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Abstract

The growing deployment of wireless infrastructures and the decreasing cost of services have 

resulted in an exponential increase in the usage of wireless communication devices in different 

fading environments over the past decade. The performance of mature wireless cellular systems 

remains limited by fading and interference from other user signals. This thesis contributes to the 

accurate bit error rate (BER) performance analysis of a coherent binary phase shift keying (BPSK) 

modulation in a general fading and interference environment, as well as contributes to the estimation 

of the Nakagami-m fading parameter.

A generic BPSK direct-sequence code-division multiple access (DS-CDMA) system using ran­

dom spreading sequences in flat Rayleigh fading is first considered. A tractable average BER ex­

pression is derived using a characteristic function method. The precise BER can be obtained for 

a system with large processing gain and an arbitrary number of users with modest computational 

complexity. The result is used to assess the accuracies of several widely used approximations. These 

results are then extended to a flat Nakagami-m fading channel.

Error analysis for bandwidth-efficient BPSK in a generalized Nakagami/Nakagami fading and 

cochannel interference (CCI) environment is studied. A tractable analytical BER expression is 

derived and used to study the effects of fading of an interfering signal on the desired user BER 

performance. It is found that fading of an interfering signal worsens the BER of the desired signal 

rather than improving it. The performance of a new novel pulse shape in fading and CCI is also 

studied. It is shown both analytically and numerically that this novel pulse outperforms the widely 

used raised-cosine pulse.
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The estimation of the Nakagami-m fading parameter is extensively studied. Both moment-based 

and maximum-likelihood based estimations are considered. Several new estimators are proposed 

and their properties are thoroughly examined.
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Chapter 1

Introduction

1.1 Introduction

From the beginning, humans have been communicating. It was about three decades ago that comput­

ers started to communicate to each other as well, and they have evolved into what we know today as 

Internet. Recently, smart electrical appliances can also communicate to each other using the Blue­

tooth technology [67]. With advances in speech recognition technology, humans have started to 

communicate with these smart appliances and computers. Therefore, communication is everywhere 

in our daily life. Since the invention of the telephone by Alexander Graham Bell in 1876 [87], 

wireline communication has dominated most of the consumer communication market. However, 

in recent years, approximately one hundred years after Marconi patented the first complete wire­

less telegraph system [87], usage of wireless communication services has experienced an explosive 

growth. Wireless communications can be based on either satellite technology or cellular technology. 

However, with the demise of Iridium and other satellite-based companies, the consumer market is 

clearly in favor of cellular-based wireless communication systems. The number of global cellular 

subscribers has grown from 10 million in early 1990’s to approximately 700 million nowadays. 

This cellular user population is projected to grow to 2 billion by 2007 [66]. Cellular communication 

devices are not just convenient communication tools, they are also becoming increasingly important 

in search and rescue operations, and extremely useful in many emergency situations.

1
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When a radio signal is transmitted, the signal strength is subject to attenuation or loss over the 

transmission path. Signal attenuation is inversely proportional to the distance it travels. The path 

loss exponent typically takes values of 2-5 depending on the environment. In addition to path loss, 

the transmitted signal is also subject to shadowing, which is caused by topographical variations such 

as trees and buildings along the transmission path. In shadowing, the mean received signal strength 

experiences randomness. The lognormal distribution is typically used to describe this randomness 

in the received signal power. Path loss is a large scale variation of signal power, possibly over 

several kilometers in radius. Shadowing is a more local view of the signal power variation, typically 

over several hundreds of wavelengths. From a smaller scale view, the transmitted radio signal is 

also subject to multipath fading, signal power variation over a distance of several wavelengths. 

In addition to fading, the signal can also be corrupted by other user interference. The cause of 

multipath fading is due to multipath propagation and the cause of other user interference is due to 

radio frequency reuse and multiple access interference. Since fading and interference are ubiquitous 

in many wireless systems, we will describe them in more detail in the next section.

1.2 Transmission Environment

In this section, we briefly describe fading and interference, which are two main sources of system 

performance degradation in any mature cellular system. Section 1.2.1 introduces four basic types 

of fading channels and reviews some theoretical origins of three useful fading models. In this 

subsection, we restrict our attention to the first-order statistics for the fading channels. In this thesis, 

we do not consider the second-order fading statistics; however, they are also of practical importance 

in certain transmission environment. Section 1.2.2 introduces basic concepts of cellular system. 

Both cochannel interference and multiple access interference are defin ed. Three important multiple 

access schemes are also characterized.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.2.1 Multipath Fading

The wireless channel is a result of random propagation of radio waves; therefore, modeling the 

wireless channel is typically done in a statistical fashion. Due to ground irregularities, typical wave 

propagation phenomena such as diffraction, scattering, and reflection lead to diffusion of a trans­

mitted radio wave into a continuum of plane waves with different amplitudes and phases. At the 

receiver antenna, these incident waves are added up constructively and destructively causing mul­

tipath fading, or fading in short. Fading captures the rapid fluctuation of amplitude and phase in a 

radio signal over a short period of time or distance, typically between a fraction of a wavelength and 

several wavelengths. Depending on the relative relation between parameters of transmitted signal 

(i.e., signal bandwidth and symbol period) and parameters of fading channels (i.e., delay spread 

and Doppler spread), fading channels can be classified into four types: fast frequency-nonselective 

fading, slow frequency-nonselective fading, fast frequency-selective fading, and slow frequency- 

selective fading. In the following, we will briefly describe these four basic types of fading.

Delay spread is a parameter which describes the time dispersive nature of the fading chan­

nel. The reciprocal of the delay spread is called coherence bandwidth. The coherence bandwidth 

is the range of frequencies over which two frequency components are strongly correlated. If the 

signal bandwidth is small in comparison with the coherence bandwidth, the channel is said to be 

frequency-nonselective, or often called flat fading. For a frequency-nonselective channel, the fre­

quency components of the transmitted signal undergo the same attenuation and the same phase shift. 

Therefore, the multipath components are not resolvable in frequency-nonselective fading. On the 

other hand, if the signal bandwidth is large in comparison with the coherence bandwidth, the channel 

is said to be frequency-selective. For a frequency-selective channel, the frequency components of 

the transmitted signal are subject to different gains and different phase shifts. In frequency-selective 

fading, the received signal are resolvable with resolution commonly defined as the reciprocal of the 

signal bandwidth. A tapped delay line filter with time-variant tap coefficients is commonly used to 

model a frequency-selective channel.

3
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Doppler spread is a parameter which describes the frequency dispersive nature of a fading chan­

nel. The reciprocal of Doppler spread is called coherence time. The coherence time is the time 

duration over which the channel impulse response is essentially time-invariant. If the symbol dura­

tion is large in comparison with the coherence time, the channel is said to be fast (or called time- 

selective). On the other hand, if the symbol duration is small in comparison with the coherence 

time, the channel is said to be slow (or called time-nonselective).

Therefore, delay spread leads to time dispersion and Doppler spread leads to frequency disper­

sion. These two propagation mechanisms are independent of each other; therefore, as a result, we 

have four types of fading channels.

In this thesis, we focus on the error analysis of digital systems in slow and flat fading channels. 

When a signal s,(t) is transmitted over a flat fading channel, the received signal sr(t) is given by 

(neglecting the background noise)

sr(t) = a ( t)sr(t) (1.1)

where the complex-valued random process a ( t ) represents the time-variant characteristics of the 

fading channel. This fading process is usually assumed to be wide-sense stationary. If the channel is 

further assumed to be slow, we can replace the random process a(t)  by the random variable (RV) a  

(since a(t)  is essentially time-invariant over one symbol duration). A number of statistical models 

are commonly used to describe the fading amplitude a. The well known models are Rayleigh, 

Rician, and Nakagami-m. In the following, we will briefly review some theoretical origins of these 

fading models.

Clarke first developed a model based on statistical characteristics of the received signals using 

an electromagnetic field representation [18]. Clarke’s model assumes a stationary transmitter and a 

moving mobile. The field incident on the mobile antenna consists of N  plane waves, each having 

equal average amplitude. The z component of the electrical field, denoted by Ez, can be expressed 

as
N

E z = " Z  E i e ^ ‘ =  R e J e  =  X  +  J Y  (1.2)
i=i

4
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where Et and respectively represent the amplitude and the phase of the zth arriving wave. The dis­

tributions of the phases are assumed to be uniform over [0,2ri) . The random quantities E V E2,-- • ,EN\ h  

are further assumed to be uncorrelated. When N  is sufficiently large, using a Central Limit The­

orem (CLT), Ez can be approximated as a complex Gaussian RV, where the real and imaginary 

components, denoted by X  and Y respectively, are Gaussian RY’s with means and variances given 

by

E[X] =  E[T ] =  0; (7  ̂— Gy =  (1.3)

and furthermore, E[XY] =  0. The envelope R therefore follows a Rayleigh distribution with proba­

bility density function (PDF) given by

r >  0 (1.4)

where E[f?2] =  Q. The phase distribution of Rayleigh fading is uniform and the phase is independent 

of the fading envelope R. The Rayleigh distribution is often observed in an urban transmission 

environment where there is no line-of-sight (LOS) transmission. If there is a LOS component 

between the transmitter and the receiver, the envelope R has a Rician distribution. The PDF of 

Rician is given by

r>~ °  a 5 )

where 70(-) is the 0th order modified Bessel function of the first kind [3], and where the parameter

YXf, also known as Rician factor, is defined as

power in line-of-sight component ___ , - ,  ̂ ^l.oj
power m scatter component

When YXf — 0 (the line-of-sight component vanishes), the Rician distribution degenerates to a

Rayleigh distribution. Unlike Rayleigh fading, the envelope and phase of Rician fading are no

longer independent. The phase distribution of Rician fading is known and it takes a complicated

form. Rician fading is often observed in microcellular and mobile satellite applications.

Another fading model, perhaps more important, is the Nakagami-m fading, which also describes

LOS transmission environments. The original work by Nakagami was first documented in Japanese

5
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and its English translation didn’t appear until 1960 [57]. The Nakagami-m distribution is important 

because this fading model is deduced directly from fading measurements. Numerous claims have 

been made, for example in [73], that this fading model fits empirical fading measurements better 

than the other distributions. The Nakagami-m distribution can be derived under the most general 

mathematical conditions for the incident waves. To find the distribution of the fading envelope R, we 

make no assumptions on the joint distribution of El ,E2, ■ ■. ,£]/, 2, ■■■An - Let 7] =  \ 'Zf=i E je^>\

be a positive function of complex RV’s E xe ^ , E 2e^ , . .. ,ENe^n ,  the PDF of the fading envelope 

can be written as

where S(-) is the Dirac delta function which can be written in terms of Hankel transformation

f s ( r ) = E n [ 3 ( r - r i ) ] (1.7)

as [80], [57]

( 1.8)

where Jv(-) is the Bessel function of arbitrary complex order v with Re(v) > 1 / 2 .  Substitution of

(1.8) into (1.7) yields

I A v+xJv{Xr)Fv{X)dX 
Jo

where T(-) is the Gamma function [3] and

( 1.10)

or
^ T ( - 1 V ( | ) 2,'E[t72']

(1 .11 )

if the power series expansion is used for the Bessel function. Define

and choose v — m — 1, we can approximate FV(A) as

( 1.12)

(1.13)

^ h is  approximation becomes exact when both X 2 and Y2 in X  +  jY  are chi-square distribution with m degrees of

freedom and with the PDF f z {z) — ( § ) m/"2 e “z■

6
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Figure 1.1. Probability density function of Nakagami-m with Q =  1.

Combining (1.13) and (1.9), we obtain

=  r R © " r2” ' l e x p ( “ ^ ) ’ '■2 °'  m A  (L14)

which is the PDF of the Nakagami-m distribution, and m is called the fading parameter. Similar to 

the factor in Rician distribution, the fading parameter m controls fading severity, and as a result, 

the Nakagami model covers a wide range of distributions. These include one-sided Gaussian (m =  

1/2) and Rayleigh (m =  1) as special cases. In the limit, when m approaches +°°, the Nakagami-m 

distribution approaches an impulsive function corresponding to a static (non-fading) channel. The 

PDF of Nakagami-m is plotted in Figure 1.1 for a selected values of m.

The Nakagami-m model is also of theoretical interest since analysis of digital communication

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



systems in Nakagami-m fading often leads to closed-form analytical solutions for important per­

formance measures such as signal outage probability and symbol error rate. Despite its popularity, 

Nakagami fading is still not well understood at a fundamental level. For example, the phase distri­

bution of the Nakagami-m fading process is not known.

The Nakagami-m is also related to some familiar distributions. For example, if X  = R2, where 

R is Nakagami-distributed according to (1.14), the PDF of X  can be found as

which is the PDF of Gamma [70]. After a normalization G — (m/Q.)X , we obtain a familiar form 

for the PDF of one-parameter Gamma RV as

m - 1 —g

A W  = 1 -  °' <L1S>

As another example, if we set m = n/2  (n is an integer) and Q =  n o 2 in (1.14), after rearrangements, 

we have

AW = 2(,-.,Cr(»/2)“p{"^} <U7)
which is the generalized Rayleigh distribution with n degrees of freedom [63].

In order to use a single number to provide a meaningful measure of fading severity for an 

arbitrary fading distribution, Charash coined the phrase “amount of fading” (AF)2 in [10]. With his 

definition, for a fading distribution R, the AF is given by

varIT?2]

( U 8 )

The AF’s for aforementioned three fading distributions are tabulated in Table 1.1 according to [68], 

The AF is, in general, independent of the average fading power due to the normalization process in 

(1.18).

2In his pioneering work, Nakagami used the term fading figure (FF) for AF because m is inversely proportional to the 

fading range [57], For this historical reason, we will use the terms AF and FF interchangeably in this thesis.
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Table 1.1. Amount of fading for Rayleigh, Rician, and Nakagami-m fading distributions.

Fading Type AF

Rayleigh 1

Rician ( J f ) 1+ 2X
(1+ X )2

Nakagami-m (m) 31
- 3 V M

—

1.2.2 Interference

Spectrum is a precious resource as well as a commodity. The most challenging problem for wire­

less communication system design engineers is to achieve the maximum spectral efficiency and to 

accommodate increasing number of users while maintaining minimum quality of service (QoS). 

The cellular concept is a breakthrough in solving the spectral congestion problem and user capacity 

problem. The cellular concepts are introduced in an early paper by MacDonald [51]. The basic 

idea of cellular communication is first to divide the target coverage area into cells. Each cell is 

allocated a portion of the total number of channels available to the entire system. Different sets of 

channels are assigned to adjacent cells and the same set of channels are reused in different cells that 

are separated sufficiently apart. Fig. 1.2 illustrates the layout of a typical cellular system where 

the cells labeled with the same letters use the same set of frequencies (channels). These cells are 

called cochannel cells. Therefore, a (desired) mobile user signal is subject to the corruption of the 

interference generated by other (undesired) users’ signals in the cochannel cells operating at the 

same carrier frequency. This kind of interference is called cochannel interference. To accommodate 

increasing number of users, the cell sizes are often reduced (a microcellular environment) in order 

to meet this capacity demand. As a result, the radio link performance in a microcellular system 

is limited dominantly by cochannel interference rather than thermal noise. With advances in low- 

noise receiver technology, thermal noise plays secondary role in causing the system performance 

degradations.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 1.2. A two-tier cell layout with hexagon cell shape to illustrate the concept of frequency 

reuse.

In cellular systems, multiple access schemes are used to allow many mobile users to share a 

finite amount of radio spectrum simultaneously. Frequency division multiple access (FDMA), time 

division multiple access (TDMA) and code division multiple access (CDMA) are the three major 

competing access techniques. FDMA assigns an individual channel in a frequency slot to each 

user while TDMA assigns an individual channel in a time slot to each user. Therefore, these two 

multiple access schemes provide orthogonal transmission in frequency or time. In CDMA, the 

orthogonality (or quasi-orthogonality) is achieved by spreading the user signals with pseudo-noise 

(PN) chip sequences, or codes. Since a great number of such sequences can be available, they can 

be assigned to a large number of potential users and the goal of having a high capacity system can 

be achieved.

The principle of CDMA is based on the spread spectrum (SS) technology which has been suc­

cessfully employed in military applications for decades. In a CDMA system, each user’s data sym­

bol is modulated (spread) with a much faster changing signature signal over a large bandwidth than

10
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what’s required for reliable transmission. In addition, all users in the system are occupying the same 

bandwidth at the same time. By correlating the received signal at the base station with each user’s 

known signature signal, the original data can be recovered for each user. Unlike FDMA or TDMA 

systems in which the system capacity is a hard number, the capacity of a CDMA system is often 

described as a soft number. This is because, in addition to the hostile transmission environment, a 

CDMA system is mainly limited by interference from other users, which is termed multiple access 

interference (MAI). Hence, it is possible to continue adding additional users at the cost of perfor­

mance degradation for the existing users. In theory, FDMA, TDMA and CDMA techniques all have 

the same capacity. However, in a cellular system, we might find that CDMA has some particular ad­

vantages over FDMA and TDMA [44]. The principle use of SS for mobile communication systems 

are described by Pickholtz, Milstein and Schilling [61]. In the same paper, the authors also present 

the concept of CDMA overlay with existing narrowband systems as well as the concept of narrow­

band interference rejection in wideband systems. A tutorial article by Flikkema introduces the use 

of SS for wireless applications from signal processing perspectives [25]. Lee [44] and Gilhousen et 

al. [32] give good introductions to the concept of cellular CDMA and illustrate how this multiple 

access scheme can be more suitable for the cellular environment than are FDMA and TDMA in 

terms of higher user capacity. In addition to achieving high system capacity and providing multi­

ple access, CDMA is also well-known for its capabilities to combat multi-path interference and to 

provide secure communication.

There are two principle forms of CDMA, namely, direct-sequence (DS) and frequency-hopped 

(FH) CDMA. The DS-CDMA system achieves the bandwidth spreading by using the PN sequences 

to introduce rapid phase transitions into the carrier containing the data, while FH-CDMA achieves 

the bandwidth spreading by using the PN sequences to pseudo-randomly hop carrier frequency 

throughout a large band. A DS-CDMA system is more popular in commercial applications while a 

FH-CDMA is widely used for military applications. Comprehensive comparisons between the two 

spreading techniques are outlined in a book by Stiiber [70],

This thesis deals with, in part, the system performance for a DS-CDMA cellular system in fading

11
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channels using a conventional single-user matched filter receiver and aperiodic random spreading 

sequences. The matched filter receiver structure is known to be sub-optimal compared to the optimal 

multi-user receivers described in [78]. However, the optimal multi-user receiver is impractical in 

a sense that the system complexity increases exponentially with the number of users. Numerous 

sub-optimal multi-user receivers described in [79] are being proposed for future standards but they 

require specific knowledge of the signature sequences of the other users, exact timing offsets of 

all transmitters, and periodicity in spreading sequences. On the other hand, a single-user matched 

filter receiver doesn’t require any of the aforementioned knowledge required by various sub-optimal 

multi-user receivers. Thus, it is simple and economical.

1.3 Thesis Outline and Contributions

This thesis consists of four major chapters. Each chapter corresponds to one major contribution. At 

the beginning of each chapter, we review, in detail, some background and literature which are most 

relevant to the subject of that chapter.

In Chapter 2, we analyze a generic binary phase shift keying (BPSK) DS-CDMA system for 

Rayleigh-faded users using random spreading sequences under both synchronous and asynchronous 

operations. The receiver we assume is a single-user correlator receiver. The goal here is to obtain 

a tractable analytical average bit error rate (BER) expression without making any assumptions on 

the distribution of the multiple access interference. To do so, we first review a well-known deci­

sion statistic for random spreading sequences. Using rigorous probability arguments, we derive a 

simplified form of the decision statistic. Closed-form expressions are derived for the characteristic 

function (CF) of the multiple access interference based on both known form and simplified form of 

the decision statistic. We examine, in detail, the BER dependence on the number of active users in 

the system for a given signal-to-noise (SNR). A single integral expression is given for the overall 

average BER and the integrand is shown to be positive and well behaved. Using this expression, we 

can calculate the average BER to any desired accuracy with modest computational complexity. The

12
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BER expression based on the simplified decision statistic is, in particular, capable of analyzing a 

system with large processing gain. The dependence of the system BER on the number of transitions 

in the target user signature chip sequence is explicitly derived. Using our newly derived accurate 

analytical expressions, we also assess the accuracies of several Gaussian approximation methods. It 

is found that for a Rayleigh-faded environment, even the simplest form of Gaussian approximation 

can give accurate BER estimates for a system with processing gain of 255 and for a small number 

of users. Monte Carlo simulations are used to verify our analysis. It is shown that the simulation 

results are in excellent agreement with the analytical results.

In Chapter 3, we consider the error analysis of a bandwidth efficient BPSK in a TDMA-based 

microcellular environment. We assume a general Nakagami/Nakagami fading and interference 

model and derive a precise BER expression for a BPSK modulated signal in fading and cochannel 

interference environment. Our results are applicable to practical systems since the BER expression 

takes account arbitrary pulse shaping, symbol timing asynchronism among the active users, as well 

as cross-signal intersymbol interference caused by each interfering user signal on the desired user 

signal. We use a characteristic function method, a frequency domain approach, to derive an exact 

expression for the overall average BER. In doing so, we derive closed-form expressions for the PDF 

and the CF for the Nakagami fading quadrature components in terms of a pair of Kummer func­

tions. Two Nyquist pulses are considered in this work. One is the popular raised-cosine pulse and 

the other is a recently proposed novel pulse. We show, for the first time, both analytically and nu­

merically that this new novel pulse shape outperforms the widely used raised-cosine pulse shape in 

microcellular cochannel interference environment. We demonstrate that at BER =  10 ' 6 the novel 

pulse can achieve about 0.86 dB  savings in SNR over the traditional pulse at no extra cost. Our 

analytical BER results, which are confirmed with Monte Carlo simulations, are also used to show 

that fading of an interfering signal worsens the BER of the desired signal rather than improving it, a 

result perhaps contrary to what one’s initial thinking. We use convexity property of the g-function 

to explain this phenomenon. Finally, we use our precise BER results to assess the accuracy of a 

Gaussian approximation.

13
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In Chapter 4, we extend the results in Chapter 2 to a Nakagami-m flat fading channel. Specifi­

cally, we obtain a closed-form expression for the characteristic function of the MAI. An exact single 

integral BER expression is developed for an asynchronous BPSK DS-CDMA system using random 

spreading sequences in Nakagami-m fading. The accurate BER results are used to assess the accu­

racy of the standard Gaussian approximation. It is found that the standard Gaussian approximation 

is poor for a small number of users in a lightly faded channel.

In Chapter 5, we study estimation of the Nakagami-m fading parameters, in particular, esti­

mation of the m parameter. The Cramer-Rao lower bounds are first derived. Both the maximum- 

likelihood (ML) method and moment method are considered for this parameter estimation prob­

lem. We propose two approximate ML-based estimators based on the asymptotic expansion of the 

digamma function. We study in detail the properties of a parameter closely associated with these ML 

estimators. In doing so, we show that the Nakagami-m distribution is a member of two-parameter 

exponential family, and as a consequence, we obtain the complete sufficient statistics of the fading 

parameters. Most of previous research in parameter estimation has concentrated primarily on the 

maximum-likelihood approach and the method of moment approach has received less attention. In 

this chapter, we propose a family of new moment estimators based on a family of new definitions 

of m parameter using both integer and non-integer moments. Our new class of moment estimators 

is general since it contains previous known moment estimators as special cases. A limiting case of 

this family is particularly of interest, owing to its simplicity in implementation as well as near-ML 

performance. The derivation of this limiting estimator also leads us to discover a new compact def­

inition of the Nakagami m parameter in terms of a function of the covariance of the instantaneous 

fading power and its value in dB. We also carry out an asymptotic study of our new moment estima­

tors. Using the multivariate delta method drawn from large-sample theory, we obtain closed-form 

expressions for the asymptotic variances for this class of estimators. Based on these analytical re­

sults, we conclude that the limiting case of this class of moment estimators is almost fully efficient 

asymptotically. Finally, we use Monte Carlo simulation to study the finite-sample performances of 

our proposed estimators and compare them to that of Greenwood-Durand estimator (GDE).

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 concludes this thesis by outlining major findings of this thesis. Future work is also 

suggested.
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Chapter 2

Accurate DS-CDMA BER Calculation in Flat Rayleigh 

Fading

2.1 Introduction

It is well-known that spread spectrum multiple access (SSMA) has the ability to combat multi-path 

interference, increase system capacity, and improve quality of service. Much work has been reported 

on the calculation of the user average BER for direct sequence - code division multiple access (DS- 

CDMA) systems. Two approaches for DS-CDMA, operating on additive white Gaussian noise 

channels, have been widely reported.

The first approach presumes that exact BER evaluation is intractable or numerically cumber­

some, so accurate BER approximations are sought [64], [7], [26], [56], [38], [53], [54], [76], [49], 

[11], [55]. Perhaps the most widely cited and most widely used approximation is the so-called 

standard Gaussian approximation (SGA) first proposed by Pursley [64]. In the SGA, a central limit 

theorem is employed to approximate the sum of the multiple access interference (MAI) signals as an 

additive white Gaussian process additional to the background Gaussian noise process. The receiver 

design, thus, consists of a conventional single-user matched filter (correlation receiver) to detect 

the desired user signal. The variance of the MAI averaged over all possible operating conditions is 

used to compute the signal-to-noise ratio (SNR) at the filter (correlator) output. The SGA is widely
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used because it is easy to apply; however, it was shown by Morrow and Lehnert that performance 

analyses based on using the SGA often overestimate the system performance, especially when the 

number of users in the system is small [56]. These limitations have motivated research to improve 

the accuracy of the SGA. In [49], Long et al. improved the accuracy of the SGA using the standard 

Hermite polynomial error correction method. In [47], Lehnert and Pursley studied extensively the 

statistics of the MAI signals with random signature sequences. Based on the work of [47], Morrow 

and Lehnert [56] later introduced a method termed improved Gaussian approximation (IGA). The 

IGA is more accurate than the SGA, especially for a small number of active users [56]. However, the 

IGA computation requires numerical integration and multiple numerical convolutions. This method 

was simplified in [38] by Holtzman such that neither knowledge of the conditional variance distribu­

tion, nor numerical integration, nor convolution is necessary to achieve acceptable BER estimation. 

Thus, it is termed simplified improved Gaussian approximation (SIGA) [38]. More recently, Mor­

row [55] further simplified the expression attained in [38] without significant penalty in the BER 

accuracy.

The second approach is to perform the evaluation of the SS multiple access system BER without 

knowledge of, or assumptions about the MAI distribution. Many of these techniques are based on 

extensions of previous studies of inter-symbol interference (ISI) systems. These methods include the 

moment space technique [83], characteristic function method [30], method of moments [40], [82], 

and an approximate Fourier series method [71], [72]. Generally, these techniques can achieve more 

accurate BER estimate than CLT based approximations at the expense of much higher computational 

complexity.

Fewer results exist for BER’s of DS-CDMA systems operating in Rayleigh fading channels and 

employing random sequences. System performance analysis employing random sequences often 

leads to tractable results. Besides this attractive mathematical feature, there are other important 

reasons for random sequences to be used for SSMA system performance evaluation. First, random 

sequences can be used to describe some complex characteristics of some practical sequences which
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have very long periods. Over a few data symbols, these long codes behave pseudo-randomly. Sec­

ond, when the communication engineer is given little or no knowledge of the sequences to be used, 

random sequence can be considered a good substitute. Finally, computational complexity of the ex­

act SSMA performance analysis can be prohibitive for a large number of users using deterministic 

sequences, while random sequences do not suffer this shortcoming. In this work, we provide a new 

accurate, yet tractable BER calculation solution for a binary DS-CDMA system operating in slowly 

fading Rayleigh channels with random sequences. Our treatment of the subject furthers the work 

reported in [56], [47], [30], [29].

Previous related work includes the following. Borth and Pursley [7] studied the SNR at the 

output of a correlator receiver for Rician fading channels. The performance of a DS-CDMA sys­

tem in a frequency non-selective Rayleigh fading channel was evaluated by Gardner and Orr [26] 

for deterministic sequences using the SGA. In [30], Geraniotis and Pursley used the characteristic 

function method to evaluate SSMA system performance in an additive white Gaussian noise chan­

nel. Later, Geraniotis [28] extended this technique to frequency non-selective and selective Rician 

fading channels for deterministic sequences. In [27], the characteristic function method was used in 

studying the performance of DS-SS systems on specular multipath fading channels with multipath 

ISI; however, MAI was not considered in this work. More recently, Liu et al. proposed a low- 

complexity characteristic function method to evaluate binary and quaternary DS-SSMA over flat 

Rican channels using deterministic signature sequences [48]. In [71] and [72], Sunay and McLane 

used an approximate Fourier series method to study BER performance under both frequency non- 

selective and selective Rayleigh fading. Additionally, the system degradations due to imperfect chip 

and phase synchronization were assessed.

The contributions of this work are as follows. We analyze a generic DS-CDMA system with 

Rayleigh-distributed users under both synchronous and asynchronous operations for random se­

quences. We examine in detail the BER dependence on the number of active users in the system for 

a given SNR. For asynchronous operation, we provide an explicit closed-form expression for the 

characteristic function of the MAI. A single integral expression is given for the overall BER and the
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integrand is shown to be positive and well-behaved. With this expression, we can calculate the BER 

to any desired accuracy and with minimal computational complexity. The IGA and SIGA methods 

are extended to a fading channel system. Numerical results obtained from our accurate method are 

used to assess the accuracies of the SGA and SIGA for Rayleigh fading channels. Accurate compar­

isons of the performances of asynchronous and synchronous systems operating in Rayleigh fading 

are made using our new solution.

The remainder of this chapter is organized as follows. In Section 2.2, we introduce the sys­

tem and channel models. Review of the important properties of the receiver decision statistic for 

random sequences is provided in Section 2.3 for completeness. In this section, we also derive a 

simplified form of the decision statistic. This form of decision statistic is suitable for calculating the 

average BER for a system with a large processing gain. The SGA, IGA, and SIGA for a Rayleigh 

fading channel are examined in Section 2.4. System performance evaluations for synchronous and 

asynchronous operations are presented in Sections 2.5 and 2.6, respectively. Numerical results and 

discussions are provided in Section 2.7. In Section 2.8, we summarize our chapter results.

2.2 System and Channel Models

The spread spectrum multiple access system model for our study is shown in Fig. 2.1. We consider 

a general asynchronous binary direct sequence system which supports K  active users. More specifi­

cally, we study the system performance under the reverse link (mobiles to basestation) assumption. 

The Ath transmitted signal is described by

sk(t ) =  \/2P'kbk(t)ak(t)cos(o)ct + ek) (2 .1)

where Pk represents the transmitted signal power, bk(t) is the data signal, ak(t) is the spreading 

signal, coc is the carrier frequency and 0k is the carrier phase. The Ath user’s data signal, bk(t), is 

a random process which is a rectangular waveform, taking values from { — 1, +  1} with service rate
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Rs =  1 / T  and it is expressed as

bk(t) =  X  b f P T ( t - j T )  (2.2)
; = -  oo

where PT (f) =  1 for 0 <  t <  T, and PT (t ) =  0, otherwise. The ;th  data bit of the M i user is denoted as 

bj) .  Data sources are assumed uniform, i.e., Pr(M*) =  +1} =Pr{M*) =  — 1} =  1/2. The spreading 

signal, ak(t), can be expressed as

+CO

fl* ( 0 =  X  a\k)W ( t - l T c) (2.3)
/ — —co

where if/(t) is an arbitrary chip waveform which is time-limited to [0, Tc)  and Tc is the chip duration.

It is convenient, and entails no loss of generality, to normalize the energy of the chip waveform y/(t)

to

[ Tc xi/2(t)dt =  Tc . (2.4)
Jo

The Zth chip of the M i user is denoted by which assumes values from {—1,4-1}. All signa­

ture sequences, are assumed to be random in the following sense. Every chip polarity is

determined by flipping an unbiased coin . There are G chips per data symbol and the period of the 

sequence is G 1 We further normalize the chip duration so that Tc =  1 and, thus, T = G. Note that if 

the chip waveform is rectangular, i.e., ak(t) — XtT_ooa ^ P T (t -  jTc) ,  the transmitted signal, sk{t),
J  J  c

becomes the well-known phased-coded SS model [64], In this thesis, we will only concentrate on

rectangular chip waveform. SSMA performance analysis for other chip waveforms has recently

been considered in [58] and [85].

Each signal, sk(t), is transmitted over a frequency non-selective fading channel where the user

signal and the interfering signals all experience mutually independent Rayleigh fading. The fading is

also assumed to be slow such that coherent detection is feasible. This channel model is widely used

in system design and performance studies for DS-CDMA systems [53], [76], [11], [79]. It is also a

special case of the indoor wireless channel model studied in [40]. In frequency non-selective fading,

'it can be shown in Appendix A that the periodic condition of the random sequence can be removed without affecting 

the decision statistic presented in the sequel. Therefore, our assumption, made for analytical simplicity, is realistic for 

long codes (sequence of period much longer than the duration of data symbol) often employed in practical systems.
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Figure 2.1. A DS-CDMA/SSMA system model.
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the spread bandwidth of the signal is smaller than the coherence bandwidth of the channel. This 

assumption, which is typically incorrect for a large spread signal, is made for two reasons; one is 

analytical simplicity, and the other is that the flat fading model can lead to a worst case performance 

prediction since in practice a RAKE receiver is commonly used to exploit the multipath fading.

The channel impulse response for the kth transmitted signal is given by

hk{ t ) = A kej^ d { t - T k) (2.5)

where the fading random variables {Ak}f.^A are independent, Rayleigh-distributed and account for 

the fading channel attenuation of all signals. Each RV, A k, represents the envelope of a complex 

Gaussian process with unit variance in each quadrature component. The first-order probability 

density function of A k is given by

such that E[Ak] =  2. Here, IA(x) is the indicator function whose value is 1 when x € A  and 0 

otherwise. In (2.5), {j34}f=1 are the phases introduced by the fading channel and are assumed 

uniform over [0,2n) and independent. The random variables { ^ } f=l represent time delays and 

account for the lack of time coordinations (asynchronism) among the K  transmitters as well as the 

channel transmission delays. These time delays are random variables assumed uniform over [0, T) 

and independent. The transmitted signal is further assumed to experience an additive background 

noise process n(t), which is characterized as a zero-mean, stationary white Gaussian process with 

two-sided power spectral density N0/2  (Watt/Hz). Note that setting A k = l , k  = 1 ,... ,K  in (2.5) 

results in an AWGN transmission model with randomly phased signals.

The received signal r(t) at the input of the matched filter receiver is given by

K

r{t) =  ' Z s k( t ) *hk(t) +  n(t)
*= i (27)

~  X  ~~ Tk}akit  ~  Tk) cos((Oct +  <pk) +  n(t)
k = \

where * denotes convolution and (j)k  = fik +  Qk — wcxk is assumed a uniform random variable over 

[0,2tt). The average received power of the kth signal is For simplicity, we assume all
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transmitted signals have the same transmitted power 2 and set this value to 2, i.e., P1 =  P2 = ■■ ■ — 

Pk — 2. Under our assumption, on average the received signal power at the basestation for each 

active user is the same and this power control scheme is sometimes referred as the average power 

control [65].

Since all the aforementioned random variables are generated from different physical sources, 

we assume the random variables ; {<t>k}k=v{(^p)}k=v{(af^ ) }k= i^  are mutually inde­

pendent.

A synchronous system model is obtained when rk (mod T) — 0, k  =  1 , . . . ,  K  in (2.7). All other 

assumptions remain the same as for the asynchronous system model.

2.3 Receiver Decision Statistic

Consider using a conventional single-user matched filter receiver to coherently demodulate the de­

sired user signal in an asynchronous system. The average bit error rate is the same for all users by 

symmetry. We assume, without loss of generality, that the target user signal has index k =  1 and 

r, =  0j =  0. After despreading, the output of the demodulator is

ft,—t,

+  [  n(t)al (t)cos((Oct)dt.
Jo

For practical transmission systems, the condition f c — ^  l / T  is usually satisfied; therefore, the 

double frequency terms can be eliminated by the lowpass filtering (LPF). The decision statistic at

2If unequal transmitted powers are assumed, the resulting MAI terms will not be i.i.d.; however, one can invoke the 

Liapounoff version of the central limit theorem in the standard Gaussian approximation [53].

(2 .8)

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the output of the LPF is given by

Zi — + /  +  f l y .

In (2.9), the first term Sj is the desired signal component and it is given by

rT

(2.9)

*i = J  A 1b l (t)dt = A l b $ )T  = A 1b § )G (2.10)

where b ^  denotes the Oth data symbol for User 1 and it is a symmetric Bernoulli RV. Also in the 

first term, G is now usefully reinterpreted as the processing gain. The last term n x is the component 

due to background noise and it is a Gaussian random variable with mean

E[uj] =  E  f  (t)cos(coct)dt
. o

=  J  E[n(t)]E[ax (f)] cos,{(oct)dt (2 .11)

=  0

and with variance

var[nj] =  E[nj]

=  /  /  E[n(s)n(f)]E[a1 (s)a^(t)]cos(cocs)cos(o)ct)dtds 
Jo Jo

rT  rT  J\f
— /  ~^rd(s — ^)E[«-i (s)a1 (t)]cos((Ocs)cos((Qct)dtdts

Jo Jo 2

=  —  f  E[a? (t)] cos2(a)ct)dt 
2 Jo

(2 .12)

_ N qT

_ NqG

The second component, /, is the multiple access interference from the other K — 1 active users and 

it is given by

K  o r

1  -  X  A k  /  b k ^ ~  Tk ) a k ( t  ~  r k >a i W c o s (<t>k)d t
fc=2

K  r  x T
= ^ j A k b^\ f  a ^ t  — z ^ a ^ t j d t  + b ^ f  ak(t -  Tk)a1(t)dt

k = 2  L J o

(2.13)

co s(^ ).

If we define the continuous-time partial cross-correlation functions between ak(t) and at{t) as [64]

R (2.14)
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and

Rk i(t ) =  J  ak(t -  x)ai(t)dt, (2.15)

we can write the MAI term as
K

1 = ' Z A kWk C0< (t,k) (2.16)
*=2

where

<2-17>

In their work on random sequences for the AWGN channel, Lehnert and Pursley [47] simplified 

Wk, conditioning on User l ’s signature sequence, as

Wk = PkR w(Sk) + QkR w(Sk) + X k(Rv (Sk) + R v (Sk)) + Yk(Rv (Sk) -  R ¥ (Sk)) (2.18)

where Sk is a uniform RV over [0,1), which accounts for the fractional chip displacement of the Mi

interferer’s chip relative to User 1, R v (Sk) and ^ v (Sk) are the partial autocorrelation functions of 

the chip waveform defined as

Rw(s) =  [* \}f(t)y(t + Tc - s ) d t ,  0 < s < T c (2.19)
Jo

and

R ^(s) =  f  ~  s)dt, 0 <  s <  Tc (2.20)
J S

and zero otherwise. The detailed derivation of (2.18) is presented in Appendix A where the RV’s 

Xk, Yk, Pk, and Qk are precisely defined.

For a rectangular chip waveform yr(t) =  P^t) ,  R y ( r )  =  x and =  1 -  x. Thus, (2.18)

becomes

^  =  p A  +  Q t O ~  h )  +  -  2S ,). (2.2D

In (2.21), according to Appendix A, Pk and Qk are symmetric Bernoulli RV’s and Xk is a discrete RV 

which represents the sum of A  independent symmetric Bernoulli RV’s where A  equals the number 

of chip boundaries without transitions in User l ’s signature waveform. Similarly, Yk represents the 

sum of B  independent symmetric Bernoulli RV’s where B equals the number of chip boundaries
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with transitions in User l ’s signature waveform. Clearly, A + B  = G -  1 and the marginal PMF’s of 

Xk and Yk are given by

Equation (2.18) has two-fold significance. First, it expresses the partial cross-correlation functions 

(see (2.17)) between the spreading waveforms in terms of the partial autocorrelation functions of the 

chip waveforms. This permits further simplification to forms such as (2.21) which will be used in the 

sequel. Secondly, for a target user, the simplifications also classify the total possible 2°  signature 

sequences into G classes. As discussed later, the system average BER performance depends on 

the number of chip boundaries with (or without) transitions in the target user’s signature sequence. 

Appropriate use of this fact (classification of the signature sequences) aids in determining tractable 

BER expressions.

Our analysis will make use of a number of important results which are repeated here for com­

pleteness. The proofs and further discussions of these results are given in the Appendix A.

Fact 1: The (AT — 1) MAI terms conditioned on B are independent.

Fact 2: The RV’s Pk, Qk, Xk and Yk conditioned on B are independent.

Fact 3: The RV’s Pk, Qk, Xk and Yk conditioned on B are zero-mean.

Based on above facts, it is further shown in Appendix A that

Fact 4: The MAI terms are uncorrelated (unconditionally).

The decision statistic in (2.18) is used in calculating the packet error rate of a DS/SSMA system 

by exploiting the inherent bit-to-bit error dependence [56], and it is also useful for observing the 

BER dependence on the amount of spreading in User l ’s signature sequence (B). However, this

(2 .22)

and

(2.23)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dependence on B can be removed. In Appendix A, we have shown the decision statistic in (2.18) 

can be further simplified to

Wk = T, f iv (Sk) + ^ w(Sk) (2.24)

where the RV is a sum of G i.i.d. symmetric Bernoulli RV’s and the PMF of Tk is given by

Prl W =  ( i S ) 2“ G’ ; e ^  =  { - G , - G  +  2 , . . . , G - 2 , G } ;  (2-25)

and where At  is a sum of G i.i.d. symmetric Bernoulli RV’s and the PMF of At is given by

( 4 ?) 2~G’ i G^  = { - G’ - G+ 2>--->G- 2’G}- <2'26)

Furthermore, RV’s Tk and Ak are statistically independent.

2.4 Central Limit Theorem Approximations

2.4.1 Standard Gaussian Approximation

In the SGA, as used in AWGN, a CLT is invoked to approximate the MAI process as Gaussian, as the 

additional background Gaussian noise process. The SGA is widely used because of its simplicity; 

however, the SGA is also known to seriously overestimate system performance (or underestimate 

the BER values) for small values of K  in AWGN channels [56].

In the SGA, the variance of the MAI averaged over all operating conditions is used to compute 

the equivalent noise power. To find this variance, let us first examine the conditional variance of the 

MAI. Let y  = {S2,S3, .. ■ ,5^} and (j) =  {<j>2, <p3, . . . ,  <pK}, the variance of the MAI conditioned on 

{AjJfL2, y ,  0, and B  is

C = var[/|{A jf=2,J^,<M ]
/  K  \  2

E S A M c o s f o )
\ k = 2  J

=  t AlnWk2\Sk,B ncos2(<l>k)\<Pk}. (2.27)
k=2
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Since

E[cos2(0i.) |0 j  =  cos2(<^) =  ^ [l +cos(20t )] , (2.28)

averaging over <pk and using the fact E [cos(2^)] =  0, we get

E[cos2(^ ) ]  =  ^ . (2.29)

Using (2.21), we have

n W k2\Sk,B] =  E[P2S2|5 J  +  E[Ql(l  -  Sk)2\Sk] + E[X2\B] +  E[Yk2(l  -  2Skf \ S v B) (2.30)

where in obtaining the above result we have invoked Fact 2 stated in Section 2.3. Since the variances 

of the zero-mean symmetric Bernoulli RV’s Pk and Qk are unity, we have

E[P2S2\Sk] ^ S 2kE[P2] = S 2 (2.31)

and

E[Ql( 1 -  Sk)2\Sk] =  (1 -  Sk)2E[Q2k] =  (1 -  S ,)2. (2.32)

Recall from Section 2.3 that the RV Xk is a summation of A i.i.d. symmetric Bernoulli RV’s (& •) 

where A = G -  1 -  B, thus, we have

n X 2\B] = £ v a r  [b}]
;=i
G - l - B

=  S  var[b.]
7=1

=  G - l - B .  (2.33)

Similarly, since the RV Yk is a summation of B i.i.d. Bernoulli RV’s (£>•), we have

E[Y2( l - 2 S k)2\Sk,B] = ( l - 2 S t )2 £ v a r [ * y]
7=1

B { \ - 2 S kf .  (2.34)

Substitution of (2.31), (2.32), (2.33) and (2.34) into (2.30) yields

E[Wi\Sk,B) = S2 + ( l - S k)2 + ( G - l - B ) + B ( l - 2 S kf
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(AB + 2)S\ — {AB 4 - 2)Sk +  G 

{4B + 2){S2k - S k) + G. (2.35)

Averaging (2.35) with respect to the PDF of Sk and using the fact that E[Sf —Sk] = —1/6, we have

2 6 +  1
E[Wkz \B] — G - (2.36)

Averaging (2.36) with respect to the PDF of B and using the fact that E[B] =  we obtain

E M  =
2l 2G (2.37)

From (2.27), (2.29) and (2.37), we obtain the variance of the MAI, conditioned on {AA}f=2, as

K
JMAI| {AJ£L2 3 (2.38)

k=2

Averaging (2.38) across the interferers’ Rayleigh fading amplitudes, we obtain the equivalent noise 

power as
a  JL . i a

(2.39)

The average BER given A } for each user is then approximated by

A XG
(2.40)

where Q{y) =  ^ ! 2dx . Averaging A, in (2.40) with respect to the Rayleigh distribution

(2.6) and using the integral identity [79, p. 101, eqn. (3.61)]

xe ^ ! 2Q ( — dx  =  \  ( 1
1

2 V a 1 + I

we approximate the average BER in Rayleigh fading using the SGA as

(2.41)

1 -
N„ i 2 ( g - l )  1
AG 3 G ^  1

(2.42)
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2.4.2 Improved Gaussian Approximation

The improved Gaussian approximation is also a technique based on a CLT. Unlike the SGA, which 

assumes an average variance value for the MAI (or the first moment of the conditional variance £), 

the improved Gaussian approximation exploits the knowledge of the distribution of the conditional 

variance £ (or all moments of Q.  The central idea of the improved Gaussian approximation is based 

on the observation that the MAI is approximated Gaussian when conditioned on the delays and the 

phases of all the interfering signals, and on B. To show this we rewrite the MAI as

K. K
I  = X  A ^ c o s ( ^ )  =  X  GkWk (2.43)

k = 2  k = 2
where Gk = A ^ c o s ^ )  is zero-mean Gaussian with unit variance, i.e., Gk ~  . / f '(0 ,1). This is true 

since Ak is Rayleigh-distributed, <j)k is uniform over [0, 27t) and A k, §k are independent [60, p. 146]. 

However I  is not Gaussian, as shown in Section 2.6. In the IGA, the MAI is considered Gaussian

conditioned on 5?, Sf and B where Z? =  {G2, G3, . . . ,  GK}. We can rewrite the conditional variance

of the MAI as

C =  f , G l [ ( 4 B  + 2)(S2k - S k) + G\ (2.44)
k =  2

= l z k (2-45)
k = 2

where Zk are identically distributed and conditionally independent on B, and each Zk is given by

Z, =  Ukvk (2.46)

where

Uk = G2 (2.47)

Vk = (4B  +  2) (S? -  Sk) +  G. (2.48)

Note that in (2.44), C, is a function of the random variables jZ , and B. Therefore, C, itself is a RV 

and has its own distribution. If we denote the PDF of £ by we can approximate the BER in 

an interference-limited environment, given Aj, by

nlGA
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The evaluation of the PDF for £ requires knowledge of the PDF of Zk conditioned on B, and nu­

merically evaluating a (K — 2)-fold convolution and taking the expectation with respect to B. That 

is,

f ; ( Q = E [ f zlB( z ) * . . . * f zlB(z) \.  (2.50)

Finally, two additional numerical integrations are required to obtain the overall average BER. It 

was shown in [56] that, consequently, the BER for an AWGN channel obtained from the IGA is 

significantly more accurate than the BER obtained from the SGA especially for small values of K. 

As shown, the IGA method can be cumbersome to use; therefore, it should be avoided if possible. 

Fortunately, as we see in Section 2.7, the IGA for our problem is not necessary.

At this point we comment that the SGA utilizes the first moment of the conditional variance, 

C; while the IGA utilizes the distribution of the conditional variance, f A  Q ,  therefore all moments 

of C- Holtzman [38] further simplified the calculation of (2.49) by using only the first and the 

second moments of £, provided certain prior analyses are done. The inaccuracies of Holtzman!s 

simplification have been shown to be minor [38].

The central idea of Holtzman’s approximation can be illustrated as follows. Let /(© ) be a real 

function of a RV 0  with mean /i and variance a 2, and we assume that all the nth order derivatives 

of / ( 0 )  exist. We expand the real function / ( 0 )  using the Talyor series around the mean fi and get

/(© ) =  /(ju ) +  / V )  (© -  fr) +  (© -  B)2 + '  ■ ■ • (2.51)

Averaging / ( 0 )  over 0  and using a second-order approximation, we can approximate the expected 

value of / ( 0 ) as

E [ / ( 0 ) ] « / ( /r) +  ^ M ( t2. (2.52)

If we use a three-point difference formula for the continuous-time second order derivative, we can 

further approximate the above expression as

E [/(©)] *  m  + (2.53)
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where the parameter h controls the accuracy of the finite difference approximation. Holtzman sug­

gested \/3cr as a good choice of h. With this value of h, we have

E [/(0 )] «  ^ f ( f i )  +  ^ /(M  +  V 3 a )  +  -  V3ct). (2.54)

For our problem, from (2.49), if we let 0  =  £ and f (x )  =  Q ( ^ § )  3, the conditional BER for an 

interference-lim ited environment, given A ,, can be approximated by

\
j SIGA
■ e\A

2 1 A M  \  1 A XG AjG

F ̂  \ /3  (Ĵ
(2.55)

I H^ +

where fi^ and a^ are respectively the mean and the standard deviation of the conditional variance £. 

Averaging the conditional BER with respect to the PDF of A  j, we obtain the approximate average 

BER as

p S  IGA 1
jur + G2

+ 12

+
12

G
(2.56)

- V 2 a ^  + G2

where the above error rate estimation is valid provided fir +  G2 > v/3 cr .̂ Therefore, to use Holz- 

man’s approximation for error rate estimation, we are only required to have knowledge of fir and 

or|. The mean of £ is

fic =  E[C]

=  i n z k]k=2

=  f , E [ G 2k]E[(4B + 2)(S2k - S k) + G)]
k = 2

=  X  E[G3] (E[4B +  2]E[Sf — +  G)
k = 2

=  f ( ^ - D

as we expect. The variance of £ is 

a \  =  var[C]

(2.57)

3 All the nth order derivatives of f (x)  exist since the derivatives of Q(x) take the foim of Hermite polynomials.
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'  K  K  \

E | X z t - X z J
\ k =2 fc=2 /

=  E [{(Z2 - Z 2) +  (Z3 - T 3) +  . . .  +  (ZK - Z k) Y  

=  E i ( Z t - Z ^ +
ifc=2 '=2 -/=2L ¥./

=  ( * -  1) var[Zj +  -  1) (AT -  2)covlW [Z,, Z,.]

=  (if -  1) (e[Z 2] -  (E[Z J)2 +  (K -  2 )co v ^ [Z „Z ,])  . (2.58)

Therefore, in order to compute o'2, we need to compute E[ZJ, E[Z|], and cov-^.fZ^Zy] separately.

Clearly, we have

E[Z*
2G

Using the definitions of Uk and Vk, we have

E [z f] E  [ U Mk .

4uc’rT/2iE [ G |] W ]

3E[((4B +  2)(S2 —Sk) + G)2]

12E (4B2 +  AB +  1) (Si -  S f  + G(2B +  1) (52 -  5,) +
G2l

Using the distribution of B and Sk, it is straightforward to show that

E[4j52 + 4 B + 1 ]

E[(52 - 5 , ) 2]

E[2B+1] =  G

E [ S l - S k]

Gl + G -  1

J_
30

1
6 '

Substituting the above expressions into (2.60), we obtain

z j ] =  Z* 2 ^ .

Finally, to compute the covariance between Z/ and Z- for i ^  j ,  we have

c°v(Zi,Z:) =  E[Z,.Z.] — E[Z;]E[Z-

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

(2.65)
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E Gj((4B +  2) (S2 -  St) +  G))G%4B  +  2) (S2 -  Sj) +  G)
4G

G - l (2.66)

Substitution of (2.59), (2.65), and (2.66) into (2.58) yields

or. ( * - 1)
43G2 +  18G -  18 (K -  2) (G -  1)

(2.67)
45 9

Alternatively, (2.56), (2.57) and (2.67) can be derived by taking account of the distribution of the 

received power, Pr. The instantaneous power for the M i user is P, =  P ^  or 2%2, where %2 is a chi- 

square RV with two degrees of freedom and unit variance. In [65], Holtzman’s method is extended 

by including the first and the second moments for the received signal power, Using E[Pr] = 4 and 

E[Pr2] =  32, we well as [65, eqns. (C.96)-(C.98)], we again obtain (2.56), (2.57) and (2.67).

To include the background noise in the approximation, we can modify the conditional BER as

„ /
nSIGA n

e\A\ ~  3 ^

\

ac+i/3(Tc
2 E j

+ l Q

\
A,

G2 +  2£, J

(2 .68)

where Eb is the energy per bit and it is given by Eb = PT. Averaging (2.68) over the PDF of A j, we 

get

+

1

12

1

P^/G2 + N 0/2Eb + 1  

1

+ 12
1 -

1

\ J  (/U +  \/3<t^)/G 2 +  N0/2Eb +
(2.69)

/ ( ^ - V 2 a l, ) / G 2 + N0/2Eb + l_ 

where the above expression is valid provided -  V 3 a ) / G 2 + N0/ 2Eb + 1  >  0. In Section 2.6, we

will assess the accuracies of both SGA and SIGA using the exact method which does not reply on 

any form of CLT.

2.5 Synchronous BER Analysis

In this section, we consider the BER calculation for a synchronous system, i.e. xx =  t 2 =  .. .  =  Tk = 0 

in (2.7). The BER for a synchronous system operating in flat Rayleigh fading is known; however,
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the present derivation both serves completeness and clarifies the derivation and understanding of the 

asynchronous results to follow. The results will also be used later to compare the performances of 

asynchronous and synchronous systems. We first assume all signature sequences are deterministic 

and </)j =  0. The output of the matched filter, after LPF, for User 1 is given by [79]

=  / r(t)a1(t)cos(wct)dt
J  0

=  tSj+ij +  Wj (2.70)

where n ] is a zero-mean Gaussian RV with variance a^ ^ , S1 is the signal component, S1 —

±AjG, and the interference term Ix is given by

K

h  =  ' L A kbo )cos(<t>k) [  ak{t)a i (t)dt
k=2 t/0

= i  c o s(^ )  (2.71a)
k=2

= l , G p klb f G ' k (2.71b)
fc=2

=  i G P a G , .  (2.71c)
k=2

In (2.71a), we have defined the full-period cross-correlation coefficient p ki between the Mi and 

User l ’s signature sequences as

oGTr

Pkl
, , 1 pGTc
=  —  /  ak{t)ax{t)dt. (2.72)

GTC Jo

We set d k =  A kcos(^k) and Gk — b^Crk. Note that, as before, G'k is a zero-mean, unit variance 

Gaussian RV. Since b ^  takes values from {—1,4-1} with equal probability independently of the 

values of G'k, Gk is also a zero-mean, unit variance Gaussian RV. Now, note that the independence 

of {A2,A3, ... ,Ak ] 02, 03, . . . ,  (j)K' ,b^\bG \ . . . , b^ } implies the independence of {G2, G3, . . . ,  GK}. 

Since a sum of independent Gaussian RV’s has a Gaussian distribution, it follows that /, is a Gaus­

sian RV with zero-mean and variance cr  ̂ =  XfL2 G2pki • By symmetry and using the independence 

of 7| and nv  one has

P J T  =  Q (  7  h G : | . (2.73)
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Averaging over the PDF of A v  we obtain the BER for a Rayleigh-faded user as

pSYN C
e (2.74)

The BER expression (2.74) is the same as the expression derived in [79, eqn. (3.135)] as expected. 

Physically from (2.74), one sees that the interferers act like additional independent Gaussian back­

ground noise. This is because the MAI on the flat Rayleigh fading channel (inclusion of the mod­

ulation on the carriers) has a Gaussian first-order distribution assuming synchronous transmission. 

Importantly, this implies that the optimum receiver (that does not perform user-interference cancel­

lation) is a whitening filter followed by a correlator detector. In the next section, it is shown that this 

is not the case for asynchronous transmission.

For uniform random signature sequences, E[p|j] =  1 / G  [79], and

2.6 Asynchronous BER Analysis

In this section, we will use the characteristic function method to compute the average BER under 

asynchronous transmission conditions in flat Rayleigh fading. For completeness, the exact BER 

expressions are derived using the known decision statistic as well as the simplified decision statistic 

developed in Appendix A. It will be shown in the next section that, with this CF method, the average 

BER can be obtained to any desired accuracy.

2.6.1 BER Analysis using the Known Decision Statistic

In this subsection, we derive the exact average BER expression using the decision statistic proposed 

by Lehnert and Pursley [47]. To do so, we first examine the statistics of each interferer, Ik. From 

(2.43), we have Ik = GkWk, where Gk is a zero-mean, unit variance Gaussian RV and Wk is defined 

in (2.21). Thus, given Wk, Jk is a Gaussian RV with zero mean and conditional variance af^w =  Wk .

This implies through (2.21) that Ik given Pk, Qk, Xk, Yk, Sk, B is Gaussian and the conditional PDF
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for / ,  follows as

y / M  PkSk +  0 ,(1  -  5,) + X k + Yk( 1 -  25,)

(2.76)

where a modulus operation is required in (2.76) since Wk may take negative values. Averaging over 

Pk, Qk, Xk, Yk (which is equivalent to averaging over all interferers’ spreading sequences and data 

sequences, see [47, eqn. (12)]) yields

Note that to obtain (2.77a), Fact 2 has been used, i.e., Xk and Yk given B  are independent. It is 

clear from (2.77a) that the PDF of Ik given Sk and B is not Gaussian, though the functional form 

is a weighted summation of “Gaussian-like” terms. We postpone averaging 5, here since they 

appear in the denominators of the exponential function arguments giving an intractable integral. 

The characteristic function of Ik, given Sk and B, is

The 5 ,’s now appear in the numerators of the exponential function arguments and averaging can be 

carried out to give

B
i+B

2
(2.77a)

where

0?(*W>Sjt) =  [l +  j +  7 '( l - 2 5 , ) ] 2, 

o i ( i , j , S k) =  [25, -  1 +  * +  7(1 -  25,)]2, 

d }(i , j ,Sk) =  [1 - 2 S , +  [ +  ; ( !  - 2 5 , )]2, 

o l ( i J , S k) = [ - l  + i + j ( l - 2 S k)}2.

(2.77b)

(2.77d)

(2.77e)

(2.77c)

% \  4

2 - ( g - i )

(2.78)
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where in (2.79), the first integral becomes

/ ’Jo
exp dS,

Jo 6XP{ ~~\  ̂+ *+ ~ 1Sk^ 2®2} dSk

2

l n
j : exp< -

u +
2 \

2 '  1j2a>2
> du

\ M

j M
(2.80)

where the last equality follows from the fact Q (—x) — 1 — Q(x) and where in the special case when 

j  = 0, the above integral specializes to e x p ( - | i 2(02). If we define

J (h j )  = <

exp ( - j i 2co2)

j\a>\ Q[  l®l - ( i - j )  - Q [  M  ' ( i  + j )

j  =  0 , 

j ,  (0 #  0 ,
(2.81)

we can simply express the integral of (2.80) as

fJo
exp

1
o f ( i J , S k)(D2 (2.82)

Similarly we can show

exp K h j , s k) a 2 dSk = J ( i , j -  1), (2.83)
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and

and

fJo

fJo

exp

exp

I
- ~ o $ ( h j , S k)a)2

I

dSk =  J ( i , j  +  1), (2.84)

(2.85)

Observe from (2.79) that <P{ |B(w) is real. This implies f { |B(ik) is symmetric about ik =  0, as ex­

pected. The function J( i , j )  defined in (2.81) has an interesting geometric interpretation. To see this, 

for j  7  ̂0 , we write

J( hj )
; M

Q(i\co\ -  j\co\) -  Q{i\co\ + y|ft) |) j  

Q(i\co\ + j\co\) -  Q(i\co\ -  j\co\)

2 / M

-V2nQ(i \co\ ) - (2 .86)

where E, lies between i\a>\ -  j\(o\ and zjco| +  j\co\, Q'(x) =  ~T  is the first-order derivative of

the Q-function and (x) =  —x2} is the third-order derivative of the 2-function. From

(2.86), it’s clear that, for j  ^  0, the function J( i . j )  is just the three-point approximation (scaled by a 

constant factor) of the derivative of the standard 2-function evaluated at z|co|. For j  =  0, the second 

term in (2 .86) vanishes for all values of i and to, and this approximation becomes an exact scaling 

of the derivative of the 2 -function evaluated at zjto|.

Using the fact that the lk s given B are independent, we have the characteristic function for the 

total interference term I, given B, as

<v ® ) = n <W G))-k ~ 2 | BV (2.87)

Let £ |B — I\B +  , where nx, representing the background noise, is a zero-mean Gaussian RV

with variance a 2̂ =  N0G / 4, I\B is the total other-user interference given B, and B is the total 

disturbance given B. Since the other-user interference and background noise are independent, we 

have

%  B(o ) =  %
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-  ®lh{ ( o ) - [ l - ( P I]B{cQ)](pni(ca) (2.88)

where <Pni (co) is the CF of the background noise and it is given by exp(—co2<ŷ  /2).

We use the Fourier inversion formula for the real integral [59, p. 40, eqn. (3-22)] to find the 

distribution function of £\B, F^B(-), which is to be used to calculate the BER, as

i i /•+«> # ;,R(to)
^ |b (0  =  2 jr /o  P-89)

The conditional BER for our target user can be expressed, by symmetry, as

P e\A x,B =  M €  <  ~ A 1 G )

=  1 - f^ g )

1 1 [+°° sin(A,G©)=  - - - /  — E-J coiffl
2 n Jo co SIB

=  Q { ^ ) + U r i 2 ^ [ i - ^ io,)]^ im)dco- (2-9o)

Averaging over the PDF of A x, and using the integral identity [33, eqn. 3.952-1]

/•+°° nfi ,2
J  sin (kx)xe~ ~Td x =  J  T , (2.91)

we have

GP = I
e|B 2 1

/'-f-oo r i
lal+c?i + vsi  <2 9 2 >

When the effect of the background noise is negligible, <7̂  «  0 and <3>ni (w) «  1, so (2.92) becomes

Q  n  -J-OO f  1 I

^ |e  ~  ^ J 0 i1 -  U rn

=  ^  ~  ; J = | o+“ ^ |B( m ) e x p |- i m 2G2} jm . (2.93)

Eqns. (2.92), (2.87), and (2.79) (or (2.93), (2.87) and (2.79) for the noiseless case) give the average 

BER experienced by a target user with a signature sequence that has a given value of B. The average 

BER for all users, or for one target user averaged over all signature sequences randomly assigned 

by a base station for each service request, is

Pt = 2-< 0-') | ( V ) v  (2.94,
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An interesting result seen in (2.94) is that the average BER over all signature sequences can be 

obtained by averaging over G classes 4 of sequences rather than over 2°  possible random sequences. 

Consequently, the order of the computational complexity in the number of user sequences is reduced 

from exponential to linear. This conclusion was stated previously in [47].

2.6.2 BER A nalysis using the Simplified Decision Statistic

In this subsection, a computationally efficient and accurate average BER expression is derived us­

ing the simplified decision statistic presented in Section 2.3. Recall that Wk can be alternatively 

expressed as Wk — AkSk +  Yk(l  -  Sk) where Ak, r fc each consists of a sum of G i.i.d. Bernoulli RV’s. 

Since Ik =  WkGk where Gk is a zero-mean unit variance Gaussian RV, conditioning on Wk, and thus, 

on Ak, Fk and Sk, we can write the PDF of the kth interferer as

/ 4lr*’A*-s*(i,) v S l A A  + i y w * ) !  exp {  ~  2[Ai Si + r ] ( l - S t)]z }  <2'95)

Since Y k and Ak are independent (see Appendix A), the joint PDF of Yk and Ak equals the product 

of the marginals. Averaging over the joint PDF of Ak and I"],., the conditional PDF of Ik becomes

and its characteristic function (conditioned on Sk) follows as

=  2_2G X  X  ( / | z )  ( i ^ )  e x v { - \ c o 2[iSk + j ( l  -  S,)j2} . (2.97)

To obtain the unconditional CF for the kth interferer, we average the conditional CF with respect to

V 2 '  V 2 /  V ^ » |Mk - T j { i - S k)\

the PDF of Sk and obtain

®l (co) = 2 - 2G X  X  (2-98)
i ey  \  2 /  V 2 /i<ej j&Jt \  2 /  V 2 

where, for convenience, we have defined a function J( i ,j )  as

, . , e x p ( - i i 20)2) i = j,
= { (2.99)

i + j-

4In each class, all signature sequences have the same total number of transitions at the chip boundaries.
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In Appendix A, we point out that, in general, RV’s Wk and Wk+l are dependent with correlator 

receiver. Here, for simplicity, we assume Wk and Wk+1 are independent. Since Ik = WkGk, the 

independence between Wk and Wk+l as well as the independence between Gk and Gk+1 imply that 

the MAI terms Ik and lk+x are also statistically independent. Therefore, the CF of the total MAI 

becomes
K

0,(0)) = 1 1 0 ,  (co). (2 .100)
k = 2  *

As before, the average BER in terms of the CF of the MAI and background noise can be shown as

Comparing (2.101) and (2.92), we comment that (2.92) represents the conditional BER only, 

while (2.101) represents the desired average BER and no additional statistical averaging is required. 

Clearly, the BER derived using the simplified decision statistic is computationally more efficient 

than the BER derived using the known decision statistic proposed by Lehnert and Pursley. In the 

following section, we will compare the computational complexities of these two BER expressions 

in detail.

2.7 Numerical Results and Discussions

In previous analyses of SS multiple access system performance based on the characteristic function 

method, the characteristic function of each interferer is given as iterated integrals [30], [72] with 2-3 

levels of numerical integration. At best, it can be expressed as a single integral for a BPSK system 

with rectangular chip waveform for the AWGN channel, but the integrand is not well-behaved [30, 

eqn. (14)]. In (2.79), we present an explicit closed-form expression for the characteristic function 

involving only the exponential function and the Q-function. It can be shown that the expression 

requires computation and summation of at most (G — l )2 terms. Since the error function is widely 

available in many scientific software tools such as Matlab and Maple, this expression can be readily 

programmed for direct evaluation. A typical plot of 0 ^ B(co) is illustrated in Fig. 2.2 for G — 31

dco. (2 .101)
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and B = 30. Observe that &{ |g (©) has Gaussian-like shape which decays exponentially in ft)2 for 

increasing frequency ft) (the Q-function can be well approximated as exponential in - f t)2 for large 

values of arguments). Note that (2.79) implies that the PDF of the MAI has support over (—°°, + °°); 

this is in contrast to the the AWGN channel case where the support of the MAI PDF is finite over 

[-k,k],  where k is a constant. Consequently, the BER bounding technique described in [47] is not 

applicable to Rayleigh fading channels.

The conditional BER expressions in (2.92) and (2.93) are important new results. Known error 

rate expressions are given in a form similar to (2.89) but with an integrand which contains a sin­

gularity point, and moreover, is oscillatory with a varying period (dependent on co). This is a very 

undesirable feature for numerical integration. A series expansion method was suggested in [30] to 

enhance the accuracy; however, large numbers of terms are required to obtain a good approximation 

and the speed of convergence depends on certain parameters. The integrand functions in (2.92) and 

(2.93) are extremely well-behaved in the sense that they are smooth, strictly non-negative, have no 

oscillations and decay exponentially with increasing ft). This is clearly seen from typical integrand 

functions plotted in Fig. 2.3 for the case of a system with background noise and in Fig. 2.4 for the 

case without background noise. Hence, simple numerical integration techniques can be employed 

to obtain the BER to any desired accuracy. In this chapter, all numerical results were obtained using 

the composite Simpson’s rule. Compared to the approximate Fourier series method [72], our new 

integral solution also provides greater dynamic range for the average error rate. This is because the 

series given in [72] is an alternating series.

Fig. 2.5 shows numerical results for the conditional BER with three values of B, B =  0, B =  

G — 1, and B =  E[B] =  (G — l) /2 . A short sequence period of G =  7 and no background noise are 

assumed. For B — 0, User l ’s signature sequence has no transitions at any chip boundary. This 

corresponds to a narrow-band signal subject to wide-band interferences; hence it yields the worst 

BER performance. On the other hand, for B = G — 1, User l ’s signature sequence has transitions 

at every chip boundary, and consequently, highest spreading gain; this results in the best BER 

performance. However, the unfavorable autocorrelation properties of such sequences may introduce
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Figure 2.2. Conditional characteristic function for each interferer |B(m) with G =  31 and B =  30.
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Figure 2.3. Integrand of (2.92) with K  — 5, G =  31 and 5 = 1 5  for received SNR = 20 dB.
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Figure 2.4. Integrand of (2.93) with K  =  5, G =  31 and 5  =  30.
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Figure 2.5. System BER performance without background noise for G = l .

difficulties for chip synchronization [55], These two extreme case performances provide upper and 

lower bounds for the BER experienced by any user in the system for a single particular transmission 

using a particular signature sequence. User sequences having the mean value of B, i.e. (G — l) /2 , 

have transitions at half of the chip boundaries of User 1. As expected, the BER lies between the 

BER’s of the B — 0 and B — G — 1 cases.

Fig. 2.5 shows the accurate BER computed using the characteristic function method described 

in the previous section, as well as the BER obtained by the SGA. Several interesting observations 

can be made. As shown, the accurate BER, averaging over all possible values of B's, is well approx­

imated by the average BER obtained by assuming the mean value of B. We also observe from Fig.
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2.5 that the SGA provides excellent approximation to the accurate BER computed via the character­

istic function method and this is true even for the case of a single interferer. We observe, from our 

numerical results, that the BER estimates based on the SGA consistently overestimate the accurate 

BER. This is in contrast to the situation for AWGN channels where the SGA underestimates the 

BER [56], [38]. Fig. 2.6 examines a system with larger processing gain, G  =  31. Similar observa­

tions and conclusions can be drawn. Comparing Fig. 2.5 with Fig. 2.6, we see that the SGA is a 

better approximation for G =  31 than G = 1. This is expected in consideration of a CLT. These tests 

on the validity of the SGA suggest there is no substantial benefit to using the SIGA rather than the 

SGA for our fading channel system. Indeed, our numerical results for G =  31 show that, in most 

cases, the improvements in the BER accuracy achieved using the SIGA are in the third significant 

digits.

Our definition of synchronous operation in Section 2.2 implies perfect chip alignment but no 

phase alignment. The BER’s under synchronous operation are plotted in Figs. 2.5 and 2.6. We ob­

serve that the BER under synchronous operation is no better than the worst case BER (upper bound 

for B =  0) under asynchronous operation. The poor error rate performance under synchronous 

operation for our fading channel system agrees with previous findings for the AWGN channel [56].

Fig. 2.7 shows the accurate BER results and the SGA for a system operating with different 

background noise levels for G — 31. We observe that for all values of SNR the SGA provides 

excellent approximation to the accurate BER computed via the characteristic function method, even 

for a system with a single interfering signal.

All the BER’s presented so far have been obtained using the first approach outlined in Section 

2.6.1 for moderate levels of processing gain. This approach, which is based on the known decision 

statistic, however becomes cumbersome or even prohibitive to use for a system with a large, say 

G =  127, processing gain. Fortunately, in the second approach, the BER expression of (2.101), 

which is based on the simplified decision statistic, becomes useful for a system with large processing 

gain. In order to compare the computational complexities of these two approaches, we define the 

complexity here as the number of calls to J(i, j )  or which are respectively defined in (2.81)
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Figure 2.6. System BER performance without background noise for G = 31.
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and (2.99). This measure of complexity is reasonable since these two functions have almost identical 

computational complexity (each calls the g-function twice). To compute the total number of calls to 

J(i, j)  in the first approach, we first recognize the cardinality of the set {—B, —B +  2 ,. . .  ,fi —2,5} is 

B + 1 . Using the first approach, from (2.77a), we observe that for a particular value of B, the index 

j  has B + 1 different choices and the index i has ( G - l —B) + l = G - B  different choices. Since B  

takes integer values from 0 to G -  1, to evaluate the CF at each (0 , the total number of calls to J(i, j )

is

4 Ĝ ( G - B ) ( B + l )
B = 0

/•“' -I /"• 1 1

= 4 \ % G  + ( G - l ) t B - t B2
B B= 0 5 = 0

=  ^ G ( G + \ ) ( G  + 2).

On the other hand, with the second approach, from (2.97), only a total number of (G + 1 )2 calls to 

J  (i, j)  are required. For large processing gain, it is clear that the computational complexity of the

second approach is an order smaller than that of the first approach. For example, with processing

gain of G — 127, only 16,384 calls to J (i, j ) are required for each co; while 1,398,016 calls to J(i, j)  

are required for the first approach.

Assuming an interference-limited environment, Table 2.1 tabulates the BER’s obtained using 

the simplified approach outlined in Section 2.6.2 for a system with processing gain of G = 127. In 

this table, we have also included the simulated BER’s based on the raw decision statistic in (2.17). 

As shown, the BER’s obtained using the simplified approach are in excellent agreement with the 

Monte Carlo results. In some cases, the accuracies are obtained even in the third significant digits. 

These results indicate that the loss in accuracies due to the independence assumption for the MAI 

terms is negligible. In Table 2.1, we have also included the BER’s estimated with the SGA and 

the SIGA methods. It is obvious that both approximations are in good agreement with the exact 

results for a wide range of number of active users. Similar observations can be made from Table 

2.2 in which the processing gain has been increased to G =  255. Therefore, even though the MAI
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of our DS-CDMA system is not exactly Gaussian, as shown in Section 2.6.1, the SGA gives quick 

and accurate estimation of the system performance in terms of the BER versus the number of active 

users.

2.8 Summary

Accurate, analytical solutions for the BER of a DS-CDMA system using random spreading se­

quences operating over Rayleigh fading channels have been derived. New closed-form expressions 

are provided for the characteristic function of the interfering signals. In contrast to previous analyti­

cal solutions, our new solutions are of moderate complexity, requiring a single numerical integration 

of an exponentially decaying positive integral for any number of system users. The solutions are 

suitable for small, moderate, and large values of processing gain. Any arbitrary degree of accu­

racy in the results can be achieved by using standard techniques of numerical integration. The new 

solutions have been applied to assess the validities of Gaussian BER approximations for Rayleigh 

fading and to compare the BER performances of asynchronous systems to synchronous systems in 

Rayleigh fading. Though only Rayleigh fading is considered in this chapter, the same analytical 

technique can be applied for a more general fading channel model. In Chapter 4, we will extend 

this work to a Nakagami-m fading model.
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Table 2.1. Comparisons of average BER’s for a DS-CDMA SSMA using random spreading se­

quences with processing gain G =  127 in an interference-limited environment.

Users (K) SGA SIGA Simplified Simulation

2 1.3072E-03 1.2961E-03 1.2987E-03 1.3058E-03

4 3.891IE-03 3.8588E-03 3.8619E-03 3.8215E-03

6 6.4352E-03 6.3828E-03 6.3863E-03 6.3732E-03

8 8.9406E-03 8.8689E-03 8.8729E-03 8.8134E-03

10 1.1408E-02 1.1318E-02 1.1323E-02 1.1334E-02

12 1.3839E-02 1.3731E-02 1.3737E-02 1.3765E-02

14 1.6234E-02 1.6109E-02 1.6115E-02 1.6106E-02

16 1.8593E-02 1.8453E-02 1.8460E-02 1.8479E-02

18 2.0919E-02 2.0764E-02 2.077 IE-02 2.077 IE-02

20 2.321 IE-02 2.3042E-02 2.3049E-02 2.3014E-02

22 2.547IE-02 2.5287E-02 2.5296E-02 2.5317E-02

24 2.7699E-02 2.7502E-02 2.7512E-02 2.7465E-02

26 2.9896E-02 2.9686E-02 2.9697E-02 2.9727E-02

28 3.2062E-02 3.1840E-02 3.1852E-02 3.1742E-02

30 3.4199E-02 3.3966E-02 3.3978E-02 3.3856E-02

32 3.6307E-02 3.6063E-02 3.6076E-02 3.5945E-02

34 3.8386E-02 3.8131E-02 3.8146E-02 3.8181E-02

36 4.0437E-02 4.0173E-02 4.0188E-02 4.0215E-02

38 4.2462E-02 4.2188E-02 4.2204E-02 4.2203E-02

40 4.4460E-02 4.4177E-02 4.4194E-02 4.4110E-02
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Table 2.2. Comparisons of average BER’s for a DS-CDMA SSMA using random spreading se­

quences with processing gain G =  255 in an interference-limited environment.

Users (K) SGA SIGA Simplified Simulation

2 6.523 IE-04 6.4957E-04 6.496IE-04 6.5949E-04

4 1.9494E-03 1.941 IE-03 1.9413E-03 1.9560E-03

6 3.2363E-03 3.2228E-03 3.223 IE-03 3.2293E-03

8 4.5133E-03 4.4948E-03 4.495 IE-03 4.4553E-03

10 5.7805E-03 5.7570E-03 5.7574E-03 5.7574E-03

12 7.038IE-03 7.0097E-03 7.0102E-03 7.0004E-03

14 8.2861E-03 8.2529E-03 8.2536E-03 8.2065E-03

16 9.5246E-03 9.4868E-03 9.4876E-03 9.4879E-03

18 1.0753E-02 1.071 IE-02 1.0712E-02 1.0763E-02

20 1.1974E-02 1.1927E-02 1.1928E-02 1.1841E-02

22 1.3184E-02 1.3133E-02 1.3134E-02 1.3198E-02

24 1.4387E-02 1.433 IE-02 1.4332E-02 1.3968E-02

26 1.5580E-02 1.5520E-02 1.5522E-02 1.5394E-02

28 1.6764E-02 1.6701E-02 1.6703E-02 1.6692E-02

30 1.7940E-02 1.7873E-02 1.7874E-02 1.7842E-02

32 1.9107E-02 1.9036E-02 1.9038E-02 1.9004E-02

34 2.0266E-02 2.0191E-02 2.0193E-02 2.0266E-02

36 2.1416E-02 2.1338E-02 2.1340E-02 2.1124E-02

38 2.2558E-02 2.2476E-02 2.2478E-02 2.2218E-02

40 2.3693E-02 2.3607E-02 2.3609E-02 2.3333E-02
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Chapter 3

Error Rate Analysis of Bandwidth-Efficient B P S K  in 

Nakagami Fading and Cochannel Interference

3.1 Introduction

The performances of mature wireless cellular systems are limited by fading and cochannel interfer­

ence (CCI). Multipath propagation causes rapid signal fading and frequency reuse leads to cochan­

nel interference. While the Rayleigh fading model has been widely used to represent fading environ­

ments, propagation conditions in some wireless systems may not be well described by this model, 

e.g., microcellular systems, where the fading is not as severe as Rayleigh fading. The Nakagami-m 

distribution can be used to model fading of various degrees of severity [57]. This is particularly 

useful for microcellular environments where the fading of the desired signal and the fadings of the 

interfering signals may be statistically different. In [84], a Nakagami/Nakagami model, denoted 

here as ms/ m r, was proposed where the Nakagami fading parameter for the desired user (ms) is 

not the same as the fading parameter for the undesired users (m7). This fading and interference 

model is general enough to cover a wide range of fading and interference conditions. For example, 

Rayleigh fading is a special case of Nakagami-m fading, and Rician fading can be approximated 

reasonably well by Nakagami-m fading [57]. Furthermore, the Nakagami-m distribution is some­

times a good approximation to the log-normal distribution, which is considered a good model for
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shadowing. Therefore, in this chapter, we will assume a msjm l model to investigate the bit error 

rate (BER) performance of coherent binary phase shift keying (BPSK) modulation in a fading CCI 

environment.

The BER performance of digital modulations in fading and CCI was studied in [52], [43], [5], 

[4], [1], [17], [50]. In [52], using Stein’s approach [69], Maciejko analyzed the BER performance 

of a coherent PSK system with a single interferer in Rayleigh fading. In [43], Krishnamurthi and 

Gupta derived closed-form BER expressions for PSK modulations with one Rayleigh-faded inter­

ferer. Chong and Leung recently studied the exact BER of a noncoherent frequency shift keying 

(NCFSK) system in fading and cochannel interference [17]. Beaulieu and Abu-Dayya analyzed 

the BER performance for bandlimited QPSK using an approximate Fourier series method [5]. This 

work was extended in [4] to some limited diversity cases. All these works consider only Rayleigh- 

faded interferers. Ma et al. recently studied the BER of binary coherent PSK and differential 

PSK for diversity systems assuming multiple Rician-faded interferers [50]. The model assumed 

in [50] is, however, a simplified one. It allows only synchronized interferers. There are important 

shortcomings inherent in this assumption. First, in many practical systems, the interferers are not 

synchronized. Second, this assumption circumvents dealing with the cross-signal intersymbol inter­

ference (ISI) that exists in practical systems that use bandwidth efficient pulse shaping. In a recent 

letter [1], Aalo and Zhang derived a BER expression for coherent BPSK in CCI and Nakagami-m 

fading. The analysis in [1, eqn. (9)] assumes a BER expression that is valid only for the case of 

a BPSK signal corrupted by additive white Gaussian noise (AWGN). This assumption is not rig­

orously correct for the transmission environment assumed. It can be justified as an approximation 

by assuming that the total interference is Gaussian. However, as shown in this paper, the Gaussian 

approximation (GA) can yield poor BER estimates under certain operating conditions.

In this work, building on the system model used in [5], we use a characteristic function (CF) 

method to derive a precise BER expression for a BPSK modulated signal in CCI and AWGN. Our 

BER expression is general. It takes account of arbitrary pulse shaping, symbol timing asynchronism 

between the desired user and the undesired users, as well as the cross-signal intersymbol interference
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caused by each interfering signal. Thus, our results are applicable to practical BPSK systems. 

They are used in application examples to draw two interesting conclusions. First, the results are 

used to show that a novel pulse shape published in [6] outperforms the widely used raised-cosine 

pulse shape in microcellular CCI environments. Second, the results are used to show that fading 

of an interfering signal worsens (increases) the BER of the desired signal rather than improving 

(decreasing) it, perhaps contrary to what one might expect. Further, we use our results to assess 

the accuracy of a Gaussian approximation. We point out that only BPSK modulation is considered 

here. While our approach permits deriving new and useful precise results for BPSK, it can not be 

extended to quaternary phase shift keying (QPSK) in a straightforward manner.

This chapter is organized as follows. In Section 3.2, we describe our system model. In Section 

3.3, we derive closed form expressions for the PDF and CF of the Nakagami fading quadrature 

component. These analytical expressions will be useful in the ensuing development. In 3.4, precise 

BER expressions using the CF method are derived for both asynchronous and synchronous inter­

fering signals. An approximate BER expression is developed in Section 3.5 using the Gaussian 

assumption. Numerical results and discussion are presented in Section 3.6. In particular, the BER 

performance of a novel pulse shape is compared to that of the raised-cosine pulse shape. In addition, 

the effect of fading of an interference signal on the BER of the desired signal is examined and an 

unexpected conclusion is drawn. In Section 3.7, we summarize major findings of this chapter.

3.2 System Model

The transmitted signal of the desired user is

s d (t) = y/2 PST sd(t)cos{(Oct) (3.1)

where (oc = 2 n f c and f c is the carrier frequency in Hertz; sd(t) is the desired user baseband signal 

and it is given by

*<*(*) =  X  a[k]gT( t - k T )  (3.2)
k——co
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where 1 /T  is the symbol transmission rate and gT (?) is the impulse response of the transmitter pulse 

shaping filter and its Fourier transform is denoted by GT(f).  We assume that the transmitter pulse 

shape has its energy normalized to unity, i.e., / * ” gj-{t)dt =  1. In BPSK modulation, a[k] takes 

values from {4-1, —1} with equal probabilities. The transmitted power for the desired user signal 

is Ps. To show this, from (3.2), the power spectral density (PSD) of the data stream process, sd(t), 

is [36, p. 239]

s A f ) GAf)?  X  E [a[* ]a [* -n ]]ex p (- j2nnfT)}
* n——oa

r \ Gr ( f ) \ 2

(3.3)

(3.4)

where E[-j denotes the expectation. For BPSK modulation with uncorrelated data bits, we have 

E[a[k]a{k -  n}] =  1, when n =  0, and zero otherwise. Therefore, the power spectral density of the 

transmitted signal becomes

{y/2p j )2
S(f) = [sd( f - f c ) + s d( f + f c)} (3.5)

and the power of the transmitted signal for the desired user is

/ + ° °

S ( f ) d f
-o o

P J
2

P J
2

"
2

/4-oo
Sd( f - f c ) d f +  /  s d( f  +  f c) df

-CO J  — oo

/+°° 1 r  4-°° 1
M ^ \ G T{ f - f c ) \ 2d f + - \ G T ( f + f c)\2d f

gT{t)dt+  /  gT(t)dt
-CO J  — oo

-  f [ l + l]

=  Pv

(3.6)

(3.7)

(3.8)

(3.9) 

(3.10)

where in obtaining (3.8), we have invoked ParsevaPs theorem.

When Sd (?) is transmitted, it is subject to fading, as well as interference caused by other user 

signals occupying the same channel. A reasonable assumption is that all interfering signals have 

the same modulation format as the desired user signal. Thus, the transmitted signal for the fth 

interfering signal is

5I.(?) =  v ^ f j j(?)cos(e3fc?) (3.11)
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where P{ is the transmitted power for the z'th interfering user signal and st(t) is the zth interferer 

baseband signal and it is given by

- j-o o

Si(t) =  X  bi[k]§At - kT) (3 -12)
£ =  — OO

where bt[k\ is the zth interferer’s information bit taking values from { + 1, - 1} with equal probabili­

ties.

We assume that both the desired user signal and the L  interfering signals are transmitted over a 

frequency-nonselective slowly fading channel. The received signal becomes

L

R{t) =  V W T R ssd{t) cos(wct +  0,) +  X  V ^ f R i S i i t  -  T;) cos(coc(t -  T-) +  0;) +  n(t) (3.13)
i=i

where T;, representing the symbol asynchronism, is the possible random misalignment of the zth 

interfering user symbol with respect to the desired user symbol, and it is assumed to be uniform 

over [0,7’). In (3.13), n(t) is a zero-mean white Gaussian background noise process with two-sided 

PSD N0/2  (Watt/Hz); the phases 9S and dt, for the desired user and the zth interferer, respectively, 

representing the random phases introduced by the fading channels, are assumed to be mutually 

independent and uniformly distributed over [0,2n). The respective random variables (RV’s)1 R„ 

and Ri represent the fading channel gains. We assume that the desired user’s fading amplitude 

follows the Nakagami-m distribution with parameters (ms,Q,s) and its PDF is given by [63]

where E[i?J] =  £2S. Similarly, we assume that all L interfering users’ fading amplitudes follow the 

Nakagami-m distribution with parameter (m7, Q/ ) and with PDF given by

2 / r n ,xm? m'*

=  < 3 ' 1 5 )

where E[/??] =  Q; for z =  1 ,2 ,... ,L. Note that these parameters are not necessarily identical to 

those of the desired user. We further assume that both the desired user and all the interfering users 

experience independent fadings. The fading parameters ms in (3.14) and m7 in (3.15) control the

'Under the slow fading assumption, the fading process is constant over a symbol duration.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



severity of the fading conditions. For the worst transmission cases, when ms or ml equals 0.5, the 

fading distribution corresponds to a one-sided Gaussian distribution with a large tail probability. For 

the best transmission case, in the limit, when ms or ml approaches infinity, the fading distribution 

corresponds to an impulsive function, a nonfading channel.

Since the fading is assumed slow, a coherent receiver can be implemented. In the coherent re­

ceiver design, the desired user’s signal phase is assumed to be estimated and compensated perfectly. 

Therefore, the demodulated signal becomes

Z(t) =  R(t) cos(a>ct +  9S)

=  ^/2PsTRssd{t) cos (coct + 9S) cos (cact + 9S)

+  X  V ^ P i T R iSi ( t  ~  Ti )  C 0 S +  9 j )  COS(CQc t  +  0,
L

I
1 = 1

+  n(?)cos(cocr +  9S) (3.16)

I p T
= J  -^-/?i-Jrf(?)[cos(0) + co s(2 fi)ct +  20s)

L IP-T
+  X  V -k-RiSik  -  Ti) [cos(0; -  9S -  cocT(.) +  cos(2COct +  9l +  0, ~ C^T))]

1=1 v  l

+ n{t)cos{tt>ct + 9s).

The demodulated signal is then passed through a low-pass filter with spectrum matched to the spec­

trum of the transmitter pulse shape. The frequency response of this filter is zero outside the interval 

[—(1 +  a) /2T ,  (1 +  a)/2T]  where 0 <  a  < 1. Since f c >  l / T  for a  <  1, the double frequency 

components in (3.16) can be eliminated by the low-pass filter and the output becomes

where

and

ZlpW =  \ l  f R M O  +  £  f f R m  cos(0,.) +  n0(t) (3.17)

Vs( t ) =  ^  a[k]g( t-kT)  (3.18)
£= — oo

- j-o o

Vi(t) = £  b l k U t - k T - T ; )  (3.19)
jfc=-CO
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where 0 . — Oi — Qs — cacTj- is assumed to be uniformly distributed over [0 , 2n)  and n0(t) is the filtered 

Gaussian noise process. Here g(t) is the overall impulse response of the cascade of the transmitter 

and receiver filters. In this work, we assume that this overall impulse response is a Nyquist pulse 

[63]. Two Nyquist pulses are considered in this paper. The first is the popular raised-cosine (RC) 

pulse which is widely used in modem design. The RC pulse is given by [63]

s m ( n t / T ) cos ( na t / T )
g(t ) = n t / T  1 - 4 a 2t2 j T 2

(3.20)

and its spectrum is

0 <  I/I < 1 - a
2 r

G*c{f)={ 1 \ i + c o s f ^ d / l  

0

1-q
T )]

l -«  |y| 1+a
2  T 2 T (3.21)

where a  is the pulse shaping factor (also called the excess bandwidth) whose value is restricted to 

be between zero and one. The second pulse considered in this study is the pulse recently proposed 

by Beaulieu et al. [6]. It is given by

sin (nt / T)  4f5ntsin(7tat/T) + 2l52cos(7tat/T)  — ]32
n t / T  4n2t2 + P2

where |3 =  The spectrum of this pulse is 2

(3.22)

reX p ^ [ l ^
I / I ]

r - r e x p j ^ p [ | / |  

0

1+a 
2 T

0 < | / | < ^

i -q  <r | f| <r _L 
2j  — \J \ — 2T

c  \-f \ <r i+ q  
2 T  — U  \ — 2T

(3.23)

where a  is again the excess bandwidth. This new pulse, termed better than raised-cosine (BTRC) in 

this work, has a better eye diagram, and a smaller symbol error probability in the presence of ISI and 

symbol timing error in a baseband system [6]. In this chapter, we will show that the BTRC pulse 

also outperforms the RC pulse in fading and CCI environments for the system model considered.

2Eqns. (3.20), (3.23), (3.22), respectively, correct typographical errors in [6, eqns. (2), (3), and (4)].
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Figure 3.1. Normalized RC pulse and BTRC pulse with excess bandwidth (a  =  0.35).

The normalized RC pulse and BTRC pulse are plotted in Fig. 3.1 for a representative a  value. 

The corresponding spectra are plotted in Fig. 3.2. We note that the RC and BTRC pulse have 

the same amount of excess bandwidth. Therefore, these performance improvements are obtained 

at no additional cost. Unless otherwise specified, a  =  0.5 is used in the numerical results. In the 

development that follows, it will be clear that the value of a  offers a trade-off between spectral 

efficiency and detection performance.

Without loss of generality, we assume that the bit a[0] is to be detected. Sampling ZLP(t) at t =  0, 

the decision statistic becomes

z lp[°] =  A / ^ r '

i=i

p j .
M o] + X  v -V^-cos(^)Pi + (3.24)
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Figure 3.2. Normalized spectra for RC pulse and BTRC pulse with excess bandwidth (a  =  0.35).
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where
- f o o

Pi=  S  bi[k\g(—kT — t,-). (3.25)

In (3.24), the first term represents the desired signal component; the second term represents the 

undesired CCI components and each of these components contains cross-signal ISI terms from each 

interferer; the third term represents the undesired noise component, where nQ =  n0(0 ) is a zero- 

mean Gaussian RV. Without loss of generality, we assume that the output noise power is unity, 

i.e., var[n0] =  1. Therefore, with our conventions, the (average) signal-to-noise power ratio and the 

(average) signal-to-interference power ratio for our system model can be expressed, respectively, as

3.3 PDF and CF of Nakagami Quadrature Components

In this section, we take a digression and derive closed-form expressions for the PDF and the CF 

of in-phase and quadrature components for Nakagami-m fading process (assuming uniform random 

phase). These expressions are useful in the development of the precise BER calculation using the 

characteristic function method.

We denote the fading amplitude by R which is Nakagami-m distributed with parameters (m.Q). 

We let 0  be its corresponding random phase which is distributed uniformly over [0,2n) . We wish 

to derive the PDF and the CF of the in-phase and quadrature components i.e., X  — R cos0  and 

Y =  R s in © 3, assuming that the fading amplitude and phase are independent. Since each component 

has the same distribution, we will only consider the in-phase component X  ----- R cos 0  here. We will

first consider the case of integer m values, and then consider more general case of arbitrary m

3In general, the in-phase and the quadrature components are independent. We are slightly abusing the terminology 

here since it can be shown that the in-phase component (X =  R co s0 ) and the quadrature component (Y =  Z?sin0) are 

dependent except for the case when m =  1 .

(3.26)

and

(3.27)
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values. The results for the integer case are included because the its derivation does not depend on 

any complicated integral identity, and more importantly, these closed-form expressions can reveal 

some interesting structure, which may not be easily obtained otherwise.

3.3.1 Case of integer m values

The conditional distribution of X  given R  can be shown to be [60, p. 98]

Averaging (3.28) over the PDF of R, we have

f y  M  =  / \ -z: ] r e a ------ .  -dr
J\x\ F  ( m ) \ Q J  2n^J r2 — x2

1 2 f m \ m f +c° ( u + x 2 )m~1 ?-i(u+x>)d
, , f2 7 T T Jo y/u 

1 2

(3.29)

2n r ( m )  \ £ 27 k=0

In the derivation of (3.29), we have used the substitution u = r2 —x2 and the binomial expansion. 

Applying the integral identity [33, (3.381)]

r u^ ud u = r{n+j
Jo <2n+1

in (3.29), we get

1 2 ( m \  _mx2n̂ ~J / m  1 \ r(fc+ 2 ) 2(m—\ —k)f- {x) = _ L ^  ™ V  (3.30)
2nT{m) \ Q j  ^  V * )  ( g )*+2

Letting I = m — 1 — k and using the fact that (mJ l) = we ^ave ^ie PDF ° f  the Nakagami

quadrature component as
1 9 ni— 1

f x ( x ) -  r r r e X  A i**  (3.3la)
;=o

where
Gaussian P D F

A - C V ) r  ( m - H U m
A ‘ -  ^  F(m) \ q ) -  (3-31b)
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We observe that the PDF of X  takes the form of a product of a Gaussian PDF with a polynomial 

function of even powers, where the highest even power is 2 (m — 1).

By definition, the CF of X,  <Px (cd), is

/+“
f x (x)eJ<0xdx

-oo
1 m^ m_1 (3.32)

-~e

where j  — — 1. Completing the square gives,

2m Q9 . 1  f m (  ,cqQ\  e x p <  +  jax  j  = e x p | ^  -  j  |  e x p |  - - o r

and the CF of X  becomes

Q. ol

Gaussian CF

where

^ 2; =   7 = exP '{---------TF^T— r^ x- (3.34)

Let .v =  v — be a complex RV, and we have

(  0 ) Q \ 21 1 f s2 1 ,

(*+ '* r )  <3-35)
v y 2m

where the integration is along a line parallel to the real axis. Consider the contour of integration 

shown in Fig. 3.3. Since the integrand function is analytical (has no poles) inside the contour of 

integration, the integration around the contour is zero by Cauchy integral theorem. It is straight­

forward to show that the integrations along each of two vertical contours become zero as a goes to 

infinity. Therefore,

= /I|0(t)(̂ )s2M"î =exp * < 3 ' 3 6 )

-  IOO(̂ )7 +>-‘— < 3 -3 7 )

=
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Figure 3.3. The contour of integration for evaluating (3.35) when Q  >  0.

where (n — 1)!! =  (n -  l)(n  — 3) ■ ■ ■ (5) (3) (1). In deriving (3.36), we have used the central moment 

expression for the zero-mean Gaussian RV. Here M2l can be interpreted as the even moments of a 

Gaussian RV with mean j ^  and variance

Combining (3.32) and (3.36), we observe that, similar to the PDF of X, the CF of X  takes the 

form of a product of a Gaussian CF with a polynomial function of even powers, where the highest 

even power is 2 (m — 1). In addition, as expected, the CF of X  is real since the PDF of X  is even 

symmetric about zero.
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3.3.2 C ase  o f  a r b i t r a r y  m  values

For the case of arbitrary m  values, it is advantageous to derive the CF first. To show this, we use 

the definition of CF as <J>x {(o) =  E[ejloX] and invoke the fundamental theorem of expectation [81] 

as well as the independence assumption for R  and 0 , and get

{(a) = c  f « {r )dr \ c
rw co sS dO

/»+°° 1 fit
L  U r ) * r - l e ' ^ M  + ~ (2n Jn

foo Y pJl
=  /  fp(r)dr — /  cos( r(0 cos 6)dd

Jo I n  Jopoo
=  yo J0(rO))fR(r)dr

(3.40)

r2n
j eJr03cos0dd (3-41)
n

e)dd (3.42)

(3.43)

(3.44)

(3.45)

where J0(-) is the Oth order Bessel function of the first kind and it is defined as 70(z) =  4 f 0 cos (z sin 0)d6  

4 [q cos(zcos 0)d0  [3] and the last equality follows from a complicated integral identity [33, 6.631]

f +°° u - a x 2 T to  \ j  P vT ( j V  +  + 1)/ xTe a)rJv (Px)dx =  r f  f- *-----
Jo 2 V+Ia 2^ +V+I) r ( v + 1)

v  fx + 1 /3 2
X ‘Fl l 2 :V + 1 '~ 4 a

(3.46)

where Jv (-) is the vth order Bessel function of the first kind and jF^-; ■; ■) is the confluent hyperge­

ometric function, which is also called Kummer-M function [3]. Using Rummer’s transformation [3]

jFx(a\b\z) - e \ F x{ b - a \ b \ - z ) , (3.47)

the CF of X  can be alternatively expressed in a form as

Q
0 x ((o) =  exp ( - ~ c o 2 \ jFj f 1

where we observe that the exponential factor denotes the CF of a zero-mean Gaussian RV. 

To obtain the PDF for X,  we take inverse Fourier transform of d>x ((i}) and get

(3.48)

f x ( x ) =  e j0}x®x {®)d a (3.49)
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2 o~\~oo /  £2 \
=  — / cos(ft)x),F-, I m ;l; — -—ft)2 ) dco (3.50)

% Jo \  4m J

where in obtaining the last equality, we have used the following integral identity4 [33, 7.642]

^  cos(2xy)1F1(a ;c ;-x 2)d x =  (3.52)

where ¥(•;•;•) is known as the Kummer-C/ function [3].

In summary, for the case of arbitrary m values, we have expressed the PDF and the CF of 

Nakagami-m in-phase components in terms of Kummer-f/ and Kummer-M functions, respectively. 

In the special cases when m takes integer values, it has been shown that these closed-form expres­

sions can be presented in terms of elementary functions.

Fig. 3.4 plots the Nakagami in-phase component PDF for m =  0.75,1,6,11,16 when 0  =  2.

Observe that, for the special case when m =  1, the PDF of X  becomes zero-mean Gaussian, as

expected. In the limit, when m approaches -t-°o, the channel becomes nonfading and the Nakagami 

in-phase component distribution approaches to that of (3.28). The asymptotic PDF evaluated at 

x =  0 is limm_++00/ x (0) =  where \ /Q  is the root mean-square value of the Nakagami RV. Fig. 

3.5 plots the Nakagami in-phase component CF for m =  0.75,1,6,11,16 when 0  =  2. Observe that, 

when m =  1, the CF of X  becomes Gaussian and positive everywhere, as expected. For values of m 

greater than 1, the CF of X  assumes both positive and negative values; however, its envelope decays 

rapidly with ft) for decreasing m values.

Using these newly derived analytical expressions, we can calculate the precise BER for the

BPSK-modulated signal in the general fading and CCI environment in the following section.

4A typographical error in (3.52) has recently been corrected by the author and this has been acknowledged by A. 

Jeffrey and D. Zwillinger, Editors for Gradshteyn and Ryzhik’s Table o f Integrals, Series, and Products, 6th edition.
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Figure 3.4. Probability density function (PDF) of X  = RcosQ  for Q =  2 and m =  0.75,1,6,11,16.
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Figure 3.5. Characteristic function (CF) of X  =  R cos© for Q =  2 and m =  0.75,1,6,11,16.
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3.4 BER Calculation Using the CF Method

In this section, we study the exact BER analysis for our fading and CCI problem. Section 3.4.1 

derives the exact BER expression for the BPSK-modulated signal corrupted by multiple Nakagami- 

faded asynchronous interferers and AWGN. In Section 3.4.2, closed-form expression of the char­

acteristic function for the CCI is derived and the result is required in the exact BER calculation. 

Finally, in Section 3.4.3, we treat the special case when all interfering signals are synchronous with 

the desired user signal.

3.4.1 Exact Bit E r r o r  Rate Expression

We denote the total interference component by I  and write

where p- has been previously defined in (3.25). Letting A — I + n0 and using the independence 

assumption of the CCI and the background noise, we can express the CF of the CCI plus noise term, 

A, as the product of the CF of the total interference and the CF of the background noise as

The cumulative distribution function (CDF) of A can be expressed in terms of its CF as [59, p. 

40, eqn. (3-23)]

1=1

(3.53)

cPA(co) = &i(co)3>no((Q)

= 0„o( c o ) - [ l - 0 j ( o } ) ] 0 no{co).
(3.54)

(3.55)

The average BER, conditioned on R s, for the desired user is

P

12
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I i /■+<» sin(W Zf-Rs(o)

~ fn Jo

f P J  \  1 r+™ sin(\/Z fRsa))
=  <21 + - y 0 — —  - [ 1  - ® , ( ( o m o(co)dco (3.56)

0 A((o)d(o

co

where Q (jc) =  e y2!2dy. Averaging over the PDF of Rs, and using the integral identities [79,

eqn. (3.63)]

r ^ e - ^ Q  ( ~ ) d x  = ^  ^ - [ l  -  (a 2 +  l ) - 1/2]" 
Jo '  CF J 2

k=0
^ [1 +  (cr2 +  l ) -1 /2]*

and [33, eqn. (3.952)]

n -|~oo

/  sinyxdx =
Jo

ye w f  1 +  p

2p 2

F  I i_ £ L -3 . 1^.
2 J 1 1 \  2 ’ 2 ’4)3

respectively for the first and second term in (3.56), we get

Pe = p W + p W .

(3.57)

(3.58)

(3.59a)

The first error term, P ^ \  represents the BER contribution due to the background noise only, and it 

is given by (assuming ms takes only integer values)

x " £ 2 - ^ - 1 + * '
k=0

l +  ^ n  + 1 )
- 1/2

(3.59b)

where a 2 =  The second error term, P j2), represents the BER contribution due to both the

background noise and the cochannel interference, and it is given by

,2) =  1 r ^ + i )  M T  _
n T(ms) V 2ms Jo 1 0

/  1 3  Q,SPST  , \  ,
x jFj I ^  co ) dco.

(3.59c)
„ -C02 Wco.

y 2 2 8w^ /

The integral in (3.59c) does not seem to have a closed-form expression; however, it is readily eval­

uated using numerical integration.
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3.4.2 CF of CCI and Background Noise

Since n0 is a zero mean, unit variance Gaussian RV, the CF of nQ is (to) =  e~w2!2. To find the 

CF for the total interference, we write

1 ~  X  I X  bM s k,i (3.60)
p

X
i= l  * ^  \Jfc= -P

where =  g ( - k T  -  T;) and we have assumed that the cross-term ISI contribution from the ith 

interferer is limited to 2 P +  1 terms. Letting Xt — Rtco s(^ ) and Yi — 'Lk=-Pbi[̂ c\8k/> we rewrite the 

total interference component as
L  L  I p~ T

(3.61)
i=i 1=1 » ^

Conditioning on T(, the CF of is

E [ V ^

E

=  E
p

eJ«>Hk}8k4
k = - P

j ]  E eJ(0bi[k]gv
k = - p

p ( \  ■ 1 
Y l  l - eJWSk,i +  L e- J(0gv

k = -p \ 2  2
p

=  n  c° s( 8 k ^ )

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)
k = - P

where (3.65) follows from the fact that the ith interfering user’s data bits are independent, and hence, 

uncorrelated. Conditioning on Xt and t ;, and using the scaling property of the Fourier transform, 

from (3.61) and (3.67), we have the CF of /( as

Averaging out X- and T-, we obtain the CF of the ith interferer as

(3.68)

(3.69)

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Et. J ]  cos
k = - P

P

(3.70)

or

~ ^-g (—kT — t )xco j d r (3.71)

where X  = R cos 0  and f x (x) is the PDF of an auxiliary function, X  = R cos 0  (R is a Nakagami- 

m  distributed RV and 0  is an independent uniformly distributed RV), which has been derived in 

Section 3.3 (See (3.49)).

Finally, using the assumption that all interfering components are independent, we obtain the CF 

of the total interference as

Evaluation of (3.72) requires, in turn, evaluation of (3.71). The inner, improper integral in (3.71) 

has an integral with envelope f x (x), the PDF of X,  which has been plotted in Fig. 3.4 for a number 

of m parameter values. Our empirical trials have indicated that the infinite range of integration of 

X  can be approximated with a finite range over [0 ,5y/lQ/ /2] for all permissible values of the fading 

parameter. This approximation improves with increasing values of m. Therefore, without loss of 

much numerical accuracy, we can approximate (3.71) well using definite, proper integrals as

3.4.3 BER Under Synchronous Operation

In the special case when all the interfering signals have the same symbol timing as the desired user, 

there is no cross-term ISI and the total interference component can be simplified to

L
(3.72)

- ^ - g ( - k T  -  T)xco I d t  (3.73)

I

(3.75)

(3.74)

(3.76)
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where X =  Y denotes that the RV’s X and Y have the same statistics. The last equality in (3.76)

symmetric RV gives back the symmetric RV with the same statistics. A formal statement of this 

Lemma and its proof are as follows.

Lemma: Suppose Z  =  XY, where X  and Y are two independent R V ’s. The RV X  has a zero-mean 

symmetric PDF; i.e., f x {x) = f x (—x) and Y is a Bernoulli RV taking values from { + 1 ,-1 }  with 

equal probabilities. Then, f z {z) — f x (z).

Proof: The PDF of Y is

Now using the assumption that the L interfering signals are independent, the CF of the total 

interference (under the synchronous assumption) can be obtained as

follows a Lemma which states that the product of a symmetric Bernoulli RV 5 and a zero mean

(3.77)

where 5(-) is the S -function. The conditional PDF of Z given Y  is [81]

(3.78)

Averaging over the PDF of Y, one gets

+°° i f+°°
8 ( y - l ) f zlY(z)dy+ -  <5(y+ 1 ) f z[Y(z)dy

■oo ' J* J  — oo ' (3.79)

= fx(z)

(3.80)

where the last equality follows from a result which has been derived in Section 3.3 (see (3.40)).

5A symmetric Bernoulli RV is defined here as a RV taking values from (+1, -1 } with equal probabilities.
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In general, the exact BER of BPSK modulation in CCI environment depends on the power dis­

tribution of the interfering signals. This is true for both asynchronous and synchronous interfering 

signals since the characteristic functions in (3.72) and (3.80) both depend on the power distribution 

of the interfering signals. However, when mt =  1 (Rayleigh fading), using a Kummer transforma­

tion [3, eqn. (13.1.27)] and the fact [3, eqn. (13.1.2)]

which corresponds to a zero-mean Gaussian PDF with variance (QjT/A) ^ = 1  Therefore, we con­

clude that the first-order distribution of the sum of synchronous, Rayleigh-faded, BPSK-modulated 

cochannel signals is exactly zero-mean Gaussian. The variance of this Gaussian sample depends 

only on the total interference signal power. The exact BER in this situation can be evaluated using 

the Gaussian approximation recalled in the next section.

3.5 BER Calculation Using Gaussian Approximation

The exact distribution for the total cochannel interference is, in general, difficult to obtain. It has 

been reported only for restricted special cases [16]. Therefore, a central limit theorem (CLT) is 

usually invoked to approximate the distribution of the total cochannel interference, I, as Gaussian. 

Recall that the first and the second moments of I  completely describe the Gaussian distribution. It 

can be shown that the first moment of I  is zero and the second moment of I, or here, its variance, is 

given by

var[7] =  E[/2] =  QiT ^ PiE ^ i \  (3.82)

In (3.82), E [pf] can be further simplified to a compact form and this quantity is the same for 

all interfering users. We recall that the term p ;, defined in (3.25), represents the cross-signal ISI

77
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s y n c ,7 ttj= l  1—1 (3.81)
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from the ith user corrupting the desired user signal. Averaging over the information data bits and 

the random delay, we obtain E \pf] as

+“>
e[pf] = x  nbHmsH-kT-^)}

k=-oo

= X
k ——oo

1 +°° r T

=  t  X  /  82{ - k T - T ) d T  
T  o

-k T

1 f + “  „

t L  s (t)dt
1 /■+“
r L  |G (/)i J /

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

where (3.83) follows from the assumption that the delay of the ith user and the information bits of 

the ith user are independent; eqn. (3.86) follows from a substitution t — —kT  — t ;  and (3.88) follows 

from Parseval’s theorem. Using the RC pulse spectrum defined in (3.21), we have

l - a \  T 2
1 r+~\G*.c( f ) \2d f = U 2T2f i : ■r

J  2  T

(X f  ̂
— (1  — Of) H -  I  (1  -f- COS 7 tU V

2 J o

1 +COS
n T  /  l - a  
a  U  2 T d f

du

=  1 -

a

(3.89)

Similarly, using the BTRC pulse spectrum defined in (3.23), we have

1 /■+“  1 I
j  \ G ^ c { f ) \ 2d f = - l 2 T 2

l - a
2 T

+  2 T
k

f  471n2 
exp |

+ 2 r k

1 + a  
2  T f 2T ln2  

1 — exp <
I a

f -

a  

1 +  a
2 T

l - a  
2 T

2

- / d f

d f
(3.90)

= <1+a)+< U (£ )  + CC —------ \~ i — | t   I
In2 \  8 /  Vln27

=  1 -
a 1
4 V ln2
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To summarize, we have derived

/

E[p,2] =
1 - f  R C

l - f ( E j )  BTRC
(3.91)

The total equivalent noise power is

o f  =  1 +  var[/]. (3.92)

Hence, the average BER, conditioned on Rs, is given by

(3.93)

Note that BER estimates obtained from the GA depend only on the total interfering signal power

values for var[7] and o f .  Then, from (3.93), it is clear that the BER will also be correspondingly 

reduced. Therefore, the Gaussian approximation (3.93) shows directly and explicitly that the value 

of excess bandwidth a  provides a trade-off between spectral efficiency and detection performance, 

as is well known [5], [20].

We now use the Gaussian approximation to compare the performance of the two Nyquist pulses 

for an unfaded desired user signal. Clearly, with the same amount of excess bandwidth, the BTRC 

pulse gives smaller equivalent noise power, thus, lower BER values. To maintain the same BER 

performance, or identical equivalent noise powers, one must require

or a BTRC =  0.693aRC. In other words, under the assumption that the Gaussian approximation is valid, 

for a given BER performance, the BTRC pulse has about 30% savings in excess bandwidth. For 

practical interest, a more meaningful question is to ask: given the target BER (Pe), the SIR value, 

and the amount of excess bandwidth (a ) , how much savings in the signal-to-noise ratio we can 

achieve if we employ the BTRC pulse in lieu of the RC pulse in our system?

(see (3.82)). Also observe that larger values of a  give smaller values for E[pf ], and thus, smaller

%<C ,

4 1 41n2
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To answer the aforementioned question, without loss of generality, we first assume Ps — Xf=i F;- 

From (3.93), we obtain
p st r )

E2 W ]  = ^ -  =  ^ T  (3-94)°t °t

where the last equality follows from the fact Qs =  R% when the desired user signal is unfaded. For 

a RC pulse, from (3.82), (3.91), and (3.92), we have

\ Q ~ \ p e ) ] 2 -  7 7 w  }

PST Q S '  ^3 -9 5 ^

1 ^  2 SIR y 2 )

O  P T Owhere the last equality follows from the fact that QI =  Denote the signal-to-noise ratio ? 2 s

by SNRkc and solve (3.95) for SNRrc. we have the required signal-to-noise ratio for the RC pulse as

SWR,c = ----- | [S 3 (f9 12-------. (3.96)

Similarly we can show that the required signal-to-noise ratio for the BTRC pulse as

SNRm c = -----    (3 97)

Therefore, the amount of SNR savings in dB, denoted by A SNR, becomes

ASNR (dB) =  SNRrc (dB) -  SNRbtrc (dB)

2 ( S I R ) - ( l - ^ ) [ Q - l (Pe)}2 
2 ( S I R ) - ( l - ^ ) [ Q - \ P e)Y  '

=  101og]0 ANANil — 41n2_

(3.98)

As an example, with SIR =  10 dB and a  =  1.00, eqn. (3.98) predicts that the RC pulse will require 

additional 1.19 dB  in SNR  in order to achieve the same BER performance as the BTRC pulse when 

the target BER performance is at Pe =  10~6.

The approximate analytical expression derived in (3.98) is easy to compute; however, as it 

will be shown in Section 3.6, the Gaussian approximation can be poor in many situations. Our 

analysis using the Gaussian approximation only predicts that, in terms of relative BER performance, 

the BTRC pulse will outperform the RC pulse. We will use our precise analytical expressions to 

accurately compare the performances of these two pulses in Section 3.6.
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Finally, averaging (3.93) over the PDF of Rs yields the average BER (for the Gaussian approxi­

mation) as

E„ Q

=  rJ o r (ms) \Q
m.

r ™s le Q> Q dr,. (3.99)

The integral (3.99) does not simplify to a closed-form expression for arbitrary values of ms. How­

ever, for integer values of ms, using the integral identity [79, eq. (3.63)], we can show that

1 r
PeA -  X— e 2nis 1 -  (cr| + 1 )“1/2)

x ^ l 2- k f m s - l  + k'

k=0
1 + (of + 1) - 1/2

(3.100)

where o f  =  -fJfk-o}. Some results obtained using the GA are presented in the next Section.

3.6 Numerical Results and Discussion

In this section, we use our precise analytical results to study the average BER performance of BPSK 

in Nakagami fading and CCI. First, the new analytical average BER expression derived in Section 

3.4 is validated by computer simulation. Next, we study the impact of the interfering users’ fading 

on the desired user error rate. We then use the new results to compare the average BER performance 

of a CCI BPSK system using the classical raised-cosine pulse to that of a system using the novel 

shape pulse in various fading and interference environments. Finally, we assess the accuracy of the 

Gaussian approximation developed in Section 3.5.

We assume that the total interference power is distributed uniformly among all the active in­

terfering signals, i.e, Pi =  LPt. where P] is the transmitter power of each interfering signal. 

Further, as in [5], we fix the total transmitter power of the interfering signals to equal the transmitter 

power of the desired signal, i.e., P i — p s- Our results do not require these assumptions which 

are made for illustrative purposes only.

Based on our empirical trials, we have found that taking account of seven adjacent pulses (P — 3)
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is sufficient to capture the effect of cross-signal ISI on the average BER without loss of numerical 

accuracy.

Fig. 3.6 shows the average BER versus the SNR  for a moderately faded desired user signal 

(ms =  5) and a single asynchronous Rayleigh-faded (mI =  1) interferer both using the RC pulse at 

SIR =  10 dB and SIR =  15 dB. The solid lines show the average BER’s obtained using the precise 

analysis and the crosses denotes the average BER’s obtained using Monte Carlo simulation. The 

theoretical results and the simulation results are in excellent agreement. Therefore, in the remaining 

examples we will only show numerical results obtained using the precise analytical expression. 

Observe in Fig. 3.6 that an error rate floor occurs for large SNR  values. This phenomenon is 

expected and is due to the cross-signal ISI.

Fig. 3.7 shows the average BER versus the SNR for a strong (lightly faded) desired user signal 

(ms — 8) corrupted by one or six Rayleigh-faded (rtij =  1) interferers all using the RC pulse at 

SIR = 1 0  dB and SIR =  15 dB  under both synchronous and asynchronous operations. Comparing 

Fig. 3.7 with Fig. 3.6, for the case of one asynchronous Rayleigh-faded interferer, we note that 

the average BER performance improves (BER decreases) when the desired signal is less severely 

faded, as expected. Fig. 3.7 also shows that the average BER corresponding to the situation when 

the total interference power is uniformly distributed among six interferers (L =  6) is smaller than 

the BER corresponding to the situation when the same total interference power is concentrated in 

one interferer (L =  1). This observation is consistent with the findings in [5] for the case of a 

non-faded desired user signal (which corresponds to ms =  +°°). Fig. 3.7 also shows the average 

BER performance when all interfering signals are symbol timing synchronized with the desired 

signal. For the special case of Rayleigh-faded interfering signals {ml — 1), as discussed in Section 

3.4, the resulting average BER depends only on the total interference power. Finally, Fig. 3.7 

indicates that the BER under asynchronous operation with a single interferer (L =  1) is always 

greater than the BER under synchronous operation. However, with six interferers (L =  6), the BER 

under synchronous operation can be either smaller or greater than the BER under asynchronous 

operation depending on the value of SIR.
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In Fig. 3.8, we examine a case where the desired signal is strong (lightly faded) with ms =  8, 

but the interfering signals are subjected to less fading, as represented by increasing the value of 

rrij. Comparing Fig. 3.8 (m, — 5) with Fig. 3.7 {ml =  1), we observe that as the interfering signals 

become less faded, the BER of the desired signal decreases. Or conversely, subjecting the interfering 

signals to more severe fading results in increasing of BER of the desired signal. This might seem 

counter-intuitive. Insight into this behavior is furthered by considering the case of an unfaded 

desired signal and faded interferers. Recall that the interference power is constant. In Fig. 3.9, 

BER curves are plotted for an unfaded desired user signal corrupted by interfering signals faded 

with various amounts of severity. It is clear that for an unfaded user, the BER increases when the 

interfering signals are more severely faded (corresponding to decreasing ml from mT =  5 to m, — 1). 

This behavior is a consequence of the upward concavity of the ^-function, and can be explained 

by referring to the results published by Jenq [39]. Though he considered ISI rather than CCI, a 

similar argument applies here to the CCI case. Consider first the error rate of BPSK in AWGN. It 

is well known that Pe =  Q(£),  where s is the signal strength and <7 is the noise standard deviation. 

In the presence of an interferer taking values —d  and +d  with equal probabilities, the resulting 

BER is P'e = [< 2 (^ )  +  6 ( ^ ) ] / 2 .  Since the g-function is concave up, it is clear that P'e > Pe by 

Jensen’s inequality [3]. The fading “smears” the interference to assume different values of d. While 

the symmetry around s is not present (that is, one cannot pair —d with +d  for all values of d), 

the fading skews the values of d  toward larger values since the fading distribution is one sided on 

[0, + « ) . The result is an increased BER. A small mr value corresponds to a situation when d  takes 

large values with high probability, and thus, it gives greater error rate. On the other hand, a large m[ 

value corresponds to a situation when d  takes large values with low probability, and thus, it gives 

smaller error rate. Note in Fig. 3.9 that this argument holds for all values of SNR and, therefore, 

it does not depend on the assumption that the desired signal is unfaded. Thus, as demonstrated in 

Figs. 3.8 and 3.9, the BER performance of the desired faded signal improves (BER decreases) when 

the interfering signals are less faded.

In Section 3.5, the Gaussian approximation was used to predict that the BTRC pulse gives
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better BER performance than the RC pulse. Many numerical examples confirm this prediction. For 

example, Fig. 3.10 compares the BER performances for the two Nyquist pulses with shaping factor 

a  =  1.00 at SIR =  5,10 and 15 dB. As shown, the BTRC pulse yields smaller BER values than 

those of the RC pulse over a wide range of SNR values. In particular, with SIR =  15 dB, the BER 

of the BTRC pulse is about half the BER of the RC pulse at SNR =  30 dB, and the BTRC pulse has 

about 0.86 dB  savings in SNR  over the RC pulse at BER =  10“ 6. Additional numerical examples 

can be found in Table 3.6 to demonstrate the advantage of the new novel pulse.

Figs. 3.6-3.8 also show the accuracy of the Gaussian approximation. From Fig. 3.6, it is seen 

that the GA is in good agreement with the exact analysis for low SNR  values. However, the GA 

fails to accurately predict the error rate floor for high SNR  values. Similar observations can be 

drawn from Fig. 3.7. Fig. 3.8 indicates that the GA agrees with the exact analyses reasonably 

well for six interferers under both asynchronous and synchronous operations. However, the GA 

overestimates the exact BER when a single interferer is lightly faded. This observation is in contrast 

to the observation in Fig. 3.7 where the GA underestimates the BER when the single interferer is 

severely faded. Thus, the GA is not a reliable predictor and needs not be used given the tractable, 

precise method derived here.

3.7 Summary

In this chapter, we studied the error rate of a bandwidth efficient BPSK signal in fading and cochan­

nel interference. The model we adopted is the general mslm j  model which covers a wide range 

of fading and cochannel interference conditions. We obtained a precise BER expression using the 

characteristic function method. Using this precise method, we found that less faded interfering sig­

nals improve the BER performance of the desired user signal. We also studied the performance of 

a novel pulse in fading and CCI environments. This new pulse outperforms the classical RC pulse 

for all cases considered. The performance gains over the RC pulse, although moderate in most 

cases, are attained at no additional cost. Therefore, this new pulse will be useful for future wireless
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Figure 3.6. Average BER versus SNR  for ms =  5 and =  1 with a single asynchronous interferer 

and RC pulse (a  =  0.5) at SIR = 10 dB  and SIR =  15 dB.
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Figure 3.7. Average BER versus SNR  for ms — 8 and m7 =  1 with L — 1,6 and RC pulse (a  =  0.5) 

at SIR = 10 dB  and SIR = 15 dB.
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Figure 3.8. Average BER versus SNR for ms — 8 and mI =  5 with L =  1,6 and RC pulse (a  =  0.5) 

at SIR -  10 dB and SIR -  15 dB.
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Figure 3.10. Average BER versus SNR  for ms =  8 and ml — 2 with L  =  6, RC pulse (a  =  1.00) and 

BTRC pulse (a  =  1.00) at SIR =  5,10, and 15 dB.
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Table 3.1. The average BER of BPSK in generalized Nakagami fading for the RC pulse and the 

BTRC pulse with SIR = 1 5  dB, ms = 10, m, =  2 and L — 6.

a SNR=5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

RC

0.25 5.07E-02 4.69E-03 1.38E-04 5.37E-06 8.80E-07 4.35E-07

0.50 5.05E-02 4.57E-03 1.23E-04 3.96E-06 5.41E-07 2.47E-07

0.75 5.02E-02 4.44E-03 1.10E-04 2.94E-06 3.38E-07 1.47E-07

1.00 5.00E-02 4.32E-03 9.83E-04 2.19E-06 2.19E-07 9.42E-08

BTRC

0.25 5.06E-02 4.64E-03 1.3 IE-04 4.68E-06 7.05E-07 3.35E-07

0.50 5.03E-02 4.46E-03 1.11E-04 3.30E-06 3.56E-07 1.55E-07

0.75 4.99E-02 4.29E-03 9.47E-05 2.00E-06 1.93E-07 8.31E-08

1.00 4.95E-02 4.11E-03 8.03E-05 1.33E-06 1.13E-07 5.37E-08

systems. Using our precise BER expression, we assessed definitely the accuracy of the GA with 

various system parameters. It was found that the GA can be poor under many operating conditions.
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Chapter 4 

Error Rate of Asynchronous DS-CDMA in Nakagami 

Fading

In this chapter, using the CF of an auxiliary function derived in Chapter 3, we extend the results on 

accurate DS-CDMA BER calculation in flat Rayleigh fading to flat Nakagami-m fading. This chap­

ter is organized as follows. Section 4.1 briefly reviews the system model and an important decision 

statistic presented in Chapter 2. Section 4.2 derives the BER estimate using the standard Gaussian 

approximation. Section 4.3 derives an accurate BER expression without making assumptions on the 

distribution of the MAI. Section 4.4 presents numerical results and discussions. Finally, Section 4.5 

summarizes the chapter results.

4.1 System Model and Receiver Decision Statistic

Recall the DS-CDMA/SSMA system model described in Fig. 2.1 for K  asynchronous users. The 

received signal, r(t), at the input of the desired user matched filter receiver is given by

K

r (0 =  X  V ^ k R k b k ( { -  r k ) a k ( t  -  % )cos{(oct -  <l>k) + n{t) (4.1)
k =  1

Pk represents the transmitted signal power, (0C is the carrier frequency, {TjJILj represent the delays 

which account for user asynchronism, (j>k =  fik +  Qk — (Oczk is assumed a uniform RV over [0,2n) 

where [ik is the phase introduced by the fading channel on the kth user signal and 0k is the phase
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of the M i user’s transmitted signal. The M i user data signal, bk(t), is a random process which is a 

rectangular waveform, taking values from {-1 ,4 -1}  with symbol rate Rs — l / T  and its expression 

is given in (2.2). The spreading signal, ak(t), can be expressed as

where t/r(f) is a rectangular chip waveform which is time-limited to [0, Tc) and normalized according 

to JqP tj/2(t)dt — Tc. The Ith chip of the M i user is denoted as a^> and takes values from {—1, +  1} 

with the polarities of all chips assumed random. There are G chips for one data symbol and we 

normalize the chip duration so that Tc — 1 and, thus, T =  G. The channel fading is represented by 

the RV’s {Rk}\‘=1 which are Nakagami-m distributed and have the PDF given by

amount of fading and m takes integer values.

The received signal is usually corrupted by an additive background zero-mean white Gaus­

sian noise process, n(t). For large signal to background noise ratio, the effect of background 

noise is negligible in a mainly interference-limited system [53]. Thus, in the following analy­

sis, we do not consider background noise for simplicity. Without loss of generality, we further 

assume that { }^L f are uniformly distributed over [0,7); that Px = P2 =  . . .  =  Pk =  2, i.e., the 

users have equal transmitted signal powers; that average power control is used for the received 

signal, i.e. E[R|] =  Q for k — 1,- • K\ and that all aforementioned RV’s, < {Rk}f=1; {%}*

We assume, without loss of generality, that the target user has index k =  1 and =  0. The

channel is assumed to be slowly fading so that coherent detection can be perfectly implemented. 

Using a suboptimal single-user matched filter receiver, the decision statistic at the output of the 

correlator, after low-pass filtering, is given by

=  S  a\k)w ( t - l T c) (4.2)

(4.3)

where Q =  E[R2]. Here, for simplicity, we have assumed all active users experience the same

{ ^ k } k = v i^ p ) } k = v { ^ af^)}f= \  f ’ are mutually independent.

K
<=“ ( « ■ (4.4)

k=2
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Here, denotes the Oth data symbol for User 1, and it is shown in Appendix A that

=  +  (4 -5)

In (4.5), the RV Sk is uniform over [0,1) and accounts for the fractional chip displacement of the 

M i interferer’s chip relative to User 1; the RV’s Ak and are shown in Appendix A to be sums of 

G i.i.d. Bernoulli RV’s. The PMF’s for Ak and Tk are, respectively, given by

pr i ( i ) = ^ y - G, i £ /  =  {—G, —G +  2 ,. . . ,  G — 2, G}, (4.6)

and

^ 0 ' ) = ( i ^ ) 2" G> j e S  = { - G , - G  + 2 , . . . , G - 2 , G } .  (4.7)

Furthermore, the RV’s Tk and Ak are statistically independent.

4.2 Standard Gaussian Approximation

In the SGA, a CLT is invoked to approximate the sum of the MAI as an additive zero-mean Gaussian 

noise process. From (4.4), we denote the sum of the MAI signals, at the output of the matched filter 

receiver, as I  =  Xf=2^ ^ cos(^ ) -  The variance of I, denoted by o f ,  is obtained by averaging over 

all operating conditions as

o f  =
^ k=2

=  f  ( K - l ) Q .

The average BER, given R x, for each user is then approximated by

Averaging over R, in (4.8) with respect to the Nakagami-m distribution defined in (4.3) and using 

the integral identity [79, eq. (3.63)], we approximate the average BER in Nakagami-m fading (for 

integer values of m) using the SGA as 

1
nSGA ^  _  

e ~  2m
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where a 2 = j~ (K  — 1). Note that the average BER, for a mainly interference-limited environment, 

does not depend on Q. This is because both the desired signal power and the interfering signal 

power scale linearly as Q.

4.3 Accurate BER Calculation

The total other-user interference at the output of the matched filter receiver is I — £ f =2 Ik where 

h  =  RkWkc0S((l)kh an4 Wk is defined in (4.5). Similar to the development described in Section 2.6, 

the conditional BER, given R v  for our target user can be expressed as

p„j«, =  P r { /< - R ,G }

= l-F,(*iO
1 1 r+°° s in^ jG m )= i-i r s m { , }  *,(«>■>*«>2 n Jo (0 1

(4.10)

where in the derivation of (4.10), we have used the Fourier inversion formula [59, p. 40] for the real 

integral.

The overall BER, obtained by averaging over the PDF of and using the integral property [33, 

(3.952)], becomes

1 G T ( m + l )  r- r+™ ,, , [ 1 ,  , ]  (  3 G2u2\
=  / o  ° ' W e I P { - 2 G “  ( 4 ' U )

where Oj(u) is the CF of the total interfering signals with its frequency scaled by Note that, 

for the special case when m — l  (Rayleigh), using the fact that (0; ^ r ~ )  =  1, F ( |)  =  and

T (l) =  1, we have

Pe\m=l = ® / ( « ) e x p | - ^ H 2| j « ,  (4.12)

which is consistent with the results (2.93) and (2.101) obtained in Chapter 2.

Following Section 2.6.2, we again assume that {W j£L2 are independent, and thus {Ik} f=2 are 

also independent. Therefore, The CF of the total interfering signal becomes

K

0,((o) =  ] ! * / > ) •  (4 -i3)
k=2
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To find &j (a) ,  we write Ik =  Wk%k where %k — Rkcos(<j>k). Then, given Wk, the PDF of Ik is

• W 1* ) =  W k\^Xk ( ^ ) " (4' 14)

Using the scaling property of the Fourier transform, we obtain

=  ®xS®Wk) (4.15)

where <PXk (■) is the CF of x ^  which has been derived in Chapter 3 in (3.33) as

f £2 ) m_1
=  exp | - ^ © 2j  E A/M2/ (4 -16)

Gaussian CF

where

and

' V *  r (m )  ( a ) ’ 1 1

Thus, averaging (4.15) with respect to the PM F’s of Ak and and letting 

we get

l e y j e y ^  2 '  X 2 /

2-2GX X (,°G)(/S0)«pUi^[/s1+/(l-5t)f
iJe y / e y  V 2 /  v 2 /  I z

y 1 (V) r ( m - Z -

ito  2‘V *  r(m )

i eyj >

V  C 7 1) r(m  - 1 -  i )  ,
X X  V i  r , „ i  2 « 2, (4.19)

— — V - —

a ; (m )

where

M2 /=  E  P ) ( 2 Z - 9 - l ) ! ! ( ; ( 0 H / 5 Jt +  y ( l - 5 t )]«. (4.20)
o—0.17 even \  9  /g—0, g even

Averaging (4.19) over the PDF of Sk, yields

(co) = j \ ' IklSk(G))dSk. (4.21)
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Carrying out above integration, we obtain Oj (to) as

i'eW p.S ' V 2 /  v 2 /e.5*f e y  '  2

where for /  =  j  =  i,

1 ^  " i;1 , , f  /2 (

-̂q=0, q even

and for i ^  j  ,

J{i,j,co) =  e x p { -^ ( « 2z2)  ]T a,(m ){ X  {21- q -  1)!!(;ft))9z’<?j  (4.22b)
I ^  J /=0 ^4—0, a even V*7/  J

^  m—1 f  2/ f ' 2 1 \  i 1

J{ i ,  J , <o) = X  ai H  ) x  ( -  ) (2z -  9 ~  1)!! U°>)9BU' ■’z' ' » cl) f (4.22c)
/“ 0 ^ ~ 0 ,  q  even V *? /  J

where we have defined the function B(a;b',fc,q) as

B(a\b\k\q) =  ■ -   [  uqe ~ ^ u2du, a ^ b .  (4.23)
£> d  J  a

Note that B(a-,b;k\q) is always positive for all permissible values of a, b, k, and q. The function

B(a;b;k',q) can be evaluated exactly as follows. For given a, b and k, we denote Iq (where q is a

positive even number) as

L  =  B (a;b;k;q) =  - - — [  uge~ 2k2u2 du. (4.24)
b - a J a

Integrating by parts, we obtain a recursive expression for Iq as

7   1 f — 1 r - b k 2b2 q - 1  —t U a 2l  | ~  ^7  Z/1
7« “ t 5 ( ^ 6 ) r  e - ‘■’ O ’ J + ^ ' , - 2 ' 9 2 2 <4 -25>

where I  2 =  Xf uq^ 2e ~ ^ u2du. For <y =  0, we have

=  j ^ m { a m ) ~ a m ) \  (4-26)

Using (4.25) and (4.26), we can recursively evaluate Iq or B(a;b’,k\q) in (4.24) for all permissible 

values of q without resorting to numerical integration.

Finally, for the special case when m =  1 (Rayleigh), we can obtain a more compact expression 

for J ( i , j  , a) .  That is, for /  =  /  =  z,

J ( i , j , ( o )  =  e x p | - i m 2j2| ,  (4.27a)
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and for i  ^  / ,

(4.27b)

We note that, as expected, / ( / , / ,  co) in (4.27) is identical to J( i ,j )  in (2.99) obtained in Chapter 2.

4.4 Numerical Results and Discussions

The exact average BER expression derived in (4.11) is an important new result. It is expressed 

in terms of a single integral. In this integral, the CF of the MAI has been derived in closed-form 

expression (it involves only exponential function and the standard <2-function). For the special 

case when m =  1 (Rayleigh), it has been shown in Chapter 2 that the integrand function is strictly 

non-negative, decaying exponentially. For parameter values m > 1, the integrand function takes 

both positive and negative values; however, its envelope decays exponentially. A typical integrand 

function is plotted in Fig. 4.1 for m =  2, K  =  6, and G =  31. In general, the rate of envelope decay 

for the integrand function decreases with large values of parameter m, but increases with processing 

gain.

The average BER is plotted as a function of the number of active users in Fig. 4.2 for different 

integer values of parameter m and for two different processing gains, namely, G — l  and G =  31. 

We observe that for a given processing gain and a fixed number of users, the system performance 

increases with increasing parameter m value. This is expected since a larger parameter m value 

corresponds to a lightly faded channel, thus, smaller BER results. We also observe that, for a given 

processing gain, the amount of performance improvement diminishes nonlinearly with linearly- 

spaced increasing parameter m  values. Notably, the largest BER improvement is obtained between 

m =  1 and m =  2 and for small numbers of users in the system. All analyses in this work are 

performed for integer-valued m\ however, interpolation techniques can be used to estimate the BER 

for real-valued parameter m.

Fig. 4.3 compares the BER estimated using the SGA to the corresponding BER calculated using 

the accurate solution for G =  31. As shown, the accuracy of the SGA is excellent under a strong
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Figure 4.1. Integrand of (4.11) with m =  2, K  =  6, and G =  31.
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Figure 4.2. System BER performance in an interference-limited environment for G =  7 and G =  31.
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fading environment when m — 1 (Rayleigh). This is even true for a system with a single interferer. 

However, it is clear that the SGA can significantly underestimate the BER for m  >  1 in a system with 

small numbers of users, especially for large m parameter values. Since large values of parameter m 

imply light fading environments (or the static non-fading case when m -» +=*>), our observation is 

consistent with the findings in [56].

4.5 Summary

In this chapter, we have derived an accurate, analytical solution using the characteristic function 

method for the BER of a DS-CDMA system operating in flat Nakagami-m fading. Using any stan­

dard numerical integration technique, we can perform rapid and accurate BER calculation for a 

system in a generalized fading environment. The validity of the standard Gaussian approximation 

for Nakagami fading channels has also been assessed. It has been found that the SGA can underes­

timate the BER for a system with a small number of users and moderate processing gain in a lightly 

faded environment.
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Figure 4.3. Comparison of BER estimated from the SGA with the accurate solution for G = 31.
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Chapter 5

Estimation of the Nakagami Fading Parameters

5.1 Introduction

As we have shown in previous chapters, the Nakagami-m fading model is useful in describing 

a generalized fading and cochannel interference transmission environment. This is because the 

Nakagami-m distribution is flexible in modeling a variety of fading conditions. This fading model is 

also of practical importance because the distribution was originally deduced from experimental data 

[57]. Extensive empirical measurements confirmed the usefulness of the Nakagami-m distribution 

for modeling the radio links over a wide range of frequency bands (See [22] and the references 

therein).

We summarize, for convenience, the most salient features of the Nakagami-m distribution here. 

The probability density function of the Nakagami-m distribution is given by

where Q is the second moment, i.e., Q  =  E[/?2], and the m parameter, sometimes known as inverse 

of the fading figure, is defined as

The Nakagami-m distribution covers a wide range of fading conditions; when m =  1/2, it is a

(5.1)

(5.2)

As we develop, we will reveal that another compact definition of this m parameter is also possible.
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one-sided Gaussian distribution and when m — 1, it is a Rayleigh distribution. In the limit as m 

approaches infinity, the channel becomes static and its corresponding PDF becomes an impulsive

The motivations of this work are as follows. In order to use the Nakagami-m distribution to 

model a given set of empirical fading data, one must determine or estimate the value of m from 

these measured data. The knowledge of the m parameter is also required by the receiver for optimal 

reception of signals in Nakagami fading [10]. The later application calls for a good m estimator 

with a form which is suitable for fast and efficient on-line implementation. The knowledge of the 

m parameter can also be fed back to the transmitter side so that the transmitter can be designed by 

taking account of the channel information.

Throughout this work we assume a high signal-to-noise power ratio environment. Therefore, the 

background noise can be neglected in our analysis. The estimation problem can be formally stated 

as follows. Given R l ,R2, . . . , R N i.i.d. random samples according to the Nakagami-m distribution 

given in (5.1), we seek good estimators m and Q (which are functions of R X,R2, • ■ ■,RN) for m and

Two popular approaches to this problems are maximum-likelihood based estimation and moment- 

based estimation. In this chapter, we will study our Nakagami-m fading parameter problem using 

these two approaches.

The rest of this chapter is organized as follows. Section 5.2 reviews some fundamental statis­

tical concepts which are required in the remainder of the chapter. In this section we also review 

the literature related to our fading parameter estimation. The Cramer-Rao lower bound is derived 

in Section 5.3. Section 5.4 considers the maximum-likelihood estimation, while Section 5.5 con­

siders the moment-based estimation. In Section 5.6, we perform a detailed numerical study of our 

proposed estimators. Finally, we summarize our results in Section 5.7.

function located at VQ,  its root-mean-square value. The kth moment expression for the Nakagami- 

m distribution is given by

Q.
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5.2 Background Review

This section consists of two parts. In the first part, we review some fundamental concepts and 

theorems drawn from statistical inference theory. These include the definitions of minimum variance 

unbiased estimator, Cramer-Rao lower bound, sufficiency, completeness, and exponential family. 

Major theorems covered are Rao-Blackwell, Lehmann-Scheffe, Central Limit Theory, as well as 

the delta method. Both scalar and multivariate delta method will be used extensively in this chapter. 

In the second part, we review some relevant literature related to our work.

5.2.1 R eview  of S ta tis tica l Concepts

In this subsection, we summarize some statistical concepts and theorems which are useful in the 

subsequent development. The theory of mathematical statistics is rich; it is not our intention to 

summarize all the results in a few pages. Instead, we will only introduce those important concepts 

which are required in our work. Most theorems, with exception of the delta method, are stated 

without proofs. The proofs can be found in several popular statistics references [9], [21], [46], or in 

engineering references [62], [41]. We consider a PDF, f x  (x; 0), which is of a known form containing 

a fixed 1 but unknown parameter 0 € Q, where Q is called the parameter space. Let X ].X2-, ■■■,XN 

denote a sequence of i.i.d. random samples drawn according to f x (x; 0 ) . We are interested in finding 

a statistic U, which is a function of these observed random samples, i.e., 9 = U(X1,X2, ■ ■ ■ ,XN), as 

a good estimator for 0. The problem of this nature is called point estimation in statistics literature 

or is called signal estimation in the engineering literature.

Typically, we are only interested in unbiased estimators. An estimator 0 is called an unbiased 

estimator if E[0] =  0, and b(9)  — E[0] — 0 is commonly defined as the bias in the estimator 0. 

Among the class of unbiased estimators, in addition, we seek an unbiased estimator which has min­

imum variance. The resulting estimator is called a minimum variance unbiased estimator (MVUE).

In practice, MVUE can not always be found even it exists. In the following, we will introduce

JIf the parameter 6 is not fixed and has a known a priori distribution, Bayesian parameter estimation is more appro­

priate.
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several techniques which may be used to find the MVUE.

For any given unbiased estimator, we can assess the performance of this estimator by comparing 

its variance to a variance lower bound. If, by coincidence, the variance of the estimator attains this 

lower bound, we declare a MVUE is found. There exist several such variance lower bounds [41]; 

however, the Cramer-Rao lower bound (CRLB) is by far the most popular variance lower bound 

because it is easy to determine.

Let x =  [xj ,x2, .. ■ , x n ] t  and denote the log-likelihood function (LLF) with a scalar unknown 

parameter 9 by ln /x (x; 6 ). The CRLB can be stated as follows [41].

Theorem  5.2.1 (Cram er-Rao Lower Bound) Assume that the LLF satisfies a regularity condi­

tion, i.e., E[<9 ln /x (x; 9)/dG]  =  0 for  all 6 , where the expectation is taken with respect to / x (x; 6 ). 

Then, the variance o f any unbiased estimator 9 satisfies

Furthermore, an unbiased estimator may be found to attain the bound i f  and only if

If an unbiased estimator attains the CRLB, we call this estimator an efficient estimator. In (5.5), 

the non-negative quantity 1(9) is called the Fisher information. Intuitively, the more information we 

have, the lower the variance bound becomes, as we expect. If we now have a vector of 5 unknown 

parameters, 0 =  [0j. 02, . . . .  9 f r , we can modify the above variance lower bound 2 to

= , < < % ( * ) - e > (5.5)

fo r  some functions g and I. The MVUE is 9 =  g(x) and the minimum variance is 1/1(9).

var[0f] >  [I ‘ (G)];; (5.6)

where I[0] is a s x s Fisher information matrix and it is defined by

(5.7)

2The regularity condition here requires the equation 1 =  / / X(x;0)4x  can be differentiated twice w.r.t. 9 under the

integral sign.
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where i, j  — 1,2, .. .  ,s. The proof of the CRLB uses the Cauchy-Schwarz inequality and it can be 

found, for example, in Kay [41].

We note that the CRLB sometimes can result an efficient estimator, and thus, a MVUE. If, 

however, no unbiased estimator can be found to attain the CRLB, it is still of interest to find the 

MVUE, provided it exists. To do so, we require the concept of sufficient statistic.

Definition 5.2.1 (Sufficient Statistic) [9] A  statistic T  = U (Xj,X2, ■ ■ ■, XN) is said to be a suffi­

cient statistic for 9 i f  the conditional distribution o fX  given T  = t, i.e., f x {x\T =  t), is independent 

o f 9.

Definition 5.2.1 has limited practical use in finding the sufficient statistic. A useful method is to 

use the factorization theorem, which is due to Neyman [37].

Theorem  5.2.2 (Factorization Theorem) Let X1,X2, . . . , X N be random samples from f x {x\ 9) 

and f x (x;9) be the joint PDF, Y = U(X1,X 2, . . - ,X N) is a sufficient statistic fo r  9 i f  and only i f

fx{x-,9) = Y l f x ( xi’e ) = 8(y’9)h(x) (5.8)
1=1

where g is a function o f y  and 9 only, and h is a function o fx  only.

In general, the sufficient statistic is not unique. A sufficient statistic Y* is said to be minimal 

sufficient statistic for 9 if Y* is a function of any other sufficient statistic T, i.e., Y* =  H(T).  The 

usefulness of the sufficient statistic can be seen from the Rao-Blackwell theorem.

Theorem  5.2.3 (Rao-Blackwell) [9] Let X x,X2, ■ ■ ■ ,XN be a random sample from f x (x\9);

T = Ul (Xl ,X2, . . . , X N) be a sufficient statistic fo r  9; and Y  =  U2(Xi ,X2, . . .  ,XN) be any unbiased 

estimator o f 9. Then, (j)(T) — E[T |T] is an unbiased estimator o f  9 and var[(j>(T)\ < var[T].

The uniqueness of an unbiased estimator can be established through the concept of complete­

ness.

Definition 5.2.2 (Completeness) [9] Let Y — U (Xl ,X2, ... ,XN) be a statistic based onX  l ,X2, . . . , X N 

from f x  (x; 9). The statistic Y is said to be complete statistic i f  Eg [g(T)] =  0fo r  all 9 implies g(y) — 0 

almost everywhere y.

We comment that a complete sufficient statistic implies a minimal sufficient statistic. However,
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the converse may not be true [46]. The following short but important theorem due to Lehmann and 

Scheffe can be used to determine the uniqueness of unbiased estimators.

Theorem  5.2.4 (Lehmaim-Scheffe) Unbiased estimators based on complete sufficient statistics 

are unique.

It is clear that Theorems 5.2.3 and 5.2.4 can be combined to find the MVUE. The resulting 

theorem is sometimes referred as the Rao-Blackwell-Lehmann-Scheffe theorem [41].

The complete sufficient statistic can be obtained easily for certain family of distributions. Prob­

ably, the most important family of distributions is the exponential family. Many important distribu­

tions, such as Gaussian, Rayleigh, Gamma, etc., belong to this family.

Definition 5.2.3 (Exponential Family) [62] A family o f  distributions {T^(x;6)} where 9 =  

[6j, 02) • • • > 9s]T Is s®id to form  a s-parameter exponential family i f  the distributions have densities 

o f the form

fx(x

where C, t]j, T]2, • • • ; Vs, Tv  T2, ■ ■ ■, Ts and h are real-valued functions.

If a distribution is a member of exponential family, the following theorem can be used to deter­

mine the complete sufficient statistic [62],

Theorem  5.2.4 (Complete Sufficient Statistic for Exponential Family) I f  N  i.i.d. random 

samples X^,X2, ■ ■ ■ ,XN are drawn according to a probability density function which is a member o f  

an s-parameter, 9 =  [01? 02, ■. ., 9S]T, exponential family with the form

f x (x\9) =  C(0)exp

then (J4-1 Tj (X{) , j  =  1 ,2 , . . . ,  s j  is a joint complete sufficient statistic fo r  9 provided that the natu­

ral parameter space S =  {(rjj ( 0 ) , . . . ,  t]s(0))} C l 5 contains an s-dimensional rectangle. In other 

words, the natural parameter space S has fu ll rank.

We now define several types of convergence for a sequence of random variables and review sev­

eral important theorems built on these concepts. The simplest type of convergence is convergence 

in probability and it is defined as follows [9].

107

(5.10)
!=1

;0) =  C(0)exp < ) K X) (5-9)
.!=  1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Definition 5.2.4 (Convergence in Probability) We say that a sequence o fR V ’s, {Xn}, converge

Pvto a constant c in probability, denoted by Xn — > c, if  fo r  any £ > 0,

Pr{\Xn — c \ > £ } — >0, as

The concept of convergence in probability can be used to define consistency of an estimator. If an 

estimator 0 converges to its true value 0 in probability, then we say that 0 is a consistent estima­

tor of 0. An important result associated with the consistent estimator in probability theory is the 

Weak Law of Large Number (WLLN). It states that if X n =  is the average of i.i.d. RV’s
  p f. __

X1,X2,--- ,Xn with mean EjXj =  p,  then X n — > p,  i.e., the sample mean X n is a consistent estimator 

of p.  The following result is useful to establish the consistency for a function of an estimator [21].

P k P tTheorem  5.2.5 l f X n — »• c and the function g(x) is continuous at c, then g(X„) — > g(c). 

Another important type of convergence for a sequence of RV’s is the convergence in law, or 

sometimes called convergence in distribution.

Definition 5.2.5 (Convergence in Law) [9] A sequence o f R V ’s {An} is said to converge to X  

in law, denoted by Xn X, i f

Pr{Xn < x }  — ► Pr{X < x }  = Fx {x) (5.11)

as n - y  at every continuity point x  o f  the distribution function fo r  X , Fx (x).

Probably the most important theorem in mathematical statistics is the central limit theorem 

(CLT), which builds on the concept of convergence in law. The CLT has many important engineer­

ing applications. As we have shown in previous chapters, the CLT is useful in obtain quick, and 

sometimes accurate, BER estimations. One version of the CLT, often called the classical CLT [45], 

can be stated as follows.

Theorem 5.2.6 (Classical Central Limit Theorem) I f Z y,Z2, . ..  are a sequence o f i.i.d. R V ’s 

such that E[Z;] =  p  and var[Zt] = a 2 (0 <  <T2 < «>). Let Xn — £ then

s/n{Xn - p ) - ± + z ~  JA(0,  a 2).
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The proof of the CLT is quite involved and it uses the concept of matching of moment generating 

functions. The proof can be found, for example, in Cassella and Berger [9]. Now, combining the 

concept of convergence in probability and the concept of convergence in law, we have the following 

useful properties. Formal proofs of these properties can be found, for example, in Cramer [21]. 

Properties of Convergence

(1) I f  Yn — Y, and a and b are constants with b f  0, then bYn + a bY +  a;

(2) (Slusky’s Theorem) I fYn Y, and A n a and Bn b, then An -\-BnY„ a +  bY;

P r Pr(3) I f  c is a constant, then Yn — > c Yn — » c;

(4) I fYn — > Y and Rn A -  0, then Yn + Rn Y.

We now demonstrate the usefulness of these properties in the proof of following important 

theorem.

PrTheorem 5.2.7 (Delta Method) [45] Let {Xn} be a sequence o f R V ’s such that Xn —-» jj. and

y/n{Xn -  n ) -^ 4  X  oV(0,  <J2). Let g be a function which is differentiable. We further assume that

g'{fx) exists and is not zero. Then

M g ( X n ) - g ( l i ) )  A ^ ( 0 , o - 2(g'Gu))2)- (5.12)

Proof: The Taylor expansion of g(Xn) around Xn = jx gives

g(Xn) -  g(fj,) =  g'(M) (Xn - n )  + (Xn - l i )2 (5.13)

where £,n is between p  and Xn. Then

M s ( X n )  -  g{n))  =  g ' m M X n  -  I X) )  + ^ M ( y/Jl(Xn -  p ) ) 2. (5.14)

Now since \ /n(Xn -  p)  X  ~  </V(0, a 2), we have

g ' ( p ) ( M X n -  II)) A  gl(p )X  ~  ^ ( 0 ,  (T2( g ' m 2) (5.15)

by Property 1. Also, since (y/n(Xn -  pi))2 X 2 and g"{£,n) /2 yfh  0, by Slusky’s theorem, we

have the remainder

^ M ( ^ ( X n - p ) ) 2 - ^ 0 ,  (5.16)
2 \ /n
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or, the remainder converges to zero in probability by Property 3, Therefore, by Property 4, we have

Vn{g{Xn) -  g(n))  JL(0,  <72(g'(p))2)

as desired. ■

In essence, as Lehmann explains [45], the delta method involves approximating the difference 

g(X,j) — g(p)  by a linear function g'(p)(Xn — p).  Since X„ is Gaussian, one would expect that 

g'(p)(Xn —ju) is also Gaussian since a linear transformation of a Gaussian gives a Gaussian. The

delta method method can be extended to multivariate case and it is stated as follows.

Theorem 5.2.8 (M ultivariate Delta M ethod) [45] Suppose X =  [Xl ,X2, ... ,Xp]T i s a p x  1 ran­

dom vector. Let X„ be a sequences o f  random vectors such that X„ p  where p. — [pv p2. • ■ ■: f^p]T< 

and

v^(X „ -  p)  A  X ~  JK(0, I )  (5.17)

where X is the p x  p  covariance matrix ofX.  Let g be a function such that g : S&p —> 3$, then

yfh{g{xn)-8{p)) A  jr (o, {vg{p))Txvg{p)) (5.18)

I d  d  d  1 ^where V s {p) is the gradient Vg(x) =  . . . ,  evaluated at x =  ,u.

The primary tool used in solving the point estimation problem is the maximum-likelihood esti­

mation (MLE) method. If we denote the likelihood function by L(0)  and it is given by

N

L(Q) = T[f(xi’e) (5-19)
i=i

where 0 =  [6t , 62, . . . , 6s]T are the parameters to be estimated, then the MLE involves taking partial 

derivative of L(6 ) with respect to 0;, setting

J q L(Q)=  0, i =  1,2,3, .. .*,

and solving for Ol ,02, . . . , 6S. In general, MLE does not yield closed-form expression for the esti­

mators. Numerical techniques such as Newton-Raphson method or expectation-maximization (EM) 

algorithms are called to determine the MLE numerically.
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MLE is favored because it satisfies several optimal criteria. If 0* =  [0j*, 0 | 5 • ■ ■ > 0*] is the true pa­

rameter and 6 — [8 V 02, ■ ■ ■, 0$] is any other parameter, then it can be shown that Pr (L(6 *) > L (6 )) — 

1 as N  — >

The maximum-likelihood estimation is widely used also because the resulting estimation is 

asymptotically unbiased and asymptotically efficient (attaining the CRLB) for large sample size. 

This can be seen from the following theorem.

Theorem 5.2.9 (Asymptotic Property of MLE) [41] I f  the joint PDF f x {x\Q) o f the data 

x  = [xl ,x2, - .. ,xn ]t  satisfies some regularity conditions, then the M LE o f the unknown parameter 

6 =  [0j, 02, . . . ,  0,]T is asymptotically distributed according to

0 - ± + j y { o , r l {d)) (5.20)

where 1(0) is the Fisher’s information matrix evaluated at the true value o f the unknown parameter.

From the asymptotic distribution, it is seen that the MLE is asymptotically unbiased and asymp­

totically attains the CRLB.

Contrary to MLE, method of moment estimation often results in closed-form expressions for 

the estimators. In general, moment-based estimators are consistent. However, no optimality is guar­

anteed. To obtain the moment estimators, we equate the M i distribution moments, E[X*], to the 

corresponding sample moments, (1/A) J%=iX k, beginning with k =  1 and continuing until there 

are enough number of equations to solve for 0,, 02, . . . ,  0V. Often, we are interested in those mo­

ment estimators which use low order sample moments since outliers can cause higher order sample 

moments to deviate from the true distribution moments when the sample size is not large enough.

5.2.2 Literature Review on Nakagami Parameter Estimation

In this subsection, we review the literature related to the Nakagami fading parameter estimation. 

The ML estimation of the Nakagami fading parameter was first considered by Cheng and Beaulieu 

in [13] (See Section 5.4) where two approximate ML-based estimators were proposed. The same 

result has recently been claimed by Ko and Alouini in a submitted manuscript [42]. In a recent
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note [86], Zhang pointed out that estimation of the m parameter can be put in the framework of 

Gamma density parameter estimation. This is because the square of a Nakagami RV follows the 

Gamma distribution. The mapping from Nakagami to Gamma is one-to-one; therefore, by the data 

processing theorem [19], we can estimate the Nakagami m parameter based on Gamma samples 

without losing any information from the mapping process. Estimation of the Gamma parameters 

has been extensively studied in the statistics community. A comprehensive survey of this subject has 

been compiled in a monograph by Bowman and Shenton [8]. A popular ML-based Gamma shape 

parameter estimator is the Greenwood-Durand estimator (GDE) [34]. It can be shown that the log- 

likelihood function of Nakagami-m and Gamma samples will both lead to a non-linear equation 

as

g(m) =  ln(m) — llf(m) =  A; m — g~ 1 (A) (5.21)

where yr(-) is the psi function, also called the digamma function, defined in [3], and A =  In %f=l rf ] 

jfTrtLi In rj, a function of N  observed Nakagami-m samples. Based on tabulated data for ln(m) — 

y/(m), Greenwood and Durand devised a Hasting-type [35] rational approximation to the ML esti­

mator as

f i  (A) A < 0.5772 
™GDE =  f  GDE (A) =   ̂ (5.22)

f 2(A) 0.5772 <  A <  17

where

and

„ . A. 0.5000876+  0.1648852A -0.0544274A 2
/i(A ) — -  (5.23)

/ 2(A) =  ■ <5-24)
8.898919 +  9.059950A -  0.9775373A2 

(17.79728 + 1 1 .968477A +  A2) A

According to [34], the maximum errors of above approximations are 0.0088% and 0.0054%, re­

spectively, for / j(A) and f 2(A).

Moment-based estimation of the Nakagami-m parameter was first considered by Abdi and 

Kaveh in [2] where a moment estimator was proposed based on the second and the fourth Nakagami 

sample moments. A better moment estimator which uses the first and the third sample moments was 

proposed by Cheng and Beaulieu [12]. Using both integer and non-integer sample moments, Cheng
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and Beaulieu [15] (See Section 5.5) proposed a family of new moment estimators for m  and con­

ducted a simulation study. It was shown that this family of moment estimators also includes known 

integer moment estimators as special cases. More recently, Tepedelenlioglu [74] proposed moment 

estimators of the form

f i , M )  = j j r ’ m = (5.25)

where fXk is the kth Nakagami sample moment. It has been shown that ( f i i / fh )  outperforms all 

published integer-based moment estimators. However the inverse function in general does

not have closed-form expression and it needs to be numerically computed and stored.

Moment-based estimators can often be used as a good initial value for some estimators which 

are iterative in nature. For example, Bowman and Sheton [8] suggested solving the ML equation of 

(5.21) recursively using

(5.26)
A

where a good moment estimator can be used as the initial value

5.3 Cramer-Rao Lower Bound

In this section, we derive the CRLB for the variances of unbiased estimators of the Nakagami-m 

fading parameters. Letting r  =  [r^, r2, . . . ,  rN]T and 0 = [m, O]7 , the Fisher’s information matrix for 

the Nakagami-m distribution is given by

1(6 ) =
- E " d2ln/s (r;0)"

dm 2 - E p 2ln/R(r;6)n
dm dQ .

- E 'd2ln/R(r;0)'
d Q a m - E 'd2ln/„(r;0)‘

d a 2

(5.27)

where In f R{r, 6 ) is the log-likelihood function of N  i.i.d. Nakagami-m distributed observations and 

it is given by

\ n fR(r;0 ) =  In

In

T l f A ' f i O )
i— 1

N 2
f=| r ( m )  V o 7
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=  Nln
m \ m N  m  N

i= 1 i— 1r ( m )  V Q ,

Using (5.28), we can easily find the first-order and the second-order partial derivatives as

9  lnM ri .gl  = N [ _ y ( w )  +  i n m  _  i n Q  +  1]  +  2 f ;  Inr,. -  1  t  
dm  .=1 si ,=1

din f R(r,d)  _  r i l  m i ,  2
dQ ~  Q  Q2 " r‘'

(5.28)

a2ln/g(r;0)
dm2

d2l n f R(r;8 )
dmdQ,

= N -yr'(m) + —
m

d 2\ n fR(r;6 ) mN 2m N

l ri

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)
d£22 Q2 £22

where y(-) is the digamma function, defined as t{/(m) — ^  lnF(/n) =  F '(m )/T(m)  [3, p. 258, eqn. 

6.3.1], and Xjf'(-) is the first-order derivative of the digamma function, also known as the trigamma 

function [3, p. 260].

Upon taking the negative expectations, we obtain the Fisher’s information matrix as

0

0 N  [w'{m) -  i ]
i (e) —

mN
Q2 (5.34)

and the inverse becomes

r\e) =
Q2 
mN

0

0

1
(5.35)

Therefore, according to Theorem 4.2.1, the CRLB for any unbiased estimator m is

varlml >
1

n  ’ (5.36)

and the CRLB for any unbiased estimator Q  is

var[Q] >

Furthermore, since we can rewrite (5.30) as

d l n f R(r;0) mN
dQ

m

Q 2
mN

(5.37)

(5.38)
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according to Theorem 4.2.1, the unbiased estimator Q =  ^  £/Li rf in fact has the minimum variance. 

However, it is not too difficult to convince ourself that it is impossible to find a function g(r) such 

that the following equality

din f R(r ,6 ) 
dm

x   ̂ 1yr (m )-----
m

[g(r) -  m] (5.39)

l ( m )

can be satisfied. Therefore, again according to Theorem 4.2.1, we conclude that there exists no un­

biased m estimator which can attain the CRLB for arbitrary sample size N. The minimum variance 

unbiased estimator for m  may however still exist, even it can not be easily found.

5.4 Maximum-likelihood Based Estimation

In this section, we consider ML estimation of the Nakagami-m fading parameter. In general, min­

imum variance unbiased estimators may not always be found; however, the ML estimator can be 

considered, asymptotically for large sample size, as an approximation to the MVUE [41], We pro­

pose two approximate ML-based estimators and study the properties of a parameter which is closely 

associated with these ML estimators

Let R l ,R2, . . . , R N be random variables which are i.i.d. according to (5.1). The log-likelihood 

function (LLF) of the independent multivariate Nakagami distribution based on the experimental 

observations R x =  rl ,R2 = r2, . . .  ,RN = rN has been derived in (5.28). Taking the first-order deriva­

tive of the LLF with respect to m, and setting it equal to zero, we obtain

X y  N  ^2  i N
— i/r(m) +  lnm =  ——'T1 1—  1 + l n Q   £ l n r 2. (5.40)

U  TV i=1

To show that the zero of (5.40) corresponds to the maximum of the LLF, we are required to show 

that the second-order derivative of the LLF with respect to m is non-positive, i.e., d2LL¥/ dm2 < 0. 

Since

d 2 T1 1
LLF = N  - - w ' ( m )  , (5.41)

dm2
1 x   ̂ w(m)
m
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using an integral representation of the digamma function [33, eqn. 8.361.8]

y/(z) — l n z +  [  
Jo

1 1
t 1 —

dt,

we have

m
1 1  d /■+'

- - L

- - L

- - L
<  o

m m dm 
+”  /  d

IJo
- t m 1

—tm
dm

1 ________
t 1 —

1

dt

- t m

- t m

t l  — e~

dt

dt

l - e - t

'M l  - t )
1 - e - 1

dt

where the inequality follows from the fact that e~~tm > 0 and 1 — t < e~l < 1. Therefore, applying 

above inequality to (5.41), we have <92IX F /dm2 < 0, or the solution (zero for m) for (5.40) is a 

maximizer of the LLF.

The statistic for m in (5.40) requires knowledge of Q which is typically not known. Substitution 

of the unbiased maximum likelihood estimators of Q, Q — ^  X jli t f  > into (5.40) yields

—\jf(m) +  lnm «  A (5.42)

where the approximation in (5.42) becomes exact as N  approaches infinity, and where

A =  In
1 N
-  Y  r2

1

1 n
- Y l n r ? (5.43)

The parameter A is determined by the observed samples only and it is independent of m. In the 

sequel, we give a physical interpretation of A and discuss some of its properties.

The ML estimation of the m parameter requires solving the nonlinear equation (5.42), which 

does not lead to a closed-form expression for the estimator. The asymptotic expansion 3 of yt(z) is 

given as [3, p. 259, eqn. 6.3.18]

ys(z) ~  lnz-
11

2z 12 z2 120z4 252z6
1 1

+  • (5.44)

3 Asymptotic expansions are in general divergent series which are of practical importance in computing functions for 

large value of arguments.
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Using the first-order approximation l\f(z) « lnz — l /2z  in (5.42), we obtain

m _  , . L
■MUX) -  2A '

(5.45)

Using the second-order approximation \j/(z) « l n z — l / 2 z — 1 /  12z2 in (5.42), and solving 12Am2

6m -  1 =  0 for m, we obtain ‘

m,
6 +  V36 +  48A

(5.46)‘M6(2) 24A

Here, in obtaining m2, we have discarded the negative solution since the m parameter only assumes 

positive values.

Now, we rewrite (5.43) as

A =  In

=  In

N

In

(5.47)
( r 2 r 2 r 2  \ n  

I 2 "  N J  .

It is clear that the parameter A is just the logarithm of the ratio of the arithmetic mean and the 

geometric mean for the instantaneous fading power.

Both approximate ML estimators contain the parameter A, which in turn depends only on the 

observed samples. We now study several interesting properties of A as follows.

Property 1: The A defined in (5.47) is always positive. In the limit, when m approaches +°°, A 

goes to zero.

To show that A is positive, we apply the well-known Arithmetic-Geometric inequality [3, p. 10, 

eqn. 3.2.1]

1 ^  ( 4 4 - 4 V ,
i=l

to (5.47) and immediately have A >  0. Observe from (5.45) and (5.46) that A >  0 implies that 

m, >  0 and m2 >  0, respectively, as expected. In the limit as m approaches infinity, A becomes zero.

4 As noted by Zhang [86], same approximate ML estimators were proposed by Thom [75] in the framework of Gamma 

parameter estimation. Recently, these results have also been reported by Ko and Alouini [42],
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To see this, we note that

m—>-f°° m—
lim A =  lim In

, rIn — j-
(QN)7!

(5.48)

In deriving (5.48), we have used the fact that when m approaches infinity, the Nakagami-m PDF be­

comes an impulsive function (i.e., zero variance) located at \/Q , that is, {rj , r2, . . . ,  rN} approaches 

{\/Q , V Q , . . . ,  -\/Q} as m —» + 00. Conversely, when A =  0, eqns. (5.45) and (5.46) in turn suggest 

that m is infinity, which is correct.

Property 2: The parameter A defined in (5.47) is a function of the complete sufficient statistic 

for (m, Q ).

We first show that the Nakagami-m distribution, with m and Q as unknown parameters, is a 

member of two-parameter exponential family. To show this, we rewrite the Nakagami-m PDF as

h(r) =  1/r, then from Definition 5.2.3, we conclude that the Nakagami-m distribution is a member 

of two-parameter, (m,Q), exponential family.

From (5.49), the natural parameter space for the Nakagami-m distribution becomes S =  {(—g , m ) : 

m >  1/2, £2 > 0 } C 1 2 . Let u = —m / Q  and v =  m, we plot the natural parameter space in Fig. 5.1 

as the shaded area. Clearly, as shown, one can construct a two-dimensional rectangle inside this nat­

ural parameter space. It has been shown that the Nakagami-m distribution also belongs to the two- 

parameter exponential family; therefore, by Theorem 5.2.4, we conclude that 

is a (joint) complete sufficient statistic for (m,Q). We observe that the parameter A defined in (5.43)

(5.49)

If we let C(m,Q) = — —m/Q, t]2(m,Q) =  m, Tx{r) — r2 , T2(r) =  ln r2 and
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Figure 5.1. The natural parameter space S =  {(w,v) =  ( - g , m )  : m >  1 /2 ,Q > 0} C 8 2 of the 

Nakagami-m distribution.

in our ML estimators is also a function of the joint complete sufficient statistic. In general, it can 

be shown, by the Neyman factorization Theorem, that the ML estimator is always a function of a 

sufficient statistic [37].

One can often use the complete sufficient statistic to find the MVUE. As an example of a two- 

parameter distribution, let x =  [Xj,X2, - . . ,XN]T be N  i.i.d. observed samples, if 0 =  [0X, 02]^ 

an unbiased estimator of 0 =  [01,02]:r and (7j(x), r2(x)) be a complete and sufficient statistic for 

(0j , 02). Then 0 =  E[0 |Tj (x),T2(x)], if it exists, will yield the MVUE for 0. The procedure just de­

scribed is called the Rao-Blackwell-Lehmann-Scheffe Theorem [41]. For our problem, to this end, 

we have found that In/??) is a complete sufficient statistic for (m,Q). Unfortunately,

no unbiased estimator for m is known, and further, it is not known if any unbiased estimator for m 

exists. Therefore, the aforementioned technique to find the MVUE using the complete sufficient

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



statistic is not applicable. However, we can still make a good use of the complete and sufficient 

statistic here. To see this, given Q, it is obvious that the Nakagami-m distribution is a one-parameter 

(m) exponential family and
N  'spN d2

r  =  Z ln^ -  o~- L (5.50)
i=i ^

is a complete sufficient statistic for m. We now attempt to derive an estimator for m based on T. To 

do this, we take the expectation of T  as

E p1  =  £ E [ l n f l ? ] - i f ; E [ * ? ]
i= 1 ^  !=t

=  N F [ ] n R j ] - N

= N r  2 (£)">-■ e~V Wdr-Nh  r(m) Va/
/ m\m n+oo

=  TV̂ -  um- l e - Z “l n u d u - N .  (5.51)
T(m) Jo

Using an integral identity [33, eqn. 4.352.1]

[  xv~ l e~HX\nxdx = — T(v)[i/r(v) — lnw]
Jo uv

in (5.51), we obtain

E[T] =  N[y(m)  -  In(m) +  InQ] -  TV. (5.52)

Now setting E[T] =  T,  combining (5.52) and (5.50), and using O ~  ^  X/Li 'f ,  after re-arrangements, 

we obtain

— +  !nm «  A

which is the identical nonlinear equation derived from the maximum-likelihood principle. There­

fore, by applying the moment-type estimation of the Nakagami m parameter sufficient statistic, 

we can also obtain the MLE solution. This observation, though we have only demonstrated that 

moment-type estimation can lead to MLE for the Nakagami-m, can be extended to all exponential- 

type distributions. This result, which is not widely known in the engineering community, was first 

investigated in detail by Davidson and Solomon [23].
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Property 4: Finally, as a side result, we show that the moment generating function (MGF) of 

the parameter A, denoted by (/>A(s), can be expressed in a compact form as

(5.53)

where s is complex. To arrive the above result we start from the definition of moment generating 

function for A as

f a s )  =  E[e*A]

=  E G t i r f Y
^ ( n f =1r,2)v

p  —]—o o  p - ( - 0 0

Jo Jo _T{m) \ Q J  1
m \ m 2m- 1 - a r2 rf le “ 1

2
vQ/

(Ef=l r f )

I — 1 rt,"1 1 e o '2 
T(m) v£2 ' r  (m)

m r2 
e ~ a rN

W ( T i L Xrf)

2 ( m \ m
r  ( m)

( 1 1st)
N

drldr2 ---drN

p- | -o o  p - | -o o  N  -

L  - 7 .  i H "  'N s

^ \ - T̂ Y J ^ \ d r ldr2 ---drN.
o=i

(5.54)
!=1

If we let c =  2m — j f ,  after a change of variable (rf =  x(), we can re-write (5.54) as

X ( m \ m
r(» (a ) '

N

[ +°° 1 d- 1
Jo Jo 1 2 NN s

X ( j^X; ) exp |  }> rfx^x2 ■ ■ -dxN (5.55)
V=1 /  (  ““ i=l

where d  =  m — s/Af. We can now reduce the multiple N  integrals in (5.55) into a single integral by 

invoking a useful integral identity from Gibson [31, p. 483], which is given by

r+>» r+“r + 00 r-r°°
/ ' "  {  X \ l ~  x ^ 2~ l " ' x n n~  f { x l + x 2~^-----1“ X n ) d x xd x 2 ’ ” d x n

=  r ( a 1) r ( a 2) - - - r ( a n) /"+“ M«i+a2+...+a„_1/(M) du
r ( o i j  +  Ok +  ■ • • +  (Xn ) J o

(5.56)
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Letting a t =  =  • • • ocN =  d and / ( x) = Xs exp{—§a}, applying (5.56) to (5.55), we obtain

, ( . r ^

Ns T {Nm -  s)

Using the definition of the Gamma function

r { Nd)
l N1 ( m \ m

(5-57)r (A lm -s )  Jo t Q J

/■+“
r(n )  -  /  tn~ V f 

Jo
dt (5.58)

and changing the variable in (5.57), after some simplifications, we arrive at the expression of the 

MGF for A in (5.53) as desired.

The PDF of A can be obtained from its MGF expression by using the inverse Laplace transform 

and it is given by
1 rc+ j°°

/ a ( 5 ) =  T -  /  <PA( - s ) e sSds  (5.59)
Z7l J  J c—j°°

where j 2 =  — 1 and c is a suitably chosen positive constant. Substitution of (5.53) into (5.59) yields

8, r * r l V [ r ( » + i ) I »

f * iS) = W j L „  — w T s T  ds  <5-f,0)

where

n -  r(mA,) (5 6 ii
9 | “ [ r w f  ( 0

If we now let y — s /N ,  the PDF of A becomes

2nj Jj-j™ r(N(m +  y))

where c' is another positive constant. With the aid of Gauss’s Formula for the product of the Gamma 

function

r(nx) =  (2tt) ^ n ”*- ? jQ  F ( x +  ^  ) , (5.63)
i-0

n~l /  k

the denominator of the integrand in (5.62) can be written as

N - 1n
k=0

r(N(m +  y)) = { 2 n ) ^ N N m̂+y^ \ \ v ( m  + y + - \  . (5.64)
*=o V N J

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Substituting (5.64) into (5.62), after some simplifications, the PDF of A can be written as

(eN5) ydy

where

e2 =
0,

{2n ) ^ N Nm-2

Now comparing (5.65) with the definition of the M eyer’s G-function [33, eqn. 9.301]

(5.65)

(5.66)

(

\

a
\

- £ i f :
'i °q j

we can simply write the PDF of A as

/
'N,N

n"„r(6J-s)n“,,r(i-<i,+s)
2* 1 J n ; „ +1 r ( i  -  b j + S) n ? ,„ +1 r ( 0j -

-Xs ds. (5.67)

f A(S) =  (N92)G°’n JV<5

V

1 — m 1 —m 1 —m

1 91 —m 1 — m — 1 — m — jj

1 — m

! - m - V  /

(5.68)

Because two approximate ML-based estimators in (5.45) and (5.46) are both functions of the param­

eter A only, the PDF of A can be used to assess the performances of these two estimators analytically. 

The Meijer’s G-function is widely available in popular software packages such as Maple and Math- 

ematica. However, the computational complexity of the Meijer’s G-function with large numbers 

of arguments is huge, and thus, it is not feasible to use / A(<5) for practical numbers of observation 

sample size. Therefore, we will use Monte Carlo simulation to determine the performances of our 

proposed ML estimators. Before we present these numerical results in Section 5.6, we will first 

study the same estimation problem using the method of moments.

5.5 Moment-Based Estimation

In this section, we study moment-based estimation of the Nakagami m fading parameter. As shown 

in the previous section, ML-based estimation of the Nakagami fading parameter leads to finding 

solution of a non-linear equation. This undesirable feature has, in part, motivated some researchers 

to find an estimator of the fading parameter using method of moment. In general, as we have stated 

in Section 5.2.1, moment-based estimators are consistent; however, no optimality is guaranteed.
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Fortunately, for our problem, as it will be be shown, highly efficient moment-based estimators can 

be found.

Given r1,r2, . . . , r N as N  independent realizations of the Nakagami-m RV, Abdi and Kaveh [2] 

reported a moment-based estimator for the m fading parameter, denoted by mv, as

ms =  (5.69)
m4 - m22

where £ik = (1 /N )  rf is the Ath sample moment. This estimator, which uses the second and the 

fourth sample moments, is also called the inverse normalized variance (INV) estimator [2], since it 

can be derived directly from the Nakagami m parameter definition by substituting sample moments 

for distribution moments. Alternatively, the estimator in (5.69) can be derived by taking the ratio of 

the second and the fourth Nakagami-m distribution moments and solving for m. If we take the ratio 

of the first and the third moment, and use the property of the Gamma function T ( m + 1) =  mT(m) [3], 

we obtain

/ij F ( m +  | )  / £ 2 '

M\ F(m + 5) \ m

Solve for m, we have

2>

-  ' “ + i ) C= i -  (5-70)

A  (5.71)
2(Ms -  M1M2)

This suggests a new moment estimator, denoted by mt, as

m, =  (5.72)
2 (fl^ M1M2)

Since the highest order of sample moment that mt uses is three and that ms uses is four, one would 

expect that the variance of mt is smaller than that of ms, and thus, mt is a better estimator than ms 

(higher order sample moments can deviate significantly from the true moments if the sample size is 

not large enough because of outliers). Our numerical results presented in Section 5.6 confirms this 

intuition.

Better moment-based estimators than mt can be found if we admit the use of non-integer mo­

ments. The computation and use of non-integer moments, for any applications, seems rare in the
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engineering literature. Thus, our generalization of the design of the estimator to employ non-integer 

moments is novel. To show how these new estimators can be derived, we first take the pth root of 

our observed samples, Rt, i =  1 ,2 ,. . . ,  TV, as

Denoting the RV at the output of our nonlinear transformation of the observation samples by X, the 

kth moment of X  becomes

where in obtaining the last equality, we have used the following integral identity [33, eqn. 3.478]

Note that, from (5.74), when p  — 1 we obtain, as expected, the M i moment expression for a 

Nakagami-m RV in (5.3). For a given p  value, one can take the ratio of any two moments of X, 

solve for m, and obtain an expression for m. In general, such procedure involves solving a transcen­

dental equation and does not lead to closed-form expressions for the estimator. If we, however, take 

the ratio of the (2p  +  l)th  moment and the first moment of X , we get

Xi = (Ri)1fP i=  1 ,2 ,... ,N; p >  0. (5.73)

(5.74)

(5.75)

Solving (5.75) for m, we obtain in closed-form

m ~ (5.76)
2 p(E[X2P+l]-E [X ]Q )'

Using (5.73) in (5.76), we obtain a family of new definitions for m parameter as

R1M2
(5.77)

p p
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Eqn. (5.77) suggests a family of new moment-based estimators for the fading parameter m, denoted

by m i , as
P

P i h
m x = >' . (5.78)

p ^p(A2+i  — P i Pt )
p

The estimator derived in (5.78) is an interesting result since it uses both integer and non-integer 

sample moments. This estimator can be derived alternatively by taking the ratio of the (2 +  (1 jp )  )th 

and the ( l/p ) th  moments of a Nakagami-m RV and solving for m. Varying the parameter p  yields 

a family of estimators. Generally, the performances of these estimators improve with increasing p 

values. Known integer-moment based estimators are obtained as special cases for appropriate values 

of p. In particular, when p  — 1/2, we obtain m2 =  ms, which is the INV estimator first proposed by 

Abdi and Kaveh [2]. When p — 1, we obtain our new integer-moment estimator m l =  mt. Letting 

p  = 2, we obtain a fractional moment estimator as

P 1P2
m x = ~2 .  .  v . (5.79)

2 4{p5 - p l p2)
2 2

Since the highest order of sample moments in (5.79) is 2.5 (which is less than 3), we would expect

that the variance of m ! is smaller than that of ms and mt. Our numerical results presented in Section
2

5.6 will verify this expectation.

To this end, we have presented a family of new definitions for the Nakagami-m fading parameter 

in (5.77). This family is controlled by a positive real number p. We now investigate the limiting 

case when p  approaches + 00. Put k = l /p ,  we can rewrite (5.77) as

_ P2
2(^2+k ~  Pklh) Pk

where

mk =  ^   ^  (5.80)

pt   ------- ^ -------- . (5.81)

Note that when the real number k approaches zero, pk approaches the form of 0/0! Therefore, by 

invoking l’Hopital’s rule, we can obtain the limit value of pk when k —>■ 0 as

KmPi = Um2( ^ r ^ )
t-> 0  k k->0 kpk
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2(E[/?*+2]-E[j?*]E[j?2]) 
k~> o k¥{Rk}

lh^ ( n i R k+2] - n j R k} m 2])
*-+ o

2(E[/?*+2 Ini?] -  E[Rk lni?]E[i?2]) 
t™  E[i?fc] +  k¥[Rk Ini?]

=  2(E[i?2 Ini?] -  E[ln i?]E[i?2])

=  E[i?2 Ini?2] -  E[i?2]E[ln i?2]

=  cov[i?2,lni?2]. (5.82)

Combining (5.80) and (5.82), we obtain, in essence, a new compact definition for the Nakagami-m 

fading parameter as

E[R2]
c o v [« y  nR2] '  ( }

This result is intuitively correct. As a sanity check, when m approaches infinity (no fading), both 

i?2 and Ini?2 approach their respective means, and thus, limm̂ +00cov[i?2,lni?2] =  0, which in turn 

suggests that m is infinity according to (5.83).

Recall from Chapter 1 that the fading figure for the Nakagami-m fading is given by FF =  1/m. 

According to (5.83), we can obtain an alternative expression for the Nakagami fading figure as

F F  =  C m t \ 1" ' ;21  ( 5 . 8 4 )
E[i?2]

cov[i?2,101og10i?2]

— —  (

where c — 101og10e. In words, eqn. (5.85) says that the fading figure for the Nakagami-m fading 

model can be interpreted as the covariance of the instantaneous fading power and its value in dB 5 

normalized by its average fading power and some constant. The covariance term cov[/?2,lnl?2] has 

its own interesting physical interpretation. To see this, since FF =  var[/?2]/(E[/?2])2, from (5.84), 

we have

var [R2]
cov[R ,lnf? ] =

E[i?2]

5We comment that, coincidentally, the original Nakagami distribution was deduced from the distribution of the inten­

sity in dB [57],
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Variance of the instantaneous fading power
(5.86)

Mean of the instantaneous fading power

The new compact definition of the m  fading parameter in (5.83) suggests that we can have 

a new estimator for m based on sample moments and sample covariance. Let rx, r2, . . . ,  rN be N  

independent realizations of the Nakagami-m RV, the new estimator becomes

where the factor in the denominator of m0 is required to obtain an unbiased estimator of the 

covariance for a finite sample size. This new m parameter estimator is compact and computationally 

simpler than those estimators presented in (5.78). It is of interest to observe that m0 is also a function 

of the complete and sufficient statistic derived in Section 5.4 for m and £2. Intuitively we would 

expect that m0 to be a good estimator. In the sequel, we will study the asymptotic properties of our 

new moment-based estimators.

It is difficult to obtain the analytical performances of the estimators in (5.78) and (5.87) with fi­

nite sample size. We can, however, obtain their asymptotic large-sample performances analytically. 

To do so, we first rewrite the estimators in (5.78) and (5.87) to the forms, which are suitable for our 

following analysis, as

where, for mathematical convenience, we have replaced by ^  in mQ since these two factors 

are equivalent when N  approaches infinity. We now summarize our main result on the large-sample 

properties of our new moment-based estimators in the following theorem.

Theorem 4.5.1 The estimators in (5.89), indexed by k >  0, are consistent, i.e.

a
(5.87)

where

(5.88)

(5.89)

mk — > m as N  — > +«>Pr (5.90)

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and asymptotically normal-distributed

s/N(thk — m ) - ^ ^ V ( 0 ,G 2) as N — > +°° (5.91)

where fo r  k >  0, the asymptotic variance is

2k +
2k+2 '

vk+ 2

(k/2) 2„2 (5-92)

where vk =  F(m + k /2 ) /F (m ); and where fo r k =  0, the asymptotic variance is

Gq =  m2[l + m y 1 (m +  1)]. (5.93)

Proof: Recall from Section 1.2.1, if R is a Nakagami-m distributed RV, then G — (m /Q )R2 has 

one-parameter Gamma density function with shape parameter m, which is restricted to be m >  1/2,

i.e.,

fG(s) =
gm- l e~8

r ( m ) , g >  0. (5.94)

The mean and variance of G are E[G] =  m and var[G] =  m, respectively. The M i moment of G is 

given by

E[G‘] =  (5.95)

and therefore,

F (m)

v,.=  r(m  +  t / 2 ) = E  [0*/2], (5.96)
k r ( m )

We first observe that the estimators in (5.89) share a property of scale invariance such that if mk

Tk(r2x,r l , . . . , r l ) , th e n

(5.97)

for any constant c >  0. To see this, when k > 0, 

Tk ( c r i i C r j , . . . , c r 2N ) =

v s£ i(c,f)
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k
-

2 _  1
c2+1Ai/i2

k

2

Similarly, one can show that m0 is also scale invariant. As a consequence, if we choose c =  m /Q , 

this invariant property allows us to write

where g l ,g2, ■ ■ ■ ,gN are samples from the one-parameter Gamma density given in (5.94). Further­

more, we have the identity vk =  fxk. We emphasize that the above substitution is carried out for 

mathematical convenience only, as in general c — m /Q  is unknown, m and Q are the parameters we 

try to estimate.

For mk (k >  0), to establish consistency, we note that

™k =  TM  l i - i ' A r )

=  ^ ((m /Q )rJ , . . . ,  (im /Q )r2N)

— Tk(g1,g2,- - - :gN) (5.98)

f t  = ^ b h tl2
l y  1=1

= 4[( - i ) ‘/2+(^)‘/2+ . - + ( 4 ) ‘/2

=  L \ j l 2 + s k / 2 ,  , k /  2
n  L i 2 " '  ^  J '

(5.99)

Therefore, by the Weak Law of Large Number, we have

fik A  E[G*/2] =  vk = nk. (5.100)

Since mk is a continuous function of fXk, we have

Pr k
(5.101)
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To find the asymptotic variance a 2, we note that, by the multivariate Central Limit Theorem,

A2 v2

V n  fLk - Vk - ^ ( 0 , 2 * )

fik+ 2 ~  vk+2

where e/K (0 ,2 fc) is a trivariate normal distribution with mean vector 0 =  [0, 0, 

matrix 2,k given by

var[G] cov[G,Gk/2] co v[G,G^k+2^ 2]

cov[G, Gk!2} var[G*/2] covfG*/2, ^ 2)/2]

cov[G,G^fc+2A2] co v[G*/,2,G ^ +2^ 2] var[G^+2^ 2]

Using (5.95) and (5.96), we can show

var[G] =  E[G2] -  (E[G])2 =  v4 -  vj

var [Gk/2] 

var[G(*+2)/2] 

cov[G ,G ^2] 

cov[G, G{k+2)!2] 

co v[Gk/2,G (k+2)/2}

Therefore, the covariance matrix becomes

E[Gfe] — (E[G^2])2 =  Vt,, — v22k ~  vk

E[Gk+2} -  (E[Gk+2 /2]2) =  v2k+4 -  v2+ 2  

E[GGfe/2]-E [G ]E [G fc/2] =  v,+2- v 2v, 

E[GG(*+2)/2] -  E[G]E[G(fe+2)/2] =  vk+4 -  v2 

E[G*/2G(*+2)/2] -E[G*]E[G(*+2)/2] =  vk+2 -

If we define

the gradient of f k(x,y,z) can be found to be

V4 - V 2 vk+ 2~v2vk Vk + 4 -V2Vk+2

vk+ 2~v2vk v2 k - A v2k+2 ~  VkVk+2

Vk + 4 -V2Vk+2 v2k+2 ~  vkvk+2 V2k+4~vl+2

fk(X

It'b
?

5

2 u - 1

^ f k(x,y,z) =
2 J%(x,y,z) 

kxy
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(5.102) 

0]r  and covariance

(5.103)

vk+2

~ VkVk+2'

(5.104)

(5.105)

(5.106)
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Evaluate V fk (x, y, z) at [v2, , vk+2]T and use the fact that f k (v2, vk, vk+2) =  m  and v2 = m, we have

ftl
V fk (V2’VICVk+2) = J f / 2 )

V/t+2 Vt+2 
v 2  v k

(5.107)

By the multivariate delta method stated in Section 5.2.1, we obtain the asymptotic variance ok as

°k =  iVfk(v2’vk’vk+2))T 'Lk (V /t (v2,vt , ^ +2)) (5.108)

where the above expression can be evaluated using quadratic form expansion as

or
(k/2)2v p

m

Vk + 2 v k+ 2 

Vo ’ V, , “ I

v 4  ~~ V2

Vk + 2 ~ V2 Vk

Vk + 2 ~ V2 Vk

v2 k ~ vl

Vk + 4 ~ V2 v k + 2

v 2 k + 2  v k v k + 2

__ v k + 4  v 2 v k + 2  v 2 k + 2  v kv k + 2  v 2 k + 4  ^ + 2

- T T -  ( v 4 _  v l )  +  ( v 2k ~  Vk )  +  v 2*+ 4 ~  v k + 2  +  2 { v k + 2  ~  v 2 v k ) 7 T T

vk

- 1

~2 ( v k + 4  V2 v fc+2) t + 2  2 ( V2*+2 Vk Vk + 2 )  ^ ’

Now using the fact that

vj + v2

vk+ 2

2 k + 4

vk + 4

v2 k + 2

{m + k +  l)v2k+2

m + 2  +  1 J vfe+2 

(m + k)v2k,

we have

( k /2)2y2i
n r

- 2

+  ( m + 2 )  (V2i _V^  +  (W1 +  * + 1)V2t+2 “ V?+2 +  2

v2t+ 2 -  +1  
2 ) v.

k + 2
vk+2~ I m - 2 )  V“ +2
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yk+2 +  ( 0  V2* + m (m +  k)V2k -  vl +2 +  (■1 -  m)v2k+2 +  v l+2

4 + 2  ( k \ 2 f-, \
' ~ ^ + \ 2 j  V2k +  mV2k+2 +  ( l - m)V2k+2

*+2 A V
2 ) V2 A V2fc+2'V-

(5.109)

After rearrangement, we obtain (5.92) as desired.

For m(). we first note the following identity is true

E [G '(lnG )' =  dmJ ) ■  ■
1 \m )

i > 0, j  = 0 ,1 ,2 ,... (5.110)

Let yx — E[Gln G], y2 =  E[G], y3 =  E[ln G], and let yl5 y2, y3 be the sample means for GlnG, G,

Pvand In G, respectively. By the Weak Law of Large Number, we have yk — > yk. Since m{) is also a 

continuous function of yk, we establish the consistency for mQ as

Pr ( 7i
Mr,

Yi

- l
-  y3 I =  m. (5.111)

By the multivariate Central Limit Theorem, we have

V n

V i - r i

Y2 - Y 2

% ~ Y i

■ ^ (0 ,2 o ) (5.112)

where ^ ( 0 , E 0) is a trivariate normal distribution with mean vector 0 =  [0,0,0]r  and covariance 

matrix X() given by

var[GlnG] cov[G,GlnG] cov[GlnG,lnG]

cov[G,GlnG] var[G] cov[G,lnG]

cov[GlnG,lnG] var[G,lnG] var[lnG]

(5.113)

Using (5.110), we obtain

r"(m+2) f  r'(m+l)A  ̂ r'(m+2) _  mV(m-\-\) r"(w+l)   r'(/n)r'(m+l)
r(m ) ^  r(m ) J r(m ) r(m ) F(m) G(/n)

mF '(m + 2) m r '(m + l)
r(m ) r(m )

r '( m + l )  r '(m ) r '(m + l)  r '( m + l)  mfifm)
r(m ) U (m ) " r(m ) T(m)

F (m+1) _  mV (m)
r(m ) r(m )

r'(m )
W

/  L(m)y 
v r(m))

(5.114)
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If we define

f 0(x,y,z) =  (5.115)
y

the gradient of f Q{x,y,z) can be found as

 Jo(x,y,z)
v 'o ~ ■i, y 

y .
(5.116)

Evaluate V /0(x, y, z) at [yt , y2, y3]7 and use the fact that

fo(YvY2,Y3) = /o(E[G lnG ],E[G ],E[lnG ]) =  m,

we have

v /o(yi>r2> ^ ) =  m
, r ( m + i )  i T

- 1 ,  — , m . (5.117)
mT(m)

Again, by the multivariate delta method, the asymptotic variance a (j  can be found as

oo = (vfo(Yi,Y2,Y3))TZo (v/o(yi?y2>y3)) (5-118)

Substituting (5.117) and (5.114) into (5.118), after some tedious algebra, we obtain (5.93) as re­

quired.

Alternatively, we can also obtain Oq in (5.93) by taking the limit k  to 0 in (5.92) and using 

the I’Hopital’s rule multiple times. However, this approach requires us to justify the condition of 

interchanging the limit and the integration operators. ■

A confidence interval on m, with asymptotic coverage 1 -  a ,  is given by where

the consistent estimate &k can be obtained by replacing m by m in (5.92). With the aid of Maple, it 

can be shown that the variance ak is 2m2(1 +  0 (m ~ 1)). It suggests that the width of the confidence 

interval increases, approximately, linear with m. This undesirable point can be improved by using 

the delta method to obtain

VA^lnm* —lnm) - ^ « y K (0 ,l f )  (5.119)

where Vk =  o |/m 2. The log transformation is chosen since (J~ ln m )2 =  1/m2, which is used to 

compensate the m2 factor in ak . We comment that the delta method is used here to stabilize the vari­

ance, while the delta method is used to obtain the asymptotic variance in the proof of Theorem 4.5.1. 

After the log transformation on mk, the confidence interval on lnm becomes Inmk ±
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The asymptotic variance V* of lnm^. is plotted against m in Fig. 5.2 for k  =  2, k  =  0 and for the 

maximum likelihood estimator lnmM/ . Using the CRLB derived in (5.36), the asymptotic attainable

variance for In mML is

V2 — v M L — m
(5.120)

Therefore the asymptotic relative efficiency (ARE) of lnm0 with respect to In mML (or equivalently, 

ARE of m0 with respect to mm )  is

V2
ARE =  f t

v0

=  1
12 m

fO (m  ) (5.121)

where the last equality is obtained using Maple and the asymptotic expansion for the digamma 

function. Therefore, we conclude that m0 is almost fully efficient, in particular for large values of 

m, as it is shown in Fig. 5.2.

5.6 Numerical Results and Discussions

In this section, we use Monte Carlo simulation to assess the performances of those estimators pro­

posed in Sections 5.4 and 5.5 when sample size is finite. For large and infinite sample size, we will 

draw several conclusions based on the asymptotic properties of those estimators. Our performance 

metrics are (sample) mean, (sample) variance (or standard deviation), and root mean square error. 

Unless otherwise specified, all simulated results are obtained by averaging over 30,000 experiments. 

The i.i.d. Nakagami random variates are generated for Q — 1 and for a useful range of m parameters 

{m — 0.5£,k =  1 ,2 ,... 40}.

Fig. 5.3 compares the mean of four estimators, m ^ j j ,  ™s' true m va'~

ues. For N — 100, our close inspection of the numerical data indicates that , mt, and ms

are positively biased for all values of m, that mt has smaller bias values than those of ms, and that 

thML(i) is negatively biased for small values of m (though these results are hard to discern from Fig.
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Figure 5.2. Asymptotic variances of Inmk=2, Inmk=0, and lnmML vs. m.
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Figure 5.3. Comparisons of the sample means of the estimators for mML^  (dotted line), 

(crossed line), mt (dashed and dotted line), ms (dashed line) with the true m (solid line) parameter 

values for N  — 100 and N = 1,000.

5.3) and positively biased for large value of m. However, the magnitude of the bias for mML^  is 

typically smaller than the magnitude of the bias of the other estimators. For a larger sample size 

of N  =  1,000, Fig. 5.3 indicates that, for practical applications, all four estimators are essentially 

unbiased.

Fig. 5.4 compares the variances of the same four estimators with the CRLB derived in (5.36). 

For N  =  100, the variances of all four estimators are greater than the CRLB. However, the variances 

of mML̂  and mML^  are smaller than that of mt, which is in turn smaller than that of ms. For 

N  = 1,000, the variances of mML̂  and mML^  graphically attain the CRLB whereas the variances
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Figure 5.4. Comparisons of the sample variances of the estimators for niML^  (dotted line), mML^  

(crossed line), mt (dashed and dotted line), ms (dashed line) with the CRLB (solid line) N  =  100 

m d N =  1,000.

of mt and ms are clearly greater than the CRLB. This suggests that the two ML-based estimators, 

and mMLp y  are efficient for N  = 1,000. This is expected since the asymptotic property of 

MLE predicts that ML estimators are asymptotically efficient.

We observe that the variances of the estimators increase with m. The same observation can 

be made from figures in [2], where, however, no explanation for this behavior was offered. Here, 

using the expressions for the ML estimators, we provide a simple explanation as follows. When 

m approaches infinity, the parameter A of (5.43), which appears in the denominators of (5.45) and 

(5.46), approaches zero. Therefore, the estimator becomes more sensitive to small changes in A. In
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the sequel, using large sample analysis, we will show rigorously that the asymptotic variances of 

our proposed estimators as well as the CRLB are proportional, approximately, to m2.

Fig. 5.5 compares the normalized variances of the four estimators against the normalized CRLB, 

where the normalizations are performed by dividing the variances and the CRLB by m2. As dis­

cussed in Section 5.5, this normalization is equivalent to taking the log transformation of the esti­

mator, i.e., Inmk. It is seen that, for large m values, the normalized CRLB are essentially flat, or 

stabilized. This suggests that the variances are proportional, approximately, to m2 for large m values. 

For small values of m, it is interesting to observe that the behaviors of the normalized variances for 

mt and ms are contrary to the behaviors of rhML̂  and rhMLQ) and the normalized CRLB. In particu­

lar, Fig. 5.5 suggests that the performances of ms is relatively poor for small m values. This behavior 

is explained as follows. It is well-known that moment-based estimators are inefficient because large 

outlying samples corrupt the estimate disproportionally (due to the power operations). In the case 

of small m  values, the mode of the Nakagami distribution is near zero (it is zero for m =  0.5). Thus, 

for small m  values, there is small likelihood of samples having values less than the mode occurring. 

Therefore, the large positive distortion caused by samples much larger than the mode is not offset 

by samples much smaller than the mode, as is the case for large m  values.

Fig. 5.6 compares the normalized variances of mfc indexed by k =  2.0,1.0,0.5, and 0.01. The 

behaviors of these normalized variance curves are shown for varying index k  values. It is seen that 

when k value decreases, the performance of mk, in particular for small values of m, approaches 

that of ML-based estimator. This confirms our early expectation since when k value decreases, 

the highest order sample moment that mk uses also decreases. Therefore, the performance of the 

moment-based estimator mk is less sensitive to the corruption of outlying samples.

What interests us the most is the limiting case of mk when k  goes to zero. Figs. 5.7-5.9 compares 

the performances of m0 and the Greenwood-Durand estimator, denoted by mGDE, a popular ML esti­

mator. In these figures, we have plotted the bias, (sample) standard deviation, and root mean square 

error versus sample size for m =  3.5 (Similar observations can be made for other values of m). The 

simulation results for these figures are obtained by averaging over 3,000 experiments. As shown,
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Figure 5.5. Comparisons of the normalized sample variances of the estimators for mML̂  (dotted 

line), mML^  (crossed line), mt (dashed and dotted line), ms (dashed line) with the normalized CRLB

(solid line) N  =  100 and N  =  1,000.
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Figure 5.7. Comparisons of the bias of the estimator mQ (solid line) and mGDE (dashed line) for 

m =  3.5 with different sample sizes.

for m =  3.5, in terms of (sample) standard deviation and root mean square error, the performances 

for mQ and mGDE are almost indistinguishable. However, Fig. 5.7 indicates that mGDE has larger 

bias over m0 for a wide range of sample sizes. This suggests that m0 is slightly in favor over mGDE 

if smaller bias is required. Recall that GDE is based on rational approximation and requires the 

knowledge (or storage) of coefficients with accuracy in the sixth significant digits. The analytical 

expression for m0 is, however, more elegant, thus, more suitable for on-line implementation.

Numerical results in Fig. 5.6 lead us to believe initially that when the index k goes to zero, the 

variance of mk is minimized at mQ. This believe is, strictly speaking, incorrect. Figs. 5.10 and 5.11 

plot the asymptotic variance versus index k values for m = 1. In these two figures, the horizontal 

line denotes Vq , the normalized asymptotic variance for m0. When m =  1, it can be shown using
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(dashed line) for m =  3.5 with different sample sizes.
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Figure 5.9. Comparisons of the root mean square error of the estimator m0 (solid line) and mGDE 

(dashed line) for m — 3.5 with different sample sizes.
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Figure 5.10. Asymptotic variances Vk of lnm^ vs. k for 10 6 <  k < 10 5 with m =  1. The horizontal 

line is at Vq =  n2/6 .

(5.93) that Vq — 1 +  y/'(2) =  n2/6. As shown in Fig. 5.10, for very small k  values (less then 10~5), 

V)2 is oscillatory and can drop below Vq , albeit a practically insignificant amount. For larger index 

k values, Fig. 5.11 shows is always above Vq. Figs. 5.12 and 5.13 also show the same V 2 

and Vq comparison for a different values of m (horizontal line V(j  for m =  3.5 is approximately 

Vq «  1.8705), and similar observations can be made. Therefore, we conclude that, for practical 

engineering applications, we can consider the variance of m0 is smaller than that of mk, for k >  0.
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is at Vq = tc2/6 .
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5.7 Summary

In this chapter, we considered estimation of the Nakagami fading parameters. In doing so, we 

showed that the Nakagami-m distribution is a member of the two-parameter exponential family, 

from which we obtained the complete sufficient statistic for the fading parameters. The CRLB’s for 

the fading parameters were derived. Two approximate ML estimators were proposed. Numerical 

study indicates that these ML estimators can attain the CRLB with a moderate sample size. A family 

of new moment-based estimators, which use both integer and non-integer sample moments, were 

derived and their asymptotic variances were found analytically. The limiting case of this family 

is, in particular, of interest. This estimator, which uses only integer sample moments and sample 

covariance, has small variance and is almost fully efficient. The performance of this estimator is 

comparable to the popular Greenwood-Durand estimator. In addition, our new estimator is more 

suitable for on-line implementation.
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Chapter 6

Conclusions and Suggestions for Future Work

In this conclusion chapter, we first highlight important findings of this thesis, and then suggest 

several topics for future research

6.1 Conclusions

1. It is possible to further simplify a well-known decision statistic at the output of a correlator re­

ceiver for a BPSK DS-CDMA signal using random spreading sequences. This simplification 

can significantly reduce the computational complexity of exact BER calculation.

2. A new closed-form expression has been obtained for the characteristic function of the multiple 

access interference.

3. The exact average BER of a coherent BPSK DS-CDMA system with Rayleigh-faded asyn­

chronous users can be expressed in terms of a single integral. The integrand is positive and 

well behaved. With modest computational complexity, it is possible to calculate the exact 

BER for a system with large processing gains.

4. The accuracies of the standard Gaussian approximation and the simplified improved Gaussian 

approximation have been assessed. It has been found that both approximations can give 

accurate BER estimates in Rayleigh fading. These approximations are valid even for a system 

with a processing gain of 255 and for a system with a small number of users.
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5. The exact average BER of coherent BPSK DS-CDMA system with Nakagami-m faded asyn­

chronous users can also be expressed in terms of a single integral. The integrand can take 

both positive and negative values. A new closed-form expression for the CF of the MAI has 

been found for this fading and interference environment. It is shown that the BER obtained 

using the standard Gaussian approximation can be poor for a system with a small number of 

users in a lightly faded environment.

6. Closed-form expressions have been derived for the first-order PDF and the CF of the quadra­

ture components of the Nakagami fading process (assuming uniform phase distribution). In 

the special case when m takes integer values, the PDF (CF) takes the form of a product of a 

Gaussian PDF (CF) with a polynomial function of even powers. These closed-form results 

can be useful in error analysis for other digital modulation schemes with Nakagami-faded 

cochannel interference.

7. A tractable analytical BER expression has been developed for the performance of bandwidth 

efficient BPSK in Nakagami fading and cochannel interference. It has been verified that 

the cochannel interference is exactly Gaussian distributed in the special case when all the 

interfering signals are Rayleigh and symbol synchronous with desired user signal.

8. The performance of a new novel pulse shape in fading and cochannel interference has been 

investigated. It has been shown both analytically and numerically that this novel pulse out­

performs the widely used raised-cosine pulse shape. When the BER is at 10~6, it has been 

demonstrated that approximately 0.86 dB  savings in SNR can be achieved at no additional 

cost.

9. It has been shown numerically as well as argued using the convexity property of the Q- 

function that fading of an interfering signal worsens (increases) the BER of the desired signal 

rather than improving (decreasing) it, a result perhaps contrary to conventional thinking.

10. It has been shown that the Nakagami-m distribution is a member of two-parameter exponential
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family. The complete sufficient statistics for the fading parameters have been derived.

11. A CRLB for estimation of the Nakagami-/n fading parameters has been derived. We have 

shown that there exists no unbiased estimator for m that attains the CRLB with finite sample 

size.

12. Two approximate ML estimators have been proposed. Numerical results suggest that mML^  

slightly outperforms mML̂-2) ■ When the sample size is N  — 1,000, both estimators are practi­

cally unbiased and attain the CRLB.

13. A new compact definition of the Nakagami m  parameter is derived. Based on this definition, 

the Nakagami fading figure can be interpreted alternatively as the covariance of the instanta­

neous fading power and its value in dB  normalized by its average fading power.

14. A family of new moment-based estimators using both integer and non-integer moments have 

been proposed for estimation of the Nakagami m  parameter. As a limiting case of this family, 

a new moment estimator using only integer moments is suitable for on-line implementation 

and its performance approaches that of ML estimators.

15. The family of new moment-based estimators have been shown to be consistent. Closed-form 

expressions for the asymptotic variances of these estimators have been found.

16. It has been proved that the new estimator mQ is almost fully efficient asymptotically. Numer­

ical studies have indicated that this estimator and the classical Greenwood-Durand estimator 

perform equally well when the sample size is finite. In addition, w0 can possibly provide 

smaller bias.

6.2 Suggestions for Future Work

1. A DS-CDMA signal is inherently wideband; therefore, a frequency-selective fading channel 

followed by a RAKE receiver is a more appropriate system model. In [24], Eng and Milstein
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carried out a performance analysis for coherent DS-CDMA in frequency-selective Nakagami 

fading using a Gaussian approximation. It is therefore of interest to extend our accurate 

analysis technique to this practical system model. However, challenges remain in doing such 

exact performance analysis since it can be shown that the self-interference terms on different 

RAKE fingers are highly correlated.

2. It has been demonstrated that Holtzman’s approximation can be used to improve the accuracy 

of error estimation using the standard Gaussian approximation for a DS-CDMA system. It 

is of interest to apply this technique to improve the standard Gaussian approximation for 

bandwidth efficient BPSK in our generalized fading and interference environment. To our 

best knowledge, Holtzman’s technique has not been applied to any bandwidth-limited system.

3. It is of interest to consider the exact BER analysis for a bandlimited BPSK or MPSK system 

in fading and CCI with some popular diversity combining schemes.

4. Finding the phase distribution of the Nakagami-m fading process remains an open problem. 

Often, for convenience, the phase of the Nakagami fading process is assumed to be uniformly 

distributed. This assumption is questionable since the quadrature components of the Nak­

agami fading process, X  =  R cos© and Y =  R sin0 , are only statistically independent when 

m =  1 (Rayleigh) if uniform distribution is assumed for 0 .  We speculate that the phase dis­

tribution of the Nakagami fading process is dependent on the m parameter. Therefore, one 

plausible way to formulate the problem is to search for a family of distributions indexed by m, 

/ e (0;m), such that two quadrature components are statistically independent. One evidence 

to support this thinking is that the phase distributions of two special values of m  parameter, 

namely m =  1 and m =  +°°, indeed satisfy this criterion. We are currently investigating this 

topic.

5. The complete sufficient statistic for the Nakagami m parameter has been determined in this 

thesis. However, the MVUE for m  is yet to be found, provided it exists. If any unbiased
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estimator for m  is known, we can use this complete sufficient statistic to determine the MVUE 

by the Rao-Blackwell-Lehmann-Scheffe theorem.

6. It is of interest to study the problem of Nakagami m parameter estimation in a noisy envi­

ronment (finite SNR). Cheng and Beaulieu [14] first investigated this problem for an AWGN 

environment using the method of moments. This work has recently been extended by Tepede- 

lenlioglu [74]. It has been shown that a large performance gap remains between the CRLB 

and the variance of the best known estimator.
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Appendix A

In this appendix, we simplify the decision statistic at the output of the correlator receiver for an 

asynchronous BPSK DS-CDMA system using random spreading sequences. In the first half of the 

appendix we review a well-known random sequence decision statistic simplified by Lehnert and 

Pursley [47], In the second half of the appendix, we propose a simplified random sequence decision 

statistic and study its statistical properties in detail. The study of these decision statistics is crucial 

in the exact average BER performance analysis for our system model.

Following the system model and the notations described in Chapter 2, we have the unfaded 

amplitude of the M i interference term, Wk, as

Wk = J  bh{t -  -  Tk)a l {t ) d t (A .l)

where T  is the duration of one data symbol, zk is the M i user’s random time delay assumed to 

be uniform over [0 ,r) . The M i user’s data signal is bk(t) = £y~J” -oob ^ P T(t — jT )  where PT(t) is 

a unity height rectangular pulse limited to [0, T). The spreading signal of the Mi user is ak{t) = 

~ IT C)  where Tc is the chip duration and \jf{t) is a chip waveform time-limited to 

Tc. In our system model, the data symbol duration is assumed to be an integer multiple of the 

chip duration, i.e., T =  GTC, where G is the processing gain. Fig. A .l shows the timing diagram 

(modified from [65]) of the PN sequences for User 1 (the desired user) and User k. In this figure, 

the delay rk is expressed as

Tk =  ykTc +  Sk (A.2)

where yk is an integer and Sk, which accounts for the fractional chip displacement of the M i inter-

ferer’s chip relative to User 1, is uniform over [0, Tc).
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Figure A .l. Timing diagram of the PN sequences for User 1 and User k.

In Chapter 2 we have shown that

<a -3>

where Rk l {z) and 4  i ( T) are the partial cross-correlation functions defined in (2.14) and (2.15), 

respectively. With the pictorial aid from Fig. A. 1, we can write the partial cross-correlation function

R k , \ ( \ )  as

Rt A?k) -  I ah(t -  rAa-,(t) dt,1 (T*) ~  J Q a k A  r k ) a i ( t )

1  t  V(t) V(t + TC- S k) dt
<=j-Yk- l

+  _ Z  (A.4)
l= j~Yk

and write the other partial cross-correlation function Rk 1 (rk) as

4 ,1  ( h )  =  [  ak { t ~ T k)a i (t) d t
J r . ,
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J + G  j k  2 r S ‘ 
l - j + i + Y k+ l

[  * v ( t ) v { t  + Tc - S k) dt 
J 0

+  S  “\k)ai - j +i+Ykf s c - s k) dt -

i -j  
j + G - y k~  1

(A.5)
i=j

If we define the partial autocorrelation functions of the chip waveform as

R v {s) = v{t)w{t  + TC- s )  dt, 0 < s < T ,

and

&v (s) = J  V { t ) w ( t - s ) d t ,  0 < s < T c,

(A.6)

(A.7)

applying (A.4), (A.5), (A.6) and (A.7) in (A.3), we can express W, as

= (*L‘ ! S  4 ^ 4 2 + A?) S < v w ' )  A f t )
l=Yk J1=0

Yk~ 1 G —2

/ = - 1

(Yk-1 G —2

l= Y t
l + j —Yk H-i+1

(A. 8)

\ jLj  -1  l + j —yk l+ i  0 l+ J -Y k  1+1 o 1
1=0 l =Yk

i + j - r k
(*) 7 ( i )
G—1+./—% iV—1+; /

(A.9)

The rest of this appendix addresses further simplification of Wk to a form which is suitable for 

accurate BER performance analysis of our DS-CDMA system. To simplify Wk further, Lehnert and 

Pursley introduced auxiliary RV’s z j k\  I =  0 , . . . ,  G, defined as [47]

zf> = 1

&(*) <*(*). d l\— 1 1+J~Yic

feWflW. d l\
0 l + j - Y k

l = 0 , . . . , y k - l  

I =  yk, ■ ■ ■, G -  2

b W a W . ^ .  . l = G - 10 G - l + j - y t  G -l+ i

(A. 10)

m a{k) a (i)
- 1  J - Y k - 1  i

l = G;

and stated that given User l ’s spreading sequence { a ^ } , RV ’s Z f  \  I =  0 ,1 , . . .G, are mutually 

independent. To show this statement is true, for convenience, we introduce a useful lemma.
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Lem ma A .l: Suppose that a  and {j8j , )32, • ■ - , ftM} are mutually independent symmetric Bernoulli 

random variables taking values from  { + 1 ,-1 }  with equal probabilities. Then ' ' '  )a  Aw I

are also mutually independent.

Proof: Let Pr(a/3j =  ax, cej32 =  a2, ■ ■ ■ , af3M =  aM) denote the joint probability where at takes 

value of — 1 or +1. In order to show that a/31; a/32, ■ ■ ■ , afiM are independent, we need to show that 

the joint probability equals product of the marginals, i.e.,

Pr ( a f t  =  a1, aP2 = a2, ■ ■ • , a  Aw =  aM) -  Pr (apl =  a1) Pr (a/32 =  of) • ■ • Pr (apM =  aM) .

(A. 11)

To establish the equality in (A. 11), we invoke the theorem of total probability and write

Pr (ct/3j a j , oi /32 — n2, • • ■ , a^ )

=  Pr(ajSj =  al :af52 =  a2, - ■ •, afiM = aM, a  =  1)

+  Pr(aj3j =  a , , a/32 =  a2, ■ ■ ■, afiM = aM, a - - l )

=  Pr(fil = a 1,P2 = a2,--- ,PM = aM, a  = l)

+  Pr (/3j =  —a j , /3j =  —a2, •■ ■ , pM =  ~~a.M, cc =  — 1)

=  Pr(0j = a 1)P r(&  =  a2)---P r(0 M =  aM) P r ( a  =  1)

+  Pr (A =  - « ! )  Pr (/32 =  - a 2) • ■ • Pr (fiM =  - a M) Pr ( a  =  - 1 )

where in obtaining the above result we have used the condition that a  and {/3j,/32, ■ • • , Aw} are 

mutually independent. Since Pr(o: =  1) =  P r ( a  =  - 1 )  =  1/2 and Pr (fij =  a^j = Pr (j3} — —a^j, 

we have

P r ( a ^  = a 1,aP 2 = a2, - -  , a p M = aM) =  Pr(A  = a l )Pr{p2 = a2)---Pr(pM = aM). (A.12)

On the other hand,

Pr (a f i j  = a^j — Pr (a f i j  =  a ^ a  =  l j  + P r  ^a/3;- =  a j , a  = — 1^

=  Pr (jij = aj, a  =  l )  +  Pr (fij = - a j , a = - 1)

=  Pr = a^j  Pr ( a  =  1) +  Pr (j3;. =  - a )  Pr ( a  =  - 1 )

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Combining (A. 11), (A.12), and (A.13), we complete the proof of Lemma A .l.

Lemma A. 1 can also be argued using a coin tossing experiment. One might toss a first fair 

coin to determine a . A second toss determines /3j and therefore a \ A  third toss determines /32 

and therefore afi2- Continuing this process, the (M +  l)th  toss will determine fiM and hence ci[iM. 

Clearly, the M  outcomes are mutually independent.

Since the joint independence implies pairwise independence, Lemma A. 1 can be specialized to 

that a/3(. and a  13j for i ^  j ,  a result due to Torrieri [77]:

We now show that RV’s z f \ l  — are jointly independent given User l ’s spreading

sequence. To show this, we write the joint probabilities of Z^>, I =  0 , . . . ,  G, as

where in obtaining (A. 14) we have used the independence condition between the data symbols as 

well as the independence condition between the random chip sequences, and (A. 15) follows imme­

diately from Lemma A .l. Since each RV Z ^  is also a symmetric Bernoulli, according to (A. 15), 

we conclude that RV’s Z^k\ l  =  0 ,1 , . . . ,G, are mutually independent given User l ’s spreading se­

quence.

Using the definition of Z ^  in (A. 10) and the fact that =  1, we can express (A.9) as

(A. 14)

(A. 15)

G —2 G—2

1=0 1=0

y Z,M + 0« < > +1fi,(S i ) )  + z W  + Z « K » f t ) .  (A.16)
1=0 '
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Let us denote srf as the set of all integers in [0, G — 2] such that =  L and denote 38 as the

set of all integers in [0, G — 2] such that a ^ .a ^ .+1 =  —1. Then (A.16) becomes

" t  =  X  4 * ’ ( * * & ) + « * ( * * ) ) +  X 4 * 1 ( A f t ) -  *»(*»))
;e.s/
+  Z f_  xR y (Sk) +  z g % ( S t ) . (A. 17)

Now define

X-k =  S z f } (A-18)

Yk =  Z z/w (A'19)
i&sg

P* =  zW  (A.20)

fit =  z W j (A.21)

and equation (A. 17) becomes

W* =  P M )  +  2 A ( S t ) + X k {R¥ (Sk) + R v (Sk)) + Yk {Rw(Sk) - R v (Sk) ) . (A.22)

Recall that given User l ’s spreading sequence, { z j k̂ } is a set of i.i.d. Bernoulli RV’s. From (A. 18)- 

(A.21), it follows immediately that Pk, Qk, Xk, and Yk are independent RV’s conditioned on User l ’s 

sequence. Since mean of the Bernoulli RV is zero, RV’s Pk, Qk, Xk, and Yk also have zero mean. 

From (A.22), it is seen that Wk is a function of Pk, Qk, Xk, Yk, and Sk. It is obvious that, conditioned on 

User l ’s sequence, {Pk,Qk,Xk,Yk,Sk} and {Pk+vQk+vXk+1,Yk+l,Sk+1} are mutually independent 

since the Mi interferer’s data bits and chip sequences are independent of the (k+  l)th  interferer’s 

data bits and chip sequences. Therefore, Wk and Wk+l are also independent given User l ’s sequence.

If we denote the cardinality of the set sd  by A and denote the cardinality of the set 38 by B, the

respective probability mass functions for Xk and Yk are

and

PxJS) ~  Ai i — - A , —A + 2 , . . . ,A  — 2,A

p YkU ) = ( j V ) 2 - B, j  = - B , - B  + 2 , . . . , B - 2 , B .

(A.23)

(A.24)
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For a sequence with length G, there are G — 1 chip boundaries. With the definition of the sets 

and SB, these two sets form the partition of the index set denoting the chip boundaries, thus, 

A + B = G — 1. It is important to note that, with (A.22), given G, the conditioning on User l ’s 

sequence has been reduced to the conditioning on the value of B, the number of transitions at the 

chip boundaries. The value of B can be thought as a measure of the amount of spreading in User 

l ’s spreading sequence. When B — G — 1, it corresponds the maximum spreading where there is 

a transition at every chip boundary. On the other hand, when B =  0, it corresponds the minimum 

spreading where there is no transition at any chip boundaries.

The decision statistic presented in (A.22) was originally derived by Lehnert and Pursley [47], 

This work has been widely cited and has appeared, for example, in two popular wireless text­

books [65], [70]. This form of decision statistic, as shown in Chapter 1, allows us to examine the 

BER dependence on the amount of spreading in User l ’s sequence. However it can be very cum­

bersome to use and even prohibitive to compute the exact average BER for a system with large 

processing gain (G). Therefore, it is our motivation to search for another simpler form of Wk, which 

is statistically equivalent to (A.22). To do so, we re-examine the unsimplified expression for Wk in 

(A. 8) and write Wk as

«l = rA(s.) + ¥»R) (A.2S)

where

(A.26)

and

A, = * w  y  aW a(1)Z , a i + j - y k a i + M  Z s a l+J
1——1 l—Yk

h - 1 , , , , , , G—2
' l + j - Y t  l + i + 1'

(A.27)

We now make following important claims:

Claim 1: RV r k is a sum of G i.i.d. symmetric Bernoulli RV’s.

Claim 2: RV is a sum of G i.i.d. symmetric Bernoulli RV’s.

Claim 3: RV’s r*  and Ak are statistically independent.
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These claims are useful in the accurate BER estimation for the problem discussed in Chapter 2, in 

particular for a system with large processing gain. In the remainder of this appendix, we will show 

that all four claims are indeed true.

We first show that the auxiliary RV’s { Z ^ }  are mutually independent unconditionally. We state 

this result as a lemma and provide a detailed proof.

Lem m a A.2: The random variables Z^k\  I =  0 ,1 , . . . ,  G, defined in (A. 10) are mutually inde­

pendent symmetric Bernoulli random variables, regardless o f  User 1 ’s spreading sequence.

Proof: Clearly the discrete random variables Z;W, / =  0 ,1 . . . . .  G, are Bernoulli. To show they 

are mutually independent, we need to show that

where the last equality results from the independence assumption among the data bits, as well as the 

independence assumption among the chip sequence (with distinct chip index). To show that the first 

joint probability in (A.29) can be factored into products of the marginal probabilities, we observe 

that (assuming ct;. or ft • takes value of —1 or +1)

(A.28)

where zt takes value of — 1 or +1. From the definition of in (A. 10), we have

(A.29)

(A. 30)
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where the last equality follows from Lemma A .l since _ 1 and are independent Bernoulli 

RV’s. Therefore, the yk-\-1 composite random variables

aW i — o i y i- aW a(!)l 
|  l+j-Yt i+i’ L aj-rk- l ai f

are mutually independent and Bernoulli. They are also independent of the Bernoulli RV b ^ .  Ap­

plying Lemma A .l to the first joint probability in (A.29), we obtain

=  z,. '  =  0.1. . . •  , f t -  1; =  % )

=  < A 3 1 >

Similarly, since the G -  % composite random variables

= =  1 |  (A.32)

are also mutually independent and Bernoulli; and they are independent of the Bernoulli RV 

Applying Lemma A .l to the second joint probability in (A.29), we obtain

Pr ( * ? ’< ■ £-,. “ffi =  *„ ( =  n ,  ■ ■ •, G - 1) =  n pr O f M L r y f f i  =  ■ <A .33)
l=rk

Collecting results from (A.29), (A.31), and (A.33), we complete our proof for Lemma A.2. ■

Claim 1 is a direct consequence of Lemma A.2 because we have, from (A.26),

r ,  = V ^ j a W .  a|i) + X  d
r i ,  ~ 1 l+J-Yt 1+1 , 0 l+J-vk i+i1=0 l=yk

Yk~l G—1

=  S z W + S z f ’
/=0 ;=y*

=  (A.34)
1=0

By Lemma A. 2, Claim 1 immediately becomes true, that is, RV T^ is a sum of G i.i.d. symmetric 

Bernoulli random variables.

Clearly, from (A.27), \  is a sum of Bernoulli RV’s. To show that Claim 2 is true, we are left 

to show that these Bernoulli RV’s are mutually independent. To show this, assuming a t or ^  takes
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value of —1 or +1, we have from (A.27) 

Pr

=  Pr

‘M S / V m t t =  0%, i =  - i — r * - l ;

><Pr(6«a « V « + 1 = f t , (  =  r1, . . . , G - 2 )

n  pr ^ =«,)]. [n M * W /v & ,=A)
(A.35)

where the first product term is a result of the direct application of Lemma A. 1 since the composite 

random variables

J a W a (!) l = — 1 y, — l l  |  n + j - Y k W + v  1 A» ■■■>)'*

are i.i.d. symmetric Bernoulli and they are independent of the symmetric Bernoulli RV . Simi­

larly, the second product term is a result of the direct application of Lemma A. 1 since the composite 

random variables

| a /+ i-rta /+i+i’ / =  j

are i.i.d. symmetric Bernoulli and they are independent of the symmetric Bernoulli RV lJ(k>. There­

fore, according to (A.35), we conclude that Claim 2 is also true, that is, RV Ak is a sum of G i.i.d. 

symmetric Bernoulli random variables.

The proof for Claim 3 is slightly more involved. It is convenient for us to label the G summands 

of r A given in (A.26) as Ul , U2, ■ ■ ■ ,UG and enumerate them as

%  =  f u i =  b{k\a{k) a{l) , U2 =  . a ^ . ,  ■■■ , U Y =  , a (1)  , .
j 1 - i  2  - 1 i + J - Y k  1+1 '* _ 1  ~ 1 + ./ r t - t + *

—v— '  N 'V ...V------------------------------------------------V—
S3 g 2 S5 St( g2yk + l g2yk

Ur>i+i =

U — b ^ a ^  a^  U — b ^ a ^  >° 0  U j  \ + V  ’ G - 1 ~  %  a G ~ 2 + j - y k̂ G - 2 + V  G  ~  a G - \ + j - y i % - U 4  f »

S2yk + 3 S2yt +2 $ 2 0 -1  S2G -2 82G+I ^2G
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and similarly we label the G summands of Ak given in (A.27) as Vl ,V2, - "  ,VG and enumerate them 

as

y = { v i = b i-k]a W .  a ^ , V 2 =  b ^ k\  a[ll ,  ••• , Vr „1 1 -1 -l+j-Yi. 1 1 -1 J-Yi 1+' '* -1 —2+j Yi+i-V

Si S2

-2+; yt+i-
IT.,. ^  ■/ ,S.||I|I|I> V ^—.

g2yt-l §2yk

V — b ^ a ^  a^  V = b ^ a ^ a ^  ■■■ V ^ — b ^*Yk + 1 —1J-. v . 4-;>  *v,+2 v ci , v . —j— f—i— 1  ̂ > G wn-1 -1+; y4+P *>*+2 h+i+V

82  yk + l 82yk +2 # 2^+3 # 2^+4

(* ) a ( i )
0 G—2+y—ŷ ̂  G—l+i) 

8 2a82G- 1

where, after a careful examination of the sequence pattern in and V , we have denoted the chip 

sequences of the desired user by g2,g4, ■ ■ ■ ,?2G’ anc* denote the composite RV’s, which consist of 

the &th interferer’s data bits and chip sequences, by g j , g3, . . . ,  g2G+j . These latter random terms are 

defined as

g = feWaW .
61 -1  -l+ j-r*

g =  b ^ a W  63 -1 j~rk

, =  fcWaW&2yk- l  — 1 — 2+ j

s . . =  fcWaW ®2yt+l - 1 - 1 + ^

% t+ 3 ° 0 aj

62G -1 °o  G -2+ j-Jk & 2G—2 =  Q —2-Yi

A (1)
&2G  =  4 ? —1+ i

Therefore, for simplicity, we can rewrite the set ‘W = {C/j,  t/2, - - - ,UG} as

62G+1 °o G-l+ji-yt J

:«(!)£2

S4 =  4 + i

A (n 
*2* =**!,+,■

=  aW .r*+*#2^+2
A (j) 

g 2 yk+ 4  =  a { >Yk+ l + i

(A. 36)

^  ~  | ^ 1  —  S z g 3>U2 — 8 4 8 5 1 " '  ^ Y k —  8 2 Y k 8 2 y k + v U y k + i  —  £ 2y t + 2S 2yt + 3 >

■ ■ ’  ^ G - 1 “  8 2 G - 2 8 2 G - V  ^ G  ~  82G 82G + 1 (A.37)

and rewrite the set ^  =  {Vj, V2, ■ ■ ■ , VG} as

y  — i  Vj _  g {g2,V2 — g3g4, ■■■ ,Vyt — g2y \g2y >VYi+l — g2y+ \82yk+2i
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1 ~  82G-lS2G-2iVG ~  S2G-1S2G j  ■ (A.38)

A close study of gk defined in (A.36) reveals that the 2G +  1 RY’s • ■ • i<?2g-i>£2G’

&2G+11 are i-'-d- Bernoulli, where in making this observation Lemma A .l has been invoked wher­

ever required. This key observation leads us to conclude that the 2G RV’s {U1,U2, ... ,UG} and 

{Vi,V2, • • • i VG} are mutually independent. This result can be seen from a fair coin tossing experi­

ment. According to (A.37) and (A.38), one may toss a first fair coin to determine the value of gx. 

A second toss determines g2, therefore the value of g 1g2 or Vv  A third toss determines g3 therefore 

the value of g2g3 or Ul . A forth toss determines g4 hence the value of g3g4 or V2. We continue 

this process until the last toss which determines g2G+J hence the value of g2Gg2G+i or UG. Clearly 

{Ul ,U2, . . . ,U G} and {Vl ,V2, ... ,VG} are mutually independent. Since functions of statistically in­

dependent random vectors are also statistically independent, we conclude, as a result, that XiLi 

and Xfli Vt are statistically independent. In other words, Tk and Ak are statistically independent and 

this completes the proof of Claim 3.

In general, the MAI terms at the output of the correlator receiver are dependent. This is true for 

both deterministic and random spreading sequences. However, as shown in Chapter 2, the loss in 

accuracies for BER’s is negligible if we make the independence assumption for these MAI terms. 

Finally, we comment that the simplification of the decision statistic does not rely on the periodicity 

assumption in random sequences (see Fig. A .l).
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