
Efficient Sleep/Wake-up Protocols for User-Level IPC

Ronald C. Unrau
Department of Computing Science
University of Alberta, CANADA

unrau@cs.ualberta.ca

Orran Krieger
IBM T.J. Watson Research Centre

Yorktown Heights, New York
okrieg@watson.ibm.com

December 9, 1997

Abstract

We present a new facility for cross-address space IPC that exploits queues in memory
shared between the client and server address space. The facility employs only widely available
operating system mechanisms, and is hence easily portable to different commercial operat-
ing systems. It incorporates blocking semantics to avoid wasting processor cycles, and still
achieves almost twice the throughput of the native kernel-mediated IPC facilities on SGI and
IBM uniprocessors. In addition, we demonstrate significantly higher performance gains on
an SGI multiprocessor. We argue that co-operating tasks will be better served if the operat-
ing system is aware of the co-operation, and propose an interface for a hand-off scheduling
mechanism. Finally, we report initial performance results from a Linux implementation of our
proposal.

1 Introduction

Inter-Process Communication (IPC) is a basic service provided by all multi-tasking operating sys-
tems. IPC is an integral part of concurrent applications such as client-server environments (eg. win-
dowing systems or data bases); IPC is also integral to parallel applications that must co-ordinate
worker activities (eg. using barrier operations or task queues). There are also several reasons to
use kernel-level processes rather than light-weight threads: they are necessary if the processes re-
side in different address spaces; and the application can take advantage of kernel-level scheduling,
pre-emption, priority management, etc. User-level IPC uses memory segments shared within or
across address spaces as the basis for implementing a communication protocol. User-level IPC is

1

1 INTRODUCTION 2

attractive for several reasons: first, the number of (expensive) system calls can be reduced; sec-
ond, the amount of copying into and out of the kernel address space is reduced; and third, custom
protocols that take advantage of application-specific knowledge can be used. To obtain the best
overall system throughput, particularly in multi-programmed environments, the IPC mechanism
should support blocking semantics. Blocking IPC semantics dictate that a process should sleep
if the other processes with which it wishes to communicate are not ready; when those processes
become ready, they should wake-up their sleeping partners. In this paper, we present and evaluate
several protocols that use shared FIFO queues to efficiently implement a user-level client-server
communication substrate with blocking semantics.

Under ideal circumstances, user-level IPC can achieve round-trip latencies on the order of tens
of instructions. The ideal situation is when a message transfer is achieved by simply adding and/or
removing requests from queues in shared memory; that is, when there is no need to invoke kernel
services. On a shared-memory multiprocessor, if the client and server are running on different
processors (and are willing to spin for a time) this efficient situation may be common. On a
uniprocessor, this efficient situation can be common if the IPC is asynchronous. In this case a
client process can enqueue multiple asynchronous messages on to a shared queue without blocking
waiting for a response. Similarly, when the server gets the opportunity to run, it can handle requests
and respond without invoking kernel services until all pending requests are processed.

The challenge for user-level IPC is to handle synchronous message passing efficiently, espe-
cially on a uniprocessor. Synchronous message-passing typically results in at most one or two
messages in a queue, and an empty queue is actually the common case. If a queue is empty (or
full), the simplest solution is to busy-wait until until some data arrives (or until there is room for
more data). This greedy solution attempts to maximize performance by minimizing latency. How-
ever, the performance is gained at the cost of reduced overall system throughput, which is lost
in several ways. First, if client messages are relatively infrequent the server wastes resources by
spinning when no work is available. The clients can waste resources while busy-waiting for their
reply, which can be significant if the server, for example, is performing I/O to a disk or network
on the clients behalf. In multi-client environments, clients compete against each other and with
the server, whose processing time is impeded by unnecessary context switches and the subsequent
loss of cache state, etc. We should also point out that the impact of busy-waiting is substantially
higher on uniprocessor than on multiprocessor systems, although the throughput arguments apply
equally to both. Some compromise can be achieved by periodically polling the queue for work,
but response time suffers if work is enqueued just after the queue has been sampled. Exponential
back-off sampling as used for spin locks is not appropriate because the queue is not necessarily
contended, although the back off sampling does in some sense model a Poisson arrival expectancy.
It is not cost effective to have a server or client busy waiting for work on a multiprocessor system,
and unacceptable on a uniprocessor.

In this paper, we present three new protocols that can be used to incorporate blocking semantics
into user-level IPC. The protocols are presented in the context of a Send/Receive/Reply interface
layered over shared-memory based unidirectional concurrent queues. We first develop a basic
functional blocking user-level IPC protocol (Section 3), but we show that because of interactions
with the operating system scheduling policy, the protocol has worse performance than standard
kernel-mediated IPC. We then give two enhancements to the protocol that improve performance
for commercial operating systems (Section 4), including multiprocessor systems. Finally, we argue
in Section 6 that the scheduling policy requirements for user-level IPC are fundamentally different

2 IPC PRIMITIVES 3

void Send(Msg *msg, Msg *ans) f void Receive(Msg *msg) f
while(!enqueue(Q[srv], msg)) while(!dequeue(Q[srv], msg))

busy wait(); /* queue full */ busy wait(); /* queue empty */
g

while(!dequeue(Q[clnt], ans))
busy wait(); /* wait for reply */ void Reply(int clnt, Msg *msg) f

g while(!enqueue(Q[clnt], msg)
busy wait(); /* queue full */

g

Figure 1: Both Sides Spin: A Send/Receive/Reply interface with fixed sized messages and busy waiting
using shared memory queues.

than for typical multi-tasking workloads, and suggest an extended kernel interface to support our
hand-off scheduling policy. We show the results of this policy when implemented in the Linux
operating system.

The purpose of this paper is to examine the performance issues associated with user-level IPC,
and due to space limitations we do not deal with security issues. Servers can protect themselves
from clients by careful access to the shared memory queues. Clients can be protected from other
clients by placing only recoverable control information in the queues shared by other clients; all
sensitive state is maintained in mapped regions isolated from the other clients.

2 IPC Primitives

We start by presenting and examining a simple user-level IPC mechanism based on concurrent
uni-directional queues implemented in shared memory. Using a Send/Receive/Reply interface and
a busy-wait implementation, we can explore the factors affecting performance for subsequent user-
level IPC algorithms that include sleep/wake-up.

2.1 Busy-Waiting User-Level IPC

Concurrent queues are useful in many applications, for example, to implement a task queue in a
parallel program. Here we are concerned with their application to user-level IPC in a client-server
environment. From this perspective, concurrent queues can be considered as FIFO flow-controlled
half-duplex streams similar to UNIX pipes. Concurrent queues can serve as a basis for commu-
nications protocols that support multiple clients and multiple server threads. We chose to layer a
Send/Receive/Reply interface over the base enqueue/dequeue interface as shown in Figure 1.

The figure shows a synchronous Send and the corresponding Receive/Reply implemented using
busy-wait over the base queue interface1. We shall refer to this basic implementation as Both Sides
Spin (BSS). The interface uses fixed sized messages to permit efficient free-pool management.
Variable sized messages can be accommodated by using one of the fields of the fixed sized message
to point to a variable sized component in shared memory.

1The interface is easily augmented to support asynchronous Sends, in that they are functionally identical to Reply.

2 IPC PRIMITIVES 4

The implementation in Figure 1 uses two queues: a receive queue at the server for incoming
messages, and a reply queue for responses back to the client. If multiple clients want to connect to
the server, the single receive queue is still adequate but a reply queue per client is required. In this
case, each client request should include the number of the reply queue to be used for the response.
This server architecture is used for the performance evaluation of our sleep/wake-up protocols;
an alternative architecture might be to have a server thread per client, but that would require two
queues per client to implement the full-duplex virtual connection.

The busy wait functions of Figure 1 can be implemented in any number of ways, including a
null function. Note that while a null busy wait will minimize latency on a multiprocessor (albeit
at the expense of other concurrently executing processes), the same function will degrade perfor-
mance on a uniprocessor. On uniprocessors busy wait should be implemented as a yield()
system call to allow other processes to progress - otherwise the client or server will spin until its
quantum expires.

2.2 Performance

In subsequent sections we show how sleep/wake-up can be incorporated into the basic BSS al-
gorithm. However, it is important to understand the performance of the base algorithm, since it
represents an upper bound on performance. In this section we analyze the performance of the BSS
algorithm on two different commercial operating systems.

To evaluate the protocol, we implemented a simple client-server system where up to n clients
connect to a single-threaded server and make requests using our user-level IPC interface. The
clients connect to the server, barrier, and then enter a tight loop where they barrage the server with
many thousands of message requests. Each message contains 24 bytes which include: an opcode to
identify the request type; the channel on which to return the result; and a double precision floating
point value that serves as an argument to the request. The server is placed in a tight Receive/Reply
loop that accepts connections and processes requests, where the processing per request is simply to
echo the argument back to the client. The server throughputs are calculated using the real elapsed
time from the first message request (to exclude the connect time processing) until the last client
disconnects (because the server does not know in advance how many messages it must process).

The evaluation software uses a common implementation of the Michael and Scott two-lock
queue [9], and a common client and server implementation. Between all the different results
presented in this and later sections, only the implementation of the protocols themselves changes.
Also, the software is identical between the uniprocessor and multiprocessor environments, except
that busy-waiting is implemented as a yield() system call on the uniprocessor and as a busy-
wait delay loop on the multiprocessor.

Figure 2 shows the measured server throughput (ie. larger numbers are better) in messages
per millisecond for 1 to 6 clients on two different uniprocessor systems. The results in the left
graph of the figure were obtained from an SGI Indy running IRIX 6.2 on a 133 MHz MIPS R4000
processor; the results on the right are from an IBM P4 running AIX 4.1 on a 133 MHz PowerPC
604 processor. Both systems are configured with a 32 KByte split L1 cache, and a 512 KByte
combined L2 cache.

Each graph in Figure 2 contains two curves. The upper curve is the measured server through-
put for the Both Sides Spin algorithm of Figure 1. For comparison purposes, we also show the
measured server throughput using System V message queues. As a kernel mediated IPC mecha-

2 IPC PRIMITIVES 5

1 2 3 4 5 6

Number of Clients

1

2

3

4

5

6

7

8

9

Msgs
per

Msec

a)

SGI - 133MHz MIPS R4400, 512KB L2 Cache

∆
∆ ∆ ∆

∆
∆

∆ - Both Sides Spin

�
�

� � � �

� - SYSV Msgq

1 2 3 4 5 6

Number of Clients

0

5

10

15

20

25

30

b)

IBM - 133MHz PPC 604, 512KB L2 Cache

∆ ∆

∆

∆

∆
∆

∆ - Both Sides Spin

� �
�

� � �

� - SYSV Msgq

Figure 2: Measured uniprocessor Server Throughput in Messages/millisecond for varying numbers of client
processes. The left and right graphs are measured throughputs from 133MHz SGI and IBM machines,
respectively. The top curve in each plot is the throughput for the BSS algorithm; the lower curve shows the
throughput when SYSV message queues are used.

nism, SYSV message queues represent a lower-bound on acceptable user-level IPC performance.
The performance is a lower bound in the sense that while there may be many advantages to using
shared-memory based communication, performance is usually the primary motivator.

Concentrating for the moment on the SGI performance results (Figure 2a), we see that the BSS
curve exhibits the non-intuitive effect of increasing throughput as the number of clients increases.
To understand this behavior, consider first the execution interleaving when a single client and
server exchange messages. From the BSS algorithm of Figure 1, the client enqueues its request to
the server, and then, because Sends are synchronous, the client immediately tries to dequeue the
reply. On a uniprocessor, the reply queue is usually empty (because the server has not had a chance
to run and enqueue the reply) so the client yields the processor. This allows the server a chance
to run: it dequeues the request; enqueues the reply; and immediately attempts to receive the next
request. Again, there can be no request because the client has not had a chance to run, so the server
yields the processor.

When multiple clients run simultaneously, one would intuitively expect server throughput to
decrease, because many processes are actively wasting processor cycles context switching and
waiting for their request to complete. Instead, we see server throughput increase, because it turns
out the overall number of context switches is actually reduced. The reason is that the server can
avoid context switches if there are multiple messages on its input queue when the server is given its
time slice. This behavior was confirmed using the getrusage system call to obtain the number
of voluntary and involuntary context switches. The analysis showed that for, say, 100000 requests
from a single client the server made 100000 voluntary context switches; with 2 clients each making

2 IPC PRIMITIVES 6

Primitive Machine
Operation SGI IBM

enqueue/dequeue 3 �sec 2 �sec
msgsnd/msgrcv 37 �sec 15 �sec
Concurrent 1 process 16 �sec 6 �sec

Yields 2 processes 18 �sec 13 �sec
4 processes 45 �sec 30 �sec

Table 1: Measured times for primitive operations.

100000 requests getrusage still reported only 100000 voluntary server context switches.
Turning now to the IBM performance results (Figure 2b), we see completely opposite perfor-

mance trends compared to the SGI system as the number of clients increase. Instead of increased
throughput as the number of clients increases, the throughput rolls off from a high of 32 mes-
sages/msec (for BSS) to 19 messages/msec with 6 clients. It is also interesting to see that the
performance of System V IPC does not roll off as quickly as the user-level IPC protocol.

Considered together, the two graphs show that even this simple user-level IPC algorithm is
heavily influenced by system-level scheduling policies. From Figure 2, one can see that the
throughput of user-level IPC outperforms kernel-mediated IPC by factors of more than 1.5 and
1.8 for the SGI and IBM systems, respectively. While this performance is good, we expected it to
be better. From our earlier discussion, the BSS algorithm should involve two system calls (yield)
and two context switches per message exchange. For SYSV message queues, we expect four sys-
tem calls (a msgsnd/msgrcv pair at both the client and the server) and two context switches per
message exchange. Further, we expect the cost of a yield system call to be much cheaper than
either msgsnd or msgrcv.

To investigate further, we first measured the times for the primitives involved in the experiment.
The results are summarized in Table 1. The enqueue/dequeue and msgsnd/msgrcv times
are for the combined pair of operations as executed by a single process running in a tight loop. To
measure concurrent yield times, n clients would first barrier and then all processes entered a tight
yield loop. The times reported are the average loop trip time per process.

From Figure 2a, the round-trip latency on the SGI machine is about 119 �sec when there is 1
client. Since a round-trip involves 2 enqueue/dequeue pairs and 2 context switches, Table 1
suggests a round-trip latency of �������� � �� �sec – less than half of our observed latency!
Instrumentation of the code revealed that each process on the SGI was performing approximately
2.5 yields per round-trip message exchange. This suggests that the degrading priority scheme used
by the operating system for scheduling is preventing the process that just enqueued a message
from yielding the CPU to the waiting process. Note that since the both the client and server are
busy-waiting, the operating system always sees both processes as ready; it is only after the active
process has accumulated sufficient execution time that its priority is degraded enough to warrant a
full context switch.

To test the hypothesis that priority aging by the operating system is impacting performance,
we set both the server and client priorities to be non-degrading. Figure 3 shows the results as
server time in microseconds per message (ie. lower numbers are better). The curves show that
the throughput is increased by 50% on the SGIs, and 30% on the IBMs. We also reran the Sys-

3 INCORPORATING SLEEP/WAKE-UP 7

1 2 3 4 5 6

Number of Clients

2

4

6

8

10

12

Msgs
per

Msec

a)

SGI - 133MHz MIPS R4400, 512KB L2 Cache

∆ ∆ ∆ ∆ ∆
∆

∆ Both Sides Spin

�
� � � � �

� SYSV Msgq

|.|.|.|.|.|

.| BSS non-degrading priority

1 2 3 4 5 6

Number of Clients

0

5

10

15

20

25

30

35

40

b)

IBM - 133MHz PPC 604, 512KB L2 Cache

∆ ∆

∆

∆

∆
∆

∆ Both Sides Spin

|.|.|.|.|.|

.| BSS non-degrading priority

� �
�

� � �

� SYSV Msgq

Figure 3: Measured uniprocessor Server throughput in Messages/Millisecond for varying numbers of client
processes. The bottom two curves are the same as from Figure 2; the top curve is the throughput when non-
degrading priorities are used.

tem V Message Queue implementation with fixed priority scheduling, and found no appreciable
difference in performance.

Unfortunately, running with fixed-priority is not practical, except possibly for real-time appli-
cations. On both the SGI and the IBM, the system call to set fixed-priority scheduling requires
super-user privileges – primarily because the system can be deadlocked by careless use of non-
degrading priority scheduling. Of course, the problem is not with the priorities per sé, the problem
is that even though the CPU is explicitly yielded, there is no guarantee that any other process will
run. This behavior suggests a fundamentally different scheduling approach is needed for user-level
IPC. The reason is that schedulers normally view all ready processes as competing for the CPU,
however, processes involved in user-level IPC are co-operating towards a common goal. What we
desire is a user-level call to effect hand-off scheduling from the client to the server or vice versa.
We explore this possibility further in Section 6.

3 Incorporating Sleep/Wake-Up

In this section we show how the busy-wait implementation of user-level IPC presented in Figure 1
can be extended to incorporate blocking. Ideally, a protocol is needed such that a consumer process
that finds its queue empty puts itself to sleep until there is work to do. A producer process can
enqueue its work and then wake-up the consumer so that response latency is minimized. This
type of condition or event synchronization is common in thread libraries that multiplex multiple
light-weight threads onto a single heavy-weight (or kernel) process. We are concerned, however,
with the case where multiple kernel-level processes (usually in different address spaces) must

3 INCORPORATING SLEEP/WAKE-UP 8

communicate. In this case, the operating system must be involved in the sleep/wake-up part of the
protocol, which is not the case for light-weight thread packages. Since kernel-mediated IPC can be
accomplished in only 4 system calls per round-trip message (ie. client send, server receive, server
reply, client receive), any sleep/wake-up protocol must avoid unnecessary system calls and even
extraneous context switches to be efficient.

The top of Figure 4 shows how sleep/wake-up (denoted in the figure as block/unblock,
respectively) can be incorporated around each enqueue/dequeue operation. In particular, the server
sleeps if there are no client requests outstanding and the clients need not compete for resources if
they sleep while waiting for their reply. The difficulty in incorporating sleep/wake-up is that the
consumer2 should only block if the queue is empty, and therefore the producer must determine
if the consumer should be woken when new work has been enqueued. It is important that the
consumer only block if the queue is empty and that the producer only wake the consumer if it is
sleeping, because sleep and wake-up are system calls. If these system calls are made for every
enqueue/dequeue then the performance advantage of user-level IPC is lost. In the best case user-
level IPC requires no system calls, which happens if the server and client never see their respective
queues empty. In the worst case, blocking user-level IPC may need four system calls: the client
sends and wakes up server, then sleeps waiting for the reply; the server processes the request
and wakes up the client, then blocks waiting for the next request. The challenge is to find and
exploit situations where the client and/or server need not explicitly block – this saves 2 system
calls because no wake-up is needed if no sleep was performed.

A further complexity in designing a sleep/wake-up protocol is that two “incompatible” oper-
ations must be performed atomically. The consumer, on detecting an empty queue: (1) indicates
that it may be going to sleep (step C.2 in Figure 4); (2) executes the kernel call to do so (step C.4
in the figure). These two steps cannot be made atomic using a lock, since the consumer cannot
release the lock once it is asleep. Consequently, the sleep/wake-up protocols presented here can
have race conditions. Race conditions are not necessarily harmful, in the sense of causing incorrect
behavior. However, they may have an impact on performance if left unchecked. Conversely, the
work-arounds to prevent race conditions can also degrade performance. As a result, race condi-
tions that do not affect correctness are often tolerated if they are deemed to be relatively infrequent
and if preventing them would unduly lengthen the execution time of the critical path.

There are (at least) three possible race conditions with the protocol given in Figure 4. The race
conditions are also depicted in the figure using Execution Interleaving time-lines. These charts
show execution steps progressing downwards for a consumer process and one or two producer
processes: an empty step indicates that the particular process is not executing; multiple steps on
the same line indicate that the operations are performed concurrently.

In the first execution interleaving scenario of Figure 4, the producer attempts to wake up the
consumer after it clears the awake flag and before it goes to sleep. This race condition is harmful
if the wake-up condition does not remain pending on the consumer, because the consumer could
sleep forever. One way to ensure the condition remains pending is to implement the sleep and
wake-up using counting semaphores3.

2Note that the consumer is the process that is dequeuing messages, and could be either the server receiving a
request or a client obtaining its reply.

3A down or P operation on a counting semaphore attempts to decrement a count value - the operation blocks the
calling process if the count value is zero or less. An up or V operation increments the semaphore count, unblocking
any waiting processes if the count value exceeds 0.

3 INCORPORATING SLEEP/WAKE-UP 9

Producer/Consumer Algorithm with Blocking

Consumer Steps: Producer Steps:
C.1 if dequeue(msg) = EMPTY P.1 enqueue(msg)
C.2 consumer->awake� FALSE P.2 if not consumer->awake
C.3 if dequeue(msg) = EMPTY P.3 unblock(consumer)
C.4 block(consumer)
C.5 consumer->awake� TRUE

Execution Interleaving 1: Wake-up before sleep

Consumer: Producer:
C.1 if dequeue(msg) = EMPTY
C.2 consumer->awake� FALSE
C.3 if dequeue(msg) = EMPTY

P.1 enqueue(msg)
P.2 if not consumer->awake
P.3 unblock(consumer)

C.4 block(consumer)

Execution Interleaving 2: Multiple wake-ups

Consumer: Producer 1: Producer 2:
C.1 if dequeue(msg) = EMPTY
C.2 consumer->awake� FALSE
C.3 if dequeue(msg)= EMPTY
C.4 block(consumer) P.1 enqueue(msg) P.1 enqueue(msg)

P.2 if not consumer->awake P.2 if not consumer->awake
P.3 unblock(consumer)P.3 unblock(consumer)

Execution Interleaving 3: Wake-up without sleep

Consumer: Producer:
C.1 if dequeue(msg) = EMPTY
C.2 consumer->awake� FALSE P.1 enqueue(msg)
C.3 if dequeue(msg) = EMPTY P.2 if not consumer->awake

P.3 unblock(consumer)
C.5 consumer->awake� TRUE

Execution Interleaving 4: Why step C.3 is required

Consumer: Producer:
C.1 if dequeue(msg) = EMPTY

P.1 enqueue(msg)
P.2 if not consumer->awake

C.2 consumer->awake� FALSE
C.4 block(consumer)

Figure 4: Producer/Consumer with sleep/wake-up protocol and some possible races.

3 INCORPORATING SLEEP/WAKE-UP 10

A second race condition that can occur is depicted in Execution Interleaving 2 of Figure 4.
Here multiple producers simultaneously see that the consumer is sleeping, and simultaneously
try to wake the consumer. If counting semaphores are used as the sleep/wake-up mechanism,
the multiple wake-ups can result in a semaphore value greater than zero, which means the next
semaphore “down” operation performed by the consumer will simply decrement the count and
not actually block. This race condition is not necessarily harmful: if the dequeue attempts are
placed in a loop the consumer will simply iterate until the semaphore count reaches zero and then
block. Performance is degraded because the multiple wake-ups were unnecessary and because the
consumer must iterate to restore the count. Unfortunately, the race condition can be harmful if the
consumer is busy enough that it never gets a chance to iterate the semaphore count down to zero.
In this situation, the multiple wake-ups can accumulate - eventually causing an overflow of the
semaphore value (this happened in our first version of the algorithm!). The race condition can be
removed by having the producers reset the awake flag atomically. The flag could be protected by
a lock, but a simple test and set operation is an efficient way to make sure only the first producer
to see the awake flag cleared to 0 will reset it to 1.

Execution Interleaving scenario 3 of Figure 4 is similar in many ways to scenario 2. Here, the
semaphore value can accumulate over time if the producer tries to wake a consumer that did not
have to sleep because the second dequeue attempt (step C.3 of the protocol) succeeded. This can
be detected if the consumer uses test and set to reset the awake flag if step C.3 does not find the
queue empty. If the flag was already set (ie. the result of the test and set is 1) then a producer tried
to wake the consumer, and the counting semaphore can safely be decremented without blocking.

The fourth interleaving scenario of Figure 4 is included to illustrate why the seemingly redun-
dant dequeue of step C.3 of the protocol must be included. Here the producer checks the awake
flag after the consumer has found the queue to be empty but before the consumer can clear its
awake flag. As a result, the producer does not attempt to wake-up the consumer, who (poten-
tially) sleeps forever.

Given the protocol description and considerations to reduce the impact of race conditions,
Figure 5 shows how the basic busy-wait IPC implementation can be extended to incorporate sleep
and wake-up. We shall refer to this algorithm as Both Sides Wait (BSW).

The reader should note that the sleep(1) call on a queue full condition (after enqueuing in
both Send and Reply) is assumed to use the standard UNIX semantics, ie. the process will sleep
for at least one second. Although this may seem a rather long sleep time, the queue full condition
seldom occurs and the implication is that the consumer is saturated; waiting a full second should
allow the consumer to reduce the backlog of outstanding messages.

3.1 Initial Performance

The performance of the BSW algorithm is plotted with respect to the BSS and System V message
queues in Figure 6. The performance more or less matches the performance of kernel mediated
IPC. This could be considered positive, since if user-level IPC is as good as kernel mediated IPC,
and has advantages for asynchronous IPC, specialized protocols, and multiprocessors, then it is
a win overall. However, we do not consider this sufficiently good since synchronous IPC on
uniprocessors is the most important workload today.

The reason for the poor performance is that the V operation that wakes up the consumer does
not force a rescheduling decision. Thus, if the server is blocked when the client places something

3 INCORPORATING SLEEP/WAKE-UP 11

void Send(Msg *msg, Msg *ans) f void Receive(Msg *msg) f
while(!enqueue(Q[srv], msg)) while(!dequeue(Q[srv], msg)) f

sleep(1); /* queue full */ Q[srv]->awake = 0;
while(!dequeue(Q[srv], msg)) f

if(!tas(&(Q[srv]->awake))) P(srv); /* Wait for client */
V(srv); /* Wake-up server */ Q[srv]->awake = 1;

g
/* Wait for reply */ else f /* not empty */
while(!dequeue(Q[clnt],ans)) f if(tas(&(Q[srv]->awake))) P(srv);

Q[clnt]->awake = 0; break;
if(!dequeue(Q[clnt],ans)) f g

P(clnt); /* Wait for server */ g /* end while */
Q[clnt]->awake = 1; g

g
else f /* reply ready */ void Reply(int clnt, Msg *msg) f

if(tas(&(Q[clnt]->awake))) while(!enqueue(clnt, msg))
P(clnt); /* Fix race condition */ sleep(1); /* queue full */

break;
g if(!tas(&(Q[clnt]->awake)))

g /* end while */ V(clnt); /* Wake-up client */
g g

Figure 5: Both Sides Wait: A Send/Receive/Reply interface that uses counting semaphores to incorporate
sleep/wake-up.

1 2 3 4 5 6

Number of Clients

1

2

3

4

5

6

7

8

9

Msgs
per

Msec

a)

SGI - 133MHz MIPS R4400, 512KB L2 Cache

∆
∆ ∆ ∆

∆
∆

∆ Both Sides Spin

×
×

×
× × ×

× Both Sides Wait

�.�.�.�.�.�

.� SYSV Msgq

1 2 3 4 5 6

Number of Clients

0

5

10

15

20

25

30

b)

IBM - 133MHz PPC 604, 512KB L2 Cache

∆ ∆

∆

∆

∆
∆

∆ Both Sides Spin

×

×

×
×

× ×

× Both Sides Wait

�.�.�.�.�.�

.� SYSV Msgq

Figure 6: Measured uniprocessor Server Throughput in Messages/millisecond for varying numbers of client
processes. The solid curve in each figure represents the throughput for the Both Sides Wait algorithm.

4 PERFORMANCE IMPROVEMENTS 12

in the queue, the client “ups” the semaphore but then must block on the reply. At this point, the
operating system can restart the server, who enqueues the reply and “ups” the client semaphore.
The server then blocks waiting for the next request. The result is four system calls per round-trip:
two V operations and two P operations. Since we used System V semaphores, which are of similar
weight to the four System V message queue calls, there is no advantage to the shared memory
solution at all.

4 Performance Improvements

The algorithms of Figure 5 achieve our goal of blocking processes that try to dequeue from an
empty queue. However, all the performance advantages of user-level IPC are lost.

One could argue that if an asynchronous Send were used then useful work could be inserted
between the enqueue for the request and the subsequent dequeue for the reply (assuming a reply
is needed at all). Delaying the client dequeue is effective in a multiprocessor environment, es-
pecially if useful work can be accomplished. However, many systems prevent this by layering a
synchronous Remote Procedure Call (RPC) interface over the user-level IPC, and it is often the
case that the client actually needs the reply before it can proceed. Delaying the dequeue doesn't
help at all on a uniprocessor, unless the intervening work includes a system call or is time consum-
ing enough to expire the current quantum. The reason is that the client has to be pre-empted and
the server scheduled to run for it to be able to prepare a reply. Only then does the protocol avoid a
system call that would have been present using kernel mediated IPC.

4.1 Simulating Hand-off Scheduling

What we desire is a hand-off scheduling policy such that when the client executes the system call
to wake the server, the server is readied and run immediately instead of returning to the client.
Assuming the server can process the request in a single quantum, it would not block until it tried to
dequeue the next request. At that time, the client (who was blocked as part of the wake-up system
call) could continue, find its reply already available, and continue processing. Adding up the costs,
we see that hand-off scheduling reduces the number of system calls from 4 to 2 per round-trip.

Figure 7 shows the BSW algorithm of Figure 5 modified to include busy wait/yield
calls to suggest hand-off scheduling to the operating system. On the client side, the busy wait
calls are added after the client returns from waking the server, and after the client first finds the
reply queue is empty. Note that we used busy wait instead of yield directly, so that the
algorithm ports transparently between multiprocessor and uniprocessor implementations. On both
architectures the V(srv) call readies the server. However, on a multiprocessor the server will
likely execute on a different processor (assuming one is available), while on a uniprocessor the
semaphore operation does not force a rescheduling decision and the client continues. Thus, on a
multiprocessor the busy wait will delay the client while the server processes the request, so that
the reply can be ready when the client attempts to dequeue it. On uniprocessors where busy wait
is implemented as yield, the operating system is forced to at least re-evaluate whether the client
or server should run.

Since the wake-up operation is only executed if the server is already blocked, the second
busy wait is executed if the client finds the reply queue is still empty. In this case, the busy wait

4 PERFORMANCE IMPROVEMENTS 13

void Send(Msg *msg, Msg *ans) f void Receive(Msg *msg) f
while(!enqueue(Q[srv],msg)) if(dequeue(Q[srv], msg)) return;

sleep(1); /* queue full */
yield(); /* Let clients run */

if(!tas(&(Q[srv]->awake))) f
V(srv); /* Wakeup server */ while(!dequeue(Q[srv], msg)) f
busy wait(); /* and let it run */ Q[srv]->awake = 0;

g if(!dequeue(Q[srv], msg)) f
P(srv); /* Wait for client */

/* Wait for reply */ Q[srv]->awake = 1;
while(!dequeue(Q[clnt],ans)) f g

busy wait(); /* Try to handoff */ else f /* not empty */
Q[clnt]->awake = 0; if(tas(&(Q[srv]->awake))) P(srv);
if(!dequeue(Q[clnt],ans)) f break;

P(clnt); /* Wait for server */ g
Q[clnt]->awake = 1; g /* end while */

g g
else f /* reply ready */

if(tas(&(Q[clnt]->awake))) void Reply(int clnt, Msg *msg) f
P(clnt); /* Fix race condition */ while(!enqueue(Q[clnt],msg))

break; sleep(1); /* queue full */
g

g /* end while */ if(!tas(&(Q[clnt]->awake))) V(clnt);
g g

Figure 7: Both Sides Wait and Yield: busy wait/yield calls are added to the BSW algorithm to effect
hand-off scheduling.

4 PERFORMANCE IMPROVEMENTS 14

1 2 3 4 5 6

Number of Clients

1

2

3

4

5

6

7

8

9

10

11

12

Msgs
per

Msec

a)

SGI - 133MHz MIPS R4400, 512KB L2 Cache

∆ ∆ ∆ ∆ ∆
∆

∆ Both Sides Spin
×

× ×
× × ×

× Both Sides Wait

|

|

| | | |

| Both Sides Wait and Yield

�.�.�.�.�.�

.� BSWY - fixed priority

�.�.�.�.�.�

.� SYSV Msgq

1 2 3 4 5 6

Number of Clients

0

5

10

15

20

25

30

35

40

b)

IBM - 133MHz PPC 604, 512KB L2 Cache

∆ ∆

∆

∆

∆
∆

∆ BSS

×
×

×
×

× ×

× BSW

|

|

|
| | |

| BSW - Yield

�..................�.�.�.�.�

.� BSWY - fixed priority

�.�.�.�.�.�

.� SYSV Msgq

Figure 8: Measured uniprocessor Server Throughput in Messages/millisecond for varying numbers of client
processes. The solid curve in each figure represents the throughput for the Both Sides Wait and Yield
algorithm of Figure 7.

attempts to give the server one last chance to prepare a reply before the client puts itself to sleep.
Figure 7 also shows a yield() system call added in the Receive implementation of the server

to allow the clients to process their replies and (possibly) enqueue their next request. Note that the
server only yields if a dequeue attempt results in a queue empty condition. The reason for this
extra dequeue is again for scalability with multiple clients. In particular, with multiple clients
there is a higher probability that the server's queue has multiple outstanding entries, and it is more
productive to continue processing than to give up the processor after every reply.

Figure 8 shows how the hand-off suggestions of the BSWY algorithm affect performance on a
uniprocessor. The solid curves in the figure show the server throughput when the default scheduling
mechanisms are used. The curves show that the busy wait calls are effective for one or two
clients, but that the performance degrades as concurrency is increased further. The reason is that
the yield contains no hint about which process should be favored, and so any ready process,
including the yielding process, could be scheduled as a result. Unless control is actually transferred
to the server, the client will still block, in which case the yield calls have no benefit and actually
contribute to the critical path latency.

The top dotted curves of Figure 8 show the performance of BSWY when fixed-priority schedul-
ing is used. The throughput with this scheduling policy basically matches the performance of the
busy-waiting BSS algorithm under the same scheduling policy (see Figure 3). While fixed-priority
scheduling is not generally applicable to most client/server environments, we believe this perfor-
mance could be obtained if hand-off scheduling were implemented.

4 PERFORMANCE IMPROVEMENTS 15

void Send(Msg *msg, Msg *ans) f void Receive(Msg *msg) f
while(!enqueue(Q[srv],msg)) spincnt = 0;

sleep(1); /* queue full */ while(empty(Q[srv]) && spincnt++<MAX SPIN)
poll queue(Q[srv]); /* Try to handoff */

if(!tas(&(Q[srv]->awake))) V(srv);
while(!dequeue(Q[srv], msg)) f

spincnt = 0; Q[srv]->awake = 0;
while(empty(Q[clnt]) && spincnt++<MAX SPIN) if(!dequeue(Q[srv], msg)) f

poll queue(Q[clnt]); /* Try to handoff */ P(srv); /* Wait for client */
Q[srv]->awake = 1;

while(!dequeue(Q[clnt],ans)) f g
busy wait(); /* Try to handoff */ else f /* not empty */
Q[clnt]->awake = 0; if(tas(&(Q[srv]->awake))) P(srv);
if(!dequeue(Q[clnt],ans)) f break;

P(clnt); /* Wait for server */ g
Q[clnt]->awake = 1; g /* end while */

g g
else f /* reply ready */

if(tas(&(Q[clnt]->awake))) void Reply(int clnt, Msg *msg) f
P(clnt); /* Fix race condition */ while(!enqueue(Q[clnt],msg))

break; sleep(1); /* queue full */
g

g /* end while */ if(!tas(&(Q[clnt]->awake))) V(clnt);
g g

Figure 9: Both Sides Limited Spin (BSLS)

4.2 Adding Limited Busy-Waiting

The BSWY algorithm of Figure 7 shows some promise in that it seems to be able to effect a hand-
off to the consumer for small numbers of clients. However, Figure 8 shows that real hand-off
scheduling, as approximated by the fixed priority scheduler, could do much better. Remember that
in Section 2.2 we found it took 2.5 yield calls (on average) before the default scheduler actually
performed a context switch. It is therefore reasonable to conclude that the BSWY algorithm is
unable to reach its full potential because the single hand-off suggestions (yields) inserted in the
algorithm do not necessarily result in the desired context switch.

The Both Sides Limited Spin (BSLS) algorithm of Figure 9 incorporates a loop around the
hand-off attempts. Note that both the server and client spin, the rationale is that the client is
anxiously awaiting a reply; and it is cheaper to let the server spin a little than to wake it up if it
goes to sleep. Note also that both the client and server can still block, which happens if there is no
activity after MAX SPIN dequeue attempts. The BSLS algorithm also makes use of an empty test
that checks the head of the queue without locking it. The poll queue subroutine is implemented
as yield on a uniprocessor, and as a delay loop that calls empty on a multiprocessor.

Picking the right value for MAX SPIN is important: it should be large enough so that the client
will not block for the (common) case where the server has an immediate response; and it should
be large enough to ensure that a hand-off will be effected. On the other hand, too large a value of
MAX SPIN will waste resources if the server has had to do I/O or is already busy handling other
local requests. In either case the client should get out of the way and allow other useful work to be

5 MULTIPROCESSOR PERFORMANCE 16

1 2 3 4 5 6

1

2

3

4

5

6

7

8

9

Msgs
per

Msec

a) SGI - 133MHz MIPS R4400, 512KB L2 Cache

Number of Clients

∆
∆ ∆ ∆ ∆

∆

∆ BSS

�

� �
�

�
�

� Max Spin 20

×.×.×.×.×.×
.× Max Spin 10

�

�

� � � �

� Max Spin 1

| | | | | |

| SysV Msgq

1 2 3 4 5 6
0

5

10

15

20

25

30
b)

IBM - 133MHz PPC 604, 512KB L2 Cache

Number of Clients

∆ ∆

∆

∆

∆
∆

∆ BSS

�

�

�

�
�

�

� Max Spin 20

×.....×.×.×.×.×.× Max Spin 10

�

�

�

� �
�

� Max Spin 1

| |
|

| | |

| SysV Msgq

Figure 10: Measured uniprocessor Server Throughput in Messages/millisecond for varying numbers of
client processes. The curves show the effect of different MAX SPIN values for the Both Sides Limited
Spin algorithm.

accomplished.
Figure 10 shows the sensitivity of the algorithm to MAX SPIN. As expected, performance gen-

erally improves as the number of tries is increased. We verified that this is because the probability
of falling out of the loop decreases as the number of hand-off attempts increases. At a MAX SPIN
value of 20, a single client only blocks 3% of the time, and gets an answer back within 2 itera-
tions on average. Even with six clients, the numbers rise to: 10% of the loops fall-through; and 4
iterations of the loop are executed on average.

5 Multiprocessor Performance

Figure 11 shows the performance of the various algorithms on an 8-processor SGI Challenge. The
code used in this experiment is identical to that used for the uniprocessor experiments, except that
the poll queue implementation uses a busy wait loop (25 �sec) where the empty check is
made on every iteration.

The figure shows five curves: the top curve is the Both Sides Spin algorithm, the middle three
curves are the Both Sides Limited Spin algorithm with different values of MAX SPIN, and the
bottom curve is for System V Message Queues. We see that System V Message Queues perform
the worst and are unable to scale with increased concurrency demands. The best performance is
for the BSS algorithm, whose throughput increases rapidly until the server saturates, and then stays
stable. The Both Sides Limited Spin algorithms have similar performance to BSS up to a point,
and then performance degrades rapidly. The reason for this is that as soon as a client spins for
longer than MAX SPIN, the server must pay the extra overhead to wake it up, which increases the
load on the server and as a result increases the probability of other clients spinning for longer than

6 MODIFYING YIELD IN LINUX 17

1 2 3 4 5 6 7

Number of Clients

5

10

15

20

25

30

35

40

45

Msgs
per

Msec

SGI Challenge - 8 150MHz R4400, 1MB L2 Cache

�

�

�

� � � �

� BSS

∆
∆

∆

∆ ∆ ∆ ∆

∆ BSLS: Max Spin 20

�
�

�

� �

�

�

� BSLS: Max Spin 10

×.×.................×.×.×.×.×

×. BSLS: Max Spin 1

|
| | | | | |

| SYSV Msgq

Figure 11: Measured multiprocessor Server Throughput in Messages/millisecond for varying numbers of
client processes.

MAX SPIN.
We could break the positive feedback in the BSLS algorithm by having the server recognize

the fact that it is overloaded, and limit the number of clients it wakes up at any given time. The
challenge is constraining the concurrency in this fashion while guaranteeing that starvation doesn't
occur. We leave this for future work.

6 Modifying yield in Linux

Earlier sections have shown that fixed-priority scheduling substantially increases performance
when the algorithms incorporate yield calls to suggest hand-off scheduling to the operating
system scheduler. We would like to prove that a hand-off scheduling policy would indeed achieve
the same performance as a fixed-priority policy, but without the deadlock and priority inversion
problems that forces users of real-time scheduling to have super-user privileges.

Fundamentally, an operating system scheduler views multiple ready processes as competing for
CPU resources. For this workload, the dynamically degrading priorities of typical schedulers will
maximize throughput while still preventing starvation. However, since user-level IPC processes are
co-operating instead of competing, overall system throughput would be best served with a hand-
off scheduling policy. In the remainder of this section, we suggest an interface and implementation
for a hand-off scheduling policy.

Ideally, a handoff system call would take a single pid t argument (say, pid) that would be
interpreted as follows:

pid = some pid - hand-off to the specified some pid. Of course, some pid must already

7 RELATED WORK 18

be in the ready queue to be eligible for execution.

pid = PID SELF - same semantics as yield.

pid = PID ANY - block the calling process and allow highest priority ready process to run, even
if it has a lower priority than the caller.

The first argument type (pid = some pid) would be used by the clients to hint that the
server should execute. Since hand-off scheduling is often not incorporated because malicious pro-
cesses could use it to monopolize the processor, a reasonable implementation might be to degrade
the dynamic priority of some pid so that it would be favored to run but could not hog the CPU.
The third argument style (pid = PID ANY) would be used by the server to allow the clients to
run. The server could use the first form to specify the client to whom it just responded, but in
general it is sufficient for the server to inform the operating system simply that it has no useful
work to do.

We implemented this handoff system call in the Linux 1.0.32 Slackware Release. It turns
out that this version of Linux has a relatively simplistic scheduler that does not exhibit all of the
characteristics of the other commercial operating systems we looked at. In particular, the support
for fixed-priority scheduling was too immature to run the busy-waiting algorithms at all. Even
with the default scheduler, we found that the response time for the busy-wait algorithm (BSS)
was on the order of 33 milliseconds instead of the 120 microseconds we were expecting. The
problem appeared to be in the way the dynamic priority was aged, so to fix it, we changed the
sched yield call to expire the caller's quantum and force a context switch. This change brought
the latency back to 120 �sec on a 66MHz 486 machine. Of course, this is exactly the way we would
like the commercial unix schedulers to treat yield, and so the results we obtain from the busy-
wait algorithm in Linux should correspond to the fixed-scheduling curves we obtained from AIX
or IRIX.

Figure 12 shows the measured throughput on the Linux system with our modified sched yield
implementation. The curves show that the BSWY algorithm – the one without any client side
spinning – performs as well as the busy-waiting BSS algorithm. Because the way we changed
sched yield brought us near maximal performance, we actually found that our implementation
of handoff matched the BSWY performance, but did not improve it further.

7 Related Work

With the recent interest in micro-kernels and the general trend in moving traditional operating
system functionality to the user level, we were surprised that more work did not exist in this area.

The issues of fast user-level IPC arise in user-level thread packages [10], but since these pack-
ages also include the thread scheduler, system calls are not needed to sleep and wake-up threads.
Also, the race conditions that we encounter as a result of crossing the kernel boundary do not have
to occur in a user-level thread package because the interface can allow a thread to atomically sleep
and set a flag to inform others that it is doing so.

Fast IPC has also been the focus of microkernel architecture research, and solutions based
on hand-off scheduling have been proposed in Bershad's LRPC [1], Gamsa's PPC [4], Spring

8 CONCLUSION 19

1 2 3 4 5 6

Number of Clients

2

4

6

8

10

Msgs
per

Msec

Linux - 66MHz Intel 486

∆

∆
∆

∆

∆ ∆

∆ Both Sides Spin

×

×

× × ×

×

× Both Sides Wait - with handoff

�.�.�.�.�.�

.� SYSV Msgq

Figure 12: Measured uniprocessor Server Throughput in Messages/millisecond for varying numbers of
client processes. The solid curve is the BSWY algorithm of Figure 7 with the modified sched yield
implementation.

doors [5], and Liedtke's L3 and L4 systems [7, 8]. However, all these systems are based on kernel
mechanisms to support client upcalls and server registration of entry points.

Bershad's URPC system [2] is mostly implemented at the user level, but depends on a high
degree of concurrency in the client to batch calls or tolerate latency when control must be handed
to the server. In contrast, our work does not assume concurrency within a single client, and focuses
on achieving low latency for the case where the server data is cached locally.

Many of the race conditions and scheduling considerations could be resolved with an extended
operating system interface [6]. For example, SymUnix [3] allows user processes to indicate when
they are executing a critical section, and should therefore not be pre-empted. We would welcome
extensions such as our proposed handoff(pid t p), which could allow a client to suggest
that the server be scheduled after a request has been enqueued.

8 Conclusion

The performance of IPC is crucial to many applications, and there has been a great deal of work
done on developing IPC facilities for new operating systems that perform well. In this paper we
have shown how, using user-level IPC, good performance can be achieved on current commer-
cial operating systems. We showed that we could achieve throughputs on uniprocessors that are
twice as high as the kernel mediated IPC facilities, and demonstrated that even better performance
improvements can arise in multiprocessors. Also, we show that with just minor changes to the
operating system interface, even better performance is possible.

Our work has so far mainly concentrated on achieving good performance for synchronous IPC

REFERENCES 20

on a uniprocessor, since this is the most challenging situation. In the future we intend to explore in
more detail the other benefits of user-level IPC, namely, asynchronous IPC, specialized protocols,
and multiprocessor performance. Also, more work is required on the security issues that arise
when user-level IPC is used.

While the results in this paper are based on unrealistic micro-benchmarks, the motivation for
this work comes from the performance and functionality limitations we found in current IPC facil-
ities when developing a new data base server. This data base server exploits not only the improved
performance of user-level IPC for synchronous IPC, but also the optimizations available for asyn-
chronous IPC and customized protocols.

References

[1] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy.
“Lightweight Remote Procedure Call”. ACM Transactions on Computer Systems, 8(1):37–
55, February 1990.

[2] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy. “User-
Level Interprocess Communication for Shared Memory Multiprocessors”. ACM Transactions
on Computer Systems, 9(2):175–198, May 1991.

[3] J. Edler, J. Lipkis, and E. Schonberg. “Process Management for Highly Parallel UNIX Sys-
tems”. In Proc. USENIX Workshop on Unix and SuperComputers, Pittsburgh, PA, September
1988.

[4] Benjamin Gamsa, Orran Krieger, and Michael Stumm. “Optimizing IPC Performance for
Shared-Memory Multiprocessors”. In Proc. International Conference on Parallel Processing
(ICPP), volume 2, pages 208–211, August 1994.

[5] Graham Hamilton and Panos Kougiouris. “The Spring nucleus: A microkernel for objects”.
In Proc. Summer USENIX, pages 147–159, Cincinatti, OH, June 1993.

[6] Leonidas I. Kontothanassis, Robert W. Wisniewski, and Michael L. Scott. Scheduler Con-
scious Synchronization. Technical Report TR 550, Dept. Computer Science, University of
Rochester, Rochester, NY, December 1994.

[7] Jochen Liedtke. “Improving IPC by Kernel Design”. In Proc. 14th ACM Symposium on
Operating Systems Principles, pages 175–188, Asheville, NC, December 1993.

[8] Jochen Liedtke. “On �-Kernel Construction”. In Proc. 15th ACM Symposium on Operating
Systems Principles, Copper Mountain Resort, CO, December 1995.

[9] Maged M. Michael and Michael L. Scott. “Simple, Fast, and Practical Non-Blocking and
Blocking Concurrent Queue Algorithms”. In 15th ACM Symposium on Principles of Dis-
tributed Computing (PODC), 1996.

[10] D. Stuart Ritchie and Gerald W. Neufeld. “User Level IPC and Device Management in the
Raven Kernel”. In Proc. USENIX Microkernels and Other Kernel Architectures Symposium,
San Diego, CA, September 20–23 1993.

