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Abstract 

The neural mechanisms underlying visual perception and attention continue to elude 

researchers despite decades of research. Developing novel methodology and improved analytical 

techniques may provide key insights into these processes that traditional approaches have been 

unable to reveal. In this dissertation, we pursue this idea in a series of studies whose overall aim 

is to better understand visual perception, attention, and their underlying neural mechanisms. 

First, we demonstrate how the novel adaptation of visual working memory probabilistic models 

can turn simple performance measures into metrics that quantify the quality of participants’ 

internal perceptual representations. When paired with EEG analysis, we find evidence that 

perceptual representations will vary only within a fixed range of values, but where in that range 

its precision falls changes from trial-to-trial as a function of post-stimulus neural activity. Next, 

we extend this approach to test the effects of covert attention modulation while simultaneously 

questioning previous assumptions about the role of periodic oscillatory activity, particularly in 

the alpha (8-14 Hz) frequency, during the cued version of the orientation perception task. From 

this novel combination, we find evidence that the conflicting reports on the role of alpha 

oscillations in visual perception and attention are, at least partially, due to measures being 

confounded by the overlapping and task-related 1/f aperiodic activity. Finally, we used 

multivariate pattern analysis (MVPA) to address a long-standing question regarding how alpha-

related brain activity prior to the presentation of a visual stimulus corresponds to attention, 

perception, and subsequent task performance. Our results suggest that it is the complex 

spatiotemporal dynamics of alpha amplitude that best represents what makes trials with covert 

spatial attention distinguishable from trials without. However, we found little evidence that those 

same spatiotemporal patterns of activity are predictive of subsequent behavioral responses. 
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Overall, this series of studies demonstrate the value of using novel techniques that can take full 

advantage of the inherent multidimensionality of EEG data as well as highlights the 

opportunities these methods present for future research.   
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1  

INTRODUCTION 

Our brain consistently deals with a dynamic and continuous stream of information about 

the world around us. It is so effective and efficient at this task that we do not notice it happening. 

Yet, a small disruption to this process can have devastating effects. Vision, in particular, is 

fundamental to our ability to interact with and thrive in the world. It is important enough that 

54% of (macaque) primates’ neocortex is involved in visual information processing (Van Essen 

et al., 1990) and 20% of the human cortical surface is dedicated to processing just the most basic 

visual features of stimuli (Wandell, Dumoulin and Brewer, 2009). While the mechanisms 

underlying the sensory experience of vision (i.e., the conversion of light into neural signals) are 

relatively well understood, how that sensory experience is transformed into visual perception is 

still unknown. Part of this lack of knowledge is due to the difficulty in developing tasks that 

change what a participant perceives without changing the sensory information. One approach is 

to use stimuli that have two or more possible perceptual interpretations. For example, a Necker 

cube is a reversible or ambiguous figure consisting of an invariant stimulus pattern that can 

alternate between at least two different perceptual interpretations. This allows for dissociation 

between low-level stimulus processing and the mechanisms involved in conscious perceptions 

(İşoğlu-Alkaç and Strüber, 2006). However, this approach has limitations including the inability 

to determine where in the visual pathway the reversal takes places, especially if low-level visual 

processing fluctuates along with the observer’s interpretation (Hogendoorn, 2015). 

Another popular approach is to present participants near-threshold stimuli and then 

compare brain activity between trials with different performance outcomes (e.g., correct vs 
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incorrect). Traditionally, near-threshold stimuli are part of a two-alternative forced-choice (2-

AFC) task or similar discrete response paradigm. In these types of paradigms, participants are 

required to select one out of two or more possible responses. Sometimes they are asked to choose 

the correct stimulus out of an array of different stimuli or to simply report whether they detected 

a visual stimulus. While these paradigms are powerful and easy to use, they might not be the best 

choice for investigating certain aspects of visual perception that are easier to measure with a 

continuous scale. For example, the question of whether the quality of visual perception varies 

from trial to trial or has a precision that remains constant for a given level of visibility would be 

difficult to answer without a way to directly measure the variability of a response, something that 

cannot be done with categorical data (in regard to the traditional concept of variability; see Kader 

and Perry (2007) for a discussion on variability in categorical data). 

Another reason the mechanisms underlying visual perception have remained elusive is 

that certain fundamental questions have yet to be answered. It is still unknown whether visual 

perception is an all-or-none process or is a continuum of degrees in perception quality. Previous 

research has found that variations in neural activity give rise to variations in our visual 

perception (Mathewson et al., 2011; Chaumon & Busch, 2014; Samaha et al., 2020). However, it 

is unclear whether this is because of variation in stimulus detection, variation in the quality of 

perception, or a combination of both. To answer this question, we adapted the orientation 

memory task by Bae and Luck’s (2018) into an orientation perception task so that visual 

perception could be measured on a continuous scale. The researchers originally used their task to 

investigate how well information held in working memory can be decoded from brain activity. 

What makes the task useful for the current study is that it allows participants to give a continuous 

response when asked to report the orientation of the target. Performance can then be quantified 
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as the angular difference between the orientation of the target and the orientation reported by the 

participants, referred to as response error. Even better, these distributions of continuous measure 

of response errors can be modeled with low parameter working memory models such as the 

standard mixture model introduced by Zhang and Luck (2008) or the variable precision model by 

Fougnie and colleagues (2012) to quantify parameters of interest such as guess rate and 

precision. Furthermore, it is relatively easy to add an attentional component to this type of task 

without altering the visual characteristics of the stimuli. This makes it especially suitable to 

dissociate sensory and perceptual processes from attentional mechanisms. By extending this 

method to orientation perception, one can look at how target detection, perceptual variability, 

and attention are individually related to electrical brain activity during the task. 

The rationale for extending working memory models to visual perception is that many 

working memory models makes similar assumptions about the outcome of target stimuli. 

Specifically, they both assume, at least superficially, two distinct states: remembered items are 

analogous to seen targets (which should produce responses clustered around the correct value, 

with some variability) and forgotten items parallel unseen targets (which should produce random 

guessing across all values uniformly). This assumption is the essence of the popular mixture 

modelling technique where a distribution of responses is fit with a probabilistic model 

representing a mixture of response types (see Figure 1.1 for examples of mixture models). In this 

way, the mixture model is used to differentiate the response types (i.e., accurate and guesses), 

and quantify response variability and guess rate as separate and meaningful parameters (Dube 

and Golomb, 2020). 
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Figure 1.1. Examples of visual working memory models 

A) Standard mixture model of performance, showing the probability of reporting each 

orientation value relative to the original orientation (i.e., amount of response error). When the 

target was detected, the reported orientation tends to be near the target’s orientation (blue 

broken line). When the target was not detected, the participant is equally likely to report any 

orientation value (red broken line). When collapsed across trials, the data comprise a mixture 

of these two trial types (solid purple line), weighted by the probability that probed item was 

stored in memory. The distribution of the combined trial type can be described by three 

parameters: g represents guess rate, σ represents response variability, and µ represents 

response bias which can be fixed at 0 or allowed to vary (adapted from Zhang and Luck, 

2008). B) (Upper) In the variable precision model, the amount of resources dedicated to a 

target, thus its encoding precision or J, is a variable assumed to vary according to (in this 

example) a gamma distribution. (Lower) Von Mises (circular normal) noise distributions 

correspond to three values of precision (two values when set size, N, is equal to 1) and s = 0 

(adapted from van den Berg, et al., 2012). C) (Upper) A variable-precision model can be 

thought of as a higher-order distribution produced by mixing different distributions from 

fixed-precision models with different precision values. (Lower) Each curve shows the 

distribution of precision for a different fixed-precision model (adapted from Fougnie et al., 

2012). 

 

Another reason for using working memory models is that there is a strong relationship 

between perception and working memory. Visual working memory tasks have a visual 
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perception component that might be a larger contributor to working memory performance than 

first thought. For example, Schurgin et al (2020) recently proposed that working memory 

performance can be explained by a relatively simple signal detection framework using a single 

parameter (memory strength, d-prime) once perceptual similarity within the stimulus space is 

accounted for (Dube and Golomb, 2020). Similarly, Bays (2014) found that recall errors could be 

better explained by the kind of neural population encoding that explains responses to basic visual 

features than in terms of allocating limited memory resources. Working memory performance 

can be well accounted for by basic visual and perceptual processes, therefore it is logical to 

assume that at least some working memory models are able to capture perceptual processes. 

The goals of the current work is first, to ask the question whether working memory 

probabilistic models can accurately account for performance on an orientation perception task, 

and, if so, what brain activity is associated with that model’s parameters? Next, is how attention 

and attention-related changes in brain activity affect task performance and whether the working 

memory model can account for this change, and, if so, how does it affect the model’s 

parameters? Finally, a long-standing question is addressed regarding how brain activity prior to 

the presentation of a visual stimulus affects perception and subsequent performance. 

1.2 BRAIN OSCILLATIONS AND ELECTROENCEPHALOGRAPHY (EEG) 

Brain oscillations are the proposed mechanism by which different brain areas 

communicate and coordinate their activity. It is through the synchronization of rhythmic activity 

within and between brain regions that cortical excitability and propagation of neural signals are 

modulated (Buzsáki and Draguhn, 2004; Bonnefond, Kastner and Jensen, 2017). Many cognitive 

functions are comprised of different component processes that originate in different brain areas. 

For example, object recognition involves visual processing, feature detection, extracting relevant 
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information from memory, and decision making. Understanding when and how these operations 

occur and interact can give insight into mechanisms underlying cognitive functioning (van de 

Vijver and Cohen, 2019). 

The oldest and most well-established method for non-invasive measurements of brain 

oscillations is electroencephalography (EEG). The first use of EEG in humans was by Hans 

Berger in 1929. EEG has remained a popular method for studying brain activity because it is 

non-invasive and has excellent temporal resolution. EEG is considered a direct measure of brain 

activity, so it lacks the temporal delay associated with measuring changes in blood flow like 

functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy 

(fNIRS). Specifically, EEG measures synchronized postsynaptic activity of populations of 

pyramidal neurons. The flow of charged particles across the extracellular membrane causes 

changes in the polarity of the extracellular fluid. These polarity changes result in dipoles which 

are instances where a region of a positive charge is separated from a region of a negative charge 

by some distance. If enough neurons are active at the same time and are oriented so that their 

dipoles do not cancel each other out (i.e., arranged in parallel), their net activity will sum 

together creating a dipole whose magnitude is large enough to be measured by electrodes on the 

scalp (Buzsáki, Anastassiou and Koch, 2012; Jackson and Bolger, 2014; Luck, 2014). 

 

Figure 1.2. International standard for EEG electrode placement 
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A) EEG electrode positions in the 10-20 system (original image located here: 

https://blog.adafruit.com/2017/06/19/tdcs-electrode-positioning-the-10-20-

system/tdcs-2-2/). B) EEG electrode positions in the 10-10 system. The electrode 

sites are color-coded according to the lobes of the brain which their labels (F, C, 

P, O, and T) represent (original image by Laurens R. Krol - Own work, CC0, 

https://commons.wikimedia.org/w/index.php?curid=96859272). 

 

The location of the EEG electrodes has been standardized according to the distance from 

certain anatomical markers on the head such as the inion and nasion. This standardized system is 

called the international 10-20, 10-10, or 10-5 system (see Figure 1.2). Twenty, ten, and five are 

referring to the percentage used for determining the distance between electrodes and anatomical 

markers. The smaller the percentage, the smaller the distance between electrodes and greater the 

density of electrode positions across the head. All the relative distances from the anatomical 

markers are associated with the locations of different functional cortical regions such as the 

frontal and parietal areas. Odd numbers are assigned to positions left of the center line and even 

numbers are assigned to positions right of the center line. The more lateral the electrode position, 

the larger the number.  

EEG is recorded as rhythmic activity containing a combination of oscillations fluctuating 

at different frequencies. The raw EEG signal can be separated into its oscillatory components 

using one of the various signal-processing methods. These oscillations can be described by three 

measures: frequency, phase, and power (see Figure 1.3).  
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Figure 1.3. Example of oscillation characteristics 

Oscillations are characterized by their frequency (the number of cycles per unit time), 

amplitude or power (power = amplitude2), and instantaneous phase which fluctuates 

between 0 and 2p (adapted from van de Vijver & Cohen, 2019). 

 

Power or amplitude (power = amplitude2) of the waveform can be thought of as the 

magnitude of the activity. Phase is where in the excitation and inhibition cycle the oscillation is 

at a given time point (Klimesch, Sauseng and Hanslmayr, 2007; van de Vijver and Cohen, 2019). 

Logically, phase should relate to when a neural process is more or less optimal because it 

signifies a phasic change in neural firing probability (VanRullen, 2016b). Inputs arriving during 

the optimal phase should generate relatively large responses and have a higher probability of 

firing; whereas inputs arriving during a less optimal phase generate relatively smaller responses 

and have a lower probability of firing. This enables oscillations to temporally modulate and 

coordinate information processing by imposing excitability windows that facilitate interactions 

with appropriate phase and suppressing inputs from out-of-phase neural assemblies (Schroeder 

and Lakatos, 2009; VanRullen, 2016b). Buzsáki summed this up nicely: “Each oscillatory cycle 

is a temporal processing window…” (Buzsaki and Buzsáki, 2006). 

The frequency or speed at which brain oscillations occur have become associated with 

various functions. Activity at different frequencies is often separated into pre-defined bands to 
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make it easier to communicate and compare results from different studies. Although the 

definition of these frequency bands is somewhat arbitrary, they have a basis in the biophysical 

properties of neurons that constrain the temporal windows at which various functions can occur 

(Buzsaki and Buzsáki, 2006). Also, pre-defined bands make it easier to form a priori hypotheses 

and use group-level averages. Naturally, this is at the cost of individual differences and 

sensitivity to performance-related fluctuations within each frequency band. Furthermore, using 

pre-defined frequency bands requires the assumption that the band limits do not change across 

individuals and the experiment– an assumption that has been shown to be false under various 

conditions (Bazanova and Vernon, 2014; Haegens et al., 2014; Mierau, Klimesch and Lefebvre, 

2017; Benwell et al., 2019). However, the pre-defined frequency bands have their advantages 

which often out-weights that potential disadvantages, especially when they are used with a 

certain degree of caution.  

Although there is some small disagreement about what the exact cut-off are, listed are the 

ranges of the five frequency bands relevant to the current discussion: delta, 1-3 Hz; theta, 4-7 Hz; 

alpha, 8-14 Hz; beta, 15-30 Hz; and, gamma, >30 Hz. It is common to see these bands separated 

further, especially in the faster frequencies, but their use usually depends on the hypotheses and 

experimental design.  

An even more controversial question than how to define frequency bands is what role 

different frequencies have in cognitive functioning. For example, while delta oscillations are 

often seen during deep sleep, an accumulation of evidence has led investigators to associate 

waking delta activity with top-down control, attention, memory, motivation, and response 

inhibition (Harmony, 2013; Başar and Düzgün, 2016; De Vries et al., 2018; Rawls, Miskovic 

and Lamm, 2020). Delta oscillations have also been implicated in various cognitive dysfunctions 
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including Alzheimer’s disease, schizophrenia, mild cognitive impairment, and alcoholism 

(Güntekin and Başar, 2016). Since delta activity is a characteristic of sleep, it has been proposed 

that these oscillations provide prolonged periods of inhibition so that the activity of brain areas 

that may interfere with mental tasks are inactive (Harmony, 2013). However, there is still a lot 

unknown about how delta oscillations are related to normal and impaired cognitive processes. 

In contrast, theta oscillations have been associated with memory processes though recent 

studies have found evidence suggesting it has a role in cognitive monitoring and attentional 

control processes as well (Clayton, Yeung and Cohen Kadosh, 2015; Herweg, Solomon and 

Kahana, 2020). Theta oscillations can be found in the human cortex and hippocampus. 

Interactions between cortical and hippocampal theta activity have been associated with virtual 

navigation, declarative memory, episodic memory, memory encoding, and working memory 

maintenance (Sauseng et al., 2004; Sauseng and Klimesch, 2008). Theta activity has also been 

observed in the frontal and parietal cortices during attention tasks though whether it reflects an 

active mechanism related to prioritization and environmental exploration, or a passive 

physiological feature emerging from the underlying organization of the attention network 

(Fiebelkorn and Kastner, 2019; Helfrich, Breska and Knight, 2019) remains unknown. 

Alpha oscillations, on the other hand, is the first frequency band identified almost a 

century ago by Hans Berger (1929). This is because alpha oscillations can have amplitudes large 

enough to be detected in the raw EEG traces. Also, compared to the other frequency bands, alpha 

is ubiquitous across the cortex. While alpha oscillations are most prominent over the visual 

regions, they can often be found at any electrode location regardless of task or stimuli. Alpha is 

at its maximum in the visual cortex when the participant has their eyes closed. This originally led 

researchers to conclude that alpha is an ‘idling’ rhythm (Adrian and Mathews, 1934; 
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Pfurtscheller, Stancák and Neuper, 1996). That is, it represents the brain being at rest. Since then, 

the role of alpha oscillations has expanded from a ‘cortical idling’ brain rhythm to one involved 

in a range of functions including attention, working memory, and perception (Klimesch, Sauseng 

and Hanslmayr, 2007; Foxe and Snyder, 2011; Mathewson et al., 2011, 2012; Klimesch, 2012; 

Clayton, Yeung and Cohen Kadosh, 2015; Frey, Ruhnau and Weisz, 2015; VanRullen, 2016b). 

There is also an accumulation of evidence that alpha activity is related to changes in 

cortical excitability. For example, Laufs and colleagues (2003) used continuous and 

simultaneous EEG-fMRI to correlate alpha EEG power with blood oxygenation level-dependent 

(BOLD) signal changes over time. A strong negative correlation of parietal and frontal cortical 

activity with alpha power was found. In a similar study, the authors found that pre-stimulus alpha 

phase correlated with cortical excitability fluctuation in the early visual cortex as indexed by the 

magnitude of visually evoked blood oxygen level dependent (BOLD) response (Scheeringa et 

al., 2011). A study using EEG-fMRI and EEG-NIRS also found that spontaneous EEG alpha 

activity in the occipital cortex had an inverse relationship with the fMRI BOLD signal. In 

addition, the authors reported a positive cross-correlation between alpha and the concentration 

changes of deoxygenated hemoglobin (Moosmann et al., 2003). This suggests that posterior 

alpha activity is associated with metabolic deactivation. Finally, some compelling evidence 

comes from a study using transcranial magnetic stimulation (TMS). In the study, the authors 

found that phosphenes were more likely to be evoked using TMS over the visual cortex in 

blindfolded participants when alpha power was low before stimulation rather than high, 

suggesting that higher alpha power in the visual cortex reduces cortical excitability (Romei et al., 

2008; Samaha, Gosseries and Postle, 2017). While these studies provide strong support for alpha 
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activity being related to cortical excitability, it is still unclear whether alpha modulates cortical 

excitability or is a consequence of these cortical fluctuations. 

Beta has often been associated with motor activity. For example, primary motor cortex 

exhibits a decrease in beta amplitude during movement and a strong beta rebound when the 

movement is stopped (Sauseng and Klimesch, 2008). Finally, gamma oscillations have a 

frequency above 30 Hz and are thought to synchronize local patterns of neuronal population 

activity and indicate a state of high cortical excitability (Miller et al., 2014; Seymour, Rippon 

and Kessler, 2017). Gamma activity is often studied (especially frequencies faster than 50 Hz) 

using more invasive electrophysiological methods such as electrocorticography (ECoG). This is 

because the faster the frequency, the less distance over which synchronization can occur due to 

limits imposed by axon conductance and synaptic delays (Buzsaki and Buzsáki, 2006).  

1.3 VISUAL PERCEPTION 

As mentioned previously, one of the goals of the research studies covered in Chapters 2, 

3 and 4 is to investigate the mechanism underlying visual perception. An influential, and 

particularly controversial issue is the idea that perceptual outcome is determined, or at least 

influenced, by brain activity prior to the presentation of a stimulus. Some researchers have 

proposed that the power of oscillatory alpha-band activity can determine perceptual outcome 

(Hanslmayr et al., 2007; van Dijk et al., 2008). In line with this idea, studies have reported that 

whether or not a visual stimulus will be perceived can be predicted on a trial-by-trial basis by 

prestimulus alpha amplitude (Ergenoglu et al., 2004; van Dijk et al., 2008). However, a study 

looking at discrimination accuracy and its confidence in a two-alternative forced choice (2-AFC) 

discrimination task found that pre-stimulus alpha activity was not associated with discrimination 
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accuracy, but instead was related to participants’ confidence in the accuracy they reported 

(Samaha, Iemi and Postle, 2017). 

Recently, it has been proposed that spontaneous alpha activity (i.e., ongoing alpha 

activity that occurs in the absence of sensory input) modulates the probability of responding 

rather than the probability of perceiving a visual stimulus (Iemi et al., 2017). This is supported 

by findings that suggest alpha power before stimulus onset predict the probability of reporting 

the presence of a stimulus, even when no stimulus was presented, with an increased likelihood of 

reporting stimulus detection during states of low alpha power prior to stimulus onset (Limbach 

and Corballis, 2016; Benwell et al., 2017, 2021; Iemi et al., 2017; Iemi and Busch, 2018). 

Furthermore, a study looking at whether the temporal resolution of sequential stimuli varied as a 

function of prestimulus alpha power found that participants were more likely to report seeing two 

visual stimuli when occipital alpha power was low regardless of whether there was one or two 

visual stimuli presented (Lange, Oostenveld and Fries, 2013). It seems alpha power therefore 

predicts a change in response threshold rather than changes to perceptual sensitivity.  

Other researchers proposed that perceptual outcome depends on the phase of alpha 

oscillations at the moment of stimulus onset, which is explained as alpha acting as a pulsating 

inhibition in the brain ( Mathewson et al., 2009; Busch, Dubois and VanRullen, 2009; 

VanRullen, 2016). This theory stems from the idea that there is an “ideal” brain state for optimal 

stimulus processing which is reflected in the phase of the oscillations. For example, the stimulus 

being presented at peak of an oscillation leads to better processing than if the stimulus was 

presented while the oscillation was in its trough or midway between peak and trough. In this 

way, alpha can use pulses of cortical inhibition to modulate incoming sensory information into 

perception as a function of the phase within the alpha cycle (Mathewson et al., 2011). 
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Support for this idea comes from a study using EEG and fMRI simultaneously to look at 

the covariation between alpha oscillations and blood oxygenation level-dependent (BOLD) 

signal during visual stimulation. It was found that stimuli arriving at the peak of an alpha cycle 

corresponded to a lower BOLD signal in the early visual cortex than stimuli presented at the 

trough. In contrast, pre-stimulus alpha power had no significant relationship to the visually 

evoked BOLD signal. This evidence suggests that alpha phase reflects periodic fluctuations in 

cortical excitability, as indexed by the BOLD signal, which, in turn, modulates the strength of 

the visually evoked response (Scheeringa et al., 2011). 

Further evidence comes from a series of studies in which alpha oscillations were 

rhythmically entrained with visual stimulation resulting in phase locking at the same frequency 

in the EEG, as well as rhythmic modulation of target detectability and temporal feature 

integration (Mathewson et al., 2014; Kizuk and Mathewson, 2017; Ronconi and Melcher, 2017; 

Ronconi, Busch and Melcher, 2018). Using fast optical imaging, it was also found that these 

alpha oscillations relevant for detection can be localized to the posterior parietal cortex 

(Mathewson et al., 2014). 

However, recent studies have raised questions about the role of alpha phase in perception. 

Zazio and colleagues (2021) found a strong association between pre-stimulus alpha power, post-

stimulus neural correlates of conscious perception, and performance on a near-threshold visual 

detection task such that Hit trials were preceded by weaker pre-stimulus alpha power and greater 

post-stimulus evoked responses. By contrast, no influence of pre-stimulus alpha phase was 

found. A pre-registered study by Ruzzoli and colleagues (2019) also found no significant 

correlation between perceptual behavior and phase of 5-15 Hz EEG activity despite using a 
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hypothesis-driven design based on prior studies that had found a significant effect of alpha 

phase. 

Alternatively, these results do not preclude alpha phase from being involved in visual 

perception. Instead, they might hint at a more complex mechanism where phase and amplitude 

interact to produce the observed effects on perception. Mathewson et al (2011) proposed such a 

mechanism. The idea was that when alpha amplitude is low, cortical excitability is high enough 

that a stimulus will always be detected regardless of phase. In contrast, when alpha power is 

high, cortical excitability fluctuations as a function phase are now cycling between being above 

and below the excitability threshold required to detect a stimulus. Thus, stimulus detection 

depends on when in the phase cycle the stimulus was presented only when alpha power is above 

a certain threshold. Along the same lines, Schalk (2015) proposed a function-through-biased-

oscillations (FBO) framework in which the mean voltage of an alpha cycle varies with the 

amplitude of alpha oscillations. Greater alpha amplitude corresponds to a more negative voltage 

level and higher inhibition. In turn, this results in shorter time windows for sensory processing 

(i.e., the duty cycle). This mechanism would provide a parsimonious explanation for the 

disparate results from previous studies. 

Another possible explanation for the conflicting findings on alpha oscillations is based on 

a model presented by Zazio and colleagues (2020) named the oscillation-based probability of 

response (OPR). They propose that alpha oscillations modulate gamma activity by decreasing the 

amplitude and/or synchronization of gamma oscillations thereby affecting visual perception. This 

idea is supported by research into the role of gamma oscillations for sensory enhancement 

(Pritchett et al., 2015; Ni et al., 2016) and the inverse relationship between alpha activity, 

cortical excitability and sensory perception (Samuel et al., 2018; de Graaf et al., 2020). For 
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example, Fries et al (2008) found that during the prestimulus period, attention within the 

receptive field of a recorded neural population enhanced gamma band synchronization and 

reduced alpha band synchronization. Adding to the evidence is research using transcranial 

stimulation that found stimulation at alpha frequency modulated gamma oscillation activity 

(Hamidi, 2009; Herring et al., 2019; Okazaki, Mizuno and Kitajo, 2020). Specifically, it was 

found that applying a weak alternating current at the participant’s individual alpha frequency to 

the occipital cortex induced rhythmically suppressed visual stimulus-induced gamma band 

power. Furthermore, the degree of gamma band power reduction predicted the decrease in visual 

detection performance (Herring et al., 2019). 

It seems that dynamic interactions between alpha and gamma oscillations might also 

provide a parsimonious explanation for the disparate results from previous studies (Jensen and 

Mazaheri, 2010; Zazio et al., 2020). However, it is important to point out that theories based on 

the interactions between the phase and power of alpha oscillations and those based on coupling 

between alpha and gamma activity are not mutually exclusive. In fact, the most recent proposals 

go out of their way to point out that their ideas are complimentary to the previous theories 

(Schalk, 2015; Zazio et al., 2020). Therefore, it is likely that the alpha cycle could rhythmically 

shift neurons’ membrane potential so that gamma bursts occur only during “excitability 

windows” where the alpha phase is at its trough, and when the amplitude of alpha activity is 

sufficiently low. In this way, alpha oscillations would modulate variations in the sensitivity and 

temporal resolution of visual perception (Wagner et al., 2019). 

Finally, it should be noted that alpha and gamma oscillations are not the only frequency 

bands associated with visual perception. Visual target detection has also been found to vary as a 

function of prestimulus delta and theta oscillations. In a study by Fiebelkorn et al (2013), they 
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found that low theta and delta phase modulated visual target detection prior to stimulus onset. 

Furthermore, the effects of higher frequencies on perceptual outcome, particularly for beta band 

activity, was almost entirely dependent on their interaction with delta and theta phase. Many 

studies do not have a long enough interstimulus interval to measure frequencies as low as delta, 

so this has been a relatively unexplored area. Future research is needed to better understand the 

role of these lower frequencies in visual perception.  

1.4 VISUAL ATTENTION 

In addition to visual perception, attention is another focus of the research covered in 

Chapters 3 and 4. The mechanisms underlying attention have been particularly difficult to 

elucidate even though it is relevant to a variety of cognitive functions and psychopathologies.  

This is partly due to the complexity of attention. Even when the focus is only on the visual 

domain, excluding other sensory or cross-sensory modalities, researchers have distinguished 

multiple types of attention. These include top-down attention, bottom-up attention, covert 

attention, overt attention, spatial attention, object-based attention, and feature-based attention 

(Carrasco, 2011). 

Top-down attention is thought as endogenously generated allocation of attention 

according to internal, behavioral goals. In contrast, bottom-up attention is automatic, driven by 

exogenous orientating towards physical salience. Overt attention involves moving the eyes 

towards the attended location whereas covert attention requires allocating attention without 

moving the eyes. In studies using functional imaging, covert attention has an advantage 

compared to overt attention because eye movements can be a source of noise during 

electrophysiological recordings (causes voltage deflections much larger than typical brain-related 

activity) and a confound due to an uncontrolled change in the visual input during the task (Luck, 
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2014). Object-based attention involves focusing on certain objects categories like chairs or dogs. 

Feature-based attention focuses on an object’s characteristics like color and orientation. Visual 

search paradigms are often used to study object- and feature-based attention. Spatial attention is 

where attention is allocated to different locations in space, often using visual or auditory cues to 

direct attention during the task. Presumably, attention should enable a relative improvement in 

task-related sensory processing and subsequent behavioral responses. The two mechanisms 

associated with attentional modulation of information processing are enhancement and inhibition 

(Carrasco, 2011; Tallon-Baudry, 2012).  

Attentional enhancement is where the task-related sensory signal is amplified by a 

relative increase in the neuronal response (Luck et al., 1997; Hillyard and Anllo-Vento, 1998; 

Hillyard, Vogel and Luck, 1998; Kastner and Ungerleider, 2000). Studies in non-human primates 

have found that attention directed to a location in a neuron’s receptive field enhances the 

neuron’s response to a single stimulus presented within the receptive field compared to when 

attention is directed outside the receptive field (Spitzer, Desimone and Moran, 1988; Motter, 

1993; Luck et al., 1997). Using a delayed match-to-sample task with oriented stimuli, 

researchers were able to construct orientation-tuning curves from neuronal responses when 

stimuli were attended to and when stimuli were ignored. From this, the researchers found that 

attention enhanced the responses of V1 and V4 neurons selectively but did not alter the width of 

their orientation-tuning curve suggesting that visual spatial attention amplifies neural responses 

to stimuli at attended locations rather than change the preferred orientation or sharpness of 

tuning, thus prioritizing information processing for stimuli appearing at that location (McAdams 

and Maunsell, 1999). A similar type of attention modulation is seen for features in that responses 
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are enhanced for neurons that prefer the feature currently being attended to (Martinez-Trujillo 

and Treue, 2004; Maunsell and Treue, 2006). 

Furthermore, in a study investigating the link between pre-stimulus brain activity and 

behavioral performance, it was found that discrimination performance and reaction time were 

predicted on a trial-by-trial basis by the relative decrease in alpha amplitude over the 

contralateral visual cortex about 500 ms before target onset (Kelly, Gomez-Ramirez and Foxe, 

2009). The decrease in contralateral alpha activity was believed to reflect enhanced excitability 

in the visual processing areas (Sauseng et al., 2005; Thut et al., 2006; Kelly, Gomez-Ramirez 

and Foxe, 2009). This finding implies that the attention-related enhancement observed at the 

single-neuron level also occurs at the macroscale level through alpha-related modulation. 

The other attentional mechanism, inhibition, is where neurons unrelated to the task are in 

a state of decreased receptivity so that distracting or competing information does not interfere 

with the relevant information. This inhibitory attentional mechanism is thought to be mediated 

by alpha oscillatory activity. For example, with regards to visual spatial attention, numerous 

studies have found that alpha amplitude is enhanced in the areas contralateral to an ignored 

location (Kelly et al., 2006) or a location with distracting stimuli (Worden et al., 2000; Foxe and 

Snyder, 2011). These findings were interpreted as attention-driven modulation of cortical 

excitability by alpha so that the brain areas irrelevant to the task were selectively suppressed. 

Interestingly, this selective functional inhibition or suppression by alpha activity is also 

observed during feature-based attention. For example, in a delayed-match-to-sample task, 

participants had an increase in alpha power in the parieto-occipital area during retention of face 

identities compared with the retention of face orientation. This finding supports the idea of 

feature-selective attention in that the dorsal stream (maintaining orientation information) was 
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selectively suppressed by alpha activity when the ventral stream (maintaining face identity) was 

engaged (Jokisch and Jensen, 2007). In line with these results, it was found that attending to 

words led to increased power of parieto-occipital alpha oscillations over the right hemisphere as 

compared to when faces were attended. This object-selective lateralization of alpha oscillations 

was maintained during sustained selective attention while sequentially presented with face and 

word stimuli (Knakker, Weiss and Vidnyánszky, 2015). Like spatial and feature-based attention, 

object-based attention selection also seems to involve alpha oscillations modulating information 

processing. 

So far, the focus has been on attentional mechanisms within separate brain regions. 

However, there has also been a lot of work looking at synchronous activity between brain areas 

as a means for mediating attentional modulation. Specifically, posterior parietal and frontal brain 

regions have been suggested to coordinate attentional modulation of the visual cortex via low-

frequency oscillations (Miller and Buschman, 2013; Fiebelkorn and Kastner, 2019). In one study, 

during the cue-target interval of a cued visual spatial attention task, increased alpha phase 

synchronization was observed between the prefrontal cortex and the posterior parietal area that 

was contralateral to the attended visual hemifield. In addition, a significant reduction in alpha 

amplitude was observed at the parieto-occipital brain areas contralateral to the attended visual 

hemifield compared to the ipsilateral brain areas (Sauseng et al., 2005). In another study on 

visuospatial attention, sustained long-range synchronization of high alpha (10-14 Hz) oscillations 

was observed in the frontal, parietal, and visual areas along with amplitude suppression of low 

alpha (6-9 Hz) oscillations in the visual cortex. Importantly, stronger high alpha phase 

synchronization was associated with decreased reaction times to attended stimuli and larger 

alpha amplitude suppression (Lobier, Palva and Palva, 2018). Finally, collaborating evidence 
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also comes from a study correlating single-trial EEG alpha power with BOLD activity. The 

researchers report that the BOLD in the intraparietal sulcus (IPS) had a stronger inverse 

correlation with occipital alpha power within the hemisphere contralateral to the attended 

hemifield. Furthermore, the magnitude of this alpha lateralization was positively correlated with 

BOLD in the dorsal anterior cingulate cortex and dorsolateral prefrontal cortex (Liu et al., 2016). 

These findings suggest alpha synchronization has an important role in supporting frontoparietal 

visuospatial attention and possibly cortical excitability of visual brain areas as indicated by 

modulated alpha amplitude (Peylo, Hilla and Sauseng, 2021). 

Although the focus has been mostly on alpha-band activity, it is important to note that 

many studies have found that theta-band activity is also involved in visual attention, particularly 

through the engagement of frontocentral areas. For example, Helfrich et al (2018) found that 

perceptual outcome at the single-participant level varied as a function of theta phase even in 

states of sustained spatial attention. They suggest that neuronal excitability fluctuations at around 

theta shapes the attentional sampling rhythm of the frontoparietal attention network and the 

corresponding behavior (Helfrich et al., 2018). Similarly, the variability of attention processing 

has been associated with theta phase coherence in frontal and parieto-occipital brain regions 

(Lutz et al., 2009; Reteig et al., 2019). Finally, in a rhythmic transcranial magnetic stimulation 

(TMS) study designed to establish a causal role for parietal alpha and frontal theta oscillations in 

the maintenance of working memory representations, the authors found that alpha in the parietal 

cortex was involved in suppressing task-irrelevant information while prefrontal theta supported 

task-relevant prioritization (Riddle et al., 2020). This suggests that inhibition by alpha 

oscillations is only half of a balanced excitatory-inhibitory network supporting successful 

behavioral performance. 
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While studies have found attention being mediated by a network of different brain areas, 

at the local level, there is also recent evidence that suggests attention modulation is more 

anatomically selective than once thought. Using a linear support vector machine (SVM) 

classifier, Samaha et al (2016) found that the topography of alpha power could be used to 

identify the one location out of six attended to during sustained spatial attention. In a similar 

study where a cue was presented briefly in one of 16 locations directing covert spatial attention, 

it was found that the distribution of posterior alpha sources approximated retinotopic 

organization and that better performance was associated with the magnitude of the spatial tuning 

(Popov et al., 2019). These results suggest that attending to specific spatial locations involves 

selective topographic cortical modulation by alpha oscillations which is much more spatially 

constrained than the hemispheric or regional changes observed previously. However, it should be 

noted that the reconstructed tuning function representing the spatial focus of attention by Samaha 

et al (2016) showed alpha power to be higher at the attended location and falling off for locations 

further away. In contrast, the tuning function by Popov et al (2019) had the inverse with a 

depression of alpha power at the attended location. While this could be explained by differences 

in task design and type of recorded brain activity (notable, one study used EEG and the other 

used MEG), this still highlights how the neural mechanisms underlying visual attention are still 

largely unknown. 

Together, the evidence points toward visual attention relying on both enhancement and 

inhibition mechanisms which, in turn, are associated with alpha oscillatory activity. This could 

be because alpha modulates information processing, either directly or indirectly, through 

fluctuations in cortical excitability using similar mechanisms discussed in the section on visual 

perception. In this way, changes in alpha activity would result in enhancement or inhibition of 
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sensory processing since an increase or decrease in cortical excitability would either facilitate or 

suppress neuronal responses, respectively. Within the larger attentional network, long-range 

phase synchronization could coordinate, across different brain regions, the top-down 

prioritization provided by theta with the task-irrelevant suppression provided by alpha 

oscillations as well as the modulation of local sensory processing through selective enhancement 

of task-relevant neuronal responses via coupling with gamma oscillations.     

1.5 THE UNKNOWNS OF ALPHA OSCILLATIONS 

Although the mechanisms underlying visual perception and attention remain unclear, it 

seems that alpha activity has an important role in both functions. However, despite nearly a 

century of research, there is still a lot about alpha oscillations that remains relatively unknown. 

For example, in addition to not knowing how alpha is involved in a variety of cognitive 

functions, the circuits that generate alpha are also unclear. Originally, there was a strong belief 

that alpha band activity came from a thalamo-cortical loop involving the lateral geniculate 

nucleus (LGN) and visual cortex and cortico-cortical interactions across different brain regions. 

In a study by Lopes da Silva and colleagues (1980), strong coherence between the pulvinar 

nuclei and visual cortex was found; at the same time, there was high cortico-cortical coherence 

even after partializing the thalamic contribution. Together this suggests independent thalamic 

and cortical sources of alpha generation (Lopes da Silva, 1991). 

In support of independent thalamic and cortical alpha generators, later research pointed to 

the thalamus as the primary alpha pacemaker, with the classic posterior alpha rhythm driven by 

the pulvinar (Saalmann et al., 2012). It was also found that the cortex could still generate alpha 

activity in isolation and in vitro when the pulvinar is inactivated (Lopes da Silva, 1991; Zhou, 

Schafer and Desimone, 2016). From this, it was proposed that alpha rhythms were the result of a 
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“diffuse and distributed” system (Silva, Amitai and Connors, 1991; Başar et al., 1997; Bourgeois 

et al., 2020). However, more recent findings have complicated these prevailing theories. Using 

microelectrodes and macroelectrodes in surgical epilepsy patient, Halgren and colleagues (2019) 

found that alpha propagates from higher-order to lower-order cortical areas, and that cortical 

alpha leads pulvinar alpha, contradicting theories of a thalamic pacemaker. Taken together, the 

neural circuitry generating alpha oscillations seem rather complex, with independent 

contributions from thalamic and cortical sources that are likely interacting across different brain 

areas though the details of where and how still needs to be determined. 

While there is a plethora of evidence suggesting that alpha has a role in a variety of 

cognitive functions across and between different modalities (Klimesch, Sauseng and Hanslmayr, 

2007; Foxe and Snyder, 2011; Mathewson et al., 2011, 2012; Klimesch, 2012; Clayton, Yeung 

and Cohen Kadosh, 2015, 2018; Frey, Ruhnau and Weisz, 2015; VanRullen, 2016b), exactly 

what that role is, and how it can be involved in so many different functions is still debated. For 

example, some researchers believe alpha oscillations control the flow of information into sensory 

areas or from sensory areas to higher order cortical locations via amplitude and phase modulating 

the time windows at which information can be accessed (Klimesch, Sauseng and Hanslmayr, 

2007; Jensen and Mazaheri, 2010; Foxe and Snyder, 2011; Mathewson et al., 2011; Chaumon 

and Busch, 2014). Others think alpha oscillations indirectly control perception and attention by 

modulating the higher frequencies (e.g., gamma oscillations, >30 Hz) involved in information 

processing (Voytek, 2010; Jensen et al., 2014; Zazio et al., 2020). All these explanations seem to 

point towards alpha oscillations reflecting changes in cortical excitability. In this way, alpha 

activity would be associated with fluctuations in the level of information processing since an 

increase or decrease in cortical excitability would facilitate or suppress task-related neural 
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activity, respectively. Whether this means a mechanism where alpha oscillations are directly 

modulating via amplitude and phase, indirectly modulating through interactions with gamma 

activity, or simply an index or consequence of cortical fluctuations remains to be seen. 

Overall, the sources of alpha oscillations are still relatively unknown. It is also unclear 

how (even if) alpha is involved in the brain’s functioning. It is up to future researchers to 

elucidate where in the brain alpha activity is generated. However, the following work will help 

address some of the mysteries around alpha’s involvement in cognitive functions, specifically, 

perception and attention. 

1.6 SUMMARY 

To better understand visual perception, attention and their underlying neural mechanisms, 

a series of experiments were conducted using EEG and probabilistic modelling. The first 

experiment in Chapter 2 focuses on using visual working memory models to quantify perceptual 

performance and associated changes in brain activity. The next two experiments reported on in 

Chapters 3 and 4 extend the results from Chapter 2 by adding a visual spatial attention 

component. Specifically, Chapter 3 focuses on the visual working models and whether they can 

be used to quantify the effects of visual spatial attention on orientation perception performance 

and corresponding changes in brain activity. In contrast, Chapter 4 is addressing the questions 

regarding pre-stimulus alpha activity and its relationship to visual spatial attention, visual 

perception, and perceptual outcome. This chapter is dedicated to determining how well alpha 

power, alpha-gamma coupling, and alpha-based functional connectivity can predict orientation 

perception performance with and without covert attention. In summary, the following work will 

investigate the neural mechanisms that connect visual perception and attention to perceptual 

performance.  
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2  

PERCEPTUAL QUALITY AND GUESS RATE AS A FUNCTION OF 

ELECTROENCEPHALOGRAPHY (EEG) BRAIN ACTIVITY IN AN 

ORIENTATION PERCEPTION TASK 

2.1 INTRODUCTION 

Variations in neural activity give rise to observed variations in our visual perception 

(Mathewson et al., 2011; Chaumon and Busch, 2014; Samaha et al., 2020). While there has been 

a plethora of research into the brain activity that drives this process, there remains noticeable 

gaps in our understanding of how these processes work. One of the reasons for this might be 

because investigators have left basic questions about the underlying mechanisms unanswered. 

Specifically, and the question the current research will address, does a perceptual representation 

always form with the same precision or does the quality depend on the state of the neural 

activity?  

Traditionally, visual perception has been studied with two-alternative forced-choice (2-

AFC) tasks or similar discrete response paradigms. In these types of paradigms, participants are 

required to select one out of two or more possible responses. Sometimes they are asked to choose 

the correct stimulus out of an array of different stimuli or to simply report whether they detected 

a visual stimulus. While these paradigms are powerful and easy to use, they might not be the best 

choice for investigating certain aspects of visual perception that are easier to measure with a 

continuous scale. For example, the question of whether the quality of visual perception varies 

from trial to trial or has a precision that remains constant for a given level of visibility would be 
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difficult to answer without a way to directly measure the variability of a response, something that 

cannot be done with categorical data (in regards to the traditional concept of variability; see 

Kader and Perry (2007) for a discussion on variability in categorical data). To answer this 

question about the nature of perceptual processes, we chose a task that can measure visual 

perception on a continuous scale and a model that can quantify perceptual responses in a way 

that will inform our question (it should be noted that this can be done by using categorical 

responses (see Shen and Ma (2019) for 11 experiments of this type), but it relies on the model 

describing the relationship between a target stimulus and the underlying probability of a correct 

or positive response rather than simply having the model describe the probability of response 

errors). With this goal in mind, we adapted the orientation memory task by Bae and Luck (2018) 

into an orientation perception task. The researchers originally used their task to investigate how 

well information held in working memory can be decoded from brain activity. What makes the 

task useful for the current study is that it allows participants to give a continuous response when 

asked to report the orientation of the target. Performance can then be quantified as the angular 

difference between the orientation of the target and the orientation reported by the participants, 

referred to as response errors. This continuous measure of response errors can utilize models 

such as the standard mixture model introduced by Zhang and Luck (2008) or the variable 

precision model by Fougnie and colleagues (2012) to quantify parameters of interest such as 

guess rate and precision. By extending this method to orientation perception, we can look at how 

target detection and perceptual variability are individually related to electrical brain activity 

during the task.   

To address the question about the type of process underlying visual perception, we 

combined our adapted version of the visual orientation task with the standard mixture model and 
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electroencephalography (EEG). Orientation estimation tasks are common in the visual perception 

literature (Fischer and Whitney, 2014) and the application of the standard mixture model to 

perception, and orientation perception, in particular, has been previously studied (Bays, 2016; 

Samaha, Switzky and Postle, 2019). However, to our knowledge, this is a novel approach to 

quantify the effects of EEG brain activity on visual orientation perception using the standard 

mixture model to quantify performance. As a result, the purpose of the study was two-fold. First, 

we asked whether the standard mixture model is a good choice for quantifying orientation 

perception task performance by comparing the fits of other appropriate working memory models 

to the data. All the working memory models we tested made the same assumption that the 

distribution of errors could be separated in a uniform distribution representing guesses and a 

normal distribution of seen or remembered targets. The main difference between models was 

how the variability of the normal distribution got defined. This means that regardless of the 

model, there would be a standard deviation parameter (the standard deviation parameter could be 

defined by one value or two depending on the model). The uniform distribution quantified by a 

guess rate parameter may or may not be included depending on the model. Therefore, our second 

purpose was to test the relationship between EEG activity and the model parameters. We 

hypothesized that alpha activity prior to the target onset would be related to whether the target 

was later perceived or not which would be reflected as a modulation of the guess rate parameter 

or modulation of the mean SD/mode precision if there is no guess rate parameter. We also 

hypothesized that the precision of perceptual representations was a fixed range (i.e., based on the 

same distribution across trials) and that it would be related to post-target activity in the lower 

frequency ranges (4-7 Hz) which would be reflected as modulation of the standard deviation 

parameter. To address these questions and test our hypotheses, we modified an orientation 
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memory task from Bae and Luck’s (2018) so that it probed participants’ perception of the target’s 

orientation rather than their ability to remember it. We then recorded EEG activity as participants 

performed the adapted task so we can see how brain activity varies with their perceptual 

performance. 

2.2 MATERIALS AND METHODS 

Participants 

Twenty-eight participants from the University of Alberta community participated in the 

study (age range = 17-35 years). Two participants were not included in the analysis due to 

excessive movement artifacts (more than 25% of trials rejected due to artifacts). Another two 

participants were excluded from the analysis due to having extreme outlying performance on the 

task (see Behavioral Analysis in the Results section for more details). Participants were all right-

handed and had normal or corrected normal vision and no history of neurological problems. All 

participants gave informed written consent, were either compensated at a rate of $10/hr or given 

research credit for their time. The study was approved by the Internal Ethics Board at the 

University of Alberta. 

Orientation Perception Task 

Participants were seated 57 cm away from a 1920 x 1080 pixel2 ViewPixx/EEG LCD 

monitor (VPixx Technologies, Quebec, Canada) with a refresh rate of 120 Hz, simulating a CRT 

display with LED backlight rastering. The rastering, along with 8-bit digital TTL output triggers 

yoked to the onset and value of the top left pixel, allowed for submillisecond accuracy in pixel 

illumination times, which were confirmed with a photocell prior to the experiment. Stimuli were 

presented using a Windows 7 PC running MATLAB R2012b with the Psychophysics toolbox 

(Version 3; Brainard, 1997; Pelli, 1997). The code running the task was a modified version of the 
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ColorWorkingMemoryExperiment.m code from MemToolbox (Suchow et al., 2013; 

memtoolbox.org). The modified version of color working memory experiment can be found 

here: https://github.com/APPLabUofA/OrientTask_paper/tree/master/OrientationTask. Video 

output was sent to the ViewPixx/EEG with an Asus Striker GTX760 (Fremont, CA) graphics 

processing unit. 

Each trial began with a white fixation dot presented at the center of the monitor for 742, 

783, 825, or 867 ms (target stimulus onset asynchrony; tSOA) after which the target appeared for 

8.33 ms (one monitor refresh). The target was in the shape of a needle and was pointing toward 

one of 24 predefined evenly spaced directions so that all the orientations covered 360 degrees.  

The direction of the target was randomly selected on each trial. Of all the trials, 20% were 

randomly chosen not to have a target. All aspects of the target-present and target-absent trials 

were identical except that for the target-absent condition a blank interval replaced target 

presentation. A backward mask lasting for 8.33 ms with a constant 41.7 ms target-mask stimulus 

onset asynchrony (mSOA) appeared centrally. The mask was created by overlaying the target 

orientated in all 24 directions which created a star shape seen in Figure 2.1A. Following the 

mask offset, a 500 ms blank interval period occurred.  

After the blank interval, a response screen appeared with the needle in the center of the 

screen. Using the computer mouse, participants were asked to rotate the needle so that it was 

pointed in the same direction as the previous target. If participants detected a target but could not 

remember its orientation, they were asked to guess the orientation of the target. Participants 

could provide their response at their own pace so that they could prioritize response accuracy 

over speed. No feedback was given to participants. The next trial began immediately after a 
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needle’s orientation was selected. See Figure 2.1A for a summary of the task sequence and the 

stimulus dimensions. 

 

Figure 2.1. Orientation perception task 

A) Sequence of task events with duration of each screen 

presentation and sizes of fixation, target, mask, and response 

stimuli. Sizes are in degrees of visual angle. B) Example of 

response error calculation. Response errors are reported in 

degrees. 

 

Participants completed seven blocks consisting of 48 trials each, along with 20 practice 

trials at the beginning of the experiment. Participants could rest at their own pace every 48 trials. 

Extensive written and verbal instructions were presented to participants prior to the practice 

trials. Instructions thoroughly explained and demonstrated each component that would compose 

a single trial.  

Before the orientation perception task, participants performed a staircased target detection 

task that had the same parameters as the orientation perception task except that participants only 
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reported whether they saw the target or not using the keyboard. The target color was a gray 

determined by a scalar value passed to the functions in Psychtoolbox (Version 3; Brainard, 1997; 

Pelli, 1997). In the staircased target detection task, the target color value could range from the 

background color (making it not visible; corresponding value of 256) to black (making it the 

most visible; corresponding value of 0). This target gray value was adjusted throughout the task 

based on a 1-up/2-down staircasing procedure targeting a 0.6 target detection rate for each 

individual (Garcı́a-Pérez, 1998; Kingdom and Prins, 2016). The staircased task consisted of three 

blocks of 32 trials. The target gray value was determined for each participant by taking the 

average target gray value across the last two blocks of trials. These final average values ranged 

from 70 to 112 and were used as the target gray value in the orientation perception task.  

The MATLAB code for the a staircased target detection task and the orientation 

perception task are available at https://osf.io/cw7ux/ and 

https://github.com/APPLabUofA/OrientTask_paper. 

EEG Recording 

During the experiment, EEG data was recorded from each participant with a Brain-Amp 

32-channel amplifier (BrainVision) using gelled low-impedance electrodes (actiCAP passive 

electrodes kept below 5 kΩ). Inter-electrode impedances were measured at the start of each 

experiment. All electrodes were arranged in the same 10-20 positions (Fp2, Fp1, F4, F3, F8, F7, 

FC2, FC1, FC6, FC5, C4, C3, CP2, CP1, CP6 CP5, P4, P3 P6, P5, P8, P7, PO4, PO3, O2, O1, 

Fz, FCz, Cz, Pz, and Oz). In addition to the 31 EEG sensors, a ground electrode was used, 

positioned at AFz. Two reference electrodes and the vertical and horizontal bipolar EOG were 

recorded from passive Ag/AgCl easycap disk electrodes affixed on the mastoids, above and 

below the left eye, and 1 cm lateral from the outer canthus of each eye. The bipolar channels 

https://osf.io/cw7ux/
https://github.com/APPLabUofA/OrientTask_paper
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were recorded using the AUX ports of the Brain-Amp amplifier. SuperVisc electrolyte gel and 

mild abrasion with a blunted syringe tip were used to lower impedances. Gel was applied and 

inter-electrode impedances were lowered to less than 5 kΩ for all electrode sites. EEG data was 

recorded online referenced to an electrode attached to the left mastoid. Offline, the data were re-

referenced to the arithmetically derived average of the left and right mastoid electrodes.  

Data were digitized at 1000 Hz with a resolution of 24 bits. Data were filtered with an 

online bandpass with cutoffs of 0.1 Hz and 250 Hz. The experiment was run in a dimly lit, sound 

and radio frequency-attenuated chamber from Electromedical Instruments, with copper mesh 

covering the window. The only electrical devices in the chamber were an amplifier, speakers, 

keyboard, mouse, and monitor. The monitor ran on DC power from outside the chamber, the 

keyboard and mouse were plugged into USB outside the chamber, and the speakers and amplifier 

were both powered from outside the chamber, and nothing was plugged into the internal power 

outlets. Any devices transmitting or receiving radio waves (e.g., cell phones) were removed from 

the chamber for the duration of the experiment. 

EEG Preprocessing 

All analyses were completed using Matlab R2018b with the EEGLAB 13.6.5b (Delorme 

and Makeig, 2004) and CircStat (Berens, 2009) toolboxes, as well as custom scripts. After the 

data had been re-referenced offline, the bandpass FIR filter from EEGLAB was applied with 

lower and upper cut-offs of 0.1 Hz and 50 Hz. Data was segmented into 3000 ms epochs aligned 

to target onset (-1500 ms pre-target onset to 1500 ms post-target onset). The average voltage in 

the 200 ms baseline prior to the target was subtracted on each trial for every electrode, and trials 

with absolute voltage fluctuations on any channel greater than 1000 μV were discarded. Eye 

movements were then corrected with a regression-based procedure developed by Gratton, Coles, 
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and Donchin (1983). After a second baseline subtraction with 200 ms pre-target, trials with 

remaining absolute voltage fluctuations on any channel greater than 500 μV were removed from 

further analysis. Data was then subjected to visual inspection and manual rejection of trials 

contaminated by artifacts. On average, 3% of trials were rejected during visual inspection. Other 

than the two participants mentioned earlier, none of the remaining participants had more than 

20% of trials rejected in this manner. 

Data Analyses 

Data analysis was performed using MATLAB R2018b (The MathWorks Inc, Natick, MA, 

USA) and EEGLAB 13.6.5b (Delorme and Makeig, 2004). All statistical analyses were 

conducted using MATLAB R2018b. Red-white-blue colormaps were created using the redblue.m 

function by Auton (2009) found here: 

https://www.mathworks.com/matlabcentral/fileexchange/25536-red-blue-colormap. The 

MATLAB code for data analysis is available at the GitHub repository 

https://github.com/APPLabUofA/OrientTask_paper and the raw data files are available at 

https://osf.io/cw7ux/.   

Behavioral Data 

Response errors on each trial were calculated by subtracting the orientation of the 

response stimulus, as reported by the participant, from the orientation of the target stimulus (see 

Figure 2.1B).  

Comparing Model Fits. In addition to the standard mixture model proposed by Zhang 

and Luck (2008), the working memory literature has several other models similar to the standard 

mixture model but makes different assumptions about some of the parameters. Some of the 

working memory models are not appropriate for the current visual orientation perception task 

https://github.com/APPLabUofA/OrientTask_paper
https://osf.io/cw7ux/


52 
 

such as those that have an additional Von Mises distributions to account for “swapping” errors or 

errors where the participant report a distractor item rather than the target (Bays, Catalao and 

Husain, 2009). On the other hand, the variable precision models were ones that could be 

appropriate for the current study. The original idea behind to model was that the precision of 

memory varies from trial-to-trial rather than being fixed as it is in the standard mixture model. 

This is done by Fougnie and colleagues (2012) by having the standard deviation parameter be 

distributed according to a higher-order distribution, we chose a Gaussian distribution in this case. 

The variable precision model proposed by van den Berg and colleagues (2012) has a precision 

(i.e., the inverse of variance) parameter drawn from a gamma distribution. Neither paper 

presented clear justification for choosing one distribution over another, especially when the set 

size is always one, so we tested both distributions. In addition, we tested whether the variable 

precision models fit better to the response error data when they did not have the guess rate 

parameter compared to the standard mixture model and the variable precision models with a 

guess rate parameter. According to the variable precision models, what seems to be guessing is 

just low precision on that trial (van den Berg et al., 2012). If this were the case, the variable 

precision models without a guess rate parameter would fit the data better than the standard 

mixture models. On the other hand, the variable precision models do not, necessarily, preclude 

guessing. Fougnie et al (2012) found that the models with a guess rate parameter described their 

data better than those without. To determine whether their findings extend to orientation 

perception data, variable precision models with a guess rate parameter were also tested.  

We determined which model better fit the response errors using the model comparison 

routine in the MemToolbox (Suchow et al., 2013). We included the standard mixture model with 

the bias parameter in addition to the two variable precision models with and without the guess 



53 
 

rate parameter. The goodness-of-fit measures used were the log likelihood and the Bayesian 

information criterion (BIC).  

Standard Mixture Model. After determining the standard mixture model proposed by 

Zhang and Luck (2008) was the best fit to the current data set, the model was fit to each 

participant’s response errors using the maximum likelihood estimation routine in the 

MemToolbox (Suchow et al., 2013). According to the standard mixture model, response 

deviations from the actual target orientation reflect a mixture of trials where the target’s 

orientation was detected and trials where participants did not detect the target so guessed 

randomly. Therefore, the distribution of response errors consists of a mixture of a von Mises 

distribution (representing the trials where the target’s orientation was detected) and a uniform 

distribution (random guesses (g)). Parameter sigma (σ) is the standard deviation of the von Mises 

distribution, which represents the width of the response error distribution of trials that the target’s 

orientation was detected. Parameter g is the height of the uniform distribution representing the 

guessing probability. A third parameter, mu (μ), which is the mean of the von Mises distribution 

and represents systematic bias of the response error distribution was included in the standard 

mixture model of two participants because the Bayesian information criterion (BIC), calculated 

with the model comparison functions provided by MemToolbox (Suchow et al., 2013), indicated 

that the three-parameter standard mixture model provided better fits for those two participants 

(see Table 2.1). Although the three-parameter model was used for all analysis of those two 

participants, the systematic bias was much smaller than the spacing between adjacent target 

orientations (spacing was 15° whereas the two participants’ μ was -4.2° and 2.7°) indicating that 

those two participants had a slight clockwise and counterclockwise bias, respectively. The two-
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parameter standard mixture model was used for all analysis of the remaining 22 participants 

because it provided a better fit according to the BIC.  

Time-Frequency Analyses  

To calculate the phase angle and power for each trial, we used Morlet wavelet transform 

of single trials using the newtimef() function of EEGLAB. A Morlet wavelet is a tapered 

sinusoid, constructed by modulating a sine wave with a Gaussian envelope. Wavelet 

transformation was created with 1.027 Hz linear steps and cycles starting from 2 cycles at 2 Hz 

to 12 cycles at 40 Hz. The output of this function was a matrix of complex values. The abs() 

function from MATLAB was used to get the instantaneous amplitude and the instantaneous 

phase angle of each trial was calculated using the angle() function from MATLAB. 

EEG power data was converted to Z scores by applying a single-trial normalization 

procedure to the data from each participant at each electrode and frequency separately. This was 

done because it helps disentangle background from task-related dynamics, allows for comparison 

across different frequency bands and electrodes, and facilitates group-level analysis (Cohen, 

2014). Each trial’s entire epoch (-700 ms to 800 ms relative to target onset) was used for the 

baseline during normalization because it has been shown to be robust to the effects of noisy trials 

(Grandchamp and Delorme, 2011). The downside to using the entire epoch for the baseline 

normalization is that sustained changes throughout the trial period become difficult to detect 

(Cohen, 2014). Ultimately, we considered this an acceptable trade-off for being able to compare 

effects in power and behavioral measures across participants without having to make as many 

assumptions about frequency bands and time-windows. Plots of mean normalized power at select 

electrodes can be seen in Figure 2.2. 
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Figure 2.2. Time-frequency plots of mean normalized 

power 

Time-frequency plots showing the mean normalized 

power of trials categorized as accurate and guesses at 

selected electrodes and the average of all electrodes 

(Grand Average). 

 

Another possible limitation of using the entire epoch for the baseline during 

normalization is that changes in pre-target power may be obscured by post-target activity. 

However, comparing effects across participants using raw EEG power is difficult due to 

individual differences caused by factors independent of the experimental manipulations (e.g., 

skull thickness) (Cohen, 2014). Therefore, when possible, the logarithmically transformed power 

was used. EEG power data was logarithmically transformed by applying a single-trial log10 

transformation procedure to the data from each participant at each electrode and frequency 
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separately. When the raw log transformed power is used, it is referred to as log power. EEG 

power that was converted to z-scores is called baseline normalized power. 

Accurate vs Guess Trials 

To test for significant differences in brain activity on trials where participants had small 

response errors compared to large response errors, we separated each participant’s trials based on 

the sigma value from the fits of their individual response errors to the standard mixture model. 

This was done by defining each participant’s trials with response errors between -0.75σ and 

+0.75σ as “accurate,” and trials with response errors less than -1.5σ and greater than +1.5σ as 

“guesses” (Figure 2.3A). Trials where the participant clearly perceives the target are likely trials 

with a response error less than the participant’s overall response standard deviation, and trials the 

participant has little to no perception of the target are likely trials with a response error greater 

than just the participant’s response standard deviation. It should be noted that there are various 

reasons for participants to be accurate when they are guessing or have a large response error 

when they accurately perceived the target. However, such events are thought to be rare enough, 

or at least not systematic, that they will not unduly affect the overall distribution.    

The main reason we separated trials into “accurate” or “guess” was to see if the standard 

mixture model parameters could be used to categorize trials in a meaningful way. Though this 

method resulted in excluding some trials, namely ones that fell between the cutoffs for accurate 

and guess, the outcome provided insight into how brain activity differs between different levels 

of objective perceptual performance. Overall, the mean proportion of trials excluded by falling 

between the cutoffs was M = 0.25, SD = 0.05.       
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Figure 2.3. Accurate and Guess trial categories and fitted 

standard mixture model 

A) Representation of how trials were split into the two 

categories, Accurate and Guess. This was done by defining each 

participant’s trials with response errors between -0.75σ and 

+0.75σ as “accurate” (shaded brown region), and trials with 

response errors less than -1.5σ and greater than +1.5σ as 

“guesses” (shaded green regions). Trials that did not fall in 

either category were discarded from this analysis between the 

two trial categories. B) Left, model fit of each participant. Right, 

solid purple line is the average of participants’ model fit. Light 

purple area represents ±SEM. Zoomed in window shows 
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upward shift of the averaged model fit showing a non-zero 

guess rate. C) Boxplots of parameter values (left) guess rate and 

(right) standard deviation estimated from model fits of 

participants’ response errors. 

 

ERP Analyses. To remove the activity elicited by the mask without removing activity 

resulting from the interaction of mask and target, the catch trials (mask-only) average was 

subtracted from the orientation detection trials (target-plus-mask) average. ERP data was 

submitted to a repeated-measures, two-tailed permutation test based on the tmax statistic (Blair 

and Karniski, 1993) using the mxt_perm1() function from the Mass Univariate ERP Toolbox 

(Groppe, Urbach and Kutas, 2011). The time windows of interest were the P1 (80-140 ms), N1 

(140-200 ms), P2 (200-255 ms), N2 (255-360 ms), and P3 (360-500 ms) components. The ERP 

component time windows were selected based on previous literature (Koivisto and Revonsuo, 

2003, 2010). All 31 brain electrodes were included in the test. 100,000 random within-participant 

permutations were used to estimate the distribution of the null hypothesis and the familywise 

alpha (α) was set to 0.05. Based on this estimate, critical t-scores of +/-3.68 (df = 23) were 

derived. Any t-scores that exceeded the critical t-score were considered statistically significant.  

Baseline Normalized EEG Power Analysis. To analyze differences in EEG baseline 

normalized power between guess and accurate trials, nonparametric permutation testing with a 

pixel-based multiple-comparison correction procedure (Cohen, 2014) was used to analyze 

differences in EEG band power between guess and accurate trials. The pixel-based multiple-

comparison correction method involves creating one distribution of the largest positive pixel 

value and another distribution of the largest negative pixel value from each iteration of the 

permutation testing.  After all iterations, the statistical threshold is defined as the value 
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corresponding to the 2.5th percentile of the smallest values and the value corresponding to the 

97.5th percentile of the largest values which are the thresholds corresponding to an α of 0.05. Any 

pixel that has a value exceeding the upper or lower value is considered significant. The pixel-

based method corrects for multiple comparisons by creating two distributions based on map-level 

information instead of pixel-level information. In other words, this method results in two 

distributions of the most extreme null-hypothesis test statistical values across all pixels rather 

than calculating null-hypothesis distributions for each pixel (see Cohen (2014) for further details 

about pixel-based multiple-comparison correction method). All analysis using nonparametric 

permutation testing with pixel-based multiple-comparison correction performed 10,000 iterations 

per test. To obtain more stable estimates from permutation testing, we ran a “meta-permutation 

test” by repeating the pixel-level permutation procedure 10 times and then averaging the results 

(Cohen, 2014). It needs to be pointed out that a “significant effect” determined by pixel-based 

permutation testing should not be considered a precise estimate in the temporal and frequency 

domains. Although pixel-based permutation testing is more stringent than cluster-based 

permutation tests (Cohen, 2014), caution should still be used when interpreting “significant” 

differences, especially if the temporal and frequency range of each pixel is relatively small.  

EEG Phase Analysis. To determine whether the mean phase values significantly differ 

between accurate and guess trials, we used the circular Watson–Williams (W-W) test which was 

calculated using the PhaseOpposition.m function by VanRullen (2016a). We chose the parametric 

circular W-W test because it has shown to be equivalent to the non-parametric phase opposition 

sum (POS) measures under most conditions and performed better in situations where either the 

relative trial number or the ERP amplitude differed between the two trial groups (VanRullen, 

2016a). The statistical significance of the W-W test across participants was determined by 
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combining the individual-level p-value time-frequency map at each electrode across participants 

using Stouffer's method (Stouffer et al., 1949; VanRullen, 2016a), transforms individual p-values 

into z-scores, combines them across participants, and converts the resulting z-score to a 

combined probability. P-values were then corrected for multiple comparisons across time points 

and frequencies at each electrode using the false discovery rate (FDR) procedure described in 

Benjamini and Yekutieli (2001). Effects that satisfied a 5% FDR criterion were considered 

significant. 

Single-Trial EEG Activity and Response Errors 

To test the correlation between time-frequency log power and degree of response error, 

Spearman’s rho (rs) correlation coefficients were calculated using a nonparametric permutation 

testing approach with the pixel-based multiple-comparison correction procedure described 

above. The null-hypothesis distribution was created by shuffling power values and response 

errors on each trial with respect to each other. This provided a data-driven test of the null 

hypothesis that there is no consistent relationship between degree of response error and EEG 

power.  

  To look at whether task performance is related to oscillatory phase, and if yes, at what 

frequency, we used the weighted inter-trial phase clustering (wITPC) (Cohen and Voytek, 2013; 

Cohen, 2014). The logic behind the inter-trial phase coherence (ITPC) is that a systematic 

relation between EEG phase and behavioral outcome should result in a higher-than-chance ITPC 

in each of the trial subgroups. However, if the phase of the EEG signal is randomized and 

unpredictable, the distribution of phases at a given time period should follow a uniform 

distribution over all trials. The problem with ITPC is that it assumes EEG phase is relevant to 

experimental measures only when phase values are similar across trials (van Diepen and 
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Mazaheri, 2018). Unlike ITPC, wITPC is sensitive to modulations of phase values even if those 

phases are randomly distributed across trials as would be expected if response errors (which 

differs from trial to trial) were modulated by oscillatory phase (Cohen and Voytek, 2013; Cohen, 

2014). 

The wITPC was computed for each participant as the resultant vector length, or ITPC, of 

phase angles across trials once the length of each vector has been weighted by a variable of 

interest (in this case, each trial’s phase vector is weighted by the degree of response error on that 

trial; see Figure 2.7A for example of computation) (Cohen and Voytek, 2013; Cohen, 2014). For 

statistical testing, a null-hypothesis distribution was created by shuffling the phase values 

relative to trial response error 10,000 times (see Figure 2.7A middle and bottom left). The 

wITPCz was calculated as the wITPC standardized relative to the null-hypothesis distribution, 

providing a z-value corresponding to the probability of finding the observed response error–

phase modulation by chance, given the measured data. As was done for the parametric circular 

W-W test, statistical significance of the wITPCz across participants was evaluated by combining 

the individual-level p-value, calculated from the z-values, time-frequency map at each electrode 

across participants using Stouffer's method (Stouffer et al., 1949; VanRullen, 2016a). P-values 

were then corrected for multiple comparisons across time points and frequencies at each 

electrode using the false discovery rate (FDR) procedure described in Benjamini and Yekutieli 

(2001). Effects that satisfied a 5% FDR criterion were considered significant. 

We chose to use the phase opposition measure and the wITPCz even though they are both 

quantifying phase coherence because they provide slightly different but complementary 

information about the effects of phase. The phase opposition measure provides insight into 

whether there is an overall consistent difference in mean phase values between trials separated 
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by model parameter defined categories (i.e., “accurate” and “guess”). On the other hand, the 

weighted single-trial phase modulation metric (i.e., wITPCz) provides information about 

response error-specific modulations of phase values irrespective of the model. In other words, the 

circular W-W test reflects differences between the mean phase of the binned trials while wITPCz 

reflects differences in phase as it relates to the continuous measure of response errors. Also, the 

wITPCz does not rely on phase values being consistent over trials, they only need to be 

consistently related to response errors (Cohen and Cavanagh, 2011). This is an important 

distinction when trying to determine how much of the phase modulation is an artifact of the 

stimulus-evoked activity and how much is related to the difference in task performance. 

Relationship Between Log Power and Standard Mixed Model Parameters 

To determine how mixture model parameters standard deviation and guess rate varied as 

power varied, a median split of trials according to raw power at each time and frequency point 

was done for each participant at each electrode separately. EEG power from the Morlet Wavelet 

transformation was logarithmically transformed by applying a single-trial log10 transformation 

then trials were split by whether they were above or below the median power at each time point 

and frequency. This was done separately for each participant at each electrode. The standard 

mixture model was then fit to each set of response errors on the high power and low power trials 

to get model parameter values. This meant that every time-frequency point had a standard 

deviation and guess rate from trials with high power and low power. The “high power” and “low 

power” parameters were then averaged across a frequency band (2-3 Hz, 4-7 Hz, 8-14 Hz, 15-29 

Hz or 30-40 Hz) and then tested statistically with the same procedure as the ERP analysis except 

each time point was tested rather than averaging across a time window and the alpha level was 

set to 0.01 to control for the familywise error rate (Bonferroni corrected alpha level αcorr = 0.05/5 
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to account for the five frequency bands). Figure 2.4 gives a visual overview of each step in this 

analysis. 

 

Figure 2.4. Illustration of parameter values derived from high/low power trials 

Illustration of the analysis looking at how the estimated parameter values from the standard 

mixture model varied across an epoch when trials were separated by the power within a 

frequency band at each time point. First, time-frequency transformation (e.g., Morlet wavelet 

transformation) of single-trial data was used to calculate raw power of every time and 

frequency point for each trial. Trials were split by median power at each time and frequency 

point then the standard mixture model was fit to the trials’ response errors. This was done for 

each participant and electrode separately. An average of the parameter values (i.e., standard 

deviation and guess rate) from the “high power” and “low power” trials were calculated across 

the five frequency bands (2-3 Hz, 4-7 Hz, 8-14 Hz, 15-29 Hz or 30-40 Hz) at each time point 

and then were compared statistically using a repeated measures, two-tailed permutation test 

based on the tmax statistic (Blair and Karniski, 1993). 

 

Considering the timing and frequency of these significant effects, it is likely they reflect 

the same processes measured by the ERP components. To test this idea, a procedure like the one 

described above was applied to the ERP data so that trials were split by the average amplitude of 

each ERP component rather than at each time point. The “high amplitude” and “low amplitude” 

fitted model parameters were tested statistically with the same procedure as the accurate vs guess 

ERP analysis.  
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For comparison with the ERP results, the guess rate and standard deviation parameters 

from high and low 2-3 Hz and 4-7 Hz log power trials were averaged across the time windows 

used for each ERP component: 80-140 ms (P1), 140-200 ms (N1), 200-255 ms (P2), 255-360 ms 

(N2), and 360-500 ms (P3). These were submitted to the same statistical procedure as the ERP 

components except the alpha level was Bonferroni corrected to 0.025 to account for testing two 

frequency bands. The two frequency bands were chosen because they are the only ones that have 

shown significant effects across all previous analyses.  

Stepwise multiple regression analyses were performed for the standard mixture model 

parameters. Details about the methods and results can be found in Supporting Information. 

2.3 RESULTS 

Comparing Model Fits 

We tested the best fitting model using the goodness-of-fit measures log likelihood and the 

Bayesian information criterion (BIC). The results are presented in Figure 2.5 and the mean ± 

SEM of the fitted parameters for all the tested models are in Table 2.1. Overall, the BIC indicates 

the standard mixture model fits the data better than any of the variable precision models and the 

standard mixture model with a bias parameter. As Fougnie and colleagues (2012) found, the 

models also performed better when they included a guess rate parameter. The log likelihood 

indicates the standard mixture model with a bias parameter is better than the standard mixture 

model and the variable precision models. The differences between the BIC and log likelihood 

metrics can be attributed to the BIC having a penalty for model complexity whereas the log 

likelihood does not control for those factors. 
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Figure 2.5. Goodness-of-fit measures 

Goodness-of-fit measures relative to the standard mixture model. 

The models compared to the standard mixture model were the 

standard mixture model with a bias parameter and the two variable 

precision models with and without a guess rate parameter (Model – 

Guess Rate). Top, the difference in log likelihood values compared 

to the standard mixture model with positive values favoring the 

standard mixture model. Bottom, the difference in Bayesian 

Information Criterion (BIC) values compared to the standard 

mixture model with negative values favoring the standard mixture 

model. Log likelihood favors the standard mixture model with a 

bias parameter (µ) over the standard mixture model and both 

variable precision models. The BIC favors the standard mixture 

model over the other three models. Plots are the means and error 

bars are ±SEM. 
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Table 2.1. List of goodness-of-fit measures comparing the standard mixture model to the 

standard mixture model with a bias parameter (µ) for each participant. 

 
Note. Difference is calculated as the goodness-of-fit measure of the standard mixture model with 

a bias model subtracted from the goodness-of-fit measure of the standard mixture model. 
a Positive difference indicates the standard mixture model with a bias parameter (µ) fits better to 

the participants’ response errors (i.e., has a smaller BIC) than the standard mixture model. 

 

Accurate vs Guess Trials 

Two participants were excluded before further analysis because one had a guess rate more 

than three IQRs from the median and the other had a guess rate of 3.9e-15 indicating that the 

staircasing procedure did not work properly for this individual. These participants were not 

included in further analysis. Figure 2.3B shows the fit of the standard mixture model (or standard 

 Log Likelihood  Bayesian Information Criterion (BIC) 

 Standard Model Model + Bias Difference  Standard Model Model + Bias Difference 
Participant 1 -1255.82 -1255.33 -0.49  2526.45 2532.88 -6.44 
Participant 2 -1213.93 -1212.78 -1.15  2442.77 2447.92 -5.15 
Participant 3 -1095.28 -1094.58 -0.70  2205.45 2211.50 -6.05 
Participant 4 -1093.29 -1093.24 -0.05  2201.25 2208.50 -7.24 
Participant 5 -1191.23 -1190.92 -0.31  2397.23 2404.01 -6.77 
Participant 6 -1113.21 -1111.14 -2.07  2241.28 2244.57 -3.29 
Participant 7 -965.54 -964.92 -0.62  1945.90 1952.06 -6.16 
Participant 8 -1022.30 -1021.07 -1.23  2059.48 2064.47 -4.99 
Participant 9 -1109.18 -1109.12 -0.06  2233.12 2240.39 -7.27 
Participant 10 -1422.57 -1422.42 -0.15  2859.94 2867.05 -7.11 
Participant 11 -1384.47 -1384.46 -0.00  2783.78 2791.20 -7.42 
Participant 12 -1017.58 -1015.52 -2.06  2049.58 2052.67 -3.09 
Participant 13 -1498.89 -1498.55 -0.34  3012.59 3019.32 -6.73 
Participant 14 -1071.57 -1071.55 -0.02  2157.98 2165.36 -7.38 
Participant 15 -1124.71 -1123.84 -0.87  2264.26 2269.94 -5.68 
Participant 16 -985.46 -985.17 -0.29  1985.36 1991.99 -6.63 
Participant 17 -1149.36 -1149.26 -0.11  2313.61 2320.84 -7.23 
Participant 18 -1136.58 -1136.50 -0.09  2287.86 2295.02 -7.17 
Participant 19 -1133.03 -1132.91 -0.12  2280.88 2288.04 -7.16 
Participant 20 -1276.89 -1275.81 -1.08  2568.44 2573.61 -5.17 
Participant 21 -1138.27 -1133.04 -5.23  2291.40 2288.37 3.03a 
Participant 22 -1003.69 -988.80 -14.89  2022.10 1999.69 22.41a 
Participant 23 -1011.18 -1010.68 -0.50  2037.17 2043.57 -6.40 
Participant 24 -1166.38 -1162.88 -3.49  2347.60 2348.04 -0.44 
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mixture model with a bias parameter for the participants mentioned in the Methods section) to 

each participant’s response errors as well as the average fit of response errors across participants. 

The remaining 24 participants had a mean guess rate of 0.19 (SD = 0.18) and mean standard 

deviation (σ) parameter of 11.1 (SD = 2.5). The boxplots in Figure 2.3C summarizes the 

distributions. 

ERP Analysis 

The ERPs from accurate and guess trials (Figure 2.6A) showed no statistical difference 

for the first 200 ms following target onset across all electrodes. A divergence in the waveforms 

can be seen in the P2 (200-300 ms) component for the frontal, central, and centroparietal 

electrodes (Figure 2.6B left) in that the voltage of the guess trial ERPs was attenuated compared 

to the accurate trial ERPs. On the other hand, the voltage of the N2 (255-360 ms) component was 

more negative in the guess trials than accurate trials (Figure 2.6A) and this difference was only 

significant in the right frontocentral, central, centroparietal and parietal electrodes (Figure 2.6B 

middle). Finally, the P3 (360-500 ms) component from the guess trials had a similar attenuation 

as was seen in the P2 component (Figure 2.6A), but the distribution was more posterior with 

significant effects seen in the right central, centroparietal and parietal electrodes as well as 

bilateral parietooccipital and occipital electrodes (Figure 2.6B right).  

EEG Power Analysis  

Pixel-based permutation test indicated significant differences between accurate and guess 

trials within the 2-4 Hz frequency range which was observed to start around 310 ms post-target 

onset in P8 with a duration of about 70 ms and 350 ms post-target onset in P7 with a duration of 

around 120 ms (Figure 2.6C).  
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Overall, there was a trend for increased 4-7 Hz power in accurate trials compared to 

guess trials, especially in left frontal and right parietal areas, though this difference was not 

significant. This lack of significance might be due to too much variability in when the 4-7 Hz 

power changed during the trial. It is also possible that 4-7 Hz activity reflects a perceptual 

process that could occur in both accurate and guess trials, though more often or to a greater 

degree in one type of trial compared to the other. 

Finally, there were a brief period (20-30 ms) where guess trials had significantly more 

baseline normalized power than accurate trials at around 2 Hz right before target onset in FC2 

(around -50 ms; Figure 2.6C) and Cz (around -70 ms; not shown). However, because of the 

wavelet parameters used and the timing being around a large evoked response, the timing of the 

difference is likely smeared backward so that the effect probably occurred after the target had 

been presented (VanRullen, 2011; Herrmann et al., 2014; Brüers and VanRullen, 2017). It should 

be noted that no other analysis yielded a significant effect immediately before or after target 

onset suggesting that these results are false positives, or the other analyses lacks the power to 

detect the effect. The very short duration of an effect at such a low frequency suggests the former 

is more likely. If it is the latter, the timing suggests it might have something to do with the mask 

onset (e.g., anticipation of the mask stimuli) rather than the target. However, the current study 

was not designed to investigate the masking stimulus making it difficult to determine the truth 

behind the observed effect. 
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Figure 2.6. Summary of accurate vs guess trial analysis 

A) ERPs of accurate trials and guess trials aligned to target onset at selected electrodes and 

averaged across all electrodes (Grand Average). Light brown and light green shaded areas 

around waveforms represent ±SEM of accurate trials and guess trials, respectively. Mask trial 

EPRs have been subtracted out of the ERPs to remove mask-related brain activity except for 

the Grand Average + Mask ERPs plot. Time period shaded in purple indicates significant 

difference between accurate and guess trials 200-255 ms (P2) post-target. Blue shaded time 

period indicates significant difference between accurate and guess trials 360-500 ms (P3) post-

target. B) Topographies of the voltage distribution difference between accurate and guess 

trials. The time periods in each topography are as follows: 200-255 ms (P2), 255-360 ms (N2), 

and 360-500 ms (P3) post-target. Stars indicate electrodes with significant differences between 

accurate and guess ERPs. Mask trial activity has been subtracted out of the ERPs to remove 

mask-related brain activity. C) Analysis results from comparing the baseline normalized power 

of accurate vs guess trials. Time-frequency plots showing the results of the statistical analysis 

of the difference in power between accurate vs guess trials at each time-frequency point at 

selected electrodes and the average of all electrodes (Grand Average). Black contour denotes 

statistically significant differences (after applying the pixel-based multiple-comparison 

correction procedure) at p < .05. D) Phase analysis of accurate vs guess trials. Time-frequency 

plots showing the p-values (after applying FDR correction) from the statistical analysis testing 

differences in the mean phase of accurate trials vs guess trials. Plots are from selected 

electrodes and the average of all electrodes (Grand Average). Time-frequency points with p-

values above the threshold of FDR correction for multiple comparisons were set to 1. E) 

Topographies of the p-value distribution averaged across the 2-3 Hz frequency (top) and 4-7 

Hz frequency (bottom) indicating significant differences in the mean phase of accurate trials vs 

guess trials. Time-frequency points with p-values above the threshold of FDR correction for 

multiple comparisons were set to 1. The time periods in each topography are the same as used 

for the ERP analysis: 200-255 ms (P2), 255-360 ms (N2), and 360-500 ms (P3) post-target. 

Only the time periods and frequency bands that had significant effects after averaging over the 

time window are shown. 
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EEG Phase Analysis 

Similar to the baseline normalized power results, significant differences in mean phase 

between accurate and guess trials were found in the 2-7 Hz frequency ranges following target 

onset (Figure 2.6D). Central and bilateral frontal, frontocentral, and central electrodes show 

significant phase differences in 4-7 Hz starting between 150-200 ms and terminating before 350 

ms post-target (not shown). The duration of this effect varies so that the more central electrodes 

tended to have longer durations than those placed more laterally on the head. This effect was 

more prevalent in the right hemisphere in the early period. 

The most lateral parietal and centroparietal electrodes on the left side of the head show 

significant phase differences within 2-3 Hz after the response screen onset (Figure 2.6E). On the 

other hand, Pz, P3 (Figure 2.6D), P4, and PO3 electrodes had no significant effects in phase 

while P6 and P8 had brief periods of significant phase differences starting a little after 300 ms 

until 500 ms post-target in the 2-3 Hz frequency range. P7 showed a similar significant 

difference in mean phase at 2 Hz starting around 225 ms and continuing until more than 200 ms 

after the response screen had been presented (about 770 ms post-target; Figure 2.6D). The 

occipital electrodes had significant phase effects primarily in the 3-5 Hz range starting a little 

after 100 ms on the left (not shown) and 150 ms on the right but were brief time periods until 200 

ms post-target which then had significant differences lasting for about 200 ms (Figure 2.6D). 

PO4 electrode showed a similar difference, but the effect was less continuous and had larger p-

values (i.e., smaller phase difference between accurate and guess trials) than the occipital 

electrodes; however, PO4 also had significant differences within 2-3 Hz frequency between 400 

and 500 ms (Figure 2.6D).  



72 
 

It should be noted that the time window of significant phase opposition overlaps with the 

significant differences in ERP amplitudes. ERP amplitudes have been shown to have a 

“masking” effect on phase opposition measures resulting in a decrease in their statistical power 

(VanRullen, 2016a) while at the same time the stimulus-evoked activity results in temporal 

distortion of oscillatory activity towards earlier latencies (Brüers and VanRullen, 2017). While 

the circular W-W test is relatively robust against the detrimental effect of ERPs, it does not 

negate their influence entirely (VanRullen, 2016a). Therefore, it is important to be aware that the 

significant effects of phase are affected by the stimulus evoked activity and the different ERP 

amplitudes between accurate and guess trials. 

Single-Trial EEG Activity and Response Errors 

To see whether response errors were related to trial-by-trial changes in pre-target alpha 

power, the Spearman’s rho correlations were calculated between log power and degree of 

response error on each trial. Our results did not allow us to reject the null hypothesis. Follow-up 

analysis on the entire time-frequency space also yielded no significant results (not shown). 

To examine the relationship between response errors and the distribution of phase values, 

we used the wITPCz. As can be seen in Figure 2.7B, phase was primarily modulated by degree 

of response errors in the 2-3 Hz frequency range in the posterior electrodes starting at around 200 

ms post-target and lasting until response screen onset. PO3 was similar except the effect started 

at around 250 ms (not shown), but PO4 showed an effect starting at 350 ms and lasting until 

almost 100 ms after the response screen onset (not shown). Parietal electrodes show a significant 

effect in the low frequency bands starting at around 200 ms until about 800 ms post-target 

(Figure 2.7B, top and bottom rows). Centroparietal and central electrodes had a significant 

relationship between phase at 2-3 Hz and response errors at around 300-400 ms post-target and 



73 
 

lasted until after response screen onset. All frontocentral electrodes had response errors 

significantly related to 2-3 Hz phase starting between 200 ms and 300 ms post-target and lasting 

until shortly after response screen onset. Out of all the frontal electrodes, only Fz and F3 had a 

significant 2-7 Hz phase relationship to response errors (not shown).  

 

Figure 2.7. Summary of wITPCz analysis and results 

A) Example computation of weighted inter-trial phase clustering (wITPC) to relate single-

trial phase to degree of response error. Top left, single-trial prestimulus phase vectors are 

shown as black lines and are not clustered across trials due to the randomization of the 

fixation length, leading to a low resultant vector length (i.e., low ITPC). Right, histogram of 

null-hypothesis vector lengths created by shuffling the mapping of the trial response error 

values to the trial phase values. The observed vector length (large arrow) is calculated from 

the distribution shown in bottom left panel. Bottom left shows how the length each trial's 

phase vector is scaled by that trial's degree response error and a weighted ITPC is computed, 
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reflecting the relationship between the distribution of phase angles and degree of response 

error even though the distribution of the phase angles themselves is uniform (as seen in the 

top left plot). The wITPCz value is the wITPC standardized relative to the null-hypothesis 

distribution seen in the histogram plot. Example based on figure by Cohen (2014). B) Time-

frequency plots of analysis relating single-trial phase activity and response errors. Significant 

p-values indicating that the normalized distance of the observed wITPC (i.e., wITPCz) is 

significantly different from the distribution of null hypothesis wITPC values. This measure 

represents the relationship between the distribution of phase angles and the degree of 

response error on each trial. Plots are only of selected electrodes and the average of all 

electrodes (Grand Average). Time-frequency points with p-values at or above .05 were set to 

1. C) Topographies of the p-value distribution (after applying FDR correction) averaged 

across the 2-3 Hz frequency indicating that the normalized distance of the observed wITPC 

(i.e., wITPCz) is significantly different from the distribution of null hypothesis wITPC 

values. This measure represents the relationship between the distribution of phase angles and 

the degree of response error on each trial. Time-frequency points with p-values above the 

threshold of FDR correction for multiple comparisons were set to 1. The time periods in each 

topography are the same as used for the ERP analysis: 120-200 ms (N1), 200-255 ms (P2), 

255-360 ms (N2), and 360-500 ms (P3) post-target. Only showing time periods and 

frequency bands that had significant effects after averaging over the time window. 

 

Relationship Between Log Power and Standard Mixed Model Parameters 

A repeated measure, two-tailed permutation test indicated that significant differences in 

parameter values between high and low power trials were within the 2-3 Hz frequency band 

following target onset. Figure 2.8A shows the electrodes that had significant differences in guess 

rate and Figure 2.8B shows the electrodes that significant differences in the standard deviation 

(σ) parameter. No other electrodes had significant parameter value differences. Most of the 

effects are seen in the occipital and parietal electrodes except for the left frontal electrode which 

had a significant difference in guess rate at the later time points than observed in the other 
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electrodes. The left parietal and occipital electrodes showing significant effects in standard 

deviation were not the same electrodes showing significant effects in guess rate. Interestingly, 

both the guess rate and standard deviation were higher in trials with low 2-3 Hz log power than 

high. No significant differences were seen in the 2-3 Hz frequency band prior to 250 ms post-

target onset and did not occur later than 100 ms before the response screen appeared. It should be 

noted that, unlike the accurate vs. guess analysis, these results are based on the log power so the 

lack of pre-target effects cannot be an artifact of the normalization process.  

 

Figure 2.8. Relationship between log power and model parameter values 

A) Plots of the fluctuations in the guess rate parameter across time in trials with high 

and low log power in the 2-3 Hz frequency band. No other frequency band had 

significant differences in guess rate between high and low power trials. Only 

electrodes with significant effects are shown. Green shaded regions indicate time 

points where guess rate in high and low power trials significantly differed. Shaded 

regions around waveforms are ±SEM. B) Plots of the fluctuations in the standard 

deviation (σ) parameter across time in trials with high and low log power in the 2-3 

Hz frequency band. No other frequency band had significant differences in standard 

deviation between high and low power trials. Only electrodes with significant effects 

are shown. Green shaded regions indicate time points where the standard deviation 
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parameter in high and low power trials significantly differed. Shaded regions around 

waveforms are ±SEM. 

 

When the parameter values on high and low log power trials were averaged over the ERP 

time windows, a similar pattern of effects were seen in the 2-3 Hz frequency band. There was an 

overall trend for higher guess rates (Figure 2.9A) and larger standard deviations (Figure 2.9B) on 

trials with lower log power. The most notable difference was a significant difference in guess rate 

on trials with high and low 4-7 Hz log power at Pz in the 200-255 ms time window. Interestingly, 

when compared to the guess rates on trials with high and low P2 amplitudes, the ERP component 

during that time period, the significant differences are concentrated in the frontal and central 

electrodes. Based on visual inspection, the 4-7 Hz log power seems to contribute to P2 

differences, but only weakly.   

 

Figure 2.9. Topographies comparing the relationship between ERP amplitudes and 

parameter values and the relationship between log power and parameter values 

Topographies of the A) guess rate (g) and B) standard deviation (σ) parameters from fitting the 

standard mixture model to trials categorized as having high (top row) or low (middle row) ERP 

amplitude compared to the trials categorized as having high (top row) or low (middle row) log 

power in the specified frequency band. The bottom row shows the differences in the parameter 

values between high and low trials. The time period in each topography are the windows over 

which the mean amplitude was calculated for the ERP analysis and the windows over which 
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the guess rate (g) or standard deviation (σ) parameters were averaged for the log power 

analysis (see Figure 2.4 for more details). All time periods are relative to target onset. On the 

bottom row, stars indicate electrodes with significant differences between parameter values. 

The alpha level for the ERP amplitude and log power statistical comparisons was 0.05 and 

0.025, respectively. Only the time periods and frequency bands with significant effects are 

shown except for the standard deviation (σ) parameters from fitting the ERP amplitude (B, left 

column) which were included for comparison.  

 

In contrast, the significant effects for the 2-3 Hz frequency band activity during the N2 

ERP (255-360 ms) is obscured for the ERP component itself. Only P6 had a significant 

difference in guess rate based on differences in N2 amplitude where most right centroparietal, 

parietal, and parietooccipital electrodes exhibited significant guess rate differences as well as the 

left parietal electrode P7.    

Finally, the large P3 ERP showed a significant difference in guess rates at the more 

posterior electrodes though these differences were primarily on the right side. In comparison, 

during the P3 time window (360-500 ms) the more lateral parietal and centroparietal electrodes 

on the left side and the most lateral parietal electrode on the right side (P8) showed a different 

difference in guess rate on trials with high vs low 2-3 Hz log power. Interestingly, Fp1 and Fp2 

also showed a significant difference in guess rates at 2-3 Hz frequency. Consistent with the time 

courses shown in Figure 2.8B, it was only during this late time period that a significant 

difference was seen in the standard deviation (σ) parameter values. Like the guess rate parameter, 

trials with high 2-3 Hz log power had greater standard deviations (σ) than trials with low log 

power. This significant difference was only observed at the left posterior electrode, P5, though 

there was a trend for the bilateral occipital and parietal electrodes to have a relatively large 

standard deviation (σ) on the low 2-3 Hz power trials (Figure 2.9B, middle row). In comparison, 
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there were no ERP amplitudes showing a significant difference in the standard deviation (σ) 

parameter. 

2.4 DISCUSSION 

There were two goals for the present study. First, we asked what working memory model 

best fit to continuous response measures on an orientation perception task? The second goal of 

the study was to ask what might the relationship be between the parameters of the best-fitting 

model and EEG activity?  

Comparing Model Fits 

Since perceiving the visual stimuli usually precedes remembering those same stimuli, 

some of the assumptions built into the visual working memory models are applicable to visual 

perception. Namely, the assumption that there are a set of targets that are remembered and a set 

of targets that are not remembered and they can be represented by two distributions which would 

translate to the current task as a set of targets that are seen and another set of targets not seen. For 

this reason, the first question addressed was what working memory model and their associated 

assumption could be extended to the current study’s orientation perception task? Based on 

goodness-of-fit metrics, we found that the standard mixture model fit the current data set better 

than the models that assumed a varying distribution for the standard deviation parameter. In other 

words, we did not find evidence supporting the idea that precision can be described by a variable 

distribution during orientation perception. This result is consistent with Shen and Ma (2019) who 

also found little evidence for variable precision during visual perception. Furthermore, we found 

that the models that included a guess rate parameter performed better than the variable precision 

models that did not. This indicates that the existence of guessing cannot only be attributed to the 

low perceptual quality that was drawn, by chance, from a stochastic distribution. It is important 
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to point out that this does not mean there is no variability in performance over the course of an 

experiment. It has been noted by many authors that performance changes as participants get 

better at the task or when they get tired towards the end of the experiment. Rather, these results 

suggest that a model with a fixed standard deviation fits better to orientation perception task 

performance than one that varies from trial to trial according to some underlying distribution. 

EEG Activity, Model Parameters and Perceptual Behavior 

The second goal was to try to answer the question of how brain activity modulates 

perceptual representation as it is quantified by the guess rate and standard deviation parameters. 

Specifically, we wanted to see if brain activity prior to the target onset in the 8-14 Hz frequency 

range (alpha band) modulated whether a target is perceived (i.e., guess rate); and, we tested 

whether the quality of target’s perceptual representation (i.e., standard deviation parameter) was 

related to post-target brain activity in the 4-7 Hz frequency range (theta band). To this end, trials 

were categorized as accurate or guesses based on model parameter values. The EEG activity on 

accurate and guess trials were then compared across participants. Then, a complementary 

approach was used that did a median split of trials based on EEG power. The model was fit to the 

high power and low power trials and the resulting parameter values were compared across time 

within different frequency bands. Despite our original hypothesis that alpha activity (8-14 Hz) 

would be related to guess rate or the standard deviation parameter, the evidence did not support 

this idea. Instead, the model-based and power-based approaches both found that 2-7 Hz activity 

after target onset modulated perceptual representation as it was quantified by the guess rate and 

standard deviation parameters. 
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Accurate vs Guess Trials: ERP Activity 

Significant differences in ERP waveforms of the accurate and guess trials started at 

around 200 ms post-target onset in the anterior locations on the head (Figure 2.4B) which 

corresponds to the P2 component (Potts and Tucker, 2001; Key, Dove and Maguire, 2005; Di 

Russo et al., 2019). The greater amplitude of the P2 for accurate guess trials fits with the P2 

being related to the salience of stimuli (Potts and Tucker, 2001) or stimulus recognition (Harel et 

al., 2016). 

We also observed a more negative N2 for guess trials, that seems to go against current 

literature which suggests that the onset of visual consciousness can be marked by a greater 

negativity in the N2 time range due to an overlapping posterior negative component called the 

visual awareness negativity (VAN) (Koivisto and Revonsuo, 2003, 2010; Förster, Koivisto and 

Revonsuo, 2020). However, the separation of trials based on response performance rather than 

awareness (according to Koivisto and Revonsuo (2010), the VAN can only be reliably detected 

by comparing aware and unaware conditions), would explain why we would not expect greater 

negativity in the N2 time range for accurate ERPs compared to guess ERPs. Furthermore, the 

distribution of the observed N2 component (mostly right central electrodes) does not match the 

typical posterior VAN distribution (Förster, Koivisto and Revonsuo, 2020). In fact, the N2 

distribution points towards the presence of the much larger P3 component. The most likely 

explanation is that the attenuated guess trial ERPs (compared to accurate trials) results in a 

smaller or later positive voltage from the much larger P3 overlapping the negative deflection at 

the N2 time period (Koivisto and Revonsuo, 2010; Förster, Koivisto and Revonsuo, 2020) so that 

the N2 appears more negative in guess trials when it is actually due to the P3 being smaller. The 

voltage increase of accurate compared to guess ERPs during the P3 time window follow previous 
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findings on attention and visual perception (Key, Dove and Maguire, 2005; Salti, Bar-Haim and 

Lamy, 2012). In the current study the P3 is likely related to processes such as stimulus 

classification and saliency evaluation (Salti, Bar-Haim and Lamy, 2012; Helfrich and Knight, 

2019; Doradzińska et al., 2020; Förster, Koivisto and Revonsuo, 2020) and that these processes 

are overwhelmingly more relevant to accurate orientation perception than processes for 

conscious perception as reflected by the relatively smaller N2 ERP. Furthermore, the difference 

in ERPs between accurate trials and guess trials during the N2 time period (see middle 

topographic plot of Figure 2.4B) indicates that the processes reflected by the N2 likely occur in 

both types of trials though to differing degrees. Instead, it appears that the main difference 

between accurate and guess trials is the extent that the target can be classified or evaluated by the 

brain regardless of consciously perceiving the target. 

Accurate vs Guess Trials: EEG Activity 

We had originally hypothesized activity within the alpha frequency band (8-14 Hz range), 

especially prior to target onset, mediating task performance. However, the results did not support 

this hypothesis. It is possible a null effect could be attributed to using both pre- and post-target 

activity in the pixel-based multiple correction procedure. Relative to post-target activity, pre-

stimulus power would be very small since the only thing for participants to do was fixate on a 

white circle. As a result, differences in pre-target activity might not exceed significance 

thresholds when those thresholds were based on the background spectra of the combined pre- 

and post-target activity. However, we tested this possibility by analyzing power in the 8-14 Hz 

frequency range during just the pre-target time period and found no significant differences 

between accurate and guess trials (data not shown). Therefore, it is unlikely that a lack of 
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significant difference in pre-target 8-14 Hz range is due to an exceedingly high statistical 

threshold set by the post-target activity.  

Another possibility is that the short intertrial interval (ITI) between participants’ response 

and fixation onset starting the next trial meant alpha desynchronization carried over to the next 

trial so that it masked any true effects of spontaneous alpha. While this is a possibility, alpha 

activity following the end of a trial is also affected by evaluating their response, task load, and 

motivational state (Compton et al., 2011; Compton, Bissey and Worby-Selim, 2014; Compton, 

Heaton and Ozer, 2017). While the short ITI is problematic for alpha analysis in some regards, it 

is beneficial in other ways such as discouraging participants from strategizing or reflecting back 

on the previous trial. 

Similarly, the interstimulus interval (ISI) between fixation onset and target onset is 

possibly too short to let event-related desynchronization (ERD) of alpha to recover, thus masking 

the effects of spontaneous alpha during the pre-target period. Although potentially problematic, 

this should not adversely affect results because the ERD should be equal across all conditions 

since fixation is the same on all trials. Therefore, the activity related to the target perception is 

equally affected so relative differences can still be detected if they are present. 

The most likely reason for not finding a pre-target effect of 8-14 Hz activity is that there 

was no information for the participant to use before a target was presented, so there would be no 

attention-related changes or task-based preparation prior to the target. This means that the only 

activity present during fixation are the spontaneous fluctuations of normal neural activity. Recent 

work by Samaha et al (2020) propose that spontaneous alpha activity modulates neural activity 

in a non-specific manner, thus neither facilitating nor inhibiting perceptual activity. The net effect 
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would be no change to performance which is line with what the model proposed by Samaha and 

colleagues (2020) would predict.  

The absence of significant effects in post-target 8-14 Hz (alpha band) activity suggests 

that alpha activity is not related to the processes responsible for differences between accurate and 

guess trials. The fact that post-target 8-14 Hz activity was also unrelated to response errors on a 

trial-by-trial basis suggests that 8-14 Hz activity is not related to perception of a target’s 

orientation. This is consistent with Bae and Luck (2018) who found that alpha activity did not 

encode a target’s orientation when the target’s spatial location was controlled for. An absence of 

a relationship between 8-14 Hz power and performance measures has been noted in other studies 

though they were not able to rule out changes in detection bias which can be ruled out in the 

current study since guess rate was not related to alpha activity (Benwell et al., 2017; Keitel et al., 

2018). However, awareness bias might be a possibility assuming orientation perception can 

proceed in the absence of conscious awareness which seems likely based on previous research 

(Benwell et al., 2017; Koenig and Ro, 2019; Doradzińska et al., 2020). In sum, it is likely that 8-

14 Hz (alpha band) activity is more related to a global process that is not dependent on conscious 

awareness and would not change across trials such as feature-independent stimulus processing. 

The most significant differences between accurate and guess trials were in the 2-4 Hz 

frequency ranges, particularly in the parietal and parietooccipital electrodes during the latter half 

of the post-stimulus epoch (Karakaş, 2020). A significant increase of delta and low theta power 

in accurate compared to guess trials could be seen at around 300 ms though their differences in 

mean phase, especially for theta, started earlier (200 ms post-target). Although there was a trend 

in our data for increased theta power in accurate trials compared to guess trials, this difference 

was not reliable. 
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The significant differences in theta and delta seem to correspond to changes in the N2 and 

P3 ERP components observed in the time domain. Many studies have shown that delta and theta 

are the primary contributors to the formation of the N2 and P3 (Karakaş, Ömer Utku Erzengin 

and Başar, 2000; Harmony, 2013; Harper, Malone and Bernat, 2014). It has been proposed that 

activity in the 2-3 Hz range contributes continuous positivity throughout the ERP response while 

theta activity corresponds to the polarity change as the negative deflection during the N2 shifts to 

the positive deflection during the P3 (Harper, Malone and Bernat, 2014). This fits with the 

observed EEG activity of accurate and guess trials (Figure 2.4C and Figure 2.4D). Furthermore, 

the interplay between theta and delta activity would explain the indistinct N2 but large P3 

waveforms (Karakaş, Ö U. Erzengin and Başar, 2000). 

The increase in baseline normalized 4-7 Hz power during accurate trials relative to guess 

trials has the earliest onset in left frontal and right parietal electrodes. Prolonged theta in right 

posterior electrodes is accompanied by significant differences in mean (low) theta phase between 

accurate and guess trials. Theta has been interpreted as being correlated with selective attentional 

processing (Karakaş, Ö U. Erzengin and Başar, 2000; Başar et al., 2001; Karakaş, 2020) and an 

increase in theta synchronization and power has been associated with successful memory 

encoding (Klimesch, 1999) and right hemispheric theta is greater than left when encoding 

visuospatial information (Sauseng et al., 2004). Although the task in this study was not a 

memory task, encoding information is still a viable way of looking at how the brain transforms 

the visual sensory information into perceptual representations. In fact, theta has been shown to be 

sensitive to target and non-target stimuli regardless of memory load (Palomäki et al., 2012). 

Therefore, it is probable that theta activity might be related to the “encoding” of the target’s 

orientation or just the detectability of target itself. Both functions could occur in accurate and 
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guess trials, though more often or to a greater degree in accurate trials compared to guess trials. 

This would explain why 4-7 Hz activity showed a trend for increased power in accurate trials 

compared to guess trials though this difference was usually not significant. 

In contrast to the 4-7 Hz activity, activity within 2-3 Hz showed a more spatially diffuse 

increase in power in accurate vs guess trials with maxima over the lateral parietal areas. Delta 

phase differed significantly between accurate and guess trials over the occipital and lateral 

parietal areas with the most robust phase differences at around 350 ms post-target. Several 

experiments that showed increases in delta activity during the performance of different mental 

tasks and conflict-monitoring paradigms have led investigators to associate delta with 

modulation of networks that should be inactive to accomplish the task (Harmony, 2013; Rawls, 

Miskovic and Lamm, 2020). Investigators have also noted a close association between delta 

activity and the P3 ERP waveform (Schürmann et al., 1995, 2001; Harper, Malone and Bernat, 

2014; Rawls, Miskovic and Lamm, 2020). If the P3 reflects post-perceptual processes, then it is 

likely 2-3 Hz activity is also involved. Whether that role is as an inhibitory mechanism or not 

remains unknown. Overall, when considering the time and frequency at which reliable 

differences were observed between accurate and guess trials, it seems likely that this post-target 

activity reflects differences in the level of perceptual encoding of the target orientation and the 

subsequent precision of responses on the task.   

Single-Trial EEG Activity and Response Errors 

  We were surprised to find no significant correlation between response error and 

oscillatory power in any of the measured frequencies, but this could also be attributed to the lack 

of sensitivity of the analysis method. Since we failed to find support for our hypothesis regarding 

alpha oscillations, we chose to take a conservative approach when analyzing the rest of the time-
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frequency space. Using a less conservative method might help answer the question but that 

would increase the risk of finding false positives which could be more harmful than accepting 

false negatives.  

Interestingly, we did find a relationship between response error and phase values in the 2-

7 Hz frequencies similar to the significant differences in mean phase of accurate trials compared 

to guess trials. In fact, phase modulation by response errors is even more pronounced than the 

differences in phase between accurate and guess trials. This strongly suggests 2-7 Hz phase 

activity plays an important role in the amount of participants’ response error on a trial-by-trial 

bases. Delta (2-3 Hz) and theta (4-7 Hz) frequencies are usually associated with working 

memory and cognitive control, but these results imply that they have an important role in visual 

perceptual processes as well.  

Relationship Between Log Power and Standard Mixed Model Parameters 

There were significant differences in the guess rate and standard deviation parameter 

values from trials with high compared to low log power at 2-3 Hz starting at around 255 ms post-

target onset. The trend was for trials with low power to have higher guess rate and standard 

deviation parameter values than trials with high power. The same trend was found for the guess 

rates on trials with high vs low 4-7 Hz log power though those effects started a little earlier 

(around 200 ms post-target onset) than those at 2-3 Hz frequency range. These results are in line 

with the accurate vs guess analysis performed on baseline normalized power data. Specifically, 

trials categorized as “accurate” had more power and a different preferred phase in the 2-7 Hz 

frequency range than trials considered “guesses.” There were no significant effects prior to the 

target onset which fits with the baseline sensory excitability model proposed by Samaha and 

colleagues (2020). 
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Interestingly, Fp1 electrode showed significant difference in guess rate between high and 

low power trials prior to the onset of the response screen. Accumulation of evidence has led 

investigators to associate frontal delta (2-3 Hz) activity with top-down control and response 

inhibition (Harmony, 2013; Helfrich et al., 2017; De Vries et al., 2018; Rawls, Miskovic and 

Lamm, 2020). Considering that these late significant effects in the frontal area are almost entirely 

after those in the parietal and occipital electrodes and are only for guess rate, it is likely top-

down control has to do with maintaining the perceptual representation or inhibiting distracting 

information during the delay period. In this way, an increase in 2-3 Hz brain activity would help 

maintain a target’s “perceived” state rather than the target becoming part of the “unseen” 

distribution that the guess rate represents. 

Considering the timing and frequency of these significant effects, it seems likely that they 

reflect the same processes measured by the ERP components in the accurate vs guess analysis. 

However, as others have found (and can be seen in Figure 2.9 and Appendix Table B.1 and 

Appendix Table B.2), an ERP component’s amplitude is usually determined by a combination of 

different underlying brain potentials which often represent separable functional processes 

(Karakaş, Ömer Utku Erzengin and Başar, 2000; Woodman, 2010; Harper, Malone and Bernat, 

2014). In the current study, it is likely that the activity at 2-3 Hz and 4-7 Hz interact dynamically 

to contribute to the measured ERP components morphology. 

Conclusion and Future Directions 

Overall, we have shown that the standard mixture model can be extended to a visual 

perception task and that doing so provides important insight into how brain activity shapes visual 

perception. Our results point towards a perceptual representation that has a fixed precision 

meaning that while response errors vary with the level of neural activity after stimulus onset, 
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their variability is according to the same distribution across trials. Whether this is true across 

different levels of target visibility is not known but would be an interesting question for future 

research. 

It is important to note that our results are not suggesting pre-target EEG activity has no 

effect on visual perception. There is a lot of evidence to contrary. It has been proposed that pre-

target alpha activity alters participants’ confidence rather than performance on visual perception 

tasks (Samaha, Iemi and Postle, 2017; Samaha et al., 2020), a distinction the current study was 

not designed to test. It is possible the analysis methods were not sensitive enough to pick up 

changes in pre-target activity though there were no significant effects in a follow-up analysis 

analyzing just the pre-target time period making a lack of statistical power unlikely. The most 

likely explanation for an absence of pre-target effects is that participants did not have 

information about an upcoming trial so there was no reason to prepare prior to the target. A 

follow-up study that directly manipulates attention or detectability of the target and measures 

participants’ confidence along with the objective measures of response error, might be able to 

better test how differences in brain activity prior to target onset affect visual perception and 

subsequent task performance. 
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3  

THE EFFECT OF COVERT SPATIAL ATTENTION ON THE 

RELATIONSHIP BETWEEN PERCEPTUAL QUALITY AND 1/F AND 

PERIODIC ELECTROENCEPHALOGRAPHY ACTIVITY IN A CUED 

ORIENTATION PERCEPTION TASK 

3.1 INTRODUCTION 

Our brain must deal with a large amount of incoming visual information in a way that is 

energy efficient, fast, and accurate. To satisfy all three criteria, attention is used to selectively 

improve processing of visual input relevant to our behavioral goals. In this way, our brain can 

conserve energy by processing only a subset of sensory information while still being able to 

respond to the environment in a timely manner. Our brain accomplishes this by using attention to 

selectively focus on those things in the environment that are salient or goal-related. Attention is a 

neuro-cognitive process that enables relative improvement in task-related sensory processing and 

subsequent performance (Desimone, 1995; Carrasco, 2011; Nobre and Kastner, 2014). Although 

this selective attention-related processing has been found across different sensory modalities and 

at multiple levels of the information processing hierarchy, how these mechanisms work and the 

details of their underlying neural circuity is still debated. 

Orientation estimation tasks are common in the visual perception literature (Fischer & 

Whitney, 2014) and the application of the standard mixture model to orientation perception 

(Bays, 2016; Samaha, Switzky and Postle, 2019) and attention (Michel, Dugué and Busch, 2021) 
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has been previously studied. In previous work, we have shown that performance on a visual 

orientation perception task can be quantified using the standard mixture model originally 

developed by Zhang and Luck (2008) to investigate visual working memory (Sheldon and 

Mathewson, 2021). Furthermore, we were able to associate task performance to changes in EEG 

activity. Now, our aim is to extend this previous study to investigate whether visual working 

memory models can quantify the effect of covert spatial attention on the visual orientation 

perception task and how EEG brain activity varies as a function of attention, perception, and task 

performance. 

To study attention, a spatial cueing component has been added to the original orientation 

perception task. Specifically, targets now appeared in the left or right visual field instead of 

centrally. Participants receive a cue about the side the target will appear on and are instructed to 

pay attention to that side without moving their eyes. In the control condition, participants still 

receive a cue, but the cue does not indicate which side the target will be presented. This is a 

common paradigm used in the visuospatial literature with well documented effects of hemifield-

selective attention on the lateralization of alpha oscillations and various ERP components 

(Carrasco, 2011, Di Russo et al., 2021, Foxe and Snyder, 2011, Kelly et al., 2009, Kelly et al., 

2006, Luck et al., 2000, Slagter et al., 2016). In other words, it provides a good basis for the 

current research study.    

There has been a great deal of research on alpha-related (8-14 Hz) neural mechanisms 

underlying visuospatial attention. While the relationship between alpha-band activity and 

visuospatial has been reported numerous times, it is unclear how this process unfolds. Some 

evidence has pointed towards alpha activity having a role in visuospatial attention by selectively 

suppressing distracting or irrelevant information (Kelly et al., 2006; Jensen and Mazaheri, 2010; 
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Klimesch, 2012). Others have found support for alpha activity facilitating relevant information 

processing by modulating cortical excitability of task-related sensory regions (Gould, Rushworth 

and Nobre, 2011; Foster and Awh, 2019). Yet still, there is evidence for alpha being involved in 

both attentional mechanisms (Rihs, Michel and Thut, 2009; Sokoliuk et al., 2019). These mixed 

results could be attributed to a heterogeneity in alpha generation where thalamic and cortical 

brain areas give rise to alpha oscillations with the same frequency spectra but serve different 

functional roles (Başar, 2012; Halgren et al., 2019; Bourgeois et al., 2020). Another possibility is 

that results have been confounded by the contributions of aperiodic activity that may underlie 

apparent differences in oscillatory power if not controlled for (Donoghue et al., 2020; Donoghue, 

Dominguez and Voytek, 2020; Gyurkovics et al., 2021). 

Recent studies have started to raise concerns about evidence found using the standard 

analytic approaches that focus only on the periodic oscillatory activity of electrophysiological 

signals, including evidence related to alpha activity (Iemi et al., 2019; Donoghue et al., 2020; 

Gyurkovics et al., 2021; Waschke et al., 2021). Most time-frequency analysis focuses on 

measures of the periodic or oscillatory activity even though electrophysiological brain activity 

contains 1/f-like aperiodic activity (i.e., power decreases with increasing frequency) that can 

confound results (Donoghue et al., 2020; Donoghue, Dominguez and Voytek, 2020). 

Traditionally, researchers ignored or discarded a spectra’s aperiodic activity, considering it to be 

neural noise.  

Recently, interest in the 1/f aperiodic activity has gained momentum as more studies have 

shown it to have biological importance. For example, a lower (flatter) 1/f exponent has been 

associated with age-related decline in working memory performance (Voytek et al., 2015; 

Donoghue et al., 2020) while an increase has been correlated with performance on various 
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cognitive tasks including successful lexical predication (Dave, Brothers and Swaab, 2018) and 

reaction time on a visual short-term memory task (Thuwal, Banerjee and Roy, 2021). Evidence 

from computational models and invasive neural recordings have demonstrated that 1/f exponent 

of electrophysiological spectra reflects the balance between excitation (E) and inhibition (I) 

neural activity (Gao, Peterson and Voytek, 2017) while optogenetics has shown that a lower 1/f 

exponent is causally linked to increased E:I balance (Chini, Pfeffer and Hanganu-Opatz, 2021). 

In addition, induced changes in E:I balance by ketamine and propofol were well approximated 

by the EEG spectral 1/f exponent (Waschke et al., 2021). A recent study by Waschke et al (2021) 

found that selective attention to sensory input from different modalities resulted in a reduction of 

the 1/f exponent in the corresponding modality-specific brain areas. Interestingly, the authors 

found that the attention-related decrease in EEG aperiodic exponents exceeded the changes 

observed in alpha oscillations (Waschke et al., 2021). 

In the current study, we predict that cues informative about the location of the upcoming 

target will improve the probability of the participant perceiving the target thereby decreasing 

guess rate relative to when the cue is non-informative. If the 1/f aperiodic exponent reflects 

changes in the E:I ratio, and covert spatial attention improves the quality of the stimulus 

representation by increasing the gain on the signal (Sokoliuk et al., 2019), then we hypothesize 

that there will be a decrease in the response variability as a function of a decreasing 1/f exponent. 

Furthermore, if the 1/f aperiodic exponent is a better indicator of these attention-related shifts in 

the E:I balance that are thought to reflect local desynchronization and the corresponding changes 

to the efficacy of information processing (Harris and Thiele, 2011; Gao, Peterson and Voytek, 

2017; Waschke et al., 2021), then the 1/f aperiodic exponent should better capture the dynamics 

of the task performance measures than alpha oscillatory activity. 
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3.1 MATERIALS AND METHODS 

Participants 

Thirty-five participants from the University of Alberta community participated in the 

study (age range = 17-34 years). Seven participants were not included in the analysis due to 30% 

or more trials containing eye movement artifacts (i.e., overt attention; see the EEG Preprocessing 

section for more details). One other participant was excluded from the analysis due to having 

extreme outlying performance on the task (see Behavioral Analysis in the Results section for 

more details). Participants were all right-handed and had normal or corrected normal vision and 

no history of neurological problems. All participants gave informed written consent, were either 

compensated at a rate of $10/hr or given research credit for their time. The study adhered to the 

tenets of the Declaration of Helsinki and was approved by the Internal Ethics Board at the 

University of Alberta. 

Cued Orientation Perception Task 

Participants were seated 57 cm away from a 1920 x 1080 pixel2 ViewPixx/EEG LCD 

monitor (VPixx Technologies, Quebec, Canada) with a refresh rate of 120 Hz, simulating a CRT 

display with LED backlight rastering. The rastering, along with 8-bit digital TTL output triggers 

yoked to the onset and value of the top left pixel, allowed for submillisecond accuracy in pixel 

illumination times, which were confirmed with a photocell prior to the experiment. Stimuli were 

presented using a Windows 7 PC running MATLAB R2012b with the Psychophysics toolbox 

(Version 3; Brainard, 1997; Pelli, 1997). The code running the task was a modified version of the 

Orientation Perception Task code from Sheldon and Mathewson (2021). The original version of 

the code can be found here: https://github.com/APPLabUofA/OrientTask_paper. Video output 

https://github.com/APPLabUofA/OrientTask_paper
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was sent to the ViewPixx/EEG with an Asus Striker GTX760 (Fremont, CA) graphics processing 

unit. 

Each trial began with a white fixation dot presented at the center of the monitor and two 

dark gray circles to the left and right of the fixation dot for 700 ms after which one of three 

possible cues appeared above the central fixation dot, vertically aligned to the top of the circles 

(Figure 3.1A). Two cues were black triangles pointing towards the left or right, indicating the 

side the target will appear (i.e., informative cues). The third cue was both black triangles pointed 

toward each other indicating that the target will appear to the left or right (i.e., non-informative 

cue). The cues remained on screen for 1242, 1284, 1325, or 1367 ms. After the cue, the target 

appeared for 8.33 ms (one monitor refresh) in the center of the left or right circle. The target 

always appeared to the side indicated by the informative cue. For non-informative cues, the 

target could appear on the left or right with equal probability. The target was in the shape of a 

needle and was pointing toward one of 24 predefined evenly spaced directions so that all the 

orientations covered 360 degrees. The direction of the target was randomly selected on each trial. 

A backward mask lasting for 8.33 ms with a constant 41.7 ms target-mask stimulus-onset 

asynchrony appeared in the center of both circles regardless of the side the target appeared. The 

mask was created by overlaying the target orientated in all 24 directions which created a star 

shape seen in Figure 3.1A. Following the mask offset, a 516.6 ms blank interval period occurred 

identical to the fixation.  
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Figure 3.1. Cued orientation perception task 

A) Sequence of task events with duration of each screen 

presentation and sizes of fixation, cues, target, mask, and 

response stimuli. Sizes are in degrees of visual angle. B) 

Example of response error calculation. Response errors are 

reported in degrees. 

 

After the blank interval, a response screen appeared with the needle in the center of the 

screen. Using the computer mouse, participants were asked to rotate the needle so that it was 

pointed in the same direction as the previous target. If participants detected a target but could not 

remember its orientation, they were asked to guess the orientation of the target. Participants 

could provide their response at their own pace. No feedback was given to participants. The next 

trial began immediately after a needle’s orientation was selected. See Figure 3.1A for a summary 

of the task sequence and the stimulus dimensions. 

Participants completed eight blocks consisting of 48 trials each, along with 20 practice 

trials at the beginning of the experiment. Participants completed a total of 404 trials with 33% of 
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trials having a non-informative cue and about equal left and right targets, 33% of trials having a 

right target and informative cue, and 33% of trials having a left target and informative cue. 

Participants could rest at their own pace every 48 trials. Extensive written and verbal instructions 

were presented to participants prior to the practice trials. Instructions thoroughly explained and 

demonstrated each component that would compose a single trial.  

Before the cued orientation perception task, participants performed a staircased cued 

target detection task that had the same parameters as the cued orientation perception task except 

that participants only reported whether they saw the target or not using the keyboard. The target 

color was a gray determined by a scalar value passed to the functions in Psychtoolbox (Version 

3; Brainard, 1997, Pelli, 1997). In the staircased cued target detection task, the target color value 

could range from the background color (making it not visible; corresponding value of 256) to 

black (making it the most visible; corresponding value of 0). This target gray value was adjusted 

throughout the task based on a 1-up/2-down staircasing procedure targeting a 0.65 target 

detection rate for each individual (Garcı́a-Pérez, 1998; Kingdom and Prins, 2016). The staircased 

task consisted of three blocks of 48 trials. The target gray value was determined for each 

participant by taking the average target gray value across the last two blocks of trials. These final 

values came to be 56 on average (SD = 20) and were used as the target gray value in the cued 

orientation perception task.  

The MATLAB code for the cued staircased target detection task and the cued orientation 

perception task are available at https://github.com/APPLabUofA/CuedOrientTask_paper. 

Behavioral Data Analyses 

Response errors on each trial were calculated by subtracting the orientation of the 

response stimulus, as reported by the participant, from the orientation of the target stimulus (see 

https://github.com/APPLabUofA/CuedOrientTask_paper
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Figure 3.1B).  

Comparing Model Fits  

In addition to the standard mixture model proposed by Zhang and Luck (2008), the 

working memory literature has several other models similar to the standard mixture model but 

makes different assumptions about some of the parameters. For example, the variable precision 

models are based on the idea that the precision of memory varies from trial-to-trial rather than 

being fixed as it is in the standard mixture model. This is done by Fougnie and colleagues (2012) 

by having the standard deviation parameter be distributed according to a higher-order 

distribution, we chose a Gaussian distribution in this case. The variable precision model 

proposed by van den Berg and colleagues (2012) has a precision (i.e., the inverse of variance) 

parameter drawn from a gamma distribution. Neither paper presented clear justification for 

choosing one distribution over another, especially when the set size is always one, so we tested 

both distributions. 

Due to the targets’ location being left or right of fixation, all the models were tested with 

and without a third parameter, referred to as the bias or mu (µ), which is the mean of the von 

Mises distribution and represents systematic bias of the response error distribution. It was 

included in case there were any clockwise or counterclockwise biases in the perceived target’s 

orientation due to its lateral locations. 

After finding that the models had a significantly worse fit when there were informative 

cues than non-informative cues (see Results section), we tested whether foreknowledge of the 

target eliminated guessing. Since target detection rates were determined using the average 

threshold across trials with informative and non-informative cues, there could be two possible 

explanations. First, having an informative cue eliminates the need for guessing so removing the 
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guess rate parameter would result in improved model fitting for the trials with an informative 

cue. Or, second, there is something else about having prior information about the target’s 

upcoming location that the models are not able to account for other than an absence in guessing. 

we tested whether the variable precision models fit better to the response error data when they 

did not have the guess rate parameter compared to the standard mixture model and the variable 

precision models with a guess rate parameter. Furthermore, according to the variable precision 

models, what seems to be guessing is just low precision on that trial (van den Berg et al., 2012). 

If this were the case, the variable precision models without a guess rate parameter would fit the 

data better than the standard mixture models. To determine whether this extends to orientation 

perception data, variable precision models without a guess rate parameter were also tested.  

We determined which model better fit the response errors using the model comparison 

routine in the MemToolbox (Suchow et al., 2013). In the first test, we included the standard 

mixture model with the bias parameter in addition to the two variable precision models with and 

without a bias parameter. In the second test, we wanted to see if there was an absence in guessing 

or another alternative reason for the models fitting worse when the cues were informative 

compared to non-informative. To this end, we selected the two best fitting models and compared 

them to versions without their guess rate parameter and included a new model called the 

stochastic sampling model which is based on neural population coding principles that has been 

successful at explaining performance across different visual working memory tasks (Bays, 2014, 

2016; Schneegans, Taylor and Bays, 2020). All the models had a bias parameter since they 

performed equally well as models without (see Results section) and might be useful due to the 

spatial component of the task. Therefore, the second test compared the stochastic sampling 

model with and without a bias (µ) parameter, the standard mixture model and variable precision 
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model with the bias (µ) parameter and the guess rate parameter, and the standard mixture model 

and variable precision model with the bias (µ) parameter and without the guess rate parameter.  

The goodness-of-fit measure used for the comparisons between models was the corrected 

Akaike information criterion (AICc) which includes a penalty for each additional model 

parameter and a correction for finite data (Suchow et al., 2013). The smaller the AICc value, the 

better the fit of the model. The AICc values were submitted to a repeated-measures factorial 

ANOVA (target side and cue type the within-subject factors) using the permutation-based Fmax 

statistic (first described by Blair & Karniski, 1993) which is a mass univariate approach for 

factorial ANOVAs. The Fmax statistic has the advantages of permutation testing in there are less 

assumptions about the data than traditional statistical approaches, and has been shown to be very 

good at controlling Type I errors (Fields and Kuperberg, 2019). The implementation of the Fmax 

test was done with code modified from the Factorial Mass Univariate Toolbox (FMUT; Fields, 

2017). The original code can be found here: https://github.com/ericcfields/FMUT/releases.  

Follow-up pairwise comparisons of significant interactions and main effects was done 

with a repeated-measures, two-tailed permutation test based on the tmax statistic (Blair and 

Karniski, 1993) using the mxt_perm1() function from the Mass Univariate ERP Toolbox 

(Groppe, Urbach and Kutas, 2011). P-values were then corrected for multiple comparisons using 

the false discovery rate (FDR) procedure described in Benjamini and Yekutieli (2001). Effects 

that satisfied a 5% FDR criterion were considered significant. 10,000 random within-participant 

permutations were used to estimate the distribution of the null hypothesis for all permutation-

based tests (i.e., Fmax and tmax) and the familywise alpha (α) was set to 0.05.    

Model Parameter Analysis 

According to the first test comparing models’ goodness-of-fit, the standard mixture 

https://github.com/ericcfields/FMUT/releases
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model + bias (µ) was the best fit to the current data set. The model was fit to each participant’s 

response errors using the maximum likelihood estimation routine in the MemToolbox (Suchow 

et al., 2013). According to the standard mixture model, response deviations from the actual target 

orientation reflect a mixture of trials where the target’s orientation was detected and trials where 

participants did not detect the target so guessed randomly. Therefore, the distribution of response 

errors consists of a mixture of a von Mises distribution (representing the trials where the target’s 

orientation was detected) and a uniform distribution (random guesses (g)). Parameter sigma (σ) 

is the standard deviation of the von Mises distribution, which represents the width of the 

response error distribution of trials that the target’s orientation was detected. Parameter g is the 

height of the uniform distribution representing the guessing probability. A third parameter, mu 

(μ), which is the mean of the von Mises distribution and represents systematic bias of the 

response error distribution was included to account for any influences by the lateralized target 

locations in the task. The three parameters standard mixture model was fit to all participants’ 

response errors from the four different trial conditions (informative cue + left target, informative 

cue + right target, non-informative cue + left target, non-informative cue + right target) 

separately. This means that each participant had a total of 12 parameters calculated from their 

behavioral data. In addition, the probability of a trial being from the uniform distribution (i.e., a 

guess trial) was calculated for each trial condition using code modified from the mixture model 

methods code (Bays, Catalao and Husain, 2009; Schneegans and Bays, 2016) in the Bayslab’s 

Analogue Report Toolbox found here: https://www.paulbays.com/toolbox/index.php. The same 

statistical procedure used to test the goodness-of-fit values was applied to the model parameters 

except the alpha level was set to 0.0167 to control for the familywise error rate (Bonferroni 

corrected alpha level αcorr = 0.05/3 to account for the three parameters). 

https://www.paulbays.com/toolbox/index.php
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To further investigate why model fits were significantly better on non-informative cued 

trials than informative cued trials, we performed a second test comparing models’ goodness-of-

fit. The second test found that the stochastic model + bias (µ) was the best fit to the current data 

set. The model was fit to each participant’s response errors using the maximum likelihood 

estimation routine in the MemToolbox (Suchow et al., 2013). The code for the probability 

density function (pdf) of the stochastic model came from the Bayslab’s Analogue Report 

Toolbox found here: https://www.paulbays.com/toolbox/index.php. The stochastic model was 

originally developed to account for short-term working memory errors (Bays, 2014; Schneegans, 

Taylor and Bays, 2020) and is based on a simple sensory neural population coding model 

(Pouget, Dayan and Zemel, 2000). The idea is that a large number of neurons tuned to respond to 

a basic visual feature (i.e., orientation), but vary in their preferred value so that their tuning 

curve, which can be described by Gaussian function, evenly covers the space of possible feature 

values. These neurons generate discrete spikes through a Poisson process where each spike is 

associated with the preferred value of the neuron that generated it. The number of spikes or 

samples that contribute to the feature representation of each item is drawn independently from a 

Poisson distribution. The more spikes, or samples, that are drawn, the more precisely the true 

stimulus feature can be estimated. Because the tuning curves are Gaussian, the distribution from 

which samples are drawn are Gaussian and the distribution of decoding errors is likewise 

Gaussian. Therefore, the distribution of response errors can be described as a mixture of 

Gaussian distributions with different precisions, each corresponding to a certain number of 

samples and weighted with the probability of obtaining that sample count which follows a 

Poisson distribution. The neural population generating this distribution can be described by the 

tuning width or precision (kappa, κ) of the Gaussian tuning curve, and the mean number of 

https://www.paulbays.com/toolbox/index.php
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spikes generated in a fixed decoding interval (referred to as γ). Same as the standard mixture 

model, a third parameter, mu (μ), which is the mean of the Gaussian distributions represents 

systematic bias in the response error distribution (which could be attributed to a bias in the 

preferred values of the tuned neurons, a bias in the decision criteria, or a bias in response 

generation) was included to account for any influences by the lateralized target locations in the 

task. The model fitting and statistical testing were the same as the standard mixture model 

parameter analyses. 

Follow-up analysis to investigate the effects of each target’s orientation on model 

parameters was conducted on the combined data of all participants. Since this was an unexpected 

effect, the experiment was not designed for a sufficient number of trials with each target 

orientation in each condition to conduct statistical analysis, so all results reported are based on 

descriptive statistics. 

EEG Recording 

During the experiment, EEG data was recorded from each participant with a Brain-Amp 

32-channel amplifier (BrainVision) using gelled low-impedance electrodes (actiCAP passive 

electrodes kept below 5 kΩ). Inter-electrode impedances were measured at the start of each 

experiment. All electrodes were arranged in the same 10-20 positions (Fp2, Fp1, F4, F3, F8, F7, 

FC2, FC1, FC6, FC5, C4, C3, CP2, CP1, CP6 CP5, P4, P3 P6, P5, P8, P7, PO4, PO3, O2, O1, 

Fz, FCz, Cz, Pz, and Oz). In addition to the 31 EEG sensors, a ground electrode was used, 

positioned at AFz. Two reference electrodes and the vertical and horizontal bipolar EOG were 

recorded from passive Ag/AgCl easycap disk electrodes affixed on the mastoids, above and 

below the left eye, and 1 cm lateral from the outer canthus of each eye. The bipolar channels 

were recorded using the AUX ports of the Brain-Amp amplifier. SuperVisc electrolyte gel and 
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mild abrasion with a blunted syringe tip were used to lower impedances. Gel was applied and 

inter-electrode impedances were lowered to less than 5 kΩ for all electrode sites. EEG data was 

recorded online referenced to an electrode attached to the left mastoid. Offline, the data were re-

referenced to the arithmetically derived average of the left and right mastoid electrodes.  

Data were digitized at 1000 Hz with a resolution of 24 bits. Data were filtered with an 

online bandpass with cutoffs of 0.1 Hz and 250 Hz. The experiment was run in a dimly lit, sound 

and radio frequency-attenuated chamber from Electromedical Instruments, with copper mesh 

covering the window. The only electrical devices in the chamber were an amplifier, speakers, 

keyboard, mouse, and monitor. The monitor ran on DC power from outside the chamber, the 

keyboard and mouse were plugged into USB outside the chamber, and the speakers and amplifier 

were both powered from outside the chamber, and nothing was plugged into the internal power 

outlets. Any devices transmitting or receiving radio waves (e.g., cell phones) were removed from 

the chamber for the duration of the experiment. 

EEG Preprocessing 

All analyses were completed using Matlab R2021a with the EEGLAB 13.6.5b (Delorme 

and Makeig, 2004) and CircStat (Berens, 2009) toolboxes, as well as custom scripts. After the 

data had been re-referenced offline, the bandpass FIR filter from EEGLAB was applied with 

lower and upper cut-offs of 0.1 Hz and 50 Hz. Data was segmented into 3000 ms epochs aligned 

to target onset (-2400 ms pre-target onset to 1400 ms post-target onset). The average voltage in 

the 200 ms baseline following fixation onset was subtracted on each trial for every electrode, and 

trials with absolute voltage fluctuations on any channel greater than 1000 μV were discarded. 

Eye movements were then corrected with a regression-based procedure developed by Gratton, 

Coles, and Donchin (1983). After a second baseline subtraction with 200 ms following fixation 
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onset, trials with remaining absolute voltage fluctuations on any channel greater than 500 μV 

were removed from further analysis.  

To ensure there were no horizontal eye movements during the trial, we use a split-half 

sliding window approach on the HEOG signal. We slid a 100 ms time window in steps of 10 ms 

from 1600 ms prior to target onset (at least 200 ms before the first cue appears) to the response 

screen onset 600 ms after target onset. If the change in voltage from the first half to the second 

half of the window was greater than 25 µV, it was marked as an eye movement and rejected 

(Hong et al., 2015; Hakim et al., 2019). Seven participants had to be removed from further 

analysis after this procedure because more than 30% of trials got rejected indicating that they did 

not use covert attention as instructed. The resulting data set was then analyzed in the time and 

frequency domains (details provided below). 

EEG Data Analyses 

Data analysis was performed using MATLAB R2019b (The MathWorks Inc, Natick, 

MA, USA) and EEGLAB 13.6.5b (Delorme and Makeig, 2004). All statistical analyses were 

conducted using MATLAB R2019b and R version 3.6.2 (R Core Team, 2021). The MATLAB 

code for data analysis is available at the GitHub repository 

https://github.com/APPLabUofA/CuedOrientTask_paper and the raw data files are available at 

https://osf.io/dexm2/. 

ERP Analysis 

Event-related potential (ERP) data was submitted to a repeated-measures factorial 

ANOVA (hemisphere, target side and cue type the within-subject factors) using the permutation-

based Fmax statistic. The implementation of the Fmax test was done with code modified from 

the Factorial Mass Univariate Toolbox (FMUT; Fields, 2017). The original code can be found 

https://github.com/APPLabUofA/CuedOrientTask_paper
https://osf.io/dexm2/
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here: https://github.com/ericcfields/FMUT/releases. The time windows of interest were the CNV 

1 (-1000 to -500 ms), CNV 2 (-500 to 0 ms), P1 (80-140 ms), N1 (140-200 ms), P2 (200-255 

ms), N2 (255-360 ms), and P3 (360-500 ms) components. The ERP component time windows 

were selected based on previous literature (Luck, Woodman and Vogel, 2000; Nobre, Sebestyen 

and Miniussi, 2000; Koivisto and Revonsuo, 2010; Luck, 2014; Di Russo et al., 2021). Thirteen 

brain electrode pairs were included in the test. The left hemisphere-right hemisphere electrode 

pairings were O1-O2, PO3-PO4, P7-P8, P5-P6, P3-P4, CP5-CP6, CP1-CP2, C3-C4, FC5-FC6, 

FC1-FC2, F7-F8, F3-F4, Fp1-Fp2. 10,000 random within-participant permutations were used to 

estimate the distribution of the null hypothesis and the familywise alpha (α) was set to 0.05. This 

analysis was repeated on the mean difference between contralateral and ipsilateral electrodes 

relative to the target’s location. The procedure was identical except that there was no hemisphere 

factor since this was investigating mean lateralized activity relative to the target side. 

ERP traces from -1000 to 0 relative to target onset was submitted to a repeated-measures 

factorial ANOVA (hemisphere, trial type the within-subject factors) using the permutation-based 

Fmax statistic. The time period was parsed and averaged into 20 ms non-overlapping windows 

giving a total of 50 time points being tested. Because this time period is prior to target onset, 

non-informative cued trials were collapsed across left and right targets. This gave the following 

three trial types as the levels for the within-subject factor: cued left, cued right, and non-

informative cue. 

It is important to note that because the ERP component names in this study have pre-

selected time windows instead of time windows based on the peaks in the data, the ERP labels in 

the current experiment will not necessarily be the ERP waveforms normally associated with that 

particular label. Instead, the label refers to the time window previous studies used when 

https://github.com/ericcfields/FMUT/releases
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calculating that ERP component (e.g., the P1 will not always be the first positive peak following 

stimulus onset but will be the mean voltage between 80-140 ms post-target). 

Spearman rank correlations were calculated between ERP values and the three 

parameters from the standard mixture model and the stochastic model. This was done for each 

ERP component at each electrode and trial condition separately and each contralateral minus 

ipsilateral electrode pairs relative to the target locations and by informative and non-informative 

cues. P-values were then corrected for multiple comparisons across ERPs and trial conditions at 

each electrode using the false discovery rate (FDR) procedure described in Benjamini and 

Yekutieli (2001). Effects that satisfied a 1.67% FDR criterion (α = 0.05/3 to account for the three 

parameters) were considered significant. 

Periodic and Aperiodic Components 

Because neural power spectra consist of overlapping periodic and aperiodic components, 

it is important to consider the aperiodic activity when measuring a signal’s oscillatory properties. 

For this reason, the FOOOF toolbox (version 1.0.0; Donoghue et al., 2020) was used to identify 

peaks within the alpha (8-14 Hz) and low beta (15-22 Hz) frequency ranges after adjusting for 

the aperiodic component. FOOOF is a spectral parameterization algorithm which decomposes 

the power spectrum into periodic and aperiodic components via an iterative process of model 

fitting (see Donoghue et al., (2020) for detailed description). The FOOOF toolbox is available on 

https://github.com/fooof-tools/fooof. 

Before FOOOF, the power spectral density (PSD) was estimated using the mean Welch’s 

method by applying the compute_spectrum() function from the NeuroDSP package (version 

2.1.0; Cole et al., 2019) in python. The PSD was calculated from 1 to 40 Hz at four different time 

windows for each participant, electrode, and trial separately. The four time windows were target-

https://github.com/fooof-tools/fooof
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aligned and as follows: fix (-1760 to -1360 ms) which is 180 ms after fixation onset to earliest 

cue onset; early (-1000 to -500 ms) which corresponds to the CNV-1 ERP component; late (-500 

to 0 ms) which corresponds to the CNV-2 ERP component; and, post (80 500 ms) which is post-

target starting from the P1 ERP component to the end of the P3 ERP components right before 

response screen onset. The shorter time windows meant that changes in the oscillatory and 

broadband power could be analyzed for temporal changes within the trial, but the trade-off was 

that frequencies slower than alpha would be invisible. After the PSDs were calculated, these 

PSDs were then submitted to FOOOF in Python for fitting.  

Settings for the FOOOF algorithm were set as: peak width limits: [1,5]; max number of 

peaks: 8; and aperiodic mode: fixed. These settings were chosen because they resulted in better 

fits overall. Power spectra were parameterized across the frequency range 1 to 40 Hz with a 

frequency resolution of 2.49 Hz for the fixation, 2.00 Hz for the mid and late time windows and 

2.38 Hz for the post time window. Alpha and beta peaks and the aperiodic component were 

identified on a trial-by-trial basis for each electrode and participant separately. The algorithm 

returns the power at the oscillatory peaks adjusted for the aperiodic component (i.e., the 

magnitude of the peak above the aperiodic component; see Donoghue et al (2020) for more 

details) and aperiodic component measures, offset and exponent. The values from the fixation 

time window were subtracted from the other three time windows so that the measures were 

relative to the fixation time period. These relative values were used in subsequent permutation-

based statistical analyses were submitted to a repeated-measures factorial ANOVA (electrode 

hemisphere, target side and cue type the within-subject factors) using the permutation-based 

Fmax statistic. The implementation of the Fmax test was done with code modified from the 

Factorial Mass Univariate Toolbox (FMUT; Fields, 2017). 10,000 random within-participant 



117 
 

permutations were used to estimate the distribution of the null hypothesis for all permutation-

based tests and the familywise alpha (α) was set to 0.05.  

After subtracting the fixation time window values, alpha and beta peaks and the two 

measures of the aperiodic component were tested statistically with the same procedure as the 

ERP analysis except the three time windows early, late, and post were tested and the alpha level 

was set to 0.025 to control for the familywise error rate (Bonferroni corrected alpha level αcorr = 

0.05/2 to account for the two peak frequencies and again to account for the two aperiodic 

component measures). 

Spearman rank correlations were calculated between all the measures (after subtracting 

the fixation values) and the three parameters from the standard mixture model and the stochastic 

model. This was done at each time window, electrode, and trial condition separately. P-values 

were then corrected for multiple comparisons across time windows and trial conditions at each 

electrode using the false discovery rate (FDR) procedure described in Benjamini and Yekutieli 

(2001). Effects that satisfied a 1.67% FDR criterion (α = 0.05/3 to account for the three 

parameters) were considered significant.    

Time-Frequency Analysis 

To investigate the relationship between how EEG brain activity varies as a function of 

attention, perception, and task performance the phase angle and power on each trial was 

calculated using the fast Fourier transform (FFT) on each trial’s 3000 ms epochs (-2400 ms pre-

target onset to 1400 ms post-target onset) using the newtimef() function of EEGLAB. The FFT 

yielded complex values for 81 frequencies ranging from 0.98 to 40 Hz with a frequency 

resolution of 0.49 Hz. The abs() function from MATLAB was used to get the instantaneous 

amplitude and the instantaneous phase angle of each trial was calculated using the angle() 
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function from MATLAB. The power calculated using the FFT, a traditional time-frequency 

decomposition method, was also used for comparison to aperiodic-adjusted results from FOOOF.    

EEG Power Analysis. EEG power data was converted to a decibel (dB) scale using the 

same baseline time window as the ERPs (-1600 to -1400 ms relative to target onset). This was 

done to the data from each participant at each electrode and frequency separately. EEG power 

data was then averaged across pre-determined frequency bands (1-3 Hz, 4-7 Hz, 8-14 Hz, and 

15-22 Hz) and then tested statistically with the same procedure as the ERP analysis except each 

time point was tested rather than averaging across a time window and the alpha level was set to 

0.0125 to control for the familywise error rate (Bonferroni corrected alpha level αcorr = 0.05/4 to 

account for the four frequency bands). 

To test for a relationship between mean power relative to fixation in each frequency band 

and the fitted parameters from the standard mixture model (i.e., bias, variability, and guess rate) 

and stochastic model (i.e., bias, precision, and mean spikes), a nonparametric permutation 

version of the Spearman’s rank correlation test was used with a pixel-based multiple-comparison 

correction procedure (Cohen, 2014). The pixel-based multiple-comparison correction method 

involves creating one distribution of the largest positive pixel value and another distribution of 

the largest negative pixel value from each iteration of the permutation testing.  After all 

iterations, the statistical threshold is defined as the value corresponding to the 2.5th percentile of 

the smallest values and the value corresponding to the 97.5th percentile of the largest values 

which are the thresholds corresponding to an α of 0.0125 (α = 0.05/4 to account for the four trial 

conditions). Any pixel that has a value exceeding the upper or lower value is considered 

significant. The pixel-based method corrects for multiple comparisons by creating two 

distributions based on map-level information instead of pixel-level information. In other words, 
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this method results in two distributions of the most extreme null-hypothesis test statistical values 

across all pixels rather than calculating null-hypothesis distributions for each pixel (see Cohen 

(2014) for further details about pixel-based multiple-comparison correction method). All analysis 

using nonparametric permutation testing with pixel-based multiple-comparison correction 

performed 10,000 iterations per test. To obtain more stable estimates from permutation testing, 

we ran a “meta-permutation test” by repeating the pixel-level permutation procedure 10 times 

and then averaging the results (Cohen, 2014). It needs to be pointed out that a “significant effect” 

determined by pixel-based permutation testing should not be considered a precise estimate in the 

temporal domain. Although pixel-based permutation testing is more stringent than cluster-based 

permutation tests (Cohen, 2014), caution should still be used when interpreting “significant” 

effects, especially if the temporal range of each pixel is relatively small.  

EEG Phase Analysis. To look at whether task performance is related to oscillatory 

phase, and if yes, at what frequency, we used the weighted inter-trial phase clustering (wITPC) 

(Cohen and Voytek, 2013; Cohen, 2014). The logic behind the inter-trial phase coherence (ITPC) 

is that a systematic relation between EEG phase and behavioral outcome should result in a 

higher-than-chance ITPC in each of the trial subgroups. However, if the phase of the EEG signal 

is randomized and unpredictable, the distribution of phases at a given time period should follow 

a uniform distribution over all trials. The problem with ITPC is that it assumes EEG phase is 

relevant to experimental measures only when phase values are similar across trials (van Diepen 

and Mazaheri, 2018). Unlike ITPC, wITPC is sensitive to modulations of phase values even if 

those phases are randomly distributed across trials as would be expected if performance (which 

differs from trial to trial) were modulated by oscillatory phase (Cohen and Voytek, 2013; Cohen, 

2014). 
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We chose to use the wITPCz because it provides information about performance-specific 

modulations of phase values irrespective of the model. Also, the wITPCz does not rely on phase 

values being consistent over trials, they only need to be consistently related to response errors 

(Cohen and Cavanagh, 2011). This is important for determining how much of the phase 

modulation is an artifact of the stimulus-evoked activity and how much is related to the 

differences in task performance. 

The wITPC was computed for each participant as the resultant vector length, or ITPC, of 

phase angles across trials once the length of each vector has been weighted by a variable of 

interest (in this case, each trial’s phase vector is weighted by the absolute degree of response 

error on that trial or the probability the trial was from the uniform/guess distribution (Cohen and 

Voytek, 2013; Cohen, 2014). For statistical testing, a null-hypothesis distribution was created by 

shuffling the phase values relative to trial response error 1,000 times. The wITPCz was 

calculated as the wITPC standardized relative to the null-hypothesis distribution, providing a z-

value corresponding to the probability of finding the observed behavior measure–phase 

modulation by chance, given the data. Statistical significance of the wITPCz across participants 

was evaluated by combining the individual-level p-value, calculated from the z-values, time-

frequency map at each electrode across participants using Stouffer's method (Stouffer et al., 

1949; VanRullen, 2016a). P-values were then corrected for multiple comparisons across time 

points and frequencies at each electrode using the false discovery rate (FDR) procedure 

described in Benjamini and Yekutieli (2001). Effects that satisfied a 1.25% FDR criterion (α = 

0.05/4 to account for the four trial conditions) were considered significant. The cue-target 

interval (-1000 to 0 ms relative to target onset) and post-target time period (0 to 500 ms relative 

to target onset) were calculated separately in case larger effects due to target onset created a 
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threshold too high for any smaller pre-target phase effects to be detectable. The results from both 

time periods were combined before applying Stouffer’s method and the FDR procedure so that 

statistical significance across participants could be evaluated as one time window.  

3.1 RESULTS 

Comparing Model Fits 

We first tested whether the best fitting model was a standard mixture model or the 

variable precision models and whether a bias parameter affected the fits. The goodness-of-fit 

measure was the corrected Akaike information criterion (AICc). Overall, the three-way 

interaction was not significant (Fmax(5,130) = 1.26 (critical Fmax = ±2.26), p = 0.29) nor was 

the model x cue type interaction (Fmax(5,130) = 1.58 (critical Fmax = ±2.22), p = 0.17) and the 

target side x cue type interaction (Fmax(1,26) < 1). The model x target side interaction was 

significant (Fmax(5,130) = 4.29 (critical Fmax = ±2.28), p < 0.001) as well as the model main 

effect (Fmax(5,130) = 28.46 (critical Fmax = ±2.29), p < 0.001) and cue type main effect 

(Fmax(1,26) = 895.48 (critical Fmax = ±4.25), p < 0.001). The target side main effect was not 

significant: Fmax(1,26) = 2.25 (critical Fmax = ±4.22), p = 0.15. The cue type main effect 

indicated that the models fit the data from trials with non-informative cues significantly better 

than trials with informative cues: M = 518.1, SD = 67.0; M = 999.4, SD = 135.5, respectively. As 

can be seen in Figure 3.2A and Table 3.1, the AICc indicates that both standard mixture models 

fit the data better than any of the variable precision models. Furthermore, adding the bias 

parameter did not significantly change any of the models’ goodness-of-fit values. With regards to 

the target side and model interaction, most significant differences were between models fitted to 

trials that had their target on the same side. Comparisons between models fit to trials with 

different target locations (i.e., targets on right vs left) showed no significant differences.  
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Figure 3.2. Goodness-of-fit results 

Summary of results comparing the goodness-of-fit metric AICc of different model fits. A) 

Results from the first test comparing the standard mixture model and two variations of the 

variable precision model with and without a bias (µ) parameter. Left shows AICc values and 

pairwise comparisons between each model. All comparisons are significant except where noted 

on plot. Right plots the AICc values for each model fitted to data with left and right targets 

separately. Summary of statistical results can be found in Table 3.1. B) Results from the 

second test investigating the significantly worse fits to informative cued trials than non-

informative cued trials found in the first test. Comparison was between the standard mixture 

model, the variable precision model with the standard deviation parameter (σ) described by a 

Gaussian distribution, and the stochastic model. The standard mixture model and variable 

precision model are compared with and without their guess rate parameter. All models include 

a bias parameter (µ) except for the stochastic model which is tested with and without the third 

parameter. Left shows AICc values and pairwise comparisons between each model. All 

comparisons are significant except between the stochastic model and the stochastic model with 

a bias parameter (µ). Right plots the AICc values for each model fitted to data with informative 

and non-informative cues separately. All comparisons are significant except between the 

stochastic model and the stochastic model with a bias parameter (µ). 
a
See Table 3.1 for results from pairwise comparison of the interaction effect. 
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Table 3.1. P-values from pairwise comparisons between target side x models with and without 

bias (µ) parameter 

 
Note. VP = Variable Precision; µ = bias parameter. Bold numbers indicate significant p-values 

 

The second test was to see if the models fit better when they did not include a guess rate 

parameter. As others have found (Fougnie, Suchow and Alvarez, 2012; Sheldon and Mathewson, 

2021), all the models performed better when they included a guess rate parameter regardless of 

other variables. There was a significant main effect for model type which can be seen in Figure 

3.2B (Fmax(5,130) = 3005.3 (critical Fmax = ±2.30), p < 0.001). The surprising result was that 

the stochastic model fit the data better than any other model. The purpose for including the 

stochastic model was to see if a model based on neural population coding could better account 

for the significant difference in goodness-of-fit between informative cued trial and non-

informative cued trials. While this was not the case (see Figure 3.2B), the difference in AICc 

value between the stochastic model and other tested models was surprising. While there was a 

significant interaction between model and cue type (Fmax(5,130) = 1889.5 (critical Fmax = 

±2.27), p < 0.001), this was only because the two-parameter stochastic model did not 

significantly differ from the three-parameter stochastic model within the same cue type condition 

(see Figure 3.2B). The models still fit significantly better to trials with a non-informative cue 

Target 
Side 

 Right Targets  Left Targets 

Model 

Standard 
Mixture 

+ µ 

Standard 
Mixture 

VP 
(Gaussian) 

VP 
(Gamma) 

VP 
(Gaussian) 

+ µ 

VP 
(Gamma) 

+ µ 

 Standard 
Mixture 

Standard 
Mixture 

+ µ 

VP 
(Gaussian) 

VP 
(Gamma) 

VP 
(Gaussian) 

+ µ 

Right 
Targets 

Standard Mixture 0.074 -           
VP (Gaussian) 0.203 0.001 -          
VP (Gamma) 0.002 0.000 0.000 -         
VP (Gaussian) + µ 0.000 0.001 0.039 0.295 -        
VP (Gamma) + µ 0.000 0.000 0.002 0.034 0.000 -                     

Left 
Targets 

Standard Mixture 0.203 0.203 0.203 0.203 0.206 0.206  -     
Standard Mixture + µ 0.203 0.203 0.206 0.206 0.213 0.234  0.203 -    
VP (Gaussian) 0.203 0.203 0.203 0.203 0.203 0.203  0.000 0.000 -   
VP (Gamma) 0.203 0.203 0.203 0.203 0.203 0.203  0.000 0.000 0.000 -  
VP (Gaussian) + µ 0.203 0.203 0.203 0.203 0.203 0.203  0.203 0.000 0.234 0.198 - 
VP (Gamma) + µ 0.203 0.203 0.203 0.203 0.203 0.203   0.079 0.000 0.614 0.234 0.000 
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than informative cue (Fmax(1,26) = 640.93 (critical Fmax = ±4.14), p < 0.001; non-informative 

cue: M = 380.5, SD = 58.0; informative cue: M = 729.0, SD = 118.3). In addition, there was 

significant effect for target side (Fmax(1,26) = 4.31 (critical Fmax = ±4.14), p < 0.05) with the 

models fitting better to trials with the targets on the right than the left (M = 541.9, SD = 86.2; M 

= 567.5, SD = 97.1, respectively). Like the first test, the three-way interaction and the target side 

x cue type interaction were not significant (Fmax(5,130) < 1 and Fmax(1,26) < 1, respectively). 

The model x target side interaction also not significant (Fmax(5,130) = 1.35 (critical Fmax = 

±2.23), p = 0.25). 

Model Parameter Analysis 

Based on the first test, the standard mixture model tended to fit better than the variable 

precision models and the addition of the bias parameter resulted in a slightly better mean AICc 

value (757.65 vs 757.57), the three-parameter standard mixture model was used to quantify 

performance on the visual orientation perception task. The variability (σ) parameter showed no 

significant main effects (target side: Fmax(1,26) < 1; cue type: Fmax(1,26) = 1.52 (critical Fmax 

= ±5.93), p = 0.23) or interactions (Fmax(1,26) < 1). In contrast, the guess rate (g) parameter 

had a significant main effect for target side (Fmax(1,26) = 13.54 (critical Fmax = ±6.29), p < 

0.001), cue type (Fmax(1,26) = 8.65 (critical Fmax = ±6.50), p < 0.01), and a significant 

interaction between target side and cue type (Fmax(1,26) = 12.22 (critical Fmax = ±6.64), p < 

0.01). As can be seen in Figure 3.3B, all pairwise comparisons were significant except between 

the informative vs non-informative cues when the target was on the right side. Otherwise, the 

guess rate parameter was significantly larger when the target was on the left side than the right 

side, and the non-informative cues had larger guess rate parameters than informative cues when 

targets where on the left.  
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Figure 3.3. Summary of model fits and parameter value analysis 

A) Standard mixture model and stochastic model fits to the data separated by cue type and 

target side. The main difference between the models is that the stochastic model tends to 

have higher peaks than the standard mixture model. Shaded region around the lines are ±

SEM. B) Significant effects of experimental conditions on the fitted parameter guess rate (g) 

from the standard mixture model. Error bars are the ±SEM. C) Significant effects of the 

experimental condition target side on the fitted parameter bias (m) from the standard mixture 

model and stochastic model. Red bars are the means at each target location. The bias values 

at each target location are represented for all the participants. A continuous line joins each 

participant’s bias parameter values derived for each target location. 

 

Interestingly, the bias parameter (µ) had a significant main effect for target side 

(Fmax(1,26) = 16.99 (critical Fmax = ±5.98), p < 0.001), where the target’s orientation was 

perceived, on average, more clockwise than its true orientation when it was located on the left (M 
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= 2.2, SD = 3.1), and more counterclockwise when the target was located on the right (M = -0.7, 

SD = 1.8). Visual inspect indicates the variability of the bias parameter was also greater for 

targets located on the left than right. There was no significant main effect for cue type 

(Fmax(1,26) < 1) nor for the interaction between target side and cue type (Fmax(1,26) = 1.50 

(critical Fmax = ±5.98), p = 0.24).     

Based on the second test, the stochastic model fit better than any other model so analysis 

was conducted on the fitted parameter values of the three-parameter stochastic model. The three-

parameter model was used because the model had a slightly better AICc value when the bias 

parameter (µ) was included (without µ: M = 106.56; with µ: M = 106.55). After fitting the 

models to each participants’ data separated by trial condition and statistical testing, the only 

significant effect was for the bias parameter (µ) in that there was a significant systematic 

difference in the target’s perceived orientation when they were located on right then the left 

(Fmax(1,26) = 16.90 (critical Fmax = ±6.81), p < 0.001). Notably, this is the same effect found 

in the bias parameter (µ) of the standard mixture model. Their similarity can be seen in Figure 

3.3C showing the individual and mean bias parameter values for left and right targets.  

ERP Analysis 

The three-way interaction was not significant (critical Fmax(1,26) = +/-13.44), nor the 

hemisphere x cue type interaction (critical Fmax(1,26) = +/-13.39) and the cue type x target side 

interaction (critical Fmax(1,26) = +/-12.21). The hemisphere x target side interaction (critical 

Fmax(1,26) = +/-13.41) was significant for the CNV-2 (-500-0 ms), P1 (80-140 ms), P2 (200-

300 ms), and P3 (300-500 ms) components. The significant interaction for the CNV-2 was in the 

occipital electrodes. Pairwise comparisons showed that this was mostly between the O1 and O2 

when targets were going to appear on the right (O2 had a more negative voltage deflection). The 
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P1 was significant in the F3-F4 pair though none of pairwise comparisons were significant. The 

O1-O2 pair also showed a significant P1 interaction that can be seen in Figure 3.4A. The P2 

significant interaction was seen in the occipital, parietooccipital, the two most lateral parietal 

electrodes and both centroparietal electrode pairs. However, as can be seen in Figure 3.4A, it is 

likely the P2 and much larger P3 overlapped so what is seen as a significant interaction in the P2 

component is likely a significant interaction in the early part the P3. In fact, the differences in the 

P3 ERP were for the same electrodes as the P2 ERP interaction effects the exception being the 

centroparietal electrodes. The interaction in the P3 component was strongly driven by the 

difference between the left and right electrodes when targets were on the left and the difference 

between targets on the left and right in the electrodes located in the right hemisphere, though 

electrode P7 (left electrode) also showed a significant difference between left and right targets. 
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Figure 3.4. Summary of ERP analysis results 

A) ERPs of left (orange lines) and right (purple lines) electrodes when targets were on the 

left (dashed lines) and right (solid lines). Labels indicate comparisons of interest. Note the 

waveforms do not contain ±SEM to aide visualization. B) ERPs of the difference between 

left and right electrodes. Light red shaded area around waveforms represents ±SEM of 

difference between left and right electrodes. C) ERPs from trial with informative (blue 

dashed line) and non-informative (pink solid line) cues. Light blue and pink shaded areas 

around waveforms represent ±SEM of the informative cues and non-informative ERPs, 

respectively. In all plots, time period shaded in brown and blue indicates significant effect 

prior to target onset at -1000 to -500 ms (CNV-1) and -500-0 ms (CNV-2), respectively. 

Rose shaded time period indicates significant effect at 80-140 ms (P1) post-target. Yellow 

shaded time period indicates significant effect at 140-200 ms (N1) post-target. Orange 

shaded time period indicates significant effect at 200-255 ms (P2) post-target. Yellow-green 

shaded time period indicates significant effect at 255-360 ms (N2) post-target. Turquoise 



129 
 

shaded time period indicates significant effect at 300-500 ms (P3) post-target. All ERPs are 

aligned to target onset. 

 

With regards to the main effects, while target side was not significant (critical 

Fmax(1,26) = +/-12.72), both hemisphere and cue type were statistically significant (critical 

Fmax(1,26) = +/-12.58 and critical Fmax(1,26) = +/-14.42, respectively). As can be seen in 

Figure 3.4B, the main effect of hemisphere was largest during the CNV-2 component with the 

right electrodes having a more negative deflection than the left electrodes. This difference was 

seen across all central, centroparietal, parietal, and parietooccipital electrodes. The more medial 

of the frontocentral electrode pairs also had a significant difference between left and right 

electrodes at the CNV-2. The P1 and N1 (140-200 ms) ERP components were also significantly 

different between the left and right central, centroparietal, and medial parietal electrodes. In 

addition, the P1 was significantly different between the occipital and parietooccipital left and 

right electrodes. The P2 component was also significantly different between the left and right 

parietooccipital, medial parietal, and both centroparietal electrodes. All three early ERP 

components showed greater negativity in the right hemisphere than the left. Finally, the P3 ERP 

component was significantly different between left and right electrodes at the occipital, medial 

frontocentral, and medial frontal electrodes. While the occipital electrode had the same trend as 

the earlier ERP components in that the right electrode, O2, was less positive (i.e., more negative) 

than the left electrode, O1, the frontocentral and frontal electrodes were the opposite with the 

right electrodes, F4 and FC2, more positive than the left electrodes, F3 and FC1. The increasing 

negativity starting at around 400 ms post-target until response screen onset can likely be 

attributed to the SPCN (sustained posterior contralateral negativity) which is thought to reflect 

neural activity associated with retention in visual short-term memory (Jolicœur, Brisson and 
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Robitaille, 2008) or the LPN (lateralized readiness potential) for the central and frontal 

electrodes (Woodman, 2010). 

With regards to the cue type main effect, the parietooccipital electrode pairs had a CNV-1 

(-1000 to -500 ms) that showed a more negative voltage deflection (i.e., closer to baseline) when 

the cues were informative compared to non-informative. The voltage of the N2 (255-360 ms) 

component was more positive in the trials with a non-informative cue than informative (Figure 

3.4C) and this difference was in the pair of central electrodes, both pairs of centroparietal 

electrodes and the more medial pair of parietal electrodes. However, the N2 likely overlaps with 

the much larger positive P3 component though the N2 and P3 components are more attenuated 

for informative cues than non-informative suggesting that the N2 is larger for informative cues 

resulting in an overall less positive deflection in the P3 ERP. The P3 ERP showed significant 

differences or near significant differences in some of the same electrodes as the N2 except for the 

more medial pair of centroparietal electrodes showing no significant effect in the P3. In addition, 

the parietooccipital pair also had a significant difference in the P3 voltage with a less positive P3 

in the informative cued condition compared to the non-informative cued.   

The analysis of the -1000 ms time period prior to target onset yielded a significant 

interaction between hemisphere and trial type (critical Fmax(2,52) = +/-11.34) at electrode pairs 

O2/O1, PO4/PO3, and P8/P7 (Figure 3.5A and Figure 3.5B). The time range for O2/O1 was 

between -250 to -90 ms pre-target which pairwise comparisons indicate the interaction being 

mostly due to the relative decrease in mean voltage of the right hemisphere compared to the left, 

especially when cued towards the right hemifield or when the cue was non-informative. 

PO4/PO3 electrode pair showed a significant interaction between -190 to -150 ms pre-target also 

mostly due to a large negativity in the right electrode for cues towards the right and non-
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informative cues except there was no significant difference between being cued towards the left 

(contralaterally) compared to right (ipsilaterally) in the right electrode. The P8/P7 electrodes 

showed a significant interaction between -660 and -620 ms with cued right showing a large 

decrease in the right electrode and an increase in the left electrode. The left electrode also 

remained close to the fixation baseline when cued to the left. Finally, the P8/P7 electrodes had a 

significant interaction effect between -330 to -90 ms pre-target. The pairwise comparisons 

indicate that the right electrode significantly decreased in voltage relative to fixation when cued 

to the right and when the cue was non-informative. Being cued to the left yielded no significant 

difference between the right and left electrodes. In fact, the left electrode, P7, showed a small 

amount of significance in the difference between cue left and cue right trials at both significant 

time ranges. 

 

Figure 3.5. ERP analysis of the activity prior to target 

onset 

A) ERPs at P7 and P8 of pre-target activity when the cue 

was non-informative (left), and when the cue was 
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informative indicating the target will appear on the left 

(middle) and right (right). Solid orange line is the ERP of 

the left electrode and dashed purple is the ERP of the right 

electrode. Time points in green indicate a significant 

hemisphere x trial type interaction. Analysis did not 

include time points after the target onset. Light orange and 

light green shaded areas around waveforms represent 

±SEM of mean activity at the left electrode and right 

electrode, respectively. All ERPs are aligned to target 

onset. B) Topographic plots of the voltage distributions 

during the CNV-1 (bottom) and the CNV-2 (top) in trials 

with non-informative cue (left), cues to the left (middle) 

and cues to the right (right). 

 

The hemisphere comparison was found to be significant between -1000 and -900 ms 

relative to target onset between the electrodes CP2 and CP1 and C4 and C3. After that, the most 

medial parietal electrode and all the centroparietal and central electrodes differed between the 

left and right hemisphere starting at around -400 ms until target onset. The two most lateral 

parietal electrodes and the parietooccipital electrodes had the same significant difference starting 

at around -170 ms until target onset. The occipital electrodes showed a small amount of 

significance at -120 ms for about 100 ms. The only significant main effect for trial type was at 

the P8/P7 electrode pair around -910 ms pre-target where the cued right trials showed a larger 

decrease from fixation compared to the cued left and non-informative cued trials. 

The analysis on contralateral minus ipsilateral waveforms yielded no significant 

interaction between cue type and target side nor a significant main effect for cue type (critical 

Fmax(1,26) = +/-13.45 and critical Fmax(1,26) = +/-13.67, respectively). As can be seen in 

Figure 3.6B significant main effect for target side was found in the CNV-2, P1, N1, P2, and P3 
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ERP components (critical Fmax(1,26) = +/-12.21). The difference between contralateral and 

ipsilateral electrodes relative to the right target was more positive than the left target during the 

CNV-2 at the parietooccipital area, medial and lateral parietal and centroparietal areas, central 

area, and most lateral frontocentral and frontal areas. The trend for the waveform difference to be 

more positive for right targets continued into the P1, N1, and P2 ERPs. This difference was 

observed between the most medial parietal electrodes, both centroparietal electrode pairs, and 

central electrodes across all three ERP components. The parietooccipital electrodes had the 

significant effect in the P1 and P2 while the occipital electrodes were in the P1. The occipital 

electrodes in the P3 also showed the same difference with right targets having a more negative 

difference waveform than the left. However, the medial frontocentral and frontal electrodes 

showed the reverse in the P3 component with the difference wave being more positive for right 

targets than left. 

 

Figure 3.6. Summary of contralateral minus ipsilateral difference 

waveforms analysis 

A) Scatterplots of the relationship between ERP contralateral – 

ipsilateral difference waveforms and the precision (κ) parameter from 

the stochastic model when cues were informative, and the target was on 
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the left. Gray lines are bootstrapped least-squares correlation lines fit to 

1000 bootstrap samples. B) ERPs of the contralateral – ipsilateral 

difference waves from trials with right targets (brown solid line) and 

left targets (purple dashed line). Light brown and purple shaded areas 

around waveforms represent ±SEM of the right and left difference 

waves, respectively. In all plots, time period shaded in blue indicates 

significant effect prior to target onset at -500-0 ms (CNV-2). Rose 

shaded time period indicates significant effect at 80-140 ms (P1) post-

target. Yellow shaded time period indicates significant effect at 140-

200 ms (N1) post-target. Orange shaded time period indicates 

significant effect at 200-255 ms (P2) post-target. Turquoise shaded 

time period indicates significant effect at 300-500 ms (P3) post-target. 

All ERPs are aligned to target onset. 

 

Spearman rank correlations yielded a significant relationship between the contralateral 

minus ipsilateral difference in mean voltage of the CNV-1 and P1 at the electrode pair PO4/PO3 

and the P1 ERP at the electrode pairs O2/O1 and P4/P3 and the fitted parameter values precision 

(κ) from the stochastic model for informative cued left targets (Figure 3.6A). All the correlations 

were positive indicating that precision (κ) increased as the difference between the contralateral 

and ipsilateral electrodes shifted from negative to positive when there was an informative cue 

about a left target. No other significant correlations were found.  

Periodic and Aperiodic Components 

The aperiodic offset and exponent showed no significant main effects (mean critical 

Fmax(1,26) = +/-14.44 and mean critical Fmax(1,26) = +/-14.60, respectively). The offset also 

showed no significant three-way interaction (critical Fmax(1,26) = +/-14.92) nor a significant 

interaction for hemisphere x target side (critical Fmax(1,26) = +/-14.98) and cue type x target 

side (critical Fmax(1,26) = +/-14.81). The aperiodic offset had a significant interaction between 
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hemisphere and cue type at the electrode pair P8/P7 during the post time period (critical 

Fmax(1,26) = +/-15.03). Pairwise comparisons indicate that the right electrode had a 

significantly larger offset relative to fixation when the cue was non-informative (M = 0.36, SD = 

0.20) than informative (M = 0.21, SD = 0.20) as well as significantly larger than the left electrode 

when the cue was non-informative (M = 0.23, SD = 0.12). The aperiodic exponent had no 

significant interaction between hemisphere and target side and cue type (critical Fmax(1,26) = 

+/-15.16) and target side (critical Fmax(1,26) = +/-14.31). There was a significant three-way 

interaction (critical Fmax(1,26) = +/-14.92) and a significant two-way interaction between 

hemisphere and cue type (critical Fmax(1,26) = +/-14.97), both in the post time window. Like 

the offset, the aperiodic exponent had the hemisphere x cue type interaction at the electrode pair 

P8/P7 with the non-informative cue generating a larger exponent in the right electrode (M = 0.29, 

SD = 0.15) than the left (M = 0.20, SD = 0.11) and larger than the right electrode when the cue 

was informative (M = 0.18, SD = 0.16). As can be seen in Figure 3.7A, a pairwise comparison of 

the three-way interaction found that significant differences were only for left targets where the 

non-informative cued trials had an increased exponent compared to informative cued trials in the 

right electrode and the reverse in the left electrode. The non-informative and informative cued 

trials in the right electrode also significantly differed from the values in the left electrode. 
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Figure 3.7. Summary of analysis on 1/f aperiodic activity 

A) Plot of the three-way interaction between electrode hemisphere, 

target side and cue type for the 1/f aperiodic exponent values in the 

post time window (80-500 ms post-target) relative to fixation at 

electrodes P5 and P6. Error bars are the ±SEM. Stars indicate 

significant pairwise comparisons. B) Scatterplots of the relationship 

between the aperiodic activity measures offset (left) and 1/f 

exponent (right) and the precision (κ) parameter from the stochastic 

model. Top, aperiodic activity measured during the post-target time 

window (80-500 ms) when cues were non-informative. Bottom, 

aperiodic activity measured during the pre-target early time 

window (-1000 to -500 ms) when cues were informative. Gray lines 

are bootstrapped least-squares correlation lines fit to 1000 bootstrap 
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samples. C) Scatterplots of the relationship between the aperiodic-

adjusted power of the peak frequencies in the alpha band in trials 

with left targets (top) during the pre-target late time window (-500 

to 0 ms) and the bias (µ) parameter from the standard mixture 

model and (bottom) during the pre-target early time window (-1000 

to -500 ms) and the bias (µ) parameter from the stochastic model. 

Gray lines are bootstrapped least-squares correlation lines fit to 

1000 bootstrap samples. 

 

The power above the aperiodic component was measured at the median peak frequencies 

within the alpha (8-14 Hz) and low beta (15-22 Hz) frequency ranges. There were no significant 

interactions or main effects for low beta power (mean critical Fmax(1,26) = +/-14.81). Alpha 

power showed a significant main effect for electrode hemisphere at the electrode pair P7/P8 in 

the post-target time window (critical Fmax(1,26) = ±14.08). The right electrode, P8, had a 

greater decrease in power than the left electrode, P7, relative to fixation (electrode P8: M = -0.12, 

SD = 0.09; electrode P7: M = -0.07, SD = 0.09). No other significant interactions or main effects 

were found (mean critical Fmax(1,26) = +/-14.93). 

Spearman rank correlations yielded no significant relationships between the periodic and 

aperiodic measures and the parameter values from both models when separated by cue type and 

trial side. When trials were collapsed across target side, a significant relationship was found 

between peak alpha power and the bias (µ) parameters from both models at electrode CP1 

(Figure 3.7C). This association was significant at the early and late time periods for the standard 

mixture model parameter (ρ(25) = 0.70, p < 0.05; and (ρ(25) = 0.67, p < 0.05, respectively) and 

just the early time period for the stochastic model parameter (ρ(25) = 0.68, p < 0.05). As can be 

seen in Figure 3.7B, when trials were collapsed across cue type, a significant relationship was 
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found between the aperiodic exponent and the precision parameter (κ) from the stochastic model 

at electrode Oz during the early period of the cue-target interval for informative cues (ρ(25) = -

0.65, p < 0.05). It was also found that κ and the aperiodic exponent at Oz and CP6 for non-

informative cues except it was during the post-target time period (ρ(25) = -0.65, p < 0.05; and 

(ρ(25) = -0.66, p < 0.05, respectively). A similar relationship was found between κ and the 

aperiodic offset in electrode Oz when the cue was informative and it was the early part time 

window (ρ(25) = -0.68, p < 0.05), and when the cue was non-informative during the post-target 

time window (ρ(25) = -0.67, p < 0.05). No other significant correlations were found. 

EEG Power Analysis 

In addition to the periodic and aperiodic component analysis, power relative to fixation 

was analyzed in the following four frequency bands: 1-3 Hz, 4-7 Hz, 8-14 Hz, and 15-22 Hz. 

This was done so that the slower frequencies could be investigated, and the faster frequencies 

could be tested on a more precise time scale. The downside is that it is unknown whether activity 

in these bands represent oscillatory activity or are mostly comprised of aperiodic activity found 

across all frequencies. 

None of the frequency bands showed a significant three-way interaction (critical 

Fmax(1,26) = +/-26.17 (delta, 1-3 Hz), +/-25.61 (theta, 4-7 Hz), +/-25.62 (alpha, 8-14 Hz), and 

+/-25.20 (low beta, 15-22 Hz)), hemisphere x cue type interaction (critical Fmax(1,26) = +/-

26.08 (delta, 1-3 Hz), +/-24.87 (theta, 4-7 Hz), +/-24.84 (alpha, 8-14 Hz), and +/-25.78 (low 

beta, 15-22 Hz)), nor a cue type x target side interaction (critical Fmax(1,26) = +/-23.09 (delta, 

1-3 Hz), +/-22.94 (theta, 4-7 Hz ), +/-23.37 (alpha, 8-14 Hz), and +/-23.01 (low beta, 15-22 Hz)). 

Cue type (critical Fmax(1,26) = +/-23.12 (delta, 1-3 Hz), +/-23.84 (theta, 4-7 Hz ), +/-23.47 

(alpha, 8-14 Hz), and +/-22.76 (low beta, 15-22 Hz)) and target side (critical Fmax(1,26) = +/-
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23.92 (delta, 1-3 Hz), +/-23.06 (theta, 4-7 Hz ), +/-21.38 (alpha, 8-14 Hz), and +/-22.94 (low 

beta, 15-22 Hz)) main effects were also not significant in any frequency band. 

Two frequency bands had a significant interaction between hemisphere and target side 

(critical Fmax(1,26) = +/-25.36 (delta, 1-3 Hz) and +/-24.62 (alpha, 8-14 Hz)) and one had a 

significant main effect for hemisphere (critical Fmax(1,26) = +/-23.65 (low beta, 15-22 Hz)). 

The significant interaction, seen in Figure 3.8A for the 1-3 Hz frequency band started close to 

100 ms and had a duration of little more than 100 ms at the most medial frontocentral electrode 

pair. Pairwise comparisons found that the interaction in those electrodes was mostly driven by 

the difference between right and left electrodes for targets located on the left.   

The significant interaction between hemisphere and target side in the 8-14 Hz frequency 

band in the posterior area of the head. The pairwise comparisons found differences primarily 

between left and right targets in the left occipital electrode, O1, and between left and right 

electrodes (O1 and O2) for targets located on the left (see Figure 3.8A). In the left occipital 

electrode O1, 8-14 power relative to fixation increased for ipsilateral targets (i.e., left targets) and 

decreased for contralateral targets (i.e., right targets). For targets on the left, the ipsilateral 

electrode O1 had a significant increase in power relative to fixation while the contralateral 

electrode O2 had a significant decrease in power relative to fixation. 
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Figure 3.8. Summary of results from analyzing power within each pre-defined frequency 

band 

A) Plots are the mean power within the 1-3 Hz and 8-14 Hz frequency bands separated 

by electrode hemisphere and target location. Left electrodes are orange lines and right 

electrodes are purple lines. Left targets are the left are dashed lines and right targets are 

the solid lines. Labels indicate comparisons of interest. The ±SEM was not included to 

aide visualization. Time points in green indicate a significant effect. B) Plot of the left 

electrode minus right electrode mean power within 15-22 Hz frequency band. Light red 

shaded areas around waveform represent ±SEM of difference between left and right 

electrodes Negative value indicates the left electrode is more negative than the right. 

Time points in green indicate a significant effect. C) Scatterplots are bootstrap 

Spearman’s rho (rs) correlation coefficients of mean power across each statistically 

significant time range and frequency band and bias (µ) from the standard mixture model 

(left) and stochastic model (right). Gray lines are bootstrapped least-squares correlation 

lines fit to 1000 bootstrap samples. 
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The main effect of electrode hemisphere was observed in the 1-3 Hz frequency band at 

the medial frontocentral electrodes during the post-target time period at around 120 ms until 250 

ms where the right electrode FC2 had a greater increase in power relative to fixation (M = 2.02, 

SD = 1.21) than the left electrode FC1 (M = 1.73, SD = 1.13). The 8-14 Hz frequency band 

showed a brief significant difference (about 50 ms) with the left centroparietal electrode CP1 had 

a greater decrease in power relative to fixation (M = -0.29, SD = 1.38) than the right 

centroparietal electrode CP2 (M = -0.02, SD = 1.37) at around 150 ms before response screen 

onset (i.e., 450 ms post-target onset). Finally, the 15-22 Hz frequency range had the most 

widespread significant difference between electrodes. In the central electrode pair, the left 

electrode showed a greater decrease in power relative to fixation than the right electrode. The 

effect started at around 270 ms and ended at about 470 ms after target onset (see Figure 3.8B).  

The significance test between hemisphere side and trial type for just the -1000 ms prior to 

target onset yielded no significant effects in any of the frequency bands: hemisphere x trial type 

interaction mean critical Fmax(2,52) = +/-12.24, hemisphere main effect mean critical 

Fmax(1,26) = +/-22.61, and trial type main effect mean critical Fmax(2,52) = +/-11.37. 

The significance test on the contralateral minus ipsilateral electrodes relative to the side 

the target is presented only yielded a significant main effect for target side in the 15-22 Hz 

frequency band (critical Fmax(2,52) = +/-11.37). This effect was observed at the central 

electrode pair and started at around 295 ms until 452 ms post-target with the difference in power 

being negative for left targets (M = -0.67, SD = 0.63) and positive for right targets (M = 0.46, SD 

= 0.59). No other significant interactions or main effects were found. The correlations between 

model parameters and the difference between contralateral and ipsilateral electrodes yielded no 

significant relationships. 
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Significant correlations between frequency band and model parameters are shown in 

Figure 3.8C. The power at each frequency band was averaged across significant time points. As 

can be seen, the bias parameter µ from the standard mixture model and stochastic model was 

positively correlated with 8-14 Hz power at electrode Fz in the informative cued trials with a left 

target. Although their time range differed slightly, the bias parameters of both models were 

correlated with the 8-14 Hz power between -450 ms and -400 ms prior to target onset. The 

slowest frequency band, 1-3 Hz, also positively correlated with the bias parameter µ from the 

standard mixture model and stochastic model in the same time range though the electrode was P7 

and the trials were non-informative cued with right targets though this effect might be more 

related to all right targets and just did not reach significance for informative cued trials since the 

bias parameter was a lot more uniform in the informative cued condition than the non-

informative cued (Figure 3.8C). The last correlation was between 4-7 Hz power at electrode C3 

and the response variability parameter (σ) from the standard mixture model for trials with non-

informative cues and right targets. The correlation was positive in that increasing 4-7 Hz power 

was associated with increasing response variability (not shown). It should be noted that this 

correlation was at one time point (468 ms post-target), so any interpretation needs to be done 

with caution. 

EEG Phase Analysis 

To examine the relationship between the magnitude of response errors, the probability of 

a guess response and the distribution of phase values, we used the wITPCz. As can be seen in 

Figure 3.9, phase during the informative cued trials when targets were located on the left was 

primarily modulated by the magnitude of response errors in the 1-4 Hz frequency range in the 

left parietal and centroparietal electrodes P3, P5 and CP5 at around 400 ms until the end of the 
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analysis time window at 500 ms post-target. It is unknown whether duration of the phase 

modulation extends beyond 500 ms. Electrode P8 had a brief 35 ms reach significance from 120-

155 ms for informative cued trials with right targets at 9 Hz (not shown), but it is difficult to 

interpret phase modulation lasting such a short time period. It may be that analysis is too 

conservative to detect the entire duration of the effect.  

 

Figure 3.9. Summary of phase analysis results 

Time-frequency plots of analysis relating single-trial phase activity and response 

errors (left) and probability of the trial being from the guess distribution (right). 

Significant p-values indicating that the normalized distance of the observed wITPC 

(i.e., wITPCz) is significantly different from the distribution of null hypothesis 

wITPC values. This measure represents the relationship between the distribution of 

phase angles and the magnitude of response error or guess probability on each trial. 

Plots are only of selected electrodes. Time-frequency points with p-values at or 

above .05 were set to 1.  

 

The relationship between the probability a response is from the guess distribution (i.e., 

uniform distribution) and the distribution of phase, not surprisingly, followed a similar trend as 

the magnitude of response errors. As can be seen in Figure 3.9, phase during the informative 

cued trials when targets were located on the left was modulated by the probability of a guess 
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response in the 1-4 Hz frequency range in the left parietal electrode P7 in addition to the P3, P5, 

and CP5 found with phase modulated by response error magnitudes. However, only P3 and P5 

had effects extending beyond 400 ms post-target. In addition, the effect seen in P7 was 200-400 

ms post-target rather than starting around 400 ms like the other electrodes. In trials with 

informative cues and right targets, P7 and P8 showed a significant relationship between phase 

values and guess response probabilities. Unlike for left targets, P7 showed an effect starting after 

400 ms until the end of the analysis time window when targets were presented on the right. 

Electrode P8 showed a significant effect almost -600 ms pre-target at 17 Hz frequency. Then 

around 200 ms after target onset, phase modulation was seen in the 1-5 Hz frequency range. 

There was also a brief 120-155 ms time period at 9 Hz with a significant p-value, but this too 

should be interpreted with caution though it is notable this is the same time and frequency seen at 

P8 for phase modulation by response error magnitude. Finally, for trials with non-informative 

cues and targets presented on the right, electrode F7 showed significant effects between 150-300 

ms post-target in the 2-5 Hz frequency range and electrode FC6 had a similar effect except just 

between 150 and 200 ms in the same frequency range. For F7, there was also a brief 40 ms 

window reaching significance starting at around -340 ms pre-target at 30 Hz and again for 20 ms 

at 300 ms post-target for 14 Hz phase activity. However, these too are difficult to interpret since 

it is unclear if these are real effects or noise in EEG phase data or behavioral measure.   

Phase modulation by response error magnitude and guess trial probability only occurred 

in the frontal and frontocentral electrodes when the cue was non-informative while informative 

cues resulted in phase modulation in the parietal and centroparietal electrodes. The frontal phase 

modulation in non-informative cued trials also tended to occur earlier in the post-target time 

period and was more strongly modulated by the probability of a guess trial than the magnitude of 
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response errors. This suggests that there is a relationship between the 2-5 Hz frequency phase 

values and the detectability of the target likely by mediating attention demands and decision 

making (Başar et al., 1999; Schürmann et al., 2001; Güntekin and Başar, 2016). Phase 

modulation during informative cued trials was stronger and more prevalent in the ipsilateral 

electrodes relative to target location. Considering the parietal location and late post-target time 

period, the relationship between 1-4 Hz phase values and performance measures are likely 

indicative of a slower inhibitory process that improves perceptual responses.   

3.1 DISCUSSION 

Model Fits and Parameter Values 

Since perceiving the visual stimuli usually precedes remembering those same stimuli, 

some of the assumptions built into the visual working memory models are applicable to visual 

perception. Namely, the assumption that there are a set of targets that are remembered and a set 

of targets that are not remembered can translate to the current task as a set of targets that are 

seen, and another set of targets not seen. A natural extension of this assumption is that 

endogenous, that is, voluntary and goal-driven, attention improves task performance, thereby 

affecting which targets are seen and which targets are not seen. For this reason, the first question 

addressed was what working memory model and their associated assumption could be extended 

to the current study’s cued orientation perception task?  

Surprisingly, we found that goodness-of-fit was always worse when there were 

informative cues directing attention to the location the target will appear than non-informative 

cues that provided no information about the target prior to its presentation. To see if this was due 

to informative cues eliminating guesses, we compared the goodness-of-fit between models that 

included and did not include a guess rate parameter. The stochastic model (Bays, 2014; 
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Schneegans, Taylor and Bays, 2020) was also included as it has been shown to account for visual 

orientation perception (Bays, 2016) and the use of predictive cues (Bays, 2014). We found that 

the models that included a guess rate parameter performed better than the models that did not, 

indicating the existence of guessing in the informative cued trials. In addition, we found that the 

stochastic model fit the data much better than any other model.  

The stochastic model is based on the neural population coding model (Pouget, Dayan and 

Zemel, 2000) though it is a highly idealized version that assumes the neural population has 

identical Gaussian tuning functions, no baseline activity, and no interneuronal correlations (Bays, 

2016). Even as a simplified version of neural population coding, the stochastic model has been 

successful at explaining discrepancies between previous working memory models and empirical 

data (Schneegans, Taylor and Bays, 2020; Taylor and Bays, 2020). However, despite it fitting 

the data better than the previous models, it still showed a significantly worse fit to trials with 

informative cues compared to trials with non-informative cues. Perhaps a less idealistic neural 

population, one with noise in its baseline and correlations between neurons, could better account 

for the effects of endogenous attention initiated, presumably, by the informative cues. Another 

possibility that might improve the model’s performance on informative cued trials is to include 

the attentional gain factor (α) the author used in one of their first applications of the model 

though it was used in an experiment that had arrays of at least two items (Bays, 2014).  

Although having the best goodness-of-fit values, the fitted parameters κ and γ of the 

stochastic model showed no differences between trial conditions. This can be taken in one of two 

ways. First, there is too much noise in the data for the detection of experimental effects. While 

possible, this first explanation is unlikely since most other measures had detected differences due 

to the experimental manipulation. Second, the behavior or cognitive state the parameters 
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represent does not vary or varies unexpectedly as a function of the experimental manipulation. 

Although more likely, the second explanation is difficult to judge because the stochastic model is 

an abstract application of neural theory without the grounding in cognitive models that the other 

working memory models have. Descriptive statistics also supports the latter explanation (see 

Figure 3.10), though this cannot be adequately investigated since the experimental design was 

not created to test that hypothesis. 

 

Figure 3.10. Fitted parameter values by target orientation 

Response errors have been collapsed across participants, standard mixture 

model and stochastic model were fit to the data from each target orientation 

separately. All lines are calculated with a shape-preserving interpolation 

equation and meant to aid visualization. A) Plot shows the fitted bias (µ) 

parameter to the data from each trial condition separated by the orientation 

of the target on that trial. Solid lines plot biases for left targets and dashed 

lines plot biases for right targets. Blue lines are biases on informative cued 
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trials while magenta are biases on non-informative cued trials. Bias 

parameters from both models were averaged together to illustrate the general 

trend, which is that most data fall in the shaded regions, indicating response 

biases away from the closest cardinal axis. The magnitude and rotation 

direction (i.e., clockwise or counterclockwise) of the perceptual bias varied 

as a function of the target’s hemifield location and orientation. Above the x-

axis are images of the targets oriented by the values of the x-axis. B) Plots 

are the fitted guess rate (g) parameters from the standard mixture model (top) 

and mean spikes (γ) from the stochastic model (bottom) by cue type (left 

column) and target side (right column) for each target orientation. C) Plots 

are the response variability (σ) parameters from the standard mixture model 

(top) and precision (κ) from the stochastic model (bottom) by cue type (left 

column) and target side (right column) for each target orientation. 

 

While the parameters from the standard mixture model and stochastic model might have 

some surface similarities, their derivations are very different and thus, the concepts they 

represent are very different. For example, the stochastic model has no parameter comparable to 

the guess rate parameter. The closest is the γ parameter which describes the mean number of 

spikes generated in fixed decoding interval and has been interpreted as an indicator of the 

“strength of evidence” for the true stimulus feature. When γ is 0, then it reasonable to believe the 

participant will be guessing since there is absolutely no evidence for the true stimulus feature. 

This is not the same as the guess rate parameter which represents a uniform distribution in the 

standard mixture model. 

The bias parameter in the standard mixture model and stochastic model were significantly 

different when targets were located on the left compared to the right. On average, participants 

reported the target orientation as being more clockwise than its true orientation when it was 
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located on the left, and more counterclockwise when the target was located on the right. While 

we expected responses to be systematically biased away from the cardinal directions toward the 

oblique as reported by previous researchers (Taylor and Bays, 2018; Bae, 2021), the additional 

affects target location had on the parameters was not expected. Overall, response errors at each 

target orientation revealed a pronounced "oblique effect," with larger errors for oblique than 

cardinal orientations. Interestingly, guess rates and mean spikes showed the opposite with greater 

guessing and less certainty at the cardinal orientations than the oblique. The response precision 

as quantified by σ in the standard mixture model and κ in the stochastic model, replicated the 

finding by Bae (2021) that the cardinal locations were more precisely reported than the oblique. 

This effect did not seem to change with cue type and target location. It is notable that attention 

did not influence either model’s parameter quantifying the quality of the orientation perceptual 

response (σ and κ). This implies that attention resulted in an increased likelihood of perceiving 

the target but did not alter the quality of the perception. 

The bias away from cardinal orientation had been attributed to the anisotropic 

organization of orientation selective neurons in V1. Imaging and single-cell recording studies 

(Li, Peterson and Freeman, 2003; Huang et al., 2006; Li et al., 2015) have found that a larger 

proportion of the population are devoted to representing cardinal orientations and that such 

neurons are more narrowly tuned than obliquely-selective neurons (Taylor and Bays, 2018). 

However, while the cardinal orientations could be reproduced more accurately than the oblique 

as exemplified by bias values close to 0, increased response precision, and decreased variability, 

perceiving such targets was less likely or more difficult. Furthermore, this effect was amplified 

for targets oriented downward when they were located on the left and for targets oriented upward 

when they were located on the right. It is possible this is due to the right visual cortex having 
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more neurons tuned for downward orientations and the left visual cortex having more neurons 

tuned for upward orientations. This is difficult to determine though since the evidence for or 

against upward/downward orientation preferences in different hemispheres is sparse.  

EEG Activity, Attention and Orientation Perception 

Counter to previous reports, cueing spatial attention did not result in any detectable 

changes to the EEG activity in the contralateral posterior brain regions that process information 

from the upcoming relevant hemifield. Instead, there is an increasing negativity in the right 

occipital, parietal, and centroparietal brain areas in anticipation of target onset regardless of 

which hemifield the target will show up in (see Figure 3.5B). This sustained activity is 

comparable in time-course, waveform, and topography to the well-known contingent negative 

variation (CNV). The CNV appears when anticipating an incoming stimulus and is considered an 

indicator of attention to the task (Wright, Geffen and Geffen, 1995; Woodman, 2010; Baghdadi, 

Towhidkhah and Rajabi, 2021). Therefore, the enhanced CNV-like negativity in the current 

study, especially to informative cues, can be thought as an indicator of increased focused spatial 

attention.  

The consistent negativity in the right hemisphere prior to target onset is also in 

accordance with previous research showing the bilateral control of attention by the right parietal 

cortex (Moos et al., 2012). It has been proposed that the right hemisphere directs attention and 

transfers information in both visual hemifields, while the left hemisphere directs attention 

primarily for the right (Siman-Tov et al., 2007). This leads to an overall asymmetry of 

visuospatial attention with the right visual hemifield having an advantage over the left due to a 

better bilateral representation in the parietal cortex. Because of this, we would expect 

participants to perform better when the target is on the right because the right hemifield has the 



151 
 

benefit of greater bilateral hemisphere engagement. Similarly, cues would have a greater impact 

on performance to left targets because left targets get the least attentional representation when 

the upcoming target location is unknown. It is analogous to why damage in the right parietal area 

leads to hemispatial neglect more often than similar damage in the left parietal area (Bartolomeo, 

2006; Siman-Tov et al., 2007).  

As predicted, we found that the guess rate was lower when the cue was informative than 

non-informative, but only for targets presented in the left visual hemifield. Targets on the right 

always had a smaller guess rate than targets on the left regardless of whether there was an 

informative cue or not. Although there was little correspondence between those parameter values 

and brain activity measures, it is possible this could be due to the unexpected effects the target’s 

orientation had on responses. However, there are too few trials per target orientation to test this 

statistically. On the other hand, while the model parameters response variability (σ) and 

precision (κ) showed no significant effects as a function of the experimental conditions, they did 

correlate with several measures of brain activity. For example, there were significant correlations 

between the stochastic model’s precision (κ) and ERP contralateral minus ipsilateral difference 

waves when attention was cued toward the left (Figure 3.6A). The more the balance shifts 

towards contralateral (right) electrode voltage > ipsilateral (left) electrode voltage, the greater the 

precision of the response. This relationship was observed in the pre-target component CNV-1 

and shortly after target onset in the P1 ERP component. Interestingly, the aperiodic exponent and 

offset also had a significant correlation with precision (κ) during the same time period as the 

CNV-1 when cues were informative and in the post-target time period when the cue was non-

informative. It was found that the precision parameter increased as the 1/f exponent and 

broadband offset of the aperiodic activity decreased. A decrease in the aperiodic 1/f signal has 
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been attributed to a shift in the E:I balance towards excitation (Chini, Pfeffer and Hanganu-

Opatz, 2021) which would lead to improved orientation perception. This is inline with a recent 

study that found selective attention in one sensory modality resulted in the reduction of the 

spectral exponent over the brain area typically associated with processing input in that modality 

(Waschke et al., 2021). Furthermore, not only did we find that attention selectively reduced the 

EEG spectral aperiodic activity which coincided with a relative increase of excitatory neural 

activity in the posterior cortex, but we also show that this change in activity is associated with 

the improved quality of the target’s representation by endogenous attentional processes when the 

cue is informative and exogenous, that is, automatic and stimulus-driven, attentional processes 

when the cue is non-informative. Notably, the 1/f aperiodic activity had a stronger association 

with attention modulation and task performance than alpha oscillations despite selective attention 

modulation and cortical excitability usually being attributed to alpha oscillations (Klimesch, 

Sauseng and Hanslmayr, 2007; Jensen and Mazaheri, 2010; Mathewson et al., 2011; Herring et 

al., 2019; van Diepen, Foxe and Mazaheri, 2019). 

While there was a complete absence of an interaction between hemisphere and cue type 

for power in the pre-defined frequency bands and aperiodic-adjusted power in the peak alpha and 

beta frequencies, the aperiodic 1/f activity showed significant effects. It seems that the 

significant interaction can be attributed to a large increase relative to fixation of the broadband 

offset and 1/f exponent in the right parietal electrode following target onset when the cue was 

non-informative. However, in the three-way interaction between electrode hemisphere, cue type, 

and target side, the exponent of the aperiodic 1/f activity only showed significant differences to 

left targets with the contralateral (right) electrode being significantly smaller than the ipsilateral 

(left) electrode when the cue was informative, and the contralateral (right) electrode being 
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significantly larger than ipsilateral (left) electrode when the cue was non-informative. So, while 

there was a large increase in the aperiodic activity in the right parietal area to non-informative 

cues, this was only significant for targets located on the left. Furthermore, the left electrode 

showed the same level of response to a target located on the left when the cue was non-

informative as the right electrode showed to a left target when the cue was informative.  

If a decrease in the aperiodic exponent reflects changes in E:I balance towards excitation, 

then the relatively equal decrease of the 1/f exponents in the right and left electrodes indicate that 

the increased excitation of the left parietal area to targets that appear in an unattended ipsilateral 

hemifield is equal to that of the right parietal area for targets that appear in an attended 

contralateral hemifield. In other words, the left parietal area does not seem to use an inhibitory 

mechanism to regulate its response when that upcoming target location is unknown. It remains in 

a high state of excitability until an upcoming target is known to appear in the ipsilateral visual 

hemifield after which the left parietal area shows the typical ipsilateral inhibition. It seems in our 

data that only the right parietal area shows an inhibitory response in anticipation of an unknown 

target’s location though this difference is only detectable for targets in the left visual field. There 

are no significant changes in E:I balance of left and right parietal areas when targets appear in 

the right visual field regardless of having foreknowledge or not about the target’s upcoming 

location. 

This clear asymmetry in activity for targets in the left visual hemifield than the right is in 

line with the findings by Siman-Tov et al (2007) that both right and left parietal areas can 

mediate covert visuospatial attention to both visual hemifields (in contrast to attentional theories 

postulating only the right parietal cortex is capable of bilateral modulation (Kim et al., 1999; 

Mesulam, 1999), but the right hemispheric dominance is the result of an asymmetric strength in 
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faciliatory connections that favor a right-to-left signal transfer between bilateral parietal areas 

thus the left electrode showing a continued state favoring excitation. They also postulate that this 

right hemisphere advantage reflects its dominance for attention processing and manifests as 

increased bilateral activation by left visual targets, but equal bilateral activation by right visual 

targets. As follows, the increase in the 1/f exponent of the right parietal electrode to non-

informative cued left targets is likely due to an increase in top-down control of attentional 

responses. It had been shown that hyperpolarization through cathodal tDCS stimulation of the 

right parietal area improved attentional selection regardless of the stimuli’s spatial position 

(Moos et al., 2012) and neuroimaging studies have provided evidence for right hemispheric 

dominance of attentional networks predominantly associated with stimulus-driven control 

(Corbetta and Shulman, 2002; Pagnotta, Pascucci and Plomp, 2022).  

The bias (µ) parameters from the standard mixture model and stochastic model were related to 

power in the 1-3 Hz and 8-14 Hz frequency bands (Figure 3.7C) as well as in the peak frequency 

of the alpha band (Figure 3.7C) prior to target onset. Overall, there seems to be a trend for power 

in the alpha frequency band prior to target onset modulating the degree to which responses were 

rotated too far clockwise from the target’s actual orientation when targets were presented in the 

left visual hemifield. The response bias to right targets was also positively correlated to 1-3 Hz 

power at the left parietal electrode P7 so that less 1-3 Hz power was associated with responses 

having greater counterclockwise rotations away from the target’s orientation. It is notable that 

increased power of both frequency bands have been linked to attentional and perceptual 

inhibitory processes (Harmony, 2013; Clayton, Yeung and Cohen Kadosh, 2018). While these 

correlations between the bias parameters and oscillatory power might hint at a mechanistic 

explanation for participants’ biases to report orientation away from the closest cardinal axes, 
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there are not enough trials at each target orientation in the different trial conditions to statistically 

test this idea. The influence the target’s orientation had on all the model parameter values is 

interesting and should be tested systemically. The effect of orientation on perception is well 

documented, but there is a gap between behavioral studies and single-unit recordings that future 

research can address. 
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4  

CONNECTING COVERT ATTENTION AND VISUAL PERCEPTION 

TO THE SPATIOTEMPORAL DYNAMICS OF ALPHA BAND 

ACTIVITY, CROSS-FREQUENCY COUPLING AND FUNCTIONAL 

CONNECTIVITY USING MULTIVARIATE PATTERN ANALYSIS 

4.1 INTRODUCTION 

Electroencephalography (EEG) is one of the oldest and most well-established 

neuroimaging techniques used by researchers and clinicians. Alpha oscillations (8-14 Hz) were 

the first EEG frequency band identified (Berger, 1929) and are particularly interesting to 

cognitive neuroscience researchers due to a plethora of evidence suggesting it has a critical role 

in visual perception and attention (Klimesch, Sauseng and Hanslmayr, 2007; Mathewson et al., 

2011, 2012; Klimesch, 2012; Clayton, Yeung and Cohen Kadosh, 2015; Frey, Ruhnau and 

Weisz, 2015; VanRullen, 2016b). Exactly what that role is, however, is still debated. For 

example, some researchers believe alpha oscillations inhibit the flow of irrelevant information 

into sensory areas or from sensory areas to higher order cortical locations (Klimesch, Sauseng 

and Hanslmayr, 2007; Jensen and Mazaheri, 2010; Foxe and Snyder, 2011; Mathewson et al., 

2011; Chaumon and Busch, 2014), while others think alpha oscillations indirectly control 

perception and attention by modulating the higher frequencies (e.g., gamma oscillations, >30 Hz) 

involved in sensory processing (Voytek, 2010; Jensen et al., 2014; Zazio et al., 2020). The 

purpose of the current research is to try elucidating the role of alpha oscillations in visual 
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perception and attention using the powerful new techniques offered by machine learning. It is 

now thought that one of the reasons the relationship between alpha oscillations and perception 

remains elusive after almost a century of research is that alpha’s role in conscious perception has 

often been mistaken for sensory processing. For example, recent studies investigating the effect 

of prestimulus power on perception found that participants were more likely to report seeing a 

stimulus when prestimulus alpha (and low beta) power was low, even though the stimulus was 

not presented (Samaha, Iemi and Postle, 2017; Iemi and Busch, 2018; Samaha et al., 2020). To 

account for these findings, Samaha et al (2020) proposed the baseline sensory excitability model 

(BSEM) which states that spontaneous alpha amplitude indiscriminately changes the baseline 

firing rate of sensory neurons such that the sensory response distribution is changed without 

changing the separability of the signal and noise representations. Furthermore, because it is 

thought that the internal fluctuations in sensory neuron excitability are not known by the higher-

level decision-making areas (Samaha et al., 2020), participants will fail to adjust their decision 

criteria accordingly so that participants are not only more likely to report stimulus presence and 

make more false alarms, but will also claim greater level of confidence in their decision even 

though their detection and discrimination sensitivity does not change. These predictions were 

confirmed by two studies designed for signal detection theory analysis (Samaha, Iemi and Postle, 

2017; Iemi and Busch, 2018). Further support comes from Benwell et al (2018) who found that 

pre-stimulus alpha power correlated with participants’ bias when judging the relative length of 

two line segments (landmark task) but not discrimination performance. Interestingly, the bias 

seemed to be partially driven by changes in pre-stimulus alpha power over the course of the 

experiment rather than trial-by-trial variability.  
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In contrast, another group has put forth the oscillation-based probability of response 

(OPR) model which states that the effects of alpha oscillations on perception are due to an alpha-

gamma interaction modulating the probability of sensory neurons responding to a stimulus 

(Zazio et al., 2020). Specially, the oscillation-based probability of response model proposes that 

there are two possible alpha-gamma cross-frequency interactions that effect the probability of 

responding to a visual stimulus: (1) alpha power modulates the power of gamma (amplitude–

amplitude coupling; suppression of gamma amplitude), so that increased alpha power results in 

an increased threshold for responding (Chaumon and Busch, 2014); or, (2) alpha activity 

modulates the phase of gamma (phase–amplitude coupling,; desynchronization of gamma), so 

that increased alpha activity results in a decreased sensory response (Chaumon and Busch, 

2014). In the current study, if amplitude–amplitude coupling activity is responsible for 

attentional modulation and visual perception, we would expect to see results like the baseline 

sensory excitability model (i.e., alpha amplitude) since both propose alpha-related activity 

modulates the signal and noise similarly. On the other hand, we would expect phase–amplitude 

coupling to be strongly related to task performance and sensitive to the presence of an 

informative cue since it would modulate the signal to a larger extent than the noise. These ideas 

are supported by independent lines of research into the role of gamma oscillations for sensory 

enhancement (Pritchett et al., 2015; Ni et al., 2016) and the inverse relationship between alpha 

activity, cortical excitability, and sensory perception (Samuel et al., 2018; de Graaf et al., 2020), 

as well as research using transcranial stimulation that found stimulation at alpha frequency 

modulated gamma oscillation activity (Hamidi, 2009; Herring et al., 2019; Okazaki, Mizuno and 

Kitajo, 2020).  
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There is also the possibility that coordinated activity across different brain areas underlie 

visual perception and attention. Rather than localized changes in brain activity, changes in the 

level of synchronization between brain areas might better explain attentional modulation and 

perceptual responses. Previous studies have reported alpha-mediated functional connectivity with 

regards to visual task performance and top-down attention. For example, authors found stimulus 

anticipation was related to occipital and medial frontal interactions in the alpha band and that 

participants with stronger network interactions were more likely to improve performance 

following an error (Cohen and van Gaal, 2013). Other studies have found alpha-mediated 

interactions between the parietal, frontal, and occipital areas during the control of task-related 

attentional processes (Plomp et al., 2015; Doesburg, Bedo and Ward, 2016). These results 

suggests that alpha band activity might mediate top-down modulation of visual areas not only 

locally, but through the dynamic interactions of large-scale functional networks (Sadaghiani and 

Kleinschmidt, 2016). 

It is important to note that the baseline sensory excitability model, the oscillation-based 

probability of response model, and functional connectivity are not necessarily mutually 

exclusive. It is possible that the oscillation-based probability of response model is a mechanistic 

explanation of the baseline sensory excitability model which is a result of coordination across 

different brain areas. It is also important to point out that neither model claims to explain 

attention, though both propose that their models could extend to, or are at least related to, 

attentional mechanisms. This leaves us with some interesting questions that need to be 

addressed. Namely, whether alpha power alone (baseline sensory excitability model), alpha 

modulated gamma (oscillation-based probability of response model), or functional connectivity 

best account for perceptual performance. Also, this paper sought to investigate if the same 
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pattern of brain activity that accounts for perceptual performance can predict performance when 

participants are actively engaged in visuospatial attention? To address these questions, the 

current study uses the combination of machine learning technique, EEG data collected from a 

combined orientation perception and spatial attention task and associated behavioral measures 

(see below for further details about the task). The idea is to determine whether alpha power, 

alpha-gamma cross-frequency coupling, or alpha-based functional connectivity could accurately 

classify trials as those with selective spatial attention (informative cue) and those without (non-

informative cue). In addition, the current study would also test which set of EEG measures could 

predict perceptual performance on a cued orientation perception task. 

4.2 MATERIALS AND METHODS 

This dataset and task have also been reported in Chapter 3. 

Participants 

Thirty-five participants from the University of Alberta community participated in the 

study (age range = 17-34 years). Seven participants were not included in the analysis due to 30% 

or more trials containing eye movement artifacts (see the EEG Preprocessing section for more 

details). One other participant was excluded from the analysis due to having extreme outlying 

performance on the task (see Behavioral Analysis in the Results section for more details). 

Participants were all right-handed and had normal or corrected normal vision and no history of 

neurological problems. All participants gave informed written consent, were either compensated 

at a rate of $10/hr or given research credit for their time. The study adhered to the tenets of the 

Declaration of Helsinki and was approved by the Internal Ethics Board at the University of 

Alberta. 

Cued Orientation Perception Task 
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Participants were seated 57 cm away from a 1920 x 1080 pixel2 ViewPixx/EEG LCD 

monitor (VPixx Technologies, Quebec, Canada) with a refresh rate of 120 Hz, simulating a CRT 

display with LED backlight rastering. The rastering, along with 8-bit digital TTL output triggers 

yoked to the onset and value of the top left pixel, allowed for submillisecond accuracy in pixel 

illumination times, which were confirmed with a photocell prior to the experiment. Stimuli were 

presented using a Windows 7 PC running MATLAB R2012b with the Psychophysics toolbox 

(Version 3; Brainard, 1997; Pelli, 1997). The code running the task was a modified version of the 

Orientation Perception Task code from Sheldon and Mathewson (2021). The original version of 

the code can be found here: https://github.com/APPLabUofA/OrientTask_paper. Video output 

was sent to the ViewPixx/EEG with an Asus Striker GTX760 (Fremont, CA) graphics processing 

unit. 

Each trial began with a white fixation dot presented at the center of the monitor and two 

dark gray circles to the left and right of the fixation dot for 700 ms after which one of three 

possible cues appeared above the central fixation dot, vertically aligned to the top of the circles. 

Two cues were black triangles pointing towards the left or right, indicating the side the target 

will appear (i.e., informative cues). The third cue was both black triangles pointed toward each 

other indicating that the target will appear to the left or right (i.e., non-informative cue). The cues 

remained on screen for 1242, 1284, 1325, or 1367 ms. After the cue, the target appeared for 8.33 

ms (one monitor refresh) in the center of the left or right circle. The target always appeared to the 

side indicated by the informative cue. For non-informative cues, the target could appear on the 

left or right with equal probability. The target was in the shape of a needle and was pointing 

toward one of 24 predefined evenly spaced directions so that all the orientations covered 360 

degrees. The direction of the target was randomly selected on each trial. A backward mask 

https://github.com/APPLabUofA/OrientTask_paper
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lasting for 8.33 ms with a constant 41.7 ms target-mask stimulus-onset asynchrony appeared in 

the center of both circles regardless of the side the target appeared. The mask was created by 

overlaying the target orientated in all 24 directions which created a star shape seen in Figure 

4.1A. Following the mask offset, a 516.6 ms blank interval period occurred identical to the 

fixation.  

 

Figure 4.1. Cued orientation perception task 

A) Sequence of task events with duration of each screen 

presentation and sizes of fixation, cues, target, mask, and 

response stimuli. Sizes are in degrees of visual angle. B) 

Example of response error calculation. Response errors are 

reported in degrees. 

 

After the blank interval, a response screen appeared with the needle in the center of the 

screen. Using the computer mouse, participants were asked to rotate the needle so that it was 

pointed in the same direction as the previous target. If participants detected a target but could not 

remember its orientation, they were asked to guess the orientation of the target. Participants 
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could provide their response at their own pace. No feedback was given to participants. The next 

trial began immediately after a needle’s orientation was selected. See Figure 4.1A for a summary 

of the task sequence and the stimulus dimensions. 

Participants completed eight blocks consisting of 48 trials each, along with 20 practice 

trials at the beginning of the experiment. Participants ended completing a total of 404 trials with 

33% of trials having a non-informative cue and about equal left and right targets, 33% of trials 

having a right target and informative cue, and 33% of trials having a left target and informative 

cue. Participants could rest at their own pace every 48 trials. Extensive written and verbal 

instructions were presented to participants prior to the practice trials. Instructions thoroughly 

explained and demonstrated each component that would compose a single trial.  

Before the cued orientation perception task, participants performed a staircased cued 

target detection task that had the same parameters as the cued orientation perception task except 

that participants only reported whether they saw the target or not using the keyboard. The target 

color was a gray determined by a scalar value passed to the functions in Psychtoolbox. In the 

staircased cued target detection task, the target color value could range from the background 

color (making it not visible; corresponding value of 256) to black (making it the most visible; 

corresponding value of 0). This target gray value was adjusted throughout the task based on a 1-

up/2-down staircasing procedure targeting a 0.65 target detection rate for each individual 

(Garcı́a-Pérez, 1998; Kingdom and Prins, 2016). The staircased task consisted of three blocks of 

48 trials. The target gray value was determined for each participant by taking the average target 

gray value across the last two blocks of trials. These final values came to be 56 on average (SD = 

20) and were used as the target gray value in the cued orientation perception task.  
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The MATLAB code for the cued staircased target detection task and the cued orientation 

perception task are available at 

https://github.com/APPLabUofA/CuedOrientTask_paper/tree/main/Experiment_Code.  

EEG Recording 

During the experiment, EEG data was recorded from each participant with a Brain-Amp 

32-channel amplifier (BrainVision) using gelled low-impedance electrodes (actiCAP passive 

electrodes kept below 5 kΩ). Inter-electrode impedances were measured at the start of each 

experiment. All electrodes were arranged in the same 10-20 positions (Fp2, Fp1, F4, F3, F8, F7, 

FC2, FC1, FC6, FC5, C4, C3, CP2, CP1, CP6 CP5, P4, P3 P6, P5, P8, P7, PO4, PO3, O2, O1, 

Fz, FCz, Cz, Pz, and Oz). In addition to the 31 EEG sensors, a ground electrode was used, 

positioned at AFz. Two reference electrodes and the vertical and horizontal bipolar EOG were 

recorded from passive Ag/AgCl easycap disk electrodes affixed on the mastoids, above and 

below the left eye, and 1 cm lateral from the outer canthus of each eye. The bipolar channels 

were recorded using the AUX ports of the Brain-Amp amplifier. SuperVisc electrolyte gel and 

mild abrasion with a blunted syringe tip were used to lower impedances. Gel was applied and 

inter-electrode impedances were lowered to less than 5 kΩ for all electrode sites. EEG data was 

recorded online referenced to an electrode attached to the left mastoid. Offline, the data were re-

referenced to the arithmetically derived average of the left and right mastoid electrodes.  

Data were digitized at 1000 Hz with a resolution of 24 bits. Data were filtered with an 

online bandpass with cutoffs of 0.1 Hz and 250 Hz. The experiment was run in a dimly lit, sound 

and radio frequency-attenuated chamber from Electromedical Instruments, with copper mesh 

covering the window. The only electrical devices in the chamber were an amplifier, speakers, 

keyboard, mouse, and monitor. The monitor ran on DC power from outside the chamber, the 

https://github.com/APPLabUofA/CuedOrientTask_paper/tree/main/Experiment_Code
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keyboard and mouse were plugged into USB outside the chamber, and the speakers and amplifier 

were both powered from outside the chamber, and nothing was plugged into the internal power 

outlets. Any devices transmitting or receiving radio waves (e.g., cell phones) were removed from 

the chamber for the duration of the experiment. 

Data Analyses 

Data analyses were performed using MATLAB R2021a (The MathWorks Inc, Natick, 

MA, USA), EEGLAB 14.1.2b (Delorme & Makeig, 2004), FieldTrip 20160928 (Oostenveld et 

al., 2011), Python 3.7.9 (Python Software Foundation, https://www.python.org/) via the Spyder 

IDE (version 5.0.5; Raybaut, 2009), and custom scripts. All statistical analyses were conducted 

using MATLAB R2021a. Red-white-blue colormaps were created using the redblue.m function 

by Auton (2009) found here: https://www.mathworks.com/matlabcentral/fileexchange/25536-

red-blue-colormap. The functional connectivity topographic plots were made with code adapted 

from the FCLAB toolbox (Pezoulas et al., 2018) found here: 

https://github.com/ramsys28/FCLAB. The raw behavior and EEG data files are available at 

https://osf.io/u6fgm/.   

Behavioral Data 

Response errors on each trial were calculated by subtracting the orientation of the 

response stimulus, as reported by the participant, from the orientation of the target stimulus (see 

Figure 4.1B). The response errors and absolute response errors were submitted to a repeated-

measures factorial ANOVA (target side and cue type the within-subject factors) using the 

permutation-based Fmax test which is a mass univariate approach for factorial ANOVAs. The 

Fmax test has the advantages of permutation tests in there are a lot less assumptions about the 

data than traditional statistical approaches, and has been shown to be very good at controlling 

https://github.com/ramsys28/FCLAB
https://osf.io/u6fgm/
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Type I errors without a great cost in power (Fields and Kuperberg, 2019). The implementation of 

the Fmax test was done with code modified from the Factorial Mass Univariate Toolbox (FMUT; 

Fields, 2017). The original code can be found here: https://github.com/ericcfields/FMUT.  

Follow-up pairwise comparisons of significant interactions and main effects were done 

with a repeated-measures, two-tailed permutation test based on the tmax statistic (Blair & 

Karniski, 1993) using the mxt_perm1() function from the Mass Univariate ERP Toolbox 

(Groppe et al., 2011). P-values were then corrected for multiple comparisons using the false 

discovery rate (FDR) procedure described in Benjamini and Yekutieli (2001). Effects that 

satisfied a 5% FDR criterion were considered significant. 10,000 random within-participant 

permutations were used to estimate the distribution of the null hypothesis for all permutation-

based tests (i.e., Fmax and tmax) and the familywise alpha (α) was set to 0.05. 

EEG Data 

Preprocessing. After the data had been re-referenced offline, the bandpass FIR filter 

from EEGLAB was applied with lower and upper cut-offs of 0.1 Hz and 50 Hz. Data was 

segmented into 3000 ms epochs aligned to target onset (-2400 ms pre-target onset to 1400 ms 

post-target onset). The average voltage in the 200 ms baseline following fixation onset was 

subtracted on each trial for every electrode, and trials with absolute voltage fluctuations on any 

channel greater than 1000 μV were discarded. Eye movements were then corrected with a 

regression-based procedure developed by Gratton, Coles, and Donchin (1983). After a second 

baseline subtraction with 200 ms following fixation onset, trials with remaining absolute voltage 

fluctuations on any channel greater than 500 μV were removed from further analysis.  

Data was then subjected to visual inspection and manual rejection of trials (both EEG and 

behavioral data) contaminated by blocking (i.e., amplifier saturation), blinks, muscle noise, or 

https://github.com/ericcfields/FMUT
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skin potentials. To ensure there were no horizontal eye movements during the trial, we use a 

split-half sliding window approach on the HEOG signal. We slid a 100 ms time window in steps 

of 10 ms from 1600 ms prior to target onset (at least 200 ms before the first cue appears) to the 

response screen onset 600 ms after target onset. If the change in voltage from the first half to the 

second half of the window was greater than 25 µV, it was marked as an eye movement and 

rejected (Hong et al., 2015; Hakim et al., 2019). Seven participants had to be removed from 

further analysis after this procedure because more than 30% of trials got rejected indicating that 

they did not use covert attention as instructed. 

Periodic and Aperiodic Components. Because neural power spectra consist of 

overlapping periodic and aperiodic components, it is important to consider the aperiodic activity 

when measuring a signal’s oscillatory properties. For this reason, the FOOOF toolbox (version 

1.0.0; Donoghue et al., 2020) was used to identify peaks within the alpha (8-14 Hz) frequency 

range after adjusting for the aperiodic component. FOOOF is a spectral parameterization 

algorithm which decomposes the power spectrum into periodic and aperiodic components via an 

iterative process of model fitting (see Donoghue et al., (2020) for detailed description). The 

FOOOF toolbox is available on https://github.com/fooof-tools/fooof. 

Before FOOOF, the power spectral density (PSD) was estimated using Welch’s method 

by applying the pwelch function from MATLAB’s Signal Processing Toolbox to the 1000 ms 

before target onset for each participant, electrode, and trial separately. The PSD was calculated 

using a Hamming window based on a 500 ms periodogram to perform spectral decomposition at 

each frequency. The PSD data was then submitted to FOOOF in Python.  

Settings for the FOOOF algorithm were set as: peak width limits: [1,5]; max number of 

peaks: 7; minimum peak height: 0.22; peak threshold: 0.20; and aperiodic mode: fixed. Power 

https://github.com/fooof-tools/fooof
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spectra were parameterized across the frequency range 3.9 to 48.8 Hz with a frequency 

resolution of 1.9 Hz.  

The aperiodic component measures offset and exponent and the measures quantifying the 

quality of fit, r2 and fit error, were submitted to a repeated-measures factorial ANOVA (target 

side and cue type the within-subject factors) using the permutation-based Fmax statistic. The 

implementation of the Fmax test was done with code modified from the Factorial Mass 

Univariate Toolbox (FMUT; Fields, 2017). All brain electrodes were included in the analysis 

10,000 random within-participant permutations were used to estimate the distribution of the null 

hypothesis and the familywise alpha (α) was set to 0.0125 (Bonferroni corrected alpha level αcorr 

= 0.05/4 to account for the two aperiodic component measures and the two quality of fit 

measures). 

Alpha (8-14 Hz) Peak Detection. Alpha peaks were identified on a trial-by-trial basis for 

each electrode and participant separately using the FOOOF algorithm. The final alpha peak 

frequencies used in subsequent analyses were the median frequency of the trials in each trial 

category (i.e., informative cue, right target; non-informative cue, right target; informative cue, 

left target; and, non-informative cue, right target). This meant that each participant, electrode, 

and trial category had a peak alpha frequency that could be used in later analyses.  

EEG Signal Metrics. All EEG metrics were calculated for each trial type, electrode, and 

participant separately. All features depend on both band-pass filtering and applying Hilbert 

transform to obtain instantaneous phase, amplitude, and frequency. Because both models are 

concerned with the influence of alpha oscillations on stimulus perception, only brain activity 

before target onset was considered. It was also important to use a time window starting at least 

200 ms after the last cue onset to prevent contamination from the visual evoked potential (Luck, 
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2014). Thus, all EEG features were calculated for the 1000 ms prior to target onset (i.e., -1000 to 

0 ms) with the condition that the time windows over which the metrics were calculated never 

exceeded 0 ms. 

To prevent edge artifacts, the data was zero-padded so that filtering was done on an 

additional 2000 ms (1400 ms data + 600 ms zero-padding) on either side of the selected window 

(Cohen, 2008). The filter type used was a 4th order Butterworth Infinite Impulse Response (IIR) 

filter implemented using Fieldtrip’s ft_preproc_bandpassfilter() function (Oostenveld et al., 

2011). To remove any phase distortion caused by filtering in the original signal, we used a 

backward forward zero phase filtering method. A variable width filter was used for the cross-

frequency coupling (CFC) calculations (see Cross-Frequency Coupling (CFC) section for more 

details), and an 8-14 Hz wide filter was used for the functional connectivity analysis. Afterward, 

the Hilbert transform was applied using Fieldtrip’s ft_preproc_hilbert() function (Oostenveld et 

al., 2011) or the Hilbert() function from MATLAB’s Signal Processing Toolbox. The reason both 

functions were utilized was that the code calculating the cross-frequency coupling (CFC) metrics 

originated from different sources who used either Fieldtrip’s or MATLAB’s function. In other 

words, when code was adapted from other sources, that function was not changed (see below for 

more details). 

The instantaneous amplitude extracted after filtering ±1 Hz of the median peak alpha 

frequency was used as the metric of instantaneous alpha amplitude submitted to the decoding 

analysis along with the cross-frequency coupling metrics describe below. Because of the Hilbert 

transformation, there were 1001 time points (-1000 to 0 relative to target onset) for the alpha 

metric.  
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Cross-Frequency Coupling. Cross-frequency coupling metrics are used to quantify the 

interactions between frequency bands. There are two types relevant to the current study: phase–

amplitude coupling and amplitude–amplitude coupling (Jensen and Colgin, 2007; Cohen, 2014; 

Davoudi, Ahmadi and Daliri, 2020). Both were calculated using a 250 ms time window, the 

minimum needed to capture two full cycles of the lowest frequency oscillation at the 1000 

sampling rate, and a 1 ms time step.  

The bandwidth of a filter used is a crucial parameter when calculating CFC. For 

extracting the instantaneous amplitude, filters need to be wide enough to capture the amplitude 

fluctuations. However, extracting the instantaneous phase requires a narrow band filter for 

accurate estimation (Davoudi, Ahmadi and Daliri, 2020). For this reason, a variable bandwidth, 

defined as ±0.4 times the center frequency was used on the faster 30-45 Hz frequency range (Aru 

et al., 2015; Seymour, Rippon and Kessler, 2017), and a precise ±1 Hz of the median peak alpha 

frequency was used for the slower frequency range (Seymour, Rippon and Kessler, 2017). 

Amplitude-amplitude coupling was measured using Spearman’s rho which assess the 

correlation between the instantaneous amplitude of alpha and gamma (Cohen, 2014). Values can 

range between 1 and -1 where 0 indicates no coupling and ±1 indicated complete coupling. 

Since there is little agreement about the best way to quantify phase-amplitude coupling, 

several different metrics were chosen, each with their own benefits and limitations. For instance, 

the phase-locking value (which will be referred to as PACPLV) described by Cohen (2008) was 

calculated using a modified version of the pacMEG.m function by Seymour and colleagues 

(2017). The PACPLV represents the degree to which the faster (gamma) oscillations are 

comodulated with the slower frequency’s (alpha) phase. It was originally developed as a flexible 

way to identify PAC across time without requiring a priori assumptions about the frequency 
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bands at which coupling will be assessed (Cohen, 2008). The value of 1 represents complete 

coupling and 0 represents no coupling. 

The Modulation Index (MI), as proposed by Tort and colleagues (2008, 2010), measures 

cross-frequency coupling based on Shannon entropy and Kullback-Leibler (KL) divergence. 

When the mean amplitude is uniformly distributed over the phases (i.e., lack of phase-amplitude 

coupling), MI = 0. As the amplitude distribution deviates further from a uniform distribution, the 

closer MI gets to 1 indicating the existence of phase-amplitude coupling. The MI was calculated 

with a modified version of code from the EEGLAB extension PACTools (version 1.0.1; 

Martinez-Cancino et al., 2020). The original code can be found here: 

https://github.com/sccn/PACTools. The number of bins was 18 except when that resulted in 

empty bins. To avoid having empty bins (which results in a null value), the number of bins was 

iteratively decreased by half until none of the bins were empty. 

Alternatively, the mean vector length (MVL) created by Canolty et al (2006) is calculated 

by multiplying slow oscillation phase time series by fast oscillation amplitude and then 

averaging the vectors across time. The length of the average vector represents the amount of 

phase-amplitude coupling and the direction represents the mean phase where amplitude is 

strongest. When no coupling is present, all vectors cancel each other out and the mean vector 

will be short (Hülsemann, Naumann and Rasch, 2019). The problem with the MVL is that it can 

be dependent on the absolute amplitude of the high frequency oscillation (Tort et al., 2010). To 

address this caveat, Özkurt and Schnitzler (2011) proposed a direct MVL (which will be referred 

to as MVLÖzkurt) which is amplitude-normalized and ranges between 0 and 1. MVLÖzkurt was used 

as a phase-amplitude coupling measure and it was calculated using a modified version of the 

pacMEG.m function by Seymour and colleagues (2017). 

https://github.com/sccn/PACTools
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Finally, Penny et al (2008) created a measure of phase-amplitude coupling based on the 

general linear model (GLM). This measure, which will be referred to as PACGLM, uses multiple 

regression to estimate (via least squares solutions) the regression coefficients of a model relating 

the amplitude of the faster frequency to the phase of the slower frequency (see Penny et al (2008) 

for details). The final PACGLM metric is the proportion of variance explained by the model (𝑟𝑟𝐺𝐺𝐺𝐺𝐺𝐺2 ) 

which ranges between 0 and 1. The PACGLM was meant as an improvement to the envelope-to-

signal correlation measure by Bruns and Eckhorn (2004) by removing sensitivity to amplitude 

co-modulation and allowing coupling to be detected at all phases of the slower oscillation (Penny 

et al., 2008). The PACGLM was calculated with a modified version of code from the EEGLAB 

extension PACTools (version 1.0.1; Martinez-Cancino et al., 2020). The original code can be 

found here: https://github.com/sccn/PACTools. 

Functional Connectivity. Functional connectivity metrics are used to quantify the 

synchronization of neural responses across electrodes. Volume conduction is a possible confound 

in functional connectivity analysis that can be dealt with in several ways. One method is to use 

measurements that are relatively insensitive to the effects of volume conduction such as phase-

lag index (PLI), weighted PLI, and imaginary coherence (iCOH) (Cohen, 2014). These measures 

were calculated for all electrode pairs following the bandpass filtering and Hilbert transform.  

Another method is to apply a spatial filter, like the surface Laplacian, which minimizes 

volume-conduction effects (Kayser and Tenke, 2015). This was done prior to the bandpass 

filtering using the algorithm described by Perrin and colleagues (1989) and the function 

laplacian_perrinX.m written by Cohen (2014) which can be found at 

https://github.com/mikexcohen/AnalyzingNeuralTimeSeries. The function’s default settings were 

used which had the Legendre polynomial order set to 20 and the G smoothing parameter 

https://github.com/sccn/PACTools
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(lambda) set to 1e-5. After spatial and frequency filtering and the Hilbert transform, phase-

locking values (PLV) and amplitude envelope correlations were calculated for all electrode pairs. 

All functional connectivity measurements were calculated between -1000 ms and 0 ms (relative 

to target onset) in 375 ms time windows, the minimum segment length for at least three cycles of 

the lowest frequency band as recommended by Cohen (2014), and 5 ms time steps.  

There are several other metrics used to quantify functional connectivity. There are a lot 

more ways to quantify functional connectivity than the measures used here, but the metrics 

chosen, which are summarized below, were those that best balanced computational intensity with 

suitability for the experimental design and research question.  

Phase lag index (PLI) aims to obtain reliable estimates of phase synchronization that are 

unaffected by volume conduction. The central idea is to discard phase differences that center 

around 0 mod π since zero phase delay between two points is one of the properties of volume 

conduction. It is calculated as the average number of phase angle differences that are positive or 

negative in the complex plane (Cohen, 2015). The weighted phase lag index (wPLI) is an 

extension of the phase lag index (PLI)  proposed by Vinck et al (2011) where the vectors closest 

to the real axis are given less weight, thus, have a smaller influence on the final connectivity 

estimate (Cohen, 2015). The wPLI in the current study was corrected for sample-size bias using 

the debiased estimator introduced by Vinck et al (2011). wPLI was calculated using modified 

code based on Fieldtrip’s (Oostenveld et al., 2011) implementation found here: 

https://github.com/fieldtrip/fieldtrip/tree/master/connectivity; and, online code by Cohen (2014) 

found here: https://github.com/mikexcohen/AnalyzingNeuralTimeSeries. 

Imaginary coherence (iCOH) was developed by Nolte et al (2004) as a way to measure 

spectral coherence without the influence of volume conduction (Cohen, 2014). The iCOH was 

https://github.com/fieldtrip/fieldtrip/tree/master/connectivity
https://github.com/mikexcohen/AnalyzingNeuralTimeSeries
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calculated using a modified version of the online code provided by Cohen (2014) found here: 

https://github.com/mikexcohen/AnalyzingNeuralTimeSeries. 

Phase-locking value (PLV) described by Lachaux et al (1999) measures the uniformity of 

the distribution of phase angle difference between two electrodes. However, instead of 

calculating the phase difference across trials, the phase difference between electrodes was 

calculated across time within each trial. So, if the phase difference varies little within a time 

window, the PLV is close to one. If there is a lot of variability within a time window, the PLV is 

close to 0. The PLV was calculated using a modified version of the pn_eegPLV.m function from 

the FCLAB toolbox (Pezoulas et al., 2018). The original code can be found here: 

https://github.com/ramsys28/FCLAB. 

Like the cross-frequency coupling metric AAC, the amplitude envelope correlations were 

calculated using Spearman’s rho because it does not rely on an assumption of normally 

distributed data. The only difference in the calculation was that the amplitude envelope 

correlations were done between electrode pairs rather than between two different frequencies at 

the same electrode. 

Multivariate Pattern Analysis (MVPA) 

Traditionally, data analysis has primarily been limited to a univariate approach such as 

detecting differences in activity between experimental conditions. In contrast, MVPA is 

concerned with how multivariate neural patterns comprising spatial and temporal combinations 

might collectively correspond to a cognitive event or state of interest (Kuntzelman et al., 2021). 

As such, MVPA is a powerful technique to demonstrate the availability of discriminatory or 

predictive information, without requiring many assumptions about the underlying spatial or 

temporal extent of that information (Hogendoorn, 2015). Another important advantage of this 

https://github.com/mikexcohen/AnalyzingNeuralTimeSeries
https://github.com/ramsys28/FCLAB
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approach is that it does not require averaging over space, time, trials, or participants. 

Furthermore, MVPA can be applied at individual time points, allowing for the investigation of 

how the information content changes over time (Hogendoorn, 2015).  

A linear support vector machine (SVM) was chosen for the current MVPA. The SVM is a 

generalization of the maximal margin classifier developed in the 1990s by computer scientist 

(James et al., 2021). Because the goal of the current study was not high prediction accuracy, the 

linear SVM was preferrable to the more sophisticated nonlinear algorithms because the linear 

SVM is simpler, making interpretation less complex (Grootswagers, Wardle and Carlson, 2017). 

It should be noted that finding discriminatory or predictive information in EEG activity 

patterns using MVPA does not mean that those activity patterns are how the brain represents that 

information. In other words, it should not be assumed MVPA represents a biologically plausible 

mechanism employed by the brain. At best, MVPA shows that information about the 

experimental conditions is latent in brain activity patterns, not that the information is being used 

by the brain (Ritchie, Kaplan and Klein, 2019). 

With regards to the current analysis, each metric was z-score normalized across trials at 

each time window for each participant before SVM classification and regression because it can 

speed up calculations and help increase accuracy (Ben-Hur and Weston, 2010).  

Support Vector Machine (SVM) Classification  

The goal of the SVM classification analysis was to determine the patterns of brain 

activity before target onset that best distinguish between informative and non-informative cued 

trials (left and right targets separately). Support vector machine (SVM) classification works by 

finding the hyperplane which maximizes the margin between categories. The margins are 



188 
 

determined by the support vectors which are, in this case, the closest points to the hyperplane 

(Taghizadeh-Sarabi, Daliri and Niksirat, 2014). 

To perform classification, we used C-SVM (implemented by the LIBSVM Toolbox; 

Chang & Lin, 2011) with a linear kernel and the regularizing/cost parameter C = 1. This was 

implemented with the Decision Decoding Toolbox (DDTBOX; Bode et al., 2019) code and 

custom script. The number of trials were balanced between the two conditions before 

classification because a trained classifier could achieve high accuracy in an unbalanced dataset 

by predicting the more frequent trial category (Grootswagers, Wardle and Carlson, 2017). 

Support Vector Regression (SVR). When the variables of interest are continuous rather 

than categorical, an alternative to support vector machine (SVM) classification is support vector 

regression (SVR). SVR allows for trial-by-trial values of a continuous variable (in this case, 

response errors) to be mapped to predicted values of that variable (Bode et al., 2019). The goal 

of this analysis was to determine the patterns of brain activity before target onset that best predict 

response errors (done separately for each individual and the following four conditions: 

informative cue, right target; non-informative cue, right target; informative cue, left target; and, 

non-informative cue, left target). 

Support vector regression (SVR) works a little differently than support vector machine 

(SVM) classification in that the support vectors of SVR are the data points (i.e., EEG signal 

metrics calculated at each electrode and timepoint) with relatively large residuals (i.e., furthest 

from the regression line) rather than the closest (Bishop, 2006). However, in both cases, the data 

points that are hardest to categorize (closest together) or predict (furthest from their predicted 

values) are the support vectors used to determine the solution (Bode et al., 2019). 
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Support vector regression (SVR) analyses was implemented with the Decision Decoding 

Toolbox (DDTBOX; Bode et al., 2019) code and custom script. The SVR model was calculated 

using LIBSVM with a standard cost parameter C = 0.1 (Chang and Lin, 2011). 

Cross-Validation. A 10-fold cross-validation procedure repeated 10 times was used to 

assess performance of the support vector machine (SVM) classifier/model for each participant 

and set of conditions. In this method, the data are divided into 10 subsets. The classifier/model is 

trained on nine subsets and tested using the left-out subset. This procedure is then independently 

repeated with each subset serving at the test data once while training on the remaining nine data 

sets. The average 10 cross-validation steps and 10 repetitions of the entire cross-validated 

analysis results in 100 analyses which was averaged, giving the final classification/prediction 

accuracy (Grootswagers, Wardle and Carlson, 2017; Bode et al., 2019). 

For support vector regression (SVR), the only difference to the classification analysis was 

that the results of SVR are individual correlation coefficients between the predicted variable 

based on the regression model and their true values, averaged across all 100 analyses (10-fold 

cross-validation and 10 repetitions). Finally, the Fisher-Z transformation was applied to the 

correlation coefficients so that the final values could approach a normal distribution (Bode et al., 

2019).  

Permuted-labels analyses can be used to estimate a distribution for the null hypothesis (in 

this case the null hypothesis is that the data patterns associated with each category are 

exchangeable). This was done by repeating all original analyses with the same data and category 

labels, but with assignment of labels independently randomized for each iteration. The only 

difference between the actual classification accuracy and the permuted-labels/chance accuracy 

was that 20 repetitions were used in the permuted-labels calculations rather than 10. The final 
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statistical chance level was obtained by averaging the estimates from 200 analyses (e.g., 10-fold 

cross-validation with 20 full repetitions). Then this chance accuracy was compared with the 

actual classification accuracy to check the statistical significance (Bode et al., 2019). The same 

permuted-labels analyses were applied to the support vector regression (SVR) analyses for each 

participant and each condition to obtain a distribution of regression results under the null 

hypothesis. 

For SVM classification and SVR, a moving time window was used to perform the cross-

validation calculations and analyses over the pre-target time-period. The choice in window width 

and step size was based on balancing data size and temporal resolution. All the CFC measures 

used a 15 ms time window and 15 ms step size which meant that there were 50 timepoints at 

each electrode. The alpha amplitude metric used a 20 ms time window and 20 ms step size which 

resulted 50 timepoints at each electrode. All the functional connectivity metrics used a 50 ms (10 

timepoints multiplied by the step size of the original calculations) time window and 50 ms (10 

timepoints multiplied by the step size of the original calculations) step size which meant that 

there were 12 timepoints at each electrode. It should be noted that the timepoints in the cross-

validation analysis are CFC and functional connectivity measurements calculated from larger 

time windows so there is less temporal precision than it might appear. 

For group level statistical analysis, t-tests using a threshold of p < 0.05 were used to 

compare the empirical results with permuted-labels results (Bode et al., 2019). Subsequently, 

right-tailed tmax permutation testing (number of iterations = 10000, α level = 0.05) was 

conducted for multiple comparisons correction (Blair and Karniski, 1993). 

Feature Weight Analysis. Support vector machine (SVM) feature weights are measures 

of the relative importance of each feature for classification or regression. Feature weights 
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describe the contribution of each feature in determining the decision boundary or regression line 

(Bode et al., 2019). Importantly, a weight parameter does not reflect the contribution of each 

feature in isolation. Instead, the weight parameter directly reflects the usefulness of that feature 

to the discrimination or prediction process in the context of the other features (Hebart and Baker, 

2018).  

For the feature weight analysis, the absolute feature weights were extracted for each 

electrode at time windows showing significance at the group level. Each electrode weight was 

calculated as the average feature weight across the time window at that channel. Raw feature 

weights were transformed using the method introduced by Haufe et al (2014) to ensure accurate 

topographies. Then the transformed feature weights were converted into z-scores and submitted 

to a right-tailed tmax permutation testing (number of iterations = 10000, α level = 0.05) for 

multiple comparisons correction (Blair and Karniski, 1993). It is important to note that the 

reliability of activity patterns depends on the quality of the weights which, in turn, rely on 

classification/prediction performance. If accuracy is low, weights are likely suboptimal, and 

reconstructed activation patterns have to be interpreted with caution (Haufe et al., 2014; 

Grootswagers, Wardle and Carlson, 2017). 

4.3 RESULTS 

Behavioral Data 

As can be seen in Figure 4.2, The response errors showed no significant main effects 

(target side: Fmax(1,27) = 2.04 (critical Fmax = ±4.03), p = 0.15; cue type: Fmax(1,27) < 1) or 

interactions (Fmax(1,27) = 1.36 (critical Fmax = ±4.16), p = 0.25). In contrast, the absolute 

response errors, which can be thought of as the magnitude of the response error, had a significant 

main effect for target side (Fmax(1,27) = 13.78 (critical Fmax = ±4.16), p < 0.001), cue type 
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(Fmax(1,27) = 9.80 (critical Fmax = ±4.27), p < 0.01), and a significant interaction between 

target side and cue type (Fmax(1,27) = 17.19 (critical Fmax = ±4.06), p < 0.001). 

 

Figure 4.2. Summary of behavioral results 

Left, significant effects of experimental conditions on the absolute 

values or magnitude of the response errors. Error bars are the ±

SEM. Right, the interaction and main effects were not significant 

for participants’ response errors. Error bars are the ±SEM 

 

Aperiodic Component 

The aperiodic offset and exponent showed no significant main effects or interactions 

(mean critical Fmax(1,27) = +/-14.67 and mean critical Fmax(1,27) = +/-15.05, respectively). 

The quality of fit measures r2 and fit error also showed no significant main effects or interactions 

(mean critical Fmax(1,27) = +/-13.74 and mean critical Fmax(1,27) = +/-16.27, respectively). 

Support Vector Machine (SVM) Classification 

As shown in Figure 4.3A, the SVM was able to accurately distinguish between trials that 

had an informative cue from those with a non-informative cue by the spatiotemporal pattern of 

alpha amplitude before target onset. The classification accuracy was significantly above chance 

at most of the time windows regardless of whether the target was to appear on the left or right. 

Feature weight analysis averaged over the entire epoch revealed that the major contributors to the 
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discrimination process were the central and medial electrodes in the centroparietal, parietal, 

parietooccipital and occipital brain areas. However, when the targets would appear on the left, 

the left and central occipital electrodes were not significant contributors to the classification 

analysis whereas they were for when the upcoming targets would to appear on the right (Figure 

4.3B).  

 

Figure 4.3. Results from spatiotemporal SVM classification and corresponding feature 

weight analysis based on alpha amplitude and cross-frequency coupling (CFC) 

measures 

A) Spatiotemporal classification accuracy of trials with non-informative vs informative 

cues across all electrodes from alpha amplitude and cross-frequency coupling (CFC) 

measures. The SVM was trained separately on trials with left targets and trials with 
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right targets. The black and blue lines show the actual accuracy, and the permutation 

test results, respectively. Error bars indicate standard error of the mean. The green 

shaded regions indicate the classification accuracy was significant at these time points 

(p < 0.05, corrected for multiple comparison). The dashed gray line indicates target 

onset. Topographic plots are the z-standardized absolute feature weights at or across the 

significant time points indicated by the text to the left of the heads. Green stars on the 

topographic plots are electrodes found to be significant features after correction for 

multiple comparisons. B) Topographic maps of the z-standardized absolute feature 

weights averaged over the -1000 ms epoch prior to target onset. Green stars indicate 

the electrodes with z-score feature weights significantly above zero after correction for 

multiple comparisons. Only measures with classification accuracy scores significantly 

above chance have stars indicating the electrodes with significant feature weight z-

scores. AAC = amplitude-amplitude coupling; MI = modulation index; MVL = mean 

vector length; PAC = phase-amplitude coupling. 

 

Cross-Frequency Coupling (CFC) 

The only CFC measure with an activity pattern that trained the support vector machine 

(SVM) to classify trials significantly better than chance was the MVLÖzkurt (Figure 4.3A). For 

left targets, this was at -875 ms relative to target onset; for right targets, this was for the time 

window -785 to -770 ms and at -380 ms relative to target onset. The feature weights calculated 

for the entire epoch and at the significant time windows were not significant contributors to 

determining the decision boundary (Figure 4.3B). Note that because feature weights are only as 

useful as the information represented by the pattern of activity they are derived from (e.g., the 

relative importance of electrode activity for classification is meaningless if there is no way to 

accurately classify trials in the first place), only measures that had classification accuracies above 

chance are discussed.     

Functional Connectivity 
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The only functional connectivity measure that had classification accuracies above chance 

was the weighted phase lag index (wPLI). As can be seen in Figure 4.4A, the significantly above 

chance classification accuracy (black solid line) was only for targets on the right and at -462.5 

ms relative to target onset. Feature weight analysis revealed that none of the electrode 

connections were significant contributors to the decision boundary. The same was for the feature 

analysis over the entire epoch (Figure 4.4B).
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Figure 4.4. Results from spatiotemporal SVM classification and corresponding feature weight analysis based on 

functional connectivity metrics 

A) Spatiotemporal classification accuracy of trials with non-informative vs informative cues across all electrodes 

from functional connectivity measures. The support vector machine (SVM) was trained separately on trials with left 

targets and trials with right targets. The black and blue lines show the actual accuracy, and the permutation test 
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results, respectively. The green shaded region indicates the classification accuracy was significant at this time point 

(p < 0.05, corrected for multiple comparison). Error bars indicate standard error of the mean. The dashed gray line 

indicates target onset. Topographic plot is the z-standardized absolute feature weights at the time point indicated by 

the text to the left of the head. Only feature weights with a z-score exceeding ±0.45 are shown. B) Topographic 

maps of the z-standardized absolute feature weights averaged over the -1000 ms epoch prior to target onset. Only 

feature weights with a z-score exceeding ±0.3 are shown. Correlation = amplitude envelope correlations; wPLI = 

weighted phase lag index; PLV = phase locking value; iCOH = imaginary coherence. 
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Support Vector Regression (SVR) 

Support vector regression (SVR) analysis was used to determine whether the 

spatiotemporal pattern of EEG activity before target onset was predictive of the degree of 

responsive error on a given trial. As seen in Figure 4.5, predictions of response errors on trials 

with a right target and non-informative cue from spatiotemporal alpha amplitude patterns were 

significantly above chance at -640 ms prior to target onset. Feature weight analysis showed that 

the biggest contributors to prediction accuracy at -640 ms were the occipital, parietooccipital, 

and parietal electrodes. However, the most lateral parietal electrodes (P7 and P8) were not 

significant features as well as the next most lateral parietal electrode on the left (P5). The average 

feature weights across the entire epoch found the same electrodes to be significant contributors 

as well as the medial centroparietal electrodes CP1 and CP2 (Figure 4.5B). Note that because 

feature weights are only as useful as the information represented by the pattern of activity they 

are derived from (e.g., the relative importance of electrode activity to prediction accuracy is 

meaningless if there is no way to predict response errors in the first place), only measures that 

had prediction accuracies above chance are discussed.   
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Figure 4.5. Results from spatiotemporal SVR prediction analysis and corresponding feature weight analysis based on alpha amplitude 

and cross-frequency coupling (CFC) measures 

A) Spatiotemporal prediction accuracy of response errors across all electrodes for alpha amplitude and cross-frequency coupling 

(CFC) measures when cues were non-informative (left) and informative (right). For the non-informative cue and informative cue 

groups, columns are subdivided by targets on the left and targets on the right. The black and blue lines show the actual accuracy, and 

the permutation test results, respectively. Error bars indicate standard error of the mean. The dashed gray line indicates target onset. 

The green shaded regions indicate the prediction accuracy was significant at these time points (p < 0.05, corrected for multiple 
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comparison). Topographic plots are the z-standardized absolute feature weights at or across the significant time points indicated by the 

text to the left of the heads. Green stars on the topographic plots are electrodes found to be significant features after correction for 

multiple comparisons. B) Topographic maps of the z-standardized absolute feature weights averaged over the -1000 ms epoch prior to 

target onset. Green stars indicate the electrodes with z-score feature weights significantly above zero after correction for multiple 

comparisons. Only the trial condition and measure with prediction accuracy scores significantly above chance have stars indicating 

the electrodes with significant feature weight z-scores. AAC = amplitude-amplitude coupling; MI = modulation index; MVL = mean 

vector length; PAC = phase-amplitude coupling. 
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Cross-Frequency Coupling (CFC) 

Using the spatiotemporal pattern of amplitude-amplitude coupling (AAC) activity, 

predictions of response errors on trials with left targets and non-informative cues were 

significantly above chance at -200 ms relative to target onset (see Figure 4.5A). Feature weight 

analysis found that the biggest contributor to support vector regression (SVR) accuracy at -200 

ms was the frontal electrode Fz. For the entire epoch, the most important features were the left 

frontocentral electrode FC1 and the frontocentral electrode FCz (Figure 4.5B). No other CFC 

metric was able to predict response errors above chance level. 

Functional Connectivity 

The only functional connectivity measure that predicted response errors above chance 

was the correlation metric (Figure 4.6A). The significant effect was only for trials with a non-

informative cue and targets on the left at -562.5 ms relative to target onset. Feature weight 

analysis revealed that none of the electrode connections were significant contributors to the 

decision boundary (Figure 4.6B). The same were for feature analysis over the entire epoch. 
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Figure 4.6. Results from spatiotemporal SVR prediction analysis and corresponding feature weight analysis based on functional 

connectivity measures 

A) Spatiotemporal prediction accuracy of response errors across all electrodes for the functional connectivity measures when cues were 

non-informative (left) and informative (right). For the non-informative cue and informative cue groups, columns are subdivided by 

targets on the left and targets on the right. The black and blue lines show the actual accuracy, and the permutation test results, 

respectively. Error bars indicate standard error of the mean. The dashed gray line indicates target onset. The green shaded region 

indicates the prediction accuracy was significant at that time point (p < 0.05, corrected for multiple comparison). Topographic plots are 

the z-standardized absolute feature weights at the significant time point indicated by the text to the left of the heads. Only feature weights 

with a z-score exceeding ±0.45 are shown. B) Topographic maps of the z-standardized absolute feature weights averaged over the -1000 

ms epoch prior to target onset. Only feature weights with a z-score exceeding ±0.3 are shown. Correlation = amplitude envelope 

correlations; wPLI = weighted phase lag index; PLV = phase locking value; iCOH = imaginary coherence. 
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4.4 DISCUSSION 

In the current study, we used multivariate pattern analysis (MVPA) to test whether alpha 

activity, cross-frequency coupling (CFC) between alpha and gamma frequencies, or functional 

connectivity in alpha could better classify trials with covert spatial attention from those without. 

We also investigated the amount of underlying predictive information each type of alpha activity 

contained using MVPA. In line with the baseline sensory excitability model (BSEM) proposed 

by Samaha et al (2020), alpha activity alone could train a linear support vector machine (SVM)  

to accurately classify trials prior to the target onset. This means that the spatiotemporal pattern of 

alpha activity 1000 ms before the target is presented provides the best information for 

discriminating trials with and without endogenous covert spatial attention. Interestingly, the 

same activity was only predictive of response errors in trials with a non-informative cue at a very 

brief time window. This too is in line with the baseline sensory excitability model (BSEM) that 

predicts changes in alpha amplitude affect the stimulus response and alternative responses (i.e., 

noise) equally so that discriminability does not change, or, in current study, response errors do 

not improve. 

We also found that the phase-amplitude coupling (PAC) metric MVLÖzkurt had a pattern 

of activity predictive of attention, but only for brief time windows. None of the feature weights 

were significant making it unclear which electrode or electrodes contributed most to determining 

the decision boundary although the distribution of feature weight z-scores in the frontal areas 

suggests that those electrodes contain more information than other spatial locations. Regardless, 

the support vector regression (SVR) analysis did not find MVLÖzkurt activity predictive of 

response errors which is counter to what we would predict about alpha-gamma phase-amplitude 
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coupling (PAC) based on the oscillation-based probability of response (OPR) model (Zazio et 

al., 2020). In contrast, the spatial pattern of amplitude-amplitude coupling between alpha and 

gamma activity was predictive of response errors on non-informative cued trials towards the end 

of cue-target interval which is in accordance with the oscillation-based probability of response 

(OPR) model (Zazio et al., 2020). Feature weight analysis found Fz to be a significant 

contributor to the determination of the regression line. For the overall time course, FCz and FC1 

were significant features in the support vector regression (SVR) prediction analysis of response 

errors on non-informative cued trials. However, as with the alpha amplitude, amplitude-

amplitude coupling activity was found to be a significant predictor of response errors only on 

trials with a non-informative cue at a very brief time window. Unlike alpha amplitude, 

amplitude-amplitude coupling did not contain discriminating information with respect to the 

presence of covert spatial attention suggesting a role in the temporal anticipation for the 

upcoming target that provides only modest benefits to task performance.  

It might seem counterintuitive that the support vector regression (SVR) results were 

specific to left targets or right targets when the cue was non-informative. Afterall, a non-

informative cue means that participants did not know where the target will appear so they could 

not be influenced by the target’s location during the analyzed time window. However, the SVR 

analysis is using the EEG data to predict response errors which are influenced by the target’s 

location (see Behavioral Data section under Results). Furthermore, response errors showed an 

interaction between cue type and target side which might, in part, be attributed to the complex 

spatiotemporal pattern of alpha-related brain activity prior to target onset.  

Even though we did not find as strong of evidence supporting the oscillation-based 

probability of response (OPR) model (Zazio et al., 2020), that does not mean it should be 
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discarded. Many findings on alpha-gamma phase-amplitude coupling (PAC) are for the high 

gamma frequency range, something that surface EEGs are not suitable for recording due to 

attenuation of the electrical signals by skull and scalp. For example, Voytek (2010) found phase-

amplitude coupling between theta/alpha and 80-150 Hz gamma in two participants with 

implanted subdural electrocorticography in visual cortical regions during visual tasks. 

Bonnefond and Jensen (2015) also found that the phase of alpha oscillations was coupled with 

the power of 80-120 Hz gamma band activity in visual sensory regions during an anticipatory 

pre-distractor period. Therefore, it is possible alpha-gamma phase-amplitude coupling (PAC) is 

important to attentional modulation. However, at least in the current study, measuring gamma 

oscillations with scalp EEG has methodological difficulties due to contamination by eye- and 

muscle-related artifacts at the same frequencies. These artifacts coupled with gamma’s inherently 

low amplitude means that PAC may be important to attentional modulation, but the gamma 

frequency this occurs at is too fast to be studied with recordings from outside the head. 

It is important to note that while the EEG signal was filtered around the peak frequency 

of the aperiodic-adjusted alpha band activity, the instantaneous amplitudes extracted from the 

filtered signal were not aperiodic-adjusted since the FOOOF algorithm is not designed or easily 

adaptable for time-resolved analysis (Donoghue et al., 2020). However, we did not find the 

aperiodic activity to vary significantly with the experimental conditions suggesting that the 

current results cannot be attributed to changes in the broadband activity. At the same time, the 

aperiodic component was not removed from the EEG signal so it cannot be discounted entirely. 

The current study only focused on activity in the alpha frequency band and its 

interactions with gamma band activity since it has been the major focus of research on visual 

spatial attention and perception. However, activity patterns within and between other frequency 
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bands have been implicated in attentional and perceptual functioning (Clayton, Yeung and 

Cohen Kadosh, 2015; Yuan et al., 2021). For example, previous research has found that 

prestimulus theta activity (4-7 Hz) is also associated with perceptual outcomes and attentional 

modulation (Landau et al., 2015; Fiebelkorn and Kastner, 2019). In the current study, the cue-

target interval was a little too short to adequately capture frequencies below alpha, but this is 

something that future studies can easily change by making small adjustments to the task design. 

Longer cue-target intervals would have the additional benefit of being long enough for time-

resolved versions of other types of connectivity analysis such as those that test for directionality 

like Granger causality and phase transfer entropy (Cohen and van Gaal, 2013; Bastos and 

Schoffelen, 2016; O’Neill et al., 2018). 

The functional connectivity metrics used in the current study are a small subset of the 

methods that are available. Most recent studies combining brain connectivity estimations with 

machine learning methods focus on various neurological conditions with much less extensive 

evidence on functional connectivity influencing perceptual responses (Cao et al., 2022; 

Sadaghiani, Brookes and Baillet, 2022). It is very possible that functional connectivity contains 

more decodable information about the task conditions and performance measures than these 

results suggest. If temporal order or coupling direction contain the most decodable information 

about covert spatial attention and task performance, our functional connectivity measures would 

not be able to capture it. Furthermore, research has found theta band activity to also be important 

for coordinating different attention-related brain regions (Gootjes et al., 2006; Clayton, Yeung 

and Cohen Kadosh, 2015; Fiebelkorn, Pinsk and Kastner, 2018; Fiebelkorn and Kastner, 2019) 

which would explain why we found little evidence for alpha functional connectivity.  

Summary 
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Overall, we find more evidence supporting the baseline sensory excitability model 

(BSEM) proposed by Samaha et al (2020) than the oscillation-based probability of response 

(OPR) model put forth by Zazio et al (2020). However, the inherent limitations in the current 

study mean that this should not be taken as invaliding the oscillation-based probability of 

response (OPR) model. Instead, these results highlight the need for further investigation into the 

role of cross-frequency coupling (CFC) and functional connectivity in attention and visual 

perception. Future research can expand on our multivariate approach by investigating a wider 

range of frequencies whose role might have gone unnoticed due to complex spatiotemporal 

dynamics that are difficult to detect with traditional univariate approaches. 
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5  

CONCLUSION 

In this dissertation, we have examined new methods for investigating the neural 

mechanisms that connect visual perception and attention to perceptual performance. These new 

methods include the novel application of probabilistic models from the visual working memory 

literature to quantify performance on the basic and cued attention versions of our orientation 

perception task. We also applied a new algorithm that parameterizes neural power spectra 

(Donoghue et al., 2020) to examine the task-related changes in the alpha (8-14 Hz) and low beta 

(15-22 Hz) oscillatory component and the 1/f aperiodic component of the electrophysiological 

brain data. Finally, we used a type of machine learning called multivariate pattern analysis 

(MVPA) to investigate the spatiotemporal dynamics of alpha band activity in covert attention 

and visual perception and determine whether some of the popular models about alpha oscillation 

functioning can hold up to the information-rich evidence provided by MVPA.  

The primary purpose of this research was to better understand visual perception, 

attention, and their underlying neural mechanisms. Specifically, the current experiments sought 

to address these three main questions: (1) what is the role of EEG recorded activity in visual 

perception; (2) what is the role of EEG brain activity in visual attention; and (3) what is the best 

way to associate these relationships to behavior? The first step in addressing these questions was 

the experiment in Chapter 2 which used an orientation perception task to introduce the concept 

of applying models from the working memory literature to studying the relationship between 

brain activity and visual perception. Through this application, it was found that the relationship 

between perceptual performance and EEG brain activity could be quantified using the standard 
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mixture model (Zhang and Luck, 2008). This led to the finding that participants’ response errors 

have a fixed amount of variability and that the actual error values are modulated by the level of 

2-3 Hz brain activity after target onset. Together, these results imply that there is a lower limit to 

forming or stabilizing a perceptual representation which is related, at least in part, to the level of 

2-3 Hz EEG activity following target onset.   

Addressing the second question was the primary goal of Chapter 3. This was done by 

modifying the orientation perception task to include a cued attention component and extending 

the application of the standard mixture model to investigate the relationship between attention, 

perceptual performance, and EEG brain activity. The first notable finding was that visuospatial 

attention asymmetry manifests as a right negativity starting during the cue-target interval, and 

that the continuation of this negativity into the post-target time period underlies how left 

attentional cues improved perceptual performance more than the right attentional cues. The 

second notable finding was that a similar shift in the E:I balance as reflected by changes in the 

aperiodic 1/f activity (Gao, Peterson and Voytek, 2017) also coincided with attention modulation 

and task performance, possibly providing a mechanistic explanation for these results. While 

hemispheric lateralization during visuospatial attention have been noted by many other 

researchers (Kim et al., 1999; Bartolomeo, 2006; Siman-Tov et al., 2007), these results suggests 

that the underlying explanation for these observations is a persistent state of excitation in the left 

parietal area which can be well captured by the aperiodic component of EEG brain activity. 

Finally, Chapter 4 sought to directly test the role of pre-target EEG brain activity in 

visual perception and attention. Through the application of multivariate statistics, it was found 

that the spatiotemporal pattern of alpha activity best represents the differences between trials 

with and without covert attention though it did not predict how that attention affects subsequent 
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perceptual performance. On the other hand, it was found that without informative cues, 

perceptual performance is likely related to the level of amplitude-amplitude coupling between 

alpha and gamma prior to target onset. Together, these results support the hypothesis that 

attentional effects before target onset are mediated by changes in alpha activity alone which, in 

turn, modulates baseline cortical excitability and the probability of a responding to a stimulus 

without improving the quality of the perceptual response (Samaha et al., 2020).  

Overall, these results demonstrate that there is more complexity to the relationship 

between EEG brain activity and visual perception and attention than was previously thought. 

Most previous work has focused on alpha band (8-14 Hz) activity which might be limiting the 

full scope of spatial and temporal mechanisms responsible for these processes. Undoubtedly 

alpha activity plays an important role in covert attention, and, to some degree, perceptual 

responses as shown in Chapter 4. However, there remains a lot of unknowns about how pre-

target brain activity and anticipatory attentional modulation relates to variations in task 

performance. While the previous studies and proposed theories have been of great value, the 

current research highlights the need to think beyond a single frequency band in the EEG spectra. 

Specifically, the research in Chapter 3 shows that periodic oscillatory activity is not the only type 

of task-relevant activity in the EEG signal. We show that the often ignored 1/f aperiodic 

component plays an important role in covert visual attention and that it may better reflect 

changes in the brain’s level of cortical excitability than the index of alpha activity. In fact, alpha 

activity that has not been separated from the aperiodic component could be showing effects due 

to aperiodic activity changes rather than the rhythmic alpha activity. This could also explain why 

the researchers have had such a hard time understanding the functional role of alpha oscillations 

even after nearly a century of study. Regardless, the current work emphasizes the importance for 
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future researchers to consider multiple aspects of brain activity including multiple oscillatory 

frequencies and aperiodic activity.   

The overarching goal of this work is to better understand visual perception, attention, and 

their underlying neural mechanisms. By adapting visual working memory probabilistic models, 

we show how simple performance measures can be turned in metrics that quantify the cognitive 

and behavioral state of a participant. The visual working memory models used in this thesis 

allowed us to go beyond questions of response errors and target detection to how the quality or 

precision of the target’s perceptual representation changed as a function of neural activity. In 

Chapter 4, we show the advantages of using the information-rich multivariate approach for 

investigating the complex dynamics of EEG brain activity such as those found leading up to the 

onset of a stimulus. The biggest advantage EEG has over other neuroimaging methods is its 

temporal resolution. Multivariate methods such as SVM classification and prediction are 

powerful techniques that make full use of the spatial and temporal extent of that information. 

While the research in this thesis moves us one step closer to improving our understanding of 

visual perception, attention, and their underlying neural mechanisms, it also highlights how 

much work remains for us to truly comprehend that which is fundamental to our ability to 

interact with and thrive in the world: vision.  
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Appendix A  

FITTED PARAMETER VALUES FROM WORKING MEMORY 

MODELS 

Appendix Table A.1. Fitted parameter values from working memory models 

 
Note. All values are Mean ± SEM. Scale and shape are the traditional parameters of 

the Gamma distribution. 

 

 Standard Mixture Model 
  Guess Rate (g) SD (σ) Bias (µ) 
Model 0.19 ± 0.04 11.15 ± 0.51 - 
Model + Bias 0.19 ± 0.04 11.04 ± 0.51 0.14 ± 0.29 

       
  Variable Precision Model (Gaussian over SD) 
  Guess Rate (g) meanSD (σmn) stdSD (σstd) 
Model 0.18 ± 0.03 11.26 ± 0.54 2.82 ± 0.31 
Model − Guess Rate - 10.23 ± 5.72 33.48 ± 5.26 

    
  Variable Precision Model (Gamma over Precision) 

 Guess Rate (g) 
modePrecision (Jmod) 

/ Shape 
stdPrecision (Jstd) 

/ Scale 

Model 0.17 ± 0.03 
0.012 ± 0.001                  
/ 13.62 ± 5.42 

0.009 ± 0.002                 
/ 0.005 ± 0.001 

Model − Guess Rate - 
0.011 ± 0.002                  
/ 1.59 ± 0.12 

0.061 ± 0.017                 
/ 0.056 ± 0.018 
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Appendix B  

STEPWISE MULTIPLE REGRESSION 

B.1 METHODS 

Stepwise multiple regression analyses were performed for the standard mixture model 

parameters from “high” and “low” trials separately. For the guess rate parameter, predictor 

variables were the guess rates on 2-3 Hz, 4-7 Hz, and 8-40 Hz log power trials averaged across 

the time windows used for each ERP component that showed significant effects in the previous 

analyses: 200-255 ms (P2), 255-360 ms (N2), and 360-500 ms (P3). The predicted variables 

were the guess rates on trials with high or low amplitudes in their P2, N2, and P3 ERP 

components. For the standard deviation parameter, the predictor variables were the same in the 

guess rate analyses except only the 360-500 ms (P3) time window was used. Similarly, the only 

predicted variables were the standard deviation parameters from trials split by their P3 ERP 

component. A Bonferroni type adjustment was made for inflated Type 1 error, α for each 

electrode site was assigned the value of 0.0028 for each b* among a set of b* such that α for each 

set did not exceed the critical value of 0.05 (Karakaş et al., 2000) The cumulative proportion of 

explained variances adjusted for number of predictors (referred to as the adjusted coefficient of 

determination; 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 ) and the standardized regression coefficients (b*) for the regression 

equations at each step of the multivariate analysis for guess rates and standard deviation 

parameters are summarized in Table B.1 and Table B.2, respectively. 

It should be noted that multicollinearity, that is, a high correlation between two or most 

predictor variables, is present in the stepwise multiple regression analyses described above. This 

is the most likely cause of the negative standardized regression coefficients seen in Tables B.1 
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and B2. While this is considered an issue that could interfere with the multiple regression 

analyses, we are using these results to get a rough estimate of the relative contributions from 

each predictor variable. The presence of multicollinearity usually means that it is harder to reject 

the null hypothesis, thus one might miss the importance of the predictors (Faraway, 2016). With 

regards to the current dataset, this means that some predictors might have greater relative 

importance than indicated by their b*. 

B.2 RESULTS 

As Table B.1 shows, the guess rate parameter from 2-3 Hz, 4-7 Hz and higher 

frequencies amply account for the guess rate values on trials with high and low ERP amplitudes. 

The proportion of explained variances were between 0.935-0.990. Table B.2 shows a similar 

result for the standard deviation (σ) parameter except the proportion of explained variances were 

smaller, being between 0.700-0.928.  

Appendix Table B.1. Stepwise regression results for guess rate (g) parameter. 

Trial 
Category 

Predicted P2 (200-255 ms)   N2 (255-360 ms)   P3 (360-500 ms) 
Model b* 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2   b* 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2   b* 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  

Fp1 
High Step 1  0.953   0.961   0.958 

 2-3 Hz 0.98   0.98   0.98  
 Step 2  0.956   0.965   0.956 
 2-3 Hz 0.34   0.29   0.90  
 4-7 Hz 0.64   0.70   0.08  
 Step 3  0.953   0.963   0.955 
 2-3 Hz 0.35   0.35   1.06  
 4-7 Hz 0.58   0.81   0.24  

 
8-40 

Hz 0.06   -0.17   -0.32  
Low Step 1  0.963   0.970   0.966 

 2-3 Hz 0.98   0.99   0.98  
 Step 2  0.966   0.974   0.965 
 2-3 Hz 0.31   0.26   0.74  
 4-7 Hz 0.67   0.73   0.25  
 Step 3  0.965   0.973   0.964 
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 2-3 Hz 0.30   0.29   0.94  
 4-7 Hz 0.58   0.75   0.38  

 
8-40 

Hz 0.11   -0.05   -0.34  
FC2 

High Step 1  0.953   0.977   0.935 
 2-3 Hz 0.98   0.99   0.97  
 Step 2  0.954   0.977   0.935 
 2-3 Hz 0.67   1.16   0.67  
 4-7 Hz 0.31   -0.18   0.30  
 Step 3  0.952   0.980   0.935 
 2-3 Hz 0.70   0.99   0.50  
 4-7 Hz 0.41   -0.57   0.09  

 
8-40 

Hz -0.13   0.56   0.38  
Low Step 1  0.975   0.982   0.965 

 2-3 Hz 0.99   0.99   0.98  
 Step 2  0.976   0.983   0.967 
 2-3 Hz 0.70   1.23   0.63  
 4-7 Hz 0.29   -0.24   0.36  
 Step 3  0.975   0.984   0.970 
 2-3 Hz 0.71   1.07   0.36  
 4-7 Hz 0.33   -0.49   0.05  

 
8-40 

Hz -0.05   0.41   0.58  
P5 

High Step 1  0.954   0.972   0.963 
 2-3 Hz 0.98   0.99   0.98  
 Step 2  0.965   0.971   0.964 
 2-3 Hz 0.31   1.09   0.70  
 4-7 Hz 0.68   -0.10   0.29  
 Step 3  0.990   0.972   0.962 
 2-3 Hz 0.23   1.04   0.70  
 4-7 Hz -0.44   -0.42   0.28  

 
8-40 

Hz 1.21   0.37   0.01  
Low Step 1  0.950   0.980   0.981 

 2-3 Hz 0.98   0.99   0.99  
 Step 2  0.960   0.981   0.981 
 2-3 Hz 0.29   1.23   0.79  
 4-7 Hz 0.70   -0.24   0.20  
 Step 3  0.986   0.980   0.980 
 2-3 Hz 0.20   1.22   0.79  
 4-7 Hz -0.41   -0.30   0.19  
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8-40 

Hz 1.20   0.07   0.01  
P7 

High Step 1  0.943   0.968   0.955 
 2-3 Hz 0.97   0.98   0.98  
 Step 2  0.956   0.967   0.958 
 2-3 Hz 0.05   0.85   0.44  
 4-7 Hz 0.93   0.13   0.55  
 Step 3  0.988   0.966   0.957 
 2-3 Hz -0.13   0.84   0.48  
 4-7 Hz -0.11   0.03   0.71  

 
8-40 

Hz 1.23   0.12   -0.21  
Low Step 1  0.942   0.971   0.961 

 2-3 Hz 0.97   0.99   0.98  
 Step 2  0.950   0.970   0.967 
 2-3 Hz 0.25   1.02   0.09  
 4-7 Hz 0.73   -0.04   0.89  
 Step 3  0.987   0.969   0.967 
 2-3 Hz -0.02   0.96   0.23  
 4-7 Hz -0.27   -0.21   1.11  

 
8-40 

Hz 1.29   0.25   -0.36  
P8 

High Step 1  0.952   0.955   0.964 
 2-3 Hz 0.98   0.98   0.98  
 Step 2  0.950   0.954   0.975 
 2-3 Hz 1.12   0.72   0.15  
 4-7 Hz -0.15   0.26   0.84  
 Step 3  0.973   0.960   0.976 
 2-3 Hz 0.39   0.52   -0.06  
 4-7 Hz -0.77   -0.44   0.62  

 
8-40 

Hz 1.36   0.90   0.43  
Low Step 1  0.943   0.967   0.982 

 2-3 Hz 0.97   0.98   0.99  
 Step 2  0.941   0.966   0.983 
 2-3 Hz 1.13   0.85   0.64  
 4-7 Hz -0.16   0.14   0.35  
 Step 3  0.964   0.969   0.984 
 2-3 Hz 0.27   0.62   0.32  
 4-7 Hz -0.70   -0.45   0.23  

 
8-40 

Hz 1.41   0.82   0.44  
O1 
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High Step 1  0.959   0.958   0.950 
 2-3 Hz 0.98   0.98   0.98  
 Step 2  0.957   0.956   0.956 
 2-3 Hz 0.76   1.05   0.47  
 4-7 Hz 0.22   -0.07   0.51  
 Step 3  0.967   0.958   0.958 
 2-3 Hz 0.29   0.80   0.29  
 4-7 Hz -0.13   -0.31   0.21  

 
8-40 

Hz 0.83   0.49   0.49  
Low Step 1  0.957   0.967   0.972 

 2-3 Hz 0.98   0.98   0.99  
 Step 2  0.956   0.966   0.975 
 2-3 Hz 0.71   1.10   0.53  
 4-7 Hz 0.27   -0.12   0.46  
 Step 3  0.967   0.971   0.982 
 2-3 Hz 0.26   0.90   0.28  
 4-7 Hz -0.09   -0.64   -0.18  

 
8-40 

Hz 0.82   0.72   0.90  
O2 

High Step 1  0.932   0.956   0.954 
 2-3 Hz 0.97   0.98   0.98  
 Step 2  0.945   0.954   0.960 
 2-3 Hz 0.01   0.98   0.36  
 4-7 Hz 0.97   0.00   0.62  
 Step 3  0.964   0.969   0.963 
 2-3 Hz -0.23   0.41   0.14  
 4-7 Hz -0.06   -0.54   0.27  

 
8-40 

Hz 1.28   1.12   0.58  
Low Step 1  0.910   0.960   0.972 

 2-3 Hz 0.96   0.98   0.99  
 Step 2  0.938   0.960   0.975 
 2-3 Hz -0.17   0.74   0.52  
 4-7 Hz 1.14   0.24   0.47  
 Step 3  0.959   0.972   0.979 
 2-3 Hz -0.37   0.25   0.25  
 4-7 Hz 0.10   -0.44   0.10  

 
8-40 

Hz 1.25   1.18   0.64  
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Note. Predictors in each model are the guess rate parameters from fitting the standard 

mixture model to trials categorized as high or low log power in the specified frequency 

band and time windows. Predicted values are the guess rate parameters from fitting the 

standard mixture model to trials categorized as high or low ERP amplitudes in the specified 

time windows. b* = estimated values of standardized regression coefficients; 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  = 

adjusted coefficient of determination (i.e., coefficient of determination adjusted for number 

of predictors). 
 

 

The guess rate from the P2 (200-255 ms) ERP trials (both high and low) had a clear 

difference in its major contributor between the frontal electrodes (Fp1 and FC2) and the parietal 

and occipital electrodes. The guess rates from 2-3 Hz and 2-7 Hz trials accounted for most of the 

variance (0.954-0.976) in the frontal electrodes and the addition of higher frequencies was 

redundant or detrimental (0.952-0.975). In comparison, the addition of higher frequencies in the 

parietal and occipital electrodes regression models added some small benefit to the proportion of 

explained variances (increased 0.009-0.036).  

Interestingly, the guess rate from the N2 (255-360 ms) ERP trials (both high and low) had 

most of its variance accounted for by the guess rates from 2-3 Hz trials (0.955-0.982). According 

to the standardized regression coefficients, whose values can be thought of as indicators of 

relative importance in the regression model, the 2-3 Hz guess rates were the “best” predictors in 

all cases except for Fp1 which indicates 4-7 Hz as the best predictor, and O2 which has the 8-40 

Hz variable as the best predictor.  

Unlike the other ERPs, guess rate from the P3 (360-500 ms) ERP trials had a difference 

in the proportion of explained variances between the high and low trials. That is, at all 
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electrodes, the trials categorized as “low” had more explained variance by the set of predictors 

than trials categorized as “high” (0.964-0.980 and 0.935-0.976, respectively). In all cases, the 

majority of the proportion of explained variances came from the 2-3 Hz guess rates though 4-7 

Hz was often a relatively important predictor. The exceptions were O1 and O2 which 

consistently had 8-40 Hz as the most important predictor variable. 

Like the results from the guess rate analyses of the P3 (360-500 ms) ERP trials, the 

standard deviation (σ) parameter indicated that the proportion of explained variances differed 

between trials categorized as “low” compared to “high.” However, Fp1 and FC2 had more 

explained variance for the low category of trials than the high (see Table B.2), whereas the 

parietal and occipital electrodes were the reverse (low: 0.700-0.898; high: 0.867-0.928). 

Interestingly, the most important predictor variables tended to differ between the high and low 

categories. Most of the time, 4-7 Hz was ranked the most important predictor in the high 

category, whereas 2-3 Hz was ranked the most important predictor in the low category. The 

notable exception was the low category of the O2 electrode which had the proportion of 

explained variance increase from 0.570 to 0.709 with the addition of the 4-7 Hz predictor.  

Appendix Table B.2. Stepwise regression results 

for the standard deviation (σ) parameter. 

Trial 
Category 

Predicted P3 (360-500 ms) 
Model b* 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  

Fp1 
High Step 1  0.865 

 2-3 Hz 0.93  
 Step 2  0.904 
 2-3 Hz 0.34  
 4-7 Hz 0.63  
 Step 3  0.899 
 2-3 Hz 0.29  
 4-7 Hz 0.56  
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8-40 

Hz 0.11  
Low Step 1  0.884 

 2-3 Hz 0.94  
 Step 2  0.916 
 2-3 Hz 0.64  
 4-7 Hz 0.35  
 Step 3  0.912 
 2-3 Hz 0.65  
 4-7 Hz 0.37  

 
8-40 

Hz -0.02  
FC2 

High Step 1  0.879 
 2-3 Hz 0.94  
 Step 2  0.880 
 2-3 Hz 0.75  
 4-7 Hz 0.21  
 Step 3  0.906 
 2-3 Hz 0.24  
 4-7 Hz 0.09  

 
8-40 

Hz 0.65  
Low Step 1  0.893 

 2-3 Hz 0.95  
 Step 2  0.913 
 2-3 Hz 0.53  
 4-7 Hz 0.44  
 Step 3  0.915 
 2-3 Hz 0.34  
 4-7 Hz 0.35  

 
8-40 

Hz 0.29  
P5 

High Step 1  0.921 
 2-3 Hz 0.96  
 Step 2  0.931 
 2-3 Hz 0.42  
 4-7 Hz 0.55  
 Step 3  0.928 
 2-3 Hz 0.51  
 4-7 Hz 0.60  

 
8-40 

Hz -0.13  
Low Step 1  0.787 
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 2-3 Hz 0.89  
 Step 2  0.791 
 2-3 Hz 1.33  
 4-7 Hz -0.46  
 Step 3  0.788 
 2-3 Hz 1.79  
 4-7 Hz -0.42  

 
8-40 

Hz -0.49  
P7 

High Step 1  0.849 
 2-3 Hz 0.93  
 Step 2  0.870 
 2-3 Hz 0.02  
 4-7 Hz 0.92  
 Step 3  0.867 
 2-3 Hz 0.24  
 4-7 Hz 1.09  

 
8-40 

Hz -0.39  
Low Step 1  0.721 

 2-3 Hz 0.86  
 Step 2  0.722 
 2-3 Hz 1.45  
 4-7 Hz -0.61  
 Step 3  0.738 
 2-3 Hz 1.69  
 4-7 Hz -1.43  

 
8-40 

Hz 0.62  
P8 

High Step 1  0.911 
 2-3 Hz 0.96  
 Step 2  0.913 
 2-3 Hz 0.68  
 4-7 Hz 0.29  
 Step 3  0.924 
 2-3 Hz 0.45  
 4-7 Hz 0.10  

 
8-40 

Hz 0.43  
Low Step 1  0.875 

 2-3 Hz 0.94  
 Step 2  0.890 
 2-3 Hz 0.66  



271 
 

 4-7 Hz 0.31  
 Step 3  0.898 
 2-3 Hz 0.71  
 4-7 Hz -0.12  

 
8-40 

Hz 0.40  
O1 

High Step 1  0.903 
 2-3 Hz 0.95  
 Step 2  0.919 
 2-3 Hz 0.40  
 4-7 Hz 0.57  
 Step 3  0.926 
 2-3 Hz 0.00  
 4-7 Hz 0.49  

 
8-40 

Hz 0.49  
Low Step 1  0.859 

 2-3 Hz 0.93  
 Step 2  0.855 
 2-3 Hz 0.81  
 4-7 Hz 0.12  
 Step 3  0.880 
 2-3 Hz 1.54  
 4-7 Hz 0.01  

 
8-40 

Hz -0.64  
O2 

High Step 1  0.850 
 2-3 Hz 0.93  
 Step 2  0.881 
 2-3 Hz 0.43  
 4-7 Hz 0.52  
 Step 3  0.875 
 2-3 Hz 0.37  
 4-7 Hz 0.51  

 
8-40 

Hz 0.07  
Low Step 1  0.570 

 2-3 Hz 0.77  
 Step 2  0.709 
 2-3 Hz -0.20  
 4-7 Hz 1.04  
 Step 3  0.700 
 2-3 Hz 0.10  
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 4-7 Hz 1.14  

 
8-40 

Hz -0.40  

Note. Predictors in each model are the 

guess rate parameters from fitting the 

standard mixture model to trials 

categorized as high or low log power in 

the specified frequency band and time 

windows. Predicted values are the 

standard deviation parameters from fitting 

the standard mixture model to trials 

categorized as high or low ERP 

amplitudes in the specified time windows. 

b* = estimated values of standardized 

regression coefficients; 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  = adjusted 

coefficient of determination (i.e., 

coefficient of determination adjusted for 

number of predictors). 
 

 

 

 

  



273 
 

References 

Faraway, J. J. (2016). Linear Models with R (2nd ed.). Chapman and Hall/CRC. 

https://doi.org/10.1201/b17144 

Karakaş, S., Erzengin, Ö. U., & Başar, E. (2000). The genesis of human event-related responses 

explained through the theory of oscillatory neural assemblies. Neuroscience Letters, 285(1), 45–

48. https://doi.org/10.1016/S0304-3940(00)01022-3 

 


	Abstract
	Preface
	Acknowledgements
	List of Tables
	List of Figures
	1  Introduction
	1.2 Brain Oscillations and Electroencephalography (EEG)
	1.3 Visual Perception
	1.4 Visual Attention
	1.5 The Unknowns of Alpha Oscillations
	1.6 Summary

	2  Perceptual quality and guess rate as a function of electroencephalography (EEG) brain activity in an orientation perception task
	2.1 Introduction
	2.2 Materials and Methods
	Participants
	Orientation Perception Task
	EEG Recording
	EEG Preprocessing
	Data Analyses
	Behavioral Data
	Time-Frequency Analyses
	Accurate vs Guess Trials
	Single-Trial EEG Activity and Response Errors
	Relationship Between Log Power and Standard Mixed Model Parameters

	2.3 Results
	Comparing Model Fits
	Accurate vs Guess Trials
	ERP Analysis
	EEG Power Analysis
	EEG Phase Analysis

	Single-Trial EEG Activity and Response Errors
	Relationship Between Log Power and Standard Mixed Model Parameters
	2.4 Discussion
	Comparing Model Fits
	EEG Activity, Model Parameters and Perceptual Behavior
	Accurate vs Guess Trials: ERP Activity
	Accurate vs Guess Trials: EEG Activity
	Single-Trial EEG Activity and Response Errors
	Relationship Between Log Power and Standard Mixed Model Parameters

	Conclusion and Future Directions

	References
	3  The effect of covert spatial attention on the relationship between Perceptual Quality and 1/f and periodic Electroencephalography activity in a Cued orientation perception task
	3.1 Introduction
	3.1 Materials and Methods

	Participants
	Cued Orientation Perception Task
	Behavioral Data Analyses
	Comparing Model Fits
	Model Parameter Analysis
	EEG Recording
	EEG Preprocessing
	EEG Data Analyses
	ERP Analysis
	Periodic and Aperiodic Components
	Time-Frequency Analysis
	3.1 Results

	Comparing Model Fits
	Model Parameter Analysis
	ERP Analysis
	Periodic and Aperiodic Components
	EEG Power Analysis
	EEG Phase Analysis
	3.1 Discussion

	Model Fits and Parameter Values
	EEG Activity, Attention and Orientation Perception
	References
	4  Connecting Covert Attention and Visual Perception to the Spatiotemporal Dynamics of Alpha Band Activity, Cross-Frequency Coupling and Functional Connectivity using Multivariate Pattern Analysis
	4.1 Introduction
	4.2 Materials and Methods

	Participants
	Cued Orientation Perception Task
	EEG Recording
	Data Analyses
	Behavioral Data
	EEG Data
	Multivariate Pattern Analysis (MVPA)
	Support Vector Machine (SVM) Classification
	4.3 Results

	Behavioral Data
	Aperiodic Component
	Support Vector Machine (SVM) Classification
	Cross-Frequency Coupling (CFC)
	Functional Connectivity
	Support Vector Regression (SVR)
	Cross-Frequency Coupling (CFC)
	Functional Connectivity
	4.4 Discussion

	References
	5  Conclusion
	References
	Bibliography
	Appendix A  Fitted Parameter Values from Working Memory Models
	Appendix B  Stepwise Multiple Regression
	B.1 Methods
	B.2 Results


