sequences: 〈(abc)(ac)d(cf)〉,

〈(d)c(bc)(ac)〉, 〈(b)(df)cb〉 and 〈(f)cbc〉. By scanning 〈a〉-projected database

once, all the length-2 sequential patterns having prefix 〈a〉 can be found. They

are: 〈aa〉 : 2, 〈ab〉 : 4, 〈(ab)〉 : 2, 〈ac〉 : 4, 〈ad〉 : 2, and 〈af〉 : 2. Recursively,

we continue to construct projected databases and to find sequential patterns

with 〈aa〉, 〈ab〉, 〈(ab)〉, 〈ac〉, 〈ad〉 and 〈af〉. Similarly, we can find sequential

patterns having prefix 〈b〉, 〈c〉, 〈d〉, 〈e〉 and 〈f〉, respectively.

The formal description of PrefixSpan algorithm is described in Algorithm

5.

With the explanation of PrefixSpan algorithm, we now connect it to our

CRS. Students take a few courses each term. There is no order of courses in a

specific term, yet the courses of different terms do follow a chronological order.

It is very similar to the shopping example. A student is like a customer while

courses are like shopping items. Students take several courses in one term

like customers buying several products in one order. Students take courses in

different terms like customers buying products in different days. Just like we

44

Algorithm 5 Algorithm of PrefixSpan
Input :

A sequence database S, and the minimum support threshold minsup
Students set S who need recommendations

Parameters :
α: A sequential pattern;
l: The length of α;
S |α: The α-projected database, if α 6= 〈〉; otherwise, the sequence
database S which is the case when first call this algorithm.

1: Scan S |α once, find the set of frequent items b such that (1) b can be
assembled to the last element of α to form a sequential pattern; or (2) 〈b〉
can be appended to α to form a sequential pattern.

2: For each frequent item b, append it to b to form a sequential pattern α
′

,
and output α

′

;
3: For each α

′

, construct α
′

-projected database S |α, and call PrefixSpan(α
′

,
l + 1, S |α′).

can find a frequent sequence patterns of items bought by customers, frequent

sequence patterns of courses taken by students can also be found.

Our CRS based on SPM works in the following way. We first filter all

the course records and only the course record whose mark is A or A+ can be

left. Note that a course deleted in one sequence may be selected in another

sequence. For instance, a student who took CMPUT 101 and got an A on it

then this course will be left in this student’s sequence. If another student who

also took CMPUT 101 but got a B on it then this course will be filtered out.

After this step, the course records left in students history will all be A or A+.

We take this step because we only want to find the positive sequential patterns

of courses, i.e., sequences of courses taken by students with good outcome. A+

and A are taken as reference examples.

The second step is to treat these courses like the shopping items and process

them with our SPM technique (PrefixSpan) to find all the sequential patterns

of courses. Ideally, we want to recommend courses from the most significant

patterns. The course sequential patterns we find, some are long while some

are short. Suppose, one short frequent pattern s1 we find is 〈174, 206〉 while

another long frequent pattern s2 we find is 〈174, 175, 204, 304〉. Apparently,

the longer pattern s2 is harder to find over the shorter one s1. We can asso-

45

Algorithm 6 Algorithm of CRS based on SPM
Input :

Logs L of finished students course history
Student stu who needs course recommendations

Execute :
1: Filter all the course records of L with a predefined course mark standard

as FL
2: Find all the course sequential patterns SP from FL with Algorithm 5.
3: for all Sequential pattern p from SP do

4: Compute the number of elements num of this sequential pattern that is
also contained in stu’s course history

5: Add the next course of this p to the Hashtable HT where the key is
num

6: end for

7: Rank courses from HT ’s highest key as candidate courses CC based on
selected metrics

8: Recommend the top courses from CC to stu

ciate it with a real scenario. Suppose, we have a student who needs course

recommendations and he has already taken 174, 175, and 204. 206 can be

an option for recommendation since it satisfies s1. However, a more intuitive

recommendation should be 304 because he has already finished 3 courses in s2.

The rareness of a long sequence pattern indicates a strong connection among

those courses if it ever passes the criteria we set for a sequential pattern. Based

on this intuition, the courses we recommend are the next unfinished elements

from the sequential patterns that have the longest common elements with our

student’s current course history. By this algorithm, the course we recommend

for our example student earlier will be course 304 since the length of common

elements of s2 and this student is three, longer than one which is of s1.

A formal presentation of our CRS algorithm based on SPM is shown in

Algorithm 6. The overall workflow of our CRS based on SPM algorithm is

shown in Figure 5.1. We first filter out all low mark courses. Then we run

Algorithm 5 to find all the sequential patterns. We add the next courses

from the longest matched sequential patterns as candidate courses that could

be recommended. We rank these candidate courses. Finally, we formally

recommend the top courses to the student.

46

Figure 5.1: The overall workflow of our CRS based on SPM algorithm

It is rather obvious that the second DG algorithm is different from the

other two, yet the difference between the first PM approach and the third

SPM approach may not be quite clear since they both aim at “successful”

students. One can consider that we extract many full paths of successful

students in the PM approach, while in the SPM approach we only extract the

successful sequence segments. Also, the the word “successful” in PM approach

focuses on students. Such a successful student can have bad courses in his or

her path. In contrast, the word “successful” in SPM focuses on courses. There

is no low mark course in a frequent sequence we find.

47

Chapter 6

Course Recommender System

Miscellany

The main topic of this research is to help students choose courses to graduate.

This “help” can be in different ways. All methods previously mentioned focus

more on student’s course performance, while this part we concentrate on stu-

dents who would like to graduate as soon as possible. An intuitive approach

to achieve that is developed.

It typically falls into two categories to speed up a student’s graduation.

One is the compulsory requirements from school or department. This type of

information can be obtained from a department’s guide documents or websites

and they can be easily input to our CRS. The other one is the optional part,

which are courses not explicitly required by the department but have a crucial

role in a student’s graduation. These optional courses can be further consid-

ered in two aspects. First, these courses may be very important that many

students decide to take them even though they are not in the mandatory list.

For instance, suppose course CMPUT 206 is not indicated by the department

guideline as a compulsory course, yet above 90% students choose to take it.

Clearly, CMPUT 206 is in a significant status as much as compulsory courses

that are required in the guideline. We can compute the percentage of students

who take a specific course and rank courses based on this percentage from

high to low. It could be a must for students who want to graduate as soon as

possible if the percentage of students who take this course is above a certain

threshold like 90%. The second aspect to distinguish courses that can speed

48

up graduation is doing a statistics calculation. For example, for one course,

we can compute the average time needed to graduate by students who take

this specific course. We do this for all the courses and rank them based on the

average graduation time from low to high, the lower the number the faster a

student graduates. Apparently, if a course is on top of the list, it is likely to

contribute to the speed of a student’s graduation.

In short, there are three attributes we consider when we decide how useful

a course is to speed up a student’s graduation. First is whether it is mandatory

from the department’s guideline. Second is the percentage of students who take

this course. Third is the average time before graduation by students who take

this course. The second category can actually be merged into the first category

since they both indicate how crucial a course is, either by the department or

the choice of students. We combine the courses that are chosen by more than

90% (this threshold can be changed) of students with the compulsory courses

specified by educators as one group and we call this group key courses.

This “speedup” system is not used alone in our CRS, but is used to rank

the potential recommended courses selected by our three sequence-based algo-

rithms. This ranking process is always the last step of these three sequential

based algorithms, which can be found in the algorithms in previous chapters.

To be more exact, after selecting a few courses in the potential course list by

one of the three sequence-based approaches, there are three methods to rank

them with this “speedup” algorithm.

1. No “speedup”: Rank courses merely on the GPA contribution of courses

2. Semi “speedup”: Always rank key courses that are in the potential course

list first. The key course list and the non-key course list will be ranked

based on each course’s GPA contribution respectively.

3. Full “speedup”: Always rank key courses that are in the potential course

list first. The key course list and the non-key course list will be ranked

based on each course’s average graduation time by students who take

this course.

49

Figure 6.1: The overall workflow of our CRS that combines all three sequence-
based algorithms

Even though the performance of students (GPA) is not considered in the

third ranking approach, it will not be a big problem. Because the potential

recommending course list is already a result returned by our sequence-based

CRS.

We try to combine all of our three sequence-based methods. Since each of

them produces a potential list of recommended courses, it is natural to combine

the result of potential courses of all three methods and rank the result based

on the ranking system we just mentioned. We provide this option in our CRS

as ”Comprehensive”. The overall structure of this approach is shown in Figure

6.1.

Some special situations are into considerations such as new courses. Gen-

erally speaking, new established courses would not be in any recommendations

since no student has taken them. Nevertheless, we do take it as an option and

add it to the potential recommended courses randomly in order to let more

students take it.

50

Chapter 7

Experiments

After introducing all three methods, here we evaluate these methods and com-

pare them to assess which one outperforms the others. Due to the ethical

approval problem, namely obtaining consent from past students, we are un-

able to access the real students data. We first discuss the data simulator we

built to mimic the real undergraduate students behaviour records. Then we

evaluate the performance of our CRS. Finally, we make a simple Graphic User

Interface (GUI) to help students use our CRS.

7.1 Data Simulator

The Computing Science Department of the University of Alberta collects for

each semester and for each student the courses they register in and the final

mark they obtain. While there are prerequisites for courses and other strict

constraints, the rules are not enforced and are thus often violated. This his-

tory for many years, constituting the needed event log, is readily available.

However, such data cannot be used for research purposes or for publication

even though anonymized due to lack of ethical approval. It is unpractical to

gather the consent of all past students, which leaves us two options. We can

either obtain written consent from current students and start collecting data

for some years, or simulate historic curriculum data for proof of concept and

publication, and use real data for local implementation. Due to the time limit,

we opted for the simulation of the event log.

We write a curriculum simulator to mimic the behaviours of undergraduate

51

students in higher education with different characters from the department and

be as close as possible to real data. To mimic the reality, two positions need

to be considered. One is from the educator’s, like what are the requirements

from the department, from the educators. These requirements are mostly

rules and they are mandatory and fixed. Another perspective is from the

student’s, like how students will behave when they study. These behaviours

tend to be volatile and various from students to students. Our simulator takes

both of them into consideration in order to simulate as real data as possible.

The following is what we implement from the department’s or the educator’s

angle. Firstly, courses are the cornerstone of the whole system. The courses

we choose are real courses from the course directory of the Computing Science

Department the University of Alberta [1]. The course information we extract

includes, which is not limited to, course number, course name, the instructor,

when the course is open etc. Not only the course information is based on

what we have in reality in our Computing Science Department, but also most

of the following constrains and variables settings in our simulator are based

on the reality of our department. With these basic course information, we

consider course relations. We predefine a set of rules or requirements that are

according to those in the offered programs in the department. One constraint

is prerequisites, i.e., some specified courses must be taken before others. For

example, in our department CMPUT 204 must be taken if a student wants to

take CMPUT 304. Other requirements include the first and the last course a

student must take, mandatory courses, i.e., courses that students must take

before they graduate, and non-coexisting courses, i.e., if students take one

course in the group then they cannot take any other course belonging to the

same group.

On the other side of the simulator is the student behaviour. As mentioned,

this behaviour varies in great range from students to students. Although stu-

dents may have different personalities, we only consider characters that are

related to our task and they can be divided into three attributes. The first

attribute is student’s performance. This attribute influences how a student

performs in a specific course, which is the mark obtained in the course. Per-

52

forming students tend to have a higher mark in their course in average. The

second attribute is diligence, which has an impact on how many courses a

student tends to take in each term. We differentiate students by the number

of credits they take by semester, thus the time for completion. Some have a

balanced and uniform distribution throughout, while others are irregular with

regard to the number of courses per semester. The third attribute is respon-

sibility. This affects the sequence of courses a student takes. There are three

types of students: the responsible students who always satisfy the course con-

straints; the typical students who seldom violate course constraint rules; and

the careless students who often do not follow the set rules like prerequisites.

These attributes are not fixed just like students characters are not constant.

We give students some probability to alter their characters. For example,

students who were diligent that take a lot of courses at first may slow down

when they go to their third year of college. We also add some probability

for students to withdraw from a course given the course load and previous

withdrawing behaviour.

Algorithm 7 Algorithm of data generation of taking courses by students
Input :

The total number of terms numTerm that need to be generated
The number of students enrolled in each term numNew

Execute :
1: ongoingList = ∅
2: finishedList = ∅
3: curTerm = 0
4: for curTerm < numTerm do

5: Add numNew students to ongolingList
6: for all Student in ongolingList do
7: Add courses for this term with Algorithm 8
8: if student satisfies graduation criteria then

9: Move student from ongoingList to finishedList
10: end if

11: end for

12: end for

After we modelled fixed requirements from department and various char-

acters of students, generating data of students taking courses is the final task

53

Algorithm 8 Algorithm of adding courses for one student at a specific term
Input :

The current term curTerm such as Fall, Winter or Summer
The student stu who is going to take courses this term

Execute :
1: Set candidate courses candCourses = ∅
2: Add preferred courses to candCourses based on curTerm and the respon-

sibility attribute of stu
3: Add several courses that do not have restrictions to candCourses
4: Add new established courses to candCourses if applicable
5: Choose the courses that are going to be taken coursesTaking randomly

from candCourses based on the diligence and the responsibility attributes
of stu

6: for all courseTaking in coursesTaking do

7: Generate a mark for courseTaking based on the performance attribute
of stu

8: Add courseTaking to the course history of stu
9: end for

for our simulator. Initially, we consider to generate data based by per student,

i.e., we create the whole course record history of one student and then move on

to the next student. However, this generation approach is not what happens

in reality. Reality is time based and that is what we opt for in the end. We

make one term or semester as a basic time unit. Each term, with time goes

by, there are new students arriving, there are current students continuing their

study and there are some students getting graduated as well. Therefore, there

are two lists of students, one is for finished students who are already gradu-

ated and the other one is for ongoing students who are still taking courses.

For each student in the ongoing list, we choose some courses for them to take

in this term. After the term, we check whether the student has satisfied the

criteria to graduate. If the criteria is met, we move this student from ongoing

list to the finished list. The formal description of such algorithm is shown in

Algorithm 7.

Several things need to be clarified in the algorithms above. First of all,

the number of students enrolled in each term is not fixed. Apparently, most

students enroll in the fall and winter term and new students rarely come in the

summer. Second, the process of adding courses for students each term is very

54

important so we make Algorithm 8 to illustrate that. The course selection

process is to some extent random yet they are based on the requirements

from the department and students’ attributes we mentioned before. We also

set some hidden preferred courses for each term. These are the courses that

students would take in a normal situation at a specific time. Students with

higher responsibility attribute are more likely to choose these preferred courses.

We set these preferred courses so as to decrease the randomness during course

selection, otherwise the graph will be too messy and further from reality. As to

the mark generation part, two aspects are considered. One is the performance

attribute of students, i.e., the higher this attribute, the more likely students

will get a high mark. Another aspect is course prerequisite relations. Student

will have a higher probability to have a low mark on a course if they did

not take its prerequisite courses or performed badly on prerequisite courses.

Lastly, the criteria of graduation are from the real planner of the department.

Students need to take enough course credits and meet some other constraints

for special courses in different areas in order to graduate.

7.2 Course Recommender System Tuning

Before we analyze the effect of our algorithms, there are some important pa-

rameters that need to be tuned for all three methods. For tuning, all three

methods are evaluated in a similar environment. We set the size of finished

students dataset, which our CRS learns from, at 1500. The size of students

who need recommendations is set to 200. For these 200 students their choices

of courses in each term are decided by our CRS. We tune key parameters for

each of the three sequence-base methods separately. For most of the experi-

ments, we study how changes in parameters affect the average GPA of students

who adopt our recommendations. For the baseline of analyzing our results,

the average GPA is 3.446 if 200 students do not take any recommendations

from us. As to the grading system and grade points conversion, A correspond

to 4.0, A- to 3.7, B+ to 3.3 and B to 3.0. The numbers presented in each

table and figure for this section are the average scores of their corresponding

55

Table 7.1: 200 students’ average GPA varied by different thresholds of GPA
and similarity in CRS based on PM

Similarity GPA 3.4 GPA 3.6 GPA 3.8

0.3 3.431 3.443 3.536

0.5 3.453 3.510 3.574

0.7 3.484 3.549 3.592

0.8 3.482 3.551 3.589

experiment three times. In addition, the best threshold number may not be

the exact number that maximizes our CRS. For example, if our CRS performs

better when a certain threshold is 0.437 compared to 0.4, we may simply use

0.4 or 0.45 instead of 0.437. Because this threshold is really subject to differ-

ent datasets, and we do not intend to make a threshold exact for a particular

dataset.

Starting with our CRS based on PM, two important parameters are how

we define successful students, which is the GPA threshold, and how we define

two students are similar, which is the similarity threshold. For example, if

we set the GPA threshold to 3.6 and the similarity threshold to 0.7, it means

that only students whose GPA is above 3.6 are considered successful and only

students who have a similarity above 0.7 are considered similar. Table 7.1

shows 200 students average GPA varied by different thresholds of GPA and

similarity in CRS based on PM. From Table 7.1, we can see that, first, when

we define successful students as those whose GPA is above 3.4, the recom-

mendations do not work very well: average GPAs are even below the baseline.

This is reasonable since GPA 3.4 is our baseline and it is not a high stan-

dard. Some improvements can be seen when we increase the GPA threshold

a bit and these improvements are obvious when we set the GPA threshold

to 3.8. Meanwhile, the similarity threshold has a positive relation with stu-

dents performance which is logical, except for the case of the GPA threshold

3.4. Nonetheless, this positive relation no longer exists when the similarity

threshold increases beyond 0.7.

Important parameters for our CRS based on DG is the support and con-

fidence thresholds for selecting Pi+ and Pi−. Support is an indication of how

frequently the itemset appears in the database, while confidence is an indica-

56

tion of how often the rule has been found to be true. Their formal definitions

are as following.

• The support of X with respect to T is defined as the proportion of

transactions t in the database which contains itemset X.

supp(X) = {|t∈T ;X⊆T |}
|T |

• The confidence value of a rule, X ⇒ Y , with respect to a set of trans-

actions T , is the proportion of the transactions that contains X which

also contains Y .

conf(X ⇒ Y) = supp(X∪Y)
supp(X)

One of the improvements we made to the original DG algorithm is a set

of thresholds, which are support and confidence to deal with the noise. We

focus on tuning the confidence values mostly and set the support threshold to

0.05 due to two reasons. Firstly, considering there are situations that some

dependencies do not appear very frequently because the courses are rarely

taken, it is unjustifiable to set a high support value. Secondly, the confidence

value is a stronger indicator of the dependency compared to the support value.

The parameters we tune are Pi+ confidence threshold and Pi− confidence

threshold. On one hand, the higher the Pi+ confidence threshold is, the less

likely we will accept a dependency for a course. On the other hand, the higher

the Pi- confidence threshold is, the more likely we will accept a dependency

for a course. Table 7.2 shows 200 students average GPA varied by different

Pi+ and Pi− confidence thresholds in CRS based on DG. There is not a clear

rule that can be concluded from Table 7.2, but it seems that students do not

perform well when we Pi+ confidence is relatively lower than Pi− confidence.

One possible explanation is that, if we are open to consider many candidate

dependencies but do not filter them, many false dependencies will be found.

In that case it will reduce the reliability of our CRS.

For our CRS based on SPM, the only parameter we need to tune is the

support threshold. The higher the value, the stricter our requirement is for a

sequential pattern. From Table 7.3 We find that the average GPA is higher

57

Table 7.2: 200 students’ average GPA varied by different Pi+ and Pi− confi-
dence thresholds in CRS based on DG

Pi+ Conf 0.25 Pi+ Conf 0.5 Pi+ Conf 0.75

Pi− Conf 0.25 3.567 3.643 3.563

Pi− Conf 0.5 3.484 3.571 3.576

Pi− Conf 0.75 3.438 3.533 3.632

Table 7.3: 200 students’ average GPA varied by different support thresholds
in CRS based on SPM

Support Average GPA

0.1 3.457

0.3 3.602

0.5 3.548

when the support threshold is 0.3. However, the average GPA decreases when

the support threshold is set to 0.5. The reason may be that, when the threshold

is set higher, many true sequential patterns that do not appear very often are

filtered out, which may lead to a bad result. After all, requiring a sequential

pattern to appear at least in half of the total sequences is too demanding.

7.3 Result Analysis

In this section we compare the performance of our CRS based on different

sequence-based algorithms. We want to see which sequence-based algorithm

performs better, whether the “speedup” algorithm works, what additional in-

sights our CRS can provide. Moreover, we add one more approach to all

experiments, which is called “comprehensive” that combines all results from

three methods and it is introduced in Chapter 6. If not otherwise specified, the

parameters of each algorithm are the ones that performed best in last section.

The numbers presented in each table and figure for this section are the average

scores of their corresponding experiment three times.

The first experiment is to compare the performance of different sequence-

based approaches at different stages of students. “Different stages” means

when do students use our CRS. For example, “Year 4” means students only

begin to take courses recommended by our CRS in the fourth year, while “Year

1” means students start using our CRS from the first year. Table 7.4 with its

58

Table 7.4: 200 students’ average GPAs varied by the year of starting CRS in
different approaches

Approach Year 4 Year 3 Year 2 Year 1

PM 3.453 3.516 3.569 3.588

DG 3.433 3.529 3.617 3.652

SPM 3.447 3.498 3.545 3.602

Comprehensive 3.441 3.512 3.564 3.593

corresponding Figure 7.1 shows the result of this experiment: 200 students’

average GPAs varied by the year of starting CRS in different approaches.

The blue line in the middle is our baseline 3.446 which is the average GPA if

students do not take any recommendations. From Table 7.4 and Figure 7.1 we

can observe the following. Firstly, we can see a substantial effect for students

who use our CRS in the first two years. This steady increase indicates students

can benefit more if they start using our CRS earlier in their study. Secondly,

the performance of CRS for all methods is about the same with the baseline

if students only start to use our CRS in the fourth year, which means it may

be too late to improve a student’s GPA even with the help of CRS. Other

than Year 4, our CRS does have a positive impact. Thirdly, CRS based on

DG outperforms all in nearly all scenarios while other approaches are equally

matched. Note that the comprehensive approach does not outperform others.

Our guess is that by combining the candidate courses from all three methods,

it obtains too many candidates and cannot perform well if the candidates are

not ranked properly. As to why CRS based on DG performs best, it may due to

the intrinsic attribute of our data simulator. The mark generation part of our

simulator considers course prerequisites, which may favour the DG algorithm.

Thus, other approaches may outweigh DG if we are dealing with real data.

The next experiment is to check whether increasing the training data of

students will lead to a better performance of our CRS. Table 7.5 and Figure

7.2 demonstrate 200 students’ average GPAs varied by the number of training

students of CRS in different approaches. We can see that, as the training

data size increases from 500 to 1000, the performance of our CRS improves.

However, when this size further increases from 1000 to 1500, the performance

of our CRS does not have a significant change. This is the reason we use 1500

59

Table 7.7: The top 5 GPA contribution courses and graduation time contri-
bution courses

Ranking Top GPA Courses Top Graduation Time Courses

1 CMPUT 275 CMPUT 301

2 CMPUT 429 CMPUT 274

3 CMPUT 350 CMPUT 300

4 CMPUT 333 CMPUT 410

5 CMPUT 201 CMPUT 366

sights of course relations and thus to improve the curriculum. Figure 7.4 shows

the DG of courses with edge colours representing discovery sources. It com-

bines the prerequisite relations used by our simulator and the dependencies

discovered by our DGA. On one hand, we can consider the prerequisite course

relations used by our simulator as the “current curriculum” or behaviours we

expect to see from students. On the other hand, the courses’ prerequisite rela-

tions discovered by our CRS based on the DG algorithm can be deemed as the

prerequisite relations in reality or the actual behaviours by students. Many

dependencies used by our simulator are found by our DG algorithm (green

edges) like 204⇒304, which means that these rules are carried out successfully

by students. Some dependencies used by our simulator are not found in the

data (blue edges) like 175⇒229 because the students did not actually follow

them, which indicates there are some discrepancies between what we expect

from students and what students really perform. Administrators may want

to check why this happens. There are also some dependencies found by our

DG algorithm but are not in the rules for our simulator (red edges), such as

304⇒366 and 272⇒415. These dependencies indicate some relations among

courses unknown and unexpected to administrators but are performed by stu-

dents. Educators and administrators may want to consider to add these new

found prerequisites to the curriculum in the future.

Figure 7.5 shows the paths of successful students (GPA above 3.8) filtered

from the 1500 training students with the weight of edges representing the

number of students. The thick edges mean many successful students have

gone through these paths and they should be paid more attention when trying

to improve the curriculum. All in all, the benefits of these findings can be

63

enormous if our CRS is trained on real students’ data.

7.4 Course Recommender System GUI

To help students employ our course recommender system, we built a simple

graphic user interface (GUI).

The first interface shown in Figure 7.6 is used by students who need rec-

ommendations. Normally, students’ courses histories are stored in a database.

Since we do not have such a database, a file system is used to keep course

history output generated by our simulator and CRS. Students who need rec-

ommendation can input their course history file to our CRS. Then students

can choose one of the sequential based course recommender algorithms as

they want. The comprehensive option is what we introduced in Chapter 6

which gathers results of all three approaches. Students can also select how to

rank the potential recommended courses. The ranking method is presented

in Chapter 6 as well. The “Hybrid” method is referred as “semi-speedup”

while the ”To Graduate ASAP” is “full-speedup” in Chapter 6. After that,

students can choose how many alternative recommended courses they want to

see. With those parameters set, students can simply click “recommend” to get

the courses our CRS recommends. Students can also check the detail of the

courses we recommended by clicking “course detail” button.

Figure 7.7 shows the GUI of checking a specific course we recommended

which includes the course ID, course name, available terms and the instructor.

Some details of recommendation are also presented. These include the algo-

rithm we used, the average GPA of students who took this course, whether it

is a key course, a new course or a special course that students need, etc.

A GUI shown in Figure 7.8 is made for researchers to generate and analyze

simulated data. Researchers can set the experiment output directory and all

the parameters of simulator and the course recommender system in a param-

eter file. If we click “generate data”, the data simulator will begin to work

and generate simulated students course record history. There are also four

options to help researchers directly mining the simulated student data we just

65

Figure 7.6: GUI of CRS

Figure 7.7: GUI of one specific course recommendation

66

Figure 7.8: GUI of course record simulator

generated by ticking the mining algorithm to run. If no mining approach is

chosen in the interface, then it will only generate the simulated data.

67

Chapter 8

Conclusions and Future Work

In this thesis we have built a course recommender system to help students

choose suitable courses in order to maximize their performance. This recom-

mender is based on three different methods yet all three are related to the

sequence of course history, which has not been utilized much in the scope of a

education recommender. Process mining method is our first approach and its

power of conformance checking is what we rely on. We recommend courses to

a student that successful students who have a similar course path have taken.

The second one is building a course dependency graph which aims to find the

deep prerequisite relationships among courses. We recommend courses whose

prerequisites are finished. The third method, sequential pattern mining, can

help us find frequent sequential patterns, in our case, patterns of successful

students. To students who need recommendation, we check what phase they

are at in our found patterns, and we help them complete those patterns. Other

than students’ performance in courses, we also implement an effective method

to speed up graduation.

We conduct several experiments to evaluate our course recommender sys-

tems and to find the best recommendation approach. All three approaches can

improve students performance in different scales. The best recommendation

method is based on the dependency graph, and the number of recommended

courses accepted by students have a positive correlation with the performance.

Moreover, the course recommender system we build can speed up students’

graduation if set properly, and provide some useful insights for educators and

68

course counsellors.

Due to time constraints, there are still many aspects of our work that can be

improved upon in the future. Our work is confined by simulated data as a result

of ethical problems, even though we try to simulate as real as possible. If we

have real student’s data, we may gain a deeper and more realistic insight. Also,

our approaches are merely based on sequences. Our intention is to bring the

novelty of utilizing sequences to build a course recommender system. Yet, with

some more information, i.e., personal traits like gender, course information like

instructors and diverse measurements of performance, the recommender may

work better.

69

Bibliography

[1] Undergraduate course directory of computing science department of
university of alberta. https://www.ualberta.ca/computing-science/
undergraduate-studies/course-directory.

[2] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining pro-
cess models from workflow logs. Springer, 1998.

[3] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association
rules between sets of items in large databases. ACM SIGMOD Record,
22(2):207–216, 1993.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns.
In Data Engineering, 1995. Proceedings of the Eleventh International
Conference on, pages 3–14. IEEE, 1995.

[5] Judith Arter and Jay McTighe. Scoring rubrics in the classroom: Using
performance criteria for assessing and improving student performance.
Corwin Press, 2000.

[6] Borja Vázquez Barreiros, Manuel Lama, Manuel Mucientes, and Juan C
Vidal. Softlearn: A process mining platform for the discovery of learning
paths. In IEEE 14th International Conference on Advanced Learning
Technologies (ICALT), pages 373–375. IEEE, 2014.

[7] David Ben-Shimon, Alexander Tsikinovsky, Lior Rokach, Amnon Meisles,
Guy Shani, and Lihi Naamani. Recommender system from personal so-
cial networks. In Advances in Intelligent Web Mastering, pages 47–55.
Springer, 2007.

[8] Robin Burke. Hybrid web recommender systems. In The adaptive web,
pages 377–408. Springer, 2007.

[9] Soumen Chakrabarti, Martin Ester, Usama Fayyad, Johannes Gehrke, Ji-
awei Han, Shinichi Morishita, Gregory Piatetsky-Shapiro, and Wei Wang.
Data mining curriculum: A proposal (version 1.0). Intensive Working
Group of ACM SIGKDD Curriculum Committee, 2006.

[10] Dean Cummins, Kalina Yacef, and Irena Koprinska. A sequence based
recommender system for learning resources. Australian Journal of Intel-
ligent Information Processing Systems, 9(2):49–57, 2006.

[11] James Dalziel. Using marks to assess student performance, some problems
and alternatives. Assessment & evaluation in higher education, 23(4):351–
366, 1998.

70

[12] AK Alves De Medeiros and AJMM Weijters. Genetic process mining.
In Applications and Theory of Petri Nets 2005, volume 3536 of Lecture
Notes in Computer Science. Citeseer, 2005.

[13] Remco Dijkman, Jorg Hofstetter, and Jana Koehler. Business Process
Model and Notation. Springer, 2011.

[14] Enrique Garćıa, Cristóbal Romero, Sebastián Ventura, and Carlos
De Castro. An architecture for making recommendations to courseware
authors using association rule mining and collaborative filtering. User
Modeling and User-Adapted Interaction, 19(1-2):99–132, 2009.

[15] Khairil Imran Ghauth and Nor Aniza Abdullah. Learning materials rec-
ommendation using good learners ratings and content-based filtering. Ed-
ucational technology research and development, 58(6):711–727, 2010.

[16] Christian W Günther and Anne Rozinat. Disco: Discover your processes.
BPM (Demos), 940:40–44, 2012.

[17] Christian W Günther, Anne Rozinat, Wil MP van der Aalst, and Kenny
van Uden. Monitoring deployed application usage with process mining.
BPM Center Report BPM-08-11, pages 1–8, 2008.

[18] Christian W Günther and Wil MP van der Aalst. Fuzzy mining–adaptive
process simplification based on multi-perspective metrics. In Business
Process Management, pages 328–343. Springer, 2007.

[19] Christian W Günther and HMW Verbeek. Xes-standard definition. 2014.

[20] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar
Dayal, and Mei-Chun Hsu. Freespan: frequent pattern-projected sequen-
tial pattern mining. In Proceedings of the sixth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 355–
359. ACM, 2000.

[21] Yi Hu and Brajendra Panda. A data mining approach for database intru-
sion detection. In Proceedings of the 2004 ACM symposium on Applied
computing, pages 711–716. ACM, 2004.

[22] Junzo Kamahara, Tomofumi Asakawa, Shinji Shimojo, and Hideo Miya-
hara. A community-based recommendation system to reveal unexpected
interests. In Multimedia Modelling Conference, 2005. MMM 2005. Pro-
ceedings of the 11th International, pages 433–438. IEEE, 2005.

[23] Raymond Kosala and Hendrik Blockeel. Web mining research: A survey.
ACM Sigkdd Explorations Newsletter, 2(1):1–15, 2000.

[24] Junzhou Luo, Fang Dong, Jiuxin Cao, and Aibo Song. A context-aware
personalized resource recommendation for pervasive learning. Cluster
Computing, 13(2):213–239, 2010.

[25] Tariq Mahmood and Francesco Ricci. Towards learning user-adaptive
state models in a conversational recommender system. In LWA, pages
373–378. Citeseer, 2007.

71

[26] Nikos Manouselis, Hendrik Drachsler, Riina Vuorikari, Hans Hummel,
and Rob Koper. Recommender systems in technology enhanced learning.
In Recommender systems handbook, pages 387–415. Springer, 2011.

[27] Ronny S Mans, Helen Schonenberg, Giorgio Leonardi, Silvia Panzarasa,
Anna Cavallini, Silvana Quaglini, and Wil MP van der Aalst. Process
mining techniques: an application to stroke care. Studies in health tech-
nology and informatics, 136:573, 2008.

[28] Ronny S Mans, Helen Schonenberg, Minseok Song, Wil MP van der Aalst,
and Piet JM Bakker. Application of process mining in healthcare–a case
study in a dutch hospital. In Biomedical Engineering Systems and Tech-
nologies, pages 425–438. Springer, 2009.

[29] Ronny S Mans, Wil MP van der Aalst, Rob JB Vanwersch, and Arnold J
Moleman. Process mining in healthcare: Data challenges when answering
frequently posed questions. In Process Support and Knowledge Represen-
tation in Health Care, pages 140–153. Springer, 2013.

[30] Laura Maruster, Wil MP van der Aalst, AJMM Weijters, Antal van den
Bosch, and Walter Daelemans. Automated discovery of workflow models
from hospital data. B. Kroose, M. de Rijke, 18, 2001.

[31] Laura Maruster, JC Hans Wortmann, AJMM Weijters, and Wil MP
van der Aalst. Discovering distributed processes in supply chains. In Col-
laborative Systems for Production Management, pages 219–230. Springer,
2003.

[32] Robert J Marzano, Debra Pickering, and Jay McTighe. Assessing Student
Outcomes: Performance Assessment Using the Dimensions of Learning
Model. Jossey-Bass San Francisco, CA, 1993.

[33] Florent Masseglia, Maguelonne Teisseire, and Pascal Poncelet. Sequential
pattern mining. Encyclopedia of Data Warehousing and Mining, pages
1028–1032, 2005.

[34] Jan Mendling. Event-driven process chains (epc). Springer, 2008.

[35] Michael P O’Mahony and Barry Smyth. A recommender system for on-
line course enrolment: an initial study. In Proceedings of the 2007 ACM
conference on Recommender systems, pages 133–136. ACM, 2007.

[36] Mykola Pechenizkiy, Nikola Trcka, Paul De Bra, and Pedro Toledo. Cur-
rim: Curriculum mining. In International Conference on Educational data
Mining (EDM), pages 216–217, 2012.

[37] Mykola Pechenizkiy, Nikola Trcka, Ekaterina Vasilyeva, Wil MP van der
Aalst, and Paul De Bra. Process mining online assessment data. Inter-
national Working Group on Educational Data Mining, 2009.

[38] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen,
Umeshwar Dayal, and Mei-Chun Hsu. Prefixspan: Mining sequential
patterns efficiently by prefix-projected pattern growth. In icccn, page
0215. IEEE, 2001.

[39] James Lyle Peterson. Petri net theory and the modeling of systems, vol-
ume 132. Prentice-hall Englewood Cliffs (NJ), 1981.

72

[40] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to rec-
ommender systems handbook. Springer, 2011.

[41] Cristobal Romero, Sebastian Ventura, Mykola Pechenizkiy, and Ryan SJd
Baker. Handbook of educational data mining. CRC Press, 2010.

[42] Anne Rozinat, Ivo SM de Jong, Christian W Günther, and Wil MP
van der Aalst. Process mining applied to the test process of wafer scan-
ners in asml. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 39(4):474–479, 2009.

[43] D Royce Sadler. Interpretations of criteria-based assessment and grad-
ing in higher education. Assessment & Evaluation in Higher Education,
30(2):175–194, 2005.

[44] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-
based collaborative filtering recommendation algorithms. In Proceedings
of the 10th international conference on World Wide Web, pages 285–295.
ACM, 2001.

[45] J Ben Schafer, Joseph A Konstan, and John Riedl. E-commerce recom-
mendation applications. In Applications of Data Mining to Electronic
Commerce, pages 115–153. Springer, 2001.

[46] Cornelia Schoor and Maria Bannert. Exploring regulatory processes dur-
ing a computer-supported collaborative learning task using process min-
ing. Computers in Human Behavior, 28(4):1321–1331, 2012.

[47] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns:
Generalizations and performance improvements. Springer, 1996.

[48] Tiffany Ya Tang and Gordon McCalla. Smart recommendation for an
evolving e-learning system. In Workshop on Technologies for Electronic
Documents for Supporting Learning, AIED, 2003.

[49] Arthur HM ter Hofstede, Wil MP van der Aalst, Michael Adams, and Nick
Russell. Modern Business Process Automation: YAWL and its support
environment. Springer Science & Business Media, 2009.

[50] Nguyen Thai-Nghe, Lucas Drumond, Artus Krohn-Grimberghe, and Lars
Schmidt-Thieme. Recommender system for predicting student perfor-
mance. Procedia Computer Science, 1(2):2811–2819, 2010.

[51] Nikola Trcka and Mykola Pechenizkiy. From local patterns to global mod-
els: Towards domain driven educational process mining. In Ninth IEEE
International Conference on Intelligent Systems Design and Applications
(ISDA), pages 1114–1119. IEEE, 2009.

[52] Wil MP van der Aalst. Business process management demystified: A
tutorial on models, systems and standards for workflow management. In
Lectures on concurrency and Petri nets, pages 1–65. Springer, 2004.

[53] Wil MP van der Aalst. Process Mining: Discovery, Conformance and
Enhancement of Business Processes, volume 136. Springer Berlin Heidel-
berg: Berlin, Heidelberg, 2011.

73

[54] Wil MP van der Aalst. Challenges in service mining: record, check,
discover. In Web Engineering, pages 1–4. Springer, 2013.

[55] Wil MP van der Aalst, Hajo A Reijers, AJMM Weijters, Boudewijn F
van Dongen, AK Alves De Medeiros, Minseok Song, and HMW Verbeek.
Business process mining: An industrial application. Information Systems,
32(5):713–732, 2007.

[56] Wil MP van der Aalst, Vladimir Rubin, Boudewijn F van Dongen, Ekkart
Kindler, and Christian W Günther. Process mining: A two-step approach
using transition systems and regions. BPM Center Report BPM-06-30,
BPMcenter. org, 6, 2006.

[57] Wil MP van der Aalst and HMWVerbeek. Process mining in web services:
The websphere case. IEEE Data Eng. Bull., 31(3):45–48, 2008.

[58] Wil MP van der Aalst, AJMM Weijters, and Laura Maruster. Workflow
mining: Discovering process models from event logs. IEEE Transactions
on Knowledge and Data Engineering, 16(9):1128–1142, 2004.

[59] Boudewijn F van Dongen, Ana Karla A de Medeiros, HMW Verbeek,
AJMM Weijters, and Wil MP van der Aalst. The prom framework: A
new era in process mining tool support. In Applications and Theory of
Petri Nets 2005, pages 444–454. Springer, 2005.

[60] HMW Verbeek, Joos CAM Buijs, Boudewijn F Van Dongen, and Wil MP
van der Aalst. Xes, xesame, and prom 6. In Information Systems Evolu-
tion, pages 60–75. Springer, 2011.

[61] AJMM Weijters, Wil MP van der Aalst, and AK Alves De Medeiros. Pro-
cess mining with the heuristics miner-algorithm. Technische Universiteit
Eindhoven, Tech. Rep. WP, 166:1–34, 2006.

[62] Grant P Wiggins. Assessing student performance: Exploring the purpose
and limits of testing. Jossey-Bass San Francisco, CA, 1993.

[63] Osmar R Zäıane. Building a recommender agent for e-learning systems.
In Computers in Education, 2002. Proceedings. International Conference
on, pages 55–59. IEEE, 2002.

[64] Mohammed J Zaki. Spade: An efficient algorithm for mining frequent
sequences. Machine learning, 42(1-2):31–60, 2001.

[65] Mohammed J Zaki. Mining data in bioinformatics. Handbook of Data
Mining, pages 573–596, 2003.

74

