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Abstract

The equations of equilibrium for large three-dimensional inextensible de-
formations of rods are solved using an iterative shooting technique which
essentially converts the original two-point boundary value problem into a
sequen - of initial value problems which converge to the desired solution.
This method can be used efficiently and accurately on a personal computer.
mainly due to the fact that the load and deformations can be applied in their
entirety so that incremental methods are avoided.

The technique is applied to a variety of example problems in which linear
clastic materials are considered. Where previous analvtical. numerical or
experimental results are available. the present technique is shown to compare
favorably. The shooting technique employed is found to be well suited to
finding multiple equilibrium solutions which are investigated for a cantilever
heam under dead tip and uniform distributed loads.

This initial value approach is combined with a method for considering
the rod using a number of segments. The use of segments in this fashion

is found to be useful for modeling complex rod structures as well as having

the force systems produced by a variety of orthodontic retraction appliances.

Both planar and non-planar appliances and activations are considered.

nonlinear elastic materials. Constitutive relationships are employed which

qualitatively model the behavior of shape memory alloys in planar situa-



able is demonstrated using the assumed constitutive hehavior. This assumed
shape memory behavior is then emploved to investigate and compare the
behavior of planar orthodontic retraction appliances to those made of Hnear
elastic materials, The shape memory allov appliances are shown to deliver

relatively constant force svstems which is a desirable characteristic in this

application.
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Chapter 1

Introduction

There is a large variety of structures which can be modelled as rods. Appli-
cations as diverse as

e a pipeline being installed in an offshore oil and gas facility.

e retraction appliances used to reposition teeth during orthodontic treat-
ment,

¢ helical springs to provide controlled stiffness variations for automobiles.
e highly deformable space structures,

e variable stiffness fishing poles.

can be adequately represented by a one dimensional (rod) continuum model.
In all of these instances it is important to be able to determine the forces
and moments developed when structures are deformed or. alternatively. to
determine the deformations which occur due to application of the loads. The
pipeline must be properly supported during installation or it may be dam-
aged. Orthodontic retraction appliances must deliver appropriate systems
of forces and moments within certain ranges to produce the desired type of
tooth movement without causing tissue damage or producing unwanted side
eflects. The force-deflection relationships of helical springs, such as those
used in automotive suspension systems, are often of critical importance in
many applications.

The types of structures listed above (and many others), though they can
take on a wide variety of complex initial shapes, all share a common geo-
metric similarity. They are all slender bodies having lengths much greater
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than typical cross sectional dimensions. Such structures are termed rods.
In addition, the structures listed above all undergo large deformations. A
large deformation is one in which the initial geometry is changed signifi-
cantly during the loading. As a result, the problem of determining the forces
and/or deflections which arise is geometrically nonlinear. The fact that these
rod problems are geometrically nonlinear greatly complicates the solution as
compared to problems in which the geometry changes are infinitesimal.

Apart from the geometric nonlinearity due to the inherently large defor-
mations these structures can undergo. nonlinearity may he introduced into
the problem through the materials used. Most engineering structures are
constructed of linearly elastic materials, or more precisely materials used
in their linearly elastic ranges'. However increasing use is being made of
materials which do not exhibit this type of linear elastic behavior. Such
structures could also have a material nonlincarity which adds complexity to
the problem.

The geometric nonlinearity which is present in these problems makes
them very difficult to solve analytically. This is further complicated by the
variety of complex initial shapes these structures may assume as well as
thé wide '\rariétv (:-f haundary Cnnditiam to '\\hifh thesv structures may ]u-
apprr:mmate scs]ut,;cms tg the gmf&rnmg ,:quat,mna@ T lus tllEh!h is conce rm-«l
with the development and application of a particular numerical procedure to
obtain solutions for rod-like structures undergoing large (nonlinear) three-
dimensional deformations. The rods under consideration will have general
three-dimensional initial shapes. Due to the nonlinearity inherent in the
problem, the existence of multiple equilibrium solutions is a possibility and
will be investigated. Further. different materials will be considered. including,
some exhibiting nonlinear elastic hehavior.

1.1 Literature Review
Investigations concerning the dEﬂE‘CtiDI']% ﬂf rods have herm amuml fm‘ over

The problem continues to be invest;galed to tlu.s dﬂ}’ for seveml reasons. C)m:

This is still a reasonable assumption despite the fact that the rods under consideration
may undergo large deformations. Many rod-like structures can undergo large deformations
while still experiencing only small strains everywhere in the material.
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of the major reasons for studying solutions is that, as suggested above. they
have numerous practical applications in problems as diverse as the laying
of offshore pipelines (Faulkner and Stredulinsky 1976) and the development

ferent reason is that the formulation of rod problems is an example of a
one-dimensional? continuum theory which can be used to investigate non-
linear phenomena including questions of stability (Steigmann and Faulkner
1993) and multiplicity of solutions Navaee and Elling (1991. 1992). As a re-
sultl. a great deal of work has been done dealing with theories of rods as well
as with methods for obtaining solutions. Thus a very extensive literature
has accumulated on the subject and it would be impossible to recount all of
it. It is therefore not the purpose here to present a complete review of the
pertinent literature but rather to give an indication of what is available and
to refer to previous reviews of the subject.

1.1.1 Rod Theories

A theory which governs the behaviour of rods under loading is required in
order to predict the forces which are developed as rod-like structures (such as
those listed above) are deformed. Such a theory of rods is defined by Antman
(1995) as
...the characterization of the motion of slender solid bodies by
a finite number of equations in which there is but one independent
spatial variable,

tions of rod theories which characterize how the theories are developed. The
first, termed intrinsic or Cosserat theories. are developed by assuming the
rod to be a spatial curve and attributing this curve with sufficient kinemati-
cal structure to account for the desired modes of deformation (which in the
literature for rods are usually a combination of bending, torsion, extension
and shear). In the other main type of theory, referred to as induced theories,
the equations governing three-dimensional elasticity are applied to rod-like
bodies and specialized to account for the fact that the cross sectional dimen-
sions are much less than the length (see Green et al. 1974a, for example),

ZAll qiuaﬁities are functions of only one independent variable, in this case the arclength.
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Both types of theory exist in varving degrees of complexity regarding the
tvpes of deformations considered.

Intrinsic rod theories are usually begun by considering the centerline of
the rod to be a space curve comprised of material points to each of which
is assigned a triad of orthogonal unit vectors (Green and Laws 1966, Cohen
1966. Kafadar 1972. Green et al. 1974b. and Antman 1971 are just several
examples). Such a curve is often referred to as a direeted space curve. These
vectors are usually directed along the tangent to the centerline and along
the principal directions in the cross section. This triad is used to account
for the kinematics of the deformation. If extension is considered. the vector
directed along the tangent to the rod is allowed to extend and shorten. If
shear is considered, the triad does not remain orthogonal but rather the
angles between the. vectors can change. Bending and torsion produce only
rigid body transformations of this triad which allows for a much simpler
analysis as only two of the unit vectors are strictly required. The third can
be expressed as a cross product of the other two (Green and Laws 1973).

The works of Kirchhoff (1859) and Clebsch (1862) (sce Love 1941) are
examples of induced theories. Dill (1992) has revisited these works and re-
examines their ideas using more modern developments in three-dimensional
elasticity theory. In this work Dill performs an order of magnitude analysis
based on characteristic leugth parameters of the rod (length, cross section) as
well as on typical lengths characteristic of the curvature and twist in the rod®,
The theory of rods deals only with the cases in which certain ratios of these
parameters are much less than unity. Based on this analysis. Dill coneludes
that in a first order rod theory “the dominant modes of deformation must
be a global bending and twisting with small axial extension™, Dill goes on
to say that the small extension in the rod can be considered to be zero in
the momentum balance equations with sufficient. accuracy. He also points
out that. while the shears due to torsion of the cross section appear in the
equations of motion, shears due to transverse loading are second order effects
and therefore do not appear. As a result, bending and twisting are therefore
the only modes of deformation considered in this thesis. Note that this is not
to say that extensional or shear deformations do not play an important role
in some types of problems, but should rather he seen as a limitation on the

3Dill used a generalized radius of curvature, defined as 1/& where & is the eurvature or
rate of change of angle per unit length, as the characteristic length. It was generalized in
the sense that it included the twist along the rod as a ‘curvature’.
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types of problems to which a first order rod theory should be applied. There
are still, however, a wide variety of practical problems in which bending and
torsion are the dominant modes of deformation. This ongoing interest is
evidenced by the amount of current work devoted to the subject (see Banan
et al. 1991: Koenig and Bolle 1993: Raboud et al. 1996a. 1996b: Raboud
et al. 1996 and Pai and Palazotto 1996 for some recent examples).

1.1.2 Analytical Solutions

The equations of equilibrium governing the three-dimensional deformations
of long slender rods are well known. In his treatise. Love (1944) presents a
derivation of these equations based on that of Kirchhofl. Landau and Lifshitz
(1970) derive the equations of equilibrium of the rod based on an analysis of
an arbitrary infinitesimal section of the rod. Steigmann and Faulkner (1993)
obtained the equilibrium equations using variational calculus to minimize the
potential energy of the deformed rod.

However. due to the inherent geometric nonlinearity of the equilibrium
cquations. analytical solutions to problems are rarely obtainable. A notable
exception is the case when an initially straight rod is bent and twisted into a
helix through the action of axial end moments and forces. Both Love (1944)
and Landau and Lifshitz (1970) derive analytical solutions for this prob-
lem for inextensible rods with circular cross sections (i.e. isotropic rods).
Faulkner and Steigmann (1993) consider the inextensible case for cross sec-
tions characterized by two distinct principal directions (i.e. orthotropic rods).
Whitman and DeSilva (1974) obtain solutions for rods with circular cross sec-
tions which take extensibility into account.

Apart from these examples. very few analytical solutions for truly three
dimensional problems exist. Mahadevan and Keller (1993). in considering the
geometries of Mdbius strips, use an analytical solution for an isotropic rod
as the starting point for a homotopy continuation procedure (Keller 1968).
However, as this solution is essentially a planar deformation with twist. the
resulting geometries are not truly three-dimensional.

When the discussion is limited to planar problems, the situation simplifies
considerably. The number of equilibrium equations is reduced to one as
there is bending about only one axis and there is no twisting of the cross
section. These problems are typically referred to as elastica problems. In
this case a number of analytical solutions have been obtained (see Mitchell
1959: Frisch-Fay 1962: Antman 1968 for example) which often express the
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solutions in terms of elliptic integrals. However. even for the planar case
these solutions are generally limited to rods with uniform cross sections.
simple initial geometries and subjected to particular loading and boundary
conditions.

1.1.3 Numerical Results

To consider more general problems (including complex initiai geometrics.
non-uniform cross sections as well as complex loads and boundary condi-
tions) numerical techniques must be used. There is an extensive literature
for numerical solutions of planar problems (Schmidt and DaDeppo 1971:
Gorski 1976). In the literature a wide range of loading conditions have heen
studied. including consideration given to beams deflecting under their own
weight. the so called heavy elastica (Wang 1936). Beams with non-uniform
cross sections (Faulkner and Stredulinsky 1976: Lee et al. 1993) and a variety
of boundary conditions (Chucheepsakul et al. 1995. for example) have also
been studied.

There has likewise been much work done to develop numerical solutions
for three-dimensional problems. Again. a wide variety of loads. boundary
conditions and initial geometries (including pretwisted rods (Rosen 1991))
have been considered.

difference procedures (Greif et al. 1982: Surana 1983: Surana and Sorem
1989). Due to the large displacements which can occur, nonlinear formu-
lations must be used. This includes the conceptl of applying the loads in
increments which greatly increases computational effort. This is reguired
because. in a nonlinear problem. the stiffuess matrix is a function of the
deformation and must be updated as the solution progresses. If the possibil-
ity of multiple solutions is of interest, the finite element formulation is not
well suited and the loading path must be modified as done by Fried (1981)
for example. More recent finite element approaches (Jiang and Chernuka
1993; Pai and Palazotto 1996 are just a couple of examples) use so called
co-rotational formulations which attempt to reduce the number of load in-
crements required by decomposing the element deformations into rigid hody
motions and motions which produce strain. The rigid body motions then
account for the large displacements and rotations which occur.

Other approaches have also been considered. For example. Navace and
Elling (1991, 1992) have employed two different approaches to study multiple



solutions of planar cantilever beams. One approach utilizes elliptic integrals
and uses a procedure similar to the one developed by Frisch-Fay (1962). The
other approach employs a predictor-corrector scheme with an initial value

formulation.

Another approach that has been applied to determine static deformations
is the method of dynamic relaration (Alwar et al. 1974; Belytschko and
Hughes 1983; Ramesh and Krishnamoorthy 1993). In this approach, the
static equations governing the deformations are augmented by dynamical
terms including the effects of inertia and damping. The steady state solution
to the dvnamics problem is thus the static solution to the original problem.
Since only the static solution is of interest. the inertia and damping terms
can be chosen to improve the convergence of the dynamical problem to the
static equilibrium solution as discussed by Papadrakakis (1981).

An alternative approach for planar problems. dubbed the segmental shoot-
ing technique, was developed for applications including the laving of offshore
pipelines (Faulkner and Stredulinsky 1976) and the prediction of force sys-
tems produced by orthodontic retraction appliances (Lipsett et al. 1990:
Faulkner et al. 1991). This technique avoids the direct solution of the non-
linear boundary value problem by considering the rod as being comprised of
a large number of segments. each of which experiences only small displace-
ments so that a linear solution can be applied over each segment. The total
nonlinear solution is obtained by assembling the segments together. This
initial value problems which converge to the required boundary conditions
through the use of a shooting procedure. This formulation was found to be
well suited to investigate the development of multiple solutions (Faulkner
et al. 1993: Lipsett et al. 1993). This segmental approach has been recently
modified to take fully three-dimensional deformations into account (Raboud
et al. 1996b). This modified procedure was used to investigate the de-
velopment of multiple three-dimensional equilibrium solutions for cantilever
beams under dead tip and distributed loads (Raboud et al. 1996a). As well,
three-dimensional deformations of orthodontic appliances, with complex ini-
tial shapes, were investigated (Raboud et al. 1996).

1.1.4 Nonlinear Elastic Materials

Constitutive relationships, which relate the kinematics of the deformation
to the forces and moments generated in the material. play an important
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role in applying the theory. Most commonly in the literature. the materials
considered are assumed to be liaearly elastic with the moments produced
being related to the differences between initial and final curvatures along
the rod* (Love 1944). Similarly. the force components developed in the rod
may also be determined through cons:itutive relationships although this isn™
always the case. For example, when extensibility is considered. the tension
in the rod is usually expressed as F; = EAs where Fj is the axial tension
which acts along the tangent to the rod’s centerline, ¢ is the axial strain.
is the Young’s modulus of the material and A is the area of the cross seetion.

and F3 through constitutive relationships (see Antman 1995 for example).
When shears (or extensibility) are not considered. I, and Fy (or F}) are not
given by any constitutive relationship but are rather determined hy a balance
of momentum as in the usual linear theory of elasticity.

However, linear elastic materials are obviously not the only type available.
Nonlinear elastic materials. because of their unique properties. are seeing
increasing use in a number of rod-like structures. A number ol authors have
considered rod theories with general nonlinear elastic and plastic behaviors.

Shape Memory Alloys (SMA) are an example of such a material which
exhibits nonlinear elastic behavior due to changes in both temperature and
strain. A typical alloy which demonstrates such behavior is NiTi (nickel tita-
nium). Shape memory alloys get their name from their observed hehavior of,
after being deformed at a low temperature, returning to a specific ‘remem-
is termed the shapc memory effect. Even at constant temperatures, shape
memory alloys can also exhibit nonlinear elastic behaviors such as hystere-
sis and pseudoelasticity® which results in large nonlinear clastic ranges over

The shape memory eflect is manifested through a phase change in inter-
nal crystalline structure between the martensite and austenile phases due
to changes in temperature (Duering et al. 1990). At low temperatures, the
martensitic phase of the material is stable. In this phase the material is
easily deformed due to the fact that several energetically equivalent config-

4Note that curvatures here is meant to include both the usual bending curvatures as
well as the rate of twist along the rod.

5The specific shape must be ‘learned’ by the material through a series of heat treatments
(Duering et al. 1990). '

6 Also referred to as super-elasticily in the literature.
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urations of the crystal structure (called variants). which are rotations and
mirroi images of one another. exist randomly distributed throughout the
material (Shaw and Kyriakides 1995). During deformation the essentially
randomly distributed variants are reoriented to one variant in particular to
accommodate the deformation. Thus the application of stress causes one of
the variants to be favored over the others. At higher temperatures, austenite
is the stable phase. The austenitic phase has no variants. due to its highly
symmetric crystal lattice (Shaw and Kyriakides 1995) so that upon heating
the deformed martensite lattice ‘springs back’ to the austenitic phase and
the deformation is recovered.

Psucdoelastic behavior (at constant temperature) results from deforma-
tions which occur at temperatures such that the material is initiallv in the
austenite phase. As loads are applied, the martensite phase can become
stable. even at the higher temperatures. due to the strain in the material.
This is termed stress induced martensite. As in the shape memory effect.
one variant of the induced martensite phase predominates during the defor-
mation to accommodate the large shape changes. As the loads are removed.
the martensite becomes unstable. A transition back to austenite occurs and
the original shape is recovered.

Shape memory alloys have been employed in a number of applications in-
cluding use for eyeglass frames. medical devices, fire detection equipment and
military applications (Duering et al. 1990). They are also used for ‘smart’
structures due to their ability to change shape in a controlled manner through
temperature changes. One application for which these materials seem par-
ticularly suited is in the area of orthodontics where Miura et al. (1986) and
Kapila and Sachdeva (1989) have evaluated this material and compared it
to others commonly used in orthodontics. This material’s particular me-
chanical properties (large elastic springback. low stiffness and the ability to
provide relatively constant forces over large ranges) are characteristics which
are desirable in orthodontic applications.

1.2 Thesis Outline

Chapter 2 describes some of the background theory concerning inextensible
rods. The kinematical basis used to characterize the rod deformations is
described and the equations of equilibrium are presented. Constitutive as-
sumptions are discussed for linear elastic materials. As well, some general
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results are presented which can be used as a check of the numerical procedure
to be subsequently developed.

Chapter 3 presents the development of a numerical procedare in which
the two point boundary value rod problem is solved as a sequence of initial
value problems which converge to the required boundary conditions. The
nonlinear equilibrium equations for rods made of linearly elastic materials
are applied to a segment of the rod and direct numerical integration is used
to obtain a solution from the initial values. A method for assembling the
various segments to maintain geometric and force compatibility is described.
Numerical results are then presented for a variety of problems. These are
compared with previous analytical. numerical or experimental results to as-
sess the effectiveness of the numerical technique.

In Chapter 4 the numerical procedure is used to investigate the emer-
gence of multiple three-dimensional equilibrium solutions for a cantilever
beam loaded by dead tip and uniform distributed loads.  The results for
multiple planar solutions as well as for out-of-planc buckling are compared
to previous results. The appearance and development of several classes of
multiple solutions for fully three-dimensional situations is described. The de-
pendence of this behavior on the aspect ratio of the cross section is discussed.

The numerical technique is then used to evaluate the three-dimensional
force systems produced by orthodontic retraction appliances in Chapter 5.
A variety of segments are required to model these appliances since they have
complex initial shapes. Results for several planar appliance designs are pre-
sented. In an effort to better control tooth respouse. out-of-plane modifica-
tions to these planar designs are introduced. The force systems delivered by
the modified designs are compared to those from the original appliances.

Chapter 6 considers a modified application of the numerical technique
to include materials with nonlinear elastic behavior. Constitutive models
for materials which exhibit the shape memory ¢ffcet are considered. Results
are presented for a variety of planar problems which simulate the qualitative
behavior of these materials. Planar orthodontic appliances are revisited and
the behavior of several designs using shape memory alloys arc investigated.

Chapter 7 summarizes the results of the work, discussing the advantages
and limitations of the numerical technique developed in this work. Some of
the areas which warrant future consideration are also discussed.



Chapter 2
Background Theory

In this chapter, the kinematics. equilibrium equations and constitutive as-
sumptions used to characterize the rods considered are described. While the
her of authors (Love 1944: Landau and Lifshitz 1970), a reformulation of
the theory in a variational setting has been recently presented in detail by
Steigmann and Faulkner (1993) and their work is closely followed here. After
a description of the kinematical basis used. their results will be referred to
as required.

For the purposes of this thesis, a rod is defined to be a one-dimensional
continuum (a directed spatial curve') which deforms only through bending
and twisting as it is assumed to be inextensible. As well, following the
Bernoulli-Euler hypotheses, under any deformation initially plane cross sec-
tions remain plane. experience no strain and are evervwhere normal to the
space curve tangent. The rods considered here are assumed to have the shear
center everywhere coincident with the centroid of the cross section. Both
rods which are transversely isotropic? and transversely orthotropic® will be

considered.

'Directed in the sense that each point on the curve has associated with it a particular
orientation. By orientation it is meant not only the tangent direction, but a particular
rotation about thai tangent as well.

“Transversely isotropic in the sense that the properties of the cross section are inde-
pendent of orientation (i.e. any axis in the cross section is a principal axis). In all cases
material isotropy is assumed.

3i.e. distinct principal directions exist in the cross section.

11
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2.1 Kinematics

A configuration of the rod is characterized by a set of position functions and
an orthonormal basis {r(s), ei(s)} which define the location and orientation
of any point on the rod in terms of the arclength parameter st s € [0, L]. The
vector E;( ) 15 a unit vector which is E\’Fl‘\’\\'ht‘!l‘ in the tangent direction of
increasing arclength. The vectors e(s) and e3(s) are units vectors embedded
in the material which define the orientation of the cross section. In the case of
transversely orthotropic rods, e;(s) and ez(s) are in the principal directions
of the cross section. For rods which are transver sely isotropic. ea(s) and eg(s)
are any orthogonal unit vectors which span the cross section since all such
pairs will be in the principal directions. This orthonormal basis {e;(s)} will
be referred to as the matcrial basis. In the undeformed state. {r(s). ej(s)}
take on the values {&(s), E;(s )} which serves as a reference configuration
from which to measure all kinematical quantities. The material hasis {ei(=)}
differs from the Frenet basis (Hay 1953) in that the latter depends only on the
shape of the centerline of the rod and does not take the orientation of the eross
sections into account. The material hasis has the advantage of being uniquely
determined, once the material basis in the reference configuration {E <)} has
been spec:ﬁed even in the situation where the rod remains straight in whicl
case the Frenet basis is undefined.

The rate of change of the material basis {e;(s)} with respect to arclength
is determined by the vector k(s) (K(s) = Ki(s)ej(s)). 1e.

t . . sy 0%
e =K Xeg (2.1)

where the / notation indicates differentiation with respect to arclength, The
Ky component is the twist per unit length along the rod while s, and #: are
the components of curvature in the respective principal directions. Iy the
rod’s undeformed configuration, which may be initially curved and twisted,
#i(s) takes on the values k¥(s).

2.2 Equilibrium Equations
The equations of equilibrium which govern the deformations of rods of the
type considered here can be derived from variational principles (sce Steigman
and Faulkner (1993) for example) or from more elementary considerations
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(Love 1944; Landau and Lifshitz 1970) and are

F'+b =0 (
M =F xe, (2.

I\D
lv tv

a)
b)

l\.)

where b is the body force per unit length acting on the rod while F and
M are, respectively, the force and moment resultant over the cross section
acting on the material in the part [0, s] due to the material in the part (s, L].

It has been shown by Steigmann and Faulkner (1993) that for rods which
arc uniformly curved and twisted in the reference configuration, the classical
encrgy infegral (Love 1944) can be generalized to give

l/—x - M-e;-F—r-b=const (2.3)

where {7 is the strain energy per unit length along the rod and b is now a
uniform dead_body force. This expression. which is a first integral of the
equilibrium oquat:ons is a necessary condition which must hold at every
point along the rod and therefore can serve as an accuracy check which must
be approximately satisfied by any numerical solution developed in subsequent

chapters.

.

2.3 Constitutive Assumptions

In order to determine the deformed configuration of the rod. some informa-
tion 1s needed specifying how the rod reacts to loading. This information is
contained in constitutive relations which. for the rods considered here, iden-
tify how the curvatures and twist along the rod are related to the moments
acting at each arclength. This information. along with the equations of equi-
librium (2.2a) and (2.2b) and appropriate boundary conditions (which vary
from problem to problem), is used to obtain the solution to each individual
rod problem.

The rods considered in this thesis for the most part will be assumed to
be linearly elastic and have a quadratic strain energy function I7. (Alter-
nate strain energy functions for nonlinear elastic materials will be considered
in Chapter 6.) It is usually further assumed that U depends only on the
difference in curvatures? between the deformed and undeformed (reference)

iCurvatures here is meant to include both the physical curvature components of the
rod (i.e. k2 and x3) as well as the twist per unit length ;.
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configurations (Love 1944). If the vector (<) is defined as

v(s) = &(s) — &"(s) (2.4
so that
Vi(8) = Ki(s) = K] (8) (2.5)

then the strain energy U7 is given by

Uly) = 5|GJai + Elng + Lil:ﬁ;:} (2.6)

where (iJ is the torsional rigidity of the rod and LI, and £/4 are the {lex-
ural rigidities about the principal e; and ez axes respectively. As shown by
Steigmann and Faulkner (1993). the moment can be obtained using

which along with (2.5) and (2.6) results in
M= C;J'!)’] e -+ E!g")‘_’rég -+ l;]a");glz;]i (:;H)

Note that when non-circular cross sections are considered, .J is not. the
usual polar moment of inertia but must rather take into account the contri-
bution to torsional rigidity attributable to warping of the eross section (Dill

b (b > a) is considered. the torsional rigidity is given by Timoshenko and

Goodier (1970) as

., 1 . ) [ 1920 iy | Cnwh
;, = — B 2 3 2 —_—— —_ o] - . :i‘“
GJ 3 G (2a)°(20) (1 i i = tanh o (2.9)

n=1.3.5....

5Note that while this may appear to be in contradiction with the previously stated
assumption that initially plane cross sections remain plane and expericnce no strain, in
the present theory the cross sections do in fact remain plane. The present. approach is to
endow a space curve (the rod centerline) with sufficient kinematical structure Lo account
for the desired modes of deformnation, namely bending and torsion. Thus, essentially, the
centerline is given flexural and torsional rigidities to resist bending and twisting. To be a
valid model of reality, the values for the rigidities are chosen to most closely approximate
observed behavior. 5t. Venant’s solution to the torsion problem (sce Love 1944) shows that

warping has a significant effect on the torsional rigidity and must be taken into account,

cross section should have in a first order rod theory,
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Note that the expressions (2.6) and (2.8) are simply a superposition of results
for torsion and bending about a principal axis obtainable from elementary
strength of materials theory.

When initially straight, transversely isotropic rods are considered. ¢ = 0.
Ely = Ely = EJ so that (2.8) simplifies to

M = GJkies + El[kse; + K3es). (2.10)
Using the fact that
tia€p + Kzey = e; X [’5233 + 5352] (2.11)

and noting, from (2.1) with 7 = 1. that

E; = —Kz€3 + Kzesz. (‘2;]2)
cquation (2.10) becomes
MZC;JFﬁEj%?E]El X E; (;13)

This particular constitutive relationship supplies an additional first integral
which any solution to the rod problem in this class must satisfy. This can be
obtained by differentiating (2.13) with respect to arclength and using (2.2a)

to get
F x e, = GJrie; + GJrye) + Ele; x ef. (2.14)

Taking the dot product of (2.14) with e; and recalling from (2.1) that e} is
perpendicular to e; gives the result that GJx| = 0, or

Ky = constant (2.15)

where x; is the twist per unit length along the rod. Thus (2.14) becomes

F x e; = GJk e} + Ele; » ej. (2.16)
Equation (2.15) shows that the twist will remain constant along the entire
length of the rod as has been pointed out previously by several authors
(Love 1944; Landau and Lifshitz 1970). This condition can again serve as
an accuracy check for certain numerical solutions developed in subsequent
chapters.



Chapter 3

Numerical Procedure and
Verification

In the previous chapter. the equations of equilibrium for inextensible rods
were developed. These equations were then combined with coustitutive
assumptions for the rod to obtain the equations which describe the rod’s
deformations. These equations are highly nonlinear and as such are often
very difficult to solve analytically. Also, due to the nonlinecarity involved.
the problems being investigated may exhibit multiple equilibrium configura-
tions which further complicates the situation (Navaee and Elling 1991, 1992;
Faulkner et al. 1993)

In this chapter a numerical solution is developed to solve these eqna-
tions. The procedure involves two important concepts. First. the nonlincar
equilibrium equations are applied to a segment of the rod and direct mimeri-
cal integration is used to obtain a solution from the initial values. Force and
geometric compatibility conditions are then used to assemble the various seg-

one end of the rod. Segmenting the rod in this fashion has several advantages
which are discussed in Section 3.1.2. The solution for the rod is therefore
treated as an initial value problem which depends on the conditions at. one
end of the rod. These conditions will not in general be completely known «
priori and any unknown conditions will need to be estimated initially. This
leads to the second major concept which is that a shooting procedure is used
to iteratively modify the initial estimates to ensure that all boundary con-
ditions for the rod are satisfied. Thus the solution proceeds as a sequence
of initial value problems which converge to the appropriate boundary condi-

16
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— Deformed Rod Segment

-
E,

Figure 3.1: Arbitrary Rod Segment

tions,

Previous authors (Faulkner and Stredulinsky 1976; Lipsett et al. 1990:
analyze the bending of rods in two dimensions. The extension of this work
to include fully three-dimensional deformations (as discussed in Raboud et al.
1996b) is presented in this chapter. Using the procedure developed. numerical

results are obtained for a variety of problems and compared with previous
analytical, numerical and experimental results to assess the effectiveness of
the present technique.

3.1 Solution for the Rod

3.1.1 Solution for an Individual Segment

Consider a segment of the rod as shown in Figure 3.1. (As will be discussed
in Section 3.1.2, a number of these segments will be assembled together to
form the complete rod). In this figure, {E;} is a fixed global orthonormal
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basis, in which the particular rod problem is formulated. For example. if
gravity loading were included in the problem it may act in the negative Ea
direction. Note that {E;} is the same for all segments in a particular rod.
{ei(s)} is the embedded material basis which changes orientation along the
length of the rod segment. At the start of the segment (corresponding to an
arclength s = 0) the values of {e;j(s)} are {el} which will serve as a fixed
(independent of arclength) orthonormal basis over a particular segment of
the rod. The basis {e]} will be referred to as the local basis.

The orientation of the material basis in terms of the local basis is most
conveniently expressed using Euler angles. Love (1944) uses a sct of Euler
angles which suffers from the fact that a singularity occurs for a null rotation.
For convenience, the set of Euler angles commonly referred to as the vaw
(¢). pitch (8) and roll (') angles (Goldstein 1980) are chosen which move
the singularity away from the null rotation. In terms of these angles the
components of the material basis {e;} are

e; e}
{e2}=[fq{eg}, 1)
€3 eg ’

Cg Cg Cp Sy, —Sg
[R] = Sy Sg Co — Cyu 8¢ Se Sy S + Cy Cgp Cy Sy, 5
Cy 8¢ C¢ + Sy 8¢ Cy Sp Sg — Sy Cy g Cy

where
(3.2)

where ¢ and s represent cosine and sine respectively. Therefore the Euler
angles at the start of the segment are {0, 0. 0} (i.c. a null rotation).

The components of curvature and twist along the segment. which are
shown by Steigmann and Faulkner (1993) to be

1

K = 5 €ijk €k * le, (3.3)

where ej5 is the permutation symbol. can then be expressed in terms of the
Euler angles and their derivatives as

Ky -s¢ 0 1 @
{Rg} = [ Cp Sy Cy 0 ]{0’} (34)
K3 CoCy =Sy 0 ’l/)'
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The moment acting at any arclength can then be expressed in terms of Euler
angles. their derivatives and the initial curvatures using (3.4). (2.8) and (2.5)

as
M= A’]{Eif (35)

where
My = GJ (=500 + ¥ — &9).
My = Ely(cg sy ¢’ + ey 0’ — K3), (3.6)
Ms = Els(egep ¢’ ~ 5,0 = K3).

Note that equation (3.4) can be inverted to determine the Euler angle
derivatives (with respect to arclength) in terms of the curvature components

provided
| —so 0 1
oSy oy 0] = —cyg #0. (3.7)
cpcy —sp. 0

This then indicates that a singularity occurs, for this particular set of Euler
angles, at 6 = +nw/2, n = 1,3,5.., and it is not possible at these points
to determine the Euler angle derivatives from the curvatures. This bebavior
causes stability problems in numerical schemes using Euler angles. However.
as will be discussed in Section 3.1.2, considering the rod in segments allows
for a rather simple method to overcome this difficulty .

As shown in Figure 3.2. the coordinates along the rod segment {r(s)}, ex-
pressed in the global basis., are (X'(s). Y(s). Z(s)). At the start of the segment
(s = 0) the coordinates in the global basis are {r(0)} = (X(0). Y'(0). Z(0)).
Expressed in terms of the local basis, the coordinates at each point along
the rod segment are x(s) = (x(s), y(s),z(s)) and the segment begins at the
origin of the local basis, (i.e. x(0) = (x(0), y(0), 2(0)) = (0, 0, 0)). Therefore
the coordinates at any arclength can be expressed as

) = r(0) + x(s). (3.8)

]

r(

]

Since ej(s) is the unit tangent vector (i.e. e;(s)= r'(s)), equations (3.1),
(3.2) and (3.8) result in the coordinates of the centerline of the rod in the
local basis satisfying the differential equations

! o F ! __ i -
T =CgCy. Y =CpSe, =2 = —8p. (3.9)
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Figure 3.2: Position Coordinates Along Rod Segment

The force vector F at the start of the segment. can be expressed as
g ]
F = "%} (3.10)

where 7 is the initial tension artmg on the rod while F} and FY are the initial
shear components in the e and e directions. For the purpose of illustration
consider that a dead uniform distributed load b acts on the se gment. The
components of b can be expressed in terms of {e}'}, since this is a valid
orthonormal basis. as

b = bie] (3.11)
where the b; are constants. The cquilibrium equation (2.2a) can be integrated
to give

F(s) = F(0) - bes (3.12)
<1

which for the special case of uniform loading becomes

F(s) = [F ~ bs]e]. (3.13)
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Note that the components of the force vector in equation (3.13) are no longer
the tension and shear components because they are expressed in terms of the
fixed (for the segment) basis {el}. The true tension and shear components
must necessarily be expressed in terms of the material basis which changes
along the segment. Equation (3.13) can be combined with equations (3.1)
and (3.2) to give

F = Fle;, (3.14)
where
Fi FP—bs
{Ff;} — [R]{F.E—bgs}. (3.15)
F3 . F? — bss

The foree components in equations (3.14) and (3.15) are now the true tension
and shear components and will be used in the subsequent work.

The constitutive relation (2.8) can now be differentiated with respect to
arclength and combined with the equilibrium equation (2.2b) to give

Fxe =GJries+Elikhes+ Elzryes

s 0 o\ 3.16
+ GJ (l’ii - h?) E; + Elg (h’g - I{g) E!g + E!g (Rg - hg) Eg._ ( )

which can be written as three component equations

GJ h’] = (E!g - Elj) Ka Ky + E]g Ko Hg - FEI Kz Eg.

Elyky = (Ely — GJ) &y k3 + GJ k3 k] — Elzky &5 + Fs. (3.17)
E!ghgg = (GJ - Elg)lil K2 + E!-;I{] Hg- C;Jh'.g h‘? = F'g’,

where equation (2.1) has been used and only rod segments which have con-
stant initial curvatures and twists have been considered. Note that the ten-

There is no constitutive relationship to determine the tension from the de-
formation and it does not appear explicitly in the equilibrium equations. but
rather it is determined by an overall equilibrium balance.

By taking the derivatives of (3.4) and substituting these into (3.17), the
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component equations can be rewritten as
Ci’" _ Cﬁl E{; cy + F; Ela I
Elg El; Ca )
G Ely o = Cr Elese (3.18)
ELEI

N (3 +
=

gli =

~

B 7]
7 s &

7]

i

where

(&

- (GJ — EL) Ry kg + El Ky wy = G kY wy
+ El(sgcad 0 4 cags. o' o' + e 0 ') ~ P
Cy= (Elz3 — GJ)ri k3 + GJ K k3 — Ely 13, (3.149)
+ Ely (sps0d' 0 — coepd 0 + 5, 0'0") + Fy
Cy=(El, = El3)ra ks + ElswS ks — El, Ky Ra+ Gl g 0,

To nondimensionalize these equations. the dimensionless parameters
s . I FiL? b L*
P=75. Ri=HK L V= ——. = ——,
L £l El (3.20)

_ Ci'.i g = £l§ . [iz’i
“TE T ED VTR
are introduced where L is the length of the segment and E/ is taken to he
the larger of £/, and El;3. Equations (3.18) and (3.19) then hecome

ChBen + Cans,
g5 e )

=

5 _ ég HI i’:{u' = C’E,,D‘,Si{'

Ay
= ——

0
and

Oy = (Q = B)iy g A BAG Ry = QRY iy
+ (Se Ca dst’? + cp sy rz‘; u?.! + ¢y () 1;7_.) — I/,

7= (‘7 - Q)F‘*i Ra+ h? kg — rg £ (3.22)
+ ﬁ (EQ Slf’ﬁg‘ié = CgCy tizl"i‘/; + Ha d 'l,xl:‘) + !"‘fh

ég = (E — "‘,’)Fig K3 + vﬁzg fg — 5?:3;;3 + Qrgri:ﬂ

*

X
]
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using equation (3.20). (3.4) and (3.24) become

K1 [ =Sy 0 17 53
Kap=1|cpsyp ¢ 0 ] (3.23)
’;’j . gy, —&,. 0 4 % t;‘ :
and
" (=
v p = [R] V] = \a2p (3.24)
Wy 1;2 = \ap

while (3.9) simply becomes

F 1 3 o
— = 0pCh, = =CpSs.  — = —Sg. (3.25)

L 7L L

segmcnt, jhc fc:rce, mmnt:nt,; pDSJLmn and Drlentatmn at the &nd Df thé
segment can therefore be determined by the force, moment. position and
orientation at the start of the segment by direct numerical integration. The
Bulirsch-Stoer method is used. rather than the more common Runge-Kutta
methods. to perform the integration because it is significantly more compu-
tationally efficient when high accuracy is required (see Press et al. 1992 for
a description of the method).

3.1.2 Solution for the Complete Rod
In the previous section a method of solution for an individual segment of the

rod was presented'. To solve the entire rod. which can be comprised of a

'Note that a similar Eegmemal approach has been used previously (Faulkner and
Stredulinsky 1976: Lipsett et al. 1990: Lipsett et al. 1993: Faulkner et al. 1993) to solve
planar elastica problems where large deflections are involved. In those cases the rod was

considered using a large number of segments so that each individual segment undergoes
only small relative deformations. This was required so that a linearized equilibrium equa-
tion could be applied and a power series solution was obtained. This is not the case in
the current work where the fully nonlinear equations are applied to each segment so that
maintaining small relative deformations is not required. Individual segments may there-
‘fore be quite long and the use of a single segment may be sufficient to solve a given rod
problem.
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number of segments (or possibly just one). the individual segments are as-
sembled in such a way that force and geometric compatibility are maintained.
This is accomplished by using the force. moment. position and orientation
obtained at the end of one segment as the starting values for the nest seg-
ment. That is the forces and moments obtained at the end of the A" sepment
are used as the inputs to the & + 1'" segment. Similarly. the material bi-
sis {e;} at the end of the k*" segment becomes the local basis {e{'} for the
k +1'" segment. As well. the global coordinates at the end of one segment.
obtained using (3.25) and (3.8). become the starting coordinates r(0) for the
next segment. This procedure is continued from segment to segment until
a solution is obtained for the entire rod. In this way. the forees. moments.
position and orientation at the end of the rod are completely determined hy
the forces, moments, position, and geometry at the start of the rod.

One of the main reasons for solving the rod in this manner is that iy
rod-like structures of interest have complicated initial geometries in thejr
undeformed configuration. These rods can often he modellod s a nmmber
of segments of simple geometric types. Since cach individual segment has o
simple geometry (with constant initial curvat ures) it can be considered mmnel)
more readily. Complex loading conditions. non-constant mitial curvatures
and varying material properties can be similarly handled in a straight forward
manner.

A further advantage to using a segmented solution in this manner. eve
for rods which have simple initial geometries. is that for many problems large
rotations occur and the Euler angles used to describe the deformation can
pass through a singular point (0 = Enwf2 = 135, as disenssed previ
ously for the set of Euler angles used here). By introducing new seements
along the rod, new local bases are established at 1he beginuing of cach new
segment. The Euler angles which deseribe the material basis in terms of
these local bases are all reset to zero at the start of cach segment. 'T'his can
be done often enough along the rod to avoid the singularities inherent in the
Euler angle representations and the resulting numerical diffienltics.

The solution as presented above is an initial value approach in that the so-
lution to the rod problem is determined from the conditions (force. moment.,
position and orientation) at one end of the rod which must be completely
specified in order to obtain a solution. However, most rod problems are
actually two-point boundary value problems where some of the Loundary
conditions are known at each end of the rod. Jn general not all of the condi-
tions will be known at one end a priori. but rather some will be nnknown and
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a corresponding number of conditions will be known at the other end of the
rod. The unknowns at the start of the rod must be initially estimated to start
the numerical procedure. From these initial estimates the solution for the rod
is obtained using the procedure described previously. The values obtained at
the end of the rod are compared to known boundary conditions at that end.
The initial estimates are then modified iteratively using a Newton-Raphson
secant method algorithm. This procedure is repeated until the values at
the end of the rod converge, to within a specified tolerance, to the desired
bouudary conditions to give the appropriate solution. The Newton-Raphson
method used is discussed in more detail in Appendix A.

3.2 Verification of Results

In this section the numerical procedure developed previously is used to solve
several problems which have known analytical or numerical solutions. This is
done to allow a determination of the accuracy and efficiency of the method.

The problems considered are:

Initially Straight Rods

e Initially straight circular rod bent and twisted into a helix by the action
of forces and moments along the initial axis of the rod.

o Initially straight orthotropic rod bent and twisted into a helix by the
action of forces and moments along the initial axis of the rod.

e Initially straight orthotropic rod deformed into a Mobius strip.

e Cantilever heam loaded in a non-principal direction by a dead tip load.

Initially Curved Rods
o Initially helical orthotropic rod bent and twisted into another helix.

o Initially curved cantilever loaded out of the initial plane of curvature
by a dead tip load.
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LB

E, b) Deformed Helix

Figure 3.3: Initially Straight Rod Deformed Into a Helix: (a) Undeformed
Configuration, (b) Deformed Configuration

3.2.1 Initially Straight Rods
3.2.1.1 Initially Straight Circular Rod Deformed Into a Helix

The first problem considered is an initially straight circular rod with constant
material properties bent and twisted into a lielix of radius R and piteh angle
a as shown in Figure 3.3. The analytical solution for this problem has been
considered by previous authors (Love 1944: Landan and Lifshitz 1970) and
is also presented in Appendix B for completeness. This problem is one of the
few truly three-dimensional problems which combines bending and twisting

results.
The analytical solution shows that specifvisiv the helix centerline (i.e. 1
and o given) is not enough to determine the iurces and moments required

to maintain the deformation. This is because R and o only specify the
geometry of the helix centerline while &, is also required to determine the
rate at which the orientation of the cross section changes along the helix, For
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cach value of k; there exists a force-moment combination which will support
that particular deformation so that an infinite number of solutions exist for
a specified helix centerline. Therefore, rather than specifying the geometry
of the helix centerline, a different approach will be taken. The problem is
posed with the axial force F, axial moment M and pitch angle a specified.
With these values specified, the radius R and twist per unit length &; of the
resulting helix can be determined from equations (B.7b), (B.7c) and (B.11)
to be

_ cosa , - — o e

R= g M.+ MZ=3ETF. sin a]. (3.26)

with the corresponding value of x; determined from either of equations (B.7h)

or (B.7c). Therefore, for F. # 0, there may be two solutions for the radius

(each with a corresponding x;) or there may be no solution at all for the com-

bination of force. moment and pitch angle specified. Note that the solution in

equation (3.26) is undefined when F. = 0 or a = 0. However, when F. = 0,

#y and K are given by (B.13) and (B.14) respectively. When a = 0 (which

implies that the centerline remains in the E;-E; plane). equations (B.7h).
(B.7¢) and (B.11) simplifv to

El 3.2

_ 3.27
R= o
o BB REL (3.28)

CGJ T M.GJ

To begin the numerical procedure. the position and geometry at the start

of the rod must be specified. For a helix of radius R and pitch angle a the
coordinates of the starting position in the global basis are assumed to be

X=R Y=0  Z=0. (3.29)

while the initial material basis is given by

e 0 cosa sina E;
{e2}=[] 0 0 ]{Eg} (3.30)
€3 0 sina —cosa Es

The components of the force and moment vectors (F = Fie; and M = M;e;)
in this material basis are then given by
Fi =F.sina.
F> =0, (3.31)
F3=— F.cosa,
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and
My, =M.sina + M cosa,
;\]3 = - .A!; cosa + Al sina,
where equations (B.7a)-(B.7d) and (B.10) have been used. These are now the

initial tension, shear forces and moment compounents (twisting and bending)
acting at the start of the rod which are the values required to begin the
numerical procedure.

To compare the numerical and analytical solutions. an initially straight
steel rod (E = 207 GPa. G = 70 GPa) one metre long and with a cross
sectional diameter of 6 mm is subjected to an axial force and moment of
100 N and 200 Nm respectively with the pitch angle selected to he 45,
This particular choice of force system allows two analvtical solutions from
equation (3.26) as

Solution #1: R :
Solution #2: R=

\F \I‘

=0.04769610m Ky = 16.2572675Tm ™", (3.33a)
1.95230390m ry = 31.37851470m~". (3.33h)

Frm’n the ﬁrst set Gf va]ue% 1'\1lL '\\llirll def"nds on lmlh the u\iﬂl Emz mnl

‘\m rlhen mth the fmces and moments at the start nf the mrl s]'u'-nhvfl,
the corresponding components in the initial material basis are determined as
shown in equations (3.31)-(3.32). Note that since all of the initial conditions
are completely specified. no shooting is required to solve this problem. It will
simply serve as an accuracy check on the integration portion of the numerieanl
solution. An evaluation of the shooting part of the solution will be performed
in subsequent sections.

Figure 3.4 shows the resulting geometry of the centerline of the rod ol-
tained using the numerical solution as well as the analvtical solution. The
numerical results can be seen to be indistinguishable from the analytical so-
lutions. While the first solution (3.33a) indicates a helix with more than two
complete turns, (3.33b) is only a small fraction of one turn at a much larger
radius. Note that despite the simple initial geometry. five segments were nsed
to generate the numerical solutions. This is due to the fact that a singularity
in the Euler angles used would occur at an arclength of approximately 0.211
m and cause numerical difficulties. This clearly demonstrates the usefulness
of a segmented solution as presented here.
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Figure 3.4: Geometry of Helix Centerline, M. = 200 Nm, F. = 100 N.
a = 45°% (a) E3-E; Plane, (b) E3-E; Plane, (c) Ez-E; Plane

As well as comparing the deformed shapes as ahove. two further checks
on the accuracy of the numerical solution were used. The energy integral
in equation (2.3) should remain constant. In addition. as this is a circular
rod (i.e. transversely isotropic), equation (2.15) is applicable which states
that the twist per unit length x; should remain constant along the rod.
Figures 3.5 and 3.6 show x; and the energy integral respectively as functions
of arclength. These two quantities can be seen to be constant along the rod.
In fact. no change in either quantity was noticed to at least seven significant
digits for either solution. Note that the analytical results are available and
are exactly equal to the numerical results at the start of the rod. These
results are available since the conditions at the start are completely specified
which allows the values of the twist and energy integral to be computed.

As a further test of the robustness of the numerical solution, the pitch
angle of the resulting helix was was changed from 45° to first 5° and then 85°
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while the values for the axial moment and force were held fixed. This has
the effect of changing the relative amounts of bending and twisting in the
with little twist, while a value of a near 90° indicates a nearly straight rod
with considerable twist and little bending. For both o = 5° and o = 85°,
cquation (3.26) still indicates that multiple solutions exist and the results for
o = 5° are

Solution #1: R = 0.06578260m Ky = 2.692932Tm™'. (3.34a)
Solution #2: R =22.79432201m Ky = 256.9147493m™", (3.34h)

while for a = 85° they are

Solution #1: R =0.00594034m Ky = 22.37608614m™". (3.34c)

Solution #2: R =0.16903699m K1 = 22.53568806m™". (3.34d)
Figures 3.7 and 3.8 show the resulting geometries for each of these cases.
(Note that the geometries in the Ex-E; plane are circular arcs and are not
shown). As can he seen. there is again excellent agreement between the
analytical and numerical solutions. The numerical solution is again able to
generate all of the multiple analytical solutions. As well. the checks using
both x, and the energy integral. not shown here. were found to be similarly

consistent as with the a = 45° case,
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3.2.1.2 [Initially Straight Orthotropic Rod Deformed Into a Helix

To investigate rods with non-circular cross sections. the next problem con-
sidered is an initially straight orthotropic rod bent and twisted into a helix
again with a radius R and pitch angle a as shown in Figure 3.9. Faulkner and
Steigmann (1993) have considered this problem and have derived analytical
solutions?. Their solution to this problem shows that all bending along the
rod is about only one principal axis so that the curvature about that axis is
equal to the curvature of the helix centerline .. Further. the twist per unit
length along the rod is required to be equal to the geometric torsion 7 of the
centerline of the helix. where these quantities are defined as

€os a sin a

R

(’OS2 Q

R

Thus, a major diflerence between this case and the isotropic case is that for
orthotropic rods there are no multiple solutions for a given helix (i.e. specified
R and a). In the isotropic case with R and a given. x; could still be selocted
arbitrarily and the forces and moments required to maintain the deformation
could then be determined from equations (B.7a)-(B.7d). In the orthotropie
case, K 1s no longer arbitrary but is equal to 7, defined in equation (3.35a).
so that only one solution exists for each set of R and a.

The initial conditions for this problem, as with the isotropic case, are
again set with the initial position coordinates in the global basis given by

X=R Y¥=0. Z=0. (3.36)

T

(3.3Ha)

(3.35h)

ke

while the initial material basis is again given by

e 0 cosa sina E,
e p = | 1 0 4] E; }. (3.37)
€3 0 sina —cosa Es

Faulkner and Sieigmann (1993) show that the moments and forces necessary
to maintain this deformed configuration arc given by

M= G.l'rel + E"3h‘,(‘83 (f';?ﬂ')

*These are so called controllable deformations because they can be maintained by
surface forces alone in any material of a particular class.
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and
F = (GJ - EI;;)TZE] + ((;J - E];;)H“Teg ({{l))

which are already expressed in the initial material basis at the start of the
rod. Note that all the initial conditions are again specified so that shooting
is not required to solve this problem.

To compare the numerical and analytical solutions. an initially straight
steel rod (E = 207 GPa. G=70 GPa) one metre long is considered. The
centerline of the deformed helix is specified with a radius of R = 0.05m while
the pitch angles are chosen to be 5°, 45°. and 853°. The aspect ratio of the
cross section. a/b as shown in Figure 3.9. is allowed to vary from one to ten
by letting a vary and keeping b fixed at 3mm.

Figure 3.10 shows three views for both the numerical aud analytical so-
lutions of the centerline geometry for the case where a = 45° and the aspect
ratio a/b = 10. As can be seen. there is again excellent agreement with no
noticeable difference between the numerical and analvtical results.

Figures 3.11 and 3.12 show the twist per unit length and the energy
integral respectively for this case as well. As can be secen, there is once
again excellent agreement between the analytical and numerical solutions.
In particular, &, agrees with the values predicted by equation (3.35a) with
R = 0.05m and o = 45°. Note that equation (2.15). which requires that w
remain constant. is only applicable in the case of isotropic rods. while the
rods with rectangular cross sections considered here are orthotropic®. Thus.
the fact that x; is a constant is not a constitutive requirement in this casc,
but merely a result of the particular boundary value problem (in this casc
initial value problem since all initial conditions are known) heing considered.

Similar results were found for the other piteh angles and aspeet ratios
considered. Excellent agreement was observed in the shapes as well as in the
twist per unit length and energy integral values. To give a better indication
of the relative amounts of bending and twisting, Figure 3.13 shows the de-
formed configurations for a rod with an aspect ratio of 10 in which the pitel
angles considered are 5°, 45°and 85°. Note that the solutions delivered by
the numerical procedure are smooth and continuous even though the shapes

3Note that in the special case where a = b, El; = Els. The rod is thus considered
isotropic within the limits of the present theory despite the fact that a rod with a square
cross section is not truly isotropic in a fully three-dimensional linear elasticity framework.
In particular, equation {2.15) applies and £, should remain constant.
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o

qlmwn in Figures 3. 1'3a=1:‘ dD not appear to be— %m@@th ] his is d'u-f—- to Ih@ fac‘t

(‘IL;&]T.{‘CI using stralght- segméut& aD segmt?mz; were used to génexate these
figures which in some cases (such as Figure 3.13a) are not enough to produce
a smooth appearance. However, despite the appearanfe in these figures. the
solutions delivered by the numerical procedure are smooth.
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Figure 3.12: Energy Integral Along Helix, R = 0.05m. o = 45°, a/b = 10



CHAPTER 3: NCMERICAL PROCEDURE AND VERIFICATION 39

Figure 3.13: Deformed Helicies For the Case Aspect Ratio = 10 for Various
Pitch Angles: (a) a = 5°. (b) a = 45°. (¢) o = 85°
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3.2.1.3 Initially Straight Orthotropic Rod Deformed Into A Mébius
Strip

To further investigate rods with non-circular cross sections. the next problem
considered is a thin rectangular rod deformed into a Mébius strip. To make
such a strip, the ends of the rod are joined together after undergoing a 180°
twist about the centerline. In this case. not all of the initial values at the
start of the rod are known a prieri so shooting is required to satisfv all of
the boundary conditions. The location and orientation at the start of the
rod may be specified and is given here to he

N=0 Y =0 Z = 0. (3.1

while the initial material basis is given by

€3 1 0 0 E]
e2v=100 -1 [{E;}, (3.11)
€3 0 1 0 E3

which corresponds to Euler angles of (@.0.1%) = (0.0. —7/2). The force and
moment at the start of the rod required to maintain the deformed Mobius
strip are not known a priori. however. and must he determined. Fhis means
that this is a six parameter shooting problem (three components for the force
and three for the moment). Thus six conditions are required at the end of the
rod to complete the boundary value problem and use the shooting technique.
Since the deformed Mabius strip is continuous. the end of the rod is located
at the same point as the start coordinates which furnishes three conditions.
i.e.

Nend = 0. Yona = 0. Zepg = (). (3.12)

The remaining condition comes from the fact that the cross section at the end
of the rod is rotated 180° about the centerline with respect to the orientation
of the initial cross section at the start of the rod. This fact requires that

€ ] 0 0 E]
€7 = 0 0 1 E2 (‘4';)
€3 0 -1 0 E3

at the end of rod which corresponds to Euler angles of (¢, 0,4) = (0.0.7/2).
(Thus the 7 radians angular difference hetween the cross sections at the
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start and end of the rod is accounted for by a 7 /2 rotation at the start of the
rod about the E; axis and another 7/2 at the other end.) These are the six
known boundary conditions which are required to use the shooting technique
described previously.

Mahadevan and Keller (1993) have recently investigated this problem
and preserited numerical results for various aspect ratios of the cross section.
Aun analytical solution available for rods with square cross sections (aspect
ratio = 1) was used as the starting point for a continuation scheme to obtain
the results for higher aspect ratios.

A rod 27 meters long with a constant thickness was used which has its
width varied Lo produced aspect ratios in the range from 1 to 10. Figure 3.14
shows the geometry of the centerline obtained using the current approach
while Figure 3.15 shows a three-dimensional view of the deformed config-
urations. These results for the centerline are in close agreement with the
graphical results presented by Mahadevan and Keller (1993). For an aspect
ratio of one. the deformed shape of the centerline is circular and remains pla-
nar. As the aspect ratio is increased. the centerline deforms more out of the
initial Eo-E; plane and loses its circular shape as shown in Figures 3.14b-c.
For very large aspect ratios. Mahadevan and Keller (1993) demonstrated that
the centerline approached a limiting shape which was nearly indistinguish-
able from the results for an aspect ratio of ten. As a result, higher aspect
ratios were not investigated here.

When a square cross section is used (aspect ratio = 1). the flexural rigidi-
ties I7/; and £ I3 are equal. The rod is therefore considered to be transversely
isotropic in the present theory and as a result ~; should remain constant. At
any other aspect ratio. however. the rod is transversely orthotropic and
need not remain constant. This behavior is evident in Figure 3.16 which
shows the variation of x; along the rod as a function of the aspect ratio. Fig-
ure 3.17 shows the variation of the energy integral along the rod for various
aspect ratios. As before. these results show excellent consistency for each
aspect ratio considered

Since these problems are geometrically nonlinear, it is possible to have
more than one solution which satisfies all of the given boundary conditions. In
the context of the Mébiug strip problem, each of the multiple solutions (if they
exist) would have to satisfy the conditions specified in equations (3.40)-(3.43).
In order to find these multiple solutions using the present numerical technique
it is therefore necessary to change the initial estimates of the unknown force
and moment components. If these new initial estimates are “close” enough
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Figure 3.14: Geometry of Mébius Strip Centerline for Various Aspect Ratios:
(a) E1-E2 Plane, (b) E;-E3 Plane, (¢) E2-E; Plane

to another solution (if it exists), the numerical procedure may converge to
that solution. To demonstrate this idea a rod with an aspect ratio of 2
was reconsidered. Figures 3.18 and 3.19 show a particular solution which
satisfies the required boundary conditions (i.e. equations (3.40)-(3.43)) for
this rod. This solution is different from the solution presented previously
for a rod with an aspect ratio of 2. In this case, the rod has undergone
a 540° rotation about the centerline rather than a 180° rotation as before.
Of particular interest here is the fact that the twist remains constant in this
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Aspect Ratio = 1

Aspect Ratio = 2"

Figure 3.15: Three-Dimensional Views of Deformed Mobius Strip for Various
Aspect Ratios
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Figure 3.17: Variation of the Energy Integral Along the Deformed Mébius
Strip as a Function of Aspect Ratio
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solution while it varied in the previous case (see Figure 3.20).

The resnlts shown for the multiple solutions to the Mébius strip problem
are not exhaustive. They are included here only to demonstrate that mul-
tiple solutions may exist for these nonlinear problems and that the present
numecrical technique is well suited to finding them when thev exist.
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Figure 3.18: Geometry of Mébius Strip Centerline: (a) E;-E, Plane,
(b) Ey-E; Plane. (c) E;-E; Plane
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Figure 3.19: Three-Dimensional Views of Mébius Strip Solutions: (a) E;-E,
Plane. (b) E;-E; Plane
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Figure 3.20: Variation of x; Along the Deformed Mobius Strip

3.2.1.4 Initially Straight Cantilever Beam Loaded in a Non-Principal
Direction By a Dead Tip Load

The final problem considered involving initially straight rods is the case in
which a cantilever beam is loaded by a dead tip load in a non-principal
direction. This problem has been considered both experimentally and the-
oretically by Dowell et al. (1977). In their experimental investigation. a 20
inch long beam of 7075 aluminum with a 1/2 x 1/8 inch cross section was
loaded by dead tip loads at various angles relative to the principal directions
as shown in Figure 3.21. The angle  was varied from 0° to 90° in 15° incre-
ments. At each 6, dead tip loads were applied and the deflections v and w

respectively. The geometric twist angle ¢ was also measured which Dowell
et al. (1977) define as

...the angle determined by the projection of the elastic axis and
leading edge of the cross-section at the beam tip on a plane per-
pendicular to the undeformed cross section.
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Figure 3.21: Cantilever Beam Loaded at Varions Angles To Principal Diree-
tions

Dowell et al. (1977) give an expression for ¢ at the tip of the beam as

I
O=0o+ / v'w”dr (3.44)
Ju

where ¢ is the angle of twist measured relative to the deformed contral axis
(equivalent to ;). @ is used (instead of ¢) to measure the overall efleet of
twist along the beam since the large deflections which occur make ¢ ilself
difficult to measure.

To start the current numerical procedure, the global basis for cach 0
is chosen to be aligned with the initial tangent vector and the principal
directions such that

E; = e; (3.45)
while the starting coordinates of the centerline are

X=0. Y=0 - Z=0 (3.46)
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In the material hasis, the components of the force vector become
Fy =0.
F;=— Pcost, (3.47)
F3=— Psiné,

where only the tip load has been considered. However. this ignores the weight
of the beam. The weight may be easily taken into account with the present
numerical method by replacing equation (3.47) with

F, =0,
Fo=—(P+wlL)cosé. (
F3=—(P+wlL)sind.

[N
[t
Lo

where w is the weight per unit length and L is the overall length of the beam.
Whether or not the weight of the beam is included. the components for the
moment are all unknown. As a result this is a three parameter shooting
problem®.

The results using the current numerical technique are shown in Table 3.1.
The results for the geometric twist angle ¢ shown for the current procedure
were obtained using equation (3.44). As can be seen, there is very good
agreement with the experimental results of Dowell et al. for all of the values of
0 considered. When 0 = 0° or 6 = 90° no twist was observed experimentally
as is expected since in these cases the loading is about one of the principal
axes. For the other values of 0 considered, the chordwise deflections are all
very near the lower range of the experimental values reported while the flap
deflections and geometric twist angle consistently fall within the experimental

better agreement with the observed experimental behavior than are those
which ignore the weight of the beam.

*Note that since there must be no moment component about the vertical axis, a rela-
tionship between Af; and Af3 could have been obtained which would reduce this to a two
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Table 3.1: Flap (w) and Chordwise (v) Deflections For a Uniform Cantilever
Beam Loaded in Various Non-Principal Directions
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3.2.2 Initially Curved Rods

3.2.2.1 Initially Helical Orthotropic Rod Bent and Twisted Into
Another Helix

Section 3.2.1.2 dealt with the problem in which an initially straight or-
thotropic rod is bent and twisted into a helix. This section discusses the
related problem in which an orthotropic rod. already helical in its undeformed
state, is bent and twisted into another helix. Faulkner and Steigmann (1993)
have considered this class of problems and have demonstrated that this is
the most general statically controllable deformation possible for inextensible
. elastic rods®. As discussed in section 3.2.1.2, the initial twist per unit length

along the rod, &Y, is equal to the geometric torsion defined in (3.35a). As well,
the initial curvature of the centerline. k%, is given by (3.35b). These are re-
quired so that the deformation can be maintained by end forces and moments
alone. Faulkner and Steigmann (1993) show that the moment (M = M;e;)
and force (F = Fje;) necessary to maintain a deformation in which this ini-
tially helical rod into bent and twisted into another helix (subjected to the

same restrictions regarding the twist per unit length ;) are given by

My =GJ (v -1%,
My =0. (3.49)
1‘]3 = El’z (h’r ol h?) .

and
" T—7)GI(r = 7Y — - ]
Fi=(7 =) [GJ(r = 7°) = Bl = x2) ]
F2 =0, (3 ED)
oy [ 0\ Re 0
Fy=(r—1 )[ (7 - 1°) = — Elz(r. — & )]
where
Ke =1/K3 + K3
(3.51)
=\l + (.

*In the case of orthotropic rods, a restriction is that all of the bending must be about
only one principal direction in the cross section. This implies that for both the initial and
deformed helicics, the twist per unit length along the rod be equal to the geometric torsion
of the centerline (as discussed in section 3.2.1.2).
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These results assume that all the bending is around the ez axis throughout
the entire rod®. Note that if the rod were initially straight (7" = 0. " = 0)
equations (3.49) and (3.50) reduce to equations (3.38) and (3.39) respectively.

To begin the numerical procedure. a rod with an initial helical shape is
chosen by specifying R® and a® These values thus determine the initial
centerline curvature and torsion of the undeformed helix. This rod will then
be deformed into another helix with another specified R and a. As before,

the starting coordinates in the global basis are therefore given hy

XN=~h Y =0. Z =0, (3.52)

while the initial material basis is again given by

e 0 cosa sino B
€z » = 1 0 0 Eg . (3.5:4)
es. .0 sina —cosa J LE;.

Note that all of the conditions at the start of the rod are completely deter-
mined so that shooting will not be required.

To compare numerical and analytical results. a steel rod with an aspeet
ratio of ten and an initial helical shape (R = 0.05 m. o = 15°) is choscn.
This rod is then deformed into another helix with a radius selected 1o he
the numerical and analytical results for the geometry of the deformed shape.
As can be seen, there is once again excellent agreement with no noticeable
difference between the two solutions.

Figures 3.23 and 3.24 show the twist per unit length and the enerpy
integral respectively along the rod for this particular deformation. #, re-
mains constant at 5 m™' which is the expected valie for this case from equa-
tion (3.35a). The energy integral also shows cxeellent consisteney with no
noticeable variation from the initial value.

Similar results (not shown) were found for the same initial helix deformed
into a variety of other helicies. In all cases investigated there was again ex-
cellent agreement between numerical and analytical results for the geometry
of the deformed helix as well as in the values obtained for &, and the energy

6Note that it would also be possible to have all hending about the ez axis instead.
In that case, F3 = 0 and Mz = 0 while Fy and My would be nonzero, Bending aboul
the e3 axis is chosen here to maintain some consistency with results for helicies presented
previously.
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integral. Of particular interest is the special case in which the final deformed
helix is a straight rod with no twist for which both the curvature and the
torsion are zero. Figure 3.25 shows the initial and final geometries which
result. Note that this is essentially the inverse problem of the straight rod
deformed into a helix shown in Figure 3.9. In the former case, both foices
and moments are required to maintain the deformed configuration. In the
present case, no forces are necessary while the moments required are equal
and opposite to those in the former case.
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(b)

Figure 3.25: Initial Orthotropic Helix Deformed Into a Straight Rod: (a) Un-

deformed Helix, (b) Deformed Configuration
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Figure 3.26: Initially Curved Cantilever Beam Loaded Out of the Plane of
Initial Curvature

3.2.2.2 Initially Curved Cantilever Loaded Out of the Initial Plane
of Curvature by a Dead Tip Load

The final problem considered is that in which an initially curved cantilever
beam is acted upon by a dead tip load out of the plane of initial curvature
as shown in Figure 3.26. The numerical procedure is started at the fixed end
of the beam where the global coordinates are

X =0. Y =100 in, Z =10 (3.51)

and the initial material basis is given by

El 1 0 O E]
{Eg} [D 0 1 J{Eg} (3.55)
e;. .0 -1 E;
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The initial forces are therefore given by
F'l = D
Fy=—-P (3.56)
Fy=0.

while the moment components at the start of the rod are

M, =unknoun.
M, =0. (3.57)

My =unknoun.

The My and My components are unknown since these will depend on the
resulting deflection once the load is specified. A1, = 0 since the load is acting
in the initial e, direction and no moment will be produced about this axis.
This problem is therefore a two parameter shooting problem. At the other
end of the rod. the two corresponding known boundary conditions arise from
the fact that this is a free end and therefore the M, and M; components
must vanish,

Table 3.2 shows the predicted coordinates of the tip of the cantilever for
various dimensionless loads k& where

- PR? 3.5

* 7 (3.58)

and El; = Ely = Fl. These values show excellent agreement with those

reported by Surana and Sorem (1989) where a nonlinear finite element pro-
cedure was used.

To consider a more complicated loading condition and to demonstrate the
suitability of the numerical procedure for dealing with such a load. the tip
load in Figure 3.26 was replaced with dead uniform distributed load acting
in the same plane. Table 3.3 shows the results for various ky values where

[

bt
1

kg = —— (3.59)

previous solutions was not possible in this case since no other solutions to
this particular problem were found in the literature. Also note that for all
the loads considered in this section (both tip loads and uniform distributed
loads) the energy integral was once again found to show excellent consistency
with no noticeable variation to at least seven significant figures.
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Table 3.2: Geometry at the Eud of a Curved Cantilever Under the Action of
a Dead Tip Load

Current Method Surana and Sorem (19849)
k| Ey (in.) Egz (in.) Ej; (in.) | By (in.) Ea (in.) Ej (in.)
1.0 | 69.1362 T71.6529 152722 | 69.1975 716195 150119
2.0 | 65.4006 73.8728 27.5836 | 65.5727  T3.TTOG 27.2169
3.0 | 61.0592  76.4225 36.4615 | 61.3109  76.2000  36.106]
4.0 | 56.9396 78.8072 42,7314 | 57.2323  TS.6598 421276
5.0 | 53.2915 80.88G1 47.2451 | A3.6011  80.7386  16.9963
6.0 | 50.1288  82.6567 50.5950 | 50.4428  82.5185  50.3935
1.0 1473945 841679 53.1595 | 47.7069 810353 52,9962
8.0 | 45.0206 85.4561 55.1786 | 45.3285 83.3319  55.0.158
9.0 [ 42,9451 86.5639 56.8080 | 43.2471  86.4472  56.6949.1
10.0 | 41,1167  87.5240  58.1511 | 414120 S7T.4136  55.0621
11.0 | 39.4935  88.3625  59.2787 | 39.7818  88.2572  59.2056

)
12.0 | 38.0422  89.1002 60.2404 | 38.3233  88.9990  60.1806
13.0 | 36.7359  89.7536  G1.0719 | 37.0097  89.6557  61.0:232
14.0 | 35.5530  90.3359  61.7994 | 35.8195  90.2407  61.7600
153.0 | 34.4758 90.8580 62.4427 | 34.735] A.7640 62A112
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Table 3.3: Geometry at the End of a Curved Cantilever Under the Action of
a Dead Uniform Distributed Load

ke | Eq (m )} Ea (in.) Ej (in.)
1.0 | 70.5656  70.7751  4.6391
2.0 | 70.1381  70.9649  9.1990
3.0 | 694515 71.2698 13.6082
4.0 | 68.5387  71.6746  17.8090
50 | 67.4398 721613 21.7603
6.0 | 66.1964 72.7111  25.4381
7.0 | 64.8482 73.3063 28.8330

8.0 | 634307 73.9303 31.9474
9.0 | 61.9738 74.5716  34.7920

10.0 | 60.5020 752177 37.3826
11.0 | 59.0343  75.8606 39.7381
12,0 | 57.5852  76.4940 41.8786
13.0 | 56.1654 77.1135 43.8238
14.0 | 54.7824  TT.7156  45.5930
150 | 53.4411  78.2085  47.2038




Chapter 4

Multiple Solutions For
Cantilever Beams Under Dead

Loads

In the previous chapter a numerical solution of the nonlincar cquilibrium
equations governing the three-dimensional deformations of rods was devel-
oped and presented. The two point boundary value problem was solved by
using an initial value approach coupled with an iterative shooting technigque
to ensure that the required boundary conditions at the end of the rod are
satisfied. This procedure was combined with a method of considering the rod
as a number of segments which are assembled in such a way as to maintain
continuity and compatibility. Numerical results for several problems were
obtained and compared with previous analytical, numerical or experimental
solutions to verify the current numerical results. Further, the suitability of
the shooting procedure to finding multiple equilibrium solutions, when they
exist, was shown.

In this chapter the numerical procedure previously developed is used to
investigate the problem in which a cantilever beam is loaded by dead tip
and uniform distributed loads (Raboud et al. 1996a). Previous anthors
(Navaee and Elling 1991, 1992) have detailed the development and geometry
of multiple planar equilibrium shapes as the load is increased. It is interesting
to note that in their experimental verification of these multiple shapes (which
used orthotropic rods), it was difficult to maintain some of the planar shapes
as the rod had a tendency to twist out of the plane. This suggests that the
full three-dimensional problem needs to be considered.

60
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Figure 4.1: Cantilever Beam With Dead Tip Load, P

The problem of the buckling of a deep cantilever beam (ie: an orthotropic
rod) due to tip loading has been considered by Hodges and Peters (1975).
In particular, they consider the loads necessary for out-of-plane buckling for
rods with rectangular cross sections and various width to height (aspect)
only the loading necessary to maintain the deformed shape.

The problem considered is the deformation of a cantilever beam due to a
dead tip load as shown in Figure 4.1. The cross section is rectangular with

of the beam is aligned with the global E; axis while the principal directions
of the cross section are in the E, and E; directions. The load P is applied
in the negative E; direction. The numerical procedure is begun at the fixed
end of the beam with the initial geometry and orientation given by

X=0, Y=0  Z=0, (4.1)

and
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respectively, while the force and moment components are

=0,
F=P (1.3)
F3 =0,
and
My =unknown.
M, =0, (-1.1)

Mz =unknown.

This is therefore a two parameter shooting problem with the M, and Al
components of the moment at the fixed end of the beam unknown. (Note
that planar deformations correspond to the situation in which the initial A,
component is set to zero). The corresponding known conditions at the other
end of the rod are that both M, and Ay are zero at the free end!.

4.1 Buckling of Planar Shapes

4.1.1 Development of Multiple Planar Shapes

For the case of planar deformations, it has been shown previcusly (Navace
and Elling 1991, 1992: Faulkner et al. 1993) that for a tip load the number

of equilibrium shapes is a function of the load parameter

ol
i

where P is the magnitude of the load and L is the length of the beam. The
number of equilibrium shapes for various ranges of o is given Table 4.1,

"Note that M, must also be zero at the free end. However, this particular loading
combined with the initial values at the fixed end given by equations (4.1)-(1.4) will result
in a moment at the free end with no component in the E; direction for any initial M, or
Ms. Thus a relationship exists between the three moment components at the free ened and
care must be exercised when choosing which two to use as houndary conditions as not. all
combinations will work for all situations. For example, both M, and My will remain zero
at free end (and throughout the rod in fact) if the initial M; component is zero (since this
corresponds to a planar deformation with no twist). The choice of My and M. works for
all the deformations discussed in this chapter.



CHAPTER 4: MULTIPLE SOLUTIONS FOR CANTILEVER BEAMS 63

Table 4.1: Number of Planar Equilibrium Solutions as a Function of the Load
Parameter o

B Load Parameter # of Eq}iliilibriun’il Cc;:nﬁrguratians

0<ao<32i14 |
a=3.214

3214 <0 < 7.142
a= 17142

7412 < a0 < 10.935

B L ba

[k §

shapes can be reproduced using the present numerical technique by setting
M; = 0 at the fixed end of the beam to ensure planar deformations (which
reduces the problem to a one parameter shooting problem). Figure 4.2 shows
the deformed configurations for a one meter long beam corresponding to a
load o = 3.214%. This figure shows the original equilibrium configuration
#1la). Figure 4.3 shows the three resulting planar shapes corresponding to
a load a = 5. It can be seen Low the second equilibrium configuration in
Figure 4.2 (Shape #1a) bifurcates into two different shapes (Shapes #2 and
#3 in Figure 4.3) as the load is increased. Note that these computed shapes
show excellent agreement with previously published results.

The development of multiple solutions can also be seen in Figure 4.4 which
shows the M3 component at the fixed end required to maintain equilibrium
as a function of the load parameter a. The M3 component for Shape #1
begins at 0 at a load of @ = 0 and increases as the load is increased. This
is the only solution which exists below a = 3.214. At a load of a = 3.214 a
new equilibrium configuration exists as shown by the fact that a new curve
begins at this point. As the load increases, this new solution bifurcates

*For these and all other numerical results generated by the numerical procedure in
this chapter, the energy integral (equation (2.3)) was found to be constant in each case.
Further, an overall equilibrium balarce was observed in each case.
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Shape #1

Shape #2

2r a=3214 .

M, Component at Fixed End. (Nm)
o

tr Shape #3

o. Dimensionless Planar Load Parameter

Figure 4.4: Fixed End Moment Component M3 Required to Maintain Planar
Equilibrium Configurations

into two shapes (Shape #2 and Shape #3) with distinct M3 components
required to maintain equilibrium. Note that the sign of the M3 component
only indicates whether the tip of the beam has a positive or negative E;
coordinate. As the load is further increased. new equilibrium configurations
(not shown here) would appear in the same manner. This type of figure will
be useful in the following discussion of multiple three-dimensional solutions.
In the three-dimensional case both A{; and M5 can be considered.

4.1.2 Buckling of Planar Shapes Out of the Plane

Hodges and Peters (1975) considered the problem in which a cantilever beam
under the action of a dead tip load buckles out of the plane. (In what follows
buckling is referred to as the transition from a planar equilibrium state to
an infinitesimally nearby out-of-plane solution.) In particular, they used

loads as a function of the aspect ratio (a/b) of the cross section®. Using

3For their numerical values, Hodges and Peters (1975) considered materials with a
Poission’s ratio v = 0.3.
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the present technique with Af; # 0 allows the determination of the buckling
loads as shown in Figure 4.5 where the dimensionless loading parameter is
given by
PL? ,
= — (-1.6)
vVGJ x ET

(Note that this problem is a two parameter shooting problem, unlike the
planar cases. since AM; may now be non-zero and is unknown.) These results
show excellent agreement with those of Hodges and Peters (1975). For ex-
ample. when the results are extrapolated to an aspect ratio of zero (which
is equivalent to ignoring the out-of-plane flexural rigidity of the rvod). the
dimensionless buckling load approaches

Bo = 4.0126 (1.7)

which is also the result given by Landau and Lifshitz (1970). Further. when
the curve is extrapolated to the horizontal axis, the load increases without
limit as the aspect ratio approaches 0.607 indicating that at higher aspect

1.1 p——p—— T —r———

1.0 — Tip Load .
0.8 Distributcd Load "

08
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0.6
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ool— v o vy
0.0 0.1 0.2 03 0.4 05 06 0.7 0.8 9 1.0

Aspect Ratio (a/b)

Figure 4.5: Dimensionless Buckling Loads as a Funection of the Aspect Ratio
for Dead Tip and Uniform Distributed Loads
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ratios the rod does not have a perturbed out of the plane solution which
agrees very closely with the results of Hodges and Peters (1973).

Figure 4.5 also shows the dimensionless loads which provide nearby out-
of-plane equilibrium shapes if the tip load is replaced with a uniformly dis-
tributed dead load acting in the same plane. Again, as the aspect ratio
approaches zero, th» loading parameter approaches

7o = 12.85, (4.8)
where
w, L3 )
| (4.9)

VoI > El

and w, is the magnitude of the distributed load per unit length. It can be
This illustrates that. relative to Jp and 1g. the buckling loads for the tip and
uniformly distributed loads at any aspect ratio are close. but not identical.,
to each other. It is especially interesting that both cases have a very similar
different loading conditions.

The results shown in Figure 4.5 for the distributed load case were verified
experimentally using an aluminum cantilever beam with an aspect ratio of
0.260 loaded under its own weight. By varying the length, it was found that
the beam buckled out of the plane between a length of 3.38 and 3.40 m. This
agrees closely with the predicted length of 3.398 m.

The results of Hodges and Peters (1975) and those above in Figure 4.5
indicate only the loads at which out-of-plane deformations hegin through the
buckling of a planar equilibrium shape (Shape #1 as shown in Figures 4.2
and 4.3). However, as has been discussed previously, more than one planar
equilibrium shape can exist for certain load ranges. The question naturally
arises whether or not these other planar equilibrium configurations may also
buckle out of the plane in a manner similar to the buckling behavior discussed
so far. To illustrate, consider a cantilever with a tip load and an aspect ratio
of 1/1.7. For this aspect ratio. out-of-plane buckling occurs for £,/3 = 0.248
or # = 16.18 (from Figure 4.5). Below this load only planar Shape #1
(Figure 4.3) exists and the M; component for equilibrium is therefore zero
as shown in Figure 4.6. Increasing the load bevond this value results in the
moment component Ay increasing from zero as shown in Figure 4.6. (Recall
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Figure 4.6: A/, Component Required to Maintain Buckled Equilibrivm Con-
figurations. a/b=1/1.7

that a non-zero M, component implies that the tip of the heam has moved
away from the original E;-E; plane of the rod.) The twisting moment M,
continues to increase as § is increased due to a combination of the load
getting larger and the tip of the beam moving further away lrom the original
plane of the rod. The load at which multiple planar solutions hegin to ocenr,
0 = 30.25 (which is equivalent to a = 3.214 in Table 4.1). is also indicated in
Figure 4.6. Out-of-plane buckled loads are therefore possible at lower loads
than are the multiple planar solutions. For loads above 4 = 30.25 it was
found that each of the two new planar solutions can also buckle out of the
plane. These are indicated in Figure 4.6 which shows that above /4 = 59.76
(Shape #2, Figure 4.3) and 8 = 42.02 (Shape #3, Figure 4.3) the other
the behaviour described above. As the load is further increased above these
values, the moment component Af; necessary to maintain equilibrium also
increases. Note that Figure 4.6 shows the twisting moment for the buckled
shapes assuming the rod moves to only one side of the E;-E; planc. There
is a second half which is symmetric about. the M, = 0 axis which would
consider shapes on the other side of the original plane where the bean tip
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has the opposite E3 coordinate.

A similar behavior can been seen in Figure 4.7 which shows the M5 com-
ponent required for equilibrium. The planar Shapes #1 - #3 are shown as
the dotted curves and are eqaivalent to the curves shown in Figure 4.4. The
new buckled shapes are indicated by the new branches which develop from
the planar curves. The main difference between Figures 4.6 and 4.7 is that.
as mentioned, the AM; component is identically zero for the planar shapes.
Thus these all collapse onto the same line (the M, = 0 axis) in Figure 4.6.
Another difference is that, as mentioned previously, Figure 4.6 has symme-
try about the M, = 0 line (since the tip of the beam could buckle equally 1o
cither side of the original E;-E, plane). Figure 4.7 shows no such symmetry
since the buck]éd shapeq regardléss of w}ﬁc’h side they hu&k]e’ to, wil] have

sent Lhc bucl\led ccxnﬁguratmusg each lepxesent palr of buc}\lécl sha.pea (DDE
on each side of the original plane).

To appreciate the deformed shapes of these rods, Figure 4.8 illustrates
the deformed shape of a 1-m long rod with loads of # = 64 corresponding
to Shape #2 and 8 = 44 corresponding to Shape #3. These loads are just
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Shape #2 Shape #3
B=64 B =44

P

Figure 4.8: Geometry of Buckled Shapes #2 (4 = 64) and #3 (/ = 44),
a/b=1/1.7
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ahove those required for buckling in each case. In both cases the deformed
shapes are observed looking down the E, axis in the positive E; direction.
Alsa, the cross sections here, and in all such figures in this chapter. have
been expanded by a factor of ten for clarity.

4.2 Non-Buckled Three-Dimensional Shapes
4.2.1 Deep Cantilever Beams Under Dead Tip Loads

All of the above analvsis only considers the development of out-of-plane solu-
tions as the buckling of planar shapes (ie: an equilibrium path exists between
the out-of-plane solution and a planar shape). A larger question is whether
or not. other three-dimensional equilibrium shapes exist which do not de-
velop as huckled planar ones similar to development of multiple solutions in
the plane. This may mean that the moment component Al; for these new
solutions may be considerably above zero. Using the shootiug procedure de-
scribed previously, larger initial estimates for M, can be used as input to
the numerical procedure to search for these solutions. Since this involves a
two parameter shooting problem, the actual technique used was a more sys-
tematic approach involving the use of contour maps as described by Lipsett
ct al. (1993). Details and limitations of the procedure are described in more
detail in Appendix C. Figure 4.9 shows the non-zero M; values which result
in equilibrium being satisfied. (The numbers shown beside each figure will
be discussed later.) This figure indicates that the development of these new
shapes is qualitatively similar to the development of multiple equilibrium so-
lutions in the plane. At the critical load where 3 = 18.87. shown as point
I in Figure 4.9. a new equilibrium shape is possible (far removed and with
no connection to the original planar solution). As the load is increased, this

distinct equilibrium configurations. Figure 4.10 illustrates the development
of Shapes A and B as the load increases from the original bifurcation point.
It is somewhat surprising that this occurs at loads below those at which
multiple planar solutions are possible (F = 30.25) and yet the shapes taken
by these equilibrium configurations look similar to the planar shapes. As
an example, Figure 4.11 shows the three views of the centerline of Shape
B at a load of 8 = 25. In the E;-E; plane the shape of the centerline

appears similar to planar Shape #2 shown in Figure 4.3 even though there
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Figure 4.9: M; Components Required to Maintain Equilibrinin Conligura-
tions Far Removed from the Original Plane and the Associated Potential
Energies (Nm) For an Aspect Ratio of 1/1.7

As well as the two branches which develop from point I, there are addi-
tional shapes which develop from points [T and 11 shown in Figure 1.9, These
are again distinct equilibrium configurations. Where the branches seem to
cross each other and the Af; components are equal. the My components re-
quired to maintain equilibrium are different (as demonstrated in Figure 4.12)
so that the shapes are all distinct. Notice also from Figure 4.12 that there
appears to be no fundamental difference between the development of these
shapes far removed from the plane and the development of the multiple pla-
nar equilibrium configurations. The difference is only apparent when the A,
components are considered. These sl . fundamentally different from
those which develop as buckled planar :» . {sliown in Figure 4.6 and as
the dashed curves in Figure 4.9). These arc- not buckled shapes since they do
not develop from planar shapes. They are not related to the planar shapes
at all since no equilibrium path exists between these shapes and any planar
configuration.

The difference in the various configurations can also be seen by consider-
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Shape A Shape B

Figure 1.10: Development of Multiple Three-Dimensional Equilibrium
Shapes A and B, a/b=1/1.7
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ing the twist per unit length along the deformed configurations. For example,
Figure 4.13 shows the variation of x; along the length of the rod correspond-
ing to Shapes A, B, C and D at a load of 8 = 35. Shapes A and B, which
develop from the same configuration (point I, Figure 4.9). show a similar
pattern in which all of the twist is in one direction. Also, since Shape A
requires a larger M; component at the fixed end for equilibrium (as shown i
Figure 4.9), , is therefore larger at the fixed end (s = 0) as well. However,
Shapes C and D, which develop from point 11 (Figure 4.9) show a different
pattern in which the twist changes orientation along the rod (some of the
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twist is in a positive direction and some is in a negative sense). Also. in
comparison to Shapes A and B where most of the twist is concentrated near
the fixed end of the beam, Shapes C and D have more of the twist occurring
near the middle of the beam with the peak values of & occurring away from
the fixed end (and in the opposite sense of the value at s = 0). Note also
that s, vanishes at the point s = 1 for all of the configurations considered
since this corresponds to the free end of the bean.

4.2.1.1 Potential Energies of Deformed Configurations

It is also of interest to consider the potential energies associated with the
various shapes considered. Since a stable equilibrium state is a minimizer
of the potential energy function. consideration of the potential energies al-
lows a global comparison of the shapes obtained. However. this gives no
indication of the local stabilities of these configurations. A more complete
stability analysis would require the generation of all kinematically admissible
displacement fields which satisfy the required boundary conditions to ensure
that the energy is actually a minimum. This is difficult to do in the present
context of using this initial value numerical solution and is not attempted
here.
The potential energy I is defined as

E(k.r) = S(K)= P(r) (1.10)
where
L
S(k) = / U(k)ds (4.11)

is the strain energy stored along the rod (with {/(k) given by equation (2.6))
and

P(r)=P-r(L) (1.12)

is the load potential associated with the dead tip load P = =P EJable 4.2
hows the potential energies for the various shapes considered in Fignre 4.9 for
a steel rod (E = 200 GPa, v = 0.3) 1-m long with a 2.0 mm by 3.4 mm cross
section (aspect ratio = 1/1.7) at a load of 8 = 64. (Some of these values

L4y

which the M; component is zero. and each of these will have an associated
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Table 4.2: Potential Energies of Various Equilibrium Configurations for a
Deep Cantilever (Aspect Ratio = 1/1.7) at a Load 3 = 64

7F¢3teyﬁtial Energy (ani);

Shape

Planar (M; = 0) Shape #1 -21.45
Shape #2 20.18
7 Shape #3 13.14
“Buckled Shape #1  -21.46
Shape #2 20.17
- Shape #3 13.13

Far Removed Shape A 214
From the Plane  Shape B 6.64
Shape C 10.65
Shape D 17.21
Shape E 18.03
Shape F 18.94

buckled configuration as well (shown as the dashed curves in Figure 4.9).
Shape #1 has the lowest absolute potential energy. The potential energies
of the buckled Shapes #1 - #3 are all lower than those of their associated
planar shapes, however there is only a small difference in the energies. Of
the shapes far removed from the plane. branches AB from point 1. which
starts at the lowest load, has the lowest energies followed by branches CD
from point 11 and EF from point I11. It can also be seen that the branches
corresponding to Shapes A, C and E. (which have the higher M; components
from Figure 4.9 and lower M3 components from Figure 4.12) consistently have
potential energies lower than the associated branches B. D, and F. Also note
that branches AB have potential energies substantially lower than either of
the planar Shapes #2 or #3 or their buckled configurations while the other
branches (CD and EF) have energies which are comparable to these shapes.
It should be emphasized again that a solution with a low potential energy

to small perturbations. A more complete stability analysis would need to be
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completed before any definite assertions could be made about the stabilities
of these equilibrium configurations.

4.2.2 Shallow Cantilevers

To this point only rods with aspect ratios less than one (ie: deep cantilevers)
have been considered. When the aspect ratio is greater than one (a shallow
cantilever) a similar behavior is seen to occur. Figure 4.14 shows the results
for the M, component required for equilibrium, similar to Figure 1.9, for a
rod with an aspect ratio of 1.7. Figure 4.15 shows the My components for
the same beam. As can be seen from these figures. there are again numerons
equilibrium configurations possible. There are. however, some interesting
differences between the two sets of figures. One aspect to note is that in the
shallow cantilever case there are now five planar shapes shown versus three
in the deep cantilever case. This is due to differences in the definitions for
the dimensionless load parameters a (for planar results) and 7 (for ont-of-
plane results). In the shallow case. values of /3 correspond to higher values
of a so that more planar shapes can exist as shown in Table 4.1. Another
significant difference is that for the shallow cantilever there are no longer any
three-dimensional shapes (M; # 0) which develop as planar shapes buckle
out of the original plane (the dashed curves in Figures 4.9 and 4.12). This is
expected for Shape #1 (Figure 4.3) since it was shown that this planar con-
figuration would not buckle above an aspect ratio of 0.607. It was also fonn
that the planar Shapes #2 and #3 would not buckle above aspeet ratios of
approximately 0.7 and 0.6. respectively. Therefore the only shapes indicated
in Figure 4.14 are those far removed from the plane while Figure 4.15 shows
both those far removed from the plane as well as the planar shapes, Note
that. as before. Figure 4.14 only indicates shapes which deform on one side
of the original plane. There are another set of curves (symmetric about, the
M, = 0 axis) corresponding to shapes which buckle on the other side of the
plane.

As an example of a deformed configuration, Figure 4.16a shows an oblique
view of the deformed configuration corresponding to branch A in Figure 4.14
at a load of 8 = 20. Figure 4.16b shows the same view for the same rod
loaded as a deep cantilever with the same absolute Joad (corresponding in
this case to 8 = 34). Note that the two shapes are somewhat similar despite
being loaded as shallow and deep cantilevers, respectively.

The potential energies for the various equilibrium configurations are also
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Figure 4.14: M, Components Required to Maintain Equilibrium Configura-
tions Far Removed from the Original Plane, a/b = 1.7

shown in Figure 4.14, as well as in Table 4.3. corresponding to a Joad of
3 = 45. Note that this corresponds to a load of o = 8.688 so that five planar
shapes will exist as indicated in Table 4.1, The usual three planar shapes
considered thus far (similar to those of Figure 4.3) have the lowest potential

energies, with Shape #1 having by far the lowest. As mentioned previously
there are no associated buckled configurations for these planar shapes at this
aspect ratio. Of the shapes far removed from the plane, branches AB again
have the lowest potential energies followed by branches CD and EF. All these
shapes have potential energies significantly higher than the three planar ones.
This is in contrast to the deep cantilever case shown in Figure 4.9 where some
of these shapes bad lower potential energies than several of the first three
planar shapes. In this case. these shapes are closer in potential energies
to planar Shapes #4 and #5 (not shown) which in turn have much higher
energies than the other planar shapes.
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Figure 4.15: M3 Components Required to Maiutain Equilibrium Configura-

tions, a/b=1.7

Table 4.3: Potential Energies of Various Equilibrium Configurations for a
Shallow Cantilever (Aspect Ratio =1.7) at a Load 3 = 45

Sha];e;! Potential Energy (Nm)
Planar (M, = 0) Shape #1 2960
Shape #2 1.58
Shape #3 -7.32
Shape #4 26.14
Shape #5 23.08
Far Removed . Shape A 8.38
From the Plane  Shape B 14.71
Shape C 17.54
Shape D 20.17
Shape E 28.87
Shape F 33.72




P

(b)

Figure 4.16: Oblique Views of Deformed Geometries for the Same Rod
Loaded as a Deep and Shallow Cantilever at the Same Absolute Load: (a)
Shallow Cantilever (Aspect Ratio = 1.7, Shape A, 4 = 20), (b) Deep Can-
tilever (Aspect Ratio = 1/1.7. Shape B. 3 = 34)
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4.3 Some Final Remarks

The existence of several classes of multiple equilibrium configurations for
cantilever heams under dead 1ip loads in a Tully threc-dimensional setting
has been established. The most well known of these are the multiple planar
shapes which have been detailed previously (Navaee and Elling 1991, 1992;
Faulkner et al. 1993). Another well known class is the three-dimensional
configurations which result as planar shapes buckle out of the initial plane.
While this has been investigated previously for one particular planar shape
(Hodges and Peters 1975) it has been shown here that other planar shapes
can also buckle out of the plane in a similar manner. The third class described
here are the fully three-dimensional shapes which appear far removed from
the original plane of loading. The appearance and development of these
shapes is qualitatively similar to the multiple planar solutions. At some crit-
ical load. one of these shapes appears (not buckled from a planar shape) and
then immediately bifurcates into two as the load is increased. Somewhat
surprisingly, it was found that these new shapes could emerge at loads be-
low those required for the multiple planar shapes. Further. it is not known
whether or not the out-of-plane shapes suggested by Figures 4.9. 4.12. 4.14
and 4.15 arc exhaustive. However. the possibility for numerous equilibrium
shapes has certainly been demonstrated.

As a final note, it should be stressed that the results presented are highly
dependent upon the aspect ratio used. (The aspect ratios used were chosen to
illustrate some of the different types of behavior possible.) This is especially
true of the relative magnitudes of the loads required for the various shapes to
occur. For example. while some of the shapes far removed from the plane were
found to emerge at loads below those required for multiple planar solutions.
this was for a specific aspect ratio and will not be true for all aspect ratios. In
particular, if a square cross section is considered (aspect ratio = 1) then there
would not be any out-of-plane equilibrium shapes (buckled planar shapes
or those appearing far removed from the original plane) possible. This is
due to the fact that a rod with E/l, = EI; is considered to be transversely
isotropic and, since only initially straight rods are considered in this section,
cquation (2.15) applies. Thus, since M; (and therefore x,) must be zero at
the frec end of the beam, equation (2.15) requires that x; be zero at the fixed
end as well so that M; would be zero there also. As discussed previously.
requiring M; = 0 at the fixed end of the beam implies that only planar
equilibrium will exist.



Chapter 5

Three-Dimensional Effects in
Orthodontic Retraction
Appliance Design

Up to this point, the numerical procedure developed in Chapter 3 has been
used to solve a variety of problems. In Chapter 3 the segmental approach
(considering the rod as being comprised of several shorter rod segments) was
used to avoid the numerical difficulties which arise when a singnlarity in the
Euler angles used is encountered. In this chapter the segmental approach
will be used to advantage in modeling complex rod structures. The specifie
problem analyzed is an orthodontic retraction appliance used 1o reposition
teeth in the dental arch. These appliances have complex initial geometries
and can undergo large three-dimensional deformations so that a nonlinear
three-dimensional analysis is required (Raboud et al. 1996).

5.1 Introduction to the Problem

One aspect of orthodontic treatment involves space closure where a single
anterior tooth or group of teeth (segment) is retracted to close a space in
the dental arch. Often the space to be closed (6-9 mm typically) has been
created through the extraction of a tooth (typically an canine) to make room
in a crowded dental arch. This treatment is done to improve occlusion and /or
for purely cosmetic reasons.

Several methods exist for achieving this space closure. One such method is

83
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referred to as the segmented approach’ (Burstone 1982: Braun and Marcotte
1995) in which these spaces are closed through the use of specialized retrac-

tion appliances. These appliances consist of ‘springs” which are attached to
brackets fixed to the teeth. A number of different tvpes of appliances are
used of which the vertical loop and T-spring are the most common.

Figure 5.1 illustrates the use of a T-spring in a plane. The unloaded shape
is first brought to the neutral position. in which the ends of the appliance
are collinear with no applied axial force (Burstone 1982). essentially through
the application of couples to its ends. The appliance is then ‘activated” by
pulling the ends apart a specified distance. The fully activated spring is then
held in this shape by means of brackets which are mounted on the outer

"Here the segmented approach refers to joining several teeth together and moving the
seguients as one unit. This should not be confused with the numerical segmental approach
which is involved in modeling the rod as a number of segments.

5 mm
Unloaded Shape
- o
¥ ————— Neutral Length — : v—
Neutral Position
- 4 \“\
S 4 .-

i
p————— Neutral Length + Activation

Activated Position

Figure 5.1: Undeformed, Neutral Position and Activated Position for a T-
Spring Appliance in a Plane
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surfaces of the teeth.
When these springs are activated (deformed and then fixed to the brack-
ets) they apply forces and moments only to the brackets at each of its ends.

determine the resulting type of tooth movement. Therefore the appliances
must be able deliver appropriate levels of both force and moment to obtained
the desired tooth movement. As a result many of the appliance designs have
been evaluated either experimentally. analvtically (Chaconas ot al. 1971
Burstone and Koenig 1976; Faulkner et al. 1989) or numerically (Lipsett
et al. 1990; Faulkner et al. 1991). However, all of these evaluations have
been limited to describing the force systems under the assumption that the
appliance is mounted and remains in the plane of one of the tooth surfaces.
Because these force systems are usually applied to the buccal (towards the
cheeks or lips) surfaces and because these tooth surfaces can be in different
planes (Isaacson et al. 1993). they can result in three-dimensional effeets
which are undesirable and cause tooth movements which require further ror-
rective treatment in the future. By initially understanding these - ffects. they
can be minimized and it may also be possible to include modifications to the
spring designs which can essentially counteract the undesired effects.

5.1.1 Tooth Retraction in the Lateral Plane

To appreciate and predict the type of tooth movement that will occur from
a specific force system (forces and moments). the effective resistance of the
supporting tissue around the root of a tooth is described in terms of & center
of resistance Cie.. The center of resistance is defined as the point at which a
single applied force would cause the tooth to translate in the direction of that
force. When the force system is not equivalent to a single force applied at
the Cis the tooth will both translate and rotate. This combined movement,
(translation and rotation) is described by the center of rotation C,.., which is
the axis about which the tooth rotates during application of a specific foree
system?.

Figure 5.2a illustrates a typical situation in which forces and moments
from an activated vertical loop retraction appliance are applied by means of
a typical segmented system. The forces and moments applied to the brackets

*The center of rotation Cyo is equivalent to the instantancous center of the tooth in
this instance.
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(a) (b) ()

M/F=8.5 mm
{Translation)

(d)

Figure 5.2: Lateral View of an Orthodontic Retraction Appliance Used for
Space Closure: (a) Typical Installation. (b) Forces and Moments Applied to
Brackets in Lateral Plane. (c) Forces and Moments Applied to Appliance in
Lateral Plane. (d) Resulting Tooth Movement as a Function of M/F Ratio

forces and moments which act on the spring are shown in Figure 5.2c. The
activation of the appliance must provide the appropriate level of force and
moment to force (M/F) ratio if a particular type of tooth movement is to
occur (Quinn and Yoshikawa 1985; Tanne et al. 1988). Figure 5.2d illustrates
the predicted movements of the anterior tooth including the position of C,e
and C;o which are believed to occur in the lateral plane of the appliance.
If the force system at the bracket is just a force (M = 0 and M/F = 0),
the resulting tooth displacement is described by a center of rotation which
is apical (towards the tip of the root) to the center of resistance. Increasing
the M/F ratio can dramatically alter the Cyo of the tooth or tooth segment.
The center of rotation moves apically as the M/F ratio is increased from zero
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-
N

i mranislation oceurs. With tooth translation. there is no rotation and
€ astocated infinitely far from C,... While there is some uncert ainty about
the ~ swecific value (Tanne et al. 1988). it is generally accepted that a M/F

iic. of approximately 8.5 mm will result in translation for a single rooted
i 1th such as a canine. The M/F ratio of 8.5 mm is equal to the distance
“tween the point of application of the force svstem at the bracket and the
~enter of resistance. li.creasing the M/F ratio further now results in rotation
in the opposite direction hecause C,,, is now incisal (towards the crown of
the tooth) to Cre. Further increases in the M/F ratio cause (', to move
towards C,. from the incisal side. As a final limiting case when there is a
very large M/F ratio (caused by either M — ¢ or possibly i very small
force). C,o is essentially coincident with Cres-

5.1.2 Tooth Retraction in the Occlusal Plane

A similar analysis to that described above for the lateral planc can he applied
in the occlusal planc® (perpendicular to lateral plane) as shown in Fignre 5.3.
The forces applied to the brackets are shown in Figure 5.3a while those ap-
plied to the appliance? are shown in Figure 5.3b. If the applianee is mounted
on the bhuccal side as shown then the activation force F alone will tend to
rotate the attached tooth not about the (= (which in this plane is near the

res

tooth axis) but about a C;,, which is lingual (towards the tongue) to the
center of resistance as shown in Figure 5.3c. To inhibit this longitndinal axis
rotation and effect translation. the application of a moment M* as shown in
Figure 5.3d is required. The M~/F ratio required in this situation (canine
retraction) is approximately 3.5 mm which is again the distance from the
point of application of the appliance to the 7. Increasing the M=/ ratio
above this value will change the direction of tooth rotation so that Cr, s
now buccal to (7, as shown in Figure 5.3¢. Note that the foree F acting on a
tooth in both the lateral and occlusal planes is the same. however, the lateral
moment M is different from the moment M~ acting in the ocelusal plane.

3The occlusal plane is approximately the plane containing the tops of the teeth in the
dental arch.
4The appliance shown is now a T-spring which is another common retraction appliance,
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Lingual

Buccal -
M M
(a) |
G7 =)
M’ M
(b)
le "'. . Tes
‘: C.‘ 35 mm
M
M/F=0 M7F=35
(Translation)
(c) (d) (e)

Figure 5.3: Occlusal View of an Orthodontic Retraction Appliance Used for
Space Closure: (a) Forces and Moments Applied to Brackets in Occlusal
Plane. (b) Forces and Moments Applied to Appliance in Occlusal Plane.
(¢) Resulting Tooth Movement in Occlusal Plane for M=/F = 0. (d) Tooth
Translation in Occlusal Plane. (e) Resulting Tooth Movement in Occlusal
Plane for M~/F > 3.5mm

5.2 Boundary Value Problem Description

I order to analyvze the appliances using the numerical technique developed
in Chapter 3. boundary conditions for the problem must be established. In
all of the problems considered in this chapter, the geometry (position and
orientation) of both ends of the appliance will be taken as known. (This arises
from the fact that the brackets to which the appliance will be attached are
fixed to the tecth and their position and orientation relative to each other is
assumed to be known.) However, the components of the force and moment
acting at each end of the appliance are unknown so that this becomes a
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six parameter shooting problem. Starting at the posterior (left) end of the
apphance (see Figure 5.4). the initial position and ortentation are

N=0. Y=0  Z=u. (5.1
where
e = Eir
€ = Eg (‘i;)
e; =E;

All the forces and moments which act at this end (£, Fu. Fuo M. M.,
Ms) are to be determined so that there are six initial unknowns. The six
known boundary conditions at the anterior (right) end® of the appliance are
the geometry and orientation of the bracket at that end. Several ditferent
tvpes of boundary conditions at this end will he consider~d. In the usual
case. illustrated in Figure 5.4. both brackets are in the same plaue and are
collinear. The boundary conditions at the anterior end become

X = IBD. Y = 0. 7=, (5.3)
and
e; =E,
e = E,. (5.1)
25 ;Eg

where the Interbracket Distance (IBD) is simply the distanee between the
inside edges of the two brackets and is defined as {see Figure 5.1)

IBD = Neutral Length 4+ Activation. (5.9)

In the other case considered the two bhrackets no longer remmin in the
same plane but rather are located as shown in Figure 5.5. The location of the
anterior bracket has been moved out of the E1-E; plane by a rotation through
an angle a about the E; axis and maintaining the same distance hetween the
two brackets. Essentially the inside edge of the anterior bracket is located

®Note that left (posterior) and right (anterior) as shown in Figure 5.4 are only valid
for the left side of the dental arch.
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Figure 5.4: B mdary Value Problem for the Case in which the Brackets Are

(914}
in the E;-E, Plane and are Collinear

at a position on an arc with radius IBD centered about the origin of the
coordinate system. The anterior bracket is then further rotated by an angle
o as shown in Figure 5.5 in order to maintain a symmetric spring deformation.
Thus the total angular difference hetween the brackets measured in the E,-
Es plane is 2a. The resulting boundary conditions at the anterior end of the
appliance are

XN =]BDcosa. Y

li
=
™
Il

u\
&
)
@,
5
ot
o
=

while the local unit vectors are

e " cos2a 0 —sin2a ] (E;
ez = 0 1 0 Eg .
. €3 —~sin2a 0 cos2a .Ej

Note that with the spring orientation relative to the brackets and teeth
as defined above, the planar moment M. occlusal moment M~ and force F are

T
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Figure 5.5: Boundary Value Problem for the Case in which the Brackets Do
Not Remain in the Same Plane

equal to the moment components M. M, and axial foree £y respectfully, A
positive M3 component acting on the spring is as shown in Figure 5.2¢ while
a positive A, component acling on the spring is as shown in Figure 5,30, A

In this chapter saveral appliances will be analvzed. One particnlar point
of interest will be the activiitions at which the elastic imit is reached for cach
specific appliance. Only activations at or below this value are investigated,
No consideration is given to deformations into the plastic range beyond the
elastic limit (Burstone and Goldberg 1983) which would cause the appliance
to become permanently deformed. Appendix D contains a detailed deseriys-
tion of the criteria used to establish when the elastic limit has been reached.
The discussion of the force systems produced by these appliances will follow
the conventions used in Section 5.1. In the lateral plane, the axial foree I
will be referred to as simply F while the moment component (M) will be
referred to as M. This is to maintain consisteney with the orthodontic litera-
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ture. In the occlusal plane the A7, moment component will be referred to as
M-. The other force and moment components will be referred to as required.

5.3 Vertical Loops

5.3.1 Force Systems From Planar Vertical Loops Un-
dergoing Planar Activations

One of the most common retraction appliances used is the vertical loop. Four
different planar vertical loop designs were evaluated. The dimensions of the
typical vertical loop (Appliance #1) are shown in Figure 5.6a. In addition to
this standard vertical loop design, one with an apical helix (Appliance #2)
was also considered. Another modification to the standard vertical loop in
which the ends of the spring are given an initial 10° gabling bend® in the E;-
E. plane is shown as Appliance #3 in Figure 5.6a. The final planar vertical
loop considered (Appliance #4) is another modified version consisting of both
an apical helix and gabling bends of 10°.

When the discussion is limited to planar appliances undergoing planar
activations, the boundary conditions described in Section 5.2 are simplified
considerably. The shear force component F3 and the moment components 1/,
and M, are required to be zero in this situation. Further, since the appliances
considered are symmetric about the vertical centerline, the vertical shear
force F; is also zero. Thus. instead of six unknowns in the general case. there
are only two unknown values at the left end of the appliance (F and M). The
two required conditions at the end of the spring are given by

X =1BD. Y =0 (5.8)

The other boundary conditions discussed in Section 5.2 will be satisfied au-
tomatically with Fy = F3= M, = M, =0 specified at the start of the numerical
procedure.

The wire for these vertical loops was assumed to have a 0.406 x 0.559 mm
(0.016 x 0.022 inch) cross section and be constructed of stainless steel with
a Young's modulus of 177 GPa (25.7 x 10° psi) and a yield strength of 1400
MPa (200 x 102 psi) (Lipsett et al. 1990; Faulkner et al. 1991). Because of the
material used and the size of the wire, the elastic activation range for these

$Also referred to as a pre-activation.
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Figure 5.6: Results for Planar Vertical Loops Undergoing Planar Activations:
(a) Dimensions. (b) Forces. (c) M/F Ratios. (d) M

vertical loops is limited to the values shown (Figures 5.61 - -d) for cach of the
four designs. In each case, the IBD at the maximum activation is re quired
to be 20 mm for comparison between the various designs. For example. sinee
Appliance #1 has a 1.0 mm maximum activation, its neutral position is 19
mm as shown in Figure 5.6a. (Note that in this case the undeformed shape
of the spring is also the neutral position.) Similarly, since Appliance #4 has
a maximum activation of 2.0 mm, the neutral position is 18.0 mm.

A comparison of the results in Figure 5.6b shows the effect. of the addition
of a single wound apical helix to the simple vertical loop. The maximum
elastic activation is increased to 1.8 mm for Appliance #2 as compared Lo
1.0 mm for Appliance #1. A larger activation range is desirable since the

appliance will need fewer re-activations to close the same amount of space,



CHAPTER 5: ORTHODONTIC RETRACTION APPLIANCES 94

Another effect of the addition of the apical helix is that the force-activation
rate (slope in Figure 5.6h) is “softened”. This is also advantageous from
the orthodontist’s perspective since a low force-activation rate allows a more
constant force to be applied as the teeth (and therefore the brackets and the
ends of the appliance) move closer together. A constant force is thought to be
more efficient at moving teeth than are variable forces (Quinn and Yoshikawa
1985) so a low force-activation rate is desirable. Note that the addition of an
apical helix produces very little change in either the M/F ratio or the moment
M (apart from the increase in the elastic range) as shown in Figures 5.6¢ and
d respectively.

The effect of preactivating the simple vertical loop by gabling the ends
10° (Appliance #3) can be seen in Figures 5.6c and d. The main difference
is the additional moment (approximately 6 Nmm) required to initially bring
the preactivated appliance to the neutral position before activation. (This
is not required for the simple vertical loop since the undeformed position is
the neutral position in that case.) The additional moment has the effect of
increasing the M/F ratio especially for low activations. However. at higher
activations this effect is diminished. Figure 5.6c shows that at a 1.0 mm
activation, the M/F ratio for Appliance #3 is only marginally higher than
the simple vertical loop (Appliance #1). The preactivation has little effect
on the force-activation rate as shown in Figure 5.6D.

The combination of both the apical helix and the preactivation (Appliance
#4) produces a combination of the above effects as shown in Figure 5.6b-

elastic range from 1.0 to 2.0 mm, a softening of the force-activation rate and
an increase in the M/F ratio at all activations (approximately doubled at a
1.0 mm activation).

In summary, the planar vertical loops described provide a relatively high
level of force for a small activation (ie: high force-activation rate). However.
the M/F ratios generated are considerably lower than those required for
translation in the lateral plane (approximately 8.5 mm) except for the very
last portion of the deactivation. The simple vertical loop can be modified by
the addition of apical helicies and/or by gabling of the ends. The addition
of apical helicies allows for larger elastic activations while the gabling of the
ends introduces higher M values and increased M/F ratios. While the force
levels are certainly sufficient to produce tooth movement. the M/F ratios
at or near the maximum activations are still well below those suggested to
produce trai -Jation (Tanne et al. 1988).
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5.3.2 Force Systems From Initially Non-Planar Verti-
cal Loops Undergoing Planar Activations

To illustrate the effects of design parameters which are out of the lateral
plane and create forces systems which have the potential to cause ont-of-plane
tooth displacement, the vertical loops discussed above were modified by an
additional bend at each of the lower bends seen in Figure 5.6a. Each of these
lower radii (which are modelled as plane curves for the planar vertical loops)
are replaced with initially helical segments to give each of the ends of the
appliance an additional 10° out-of-plane preactivation’. The total angular
difference between the two ends in the E;-E3 plane is thereflore 20°. This

the same preactivation in the E;-E; plane for each of these appliances.
Since the vertical loops are now initially non-planar, the full force system
discussed in Section 5.2 must be considered. However, as with the initially
planar appliances. the vertical shear force /%, must again be zero due the
symmetry of the appliance about the vertical centerline. This symmetry
also requires that F3 and M; be zero as well so that there are three initial
unknowns (F, M and M~) for the springs considered in this section. The
three boundary conditions required at the other end of the spring are then
given by equation (5.3). The conditions given in equation 5.4 follow from the
symmetry when Fy, = F3 = M, = 0 at the start of the numerical procedure,
Figure 5.7 shows both a lateral and an occlusal view of the shape of the
spring (Appliance #1) with these additional bends before activation while
Figure 5.8 shows the activated shape at maximum activation. Note that the
activation causes the appliance to return to being almost planar. Figure 5.9
shows a comparison of the force-activation relationship for the original planar
appliances to those with the additional out-of-plane modifications. In cach
case the maximum activations to allow only elastic behavior are shown. I
Figure 5.9a the original vertical loop (Appliance #1) and the vertical loop
with preactivation (Appliance #3) arc compared to the modified designs

“The helicies used had the same radius as the initial plane curve. The piteh angle and
total included angle were chosen to produce the desired preactivations in both the Ex-Eg
and E;-E3 planes. Note that specifying the radius and pitch angle only determines the
shape of the centerline of the helix. The twist per unit length (x7) is arbitrary at this
point. However, since the procedure developed in Chapter 3 only considers the case of
constant initial curvatures and twist, kY was required to be equal to the geometric torsion
which would satisfy these conditions.
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Figure 5.7: Lateral and Occlusal Views of Undeformed Vertical Loop With
Out-of-Plane Modifications

Lateral View

Occlusal View

Figure 5.8: Lateral and Occlusal Views of Vertical Loop With Out-of-Plane
Modifications in Fully Activated Configuration
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which have the additional 10° out-of-plane (OOP) bends. It is seen that the
out-of-plane bends do not significantly influence the original force-activation
relationships so that the out-of-plane design modifications can be applied
without any appreciable change to the force applied when activated. In Fig-

#2) and the vertical loop with both the apical helix and 10° preactivation
(Appliance #4). Note that as indicated in the previous section. the appli-
ances with the apical helicies allow considerably more activation than the
original design. The force-activation relationship in the lateral plane again
demonstrates that the addition of the out-of-plane bends does not have any
appreciable effect on the original force-activation rate. However. the intro-

possible. In the case of the original vertical loop (Appliance #1) this reduc-
tion is from 1.0 mm to 0.7 mm with a total 20° out-of-plane bend.

While the force-activation relationships are essentially unaffected by the
additional out-of-plane bends. the M/F ratios in the original lateral plane
are influenced to some degree. Figure 5.10 compares the M/F ratios for
the various out-of-plane designs with the planar ones. The original loop
(Appliance #1) and the preactivated loop (Appliance #3) are compared in
Figure 5.10a while the other two designs with apical helicies (Appliance #2
and Appliance #4) are shown in Figure 5.10b. The eflect of the out-of-
plane bends on the original M/F ratio is evident only at small activations

where the additional bends cause a slight increase in the M/F ratio. Near
significant difference.

The major influence of the out-of-plane bends is the introduction of the
additional moment M~ in the occlusal plane which is not present in for the
planar vertical loops. The M*/F ratios for the four appliances considered are
shown in Figure 5.11. The qualitative behavior of the M*/F ratios are very
similar to that seen in the lateral plane in that the M"/F ratio decreases as
the activation is increased. The out-of-plane bends cause a large increase in
the generation of an occlusal moment M=. The M~/F ratio at the maximum
elastic activation varies up to approximately 2.0 mm for the 20° out-of-plane
Appliance #1. However, this maximum activation now occurs at only 0.7
mm compared with a 1.0 mm maximum activation for the original appliance.
Comparing the M*/F ratios at a particular activation, say 0.7 mm, shows
that Appliance #4 (apical helix and preactivation) provides a M*/F ratio
of approximately 3.0 mm. This is close to the value previously discussed
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to prevent longitudinal axis rotation for a single rooted tooth (a canine for
example).

Overall the vertical loop and three variations discussed (Appliances #1-
#4) can be modified to introduce moments which counteract the tendency
for a retracting tooth to rotate about its longitudinal axis. The introduction
of a three-dimensional design. while showing this possibility. again reveals
the extreme sensitivity of this particular loop to what would clinically be
relatively small variations. The out-of-plane bends of 10° each are relatively
small but because of the high load-deflection rate which is characteristic of
the vertical loop the result is large variations in the M*/F ratios produced.
In addition. the total elastic activation possible is small (from only 0.7 wmn
to less than 2.0 mm in the best case).

5.4 T-Springs

5.4.1 Force Systems From T-Springs With Out-of-Plane
Modifications Undergoing Planar Activations

As a comparison with the vertical loops discussed previously and as an al-
ternative which is less sensitive to small variations. a preactivated T-spring
design in which the material is 0.432 x 0.635 mm (0.017 % 0.025 inch) Tita-
nium Molybdenum Alloy (TMA) with a Young’s modulus of 69 GPa (10« 0%
psi) and a yield stress of 1240 MPa (180 x 10? psi) is also analyzed (Faulkner
et al. 1989; Lipsett et al. 1990). The dimensions of the planar design are
shown in Figure 5.12. Details of the segments used to model this appliance
are given in Table 5.1. As well as this basic design an additional one with
out-of-plane bends. similar to those for the vertical loops considered in the
previous section, was also analyzed. The appliance was modificd to the ini-
tial shape shown in Figure 5.13 by introducing 10° out-of-planc bends at the
positions marked 4, 6, 12 and 14 in Figure 5.12. This results in a total angu-
lar difference of 40° hetween the ends of the appliance in the ocelusal plane,
The shape of the appliance when activated to the elastic limit is shown i
Figure 5.14. The activation causes the appliance to return to being almaost
planar, similar to vertical loops previously considered. Note that, due to the
symmetry in the appliance, the problems considered in this section have the
same boundary conditions as the vertical loops discussed previously. Thus
when the planar appliance is considered, a two parameter shooting problem
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Figure 5.12: Geometry of Planar T-Spring

Table 5.1: Details of Segments Used to Model Planar T-Spring

Segment  Type  Length (mm) ~Angle (;) Radlm '('mx;n)

1 Straight 2.809 — —
2 Curved — 27.5 2.453
3 Straight 3.000 — e
4 Curved —_— 100 1.000
5 Straight 2.765 — —
6 Curved — 78 1.000
7 Straight 2.743 — -
8 Curved — 144.5 1.000
9 Straight 7.725 — —
10 Curved — 144.5 1.000
11 Straight 2.743 — —
12 Curved — 78 1.000
13 Straight 2.765 — —_
14 Curved — 100 1.000
15 Straight 3.000 — —
16 Curved — 27.5 2.453

17 Straight 2.809 —  —
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Figure 5.13: Lateral and Occlusal Views of Undeformed Preactivated T-
Spring With Out-of-Plane Modifications
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Figure 5.15: Comparison of Force-Activation Relationship For Planar T-
Springs and T-Springs With Out-of-Plane Modifications

is required while the initially non-planar T-spring requires a three parameter
shooting problem.

Figures 5.15, 5.16 and 5.17 illustrate the results for both the planar T-
spring design as well as the T-spring with the out-of-plane modifications. As

stainless steel and TMA. with the out-of-plane modifications are included.
Appliance #4 was chosen since it produced the best results (large elastic
activation range, higher M”/F and M/F ratios) of the vertical loops consid-
ered. Again, these springs are all compared based on the same interbracket
distance (20 mm) at the maximum elastic activation for each design and
material.

As is evident from Figures 5.15-5.17, the use of TMA dramatically in-
creases the maximum elastic activation. The elastic range of the vertical loop
increased from 1.7 mm with stainless steel to 3.8 mm with TMA for the same
spring design. The force levels generated at the maximum elastic activation
remain approximately the same so that the force-activation rate is ‘softened’
with the use of TMA. The material used. however. has little effect on the
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M/F and M~ /F ratios other than the increased range of activation as can be
secn in Figures 5.16 and 5.17. Note that the TMA vertical loop. due to its
larger activation range, has shorter straight sections at the ends to maintain
a 20 mm interbracket distance at maximum activation. This difference in
initial geometry accounts for the slight differ=nce between the two curves for
activations below 1.7 mm. If both vertical loops had exactly the same initial
geometry. the M/F and M~/F ratios would be identical over this range.

The results for the T-spring in Figure 5.15 show a much softer force-
activation relationship than for either of the vertical loops. The introduction
of the out-of-plane modifications again has very little eflect on this behavior
apart from a change in the elastic range (from 4.5 mm for the planar appliance
to 3.8 mm with the out-of-plane modifications). The forces generated at the
maxtmum elastic activations are about half of those for the vertical loops.

The most significant difference is in the M/F and M~/F ratios as seen
in Figures 5.16 and 5.17. These values are considerably higher than those
for the vertical loops over all activations. The M/F ratio at the maximum
activation is approximately 8.5 mm which is very close to the value suggested
to produce translation. As well. this behavior is essentially unaffected by
the out-of-plane modifications. However, the out-of-plane bends generate a
significant occlusal M*/F ratio. At the maximum activation, the 40° out-of-
plane T-spring produces a M*/F ratio of approximately 1.4 mm. At a more
intermediate activation. say 3.0 mm. this appliance produces lateral M/F and
occlusal M*/F ratios of approximately 12 mm and 2.5 mm respectively. At
this activation, this design has the advantage of providing the appropriate
force system in the lateral E;-E; plane as well as generating an occlusal
svstem which helps prevent the tooth being retracted from rotating about
its longitudinal axis.

5.4.2 Force Systems From Planar T-Springs Undergo-
ing Non-Planar Activations

All of the above analysis has assumed that the two brackets which transfer
the force system to the teeth are in the same lateral E;-E; plane. This is
somewhat unrealistic for larger interbracket distances. As illustrated in Fig-
ure 5.18, with an interbracket distance of 20 mm the attachment points on the
buccal surfaces could be at angles which are approximately 20° apart when
measured in the occlusal plane. The use of an initially planar appliance in
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Figure 5.18: Occlusal View of Tvpical Non-Planar Situation

this situation affects the forces and moments produced when the appliance is
inserted and activated. It can also produce clinically significant out-of-plane
forces when the original planar appliance is brought first. to the neutral po-
sition and then bent out of the plane to allow insertion into the non-aligned
brackets. This occlusal E;-Ej3 plane bend causes additional forees in the
occlusal plane. an occlusal M* moment and a torquing moment A, ahout
the longitudinal axis of the appliance. These forces are in addition to the
forces shown in Figures 5.15 and 5.16 for the planar appliance. The diree-
tions of these forces and moments (caused hy the activation) applied to the
appliance as well as to the anterior maxillary (upper front) tooth are shown
in Figure 5.19. (Note that for a symmetric appliance placed synunetrically,
F5 = 0 which is the case being considered here.) Figures 5.20, 5.21 and 5.22
illustrate the force F3. the occlusal M”/F ratio and the torquing moment. M,
produced when a planar symmetrically mounted T-spring is bent, inserted
and activated (to an interbracket distance of 20 mm) with varions angular
differences between the ends measured in the occlusal planc. (Note that the
boundary conditions for this problem are assumed to be as illustrated in
Figure 5.5 and given by equations (5.6) and (5.7) with i = 0.) The results
indicate that bending of a planar design to fit a non-planar situation can
generate clinically important forces and moments in ways which Lave not
been previously discussed. As an example. the M*/F ratio generated for an
occlusal plane angular difference of 20° is approximately 1.7 mm. However,
it is in the opposite to the direction of those discussed above so that it ae-
tually promotes rotation of the tooth about its longitudinal axis rather than
inhibiting it. The occlusal force F3 is not large (0.38 N for a 20° angular dif-
ference) but the torquing moment is approximately the same magnitude as
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Figure 5.20: Occlusal Force Fj as a Function of Angular Difference Between
Brackets

the occlusal moment M. Note that the torquing moment in this case would
create a tendency for the crown of the tooth to rotate labially (towards the
lips and cheeks) and the root lingually (towards the tongue). The net result,
of F3 and M, is a possible labial-lingual rotation of the anferior tooth. It
is difficult to determine the direction of this rotation or translation of the
anterior tooth generally since it is highly dependent on the exact angle he-
tween the two ends of the bracket as well as the offset. of the two brackets in
the E;-E; plane as discussed previously in the lateral casc for specific cases
(Burstone and Koenig 1974). In the case considered here, the combination of
F3 and M, would tend to promote a translation of the anterior tooth towards
the tongue. However, since the force level involved is quite low, not much
movement would be expected. The out-of-plane preactivated bends discussed
in Section 5.4.1 would counteract the effect of the M~ component. developed
by the occlusal plane angular difference between the brackets and help to
prevent rotation of the anterior tooth about its longitudinal axis. Note again
that, while not shown, the planar force system shown in Figures 5.15 and
5.16 (F and M/F ratio) remains virtually unchanged.
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5.5 Concluding Remarks

The numerical procedure developed in Chapter 3 has been used to analyze
orthodontic retraction appliances undergoing large three-dimensional defor-
mations. Appliances with both planar and non-planar initial configurations
undergoing both planar and non-planar activations were considered, The nse
of a number of segments facilitated modeling of the complex initial geometrios
of the appliances investigated.

Vertical loops were found to have higher force-activation relationships
than did the T-springs. Further. stainless steel vertical loops were found in
general to be more sensitive to small changes in design. both in and out of
the initial plane of the spring. The maximum elastic activation possible was
mostly a function of the material used but also depends somewhat on the
geometry. The out-of-plane design modifications introduced would partially
counteract the tendency for the tooth to rotate ahont its longitudinal axis.

T-springs were found to have lower foree-activation relationships and pro-
duce higher M/F ratios, both of which are desirable characteristies in a re-
traction appliance. TMA T-springs are far less scusitive to small changes in
design and therefore to inaccuracies in the actual elinical mannfacture and
installation of these appliances. A total out-of-plane bend of 40° produces «
force system which tends to promote tooth translation and inhibit rotation
about its longitudinal axis. The necessity of using these out-of-plane hends
was illustrated for a planar spring installed in typical non-planar situations.
This unaltered spring would result in an increased tendency for longitudinal
axis rotation.



Chapter 6

Nonlinear Elastic Materials:
Shape Memory Alloys

In the previous chapters, a numerical procedure has been developed and
implemented to solve three-dimensional rod problems. The method used was
a shooting procedure which converted the original boundary problem into a
sequence of initial value problems which converge to the desired boundary
conditions. The rods were assumed to consist of materials with linearly elastic
behavior. In this chapter, the numerical procedure is modified to account for
materials which exhibit nonlinear elastic behavior. In particular, materials
which show the shape memory effect will be considered. These materials
have been shown to demonstrate such nonlinear eflects as pseudoelasticity
and hysteresis.

Although these shape memory alloys (such as NiTi) have been studied in
the past. most of the work has been directed towards investigating the uniax-
ial extensional behayior of these materials (Shaw and Kyriakides 1995). Very
little work appears to have been done with regards to quantifying the bend-
ing and torsional behavior of rods constructed with these materials. Further,
no work has been done to investigate the coupling between these modes of
deformation. Due to this lack of experimental results for verification, there
are no accurate models which can quantitatively predict results for specific
situations in which rods with shape memory alloys experience a combination
of bending, torsion and extensional deformations. As a result, constitutive
models which demonstrate qualitative agreement with the limited experi-
mental results available will be proposed and implemented in the numerical
procedure. The goal in this chapter will be to demonstrate that the numeri-

112
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cal procedure developed in the preceding chapters for linear elastic materials
is adaptable to consider nonlinear elastic materials as well.

Tc) sirnplifv this task and a’\'cﬁd unnecessary detail the disc‘us:i()n '\\*il] he
Canstltutwe mnde]s whlch ina qualxtatwe sense deel bElld\’lDI‘% (1 e. pseu-
doelasticity and hysteresis) observed in these materials, will be described and
modifications to the numerical procedure required to implement these mod-
els will be discussed. A number of examples will be discussed which show
qualitative agreement with the limited planar results available. Two planar
orthodontic retraction appliances will then be considered to take advantage
of the ability of this material to deliver relatively constant force systems over
a large elastic range which is a desirable characteristic for orthodontic wires.

Note that the decision to limit the investigation to include only planar
results is made to simplify the discussion. It would be equally possible 10 con-
sider fully three-dimensional deformations which demonstrate similar nonlin-
ear behavior. However there is no known experimental work which has been
done that encompasses all of these eflects in three dimensions. Further. a
planar analysis is sufficient to achieve the stated goal of demonstrating the
adaptability of the numerical technique to include nonlincar clastic materials.

6.1 anstitutive Model For Shape Memory

tmnshxp assumEd for the nanlmear matena]s considered in this work. As with
the linear case, the dependence of the strain energy function (and therefore
the moment) on the initial curvature of the rod (k3 ouly in the planar case)
is assumed to be a function of the difference between the initial and final
curvatures y3 only. Both figures show an anti-symmetry about the origin
(i.e. M3(y3) = ~M3z(—v3)). 7

There are are some important differences to note between these two fig-
ures. In the linear case, the slope of the Mj;-~3 relationship is constant with
a slope of EJ (the flexural rigidity of the beam). In the nonlinear case, this
slope is not only variable with 3 but there are regions where the slope of the
My -3 curve is negative. Equilibrium configurations which contain regions
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Figure 6.1: Comparison of Moment-Curvature Relationships: (a) Rods with
Linear Elastic Materials. (b) Rods with Nonlinear Elastic Materials

with these curvatures could not be observed physically since they are unsta-
ble. In these regions, the material has violated the condition of convexity of
the strain energy function which is required for stability (Fosdick and James
1981; James 1981; Steigmann and Faulkner 1993). For the planar case this
convexity condition reduces to

o*U

—_— > 1
57 =" (1)
or, using equation (2.7),
M,
M 5o, (6.2)
I3

Figure 6.2 illustrates a typical strain energy function from which the Ms- v,
relationship in Figure 6.1b is obtained through equation (2.7). The dashed
portions of this curve indicate regions where the strain energy function is
non-convex (from equation (6.1)) and deformed configurations containing
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the associated curvatures are unstable. Also shown in Figure 6.2 arc the
Mazwell’s equal area lines (James 1981) which will be discussed shortly.

In Figure 6.3, the region of unstable curvatures in the M- 44 relation-
ship (shown for 3 > 0 only) is indicated by the dashed portion of the curve.
For equilibrium configurations to exist, it is possible for the curvatures to
have discontinuitjes at a number of points along the rod. At such points, the
curvature ‘jumps’ from one value to another value to exclude any curvalures
which are in the unstable regions. Points at which this jumping behavior oc-
curs are commonly referred to as corners’. At these points of discontinuity,
there are certain necessary conditions which must be satisfied for equilib-
rium. Steigmann and Faulkner (1993) have investigated this requirement, for
three-dimensional inextensible deformations of rods while Fosdick and James
(1981) and James (1981) have considered this type of behavior for the planar
inextensible case. Fosdick and James ( 1981) and James (1981) show that at

'However, this does not imply that at these points there are kinks in the rod with
sharp changes in direction. Even though there are step discontinuities in the curvalure,
the position coordinates and tangent direction of the rod remain smooth so that the term
corner in this respect is somewhat misleading.
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Figure 6.3: Loading/Unloading Behavior of Shape Memory Alloys

such points the moment must be continuous. i.e.
AM; =0 (6.3)

where AM; is the difference between the moments on either side of the
discontinuity. Thus in Figure 6.3 the solid lines joining points A-B and E-D
(which are the points at which the discontinuities in curvature would occur
to exclude the unstable regions) are horizontal so that a constant moment is
maintained across the discontinuity.

To illustrate the behavior of this material, in particular the hysteresis
effects. consider a material point undergoing a cycle of loading and unloading
as shown in Figure 6.3. As the moment applied to the material is increased
from zero, the curvature increases towards point A in Figure 6.3. Once the
moment reaches the value My which occurs at a curvature value of .2, a
further increase results in a jump to point B on the upper branch (indicated
by a solid line) since this is the only curvature region associated with moment

*The first subscript refers to the branch (U pper or Lower). The second refers to the
moment value at the discontinuity (Upper or Lower).
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values above AMy. Increasing the moment further results in the curvature
increasing to point C. Now as the moment is reduced. the curvature reduces
as well. When the moment falls below Afy the curvature does not jump to
the lower branch at point A. but rather continues along the upper branch
until point D is reached. At this point the curvature jumps back to the lower
branch at point E where further reductions in the moment cause the curvature
to approach zero. Thus for moments in the ranges Ms < My, or Aly > Aly
there is only one associated curvature value. In the range My < Mz < My
there are two stable curvatures (plus one unstable value which will never
exist in a physical situation) associated with each moment. In this range.
the particular curvature value which the material will adopt depends upon
the loading history of the material. Note that the hysteresis described above
is such that in a loading and unloading cycle, energy will be dissipated hy the
material. The loop could not be in the other direction (i.c. counterclockwise)
or energy would be created by the material.

Maxwell’s equal area lines, shown in Figure 6.2. are called “equal area”
lines since they divide equal areas in the M;-1; plot as shown in Figure 6.1
for 943 > 0 . The slope of these lines in Figure 6.2 are the constant moments
at which the discontinuities occur as shown in Figure 6.4. These lines define
the behavior of a particular material which is absolutely stable in the sense
that only curvatures whose tangent in Figure 6.2 is below the cnfire curve are
allowed® (note that this excludes some of the solid line in Figure 6.2 which
would correspond to weakly stable configurations (James 1981 ))- When this
type of behavior is observed, discontinuities in the curvature are still allowerd
(as shown in Figure 6.4) but there will be no hysteresis since the loading and
unloading curves will be the same. "

The behavior of the SMA material is very dependent upon the tem-
perature. Below a certain temperature, the nonlinear eflects of hysteresis
and pseudoelasticity will be present. At higher temperatures, a nonlinear
moment-curvature relationship (i.e. variable flexural rigidity) is still present,
but curvature discontinuities will not occur since all regions of the strain cn-
ergy function will be regions of convexity. Falk (1980) has proposcd a sixth
order polynomial Helmholtz free energy function to model shape memory
effects concerning shear deférmations of single crystals which models this
temperature dependency. There are four polynomial coefficients which can
be varied independently to model specific materials. Temperature appears

3Such points are called points of super-converily (Fosdick and James 1981).
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M,

Figure 6.4: AM;-+3 Relationship Following Maxwell's Equal Area Rule

as a separate parameter which affects the shape of the free energy function
and the position of the stress-strain relationship. A similar form could be
used to model the nonlinear Mj-~3 relationship which takes the tempera-
ture effect into account. However. since the purpose in this work is only to
demonstrate qualitative agreement with experimental results. a somewhat
simpler relationship, referred to here as a bilinear model will be emploved.
In this model. the effects of temperature are not included explicitly as this
is not required for the present objectives.

6.1.1 Bilinear Constitutive Model

terials in this work is shown in Figure 6.5. In this model. two separate
linear moment-curvature relationships exist. There are critical moment and
curvature values which define regions of unstable curvatures and divide the
moment-curvature relationship into lower and upper branches as shown. The
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Figure 6.5: Bilinear Constitutive Model for Shape Memory Alloys
moment-curvature relationship on each of these branches is given by
My = Lj 1 L7 ) L'm\‘("r lii‘?lil(‘!l@ (6.1)
Elyas 4+ M Uipper Branch,
where
= M g > 0. )
My =4 " " (6.5)
E—A'Iim Y3 < 0.

cally as shown in Figure 6.5. The definitions in equation (6.5) are necessary
because the two upper branches (one on either side of the origin) have mo-
ment intercepts with the opposite sign. In this model the parameters which
must be specified include the slope of each of the two branches (E/;, and
Ely), the moment intercept (M, < 0) which translates the upper branches
vertically as well as the lower and upper critical moment values (M, and
My respectively) at which the discontinuities occur. Note that from equa-
tions (2.7), (6.1) and (6.4) convexity of the strain energy function is satisfied
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provided E1;,>0 and E]i; >0 for the regions 4.y < |73| and |73] > uL. In the
region Ly > |v3] < yuL the curvatures are assumed to be unstable so that it
is unneccessary to define the Ms- 73 relationship specifically over this region.

The strain energy function for this material becomes. upon integration of

equation (2.7),

%EIL (ng - 2/~;3ng) + ¢y Lower Branch. )
U = ‘ . (6.6)
sE <h§ - 2»;3»;3) + Mip k3 + cp Upper Branch.

where ¢, and ¢y are constants of integration. However. since the reference
configuration (from which x3 is measured) is taken to be the undeformed

hecomes
oL = %E!L(Eg)g (6.7)
so that equation (6.6) becomes
[ {%Elmg ) Lower Branch. (6.8)
' -{;E]U (h% - 25352) + Mipka + ey Upper Branch. "

This is referred to as a natural reference configuration (Fosdick and James
1981). However. cy: cannot in general be fixed using similar arguments.

Using equations (6.4) and (6.8). the energy integral (/g) defined in equa-
tion (2.3} becomes

] %EIL(NgQ - h%) i (sz 4 )bg) Lower Branch. (6.9)
E = . B o \ 3. o
~1ENwE - Fy - (Xb; + )fbg) +ey Upper Branch,

Note that if the discontinuities follow Maxwell’s equal area rule as discussed
previously, the energy integral is required to be constant across the disconti-
nuity (Fosdick and James 1981: James 1981) which would then fix the value
of cy. In such a case, My and My would be the same and there would
be no hysteresis during loading/unloading although there would still be a
discontinuity in the Mj- y3 relationship.



CHAPTER 6: SHAPE MEMORY ALLOYS 121

6.2 Numerical Procedure For the Planar Sit-
uation

In this section the kinematics and equilibrium equations presented in Chap-
ter 3 will be simplified for the planar case where there is only bending about
one principal axis and no twist. The development described in section 3.1.1
will be followed and specialized for planar results. As well. the numerical
technique developed in Chapter 3 will he adapted to include the bilinear
constitutive model discussed in Section 6.1.1 which will be used to model the
shape memory materials.

6.2.1 Kinematics and Equilibrium
When the discussion is limited to planar problems. equation (3.1) becomes

ey’ i E(i'
{Eg}: [Rp]{eg}_ (6.10)
.3 es

where
7 [ cosed sinod ()
[Rp] = [ —sine cosed 0 J (6.11)
0 0 |

[Rp] is the rotation matrix for planar problems. In the planar case only two
material vectors deform since the orientation of €3 remains constant in the
Ej3 direction. As a result only one angle is neecessary to specify the orientation
of the material basis in terms of the local basis (whereas three Euler angles
are required in the three-dimensional situation?) and there are therefore no
problems with singularities in the planar representation as with the Euler
angles in three dimensions.

Only bending (about the e; axis which never changes orientation) is con-
sidered so the curvature along the rod reduces to

Hy = ¢ (6.12)

which is obtained from equations (3.3), (6.10) and (6.11) and where the !
notation again indicates differentiation with respect to arclength.

1Note that équaiicns 7('3,2) anﬂi(ﬁil]) are equivalent when 0 = 0 and o = 0,
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The coordinates of the rod segment in the global basis can again be ex-
pressed using equation (3.8) where now {r(s)} = {X'(5).Y(s).0}, {r(0)} =
{X(0),Y(0).0} and {x(s)}={x(s), y(s). 0} since only planar deformations
are considered. The coordinates of the centerline of the rod then satisfy

7'(s) = cos @, y'(s) = sino. 2'(s)

0 (6.13)

in the local basis.
The first. equation of cquilibrium, given in equation (2.2a). can again be
integrated for the planar case to vield

F

Fie;. (6.14)

['ﬂ] ‘ ) FID - lljﬁi
{Fz} = lRp]{Fg‘bgs} (6.13)
F3 0

following a development similar to that in Section 3.1.1 but limited to planar
results. The right hand side of equation (2.2b) then becomes

where

F x ej = ;[?223 (()16)
so that the second equilibrium equation can be written as

As a result. only the ez component of this equation is nonzero. Equa-
tion (6.17) can therefore be written as a single scalar equation

M= (F,O _ b,s) sino — (Fi§ - bgs) cos o. (6.18)

where equations (6.11) and (6.15) have be used.

Constitutive relationships are required to specify the function Mj; and
complete the governing equation (6.18). The next section discusses the im-
plementation of the constitutive model presented in Section 6.1.1 into the
numerical procedure.
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6.2.2 Modifications To Include Bilinear Constitutive
Models

When bilinear constitutive models (sce section 6.1.1) are specilied. the moment-
curvature relationship is defined separately for each of the two distinet cur-
vature regions. referred to here as the lower and upper branches. The model
emploved here is

Ao = El 43 Lower Branch.
e Elvas + ;‘ﬂlg,“ Upper Branch.

(6.19)

where M, is defined in equation (6.5). The equilibrinm equation (6.18) for
this material then becomes

ElnLo"

(Fiﬂ - bls) sin @ — (Ff - b;s) cos o Lower Branch.
7 v 7 (6.20)
Elo" =(F1U - bls) sing — (Ff_? - llg.‘i) cOs ¢ Upper Branch.

which, using the dimensionless parameters
P = T Hy = Hgy L. T3 = T4 L
R (.21
Vi=——, \i= ——. [
TEL” M TR
can be written as
; (1 = \1p) siné — (V0 — \ap) cos @ Lower Branch,
o= : . s . . .22
%[(ul@ —x1p) sing — (V8 — xap) cos r:fs} Upper Branch. ( :

6.2.3 Integration Procedure

When the bilinear constitutive model for shape memory alloys is immple-
mented, the numerical procedure proceeds in a similar fashic.: us previously
described in Chapter 3 with one significant difference. As show . in Figure 6.3
shape memory materials can, over a certain range of momei-: ... demonstrate
hysteresis in which the particular curvature assumed by the macerial depends
on whether the moment is increasing or decreasing at that point so that the
loading history of the material must be taken into account. It is therefore
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necessary to take a previous state of the material into consideration to de-
termine which branch (lower or upper) of M;-~3 relationship should be used
in the integration at each material point in the rod.

This previous state of the material is recorded in the form of a moment
distribution, at a particular load, in the which the moment and branch (lower
or upper) at each arclength is recorded. In the undeformed reference state.
this moment distribution is simply a zero moment (on the lower branch)
everywhere in the rod. The numerical integration proceeds along the rod
as hefore until a discontinuity in the curvature is encountered. When a
discontinuity in the curvature is approached, the step size of the integration
is continually reduced until it falls below a minimum tolerance. At this
point, the discontinuity is considered to have been reached. and the curvature
is changed accordingly. The integration then proceeds as before using the
appropriate branch in equation (6.22). A simple example is presented here
to illustrate the application of these concepts.

A cantilever beam. of shape memory alloy. under the action of a dead
tip load is shown in Figure 6.6a. Figure 6.6b shows the constitutive model
used for this material. Only one half of the Mjs-~3 relationship is shown
for convenience since all the curvatures in this problem will be in the same
(negative) sense. Seven distinct points (A-F) are labeled along the cantilever
for reference. Points B and C’ are immediately next to each other. In the
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Figure 6.6: Cantilever of Shape Memory Alloy Under a Dead Tip Load:
(a) Problem Definition, (b) Constitutive Model of Material in Unloaded Con-

figuration



CHAPTER 6: SHAPE MEMORY ALLOYS 125

M - — F
E
D
_ N - C - - L
B,C’

N

(a) (b) + M;

Figure 6.7: Cantilever of Shape Memory Alloy Under Dead Tip Load. Loaded
to Py: (a) Deformation of Beam, (1)) Location of Material Points on Consti-
tutive Diagram

along the cantilever so all of the material points indicated (A-F) arc on the
origin in the Ms-v; curve as shown in Figure 6.6).

As the load P is increased, to P, say. the cantilever deforms as shown
in Figure 6.7a. The individual material points A~F experience the moments
and curvatures as indicated in Figure 6.7h. Point I, whicl is at the free
end of the cantilever and therefore expericuces no moment. remains at the
origin of the Mjz-43 curve. Point A is the fixed end of the beam and thus
the magnitude of the moment at this location is immediately below My so
that all of the curvatures remain on the lower branch. If the load P is then
increased slightly, the moment at the fixed end increases to My at which
point a jump to the upper branch (high curvature region) occurs for a very
small region near the fixed end of the beam. '

As the load is again increased (to a value P;) the deformed shape is as
shown in Figure 6.8a. More material near the fixed end jumps to the high
curvature region as this material experiences moments greater than My as
shown in Figure 6.8b. Note that, since the high curvature region is located in
the material near the fixed end of the beam, the result is a large movement, of
the beam tip (free end). Let the value of P, be such that all of the material
between points A and B inclusive is in the high curvature region. Point €
is immediately next to point B but is in the low curvature region (i.e. lower
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Figure 6.8: Cantilever of Shape Memory Alloy Under Dead Tip Load. Loaded
to Py: (a) Deformation of Beam. (b) Location of Material Points on Consti-
tutive Diagram

branch). (Note that between points B and ( there is a discontinuity in the
curvature although the tangent at these points remains smooth.) This is
demonstrated in Figure 6.8b which shows that the material between points
A and B is in the high curvature region while the material between points
C" and F is in the low curvature region.

The load P, will be the maximum load for this problem. Now the load
will be reduced back to zero. Since the beam is being unloaded from this
reference load, the moment distribution (including the appropriate branch)
along the beam corresponding to the load P, is recorded. This information
is to be used to determine which branch should be used in the integration
procedure for each material point in the beam. Note that when the load was
being applied to the beam. the reference moment configuration was simply
no moment anywhere in the beam.

Consider the situation in which the load is reduced back to P = P,.
Figure 6.9a shows the resulting deformation of the beam while Figure 6.9b
tllustrates the curvatures and moments experienced by the material points.
Although the curvatures between points A and B have been reduced some-
what as the load has been reduced. the material between these points is still
in the high curvature region. Recall that this material was in the low cur-
vature region when the beam was loaded to this same load value as shown
in Figure 6.7b. This difference is due to the hysteresis in this material as
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Figure 6.9: Cantilever of Shape Memory Alloy Under Dead Tip Load, Un-
loaded to Py: (a) Deformation of Beam, (b) Location of Material Points on
Constitutive Diagram

described in Section 6.1 and results in a much larger tip deflection than when
the same load P; was applied originally (as opposed to being removed) as in
Figure 6.7a. This is because the material near the fixed end is still in Lhe
high curvature region. The material between points " and F experieneed
no discontinuities upon loading and remained in the low curvature region at
the maximum load P, as shown in Figure 6.8b. Therefore. no hysteresis will
occur in this material region as the load is removed so that Figures 6.7 and
6.9b are identical over the material region (¥-F,

As a result of the above behavior, the discontinuity in curvature. which
occurred at a moment of My when the load was being applied. now occurs
at a moment below this value (but above My). However, the moment, is
still continuous across the discontinuity as indicated by the dashed line in
Figure 6.9b. This situation continues until the load P is lowered to the point
where the moment at point B reaches My. As the load is then redueed
slightly below this value, the material at point B Jumps back to the lower
branch as discussed previously. Thus slightly less material is in the high
curvature region and slightly more material is now on the lower branch. As
the load is further reduced, more material from the upper branch jumps to
the low curvature region which causes the moment at which the curvature
discontinuity occurs to reduce further. This continues until the load 15 re-
duced to a value (say P},) such that the moment at point A reachies My, which
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causcs the last bit of material at the fixed end to jump back to low curva-
ture region. Thus there are no discontinuities in curvature and the deformed
shapes of the beam are identical for both loading and unloading to the same
value helow P.

6.3 Numerical Results

In this section numerical results will be presented for four separate prois-
lems. The predicted behavior of shape memory alloys (SMA) in these situa-
tions using the constitutive model described above will he compared to two
lincar elastic materials, stainless steel (SS) and Titanium Molybdenum Al-
loy (TMA). Rectangular wires with 0.406 x 0.559 mm (0.016 x 0.022 inch)
cross sections will be considered in each case. Again. the goal is to show
that qualitative agreement with experimental results can be obtained and to

The properties of the materials considered in this section are shown in
Table 6.1. The material properties for the stainless steel and TMA are dis-
cussed in Chapter 5. The Young’s modulus for the shape memory alloy is
taken from the tensile results of Miura et al. (1986). For the bilinear model
two elastic moduli are needed. In the examples which follow it will be as-
sumed that Efu = E/y, for the shape memory alloys considered. The eritical
lower and upper moments at which the discontinuities in curvature oceur are
selected to be My =5 Nmm and My =10 Nmm while the intercept value for
the upper branch is assumed to be Ay =—20 Nmm. These values are arbi-
trary (i.e. not selected to represent any particular material) but are chosen
so that the problems to be discussed in subsequent sections will experience
discontinuous curvatures.

Table 6.1: Material Properties

Material | Young's Modulus Yie]détréingth

(GPa)  (MPa)
SS 177 1400
TMA 69 1240

SMA 50 N/A
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Figure 6.10: Clamped-Slider Problem

The yield strength, as it is defined for linear elastic materials. has no real
meaning when shape memory alloys are considered. The yield strength will
only be used to determine approximate elastic ranges, using the procedure
outlined in Appendix D simplified to consider only planar deformations, for
the stainless steel and TMA materials for each of the problems considered.
This will serve as a guide as to how much load to apply to the shape memory
alloys since no other better indication is available.

6.3.1 Clamped-Slider Problem

The first problem considered is shown in Figure 6.10. The initially straight
beam is rigidly fixed at one end. The other end is constrained to have a
horizontal slope but is free to move in the E; direction. The load P is
applied at the center of the beam in the negative E; direction. This problem
was chosen since it closely approximates a three-point bending situation for
which there are previous experimental results.

When the analysis is limited to planar problems, the boundary conditions
which must be specified simplify considerably. A single angle (¢) and only
two spatial coordinates (X and Y in the E; and E, dircctions respectively)
are all that are required to specify the orientation and location at a materjal
point. Further, the shear force F3 and the moment components M; and M,
must be zero for planar problems. The result is that only six initial values
(compared to twelve for the three dimensional case) must be specified.

Due to the symmetry in this problem only one half of the beam needs to
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be considered. At the fixed end of the heam the initial coordinates are given
hy
X=0 Y=o (6.23)

while the initial material basis is

which corresponds to ¢ = 0. At the fixed end the force components are

o

(6.25)

3
i
137 e v B

due to the symmetry. The initial moment Af; is unknown so this becomes
a one parameter shooting problem. The known boundary condition comes
from the fact that. due to the symmetry. the slope at the center of the beam
must be zero so that

éf\:nter = D (626)

The vertical deflection at the center of the beam for the three materials
molybdenum alloy beams show linear load-deflection relationships with the
stainless steel beam having a higher slope due to the material’s larger mod-
ulus of elasticitiy. The maximum elastic deflection at the center of the heam
is limited to 0.316 mm for the stainless steel. The deflection of the TMA
beam is considerably larger at 0.714 mm although the maximum elastic load
is slightly less (10.89 N versus 12.26 N for the stainless steel beam).

When the shape memory alloy is considered, the load is applied up to the
maximum elastic load for the stainless steel (since this is the larger of the
two clastic materials). At the maximum load. the deflection of the center
of the beam is much larger at 2.14 mm. The load-deflection relationship is
linear up to a deflection of approximately 0.4 mm. At this point a plateau
is reached over which the slope flattens out over a considerable range and
then increases again. As the load is removed the load-deflection curve is
again linear down to a deflection of about 1.65 mm where another plateau is
reached until a deflection of about 0.25 mm where the unloading plateau joins
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Figure 6.11: Vertical Deflections at Center of Beam for Clamped. Slider Prob-
lem

the loading curve. Over the loading and unloading plateaus the slope of the
over a large range of deflections. This qualitative behavior is consistent witl;
results for three point bending tests reported by Miura et al. (1986) and
Duering et al. (1990)°.

Figures 6.12a-d illustrates the response of the clamped-slider hean with
the bilinear shape memory alloy material at the maximum load considered.
As can be seen in these figures nearly half of the beam is in the high cur-
vature region (indicated by the thick lines in Figure 6.12a) which is evenly
divided between the two ends. In fact. the deformation of the half heam con-
sidered in Figure 6.12a is itself symmetric so that it would have been only
necessary to consider 1/4 of the beam. The smoothness of the moment at
the discontinuous curvatures can be clearly seen in Figures 6.12¢ and d.

SNote that the boundary conditions modelled in the present work were chosen for
simplicity. The descriptions in the works mentioned did not give clear indications of what
the boundary conditions were in the actual experimental setup.
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Figure 6.12: Moment and Curvature Distribution of Bilinear Clamped-Slider
Problem at the Maximum Load 12.26 N: (a) Deflected Shape. (b) Constitu-
tive Diagram, (c) Moment Distribution. (d) Curvature Distribution

6.3.2 Inmitially Curved Cantilever Beam

Figure 6.13 illustrates the next problem considered. An initially curved can-
tilever beam (initially in the E;-E, plane) is acted upon by a dead tip load
in the E; direction.

At the free end of the beam the initial material basis is

{o}=[ g oo l{m} (6.27)

which is in terms of the initial angle ¢, which is unknown. (In the undeformed
position ¢y = 90°.) At the free end the moment Ms must be identically zero
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"_4.

Figure 6.13: Initially Curved Cantilever Beam With Tip Load

while the force components are given by

F] =P cos (;':)0. .
i (6.28)
Fy = — P sin oy.
so that all of the unknowns at the free end of the beam arc a function of the
unknown initial angle. This is therefore once again a one paramecter shooting
problem. The known boundary condition comes from the fact that at the
fixed end of the beam the slope must be zero so thai

Pfixed end = 0. ((5.29)

Note that, as shown in Figure 6.13, the fixed end of the cantilever is at the
coordinates

X=0, VY=o (6.30)

while the coordinates at the start of the beam (free end) are unknown ini-
tially. This could, therefore, be posed as a three parameter shooting problem
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Figure 6.14: Initial Angle at Free End for Initially Curved Cantilever Beam

with @y, X and Y at the free end as the initial unknowns and ¢, X and Y
at the fixed end as the known boundary conditions. However. the choice of
initial position X and Y simply translates the entire beam without affecting
the forces applied or the resulting deformation. Thus, the problem is posed
as a one parameter shooting problem as specified above. After the solution
is obtained a rigid body transformation is applied to the coordinates to move
the fixed end of the beam to the origin. This is done because shooting prab-
lems with fewer parameters generally have a faster and more well behaved
convergence (Faulkner et al. 1993). In this particular case the convergence
would very likely have been well behaved in the three parameter problem,
but it is usually good practice to reduce the number of unknowns as much
as possible.

Figure 6.14 shows the results for this problem in terms of the initial
angle at the free end of the beam as a function of the load applied for the
three materials considered. This figure appears very similar to the results
shown for the clamped-slider problem. The stainless steel material once again
undergoes a smaller elastic displacement while supporting the greater load
than does the TMA material. This can be explained by the much higher
elastic modulus of the stainless steel.

The response of the SMA beam is also very similar qualitatively to that
for the clamped-slider problem. The tip deflection at maximum load is once



CHAPTER 6: SHAPE MEMORY ALLOYS ) 135

2 T - T T T — —r By Sy rTmmTaga—aa o 7
Undeformed m'.- /
oF Beam B 4 Fa
o ~— High 18- g
’g 2f C urvature | Vi
£ Region 10 — -
s« /7 1 Es f—
£ ol 1 1 Z . ~~- Free End
] ! i 5> .
S -8 ! 206N /
&) 1 \ 10+
-~
&= 10 ‘,L.\_ \ - - -85 A 8
206} 1778 — — TMA 20l e T
2b SMA *. / ~ Fixed End
0 -8 6 4 .2 0o 2 4 53 o2 o YRR L TR
E, Coordinate (mm) Y, (mm'H
(a) (b)
B v v —— 03— e e e ey s e g ey

M; (Nmm)

B T TR

" Y| S Y VS ST SO -
06 07 08 08 10 00 01 02 03 o4 0% 08 a7 [} [} ig

“00 01 0z 03 o0s4 os
Arclength / Total Length Arclength - Total Length
(© (d)

Figure 6.15: Moment and Curvature Distribution in Bilincar Curved Can-
tilever Problem at the Maximum Load 2.06 N: (a) Deflected Shape. (b) Con-
stitutive Diagram, (c) Moment Distribution, (d) Curvature Distribution

again much higher than for either the stainless steel or TMA materials as
shown in Figure 6.15a. (Note that the tip loads at the maximum elastic
activation are once again different for the two lincarly clastic materials,)
There are also linear elastic relationships in Figure 6.14 over a small range at
the start of both loading and unloading. As well there are again loading and
unloading plateaus over which the load-deflection slope is lower and refatively
constant forces are applied at the beam tip over a large elastic range.
Figures 6.15b-d illustrates the response along the beam with the bilinear
shape memory material at the maximum load. In this case all of the high
curvature material is near the fixed end and involves about 40% of the total
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beam length. This high curvature region near the the fixed end allows the
large tip movement to occur. Again, the smoothness of the moment at the

curvature discontinuity can be clearly seen.

6.3.3 Orthodontic Retraction Appliances

Structures made of shape memory alloys have the ability to provide relatively
constant forces over large elastic ranges as demonstrated in the previous two
examples. As discussed in Chapter 5, these are properties which are desirable
in orthodontic appliances which are required to apply specific force systems

in Chapter 5.) In the past orthodontists have attempted to obtained these
desired characteristics using appliances with complex initial geometries to
overcome some of the limitations inherent in the matcrials used.

In this section. two typical appliance designs will be reconsidered under
the assumption that the material is a shape memory alloy and behaves ac-
cording to the bilinear constitutive relationship used up to this point. The
purpose is to investigate what benefits could be obtained using shape memory
alloys for orthodontic retraction springs.

6.3.3.1 Vertical Loop

geometry as Appliance #1 shown in Figure 5.6a. The boundary conditions
for this problem are the same as those discussed in Section 5.3.1 so that a
two parameter shooting procedure is involved.

of cach of the three materials considered. Note that the curves corresponding
to the stainless steel vertical loop are identical to those shown in Figure 5.6b-
d for Appliance #1 and are repeated here for comparison. The maximum
elastic activation of the TMA vertical loop has increased to 2.3 mm compared

activation and Ms-activation curves have lower slopes for the TMA than for
the stainless steel which can be explained by the lower modulus of elasticity
of TMA. The M3/ F ratio is exactly the same for both of these materials apart
from the fact that the curve for the TMA vertical loop extends further due
to its increased elastic range. This is because, as explained in Chapter 5, the
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Figure 6.16: Results for Planar Vertical Loop Problem: (a) Force-Activation
Relationship, (b) M3/ F Ratios, (¢) M,

M3/ F ratio depends only on the initial geometry for linecar clastic materials
and is independent of the modulus of elasticity.

The vertical loop made of the shape memory alloy was investigated up
to an activation of 2.3 mm, which again was the largest elastic activation
possible with the two linear elastic materials considered. This scems to he
a reasonable assumption since these materials are typically able to experi-
vertical loop. Figure 6.16 demonstrates behavior which is consistent with
the results of the previous two examples. Although the maximum activation
considered is the same as that of the TMA vertical loop (for comparison),
the forces and moments produced at this activation are smaller which in-
dicates lower force-deflection ratio. Further, on unloading there is hystere-
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sis apparent which is more noticeable in the force relationship than for the
moment. This results in the M;/F ratio in Figure 6.16b initially increas-
ing during unloading before eventually reducing and converging with the
loading curve. These characteristics (softer force-deflection relationship and
increased M3/ F ratios) are desirable in orthodontic appliances.

Figures 6.17a-d illustrate the moment and curvature distributions in the
SMA vertical loop at the maximum activation considered. As can be seen
from these figures, only a small amount of material near the top of the loop is
in the high curvature region. This explains the limited amount of hysteresis
apparent in Figure 6.16c¢.
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Problem at the Maximum Activation 2.3mm: (a) Deflected Shape, (b) Con-
stitutive Diagram, (c¢) Moment Distribution, (d) Curvature Distribution
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Figure 6.18: Geometry of Standard T-Spring

6.3.3.2 T-Spring

The final appliance considered is a standard T-spring. These T-springs are
often initially preactivated (as shown in Figure 5.12) to inercase Ms/ I ratios.
However, for simplicity the standard T-spring as shown in Figure 6.18 and
with dimensions given in Table 6.2 will be considered. In this case only 1/2
of the spring is analyzed and symmetry is assumed. This is to hielp improve
the convergence behavior and decrease computational effort. The houndary
conditions for this problem are therefore the same as for the vertical loop
except that the two known conditions required to use the shooting procedure
are now at the center of the spring and are

Neutral Length + Activation

ext;t‘;‘mf:r = - b ] s ﬂi‘i:ltn(isr = 0. (("“ )

Figure 6.19 shows the results obtained for each of the three materials
considered. As before, the stainless steel T-spring produced higher forces
and moments at a smaller maximum elastic activation than did the TMA 'I-
spring indicating larger force-activation and moment-activation ratios. The
maximum elastic activation for each of these materials increased over those
of the vertical loops considered previously. This demonstrates that the initial
geometry as well as the material used is important in determining this char-
acteristic. As with the vertical loops, the M3/ F ratios for the lincar elastic
material are identical (apart from the larger range of the TMA T-spring) due
to the fact that identical initial geometries were used.
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Table 6.2: Details of Segments Used to Model Planar T-Spring

%cgmenr 7;1;7_\?(?7”7Leng;}7]?(:1i1;mi)i) Aﬁgléi(g) 7773@57115 (mm)

] Straight 7.5 — —
2 Curved — 90 1.0
3 Straight 2.0 — —
4 Curved — 90 1.0
5 Straight 2.5 — -
6 Curved — 180 1.0
T Straight 9.0 — -
8 Curved — 180 1.0
9 Straight 2.5 — —
10 Curved — 90 1.0
1 Straight 2.0 — —
12 Curved —_— 90 1.0
13 Straight 7.5 - =

The SMA T-spring was analyzed to an activation of 6.7 mm which was
Figure 6.19 shows that the T-spring responds similarly to the vertical loops
when SMA is used. The forces and moments produced at the maximum acti-
vation considered are lower than the stainless steel or TMA T-springs which
indicates lower force-deflection ratios. Figures 6.19a and ¢ show that the
force and moment remain much more constant over a larger range than do
the SMA vertical loops in Figure 6.16. When the appliance is de-activated.
there is onice again hysteresis which results in the M,/ F ratio in Figure 6.19¢
increasing initially during unloading before eventually converging with the
activation curve. The M;/F ratios produced with this appliance are some-
what higher than with the vertical loop for all of the materials considered,

M3/ F ratio.

Figures 6.20a~d illustrate the moment and curvature distributions in the
SMA T-spring at the maximum activation considered. As can be seen from
these figures there are two distinct high curvature regions at the maximum
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Figure 6.19: Results for Planar T-Spring Problem: (a) Force-Activation Re-
lationship. (b) M3/ F Ratios, (¢) M,

activation. This results in a ‘softer’ appliance and explains the relative flat-

amount of material in the high curvature regions also explains the larger
amount of hysteresis present than in the vertical loop considered previously.

Figure 6.21 illustrates the change in the curvature distribution along the
appliance as it is de-activated. Upon unloading, the high curvature region A
near the lower end of the appliance reverts back to the low curvature branch
first. At a de-activation of 3.2 mm (reduced from 6.7 mm), the eurvature
distribution is as shown in Figure 6.21a. Region A has been reduced iy
length so that only a very small portion remains at the higher curvature
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Figure 6.20: Moment and Curvature Distribution in Bilinear T-Spring Prob-
lem at the Maximum Activation 6.7mm: (a) Deflected Shape, (b) Constitu-
tive Diagram. (c) Moment Distribution. (d) Curvature Distribution

(at yuL). The high curvature region B near the top of the appliance has
also been reduced in both length and curvature values, althaugh more of this
high curvature region remains than in A. When the activation is then further
reduced to 3.0 mm, all the material in A has returned to the lower curvature
region as shown in Figure 6.21b. Region B has also been reduced again
slightly as some of the high curvature material snaps to the low curvature
region. When the activation reduces to 2.63 mm there is still a small amount
of high curvature remaining which returns to the lower curvature region by
a de-activation of 2.55 mm as shown in Figures 6.21¢-d respectively.

If the material responds according to Maxwell’s equal area rule then. as
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Figure 6.21: Curvature Distribution Along T-Spring During De-activation:

(a) 3.2 mm, (b) 3.0mm, (c) 2.63mm. (d) 2.55mm

discussed previously, hysteresis will not be present bul discontinuons curva-
tures are possible. Figure 6.22 illustrates such a relationship for a bilinear
shape memory alloy. For illustration purposes. the moment at which the cur-
vature discontinuity occurs is assumed to be 7.5 Nmm, halfway between the
My, and My values used for the above analysis. (A more detailed description
of the unstable curvature region would be required to accurately determine
this value.)

Figure 6.23 illustrates the response of the T-spring, made of this mate-
rial (SMA-2) governed by Maxwell’s equal area rule, activated to the same
maximum activation as the original SMA material. These figures illustrate
the point that hysteresis is not present in such a material (i.e. loading and
unloading follows the same curve). However, discontinuous curvatures are
possible which brings about very flat force-activation and moment-activation
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Figure 6.22: Moment-Curvature Relationship For Bilinear Material Governed
by Maxwell’'s Equal Area Rule

relationships. The response of the new material seems to be approximately
halfway between the loading and unloading curves for the SMA considered
previously. This is not surprising considering the selection of parameters
used to model the respective materials.

Figures 6.24a-d detail the moment and curvature distributions along the
T-spring at the maximum activation considered. These figures show that,
compared to the previous SMA T-spring. the main difference is that a larger
portion of the material is now in the high curvature region. This is mainly
duc to the lower moment value at which transition occurs for the SMA-2
material. This increased amnount of high curvature material accounts for the
relative flatness of the force-activation and moment-activation curves.

Figures 6.19 and 6.23 illustrate the potential advantages of using shape
memory alloys in the construction of orthodontic retraction appliances. The
ability of these appliances to provide relatively constant forces, moments
and M3/ F ratios is shown clearly. Although the Ms/F ratios shown for the
particular appliances and materials considered are well below those suggested
for translation, these can likely be increased with the use of an initial pre-
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Figure 6.23: Results for Planar T-Spring Problem With Bilincar Material
Following Maxwell’s Equal Area Rule: (a) Force-Activation Relationship,
(b) M3/ F Ratios, (c) M

activation as is done with the usual linear elastic materials. The forces.
moments and M3/ F ratios eventually achievable will depend to a large extent
on the exact properties of the shape memory alloy used in their construction
for which there is little data at present. This can be seen in the difference in
the response of the two materials shown in Figures 6.19 and 6.23.

Energy Integral A plot of the energy integral (equation (6.9)) for the new
SMA (SMA-2) T-spring at the maximum activation considered (6.7 mm) is
shown in Figure 6.25 without taking the constant of integration ¢y into ac-
count. The energy integral, which should be a constant along a homogencous
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Figure 6.24: Moment and Curvature Distribution in Bilinear (Maxwell's
Equal Area Rule) T-Spring Problem at the Maximum Activation 6.7mm:
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rod (constant initial curvatures, uniform cross section and material proper-
ties), may have jump discontinuities at points where the initial curvatures
change. Thus at the start of the segments (which alternate between straight
and initially curved), where the initial curvatures change, discontinuities in
the energy integral are allowed. However, along each segment the energy
integral should maintain a constant value (which may be different for each
segment). This can be seen to be the case except at the points where discon-
tinuities in the curvature exists due to discontinuities in the M5 - v3 material
relationship. At these points discontinuities in the energy integral occur. As
discussed earlier, material which follow Maxwell’s equal area rule (which was
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Figure 6.25: Energy Integral Along T-Spring with Bilinear Shape Memory
Material

the material considered in Figure 6.25) should maintain a constant, value of
the energy integral even across these jumps in curvature due to discontinnous
M3 -3 behavior. This does not appear to be the case in Figure 6.25. How-
ever, the constant of integration ey (see equation (6.9)) has not been taken
into account. The size of the jumps due to the discontinuous My - 43 behavior
are the same (20 N) at both instances where this occurs. Thus, in this case.
a value of cy = 20 N would result in the energy integral being constant over
such discontinuities. Note that this result only applies for material which
follow Maxwell’s equal area rule and doesn’t include the case when inilial
curvatures are discontinuous.



Chapter 7
Concluding Remarks

7.1 Summary

In this work a numerical procedure has been developed in an attempt to ana-
lvze problems involving large three-dimensional deformations of thin flexible
rods. Since the deformations considered are large, these problems are gov-
erned by highly nonlinear equations which are difficult to solve analvtically.
This is further compounded by the wide variety of boundary conditions which
may be involved. As a result numerical procedures are usually required to
obtain approximate solutions to such problems.

The procedure developed is based upon the scgmental shooting technique
which is a numerical method previously found to be successful for planar
elastica problems. The nonlinear equilibrium equations are applied to the
rod and a solution is obtained from the initial values at one end using direct
numerical integration. Some of these initial values will be unknown and must
be initially estimated. A Newton-Raphson secant procedure is then used to
iteratively modify the estimates of the initial unknowns to ensure that the
required boundary conditions are satisfied. In this manner, the original two-
point boundary value problem is solved as a sequence of initial value problems
which converge to the appropriate boundary conditions.

The solution procedure also incorporated the ability to consider the rod
as being comprised of a number of segments. There are several advantages
to solving the rod in segments in this fashion. The most obvious is that
many rod-like structures of interest (such as the orthodontic appliances con-
sidered in Chapter 5) have complicated geometries in the undeformed state.,

[
Foy
(0]
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Such rods can be idealized as a sequence of segments. each of which has a
much simpler geometry (including straight. curved. twisted or possibly heli-
cal segments). Segmenting the rod in this manner allows a simple, physically
intuitive method for modeling such rods. Complex loading conditions and
changes in material or cross sectional properties can be handled in a similar
manner. A further advantage of introducing new segments along the rod
is the ability to reset all the Euler angles to zero and avoid the numerical
problems caused by the singularity which occurs at ¢ = /2.

The initial value approach used here has its advantages and drawbacks.
The most significant difficulty is the fact that good initial estimates of the
unknowns are required to ensure that the procedure converges to a solu-
tion. This is especially true as the number of unknowns is increased. There
are methods available to help alleviate these problems somewhat [so-called
globally convergent root finding techniques (Press et al. 1992) or homotopy
continuation methods (Keller 1968)]. but good initial estimates are still usn-
ally required. However. this dependence on the initial estimates makes this
approach well suited to finding multiple solutions when they exist. This is
an important consideration since the equations being considered are highly
nonlinear. This aspect of the initial value approach was used to advantage
in Chapter 4 in investigating the multiplicity of solutions of cantilever hearmns
under dead tip and uniform distributed loads.

The initial value approach presented is very accurate and efficient. In
all cases where previous analytical, numerical or experimental results were
available, the present method showed excellent agreement. As well, a num-
ber of checks on the accuracy of the solutions obtained were also similarly
satisfied. Since each segment is analyzed separaiely. large computer memory
is not required as with finite element procedures. Further. the loacs and
large deflections are handled in their entirety in one step. Thus ineremen-
tal loading is avoided which speeds up the calculations significantly. The
actual amount of time required to solve a particular boundary value prob-
lems depends heavily on the number of unknown quantities as well as the
initial estimates. For example, the solutions for the preactivated T-spring
considered in Chapter 5 at the maximum activation required 63 scconds on a
Pentium 75 MHz personal computer. This problem involved a five parameter
shooting procedure and required eight, iterations to converge 1o the appropri-
ate boundary conditions. Each iteration requires six passes of the muncerical
integrator (one to determine the end values and five required by the Newtor
Raphson secant method to compute the partial derivatives). The number
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of iterations required depends heavily on the initial estimates. with better
initial estimates resulting in fewer iterations and consequently less computer

seconds for six iterations to obtain the solution at the maximum load. The
time required will also be affected by the tolerances used in the integration
and shooting procedures, which in this work were typically 10~ and 10-'°
respectively.

The numerical technique was also modified to include materials which
exhibit nonlinear elastic behavior. In particular, shape memory alloys were
considered which allow discontinuities in the curvature to occur in equilib-
rium configurations. Constitutive models were proposed which qualitatively
approximate the behavior of these materials in planar situations. The nu-

experimental results. Planar orthodontic appliances. assumed to be con-
structed of shape memory alloys. were revisited in an attempt to demonstrate
some advantages of this material for this application.

7.2 Future Work
Shape memory alloys are seeing increasing use in a number of applications
in which a numerical model of their behavior would be useful for design pur-
materials is required to quantify their behavior. Although the constitutive
relationships used to model shape memory alloys in this work demonstrated
behaviors which show qualitative agreement with the limited results avail-
able, quantitative agreement is not possible to establish at this point due to
a lack of experimental data to guide the selection of the appropriate constitu-
tive model. This is especially true in the fully three dimensional case which
includes a combination of bending. torsional and extensional deformations.
No known work has been done to quantify these behaviors in combination
where there may be a possible coupling of these deformation modes. Appro-
priate experimental data needs to be obtained to quantify the constitutive
relationship for these materials.

As well, since these materials can undergo recoverable strains of up to
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8% a significant portion of the resulting deformation may be due to exten-
sion of the rod which is not considered in the present analysis. Therefore a
modification to the numerical technique to account for the extensibility will
likely need to be incorporated into the numerical procedure 1o accurately
model shape memory allovs.

Further work can also be done in investigating the stability of the multi-
ple equilibrium configurations which were found to exist. This could possibly
be performed by using the shapes obtained numerically in this work to de-
termine appropriate tangent stiffness matrices and investigating the signs of
the eigenvalues. Another area which could see future development is utiliz-
ing the numerical procedure developed here as part of a dynamical analvsis
of flexible rods through a time stepping procedure where the inertia of the
rod is treated as a (non-uniform) distributed load and the equivalent static
problem is solved repeatedly.
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Appendix A

Shooting Procedure

As mentioned in Section 3.1.2, the segmental technique requires that all
of the conditions at the start of the rod be specified in order to obtain a
solution. In most problems some of the initial values will be unknown while
a corresponding number of conditions at the opposite end of the rod will be
known. The unknowns at the start of the rod must be initially estimated
to begin the solution procedure. The shooting procedure described here is a

ensure that the known boundary conditions at the end of the rod are satisfied.
In what follows it will be assumed that there are N unknown conditions at
the start of the rod and N known boundary conditions at the other end.

Let A be an N x 1 vector containing the initial estimates of the unknown
values at the start of the rod. B be an N x 1 vector containing the A
known boundary conditions at the end of the rod and C be an N x 1 vector
containing the values delivered by the segmental solution corresponding to
the known boundary values at the end of the rod. The difference between
the known boundary values and those obtained with the numerical solution
is the vector difference between B and C. or

D' =B - C*, (A.1)

D is called the error function where the superscript * is an iteration counter.
Note that B has no iteration counter since the known boundary conditions
will remain the same over each iteration and can be considered as constants
for each separate rod problem. The components of C* (the computed values)
depend on the initial guesses which are the components of A*. Therefore,
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C* can be considered as being a function of the components of A*. Then
from (A.1). the error function D* can be considered as also being a function

of the components of A* and can expressed as
D = D(A*) = D(4}. A5, ... 4k, (A.2)

To obtain a solution to the original rod problem which satisfios the re-
quired boundary conditions it is necessary that eacl component of the error
function D approach zero simultaneously. Thus, the problem of determining
the correct initial guesses involves solving a set of N nonlinear equations
to determine the components of A for which each component of the error
function D is approximately zero. A Newton-Raphson iterative procedure
(secant method) is used to accomplish this objective. The Newton-Raphson
method is based on a first order Taylor series expansion of (A.2) which can
be written as

D**! = DF 4 [J]" (AN - A¥), (A.3)

where A**1 are the new values of the initial estimates for the k41 itera-
tion and D**! are the corresponding values of the components of the error

function. [J]" is the N x N Jacobian matrix. the components of whicly are
given by

' 9Dk -
JE = 5:)*,’3— mn=12 ... N. (A1)

mn C)‘l“ '
tn

In this case the functions D% are not analytical so the partial derivatives
need to be evaluated numerically. A backward difference formulation is nsed
to evaluate these derivatives. The approximate partial derivatives are then

Jo = Db DalA) = Dalabth A AT )
™ 9Ak Al - AL

Setting D**! to zero in (A.3) (i.e. assuming that the next improvement,
to the initial estimates A**! will produce a zero error function) and solving
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for the new improved initial estimates of the unknown values at the start of

the rod gives

[J]H = -D*, H =AM — AF, (A.6)
which can be solved for H using standard methods such as Gauss elimination.
Having obtained H, the new initial guesses are then obtained from

AMY = AF L H, (A.7)

The new values of the initial estimates A**! are then used to start the the
solution over again for the & + I'"" iteration. This procedure is continued
until each component of the error function approaches zero to within some
specified tolerance at the which point the boundary conditions are considered
to be satisfied.

The backward finite difference formulation for the partial derivatives ex-
pressed in (A.5) is a simple but not very accurate approximation. More
accurate methods are available (Press et al. 1992) which in turn require
more function evaluations which require, in this instance. more solutions for
the entire rod at a number of different initial conditions. Such a procedure is
not very justifiable in the current situation since each evaluation of the rod at
cach different initial condition is rather expensive computationally. With the
expression in (A.5). each iteration of the numerical procedure requires N + 1
solutions over the entire rod, one with the initial guesses A* and a further
N to evaluate the partial derivatives. If a center difference formulation were

procedure would now require 2N + 1 solutions over the rod, which is a 50%
increase in computation time for N =1 and a 75% increase in computation
time for N = 3. The possible gains in accuracy in evaluating the partial
derivatives using such a procedure, which would only be beneficial very necar
the actual solution, would not offset this increased computational expense.



Appendix B

Analytical Solution for an
Initially Straight Circular Rod
Deformed into a Helix

In this appendix, the analvtical solution to the problem of an initially straight.
isutropic rod bent and twisted into a helix and maintained in this deformed
configuration by the application of moments and forces along the initial axis
of the rod only. While this problem has been considered by several an-
thors (Love 1944; Landau and Lifshitz 1970). the analysis is presented here
for completeness. This is one of the few problems known to the author whicl
combines bending and torsion and has a known analytical solution. Thus i
will serve as a test case for the numerical procedure developed in Chapter 3.

Consider a straight rod with uniform material properties which is initially
aligned with the global E3 axis as shown in Figure B.1. The vod is bent and
twisted into a helix of radius R and pitch angle o where a is defined as the
angle between the tangent to the helix and a plane perpendicular to E5. The
equation for such a helix is

r(s) = XE, + YE, + ZE;.

o iEAT T TR Sl (13.1)
A =Rcos(, Y = Rsinc, Z = R(tan o,

which traces a curve around the surface of a cylinder of radius R aligned
along E3. ¢ is a measure of the angle of rotation about the E; axis. Difler-
entiating (B.1) with respect to arclength gives an expression for the tangent,
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a) Initially Straight Rod

E, b) Deformed Helix

Figure B.1: Initially Straight Circular Rod Deformed Into a Helix

veclor as

d¢ d¢ d¢
e = -]Z—g sin(E; + R——g— cos( E; + R—Q tan a Eg3. (B.2)
ds ds ds

Since e; is a unit vector its magnitude must be unity which along with (B.2)
leads to the result

d¢ cosa
= = . B.:
ds R (B.3)

which is a constant for the helix. Therefore (B.2) becomes
€; = —cosasin(E; + cosacos(E; + sina Ej. (B.4)

Taking the derivative of (B.4) and again using (B.3) yields

2 2
cosla | cosla | . ;
e} = — 7 cos¢ E, - 7 sing E,. (B.5)
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Substituting (B.4) and (B.5) into (2.13). which is the constitutive relation
for initially straight transversely isotropic rods. gives

M = GJr, [sin aEj+cosn (=— sin ¢ Ey + cos¢ Eg)]

- T (B.6)
El 3 . 2 .. .
+ ) cos” a E3 4 sina cos® a (sm CEp —cos( Eg) .
46 L =
Therefore. the moment required to maiutain the deformed shape ix
where
y ) OV o
M. =GJkrysina + ?F(JS’ n. (B.7h)
]
. L L, .
M, =GJrycosa — 7 cOs" o sin a, (B.7¢)
and
E: = —sinCE; + cos ( E,. (3.7

Note that M¢ is directed along the tangent to the evlinder dofined by the helix
and Al is directed along the axis of the cylinder, From equations (1.74)-
(B.7d) it can be seen that both M. and M, are constant but the orientation
of M, changes along the rod. At the start of the helix. (¢ = 0) E¢ is equal
to Eg.

To determine the force required, the derivative of (B.5) is given as

, costa cos®

el = - f:SII]CEJ‘S”g'}.’

R?

cos ( E,, (13.%)

where (B.3) has again been used. Now substituting (13.5) and (B.%) into
(2.16) gives the result

751 G‘J v ( 1 - . - )
Fxe = [, cos’ asina — - Fhlf cos® I}] (msg’E; + Si[lCEg). (B.9)

R?



APPENDIX B: ANALYTICAL SOLUTION FOR HELIX 164

Comparing (B.9) with (B.4) gives the force F as

. R £ El .. o
F=F.E;. F.= 7 Lcosa — V7l cos’asina. (B.10)

This i the force required to maintain the deformed shape. Note that the
force vector is directed along the axis of the cylinder and is a constant.
Comparing (B.10) with (B.7¢) shows that
M, =F.R. (B.11)

Therefore if no axial load is applied the resultant moment is purely along the
helix axis.

Some further relations among these variables can be established. Taking
the dot product of both sides of equation (2.13) -ith ey gives

M‘E;—EC;JHI (B]_))

which is satisfied identically when Mis given by (B.7a)-(B.7d). For the special
casce where there is no axial force. M = M.E; and equation (B.12) gives

M.sina oo

and equations (B.10) and (B.13) combine 1o give the radius of the helix as

El
R:-;\-ZCQSQ. (B.14)



Appendix C

Use of Contour Maps For Two
Parameter Shooting Problems

To begin the discussion and introduce the concept, consider a one parametoer
shooting problem. such as a cantilever with a dead tip load undergoing only
planar deformations as described in Chapter 4. In this case. the unknown
condition at the start (fixed end) of the rod is the My component acting
there, while the corresponding known condition is that ALy must vanish at
the free end. Thus. any M; value at the fixed end (input to the mnmerical
integration procedure) which produces a zero M, at the free end corresponds
to a solution to the problem.

Since this problem is geometrically nonlinear. more than one solution Iy
exist and it is desirable to find all the solutions for a given load. Tn order 1o
find these solutions, a plot of Af; at the free end versus Ay at the flixed end
can be used. Such a plot is shown in Fignre (.1 (which uses dimensionless
moments defined by Az = M3L/El) for a dimensionless load a = 5.0, As
can be seen, there are three solutions to the problem sinee there are three AL
values at the fixed end which result in My = 0 at the free end. Further. sinee
possible values of A3 at the fixed end are limited (can be no larger than the
load multiplied by the length of the beam), the entire possible imput range
for M3 has been considered. Therefore it can be concluded that three and
only three equilibrium shapes exist at this load and the corresponding shapes
are shown in Figure 4.3.

Now consider a two parameter shooling problem such as a cantilever hean
with a dead tip load undergoing out-of-plane deformations. In this case, hotl

M, and M3 at the fixed end are unknown while both My and M. at the free
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end must be zero. Finding all of the possible solutions in this case is much
more difficult since both conditions at the end of the rod must be satisfied
simultaneously. One possible method to atter»t this is through the use of
contour maps. Basically. a contour is made of wil the possible combinations
of M, and My at the fixed end which result in M, = 0 at the free end.
These are not necessarily all solutions 1o the problem, they are only possible
solutions. Then a similar contour is produced which satisfies M3 = 0 at the
free end. These two contours are then superimposed to find all the points at
which the M, = 0 and M3 = 0 contours cross therefore representing solutions
to the problem. Note that shooting is not used in the generation of these
contours. but rather only the integration portion of the numerical procedure.

Figure C.2 shows an example of part of a contour map for a deep cantilever
beam (aspect ratio = 1/1.7) at a load of # = 62. (Note that these plots
require large amounts of data to be generated and it is easier to considered the
plots section by section.) As can be seen from this map there are two places
where the contours cross so that both Ay and Mj; are simultaneously zero
at the free end which corresponds to the out-of-plane equilibrium solutions
(Shape D and buckled Shape #2). However, as discussed in Chapter 4,
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Figure C.2: Contour Map of Free End M, = 0 and Mz = 0 as Functions
of Fixed End M; and M,y Components for a Cantilever Beam Undergoing
Out-of-Plane Deformations for a Load /4 = 62

the case M; = 0 at the fixed end automatically corresponds 1o M, = 0 at
the free end so that the vertical M, = 0 axis is also a contonr. One other
equilibrium shape, planar Shape #2. is therefore also shown in Fignre €12,
Note that the load # = 62 in this case corresponds to a load of o = 4.60 (sec
equations (4.5) and (4.6)) which, from Table 4.1. indicates that three planar
equilibrium solutions exist at this load. Ouly one, Shape #2 is indicated in
Figure C.2. The other two planar shapes have M, components at equilibrinm
outside of the range shown in Figure C.2 so that they do not appear.
Theoretically, in order to determine if all the solutions have heen found,
it is only necessary to consider all possible values for the inputs My and M,
at the fixed end (again, both M, and M, must be less than the load Limes
the length of the cantilever). Several maps like the one in Figure (1.2 mst
therefore be generated to consider all the possibilitics. In practice, however,
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this is not always a very practical approach. The functional dependence of
the free end values on the fixed end values may be quite complex and a very
large amount of data may need to be generated in order to determine if a
solution actually exists or if the contours lines simply approach each other but
do not cross. Also, as shown in the upper right portion of Figure C.2, there
are places where the contours of M; = 0 and M; = 0 seem to run beside each
other. It is very difficult to determine in these cases where (or if) the contours
actually cross. These borderline cases are further complicated by the fact that
interpolation from generated data is necessary to produce the contours. This
interpolation is not exact and thus some error in locating the contour lines
is introduced. Reducing this error requires a finer mesh of initial values to
be evaluated which further increases the amount of time and numerical data
needed. Therefore it seems reasonable to state that contour maps are very
useful for finding solutions since they offer a systematic procedure for locating
(approximately) the initial unknowns which satisfy the houndary conditions
and result in a solution to the problem. However their use in determining
whether or not all solutions have been found is somewhat limited.

It should be noted that it is not really necessary to find the exact points at
which the contours cross. Contour maps best serve to locate the approximate
shooting portion of the numerical procedure. However, since the success of
the numerical procedure usually depends on having “good” initial estimates.
it.is still often necessary to generate fine meshes to obtain reasonably accurate

initial estimates.



Appendix D

Evaluation of Elastic Limit

In this appendix. details are given about the method used to determine when
vielding of the material has occurred. This information is used in Chapters 5
and 6 to determine the maximum elastic activations of a number of orthodon-
tic retraction appliances. The appliances considered in Chapter 5 experience
three-dimensional deformations which must be considered in determining the
stress levels which exist.

The rods in this work are assumed to deform only through bending and
twisting so these modes of deformation are the only ones which give rise
to stresses in the material. In particular the stresses duc to axial tension
and to shear are ignored. While stresses do to these loads will exist in the
actual material, these will he small in comparison to those due to bending,
and twisting.

Dill (1992) shows that the nonzero stresses over the cross section of Lhe
rod are given by!

N 1Y [
12 = ,t(hl = K (()) -’f), (“I)

)
T3 =G (K, EHD) (é)k’g - }) (D.2)
T \gz T ) -

o3 = E| (w2 = k8)Z = (s = #3) V] (1.3)

where extensibility has been ignored, i and £ are the sho. .. winjus and
Young’s modulus of the material respectively, and ¥ and 7 re the coordi-
nates over the cross section in the e, and ey principal directions respectively.

Note that these stresses are the superposition of those given by elementary strength
of materials results for bending and torsion.
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@ is the warping function in torsion (see Timoshenko and Goodier 1970 for
example) and depends only on the geometry of the cross section.

Yielding in the material occurs when the stress at some point exceeds a
predetermined value for the specific material. There are a number of theories
available which predict this stress value based on the yield strength of the
material in simple tension tests. One of the simplest of these, the mazrimum
shear slress criterion which states (Shigley 1986)

yielding begins whenever the maximum shear stress in any me-
chanical element becomes equal to the maximum shear stress in
a tension-test specimen of the same material when that specimen

begins to yield,

is used in this work. This is a relatively conservative estimate for the onset of
vielding, but is sufficient for the present requirement of determining the ap-
proximate elastic range of orthodontic retraction appliances. The maximum
analysis with the normal and shear stresses given in equations (D.1)-(D.3).
To determine if yielding has occurred various points on the cross section
are considered. The points on the rectangular cross sections (b < a) of the
orthodontic springs are shown in Figure D.l. The maximum value for o33
occurs at one of the corners (points 1-4) where the normal stresses due to
beuding about the e; and e3 axes are superimposed. At these points the
shear stress due to torsion is zero. Thus the maximum normal stress which

N— ° I —
B 5 2

J“*
¢ 6 ~ 7l 2b

J —

Figure D.1: Locations on the Cross Section Used to Evaluate the Yielding
Criterion



APPENDIX D: EVALUATION OF ELASTIC LIAIT 17

exists in the cross section is given by
ax = E[l(ﬁgﬁﬁg)laﬁ- l(hg—h§)|h} (D.1)
and the maximum shear stress in the material is therefore
O imax o
Tmax = ———. (D.5)

mas B

At the other points considered (5-8) the normal stress is due Lo only one
bending component but the shear stresses due to torsion are a maximum for
each side (with higher shear stresses at the points closer to the origin of the

cross section). Thus at points 5 and 8. the normal stress is

o33 = L (x3 — £3)D (D.6)
while the shear stress due to torsion is given by
IGng]b = (’z])ﬂg=l 77 (‘O'ﬁh T nt}’ .
T3 = £ ——— — 1 - —2 3L COs — D.7
13 T n_gﬁ n? cosh Sr cos 20 (D-1)

(Chou and Pagano 1967) where b < a. The maximum shear stress is then
given by

Tmax = (DH)
with o33 and mj3 given by E(]leLlD]l‘S (D.6) and (D.7) respectively.
Similarly. at points 6 and 7 the normal stress is given by
T3 = iE(ﬁg = hg)d (D.9)
while the shear stress due to torsion is given by
16GY10 ~1)%* [ sinh 222 nw)’ _
T2 = q:lf)i;;“n-gq ( 37)2 [cgsll 7;"] cos :b . (D.10)

(D.11)

with g33 and 712 now given by equations (D.9) and (D). 10) respectively.

The shear stress used to determine if yielding has occurred is therefore
given by the maximum of equations (D.5). (D.8) and (D. 11). Each of these
points on the cross section is evaluated at each arclength used by the numer-
ical integrating procedure along the the appliance.



