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Abstract

In Evolution o f the Social Contract (Skyrms, 1996), Brian Skyrms uses an 

evolutionary game-theoretic model to explore the social convention of equal 

division or fair sharing. Observing the global predominance of the fair division 

equilibrium in a certain version of this model, Skyrms suggests this provides a 

starting point for an evolutionary explanation of the actual predominance of this 

social convention.

This model has been criticized by other authors and various extensions or 

modifications proposed, many of which fail to exhibit the global predominance of 

the fair-division equilibrium, thus putting the applicability of Skyrms’ argument 

into question.

This document examines Skyrms’ model, several arguments against it, and 

some of the proposed modifications. The model is subsequently extended even 

further in order to discover whether accounting for other considerations or placing 

it in an alternate framework (particularly an extended evolutionary haystack- 

model) will allow the global fair division equilibrium to resurface.
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Introduction
Since Charles Darwin’s Origin o f Species was published 1859, evolution 

has become a pre-eminent framework for explaining many facets of animal 

behaviour and physiology. Evolutionary theory has also been widely used as the 

lens under which human behaviours have been scrutinized, including moral, 

social, and ethical behaviours. This has given rise to attempts to bridge the gap 

between the natural sciences and ethics, using evolution as a means to explain 

why certain moral and ethical behaviours and dispositions are found. These types 

of ethical explanations are grouped together under the title ‘evolutionary ethics.’

Evolutionary explanations in general are not without their drawbacks, and 

those of evolutionary ethics are no exception. For instance, evolutionary 

explanations are often good at providing reasons for why certain characteristics 

are prevalent, but less successful at explaining how those characteristics came to 

exist in the first place.

One type of evolutionary explanation can help to overcome some of the 

drawbacks traditionally associated with evolutionary explanations, however. This 

type of explanation draws on the concept of an evolutionary stable strategy 

(Maynard Smith, & Price, 1973), and involves demonstrating both how certain 

strategies can become the endpoint for a wide variety of starting conditions, and 

how those strategies can then remain in existence for long periods of time. 

Evolutionary stable strategies are most widely used in evolutionary game theory, 

which provides a framework in which to model evolutionary interactions over 

time.

Brian Skyrms proposes the possible beginnings of one such explanation in 

Evolution o f the Social Contract (Skyrms, 1996) in the context of fair (equal) 

division of some limited resource vs. unequal division. His explanation is based 

on a model using a version of the divide-the-cake game, extended over many 

generations. Skyrms’ most suggestive and powerful version of this model 

involves the addition of correlated encounters, resulting in an evolutionary stable

1
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strategy with nearly global dominance. This dominant evolutionary stable strategy 

corresponds to the fair division strategy.

Details of this model have come under some degree of criticism by a 

number of authors (D’Arms, Batterman, & Gomy, 1998; Barrett, Eells, Fitelson, 

& Sober, 1999; Tennant, 1999). Most particularly, Skyrms’ assumptions 

concerning the nature and amount of correlation have been questioned, and 

alternate models proposed which attempt to make the model more realistic. These 

alternate models generally destroy the global dominance of the fair division 

strategy, allowing an unequal division strategy to persist in a substantial number 

of cases. This reduces the effectiveness of Skyrms’ argument quite substantially, 

by weakening the result Skyrms relies on from being nearly universal, to instead 

being merely somewhat more likely than the alternative.

This document will examine Skyrms’ model in detail, and try to determine 

whether, even given some of the assumptions underlying the alternate models, the 

domain of the fair-division equilibrium can be once again expanded by further 

extending the model. Also, it will explore the question of how different 

evolutionary paradigms (especially group selection) might affect the model. My 

goal throughout this thesis is limited primarily to strictly examining the model 

itself, and I avoid where possible discussing Skyrms’ larger project of which the 

model is a part. Although I would have enjoyed exploring some of the ethical 

considerations touched on in greater detail, size considerations prevent me from 

covering these in the detail they deserve. Because of some of the strengths 

inherent in Skyrms’ style of argument, it will be helpful to settle some of the 

controversy surrounding the details of the model itself, in order to determine 

whether further exploration in this direction is likely to be fruitful.

The first chapter of this thesis will briefly look at evolutionary ethics in 

general terms, and explore a couple of the problems associated with evolutionary 

ethics. The second chapter will introduce evolutionary stable states, describe 

Skyrms’ version of divide-the-cake, and explore how it answers some of the 

problems discussed in the first chapter. The third chapter will then detail some of

2
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the criticisms of this model, and introduce the alternate models mentioned earlier. 

The fourth chapter will describe a large-scale computer programming project 

designed for use with this thesis, a new method for presenting the results, and then 

demonstrate this new method by showing the results of some of the alternate 

models from the second chapter. The fifth chapter discusses correlation in the 

model, and explores an extension of some models in which correlation is allowed 

to vary by individual. The sixth chapter introduces and discusses the level of 

selection issue in evolution and group selection. It continues to describe certain 

evolutionary frameworks (especially the haystack model) illustrating how 

differing levels of selection can change the outcome. Chapter VII applies some of 

the frameworks discussed in the previous chapter to Skyrms’ model and examines 

the results. Finally, Chapter VIII summarizes and discusses the findings and some 

of their limitations.

This thesis proceeds differently than a typical thesis in philosophy. I began 

this topic and method of exploration largely because I wanted to be surprised by 

the results. At the start, it was in no way clear whether the objections to Skyrms’ 

model would persist to weaken it under different assumptions or frameworks, or 

even what kinds of changes to the model might prove interesting or useful. So, I 

settled for beginning by simply having a plan for proceeding, but no idea what the 

end result would be. As a result, this thesis is the culmination of several very 

different lines of exploration, including a few false starts, a reinvented wheel or 

two, and dead ends that were looked at and later abandoned. Also, a large amount 

of the effort put into producing this thesis occurs behind the scenes: a single image 

might represent the end result of over a thousand hours of computer programming, 

testing, and simulation time. These things combine to make this thesis seem less 

precisely focused than some at first glance — less methodical. I have deliberately 

attempted to leave some of the exploratory flavour that went into producing this 

document intact in its presentation, and so I ask the reader to bear with me while I 

present and tie these somewhat different strands together.

3
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Chapter I - Evolutionary Ethics
1.1 The Is/Ought Problem and the Naturalistic Fallacy

Evolutionary ethics refers to various ways of looking at morality as an 

outgrowth of the process of natural selection. In these views, at least some moral 

predispositions are best understood as being instilled in human beings as a result 

of evolutionary forces, rather than by divine revelation or purely rational means 

(Schroeder, 2005). This does not necessarily entail that moral sense or moral 

predispositions are somehow actively beneficial within the process of natural 

selection, by increasing individual fitness for instance.

Evolutionary ethics can be seen as an attempt to bridge the gap between 

the natural sciences and ethics. However, there are two somewhat distinct 

branches of ethics, namely normative ethics and descriptive ethics. Normative 

ethics attempts to find moral principles that can be used to distinguish between 

‘good’ actions, which we should do, and ‘bad’ actions, which we should not do. 

That is, normative ethics involves the search for standards of behaviour that 

people ought to follow. Descriptive ethics, on the other hand, attempts to explain 

what moral principles actually are followed by people and why. Sometimes this 

distinction is referred to as “prescriptive” versus “reportive” ethics (Woolcock, 

1999).

Two of the greatest challenges that must be faced by any evolutionary 

argument which attempts to provide a normative theory of ethics are the is/ought 

problem and the naturalistic fallacy. The is/ought problem (usually attributed to 

David Hume) refers to the difficulty of taking some statement of fact, and deriving 

a normative claim from it. Statements concerning what is the case, and statements 

concerning what ought to be the case seem quite distinct. Since evolutionary 

statements are only of the former variety, deriving normative claims becomes 

difficult since their claims are of the latter kind. Something needs to bridge the 

is/ought gap if evolutionary ethics is to provide a normative ethics.

The naturalistic fallacy (made famous by G.E. Moore) is related to the

4
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is/ought problem, and refers to the attempt to define the morally ‘good’ with 

reference to something in the natural world. Many theories in evolutionary ethics 

which attempt to be normative define moral goodness (hence that which we ought 

to do) as something like survival of the species or maximizing evolutionary 

fitness, both of which are naturalistic claims. These definitions of good are used 

in an attempt to provide a solution to the is/ought problem. For example, if 

strategy S maximizes evolutionary fitness, and maximizing evolutionary fitness is 

morally good (that is, we ought to maximize fitness), then we ought to follow 

strategy S. If successful, this argument would allow an evolutionary argument to 

provide a basis for a normative claim. However, there is a difficulty in defining 

the good in such a manner. If goodness is equated with some naturalistic 

property, then questions concerning the goodness of that property ought to be 

redundant, somewhat as the question “is a bachelor unmarried?” is inherently 

void. For example, if what we ought to do is, say, maximize fitness, then the 

question “is maximizing fitness good?” should be an empty question. These sorts 

of questions do not appear to be empty however, and so equating that naturalistic 

property with a normative moral principle remains problematic.

I am of the opinion that evolutionary arguments are not able to overcome 

the is/ought problem nor escape the naturalistic fallacy. In the sense of ‘non- 

normative’ implied by the is/ought problem and the naturalistic fallacy, I will 

assume throughout this paper that evolutionary ethics is essentially non- 

normative. The questions to be answered by evolutionary ethics are not primarily 

those concerning what ought to be perceived as morally good, but rather questions 

concerning what we actually do take to be morally good, and how it is we came to 

perceive them as such. This is especially appropriate given the limited focus of 

this paper, which aims to examine Skyrms’ model in detail while limiting the 

examination of Skyrms’ wider project in Evolution o f the Social Contract.

My discussion of the is/ought problem and the naturalistic fallacy has 

necessarily been somewhat brief, as a complete discussion of all the relevant 

issues would simply be outside the scope of this paper. However, the vast

5
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majority of authors on the subject seem to agree with this limitation of 

evolutionary ethics (Danielson, 1992; Woolcock, 1999; Schroeder, 2005; Farber, 

1994; Dobzhansky, 1962). I have included this brief discussion largely to limit 

the scope of discussion concerning Skyrms’ model in later chapters by excluding 

treatment of normative concerns.

1.2 The Universality and Possibility Problems

Two other problems that even evolutionary ethical theories of the purely 

descriptive sort need to overcome are the Universality problem and the Possibility 

problem. The Universality problem concerns the fact that many ethical-like 

statements apply to all individuals, whereas evolution typically works at a more 

limited scope. An evolutionary argument can explain why a behaviour or trait 

might be applied to family members in order to increase the distribution of the 

behaviour in subsequent generations (kin selection). An evolutionary argument 

might also explain why a behaviour is applied to members of an individual’s 

group (group selection). However, when a behaviour is applied to every 

individual universally, regardless of relationship to the one holding the behaviour, 

it is more difficult to explain this in evolutionary terms when it does not 

unilaterally increase the fitness of the one displaying it. Given a choice between a 

behaviour that operates at a limited scope (e.g. family only), and the same 

behaviour operating universally, it is difficult to explain why evolution might 

prefer the latter, particularly if the behaviour or trait in question potentially 

disadvantages the one holding it.

Another difficulty faced by evolutionary arguments is that even when they 

explain why a behaviour or adaptation exists in a population, it does not explain 

how that behaviour or adaptation is possible in the first place (Nagel, 1986, p. 78). 

For instance, an evolutionary argument might explain why creatures with the 

ability to use language will survive, but generally does not explain how language 

use is possible in the first place. Even if it can be demonstrated why or how a 

behaviour is possible, very often there are alternative possible routes evolution

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



might take, and the route actually chosen might be initially very unlikely (Nozick, 

1993, p. 116). Although slightly different, these two criticisms are related, and 

I’m going to refer to them collectively as the Possibility problem. Evolutionary 

arguments appear limited in such a way that the reason they provide for seeing 

some particular behaviour or characteristic in a population is purely chance, and 

other possibilities were antecedently as likely (or even more likely) to occur. If 

what we are using the evolutionary argument to explain is an ethical behaviour, 

and it is so prevalent as to be nearly universal, then there remains an explanatory 

gap. We need to explain why that moral behaviour is so prevalent if in fact it is 

purely the result of chance, and initially perhaps a very remote possibility.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter II - Evolutionary Stable Strategies and 

Skyrms’ Model
2.1 Evolutionary Stable Strategies

Evolutionary stable strategies are a type of evolutionary strategy that can 

address the Possibility problem and Universality problem of the first chapter. In 

informal terms, an evolutionary stable strategy is a strategy that, provided most of 

the individuals in a population follow it, cannot be successfully invaded by 

another strategy. Put another way, an evolutionary stable strategy is a strategy that 

has higher reproductive fitness than any other strategy provided most of the 

individuals are already following it (Maynard Smith, & Price, 1973, p. 15).

The definition of evolutionary stable strategy is often formalized more 

precisely in terms of evolutionary stable states, which I will abbreviate as ESS. 

Under this more precise definition, a population in which all members are playing 

an evolutionary stable strategy is said to be in an evolutionary stable state. A state 

is a set (or simplex) of proportions of individuals playing different strategies, and 

the set of all possible states is called the state space. An ESS (loosely) is a state 

that has a higher fitness than all other states within some nearby vicinity in the 

state space (Taylor, & Jonker, 1978, pp. 146-7). A system in an ESS tends to 

quickly return to its original state if it is perturbed to a slightly different state, 

although major disruptions can force the system out of the nearby vicinity which 

can result in different final states. The nearby vicinity of an ESS (the set of states 

which lead to that ESS) is called the basin o f attraction for that ESS. An 

evolutionary stable state is a more general concept than an evolutionary stable 

strategy, since the former includes states in which more than a single strategy is 

being used simultaneously by different portions of a population (called a 

polymorphism), but which nonetheless remains stable indefinitely.

Although Taylor and Jonker provide a formal definition of ESS which is 

mathematically rigorous, I will usually be applying the more informal definition of 

the previous paragraph instead. The reason for this is that their formal definition

8
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is described in terms that make it appropriate for a deterministic system (involving 

replicator dynamics, which I will describe later), but I will be discussing and using 

many systems which include a more random component, and the formal 

mathematical definition will not always be applicable.

2.2 ESS and Fisher’s Gender Ratio Argument

One ESS in particular is described by Skyrms and makes an excellent 

illustration. This relates to Fisher’s argument for the reason the gender ratio in 

most animals is close to 50/50, despite having extremely varied biology and 

widely differing means of reproduction. It might appear for many types of 

animals that producing more females would provide an advantage, particularly in 

species where small number of males mate with many females while most of the 

males do not mate at all, yet this is almost never seen in actual populations. 

Fisher’s argument for why this is so roughly runs as follows. Suppose we have a 

population of males and females with some other split besides 50/50. For 

illustration, let us say it is 90 females per 10 males. In such a population, any 

mutant which produces more male offspring would have an advantage, since 

males are more likely to have their genes make up a larger proportion of the 

subsequent generation. Even if a substantial proportion of the males never breed, 

the argument still holds, since those that do are even more valuable in fitness 

terms. A similar argument (in reverse) would apply to a population with 90 males 

to 10 females. It is only a population with a 50/50 gender ratio which avoids the 

possibility of mutants with higher fitness, and hence a population with an even 

split remains stable, while other populations are driven to a 50/50 ratio.2 This also 

means a population with a 50/50 gender ratio is in an evolutionary stable state.

Fisher’s argument is important because it demonstrates how the notion of 

ESS can be used to overcome the Universality and Possibility problems from 

Chapter I. The 50/50 state is the one a population will converge to no matter 

which state it originally started from. Ultimately, all populations which have two 

genders will be in an even ratio unless other forces are acting on it which prevent

9
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this. The Universality problem was that moral behaviours are often universal in 

scope rather than limited. However, if we give an evolutionary explanation for the 

moral behaviour which involves an ESS of Fisher’s type (i.e. one which all 

populations tend to fall into), then we’ve made one step towards explaining the 

universality as well. Since all members of all populations would be following the 

same strategy, no distinction would need to be made concerning the closeness of 

individuals. The nature of the strategy has made it such that there is now a reason 

for assuming that strategies which lack any distinctions of closeness would be 

preferred in practice. Since it can be reasonably inferred that any other individual 

will be following the same strategy, it could make sense to drop the distinction 

and make a universal response, which in turn might be a first step towards 

explaining a universal moral behaviour.

Also, an ESS of this kind can respond to the Possibility problem. Fisher’s 

argument describes how any population with two genders will tend to fall into a 

50/50 split. The argument depends only on the mechanics of evolution, and 

doesn’t need to make any assumptions concerning the means of reproduction, the 

method for selecting mates, or how offspring are reared. In this regard, Fisher’s 

argument is very abstracted, making it applicable to almost any population. The 

Possibility problem concerned the difficulty of an evolutionary argument’s 

explaining the final prevalence of some strategy, when there might in fact have 

been many alternate strategies that were all originally possible. In Fisher’s case, 

there is in fact only one strategy which is the final outcome, no matter where the 

initial population might have started out in terms of gender ratio.3 If an 

evolutionary explanation for some behaviour is given which relies on this type of 

ESS, then the Possibility problem is avoided.

2.3 Skyrms’ Model

Brian Skyrms gives us a model based on a bargaining game known as 

divide-the-cake. In this game, two players divide a cake by independently (i.e. 

without negotiation) deciding how much of the cake to each demand. These

10
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demands are then totalled, and if they can both be fulfilled simultaneously (i.e. 

they add up to less than or equal to the entire cake), then each player receives the 

proportion they demanded. If the demands add up to more than the entire cake, 

each player receives nothing. Skyrms argues that the most intuitive strategy is to 

demand exactly 1/2 the cake. In many laboratory settings, this is also the most 

common strategy seen.

To explain why the demand 1/2 strategy is so intuitive, Skyrms examines a 

model in which players choose from one of three different pure strategies: demand 

1/3 (modest), demand 1/2 (fair), and demand 2/3 (greedy). How well players 

following a particular strategy generally fare depends greatly on the mix of 

strategies being played in the population. Demand 1/3 players will always receive 

their demand no matter whom they are paired with, and so that strategy always has 

a payoff of 1/3. However, demand 2/3 players will only receive payoff of 2/3 if 

they are fortunate enough to be paired with demand 1/3 players. Lastly, players 

using the demand 1/2 strategy will only receive a payoff of 1/2 if paired either 

with demand 1/2 players, or demand 1/3 players. A payoff matrix for the game is 

given below.

Payoffs fo r  Players in Divide-the-cake

demand 1/3

Player 2

demand 1/2 demand 2/3
demand 1/3 1/3,1/3 1/3,1/2 1/3,2/3

Player 1 demand 1/2 1/2,1/3 1/2,1/2 0,0

demand 2/3 2/3,1/3 0,0 0,0
Figure 2.1

Since Skyrms uses the replicator dynamics (described in section 3.3) for 

his model, fitness of a strategy is determined probabilistically rather than using 

actual pairing. Once the fitnesses of each of the three strategies are determined, 

they are used to produce a subsequent population (the next generation), with 

strategies having higher fitness making up a higher proportion of the subsequent
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population. For example, if demand 1/2 tends on average to get more cake than 

the other strategies, it will make up a larger proportion of the next generation than 

the other two strategies. This process is repeated until the mix of strategies in the 

population converges towards an equilibrium.

Skyrms represents the results of this process using triangular diagrams. In 

these diagrams, each vertex of the triangle corresponds to one of the three pure 

strategies in the game. Every possible initial strategy mix (i.e. state) corresponds 

to a point in the triangle, where decreasing distance to the appropriate vertex 

shows an increase in the proportion of the population initially playing that 

strategy. Hence, each vertex indicates a population which starts out entirely 

playing just one of the pure strategies. Also, the edge farthest from a strategy’s 

vertex indicates populations in which that strategy is initially entirely lacking. 

This triangle is really just a representation of the state space for the model. Lines 

and arrows are used to indicate how states change from one generation to the next. 

A rough copy of such a diagram is given below, demonstrating Skyrms’ results.

Results o f Uncorrelated Divide-the-Cake Evolution 

Demand 1/2

Demand 1/3 Demand 2/3

Figure 2.2

The lines and arrows indicate how states change over time. A rough
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analogy might be to think of them as indicating the contours of the triangle, so that 

a ball placed somewhere on it would roll along the line running through that point 

in the direction the arrow indicated. This is similar to the way one initial state 

would progressively change over successive generations. The diagram shows a 

substantial majority of the initial populations move towards the top of the 

triangle4, corresponding to a population with all individuals playing demand 1/2. 

This is because all the contours in the upper portion of the triangle lead to the top. 

Our hypothetical ball would roll there and stop once reaching it, since no lines 

lead away from that point. However, a significant minority of starting states 

moves towards the bottom centre of the triangle, which corresponds to a 

polymorphism in which half the population plays demand 1/3 while the other half 

plays demand 2/3. Each of these two regions is called the basin of attraction for 

the corresponding equilibrium. Both of these equilibria correspond to an ESS, 

and thus once entrenched are highly resistant to invasion (perturbation).

Skyrms then goes on to include correlation in the model described above. 

In this new model, a correlation factor is included which makes a player playing a 

given strategy more likely to pair with another player playing the same strategy 

than random pairing would normally allow. This correlation factor changes the 

outcome of the game quite significantly in many cases. A correlation factor of 0.0 

entails purely random encounters, while a factor of 1.0 entails perfect correlation 

(a strategy is always paired with itself).5 A correlation factor as low as 0.2 yields 

the results shown below in Figure 2.3.
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Results o f Correlated Divide-the-Cake Evolution with Correlation Factor 0.2

Demand 1/2

Demand 1/3 Demand 2/3

Figure 2.3

The modest/greedy polymorphism has essentially disappeared from the 

model once a sufficient amount of correlation is included.6 The basin of attraction 

for the all-fair ESS encompasses almost the entire state space, and the all-fair 

equilibrium is now a global attractor for the game. Skyrms’ suggestion is that this 

model may provide a modest basis for an explanation of the prevalence of fair 

sharing (equal division) in people. Since the key element in the model is the 

addition of correlation, how realistic the explanation might be depends very 

greatly on how likely it is that this correlation actually exists.

There is a long history of using game-theoretic models both in ethics and 

in evolutionary arguments. Although real situations are considerably more 

complex and varied than the simpler game-theoretic models, the models 

nonetheless can provide insight into the real systems. Often the simpler models 

allow the mechanisms underlying behaviours to be seen clearly which a wealth of 

extra details would only obscure. Game-theoretic models are also useful because 

they provide a clear distinction between individuals and situation (Danielson, 

1992, p. 30), which can make analysis more straightforward. Although Skyrms’ 

model and the simulations described in this thesis may seem too simple, they can
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still demonstrate real behaviour provided they faithfully model all the relevant 

factors.

2.4 Comparison of Skyrms’ Model and Fisher’s Argument

Skyrms’ model is similar to Fisher’s gender split scenario in several key 

respects. In Fisher’s argument, a single equilibrium (ESS) having a 50/50 gender 

ratio split is the end result of almost every possible initial gender mix. Similarly, 

Skyrms’ model7 has a single outcome for all possible initial mixes in which all 

three strategies are present. Both Skyrms’ and Fisher’s models have a single 

global attractor. This was the characteristic of Fisher’s argument which gave it 

some ability to counteract the Universality and Possibility problems of Chapter I, 

and Skyrms’ argument shares this ability.

Equal division (demanding 1/2 the cake) is the most common strategy 

employed when playing divide-the-cake, regardless of whether the game is being 

played with family, friends, or strangers. This can remain the case even when the 

game is changed in such a way that demand 1/2 might be disadvantageous, such as 

in ultimatum games (Skyrms, 1996, p. 111). The Universality problem questioned 

why this global strategy application should be seen. However, since the all-fair 

equilibrium is a global attractor, this would make the assumption that the other 

player will demand 1/2 highly likely, and hence one’s best possible response is to 

also demand 1/2.

Also, the Possibility problem is avoided, since the all-fair equilibrium is 

the only antecedently possible outcome in the model. Skyrms’ evolutionary 

argument for the prevalence of fair division explains why we do not find an 

alternative scenario (particularly the greedy/modest polymorphism). This is 

particularly useful for an evolutionary argument in ethics, since the behaviour (fair 

sharing, in this case) is taken out of the realm of behaviours that arose purely by 

chance, and becomes instead one that is almost guaranteed to develop under the 

correct circumstances.

One of the most useful parallels between Fisher’s argument and Skyrms’ is
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their generality. Fisher’s argument is highly abstracted, and doesn’t require any 

specific details on the mechanism of reproduction, gender selection, genetics, and 

so forth, in order to still be valid and intuitive. Skyrms’ argument is also highly 

abstracted in this regard. It requires only the existence of different division 

strategies (including demand 1/2), some mechanism permitting strategies having 

higher average fitness to make up a higher proportion of the subsequent 

generation, and a modest degree of correlation. Details concerning how 

individuals meet, reproduce, and pass on strategies to subsequent generations are 

all rather irrelevant to the success of this model. This makes it applicable not only 

to biological evolution, but also conceivably to social or cultural evolution as 

well, in which imitation and learning are the primary methods by which the 

behaviour is passed from one generation to the next rather than genetics (Skyrms, 

1996, p. 11; D ’Arms, Batterman, & Gomy, 1998, p. 88).

This higher level of abstraction is one of Skyrms’ argument’s strengths. 

Since it can be applied to many widely varied types of populations, and to both 

biological and cultural evolution, it increases the plausibility that this scenario will 

occur. The explanations do not require the existence of some particular biological 

mechanism in order to function correctly, which makes them more robust than 

many evolutionary arguments are. This generality and robustness comes at the 

expense of providing concrete details, however, which would serve to make the 

argument easier to defend from specific criticisms.
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Chapter III - Criticisms of Skyrms’ Model
3.1 D ’Arms, Batterman, and Gorny

Skyrms’ model has been criticized by several authors. Many of these 

criticisms focus on the addition of correlation to the model, and on the details of 

how that correlation functions. In particular, an article by D’Arms, Batterman, 

and Gorny points out that Skyrms uses correlation in such a manner that all 

strategies are positively correlated. Every strategy is more likely to be paired with 

itself. However, this really seems advantageous only in the case of fair 

individuals. Modest individuals get their demanded share (and associated payoff) 

no matter what kind of individual they are paired with, hence there is no incentive 

for them to prefer pairing with other modests. Even more importantly, greedy 

individuals get no payoff whatsoever when paired with another greedy individual. 

Not only is there no incentive for pairing between two greedies, there is in fact an 

incentive for greedy individuals to avoid one another.

As mentioned before, Skyrms is explicit in giving a generalist explanation, 

and so deliberately avoids including specific details concerning mechanisms 

whenever possible in order to increase the robustness. This means that Skyrms’ 

justification for the inclusion of the correlation in the model (and why it acts 

positively on all strategies) is somewhat vague. D’Arms, Batterman, and Gomy 

suggest that it in the realm of cultural evolution Skyrms-style correlation might be 

more plausible (D’Arms, Batterman, & Gomy, 1996, p. 93), but even with this 

reduction of the domain, there still remain problems justifying positive correlation 

for all strategies.

D’Arms, Batterman, and Gomy propose a new model, which uses a 

different correlation scheme. In this scheme, modest individuals are uncorrelated, 

fair individuals are positively correlated, and greedy individuals are negatively 

correlated. There are some other changes associated with this model, such as a 

move away from the replicator dynamics and infinite population sizes Skyrms 

uses, which they argue increases the realism of their model.
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They also argue that one of the advantages to being modest (playing 

demand 1/3) is that no effort need be wasted on finding an appropriate partner. 

Fair and greedy individuals have an incentive to be more picky in their selection 

of partners, resulting in the positive or negative correlation respectively. Modest 

individuals receive their payoff no matter whom they are paired with, and this lack 

of selectivity ought to be considered a kind of advantage. A more fine-tuned 

version of their model is explored, which introduces a cost factor into the 

simulation, designed to penalize strategies based on the degree of correlation they 

use.

For brevity, I will refer to this type of correlation (zero for modest, positive 

for fair, and negative for greedy individuals) as DBG-style correlation. Also, any 

model which uses it will be referred to as a DBG-style model, regardless of 

whether it includes the cost factor. Similarly, any model which uses Skyrms’ 

scheme of positive self-correlation for every strategy will be referred to as a 

Skyrms’ model.

3.2 Barrett, Eells, Fitelson, Sober

Even the refinement of the correlation proposed in section 3.1, above, fails 

to be entirely adequate. Barrett, Eells, Fitelson, and Sober point out that if an 

individual were to arrange the correlation so as to maximize its own advantage, 

then the scheme needs to be modified further (Barrett, Eells, Fitelson, & Sober, 

1999, p. 240). Just as modest individuals have no incentive to seek out 

individuals of their own strategy or any other strategy, similarly no other strategy 

has any incentive for avoiding them. Our use of positive correlation for fair 

individuals is doing precisely this, however. Fair individuals preferentially 

seeking out other fair individuals amounts to their avoiding modest and greedy 

individuals both. Similarly, greedy individuals using negative correlation are 

avoiding other greedy individuals, which increases the likelihood of their being 

paired with a fair individual. This outcome is equally bad from the standpoint of 

the greedy individual. Depending on the mix of strategies present in the
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population, negative correlation can be less advantageous for greedy individuals 

than the equivalent amount of positive correlation would be!

The only lethal result (payoff 0) for a fair individual is when it is paired 

with a greedy individual. Fair individuals should want to avoid this outcome, and 

simply avoiding being paired with a greedy individual is a more sure method of 

accomplishing this than seeking out other fair individuals would be for certain 

strategy mixes. Similarly, greedy individuals would have an incentive to avoid 

fair individuals just as much as avoiding other greedy individuals. The best 

strategy for a greedy individual is thus to seek out modest individuals.

This leads to a new correlation scheme, in which encounters for modest 

individuals remain uncorrelated, those for fair individuals have negative 

correlation with respect to greedy individuals, and greedy individuals have 

positive correlation with respect to modest individuals. As with DBG-style 

correlation, I will abbreviate this correlation scheme as BEFS-style correlation, 

and models using it as BEFS-style models.

3.3 Replicator Dynamics

Brian Skyrms argues that use of the replicator dynamics in evolutionary 

models provides a good starting point for examining actual systems (Skyrms, 

1999, pp. 244-5). Neil Tennant, however, describes how under different kinds of 

assumptions very different results can be obtained (Tennant, 1999). While I will 

not be examining the particular model Tennant uses, nor his results, it still appears 

profitable to look at models which do not rely on the replicator dynamics so 

strongly.

The populations in Skyrms’ model change from one generation to another. 

If the time between generations is very small, the change in the proportion playing 

a strategy Sj from one generation to another can be modelled by the following 

differential equation (Skyrms, 1998, p. 385):

3p(Si)/3t = p(Si)-[U(Si)-U ]/U  

where p(S;) is the proportion of the population playing strategy S., U(Sj) is the
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expected payoff of strategy Sj, and U  is the average population fitness. If we let 

U(Sj I Sj) be the payoff received by playing strategy Sj against strategy Sj, then 

U (Sj) =  S j p(Sj) U (Sj I Sj) and U  = S i p (S j)U (S j). This differential equation is 

known as the replicator dynamics.

Although it seems complex, it is actually relatively simple to implement in 

computer simulations. One major assumption inherent in the replicator dynamics 

is that the proportions of individuals using the given strategies are an exact 

indicator of the frequency with which the strategies are paired. For instance, if a 

population is composed of 25% fair individuals and 75% modest individuals, then 

precisely 25% of modest individuals will be paired with other modests, and the 

remaining 75% will be paired with fair individuals. Effectively, the replicator 

dynamics models a situation that usually only occurs in infinitely large 

populations. As a comparison, the odds of getting tails when flipping a fair coin 

are said to be 50%, but any finite number of coin flips is very unlikely to produce 

exactly 50% tails. The probability of 50% is an idealization based on an infinite 

number of flips.

Actual evolution (whether biological or cultural) does not actually take 

place in infinitely large populations. Skyrms draws a parallel between his own 

argument and that of Fisher, yet Fisher’s argument actually requires a move to 

finite populations in order to explain the observed scarcity of gender ratio 

polymorphisms. D ’Arms, Batterman, and Gomy also suggest that abandoning the 

replicator dynamics in favour of finite populations is a move towards increased 

realism. They further demonstrate that Skyrms’ results concerning the relative 

sizes of the two basins of attraction remain intact even when this change is made, 

so no loss of explanatory power occurs. Their primary reason for the move is that 

more complex kinds of correlation and interaction can be effectively modeled in a 

finite population, but using the replicator dynamics would involve mathematical 

complexity which could make it impossible to reasonably obtain results. Using 

the more complex correlation schemes would be highly problematic for this 

reason.
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Also, implementing Skyrms’ model using the replicator dynamics can lead 

to the model’s behaving counter-intuitively in many cases. For instance, many 

populations approach equilibrium without ever actually achieving it. As an 

example, any population composed of some mix which includes modest 

individuals has the modest proportion decrease on each generation without ever 

actually becoming zero. We can say a population approaches the all-fair 

equilibrium, but we can virtually never say a population is composed only of fair 

individuals. In an actual (finite) population, this usually does not occur, and 

overwhelmingly fair populations will almost always have other strategies driven 

to extinction after a sufficient number of generations.

Besides operating on assumptions only compatible with infinite population 

size, the replicator dynamics are also completely deterministic. Every initial point 

in the state space moves to one and only one subsequent state upon the succeeding 

generation. There is no element of randomness involved. This is also quite unlike 

actual evolution, which allows for random events and accidents. Even Darwin 

emphasized that natural selection is usually a noisy process in which luck can play 

a large role (Binmore, 1994, p. 99). As stated in the discussion of the Possibility 

problem, evolution in general is such that final possibilities which were highly 

unlikely initially might still come about from time to time. With the replicator 

dynamics, however, there are no alternate possibilities: a given starting point 

proceeds to a single outcome in one and only one way, and all other outcomes 

have probability of zero. We would like our model to incorporate alternate 

possible evolutionary paths, otherwise we risk the charge that the reason we 

always come to the all-fair equilibrium is simply because any alternatives have 

been rendered impossible by the model. Imposing linear change on the model by 

using the replicator dynamics reduces the model’s ability to counter the Possibility 

problem.

Although some distinctively new behaviours result from the switch to 

finite populations, I will still refer to any finite population variation as a “Skyrms’ 

model.” This is consistent with the terminology used by D’Arms, Batterman, and
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Gomy who also make the switch away from replicator dynamics. The most 

substantial difference between the various models I discuss is the correlation 

scheme used, so for the purposes of this thesis a Skyrms’ model is any one that 

uses positive self-correlation for every strategy.
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Chapter IV - Coding Project and Modeling
4.1 Description of the Coding Project

In order to test Skyrms’ model, the modifications proposed by other 

authors, plus some ideas of my own, some computer code is required. There is a 

fair amount of public-domain code available which would seem at first to be 

potentially adaptable. Unfortunately, few of the best code bases seem to include 

the capacity to simulate group-level selection theories, which I will be examining 

extensively. Of those that do, all seem designed in such a way as to make 

interaction between individuals nearly impossible, due to the data abstraction 

used.

Evolutionary simulation is most commonly used in genetic algorithms, 

which are primarily problem-solving algorithms. In the interests of efficiency, 

these algorithms typically drop the individual, focusing instead only on the 

‘genes,’ which represent possible solutions to the problem to be solved, and which 

are used to determine fitness. In our case, this approach is unworkable, since the 

fitness of an individual is also the result of pairing with another individual (i.e. 

dividing-the-cake), rather than being solely inherent in the genes. That is, the 

composition of subsequent generations is partly determined by the interactions 

between individuals, and not just by individual genes (or strategies) per se.

These kinds of individual interactions are more typical of A-Life 

simulations, and there is plenty of code available for these as well. A-Life 

(artificial life) encompasses a wide range of computer simulation types. 

Typically, they involve more agent-based approaches, where interactions between 

individual agents are simulated in order to study emergent behaviours. I was 

unable to locate any extendable agent-based A-Life code which included a 

sufficiently powerful evolutionary component, however. A hybrid approach is 

required, which allows for a flexible combination of both evolutionary modeling 

and individual interactions.

Performing very extensive modifications to someone else’s code can be a
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daunting process at best, particularly when modifying the code to perform in a 

way the designer never intended. Often, this can be more labour intensive than 

designing new code, which is what I have elected to do. I have designed and 

written a very extensive object library in the C++ programming language, called 

the VE Evolutionary Class Library, which is ideally suited for the kind of hybrid 

approach I am interested in. It was designed in such a way so as to maximize 

portability (so that older systems could successfully compile and run simulations), 

and to be easily adaptable to both A-Life and evolutionary simulations.

I had originally intended to append the code and the documentation to this 

thesis as an appendix, but the code grew to a very large size (well over 140 pages 

of code plus over 80 pages of documentation) so this plan was abandoned.

Instead, the code will be made available for download over the internet, and may 

be considered as an online component of this thesis. I will be releasing this code 

into the public domain under the GNU General Public License, which will allow it 

to be freely copied, modified, or distributed, so long as it is not incorporated into 

proprietary software. More information on this license may be found in the 

appropriate text document accompanying the code, or by writing to the Free 

Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111- 

1307, USA.

4.2 Full Description of Models and Results

I will be using a modeling approach that includes a number of the changes 

proposed by D ’Arms, Batterman, and Gomy. In particular, I will not be using the 

replicator dynamics. Instead, finite populations will be used for all simulations. 

Also, the fitness of the different strategies, used to determine the composition of 

subsequent generations, will not be determined probabilistically (i.e. as a function 

of the proportions of the different strategies in the current generation). Instead, I 

will be using the strategy of D ’Arms, Batterman, and Gomy once again, and will 

pair individuals from the population by sampling without replacement, 

determining fitness at the level of the individual itself. This allows for varying
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behaviour of the system , 8 which in turn allows for a given starting point to lead to 

a different ESS on different trials. Because of this, multiple runs are performed, 

and the results averaged, in order to give a clearer indication of the behaviour of a 

particular starting state.

One other major change I am making is in the way the results are 

represented. Skyrms used diagrams in which lines and arrows showed the sizes of 

the basins of attraction as well as the manner in which states changed from one 

generation to another. However, since the simulations I will be using are designed 

so that evolution for a given state can vary from one run to another, this is no 

longer possible. While it is feasible to average multiple runs together and produce 

a reasonable facsimile, doing so would obscure the fact that along the boundaries, 

substantial numbers of runs may be evolving in different directions from other 

runs. The vector method of representation cannot show this uncertainty.

Instead, I will be using colour in order to show the results of the 

simulations. Each point in the triangular results diagram (corresponding to a 

given initial state) will be coloured according to the final equilibrium it reaches. I 

am assigning the primary colour blue to the fair individuals, red to greedy 

individuals, and green to modest individuals. The proportions of strategies in the 

final state correspond to the proportions of the three primaries mixed in the colour 

assigned to the point for that state. For example, the all-fair equilibrium contains 

only fair individuals, so the colour assigned to any state resulting in the all-fair 

equilibrium is composed only of blue. Similarly, since the greedy/modest 

polymorphism is composed of roughly 50% greedy and 50% modest individuals, 

the colour assigned to a state leading to the polymorphism is coloured a roughly 

equal mix of both red and green (resulting in a greenish-brown colour). The 

diagram below shows what this looks like for a Skyrms’ model without 

correlation, and performing only a single run for any given starting point.
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Results o f Uncorrelated Divide-the-Cake

Figure 4.1

The number of starting points used for Figure 4.1 was kept deliberately 

small (i.e. the granularity was increased) in order to demonstrate how nearby 

states can randomly end up in very different final states. Some points which 

finished in the greedy/modest polymorphism can be clearly seen surrounded by 

points that finished in the all-fair polymorphism. Note that the slight fuzziness 

surrounding these points (and at the basin edges in general) is due to the 

interpolation method I use for filling in points for which no evolutionary trial was 

performed. Later runs will use much finer granularity, 9 and any blurring 

introduced due to interpolation will be very small, and typically limited to an area 

of only one or two pixels. Also note that the comers of the triangle are assigned in 

the same way that Skyrms does, with the modest vertex at the bottom left, greedy 

at the bottom right, and fair at the top. I will follow this convention throughout, 

and omit labelling of the comers on all subsequent triangle diagrams.

There are several benefits to this mode of representation. For instance, it 

becomes rather simple to visually compare the sizes of the two basins of 

attraction. Also, shifts in the proportions of strategies in the final equilibrium can 

be seen as colour shifts in the appropriate basin. Finally, the tendency of points 

along the boundary of the basins, which I will refer to as the separatrix (Richter,
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1986, p. 96), to lead to different equilibria will show up as a mixing of the basin 

colours along the region of the separatrix when multiple runs are averaged. The 

following diagram shows the model from Figure 4.1, but with 10 runs averaged 

together.

Averaged Results o f Uncorrelated Divide-the-Cake

Figure 4.2

As can be seen, the separatrix is much more easily definable once a 

number of runs are averaged together, but the tendency of some areas to end up in 

differing basins is also clearly visible. Most of the diagrams in this thesis will use 

50 runs averaged together, and a much finer granularity than figures 4.1 and 4.2 

use. Also, I have assigned the red, green, and blue primaries to the strategies in 

such a way that the colours for the two basins have good contrast, and yet still 

look very similar for persons both with or without colour deficiencies, and I will 

consistently use this assignment throughout.

Also, the reader may note the very small pure green and pure red areas at 

the bottom comers of the diagram. This corresponds to the states which initially 

begin with only modest individuals (in the case of green), or greedy individuals 

(for red). Since there is no mutation in any of the models used, a population with 

only modest individuals continues without change indefinitely. The state which
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begins with only greedy individuals actually ends up with every individual 

receiving a payoff of zero, and when the population renormalization procedure of 

Skyrms’ model or the DBG-style model is applied this results in a singularity 

(dividing strategy payoff of 0 by total payoff of 0). Since none of the authors 

explicitly mention this, I have elected to renormalize those populations having a 

total payoff of zero as if a single greedy individual managed to successfully divide 

the cake, resulting in a new population of all greedy individuals. Later 

simulations will have other starting states which can die out (besides just 

overwhelmingly greedy states), so this convention of renormalizing to all-greedy 

will later be abandoned in favour of colouring these starting states a very dark 

grey instead.

4.2.1 Skyrms’ Model

As described earlier, I am making certain modifications to Skyrms’ 

original divide-the-cake model, such as using finite populations and more realistic 

pairing. The implementation of Skyrms’ model used here is essentially the same 

method proposed by D ’Arms, Batterman, and Gomy. Described simply, 

individuals are paired randomly, with the correlation value used to increase the 

likelihood of an individual being paired with another individual using the same

strategy. Fitness is calculated after all individuals are paired. Finally, the

proportions of the three strategies in the next generation are set according to the 

proportions of their fitness. In more formal terms, the model uses the following 

procedure.

• Select one of the individuals in the population at random and remove it 

from the population.

• Let Si, S2, and S3 be the proportion of each of the strategies present in 

the resulting population (after removal) such that Si is the proportion 

of individuals with the same strategy as the removed individual, and 

S2, and S3 are the proportions of individuals using the other strategies. 

S, + S 2 + S3 = 1.
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• Let e be the correlation factor. Let S ,' = Si + e(S2+S3) if e > 0, 

otherwise S ,' = (1+<?>S,. Let S2' = (1 - S,')-(S2 / (S 2+ S 3)), and S 3'  =  

(1 - S,')(S3 / (S2+S3)).

• Choose a random number r such that r > 0.0 and r < 1.0. If r < S /  

remove a second individual from the population with the same strategy 

as the first, otherwise if S \ < r  < S /+ S / select a second individual 

from the population which uses the strategy corresponding to S2, 

otherwise select a second individual from the population which uses 

the strategy corresponding to S3.

• Pair the two individuals removed together in the divide-the-cake game 

and assign payoff accordingly.

• Repeat the previous 5 steps so long as there are two or more 

individuals remaining in the population.

• Let M, F, and G be the total payoffs received by all individuals which 

played modest, fair, and greedy, respectively. Let N be the total size of 

the original population (before any individuals were removed). 

Renormalize the population so that [M / (M+F+G)J-N individuals use 

the modest strategy, [F / (M+F+G)]-N individuals use the fair strategy, 

and [G / (M+F+G)]-N individuals use the greedy strategy.

I include this more formal description in part to make the differences 

between this model and later models more explicit and easier to describe. Also, 

the formal description allows my results to be duplicated by those interested.

As mentioned previously, there are cases in which the final 

renormalization step fails (i.e. cases where payoffs for every individual is 0). In 

this event, I will either set G equal to 2/3, or flag the population as having become 

extinct for simulations which track population size changes. Note too that since 

we use finite population sizes, the number of individuals calculated during 

renormalization must be rounded to whole numbers. This rounding will cause 

very slightly different results from those of Skyrms in some instances, such as for
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initial states with a very large majority of modest individuals. The following two 

diagrams show my final results for two of Skyrms’ models.

Averaged Results o f Skyrms’ Model 

Correlation 0.0 Correlation 0.2

Figure 4.3 Figure 4.4

The second diagram shows practically no basin of attraction for the 

modest/greedy polymorphism, and the all-fair equilibrium has come to dominate 

virtually every starting point.

Unlike Skyrms’ diagram, a very slight ridge at the bottom still remains, 

and a careful observation shows a ‘speckled’ region above it which indicates that 

some populations do in fact manage to end up in the polymorphism despite being 

quite some distance from what should be the basin of attraction for it. 10 This is 

mostly the result of the switch to finite population size and randomness. In the 

region near the very bottom edge, fair individuals are very uncommon, and there 

is always some small probability that they w ill nearly all be paired with greedy 

individuals rather than other fair individuals or modest individuals. This causes 

them to decline in proportion very sharply (or become extinct entirely), leaving 

only modest and greedy individuals. The closer we get to the bottom edge, the 

more likely this is to occur, especially near the right hand (greedy) vertex.
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One way of visualizing this is in terms of Figure 2.3 earlier, which shows 

the deterministic (replicator dynamics) version of the same model. The arrows in 

Figure 2.3 represented the change of a population from one state to another over 

successive generations. In the lower area of the triangle, populations follow 

closely alongside the bottom edge for a time before moving upwards to the all-fair 

vertex. When randomness and finite populations are used, the arrows can be 

thought of as just representing the most probable trajectory, but populations can 

(and do) move in different directions on occasion. Every so often, a population 

will move downwards toward the bottom edge rather than alongside it, and once 

there a population is never able to leave that bottom edge. Hence, no matter how 

strong an attractor the all-fair equilibrium becomes, there will always be some 

slight fuzziness near the bottom edge of the triangle.

4.2.2 DBG-Style Model

This model is virtually identical to the version of Skyrms’ model described 

in section 4.2.1. The only difference is in how the correlation is handled. Rather 

than a single correlation coefficient e which acts on all the strategy types, there are 

now three coefficients e\j, £/•-, eG for the modest, fair, and greedy strategies 

respectively. The coefficient eM will always be zero for all DBG-style models, 

while ep will be greater than zero and eG will be less than zero.

The different coefficients come into play in the third step of the model, 

which was:

• Let e be the correlation factor. Let S /  = Si + e(S2+S3) if e > 0, 

otherwise S /  = (l+e)S]. Let 8 2 '  = (1 - S /X S 2 / (S2+S3)), and S3' = (1 - 

8 ,0 (8 3 / ( 8 2 +8 3 )).

This step needs to be modified as follows in the DBG-style model.

• Let e be the correlation factor corresponding to the strategy of the 

removed individual. Let S /  = Si + e(S2+S3) if e > 0, otherwise S /  = 

(l+e)S,. Let S2' = (1 - S,0(S2 / ( S 2 + S 3 ) )  and S3' = (1 - S,0(S3 /

(S2+S3)).
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The change in correlation from a single globally applicable value to three 

strategy-dependent values makes a substantial change in the behaviour of the 

model as compared to Skyrms’ model. When listing the coefficients used for a 

DBG-style model (or BEFS-style model later), I will list them as the vector <eM, 

eF, eo>. When the coefficients are <0.0, 0.2, -0.2> the modest/greedy 

polymorphism continues to maintain a substantial basin of attraction, as shown in 

Figure 4.5.

DBG-Style Model with Coefficients <0.0, 0.2, -0.2>

Figure 4.5

D ’Arms, Batterman, and Gomy also propose an extension to this model. 

This extension is described by them as increasing realism (D’Arms, Batterman, & 

Gomy, 1996, p. 97), and is intended to model the increased costs of an 

individual’s being more selective in choosing a partner to be paired with. In the 

DBG-style model, fair and greedy individuals are more highly correlated (or anti

correlated) than modest individuals, and it seems reasonable that this would result 

in longer search times for an appropriate partner under most circumstances. Their 

modified model adds a cost factor, c, which is used to calculate a reduction of the 

fitness of each strategy. On each pairing, a cost is calculated such that
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cost = c e (l-S i) if e > 0, otherwise cost = - ceS | .  Again, e is the correlation 

coefficient for the strategy of the individual, and Si is the proportion of the 

strategy of the individual in the population at the time of that pairing. Cost 

depends on correlation and strategy frequency, and not on the strategy itself, per 

se. However, modest individuals lack correlation in DBG-style models, and so 

have the advantage of lower cost because of that. In their modified model, the 

size of the basin of attraction for the polymorphism becomes even larger, 

increasing in size roughly 13% when c is 0.3. Brian Skyrms refers to these sorts 

of cost calculations as a promising area for further investigation (Skyrms, 1999, p. 

248).

4.2.3 New Cost Calculations for DBG-style Model

It is unclear from the description provided whether this cost should be 

applied to only the first individual selected (i.e. the one seeking a partner), or also 

to the second as well. It is intended to indicate the costs of being more selective in 

choice of partner, but the article provides no clues as to whether the authors 

interpret any given pairing as just the first individual selecting the second, or as 

both individuals selecting one another.

Another difficulty with the cost calculations in the modified DBG-style 

model is that negative payoffs occur in the case of an unsuccessful pairing. This 

seems rather unintuitive, since the payoffs are added together during the 

renormalization step to determine the composition of the next generation. Any 

unsuccessful pairing of a fair or greedy individual can be thought of as reducing 

the fitness of all other successful fairs or greedies. This changes the nature of the 

game played, and effectively substitutes a completely new game for the model, 

rather than remaining true to Skyrms’ model. In Skyrms’ model, being 

successfully paired results in a nonzero payoff, while unsuccessful pairing has a 

zero payoff. I therefore propose a slightly reworked version of the DBG-style cost 

calculations. This cost is calculated before renormalization, rather than for each 

pairing. Formally, the final step of the DBG-style model, which was originally
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• Let M, F, and G be the total payoffs received by all individuals which 

played modest, fair, and greedy, respectively. Let N be the total size of 

the original population (before any individuals were removed). 

Renormalize the population so that [M / (M+F+G)] N individuals use 

the modest strategy, [F / (M+F+G)] N individuals use the fair strategy, 

and [G / (M+F+G)]-N individuals use the greedy strategy.

will be changed to now read:

• Let M, F, and G be the total payoffs received by all individuals which 

played modest, fair, and greedy, respectively. Adjust M, F, and G as 

follows. Let M = M (1 - 3 c eM) if > 0, otherwise M = M (1 + 

3 c eM)- Let F = F (1 - 2 c eF) if eF > 0, otherwise F = F (1 + 2 c ep). 

Let G = G (1 - 1.5 c cg) if ^g ^  0* otherwise G = G (1 + 1.5 c-eG). Let 

N be the size of the original population before any individuals were 

removed. Renormalize the strategies in the population so that 

[M / (M+F+G)]-N individuals use modest strategy, [F / (M+F+G)]-N 

individuals use the fair strategy, and [G / (M+F+G)] N individuals use 

the greedy strategy.

I will refer to this as revised DBG-style cost calculations, and it behaves 

very much like the calculations used by D ’Arms, Batterman, and Gomy, except 

that it is now based on the number of successful pairings. That is, only survivors 

(with non-zero fitness) have to pay the cost, and nonsurvivors do not modify this 

cost in any way. The factors 3, 2, and 1.5 above are used to find the number of 

successful pairings for each strategy from the total payoff. For example, F (total 

payoff for the fair strategy) equals the number of successfully paired fair 

individuals multiplied by the fair payoff o f 1/2; multiplying F by 2 simply reverses 

this and yields the number of successfully paired fair individuals. In simpler 

terms, the formulas subtract costcorrelation(number of survivors) from the total 

payoff for a strategy.
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The results with this change to the cost calculations are even more 

significant than the 13% found with the unrevised version. Figure 4.6 shows the 

results of the modified cost with a cost factor of 0.3, shown alongside the original 

non-cost version of the DBG-style model (Figure 4.5) for contrast.

DBG-Style Model with Coefficients <0.0, 0.2, -0.2>

With No Cost Factor With Cost Factor 0.3

Figure 4.5 Figure 4.6

The motivation for the addition of the DBG-style cost calculations was to 

add realism to the model by allowing for a slight advantage for modests for being 

less selective in choosing partners to play with. However, there still remain two 

problems with both the DBG-style cost calculations and my modified version of 

cost which reduces the realism of these cost calculations somewhat. The first of 

these problems is the linear growth of the cost factor with decreasing proportions. 

The second problem involves the overlooking of one of the primary advantages of 

the greedy strategy as soon as cost factors are included: greedy individuals can 

afford to pay more, other things being equal, since they receive a larger payoff 

from each successful pairing.
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4.2.3.1 Linear Cost Growth

A look at the cost calculations shows that they are a linear combination of 

the cost coefficient, the absolute value of the correlation coefficient, and (for 

DBG-style cost) the size of the proportion of the population being avoided. This 

does have the desired effect of increasing the cost depending on how selective a 

strategy is, and how difficult it is to maintain that selectivity. However, the 

linearity of the cost seems unrealistic. Consider the case where fair individuals 

make up 50% of the population. The DBG-style cost using a factor of 0.3 and 

correlation 0.2 would work out to be 0.03. Now contrast this with the case where 

fair individuals make up a miniscule 0.0001% of the population. The DBG-style 

cost in this case is about 0.0599999, which is close to twice as high. Since fair 

individuals are so scarce in the second case, the cost should realistically be very 

much higher than it was for the first case. In the first case, the chances of meeting 

another fair individual after even a few random pairings is quite high, while in the 

second case it would require around 693,000 random pairings to have even a 

50/50 chance of meeting another fair individual. Given this vastly increased 

difficulty in finding the desired pairing, the cost for the second case should be 

much higher than merely double what it was for the first case. The DBG-style 

cost does not realistically portray the increase in difficulty associated with more 

difficult searches, particularly in cases with very high or perfect correlation 

(coefficient of 1 .0 ), in which only a specific sort of pairing is permitted.

In order to overcome this problem with linearity, I propose to modify the 

cost calculations once again. I’ll use the original, unmodified DGB-style method 

of calculating cost for each individual at the time of pairing. However, rather than 

use a simple linear calculation, I will actually count the number of random pairing 

attempts made by the first individual, and subtract a fixed amount per attempt. I 

will refer to this cost calculation method as per-attempt cost.

At some point, the total cost incurred may meet or exceed the potential 

payoff. How many failures this requires depends on the strategy of the individual. 

When this occurs, that individual remains unpaired and is assigned a payoff of
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zero. Since there is some uncertainty about whether one or both individuals 

should be paying the cost, I have elected to have only the first individual pay the 

cost. This seems to me to be the more realistic of the two choices. It seems 

plausible that there might be some individuals in a population which are found by 

an appropriate partner before they begin to search for themselves, and such 

individuals would incur no search costs.

4.2.3.2 Greedy Cost Advantage

In the DBG-style model, each individual chooses a partner strategy type 

based on a random number r used in the fourth step of the process. This 

partnering method allows us to correctly model the effects of correlation which 

can be different for each strategy type. I have mentioned earlier that one of the 

motivations for introducing cost calculations into the model was to mimic the 

advantage that modest individuals have by being less selective. In unmodified 

DBG-style cost calculations, this is accomplished by multiplying the correlation 

factor in, and since the correlation for modest individuals is zero by default, this 

makes the cost zero for modest individuals as well.

In per-attempt cost calculations, we have the added complication that 

modest individuals might be looking for a type of individual that is uncommon in 

the population at large, and so fail to find a partner with the desired strategy 

before the costs associated with unsuccessful pairings overtake the payoff for the 

first individual. This might seem to remove or mitigate the advantage of modest 

individuals in being less selective. However, this advantage of the modest 

strategy still persists in per-attempt cost, although to a somewhat lesser degree. 

Since modest individuals do not use correlation, the strategy type looked for will 

always reflect only the strategy mix in the current population, so the most 

common strategy present is always the most common strategy sought out.

One way of looking at original DBG-style cost calculations is that the cost 

was always zero for a modest individual, no matter how rare the target strategy is 

in the population at large. Similarly, costs for other strategies were always
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nonzero, no matter how slight the correlation or how plentiful the target strategy. 

In effect, this was like stacking the deck in favour of the modest strategy. This in 

turn benefited the greedy strategy far more than the fair strategy, since the greedy 

strategy is heavily reliant on a larger modest proportion. It is not at all surprising 

that the modest/greedy polymorphism rebounded to such a large extent after the 

DBG-style cost calculations were introduced.

By blunting this advantage of the modest strategy somewhat, per-attempt 

cost also allows us to take into account one of the advantages of the greedy 

strategy, which was overlooked in the original DBG-style cost strategy. 

Specifically, since greedy individuals get a higher payoff from a pairing, they can 

afford to pay a higher cost — being more selective is worthwhile if the rewards for 

success are correspondingly greater. This serves to increase the realism of cost 

calculations even more, as well as better fitting the original justification for 

including cost calculations, which was that the degree of selectivity for a strategy 

should impact its fitness.

4.2.3.3 Results for New Cost Calculation

Finding an appropriate per-attempt cost to use which makes a reasonable 

comparison with the original DGB-style cost method is somewhat difficult. The 

behaviour of the two different cost methods are simply too different for the more 

extreme strategy mixes (i.e. those near the comers of the triangle). Also, the cost 

in the DBG-method depends on the correlation being used. I compromised and 

used a per-attempt cost factor of 0.0444. This allows 7, 11, or 15 pairing attempts 

for the modest, fair, and greedy strategies, respectively. This is sufficient to give 

any individual a 99% chance at finding the target partner type in a population 

composed of an equal mix of all three strategies. The value of 0.0444 also 

provides (on average) a very similar cost as the DBG-style for both fair and greedy 

individuals in a population with equal amounts of all strategies and a 0 . 6 6 6 6  

correlation factor. This correlation may seem high, since we have been using a 

much lower correlation than that. However, the per-attempt cost increases sharply
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as the proportion of the target strategy type decreases, and matching the two 

strategies at a higher correlation value permits the two methods to approximate 

one another in a region surrounding the centroid of the triangle, rather than at the 

centroid only, making the two methods more comparable. Finally, 0.0444 is 

sufficiently low so that even a modest seeker (which can least afford an extended 

search), is still more likely than not to be able to pair successfully with a strategy 

that represents as little as one tenth of the global population. This will avoid 

accidentally penalizing modest individuals too much.

DBG-Style Model with Coefficients <0.0, 0.2, -0.2> 

Modified DBG-Style Cost Per-Attempt Cost

Figure 4.6 Figure 4.7

Figure 4.7 above shows the results I obtained in a simulation using the per- 

attempt cost (factor 0.0444), alongside Figure 4.6 from earlier for comparison. 

One thing to note is that the basin of attraction for the per-attempt cost method is 

substantially smaller. In terms of size, it is slightly smaller even than the case 

where no cost calculations whatsoever are used (Figure 4.5). This decrease in size 

occurs because the area that was added to the basin for the modest/greedy 

polymorphism by DBG-style costs in Figure 4.6 occurs in a region where fair 

individuals are a minority, perhaps 20% of the population. In this region, per-
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attempt cost gives roughly equal chances of successfully pairing to all strategies, 

whereas DBG-style cost gave a considerable advantage to the modest strategy in 

this region.

The effects of adding cost calculations to the model are very much like the 

effects of adding correlations changes: adding more realism or detail can make a 

substantial difference in how the model behaves overall. It may seem

counterintuitive that when cost calculations are redesigned so as to provide some 

advantage to greedy individuals (longer search times), it is in fact the fair basin of 

attraction that receives the more substantial benefit. This is partly due to the 

specific per-attempt cost value chosen, and very small values will produce 

behaviour much like the non-cost DBG-style model. Very large values on the 

other hand will rapidly reduce the proportion of modest individuals in most

regions of the triangle, and thus rapidly reduce the proportion of greedy

individuals which depend on them. In effect, the large increase in size of the

basin for the modest/greedy polymorphism that was seen in the original DBG- 

style cost model was an artifact caused only by its bias towards individuals using 

the modest strategy. Lessening this bias results in growth of the all-fair basin.

4.2.4 BEFS-Style Model

This model makes some adjustment to the correlation scheme. It uses 

reasoning similar to that used in the DBG-style correlation scheme, but goes one 

step further. DBG-style correlation has positive correlation for fair individuals, 

which results in their avoiding modest individuals as well as greedy (i.e. a higher 

probability of pairing with another fair entails a lower probability of pairing with a 

modest/greedy individuals). The BEFS-style model alters this so that fair 

individuals avoid greedy individuals instead, as this is the only result for the fair 

strategy which would result in a worse payoff. Similarly, greedy individuals in 

DBG-style correlation avoid other greedy individuals, when fair individuals would 

result in just as bad a payout. BEFS-style correlation substitutes for the greedy 

strategy a positive correlation towards modest individuals, which is the only result
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with nonzero payout. This is another attempt to increase the realism of the model 

by altering the correlation scheme so as to maximize individual advantage.

Barrett, Eells, Fitelson, and Sober suggest that this modification to the 

correlation scheme should have qualitatively similar results to those seen in the 

DBG model, resulting in a larger basin of attraction for the modest/greedy 

polymorphism (Barrett, Eells, Fitelson, & Sober, 1999, p. 240). This turns out not 

to be the case, and higher correlation values will actually decrease the size of the 

basin for the polymorphism. Figures 4.8 through 4.10 show the results of the 

BEFS-style model for increasing correlation values. Note that the correlation 

values shown still refer to the vector <eM, eF, eG> as in the DBG-style model, 

except the signs have changed because the correlations for the various strategies 

are now applying to different target strategies.

BEFS-Style Model 

<0.0, -0.2, 0.2> <0.0, -0.5, 0.5> <0.0, -0.75, 0.75>

Figure 4.8 Figure 4.9 Figure 4.10

Skyrms refers to this decrease of the polymorphic basin as the result of the 

“overshoot” problem of negative correlation (Skyrms, 1999, p. 249). Consider a 

population consisting primarily of modest and greedy individuals, in roughly 

equal numbers. As the correlation of greedy individuals towards modest 

individuals becomes very high, more and more greedy individuals will be 

successfully paired with modest individuals. Some modest individuals will still 

be paired with other modests, however, since they are uncorrelated and select a
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pairing strategy based on the current strategy mix. These factors in turn force an 

increasing number of greedy individuals to be paired with themselves for a mutual 

payoff of zero, reducing the proportion of the greedy strategy in subsequent 

generations. The equilibrium thus shifts towards a population where the greedy 

individuals obtain the same average payout received as that obtained by the 

modest individuals (namely 1/3). Skyrms claims this occurs when the population 

contains twice as many greedy individuals as modest for perfect correlation (i.e. 

every modest is paired with a greedy). This is actually slightly oversimplified, 

since the BEFS-style model keeps modest individuals uncorrelated, and so some 

modests will be paired with other modests. The actual equilibrium would have 

average payoffs in the same ratio as the proportions, and contains roughly 36.6% 

modest individuals. Essentially, the equilibrium ‘overshoots’ the ideal proportion 

mix in which most greedy individuals can be successfully paired.

Although we are not using perfect correlation in the simulation shown 

above, there is still this shift in equilibrium due to overshoot, which reveals itself 

as a reddening of the colour of the polymorphic basin in Figure 4.9 and 4.10. The 

shift of the equilibrium to a population with more greedy individuals than modest 

reduces the overall efficiency of the modest/greedy polymorphism even further 

compared to the all-fair equilibrium. This loss of polymorphism efficiency 

combined with the high efficiency of fair individuals causes the reduction in the 

size of the basin of attraction for the polymorphism for the high correlation values. 

In fact, at sufficiently high correlation values, the behaviour of the BEFS-style 

model is nearly the same as in the original Skyrms-style model with correlation. 

Since the BEFS-style correlation was argued to be more realistic, this could be 

construed as providing support for Skyrms’ original argument. However, the 

correlation coefficients required to eliminate the polymorphism are considerably 

higher than before, and such high values might prove unlikely in many real-world 

evolutionary scenarios.
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4.2.4.1 BEFS-Style Model with Cost Calculations

Although the basin of attraction shrinks for the modest/greedy 

polymorphism for the BEFS-style correlation scheme with high correlation values, 

the addition of cost calculations in the DBG-style model had the opposite effect, 

increasing the size of the basin. It will be interesting to see how the cost 

calculations change the results in the BEFS-style model, and to determine whether 

the polymorphic basin reduction in it can be overcome by the DBG-style cost 

scheme’s support for the modest strategy. The results from two different runs 

using a DBG cost factor of 0.3 are shown in Figure 4.11 and 4.12 below, the first 

of which uses the standard correlation values of ±0.2, and the second using higher 

values.

BEFS-Style Model with Revised DBG-Style Cost (Factor 0.3) 

<0.0, -0.2, 0.2> <0.0,-0.75, 0.75>

Figure 4.11 Figure 4.12

The modest/greedy polymorphism basin has effectively disappeared in 

Figure 4.12." The reduction o f the basin o f attraction for the polymorphism as a 

result of overshoot could not be compensated for with the addition of DBG-style 

cost calculations. Also, a close inspection shows that the red-shift due to the 

overshoot equilibrium shift that was seen earlier in Figure 4.9 and 4.10 is absent 

in Figure 4.12. As discussed in the preceding section, a certain proportion of
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greedy individuals were not being paired with modest individuals when 

correlation was high, and there was a resulting shift in the equilibrium such that 

greedy individuals outnumber modest individuals. However, the addition of cost 

calculations to the model has the opposite effect, increasing the ratio of modest 

individuals to greedy. In Figure 4.12, these two opposing tendencies have nearly 

cancelled one another out, resulting once again in an equilibrium with a nearly 

50/50 split. This shift of equilibrium for the modest/greedy polymorphism 

towards the modest comer as a result of DBG-style cost calculations also occurred 

earlier in the DBG-style model, and can be seen when contrasting Figure 4.6 with 

Figure 4.5 (although the colour difference is subtler).

BEFS-Style Model with Per-Attempt Cost (Factor 0.0444)

<0.0, -0.2, 0.2> <0.0, -0.75, 0.75> <0.0, -0.95, 0.95>

Figure 4.13 Figure 4.14 Figure 4.15

Per-attempt cost calculations yield significantly different results from the 

DBG-style cost, however. Figures 4.13 through 4.15 show the results of three 

runs with increasing correlation coefficients. Even with coefficients as high as 

±0.95 the polymorphism continues to have a persistent basin of attraction. 

Although the basin o f attraction does diminish in size as correlation increases, its 

size remains significant for reasonable degrees of correlation. Also, the 

equilibrium shift for the polymorphism has returned using per-attempt cost 

calculations, since costs are incurred both for individuals using the modest 

strategy as well as those using the greedy strategy.
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The primary reason for the persistence of the polymorphic basin with per- 

attempt cost calculations is that search costs increase exponentially with 

decreasing proportions. This makes fair individuals who are paired with other fair 

individuals in the lower regions of the triangle (where fair individuals are scarce), 

pay a significant search cost penalty on average. Greedy individuals that 

successfully pair in this same region have far smaller costs in general. Again, per- 

attempt cost was intended also to model the advantage greedy individuals had in 

terms of searching duration due to their increased potential payoff. In the region 

of the polymorphic basin of attraction, this advantage almost always translates 

into a successful pairing with a modest individual, while fair individuals often fail 

to pair.

4.3 Synopsis of Chapter IV

This chapter has reviewed many different models, and explored many 

different variations and enhancements of Skyrms’ original divide-the-cake model. 

It is not entirely clear at this point whether the model actually retains the 

polymorphism basin of attraction under realistic assumptions or not. Altering the 

correlation scheme to make it more plausible gives different results depending on 

how the scheme is actually altered. However, the most plausible scheme from an 

individual’s view (one that maximizes individual advantage, namely BEFS-style) 

has the basin disappear, but only at very large correlations. Whether such large 

correlations would actually develop in real situations is still very much an open 

question, which I will examine in the next chapter.

The addition of cost calculations poses other difficulties as well. While 

D’Arms, Batterman, and Gomy’s original cost calculation method increased the 

size of the polymorphic basin even further than before under their own correlation 

scheme, it had certain shortcomings which made models using it incompatible 

with earlier models, forcing it to need revision. The revised cost calculations 

performed essentially the same way as the original in the DBG-style model, 

increasing the polymorphism basin size. However, it failed to do so under the
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improved correlation scheme in the BEFS-model, and the polymorphism basin 

once again disappeared.

An alternate method of search cost calculations, per-attempt cost, 

attempted to correct some of the shortcomings of the both the original and revised 

cost methods, such as penalizing strategies even under extremely advantageous 

conditions, failing to scale the cost appropriately under increasingly difficult 

situations, and neglecting the advantages of the greedy strategy in terms of cost 

paying ability. Per-attempt cost gave smaller basins of attraction for the 

polymorphism than the other cost methods, but those basins persisted even in 

cases of extremely high correlations. Per-attempt cost is itself limited in some 

regards, and even more work could be done towards increasing the realism of 

search cost calculations in these models. Still, the results here do indicate that 

search cost factors by themselves are enough to change the behaviour of the model 

significantly, quite separately of the correlation scheme used.
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Chapter V - Correlation
5.1 Re-examining Correlation

Up until now we have been exploring models with increasing complexity 

in the correlation scheme: from the simpler self-correlation of Skyrms’ model, to 

the strategy dependent scheme in the DBG-style model, to the ‘enemy-specific’ 

anti-correlation in the BEFS-style model. Each of these changes was described as 

an increase in the realism of the model by those proposing them. Furthermore, 

each of these increases in realism corresponded to making correlation more 

individually advantageous. For example, the move to strategy-dependent 

correlation for greedy individuals in the DBG-style model was based on the 

observation that individuals using the greedy strategy have good reason not to 

seek out other individuals using the same strategy. It was further refined in the 

BEFS-model by going one step farther and recognizing that individuals using the 

greedy strategy have just as much motivation for avoiding fair individuals as they 

do for avoiding themselves.

Every model examined thus far has one element in common: correlation is 

constant for all individuals using a particular strategy. Correlation in some sense 

has been globally imposed on individuals, although we have been steadily making 

that correlation more advantageous to the individual it is imposed on. All the 

arguments that have been looked at so far concerning correlation are based in 

terms of what type of correlation an individual would prefer, i.e. correlation for or 

against certain other strategies. We have neglected to examine how much 

correlation an individual might prefer. Take Skyrms’ original model, for instance. 

In it, we observe that the polymorphism basin disappears for correlation values of 

0.2 and up. But why should we believe that 0.2 is more realistic than, say, 0.5 or 

0.01 or any other number?

To investigate this kind of question, we need to begin by looking at the 

model in a new way. Rather than seeing correlation values as simply an aspect of 

the model, we instead treat correlation as the problem to be solved. Previous
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models used a given correlation scheme and fixed correlation values and found the 

equilibria and basins of attraction that resulted for every different starting point. 

Now, we re-examine those models and seek to determine what correlations 

develop for different starting points rather than what equilibria develop. To do 

this, we take correlation and tie it to the individual rather than to the model or the 

strategy. Then we let the dynamics of the system find the correlation values based 

on how well the individuals do in pairing. Just as previous models renormalized a 

population based on how successful a given strategy was, we now renormalize 

based on how effective the correlation values are.

5.2 Evolution of Correlation

Updating the models in the upcoming simulations to allow for this type of 

flexible correlation requires several modifications. First, correlation is now no 

longer tied to a given strategy, nor is it a uniform value. Every individual will 

have a correlation coefficient associated with it, each between -1.0 to 1.0 

inclusive. These correlation values represent the correlation or anticorrelation that 

a specific individual has towards individuals following one of the 3 strategy types 

— which one depends on the correlation scheme used in the particular model. For 

example, in a BEFS-style model, the coefficient for a fair individual is interpreted 

as an affinity or repulsion towards greedy individuals, whereas in a DBG-style or 

Skyrms-style model it would be interpreted as affinity or repulsion towards other 

fair individuals.

Another change that needs to be made is in the method of renormalization. 

All previous models based subsequent populations only on the total payoffs of the 

three strategies in the preceding population. However, since individuals now have 

the correlation coefficients associated with them, individuals need to persist from 

one generation to another, and need to pass on their coefficients to new 

individuals in cases where the proportion of a strategy is increasing. This is the 

kind of simulation the code base discussed in Chapter IV was designed to be able 

to readily accommodate.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



All the simulations in this chapter use a different procedure from those 

outlined in section 4.2.1 and subsequent sections. The new procedure is as 

follows:

• Initialize a population with desired mix of modest, fair, and greedy 

individuals.

• Randomly initialize each individual’s correlation constant e with a 

value between -1.0 to 1.0, except for modest individuals in a DBG or 

BEFS-style model, in which case e is initialized to 0.0

• Select one of the individuals from the population at random and 

remove it from the population

• Let Si, S2, and S3 be the proportion of each of the strategies present in 

the resulting population (after removal) such that Si is the proportion 

of individuals with the target strategy of the removed individual (see 

Figure 5.1 below for details), and S2, S3 are the proportions of 

individuals using the other strategies. Si + S2 + S3 = 1.

• Let e be the correlation factor of the removed individual. Let S / =  Si 

+ e(S2+S3) if e > 0, otherwise S /  = (l+e)Si. Let S2' = (1 - S |')(S2 / 

(S2+S3)), and S3' = (1 - S,')(S3 / (S2+S3)).

• Choose a random number r such that r > 0.0 and r < 1.0. If r < Si' 

remove a second individual from the population with the target 

strategy of the individual removed, otherwise if S /  < r < S /+ S 2' select 

a second individual from the population which uses the strategy 

corresponding to S2, otherwise select a second individual from the 

population which uses the strategy corresponding to S3.

• Pair the two individuals removed together in the divide-the-cake game 

and assign payoff accordingly.

• Repeat the previous 5 steps so long as there are two or more 

individuals remaining in the population.

• Let M, F, and G be the total payoffs received by all individuals which
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played modest, fair, and greedy, respectively. Let NM, NF, and NG be 

the total number of modest, fair, and greedy individuals in the original 

population (before any individuals were removed), and N = NM + NF + 

Ng. N ow let NM'= [M / (M+F+G)]-N, Nf'=[F / (M+F+G)l-N, and 

Ng'=[G /(M+F+G)]-N.

• Randomly select NM' individuals that use the modest strategy and pass 

them to the subsequent generation. If there are insufficient modest 

individuals (i.e. NM' > NM) then repeatedly (NM' - NM times) select a 

random modest individual and duplicate it. Repeat this process for the 

fair and greedy individuals.

Target Strategies (M=Modest, F=Fair, G=Greedy)

Model Type

Skyrms DBG BEFS

M

Strategy Used F

G

M N/A N/A 

F F G 

G G M

Figure 5.1

5.2.1 Results with DBG-Style Model

I ran simulations using this new procedure on both DBG and BEFS-style 

models. I omitted Skyrms-style models largely because the polymorphic basin of 

attraction is eliminated with even modest amounts of correlation, while the other 

correlation schemes have basins which persist even in the presence of some 

correlation or anti-correlation. It is the non-Skyrms models for which 

investigating the magnitude of correlation will be most informative. The resulting 

basins for the DBG-style run are shown below in Figure 5.2.
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Results for DBG-Style Model with Random Individual Correlation

Figure 5.2

The polymorphic basin has almost disappeared in Figure 5.2. This is 

largely the result of the correlations not being ‘primed’ sufficiently. If individuals 

following the greedy strategy in the lower regions of the triangle (i.e. populations 

with low initial proportions of fair individuals) do not initially have a fair degree 

of anticorrelation, they pair with one another too often. The resulting drop in 

numbers makes the greedy strategy unlikely in many cases to overtake the fair 

strategy. Ultimately, the greedy strategy is more dependent on initially 

advantageous correlation for its survival than the fair strategy is.

The resulting correlations from the DBG-style run are shown below in 

Figures 5.3 and Figure 5.4. These figures represent a different type of information 

than previous diagrams, and use a different method of representation. The images 

show whether the average correlation was positive (blue) or negative (red) for a 

particular strategy for each starting proportion mix. Since some strategies failed 

to survive in some areas, those regions o f the triangular map are very dark grey, 

indicating an extinction of the strategy in the final state for every run. For 

example, in the extreme upper regions of the triangle for Figure 5.3, 

corresponding to populations which begin with a very high proportion of fair 

individuals, no population had any remaining greedy individuals in existence after
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even a few generations. The simulations were ended after 100 generations, and 

every population had evolved to equilibrium within this time frame.

In a majority of cases the final average correlation was very small, 

indicating that correlation played no significant role. This often occurred because 

convergence to one equilibrium happened too rapidly for much change in 

correlation values. These are represented in the figures as light grey areas, and the 

cutoff values are indicated. For example, a cutoff value of 0.01 indicates that all 

points where the average final correlation was between -0.01 and 0.01 is 

represented as light grey. These cutoff values were determined somewhat 

arbitrarily, and were chosen primarily so as to be the lowest value which produced 

clear and unambiguous results. Also included is Figure 5.2 again, so comparisons 

can be made between the equilibria basins and the regions for which certain 

correlations developed.

Average Final Correlation fo r  DBG-Style Model with 

Random Initial Individual Correlation

Greedy (Cutoff 0.01) Fair (Cutoff 0.04)

Figure 5.2 Figure 5.3 Figure 5.4

The figures indicate that individuals using the fair strategy in most cases 

did not develop a significant amount of correlation, as can be seen in the very 

large light grey expanse in Figure 5.4. In fact, many populations which always 

ended in the all-fair equilibrium actually had a small but negative average 

correlation even in regions quite close to the bottom, which is part of the reason a

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cutoff of 0.04 was selected for that image. This in no way indicates the actual 

development of a negative correlation. Instead, roughly half of all populations 

started out with very small negative average correlation by random chance, and 

many of those proceeded to the all-fair equilibrium quickly enough that this 

average had no time to shift to positive values. This same effect is seen for the 

greedy strategy as well, in the very small blue region at the bottom of Figure 5.3. 

Here, fair individuals are very scarce and often died out too rapidly, so greedy 

individuals never needed to shift to negative correlation values.

The real areas where much movement in correlation can be seen are in the 

extreme lower edge, and also in the lower left comer (with high initial proportions 

of modest individuals). The lower edge saw many cases where fair individuals 

with high positive correlations survived for 100 generations, sometimes 

outcompeting the greedy individuals which greatly outnumbered them initially. 

Most of the populations in which the greedy/modest polymorphism became 

dominant did so largely on the basis of overwhelming the fair minority, rather 

than on the basis of correlation. The exception to this was in the lower left comer, 

where the greedy strategy did consistently develop negative correlation. Even 

where a given population failed to end in the modest/greedy equilibrium, the 

development of negative correlation often allowed the greedy strategy to persist 

for a significant number of generations.

One more final note concerns the very tiny light grey dot very high up in 

Figure 5.3. This represents a single population which managed to have the greedy 

strategy survive right up to the final generation. Actually, only one individual 

remained out of a population of 750, but this still demonstrates that the 

introduction of evolutionary randomness and finite populations can from time to 

time bring forward some rather implausible results due to sheer chance.

The final average correlation for greedy individuals where they actually 

survived 100 generations was typically between +0.03 and -0.03. The most 

extreme correlations developed in populations with high initial proportions of 

modest individuals, and this region held some of the longest struggles between
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greedy individuals with high negative correlation and fair individuals with high 

positive correlation. Negative correlation for greedy individuals sometimes 

ranged as high as -0.31 at generation 100, and fair individuals in this same region 

often had positive correlation above 0.5. One good illustration of this kind of 

prolonged competition was one population (initially 88% modest, 4% fair, 8% 

greedy) where greedy individuals by generation 19 had achieved -0.25 correlation, 

increased their proportion to over half the population, and reduced the fair 

proportion to 2.4%, only to be overtaken when the surviving fair individuals 

surpassed 0.62 correlation and drove the greedy individuals to extinction 60 

generations later (despite greedy ultimately achieving -0.39 average correlation). 

Occasionally, the last few surviving fair or greedy individuals before extinction 

might have extreme correlation values close to ±1.0, but the diagrams above 

ignore these extremes and focus instead only the final averages at generation 100.

These simulations do not prove that certain correlation values are 

necessarily more or less realistic than others, but can be used to provide some kind 

of starting point for discussions. In general, it seems that in DBG-style models 

correlation in many places is nearly irrelevant to the outcome. Most starting 

points in the population space rapidly converge to one or the other of the two 

equilibria, and final populations can have correlation values that are even 

somewhat detrimental. Also, final values are almost always under ±0.6 no matter 

how long the struggle lasts, and can provide a measure of what constitutes 

‘realistic’ correlation rates. For example, if we think of the populations as being 

initially formed by mixing some existing populations in the desired ratios, those 

existing populations might well have had correlation values in this range as a 

result of previous encounters. However, the fact that some few persistent 

individuals in very prolonged struggles can achieve more extreme correlation 

values (for a generation or two) could be used to argue that unlimited correlations 

should be considered. For instance, if populations are instead formed by 

migration of individuals crowded out of nearby regions (due to extreme 

competition) to some new unpopulated region, then very highly correlated
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individuals could be represented.

5.2.2 Results with BEFS-Style Model12

The results of this same kind of simulation (i.e. using random initial 

individual correlation) on a BEFS-style model produced very different results 

from those in the DBG-style model. The resulting basins of attraction are shown 

in Figure 5.5 below.

Results fo r  BEFS-Style Model with Random Individual Correlation

Figure 5.5

There are some very significant differences between this image and the 

same one for the DBG-style model (Figure 5.2), particularly in the size of the 

region dominated by the modest/greedy polymorphism. However, a careful 

observation of the Figure 5.5 will reveal that this area is heavily ‘speckled,’ which 

indicates that even populations with initially very low proportions of fair 

individuals quite often end up in the all-fair equilibrium anyway. This region has 

highly variable behaviour, and almost every starting proportion mix in the lower 

region had at least one population which managed to reach the all-fair equilibrium 

rather than the modest/greedy equilibrium. The correlation results are shown 

below.
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Average Final Correlation for BEFS-Style Model with 

Random Initial Individual Correlation

Fair (Cutoff 0.02) Greedy (Cutoff0.0001) Greedy (Cutoff 0.01)

Figure 5.6 Figure 5.7 Figure 5.8

Recall that in the BEFS-style model, fair individuals use their correlation 

to avoid greedy individuals, so we should expect to see negative correlation (red 

areas) for fair. Similarly, greedy individuals in the BEFS-style model are 

correlated to modest individuals, so we should see positive correlation (blue areas) 

for the greedy strategy. Indeed, fair individuals did develop negative correlation 

over a large area, and even in the area dominated by the modest/greedy 

polymorphism there are remarkably few initial starting positions which did not 

end up in the all-fair equilibrium on at least one run. Individuals following the 

greedy strategy, however, very often ended up negatively correlated rather than 

positively as expected, except in a small band at the edge of the basin, clearly seen 

in Figure 5.7. However, the positive correlations in this blue band were typically 

very low in magnitude, and Figure 5.8 with a higher cutoff value reveals that most 

correlations in this region were less than 0.01 except in an area corresponding to 

high initial proportions of modest individuals. This same region also produced 

some of the most prolonged competitions (slower convergence) and most extreme 

correlations for the DBG-style model as well.

In the upper region of the triangle (light grey region in Figure 5.6, or dark 

grey region in Figure 5.7), fair individuals rapidly overtake individuals using the 

other strategies. This occurs quickly enough that the average correlation remains

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



unchanged, and so the average correlation is very close to 0.0 in this region.

In the lower regions there was much more variability in the possible 

outcomes. Some populations would lead to the all-fair equilibrium, occasionally 

as the result of a single fair individual with extreme anti-correlation. How 

extreme the anticorrelation needed to be in order for this to happen depended very 

greatly on the average greedy correlation. For instance, in one population a single 

fair individual with correlation -0.64 at generation 11 had taken over the entire 

population by generation 76, while in another population a fair individual with 

correlation -0.97 failed to survive more than a couple of generations. The cutoff 

point seems to be roughly -0.40 correlation; lone fair individuals with correlation 

closer to zero than this never managed to take over the entire population, although 

some managed to survive a substantial amount of time. Due to this possibility of 

invasion by even a single fair individual, we have the ‘speckled’ appearance of the 

lower region in Figure 5.5 earlier.

One important aspect of this simulation is that even after reaching what 

would have been an equilibrium in the other models, when either all fair 

individuals are gone or all greedy individuals are gone, there are still pressures to 

change the correlation over time. This explains some of the more puzzling 

behaviour seen above, such as why greedy individuals have negative average 

correlation over such a large portion of the triangle, when the reasoning used in 

section 3.2 suggested positive correlations would be the most individually 

advantageous. In cases where fair individuals became dominant, their correlation 

remain unchanged from that point on, hence the substantial red region in Figure 

5.6 as we would expect. However, when the fair individuals were driven to 

extinction in the population, the equilibrium tended to continue to evolve due to 

pressures from the overshoot problem discussed in section 4.2.4 earlier. While 

greedy individuals might obtain a fairly high positive correlation towards modest 

individuals while competing with fair individuals, the correlation tended to 

approach zero once again after they were gone. This pressure occurred most 

strongly when the average correlation was positive, and less so when the average
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correlation was negative. The result of this is that the final average correlation 

was negative except in the region where competition pushed the greedy 

correlation values sufficiently high that this levelling drift did not have time to 

work. This is the blue region of Figure 5.7. This tendency of the greedy 

correlation to level off is also the reason why the overshoot red-shift in basin 

colour seen in Figure 4.8 through 4.10 is not observed in Figure 5.5: small or 

negative correlations tend to balance the modest to greedy ratio and make it >1.

Note that this correlation drift in the modest/greedy polymorphic basin is 

more or less an artifact of my simulation method. If the simulation for a given 

population had been stopped when fair individuals reached extinction, rather than 

waiting for the correlations to settle down, the entire non-grey region of Figure 5.7 

would have been solid blue. Also, one might expect that since greedy individuals 

with very high correlations are more likely to pair successfully with a modest 

individual, they would be more likely to be represented in the subsequent 

generation, tending to drive the average correlation higher rather than down.

However, the method I used to determine the subsequent generation was 

based on random selection instead of success at pairing. If this happened to 

produce (though sheer chance) a greedy population with lower average 

correlation, this would decrease the greedy to modest ratio of the next generation 

which in turn tended to increase the overall total fitness of the greedy strategy. 

This increase of the total fitness entails the generation following that would have 

more greedy members, created by randomly selecting and cloning individuals, 

which in this case were the individuals with lower average correlation. 

Effectively, this gave lower correlation greedy individuals a reproductive 

advantage of sorts. Drift in the opposite direction also occurred, but primarily 

because highly anti-correlated individuals tend to drop the total payoff of the 

greedy strategy as well. However, as mentioned earlier, this was a slower process 

in general.

If I had used a slightly more realistic method of constructing a subsequent 

generation, this would have resulted in a tendency for greedy correlation to climb
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close to 1.0 or perfect correlation. This would result in a higher greedy to modest 

ratio than in the uncorrelated case. Interestingly, such a population is much less 

resistant to invasion by fair individuals, particularly if they have a very negative 

correlation. This might lend support to Skyrms’ claim that given enough 

perturbation of the system, we can expect the vast majority of the time to be spent 

in the all-fair state.

In the BEFS-style model, there seems to be little reason to limit the choice 

of correlation coefficient to some particular range. Populations of fair individuals 

in particular often had extremely high negative correlations of -0.80 and beyond. 

Although the levelling drift tended to even out the greedy correlations, at the point 

where fair individuals became extinct the correlation was often above 0.80. 

Moreover, it can be convincingly argued that a better proportion growth model 

(i.e. one based on individual fitness) would tend to drive greedy correlation values 

even higher. My opinion is that when looking at BEFS-style models, extremely 

high correlation coefficients close to +1.0 cannot be ruled implausible.
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Chapter VI - Multi-level (Group) Selection
6.1 Group Selection and Altruism

If every model we had considered in Chapter IV had only the all-fair 

equilibrium retaining a substantial basin of attraction, we might consider the 

question concerning the viability of Skyrms’ model closed. Increasing the realism 

of the model by changing the correlation scheme as in the DBG and BEFS-style 

models would not discount the model if subsequent improvements still yielded a 

global all-fair equilibrium, and we would still have a generalist evolutionary 

argument that could bypass the Universality and Possibility problems.

Unfortunately this did not quite happen. The investigation in Chapter V 

revealed that almost any correlation values could conceivably evolve in a 

population, and even extremely high correlation values cannot be easily excluded 

as impossible. However, even the most extreme correlation values do not suffice 

to remove the basin of attraction for the modest/greedy polymorphism in some 

models, particularly in variations of the BEFS-style model (with or without cost 

calculations). Moving the correlation coefficients upwards does not by itself 

resolve the issue of the viability of the model.

There are other evolutionary paradigms that we can look into though, 

particularly group selection models. Essentially, group selection looks at 

evolution as a composite of two separate kinds of selection: within-group and 

between-group. A strategy or trait that might have lower fitness under within- 

group selection can nonetheless thrive under some circumstances if that strategy 

or trait improves the fitness of the group as a whole for between-group selection.

The notion of group selection historically has received some bad press, and 

spent a considerable amount of time as a largely rejected theory. Despite being 

initially proposed by Darwin13, group selection is still considered by some authors 

as being an unlikely or unnecessary theory even today. The book Unto Others by 

Elliott Sober and David Sloan Wilson (Sober, & Wilson, 1998) gives an excellent 

historical discussion of the history of the controversy, and provides argument that
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the group selection paradigm is viable and in fact does occur in nature.

There are other alternatives to the group selection view. It is entirely 

possible to look at biological evolution, for instance, as acting strictly at the level 

of the gene and avoid any reference to groups at all (Sober, & Wilson, 1994, p. 

536). Brian Skyrms in particular looks at group selection as being simply a 

different way to talk about correlation (Skyrms, 2002, p. 699). Sober and Wilson 

agree that viewing group selection in these terms is valid, but argue that focusing 

on correlation alone can lead to erroneous conclusions, particularly when looking 

at evolution in situations where interaction between neighbours is governed by a 

fixed spatial structure (Sober, & Wilson, 2002, pp. 720-1). In most cases, whether 

to view evolution in terms of correlation, genes, or group selection is largely a 

matter of semantics, and which is preferable depends largely on what kind of 

activity we want to draw attention to (Maynard Smith, 1998, p. 639-40).

For the models that we have been using so far, thinking in terms of group 

selection or in terms of correlation is more or less equivalent. I have used the 

term ‘correlation scheme’ throughout this thesis up to this point, differentiating 

the different models in terms of how the correlation functioned. However, I could 

just as easily have discussed them as group selection models. For instance, in the 

models of Chapter V the three strategies would each correspond to a different 

group, with between-group selection being implemented based on the total fitness 

(i.e. the renormalization step), and within-group selection being based on an 

individual’s correlation coefficient (i.e. how likely a given individual is to 

continue on to subsequent generations). Even though the models of Chapter IV 

did not have such an obvious within-group component, they could still be thought 

of as group selection models depending how such models are defined (Sober, & 

Wilson, 1994, p. 536).

Thinking of the models in terms of group selection or in terms of 

correlation are in many ways equivalent, but I am going to begin discussing the 

models that appear in the next chapter largely in terms of group selection. Mostly 

this is to increase clarity, since the upcoming models are going to look at
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evolutionary scenarios in which multiple populations coexist, each containing a 

mix of the three strategies. Rather than discussing hierarchies of correlation 

schemes and doing complex calculations to find the average correlations of a 

strategy (which will typically vary from population to population anyway), I will 

be referring to each population as a group. This makes explicit the tension 

between the fair individuals and the modest/greedy individuals within a given 

population (or group), and also allows the competitive performance of one 

population versus the others to be discussed separately.

Group selection is typically used to explain the evolution of altruism. 

Altruistic behaviour can be thought of as behaviour that is disadvantageous to the 

individual, but advantageous to the group. A common example is giving a 

warning cry when spotting a predator: giving the call draws attention to the 

individual making it (making it more likely to be attacked), but increases the 

survival chances of the group as a whole by allowing them to avoid the predator. 

Groups that have a high proportion of individuals giving warning cries will do 

better overall than other groups, and this allows the continuation of the altruistic 

trait despite its being maladaptive for the individual.

There are several similarities between altruism and the fair strategy in 

Skyrms’ divide-the-cake model. For example, groups containing a large 

proportion of fair individuals will usually outperform groups with none (i.e. all

fair groups have a higher total fitness). Also, being fair can sometimes be 

disadvantageous to the individual, particularly when greatly outnumbered. The 

biggest difference, of course, is that this disadvantage depends greatly on the 

current proportions of strategies within the group, and the fair strategy can just as 

easily become advantageous as the proportions change. Whether fairness is a type 

of altruistic behaviour is at best very questionable and, like many social traits, 

would depend on the level of selection one looks at (Hamilton, 1975, p. 135). 

Since fairness is not disadvantageous to the individual in the majority of cases, it 

probably does not qualify as altruistic under most definitions, and I will not 

attempt to classify it as such. Nonetheless, the same kinds of group selection
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models that are commonly used when investigating the evolution of altruism 

might still be worth looking at in the context of fair versus modest/greedy in 

Skyrms’ models.

6.2 Wright’s Trickle Model

Wright’s trickle model was developed by Sewall Wright in 1945, and is 

one of the simplest group selection models. In it, different populations are 

isolated from one another, except for a very small amount of dispersers or 

migrators who ‘trickle’ from one population to another in each generation. This 

model is also sometimes called Wright’s island model. Figure 6.1 shows a 

graphical representation of this model with five populations or islands.

The acting principle in Wright’s trickle model is genetic drift. Genetic 

drift is a change in the frequency of a strategy or trait due to random sampling 

effects between successive generations. That is, traits can vary randomly in 

frequency due to statistical variation alone. For example, genetic drift will occur 

when two strategies or traits in a population are equally fit and well represented,

Wright’s Trickle Model

Figure 6.1
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and cause their proportions to vary randomly until eventually one or the other will 

become dominant while the other becomes extinct. Even though altruism is more 

likely to diminish in frequency due to natural selection, genetic drift can 

nevertheless cause it to become dominant despite its disadvantage, particularly in 

smaller populations. Ideally in Wright’s model, altruism should become dominant 

in a few populations via genetic drift, and then these altruistic populations will 

out-compete the other groups by lasting longer and producing more dispersers.

Wright’s model ends up doing a fairly poor job in general of evolving 

altruism (Sober, & Wilson, 1998, p. 61). Altruistic populations are often poorly 

resistant to invasion initially, and incoming non-altruistic individuals cause most 

populations to drift away from altruism. One solution is to reduce the trickle of 

migrators, but this in turn reduces the ability of altruistic populations to out- 

compete others. Another solution involves having most of the migrators found 

new populations rather than simply enter existing populations. This can be made 

to work, but only if being altruistic provides an advantage either by increasing the 

number of migrators, or by making new colonies more resistant to extinction 

(Hamilton, 1975, pp. 141-2).

Consider the situation in which the populations or islands in Wright’s 

model are replaced with populations from Skyrms’ model. All-fair populations in 

Skyrms’ model (or DBG or BEFS-style models) are significantly better adapted to 

survival within Wright’s trickle model than the altruistic populations previously 

described are. Most populations in Skyrms’ model are either highly resistant to 

invasion initially, or become so within a small number of generations. Also, 

Skyrms’ model already has proportion growth based on total fitness, and this is 

readily adapted to increasing the numbers of migrators. Although the altruistic 

populations in Wright’s trickle model become fixed through genetic drift, this is 

not required by the populations of Skyrms’ model since they are quickly carried to 

one equilibrium or the other by the characteristics of the model (i.e. 

renormalization). That is, populations in Skyrms’ model frequently fall into the 

all-fair equilibrium, and do so via natural selection alone. Since genetic drift is
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not a requirement for fixation when applying the trickle scenario to Skyrms’ 

model, we can retain the generalist nature of Skyrms’ model and still apply it 

equally well to either biological evolution or social/cultural evolution. These 

characteristics make the trickle model a promising candidate for extending 

Skyrms’ model.

6.3 Haystack Model

Another group selection model often used in discussions of altruism is 

John Maynard Smith’s haystack model, so named because it describes a 

whimsical species of mouse that lives its entire life in haystacks (Maynard Smith, 

1964). This model progresses in two discrete periods: a reproductive phase, and a 

dispersal phase. The reproductive phase proceeds for some number of 

generations, during which individuals reproduce entirely within their own 

population. The reproductive phase is followed by the dispersal phase, in which 

all the individuals of every haystack are pooled into a global population, and then 

disbanded randomly into new groups. This cycle of alternating reproductive and 

dispersal phases is repeated several times.

Like the trickle model, some populations would become altruistic through 

genetic drift (but this can be dropped in Skyrms’ case as it was for the trickle 

model). These altruistic populations would out-compete the others by producing 

more dispersers as a result of having a larger population size. A graphical 

representation of this model is shown below in Figure 6.2, with altruistic 

populations having a different pattern from non-altruistic populations.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Maynard Smith’s Haystack Model

<3Global Population

C
* »  it
Global Population

Figure 6.2

Maynard Smith’s original haystack model has each population founded by 

a single individual. This would not be compatible with Skyrms’ model which 

relies on some initial mix of strategy types and cannot be generalized to single 

individuals. In On the Founder Effect and the Evolution o f Altruistic Traits 

(Cohen, & Eschel, 1976), several extensions of the haystack model are considered 

which are much closer to the kind of framework needed for Skyrms’ model. In 

particular, I will be extrapolating from the ‘case I ’ framework in which groups are 

founded by some fixed number of individuals, and every individual has an equal 

chance of being included in each founding group independently of the types of 

other founding individuals.14

The haystack model has better success than the trickle model in allowing 

the evolution of altruism. Although altruistic individuals typically decline in 

terms of proportion within any given population during the reproductive phase, 

the advantage they confer to the group allows their numbers to grow in absolute
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terms. This in turn allows altruistic individuals to increase in proportion when 

pooled together during the dispersal phase.

The fair individuals within populations in Skyrms’ model do better than 

altruistic individuals in the basic haystack model. In some cases, fair individuals 

do decline in proportion during successive generations (eventually becoming 

extinct), but in many cases they instead increase in proportion and quickly become 

dominant driving the other strategies to extinction. If populations in the all-fair 

equilibrium can turn their higher efficiency into a reproductive advantage, the 

increased proportion of fairs ought eventually to create initial populations (i.e. 

after a dispersal phase) well-situated to developing the all-fair equilibrium. These 

in turn will then outperform other neighbouring populations which develop the 

greedy/modest equilibrium instead.
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Chapter VII - Coding Project Part II
7.1 Description of the Group Selection Coding Project

In order to examine how the group selection models of the preceding 

chapter will affect the behaviour of the models, I have extended the code to 

incorporate multiple populations evolving concurrently. Most of the discussion 

for the various correlation schemes in Chapter IV remains unchanged in these 

newer models. Any given population running a specific correlation scheme (such 

as DBG-style) still uses the same steps in the same order as outlined previously, 

and any additional interactions between separate populations occur in addition to 

those original steps rather than replacing them. Upcoming sections will describe 

any additional steps or processing used.

Since we now have multiple populations, and those populations are 

interacting with one another, this made the simulations run much slower than 

before. As a result, I had to cut down the number of separate runs which were 

averaged together for any given starting point. This did not significantly reduce 

the accuracy, since the number of runs averaged together in Chapter IV was 

considerably higher than what was actually required.

One other consideration in my implementation concerns how the colour 

diagrams are produced. Since there are multiple populations running concurrently 

now, I needed to determine which of those populations will be represented. I 

solved this by selecting a single population from each run, treating it as the 

‘target’ population. The result images were produced by averaging the resulting 

final state for the target population over several different runs. This was simpler 

than other methods, such as presenting separate diagrams for every population. 

Averaging all the populations together rather than selecting a target population 

would also not have worked — particularly for the trickle model for reasons 

explained in the next section. Otherwise, the diagrams are produced in the same 

manner and using the same conventions as before.

The group selection models also abandon the fixed population size
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assumption of the original models. The trickle migration step and haystack 

dispersal phase require populations to temporarily change size while individuals 

move to or from a population, so any given population is allowed to either grow or 

shrink as necessary. As stated previously, this is accomplished as an additional 

step to the original models rather than replacing the normal renormalization step, 

and any population size increase or decrease is done only after renormalization. 

Since population size decreases are deliberate in this model, any populations 

which have total fitness of zero do not get renormalized to a single greedy 

individual in these group selection scenarios. Should a population have total 

fitness of zero or somehow lose all remaining individuals, it proceeds as an empty 

population for the subsequent iterations. Such a population can still accept 

incoming migrators in the trickle model (and proceed normally from there) or 

function as a normal destination haystack during the dispersal phase, but 

otherwise does nothing.

7.2 Trickle Model

My implementation of the trickle model essentially consists of multiple 

populations each using one of the correlation schemes described earlier (i.e. DBG, 

BEFS, etc.). A generation proceeds as normal, with each separate population 

doing the usual steps in the same order as before. After the final renormalization 

step, however, a new migration step is added in which some individuals in each 

population are moved to a separate migration pool. Each population then 

sequentially takes a random individual from the migration pool until none remain. 

As an analogy, consider individuals as playing cards in separate hands. A subset 

of each hand is randomly selected and removed to a new pile, which is shuffled 

and dealt back into the original hands. This technically allows an individual to 

end up back in the population it started from, so in my implementation Figure 6.1 

would have additional arrows looping from each population back to itself.

Formally, the model takes the normal steps and applies them to each 

population individually. Then, the following step is appended to those normally

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



performed in each iteration:

• For every population Pi .. PN, randomly select some subset of 

individuals and remove them to population M. Each population 

Pi .. PN in turn takes one randomly selected individual from M. 

Repeat until no individuals in M remain.

One difficulty in implementing the trickle model was choosing how the 

populations should be initialized. Previously, any given point in the triangle 

corresponded to a single population with a specific initial proportion for the 

different strategies. However, in the trickle model initializing all the populations 

to the exactly same strategy proportions would have had no real effect. Since all 

populations are the same, randomly moving a small number from one identical 

population to another would have effectively resulted in no change at all. In the 

vast majority of cases, we would be left with a set of populations performing more 

or less the same activity as if they were completely isolated.

One of the underlying ideas in Wright’s model was that all of the 

populations should have the capacity to become either altruistic or nonaltruistic. 

Altruism might be antecedently unlikely, in which case only a minority of the 

populations would fixate to altruism. Alternately, if altruism were very highly 

likely, a majority of the populations would fixate to altruism. In either case, 

however, the populations would nonetheless have representatives of both 

possibilities. When we transpose this idea to the all-fair vs. modest/greedy 

situation, it becomes necessary to initialize the populations separately from one 

another. Otherwise, almost every trial will end up having every population rapidly 

proceeding to exactly the same equilibrium and becoming identical. To avoid 

this, I initialize only the target population to have the specified strategy mix. The 

other populations are randomly and independently initialized, with every possible 

strategy mix being equally likely.

The results for the completely uncorrelated version of Skyrms’ model are 

shown below in figures 7.1 through 7.3 for different migration rates. The number
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of migrating individuals from each population that are pooled and redistributed 

are shown as a proportion of the total number of individuals. Since the number of 

individuals in a population remains constant from the end of one iteration to 

another in my implementation, this could just as easily have been described as 5, 

10, and 15 migrators rather than 0.01, 0.02, and 0.03 migration rate, respectively.

Trickle Model using Skyrms' Populations (Uncorrelated)

Rate 0.01 Rate 0.02 Rate 0.03

Figure 7.1 Figure 7.2 Figure 7.3

The results of increasing the trickle rate (migration rate) are quite 

dramatic. The 1% rate has a noticeable impact already, by allowing some 

populations to evolve to the all-fair equilibrium despite being well within the 

normal boundaries of the basin for the modest/greedy polymorphism. Increasing 

the rate to 2% allows populations in all areas of the triangle to potentially become 

all-fair, and the populations which evolve to the polymorphism have become a 

minority, even in those regions which are quite near the bottom of the triangle. By 

the time the rate hits 3%, the modest/greedy polymorphism is almost completely 

gone. Although not shown in the above images, a migration rate of 5% resulted in 

only about 32 modest/greedy populations out of a total of 13,260 runs, and the 

polymorphism was entirely eliminated from every run by 6%.

These results demonstrate that even a reasonably small amount of 

migration among populations can have a significant impact. There is a feedback 

mechanism involved in this process, becoming particularly powerful once a
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certain threshold has been passed. Increasing the migration rate increases the 

number of incoming fair individuals, which in turn increases the number of 

populations moving towards the all-fair equilibrium, which increases the 

proportion of fair individuals migrating out.

The number of populations (or islands) also has an impact, particularly for 

determining the migration rate at which the modest/greedy polymorphism 

disappears. The above images were created using 12 populations in the migration 

structure. Increasing the number of populations beyond this had only a minor 

impact on the results. For example, with 50 populations and a 5% rate only 3 

populations out of 13,260 reached the polymorphic equilibrium (rather than the 32 

seen with 12 populations). Reducing the number of populations had the reverse 

effect, and one set of simulations with only 5 populations trading migrators 

needed a 10% migration rate to completely eliminate the polymorphism.15 In 

effect, reducing the number of populations increases the probability that a majority 

of them might be predominately modest/greedy, thus increasing the number of 

modest/greedy individuals migrating and encouraging the polymorphic result 

rather than the all-fair.

How convincing these results are will depend greatly on one’s intuitions 

regarding how plausible the trickle model is, what constitutes a reasonable number 

of populations sharing migrators, and what a reasonable migration rate is. For 

example, 10% would not seem to qualify as a ‘trickle’ in most cases, although 3% 

might be acceptable. It is difficult to make judgments regarding these 

assumptions without discussing some particular evolutionary type (such as 

biological or cultural evolution). However, moving into specific domains like this 

would sacrifice much of the generality that makes Skyrms’ argument useful.

The images above at the very least demonstrate that the correlation 

inherent in the trickle model c a n  potentially be used as a substitute for the other 

correlation schemes looked at previously in Skyrms’ model. One difficulty we 

looked at earlier was how precisely the 0.2 correlation came about. The 

discussion in Chapter V showed how it might come about if correlation were an
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individual-specific characteristic, but the trickle model provides the first step in 

exploring an alternate method: correlation introduced by group structure. Again, 

how convincing this alternate method of producing correlation is depends on 

one’s intuitions concerning the plausibility of group or multi-level selection in 

actual populations, but there is evidence suggesting that it is a factor in many 

situations (Sober, & Wilson, 1998, p. 54).

Another interesting result of the trickle model investigation is that it 

provides a means of having complete 100% domination of the triangle by the all

fair equilibrium. Every other model previously explored had populations that 

initially contained no fair individuals, and these populations never had any 

possibility of evolving to the all-fair equilibrium. Skyrms mentions the possibility 

that a population that falls into the polymorphic trap might eventually bounce out 

of it if there is sufficient random variation in the evolutionary process (Skyrms, 

1996, p. 21). The trickle model explored in this section provides a means of 

providing precisely the kind of ‘bump’ required to do this, but without requiring 

the need to introduce individuals possessing a strategy that does not depend on the 

previous generation. This might be more acceptable than other methods which 

would require many individuals to simultaneously ‘mutate’ to a different strategy, 

or to have many new individuals suddenly appearing from nowhere.

7.3 Haystack Model

As previously described, my implementation of the haystack model is 

close to the Cohen-Eschel Case I variant. As in the trickle model, it consists of 

several populations running concurrently. Rather than a trickle of migrants, 

however, the haystack model completely dismantles all populations and 

redistributes the individuals into new ones periodically (called the dispersal 

phase). During the intervening generations, the populations are completely 

isolated from one another.

Just as with the trickle model, there exists a difficulty deciding how to 

initialize the populations appropriately. The solution I used in the case of the
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trickle model was initializing a target population with the desired strategy ratio, 

and initializing the others to random ratios. While this method would still work in 

the haystack model, the results would have been rather uninteresting. Since the 

majority of populations (haystacks) in a given suitably large set would move 

toward the all-fair equilibrium during the reproductive phase, the subsequent 

dispersal phase would result in all haystacks having a majority of fair individuals. 

The end result would have been every haystack becoming all-fair shortly after the 

first post-reproductive dispersal phase. Although it could be argued that this 

would be a viable method of initialization, I felt the results would have been too 

trivial to really add much to the discussion. One of the ideas inherent in the 

haystack model was that despite being at a disadvantage, altruistic behaviour 

might still do well globally provided that it could give some advantage to the 

group. Moving this to the all-fair versus greedy/modest framework, I decided a 

reasonable compromise was to initialize every haystack to be precisely the same. 

For the regions of the triangle in which we are most interested, this puts fair 

individuals at a distinct disadvantage.

Since all the populations are initialized precisely the same way, we might 

expect that all of them would evolve in pretty much the same way. If so, the 

dispersal phase would result in a set of haystacks more or less identical to the 

original (pre-dispersal) haystacks, and we would notice little difference in the final 

result images. However, the move to the haystack model requires that fair 

individuals provide some sort of advantage to the haystack they reside in. I have 

incorporated this by allowing the population to grow during the reproductive 

phase. The amount of population growth per iteration is determined by a linear 

function of the average fitness of all individuals in the haystack. Populations with 

a higher proportion of fair individuals have a higher average fitness in general 

than those which are predominantly modest/greedy, so they will grow faster and 

provide a greater number of individuals during the dispersal phase.

In formal terms, my implementation of the haystack model uses the normal 

steps for each population during the reproductive phase. For instance, if each
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population is a Skyrms-style population, the steps listed in section 4.2.1 would be 

performed on each population separately during the reproductive phase. However, 

after the standard renormalization step, the following step is performed for each 

population on every iteration to provide population growth. As before, M, F, and 

G are the total payoffs received by all individuals which played modest, fair, and 

greedy, respectively, and N is the total size of the population.

• Given a fixed population growth factor 8 > 0, randomly select one 

individual from the population and duplicate it (i.e. clone it). 

Repeat this selection and duplicating process until the population 

size is N + 8-(M+F+G)/N.

The number 8 will limit how fast a population can grow. For instance, 

since the maximum possible average fitness is 0.5, a value of 8 = 2.0 would allow 

the population (at most) to double each iteration during the reproductive phase, 

while a value of 0.0 keeps the population from growing. Since population is 

permitted to grow after each iteration during the reproductive phase, population 

growth is exponential for 8 higher than 0. Although populations containing 

significant proportions of modest or greedy individuals do grow in size, they 

almost always have an average fitness less than a population with a large 

proportion of fair individuals, so they do not grow as fast. The difference is 

generally not too pronounced however until a significant number of iterations 

have passed. For example, with 8 = 0.5 a population in the all-fair equilibrium 

grows about 7% faster per iteration than one in the modest/greedy polymorphism. 

Eventually, this exponential population growth could become problematic, but 

population sizes are ultimately limited by the dispersal phase which initializes 

haystacks to a fixed size.

The dispersal phase is handled as a separate step which is performed only 

periodically. Similar to the way migration was implemented in the trickle model, 

new haystacks are created by putting everyone in a global temporary population, 

and then randomly selecting and distributing some of them to haystacks in a
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manner analogous to dealing out cards. Formally, the step is as follows, with No 

being a constant representing the initial size of each population after dispersal.

• After the correct number of reproductive iterations, perform the 

following: For every population Pi .. PN, remove all individuals to 

a temporary population M. Then each population Pi .. PN in turn 

takes one randomly selected individual from M. Repeat until each 

population contains exactly No individuals. Delete any remaining 

individuals in M.

Haystack Model using Skyrms ’ Populations (Uncorrelated) 

Dispersal 10, 8 = 0.5 Dispersal 15, 8 = 0.5 Dispersal 25, 8 = 0.4

Figure 7.4 Figure 7.5 Figure 7.6

The result images above show the results I obtained for differing numbers 

of iterations in the reproductive phase. Since all populations (haystacks) were 

identically initialized and were running identical steps, it was reasonable to 

average all the final populations together to produce the images above, rather than 

selecting a single target population as was done for the trickle model. This helped 

reduce the number of separate runs which needed to be averaged together, which 

was helpful since the simulations were very slow. Each image is the average of 

10 separate runs, each run using 10 haystacks. Also, the population growth factor 

had to be reduced to increase efficiency for the final image. All simulations were 

run for only 4 complete reproductive phases, so the number of total generations is 

increasing along with the length of time between dispersal phases, which is listed

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for each image.

In general, there is a noticeable tendency for the all-fair equilibrium to do 

better as the length of time between dispersal phases increases. This seems 

somewhat counter-intuitive since the regions of the triangle in which the all-fair 

equilibrium is encroaching are areas in which the modest/greedy polymorphism is 

dominant during the reproductive phase, thus reducing the proportion of fair 

individuals. The longer the populations are isolated, the smaller the proportion of 

fair individuals that we should expect to survive. In fact, if the reproductive phase 

is too long, the areas in Figure 7.6 which have switched from the polymorphism to 

the all-fair equilibrium are areas in which the fair individuals should usually have 

become extinct after 25 generations, which would in turn contribute to the 

extinction of fair individuals in other populations after dispersal.

Global extinction of fair individuals was indeed typical for areas in which 

the fair strategy was a significant minority (proportion of less than 0.11 or so). 

Below this threshold, most populations quickly become entirely composed of 

modest and greedy individuals. It seems plausible that if one population should 

happen to proceed to the all fair equilibrium (and random pairing would allow this 

to happen once in a while by sheer chance), then the better reproduction rate 

would allow it to quickly grow larger than the modest/greedy populations and 

produce populations with more fair individuals after the next dispersal. This was 

not the most significant factor in basin reduction for the above images, however, 

since the length of reproductive phase used was too short for growth to make a 

very large difference. For example, a typical population initialized to 12% fair 

and 44% modest/greedy that proceeded to the all-fair equilibrium ended up only 

about 14% larger than the average modest/greedy population did after 25 

generations. This is due to the comparatively slow increase in the proportion of 

fair individuals when greatly outnumbered, resulting in a similar growth rate to 

other populations for much of the reproductive phase. Even the 25 generations 

used in Figure 7.6 was not sufficient for many populations moving towards the 

all-fair equilibrium to finish locally displacing the modest and greedy individuals,
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let alone outcompete them globally. However, the reproductive difference did 

make up some of the added gain for the all-fair basin between Figures 7.5 and 7.6 

above.

It turns out the most significant factor in expanding the all-fair basin in the 

above images is the dispersal phase combined with the fact that the odds of the 

all-fair equilibrium occurring are higher than the initial fair proportion for that 

area of the triangle. For example, consider a group of haystacks initialized to 12% 

fair (I ignore the effects of population growth for now). So long as the odds of 

such a population becoming all-fair are higher than 12% we should see an increase 

in the proportion of fair individuals after the first dispersal phase, since over 12% 

of haystacks would be completely fair. Actually, a rough count shows the 

likelihood of a population so initialized becoming all-fair is closer to 15% or so. 

The longer the reproductive phase is, the more likely that populations will reach 

the all-fair equilibrium and increase in proportion globally after the dispersal 

phase. The choice of how many haystacks are used will also change how 

important this factor is. A very large number of haystacks will show an increase 

in the proportion of fairs in these circumstances most of the time, while a smaller 

number might not. I used 10 haystacks when generating Figures 7.4 through 7.6, 

which turned out to be close to the worst-case scenario for the populations shown 

above, and allowing the fair individuals to increase in proportion only about 46% 

of the time.

Although not very significant in the images above, population growth 

could still potentially make a significant impact. The longer the population is 

isolated, the more pronounced the size differences would become due to the 

exponential growth difference once the populations had settled into equilibrium. 

The longer the reproductive phase, the greater the contribution of any population 

that did manage to reach the all-fair equilibrium. This would be even more 

pronounced if there were a large number of haystacks contributing to the dispersal 

phase. If there were over 1000 haystacks, the odds of at least one reaching the all

fair equilibrium are very good for the vast majority of the triangle. If the
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reproductive phases were long enough (or the growth factor high enough), that 

single all-fair haystack would eventually overwhelm all others upon the next 

dispersal. Simulating such a scenario was simply beyond the capacities of the 

computers available to me, however, and extremely prolonged exponential growth 

is unlikely to occur in a majority of real-world populations.

Unlike the trickle model, the haystack model does not seem well-suited to 

entirely eliminating the modest/greedy polymorphism. However, it still manages 

to reduce the size of the polymorphism in populations without requiring any sort 

of correlation other than that produced by the design of the model itself. The 

model demonstrates that the effects of random pairing in a finite population can be 

exploited to increase the domain of the all-fair equilibrium without requiring any 

alteration in the method used to pair one individual with another. Also, the trickle 

model required other populations to be different from the target proportion mix in 

order to have a significant impact on the way a population evolved. The haystack 

model does not have this liability, and can increase the extent of the all-fair basin 

of attraction even when all populations are initially identical.

7.3 Synopsis of Chapter VII

The results of this chapter are somewhat ambiguous. While the trickle 

model did succeed in restoring the global all-fair equilibrium, it did so only by 

adding new populations with different initial starting proportions. This result can 

be argued to be impractical as a method of establishing the all-fair equilibrium 

because the global population proportions (which includes all islands 

simultaneously) is effectively already within the all-fair basin of attraction. That 

is, if we look at all populations collectively, the initial mix of individuals would 

naturally proceed to the all-fair equilibrium anyway if only it operated as a single 

population. A better solution might be to take the required starting proportions 

and split them into randomly selected subpopulations, so that all islands (taken 

collectively) would have the desired starting proportion.

Even with the limitations of my trickle model implementation, it
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nevertheless manages to demonstrate that even a modest influx of fair individuals 

can be sufficient to overwhelm the modest/greedy polymorphism equilibrium. 

Since a 3% migration rate includes 3% migration out of the population as well as 

in, the net change in fair proportion averages about 0.05 per iteration after 

equilibriums have been established. This is considerably less than the 0.22 fair 

proportion normally required initially to guarantee a high likelihood of the all-fair 

equilibrium in an uncorrelated Skyrms’ model. Such a sequence of multiple 

smaller ‘bumps’ (randomizations) of the system might be more likely than one 

very massive one. Also, as mentioned earlier, the trickle model provides these 

randomizations of the evolutionary process without requiring the need to 

introduce mutation or entirely new individuals.

There is still a lot of possible exploration that could be done with trickle- 

style migration models, and what I present here barely scratches the surface. For 

example, we might argue that random selection is a poor method of selecting 

migrators, and look at models where migrators are selected based on fitness, with 

more fit individuals moving more readily. Alternately, models in which strategies 

with lower fitness migrate more often might be interesting (e.g. strategies are 

‘crowded out’ as suitable niches become scarce). We might also investigate 

migration in a way analogous to the way Chapter V investigated correlation, 

making predisposition towards migration a varying individual-specific 

characteristic and then seeing how it evolves over time.

The haystack model did not entirely remove the modest/greedy 

polymorphism basin either. The model did manage to reduce it in extent, 

however, and did so without requiring use of differing haystack proportions -  

every haystack was initialized identically. If I had initialized the haystacks to 

different proportions (by using an initial dispersal phase, for instance), the result 

would probably have been an even smaller polymorphism basin. Most 

significantly, the haystack model demonstrated how correlation-like effects might 

be created using structure alone, rather than requiring correlation to be specified as 

a fixed population parameter without justification.
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The main method by which my haystack implementation increased the size 

of the all-fair polymorphism was by allowing fair individuals to convert 

evolutionary randomness into proportion growth. A fairly substantial area of the 

initial state-space triangle has some significant probability of either equilibrium 

appearing for a given population. In the case of fair individuals this probability is 

often higher than the proportion of fairs involved, and the haystack model 

provides a means of exploiting this. The increase in the all-fair basin would have 

occurred even if the population growth factor was entirely removed from the 

model. Figures 7.7 and 7.8 below provide some idea of the maximum change in 

basin size this effect can produce.

Region for which 

Prob(all-fair) > Proportion(initial fair) 

Uncorrelated Skyrms ’ Model (Coloured Blue)

Figure 7.7 Figure 7.8

Figure 7.8 represents the same set of data as Figure 7.7, except instead of 

being coloured according to the final average proportion of individuals, it has 

been assigned colours according to whether the proportion of populations ending 

in the all-fair equilibrium is greater than the initial proportion of fair individuals. 

The colours for Figure 7.8 were chosen to be similar to the previous diagram in
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order to make comparisons more straightforward. It is interesting to note that 

even though the reduction in size is not very large, the amount by which the 

proportion of final all-fair populations exceeds the starting fair proportion is at 

most 0.107 or so, and typically much less. Any changes within a population 

which make the all-fair equilibrium globally even slightly more likely to occur can 

thus have a significant impact when combined with a haystack model. For 

example, Figure 7.9 was produced in the same way as Figure 7.8, except instead 

of using the uncorrelated Skyrms’ model, it shows the approximate region in the 

case where Skyrms-style correlation is 0.04. This is a very small correlation rate, 

but when combined with the haystack model it could easily result in the all-fair 

equilibrium becoming globally dominant again.

Region in which Prob(all-fair) > Proportion(initial fair) 

for Skyrms ’ Model (Correlation 0.04)

Figure 7.9

As with the trickle model, there remains a lot of potential variations to 

explore in applying haystack models to Skyrms’ model. Variations closer to 

Cohen-Eschel Case II might be looked at, in which haystacks are initialized by 

having individuals migrate to random haystacks independently. This would result 

in non-uniform starting haystack proportions and would likely increase the
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domain of the all-fair equilibrium basin even further. Population size increases 

were not a large factor in the simulations I performed, but variations using higher 

population growth rates should also increase the all-fair basin under many 

circumstances.
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Chapter VIII - Conclusions and Findings
8.1 Synopsis and Conclusions

I began this thesis hoping to discover whether Skyrms’ model could meet 

the challenges offered by several authors, and attempted to find out whether or not 

the all-fair basin of attraction could regain its global domination (or a close 

approximation). 1 proceeded to look at the adjustments to the model proposed by 

D’Arms, Batterman, and Gomy, which were intended to make the correlation 

scheme of the model more realistic. I fine-tuned their model somewhat in turn to 

increase the realism, culminating in a switch to per-attempt search costs. 

Although this switch did not eliminate the polymorphic basin, it did reduce its 

extent to a size comparable to that seen in the uncorrelated Skyrms’ model.

I also examined the further extensions to the model proposed by Barrett, 

Eells, Fitelson, and Sober, which adjusted the correlation scheme further in an 

attempt to increase realism. Although the BEFS-style correlation scheme actually 

allowed the all-fair basin to include almost the entire state-space, it did so only for 

very large correlation values (around ±0.75 or so). Also, although including 

DBG-style search cost calculations to the BEFS-style model made little 

difference, using per-attempt search costs made the greedy/modest polymorphism 

even more robust.

The next step was to re-examine correlation. The modifications examined 

previously adjusted the correlation scheme in an attempt to make it as 

advantageous to the individual as possible. It seemed like a reasonable step to 

make correlation a completely individual-based characteristic, rather than strategy- 

based. Chapter V examined the results of this move, in part to determine 

reasonable upper limits on correlation values in the earlier models (DBG-style, 

etc.). An interesting result was that very few populations actually proceeded to 

the modest/greedy polymorphism when DBG-style correlation was an individual- 

based characteristic and initially random. The BEFS-style model also showed a 

tendency for the all-fair equilibrium to appear even when initially greatly
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outnumbered, although the polymorphic equilibrium was by no means dominated.

Chapter V also acted as a transition of sorts into the group selection 

models discussed in Chapters VI and VII, since the individual-based correlation 

model can be interpreted as a group selection model. The simple group-selection 

models explored used multiple populations, each without any internal correlation. 

The idea was to see if the questions concerning correlation ~  how high it needs to 

be, what scheme is most realistic, etc. — could be bypassed using population 

structures as a substitute. The results were somewhat ambiguous. The trickle 

model did succeed in making any particular starting population proceed to the all

fair equilibrium, but only if the other populations had their starting strategy 

proportions randomly initialized. This move makes the global population (i.e. all 

individuals in all populations collectively) be in proportions which would 

naturally proceed to the all-fair equilibrium anyway if the populations were 

merged. This greatly lessens the usefulness of the trickle model, but it does show 

that a growing influx of fair individuals can make any starting population proceed 

to the all-fair state.

The haystack model also had some interesting but mixed results. The 

earlier switch away from the use of replicator dynamics allowed a given 

population to proceed to different final equilibria on different runs. The haystack 

model allowed differences in the probabilities of different final states to be 

exploited and increase the range of starting states which proceed to the all-fair 

equilibrium. If the probability of the all-fair equilibrium occurring is raised even 

slightly (say, by allowing a small amount of intra-population correlation, or via 

migration), then the haystack model might easily permit the all-fair equilibrium to 

become the end result for practically all initial proportion mixes.

Although my haystack implementation reduced the role of population 

growth often used in haystack models, using a population size growth model 

based on total population fitness nevertheless improved the performance of the 

all-fair equilibrium slightly. This improvement could probably be enhanced even 

further if the population growth rate were increased, or if the reproduction phase
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were made slightly longer.

Does Skyrms’ model demonstrate what it did originally, before the 

corrections of D’Arms and other authors? The best answer I can provide is: 

maybe. The wide and varied range of behaviour this deceptively simple model 

exhibits is staggering. Every modification 1 examined in this thesis brings out a 

new aspect of the model that was not initially apparent. The all-fair equilibrium 

loses its dominance under DBG-style modifications, regains it under BEFS at high 

correlation rates, only to lose it once again when cost calculations are introduced. 

Making correlation individual-based instead of strategy-based brings back the 

global dominance, but only for random initialization. Moving to multiple 

uncorrelated populations in a structure also brings back dominance, but only if 

migration of fair individuals passes some critical threshold. Haystack models can 

bring the all-fair dominance back, but only if reproduction phases allow 

significant growth differential, or alternately if fair individuals are given a slight 

boost within populations.

Every method which brings back the near global dominance of the all-fair 

equilibrium comes with some drawbacks, limitations, or innate assumptions 

which can be used to argue against that method. How convincing any of the 

methods I’ve examined are will depend greatly on one’s intuitions concerning the 

plausibility of group selection, high correlation, or individual-based correlation. I 

certainly did not find a panacea, and while some might be convinced that Skyrms’ 

model works as intended, others will disagree, or at least be hesitant in accepting 

the model. I personally fall into the latter category. As I changed the model to 

reflect new assumptions or paradigms, new behaviour seemed to spring from 

those changes which surprised me. I believe any model which accurately reflects 

human behaviour is going to involve a significant amount of complexity — many 

such changes piled atop one another — and so I must remain agnostic concerning 

the chances of the all-fair equilibrium in any such model.
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Footnotes
1 On occasion, figures may be duplicated further on to make comparisons between images simpler. 

In such cases, a more descriptive title is often used on the duplicate in order to highlight the 

differing characteristic; however, this list will only indicate the primary title.

2 Technically, it is the parental investment for the two genders which is equalized rather than the 

genders themselves, but since the investment for both genders is often quite similar, a gender ratio 

close to 50/50 will be observed.

3 Actually, Fisher’s argument on its own doesn’t explain the absence o f  polymorphisms (e.g. half 

the population producing 9 females per male, while the other half produces 9 males per female, 

which would still result in a 50/50 split). However, the argument can easily be fine-tuned to 

explain this absence (Skyrms, 1996, p. 17).

4 1 will often simply refer to ‘the triangle’ rather than using the more formal term ‘state space.’ I 

will also generally refer to ‘individuals using the fair strategy’ as just ‘fair individuals,’ or even 

simply as ‘fairs.’ I tend to be somewhat loose in my terminology at times, and a statement such as 

‘fair individuals would prefer to avoid greedies’ simply means that fair individuals get a higher 

payoff playing against a strategy other than greedy. This is intended simply as a way o f  expressing 

things in a less wordy manner, and I do not intend to imply that individuals o f  any type necessarily 

have motivations, preferences, or desires. Skyrms’ model can be applied to non-sentient creatures 

quite readily.

5 For values in between, the probabilities are adjusted as follows. Let e be the correlation 

constant, and suppose player 1 is using strategy S . If the original probability o f  player 2 using 

strategy S is p(S), then the new probability (using the correlation factor) would be p(S)+e p(not-S). 

Similarly, the probability o f  player 2 using the other strategies is reduced by a factor o f  e.

6 Since the model does not include mutation, there is no mechanism for introducing new types into 

the population. This means that the states which do not initially contain fair players 

(corresponding to the bottom line o f  the triangle) will still evolve to the modest/greedy 

polymorphism rather than the all-fair equilibrium.

7 1 will be referring to the second (correlated) model simply as Skyrms’ model. The earlier 

uncorrelated model is just a special case o f  the second.
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8 Actually, like most computer simulations, it is strictly speaking deterministic. However, with a 

good pseudo-random number generator, results statistically similar to those involving true 

randomness can be obtained, and I will discuss them as i f  true randomness were involved.

9 See Appendix 1 for details on population size, granularity, number o f  runs averaged, and other 

details for each image.

10 A lso, some o f  this fuzziness in the separatrix is a result o f  using ‘relaxed’ stopping conditions to 

improve computational performance. See Appendix 1 for details on relaxed stopping conditions.

11 The slight amount o f  non-blue at the bottom edge is due to extinction o f  all fair individuals, as 

discussed in section 4.2.1.

12 Since the BEFS-style model with per-attempt cost had one o f  the most persistent basins o f  

attraction for the modest/greedy polymorphism, I also did a simulation using random initial 

individual correlation for this type o f  model as well (cost factor 0.0444). However, analysis 

proved rather complex, and it detracted somewhat from the unity o f  the chapter, so I have elected 

to omit it from the thesis. However, since some rather unusual behaviour is seen in this model that 

is present nowhere else (such as the astonishing range over which the modest/greedy 

polymorphism is possible, or the development o f  all-modest populations), I include the result 

diagrams here without analysis for those curious.

BEFS-Style with Per-Attempt Cost (Factor 0.0444) and Random Initial Individual Correlation

Equilibria Fair Correlation (Cutoff 0.01) Greedy Correlation (C utoff 0.01)

13 That Darwin was a proponent o f  group selection is contested by some authors (Ruse, 1989, ch2).
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14 Actually, since some o f  the models considered here require persistent individuals, I will be using 

random sampling without replacement, but this will approximate Cohen-Eschel Case I quite closely 

if  Xfinal_population_sizes » in itia lh aystack size .

15 Although just a single instance remained (out o f  1326) at a 9% migration rate, so we might 

consider the polymorphism essentially eliminated at that point.
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Appendix 1 - Details of Figures
This chart lists most of the relevant details for the evolutionary simulations that 

produced the figures in this thesis. See next page for column descriptions.

Fig- Pop

Size

Grn Rep Max

Gen

R CS Correlation Misc.

4.1 900 30 1 100 N s 0

4.2 900 30 10 100 N s 0

4.3 750 10 50 100 Y s 0

4.4 750 10 50 100 Y s 0.2

4.5 750 10 50 100 Y D <0, 0.2, -0.2>

4.6 750 10 50 100 Y D <0, 0.2, -0.2> DBG cost 0.3

4.7 750 10 50 100 Y D <0, 0.2, -0.2> per-A cost 0.0444

4.8 750 10 50 100 Y B <0, -0.2, 0.2>

4.9 750 10 50 100 Y B <0, -0.5, 0.5>

4.10 750 10 50 100 Y B <0, -0.75, 0.75>

4.11 750 10 50 100 Y B <0, -0.2, 0.2> DBG cost 0.3

4.12 750 10 50 100 Y B <0, -0.75, 0.75> DBG cost 0.3

4.13 750 10 50 100 Y B <0, -0.2, 0.2> per-A cost 0.0444

4.14 750 10 50 100 Y B <0, -0.75, 0.75> per-A cost 0.0444

4.15 750 10 50 100 Y B <0, -0.95, 0.95> per-A cost 0.0444

5.2 750 10 50 100 Y D Individual

5.3 750 10 50 100 Y D Individual reused data for 5.2

5.4 750 10 50 100 Y D Individual reused data for 5.2

5.5 750 10 50 100 Y B Individual

5.6 750 10 50 100 Y B Individual reused data for 5.5

5.7 750 10 50 100 Y B Individual reused data for 5.5

5.8 750 10 50 100 Y B Individual reused data for 5.5

7.1 500 10 10 50 N S 0 trickle 0.01

7.2 500 10 10 50 N S 0 trickle 0.02

7.3 500 10 10 50 N s 0 trickle 0.03

7.4 50 1 10 50 N s 0 haystack 10,0.5

7.5 50 1 10 60 N s 0 haystack 15, 0.5

7.6 50 1 10 100 N s 0 haystack 25, 0.4

7.7 180 2 250 30 N s 0

7.8 180 2 250 30 N s 0 reused data for 7.7

7.9 180 2 250 30 N s 0.04
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Column

Name

Description

Pop Size The number o f  individuals in the population. In the case o f  haystack models, 

this indicates the initial population size.

Gm The granularity o f  the image. Indicates the number o f  individuals differing 

between subsequent runs. Thus, (Pop Size/G m )+1 yields the number o f  points 

calculated along each triangle side.

Rep The number o f separate runs averaged together for each point.

Max Gen The maximum number o f  generations allowed to pass in a given run.

R Indicated whether relaxed stopping conditions were used to improve 

calculation efficiency. When used, any given run is terminated before the 

maximum generation is reached if  the mean individual fitness changes less than 

(1/6) / (Pop size) between iterations. This effectively terminates the ran when 

the strategy proportions have changed by no more than a single individual.

CS The correlation scheme used. S = Skyrms-style, D=DBG-style, B=BEFS-style

Correlation The amount o f  internal correlation used. A value o f  ‘Individual’ indicates that 

individual-based correlation was used, randomly initialized between -1.0 to 1.0.

Misc Indicates:

(a) the type o f  cost calculations used, if any, and the cost coefficient

(b) whether data from an earlier run was reused to create a subsequent figure

(c) i f  a trickle model was used, the migration rate used. All trickle runs used 12 

populations in a migration structure.

(d) if  a haystack model was used, the number o f  iterations between dispersal 

phases is shown, and the population delta. All haystack runs used 10 

populations (haystacks) in a dispersal structure.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


