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Abstract

Most convergence guarantees for stochastic gradient descent with momentum

(SGDm) rely on independently and identically ditributed (iid) data sampling.

Yet, SGDm is often used outside this regime, in settings with temporally

correlated inputs such as continual learning and reinforcement learning. Exist-

ing work has shown that SGDm with decaying step-size can converge under

Markovian temporal correlation. In this work, we show that SGDm under

covariate shift with fixed step-size can be unstable and diverge. In particular,

we show SGDm under covariate shift is a parametric oscillator, and so can

suffer from a phenomenon known as resonance. We characterize the learning

system as a time varying system of ordinary differential equations (ODEs), and

leverage existing theory to characterize learning system divergence/convergence

as resonant/nonresonant modes of the ODE system. The theoretical result is

limited to the linear setting with periodic covariate shift, so we empirically

supplement this result to show that resonance phenomena persist across other

problem settings having non-periodic covariate shift, nonlinear dynamics with

neural networks, and optimizers other than SGDm.
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Chapter 1

Introduction

Stochastic gradient descent (SGD) [36] – and its variants such as Adagrad

[13], ADAM [22] and RMSprop [19] – are very widely used optimization

algorithms across machine learning. SGD is conceptually straightforward, easy

to implement, and often performs well in practice. Among the variants of SGD,

accelerated versions based on Polyak’s or Nesterov’s acceleration [32], [34],

known generally as Stochastic Gradient Descent with Momentum (SGDm), are

used widely due to the improvements in convergence rate they offer. SGDm

can give up to a quadratic speedup to SGD on many functions and is in fact

optimal among all methods having only information about the gradient at

consecutive iterates [16], [33]. SGDm has the same computational complexity

as SGD, but exhibits superior convergence rates under reasonable assumptions

[41].

These convergence results for SGDm, however, rely on independent and

identically distributed (iid) sampling. Little is known about the convergence

properties of SGDm under non-iid sampling, yet the non-iid setting is critical.

In many machine learning problems it is expensive or impossible to obtain iid

samples. In online learning [35] and reinforcement learning (RL) [44], the data

becomes available in a sequential order and there is a temporal dependence

among the samples. There is a particularly strong temporal dependence in

RL, where observed states are sampled according to the transition dynamics of

the underlying Markov decision process (MDP). Federated learning [20] and

time-series learning [26] provide further examples of when non-iid sampling is
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essential to the learning problem.

Without momentum, SGD’s convergence rate has been examined under non-

iid sampling with the stochastic approximation framework in [5], [25], and more

recently under specific assumptions of ergodicity [14] or Markovian sampling

[12], [31], [42]. Convergence rates under Markovian sampling are also known

for ADAM-type algorithms when applied to policy gradient and temporal

difference learning [47]. To our knowledge, however, there has been little work

on providing convergence rates or guarantees for SGDm under non-iid sampling.

In [11], a progress bound is provided for SGDm under Markovian sampling

based on mixing time—the time required for a distribution’s convergence toward

its stationary distribution—along with a convergence rate guarantee under

decaying step-sizes. In this work, we assume fixed step-size, since it is a common

and reasonable choice in the online setting, especially when the practitioner

is unsure of mixing rate or stationarity. We also do not explicitly assume

Markovianness or ergodicity in sampling. Instead, we theoretically characterize

rates of convergence and divergence by assuming periodicity in the expected loss

surface induced by the non-iid sampling, and empirically demonstrate similar

convergence and divergence phenomena when the periodicity assumption is

relaxed.

There is a broad literature using ordinary differential equations (ODEs)

to analyze gradient descent methods by approximating descent updates as

continuous-time flows. Early work is comprehensively discussed in [5], [25].

Despite the age and establishment of the linear setting, the gradient flow

lens continues to reveal new insights (e.g. implicit rank reduction in [2]) and

new perspectives on old insights (e.g. regularization of early stopping in [1].)

Recent work has paid particular attention to the flow induced by momentum

accelerated methods, [3], [6], [7], [10], [23], [24], [27]–[29], [37]–[41], [45], [46],

[48]. In these works, it is often demonstrated that linear regression under iid

sampling with SGDm can be represented as an ODE resembling a harmonic

oscillator, sometimes with a time-decaying damping coefficient.

In this work, we show that non-iid sampling induces a related system:

the parametric oscillator, a harmonic oscillator having coefficients which vary
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over time in a manner capable of exponentially exciting the system [9], [18],

[30]. We show that such exponential resonant modes highlight the role that

sampling can play in convergence, as they allow full characterization of the

learning system’s instability (subject to the aformentioned assumption of loss

surface periodicity) which we demonstrate by leveraging the well-established

mathematics of Floquet theory [18].

We empirically extend beyond our theoretical guarantees by borrowing from

the methods of empirical nonlinear control. Specifically, we investigate learning

systems whose input sampling does not have the strict periodic time variation

required by our theoretical guarantees. We treat the input sampling process as

an input signal which is noisy and possibly stochastic, and we vary the signal’s

frequency content across a wide band so that the learning system’s output

can be empirically measured as a response across input frequencies. This is

analogous to a mechanical engineer triggering an oscillatory vibration within a

machine’s engine compartment, sweeping across frequencies, and measuring

the resulting vibration amplitude in the machine’s housing. Such methods are

made systematic in the modal analysis literature [4].

In the following sections, we start by precisely explaining the problem

setting, then show that SGDm under non-iid sampling is a discretization of a

particular time-varying ODE, and give conditions for the ODE’s stability and

instability. We then empirically demonstrate that resonance-driven divergence

occurs in a learning system which aligns well with theoretical assumptions.

Similar demonstrations follow on learning systems which progressively relax

further and further away from our theoretical assumptions.

1.1 Problem Setting

We investigate the effect of non-iid sampling on a model optimized using SGDm.

We assume labelled training data sampled from the pair of discrete-indexed,

real-valued stochastic processes {Xk}k∈N and {Yk}k∈N such that {Xk}k∈N has

a unique stationary distribution Π. Yk is a function of Xk with zero-mean

observation noise, Yk = f(Xk) + εk. We denote pairs of data sampled from Xk
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Figure 1.1: The problem setting in a single dimension with a linear model Ŷk
and target Yk, and Gaussian covariates Xk. The covariates Xk are shifting in
the mean x̄k over time k.

and Yk as zk = (xk, yk).

The learning algorithm does not have access to iid samples from Π. Instead,

the learning algorithm may only update parameters θk at time k using samples

(xk, yk), where the marginal over time of Xk converges to Π. In this problem

setting, the goal is to train a model with parameters θ to minimize an objective

function L(z; θ) with respect to the stationary distribution Π,

θ∗ = argmin
θ∈Rd

EΠ[L(z; θ)] =

∫
R
L(z; θ)dΠ(x)

This setting is similar to that explored in prior work on Markovian sampling

[31], [42], [47], but we do not require that our stochastic processes adhere to

the Markov property. Note, also, that the underlying functional relationship

between the inputs, Xk, and the targets, Yk, does not change over time. That

is, the non-iid sampling is a result of covariate shift rather than a changing

relationship between the inputs and targets.

We consider Polyak’s Heavy Ball method [34] with the specific formulation

from [43] as follows

vk+1 = µvk − η∇θkL(z; θk)

θk+1 = θk + vk+1

(1.1)

where η is the learning rate, µ ∈ (0, 1) is the momentum coefficient, θk is

the parameters of the model at time k, and ∇θkL(z; θk) is the gradient of the

objective function with respect to θk evaluated at sample z and weights θk.

4



1.2 Contributions

This work contains the following elements which, to our knowledge, are novel

contributions to the machine learning research community.

• For supervised learning under covariate shift, we formulate the dynamics

of SGDm as a system of ODEs. In existing literature, the SGD-as-ODE

formulation has already been extensively used without covariate shift, and

we contribute the specific role that covariate shift plays. Since existing

ODE formulations of SGD and SGDm have been useful for a wide variety

of analyses, we believe our formulation may be of independent interest to

those studying covariate shift.

• Using the ODE formulation, we give conditions on covariate shift which

cause problematic SGDm behaviour known as divergence. In existing

literature, it is known that SGDm is capable of diverging for many

different reasons. We contribute to this list of reasons, demonstrating that

covariate shift can induce nonlinear resonance, which leads to divergence

in systems whose configuration would otherwise converge if not for the

presence of covariate shift.

• Finally, we provide empirical evidence for the hypothesis that parametric

resonance can occur beyond the assumptions necessary for our theoretical

contribtions. In existing literature, there does not yet exist any experi-

ments which specifically control the frequency content of data generating

processes. We contribute twofold to this gap, by providing several syn-

thetic data generating processes with controllable frequency content, and

demonstrating that non-negligible frequency response exists in several

learning systems with momentum.

The first two contributions are primarily theoretical, and the final contribu-

tion is empirical.
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Chapter 2

Theory: Covariate Shift as a
Driving Force

Here we characterize SGDm as a discretization of a particular parametric

oscillator in continuous time. A parametric oscillator resembles a harmonic

oscillator ODE, but has time-varying system coefficients which are capable

of driving the system. In the context of SGDm, the expected loss gradient

manifests as a time-varying coefficient matrix induced by non-iid sampling. It

is well understood that parametric oscillators can suffer from global solution

instability due to coefficients[18] oscillating at particular frequencies, a condition

known as parametric resonance. We will show the parametric resonance

conditions necessary to induce exponential divergence in SGDm.

2.1 Notation

Unless explicitly noted otherwise, we use capital letters for matrices and

random variables, with the difference clarified explicitly or by context. {Xk}

is a stochastic process, shorthand for {Xk}k∈N. Similarly, {θk} is a sequence,

shorthand for {θk}k∈N. k and t index discrete and continuous time, respectively.

When a discrete sequence and a function approximate each other, they share the

same symbol and are differentiated by subscript k and function argument t, e.g.

the sequence {θk} and the function θ(t). At the risk of abusing notation, we will

adhere to this convention and use {θ̇k} to be a discrete sequence approximating

the function of time θ̇(t), which refers to the time derivative of θ(t). This
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means the symbol θ̇k is the k-th iterate of a sequence approximating θ̇(t).

The nonnegative natural numbers, the real numbers, and the real-valued

d-dimensional square matrices are denoted N,R,Rd×d, respectively. Id×d, 0d×d
are the identity and zero matrix. 〈·, ·〉 denotes the inner product. We denote the

joint distribution of Xk and Yk as Pk. Given a scalar-valued loss function L(z; θ)

for arbitrary training pair z = (x, y) and weights θ, we denote the time-varying

expected gradient function gk(θ) as the expectation of the gradient of L with

respect to θ. That is: gk(θ) := EPk
[∇θL(z; θ)]

Wherever we write the training input generating process {Xk}, it is implicit

that the last dimension is fixed at 1 if one wishes to describe linear models with

a bias term. In this way, the notation 〈θ,Xk〉 accommodates linear models

with or without a bias term.

We use ξ to denote the phase space coordinates of weights θ, meaning

ξ =

[
θ

θ̇

]
, where vectors θ, θ̇ ∈ Rd are stacked so that the resulting ξ ∈ R2d. We

denote the d-dimensional zero vector as 0d. For an ODE system ξ̇(t) = f(ξ(t), t)

with arbitrary solution trajectory ξ(t) approximated by a sequence of iterates

{ξk}, we denote the integration time step as h, and the numerical flow as

φh,k, which is the map such that ξk+1 = φh,k(ξk). We denote the k-th discrete

timestep as tk, which we always use to refer to the k-th multiple of integration

time step h, i.e. tk = hk.

2.2 Linear Time-Varying Expected Gradient via
Covariate Shift

We begin by showing that linear least squares regression with covariate shift

and a fixed target induces a linear time-varying expected loss gradient. That is,

the gradient function gk(θ) is a linear function of θ − θ∗ (the weights’ position

w.r.t. the target) defined in terms of a matrix Bk. Intuitively, the covariate

shift causes our Bk to vary in time.

Assumption 1. The covariate generating process {Xk}k∈N is non-iid, such

that for some k1, k2 ∈ N we have inequality in covariance Cov(Xk1 , Xk1) 6=

Cov(Xk2 , Xk2) or inequality in expectation EPk1
[Xk1 ] 6= EPk2

[Xk2 ].
7



Assumption 2. The targets Yk are a fixed linear function of Xk with iid zero-

mean observation noise, εk such that E[εk] = 0. That is, Yk = 〈θ∗, Xk〉 + εk

where θ∗ ∈ Rd is fixed for all k.

Proposition 1. Under Assumptions 1, 2, a linear model with weights θk

making predictions Ŷk = 〈θk, Xk〉 with a mean squared error (MSE) objective

will induce time-varying linear expected loss gradients gk(θk) = Bk(θk − θ∗) for

all k ∈ N, where Bk ∈ Rd×d and Bk1 6= Bk2 for some k1, k2.

Proof. We will show that the gradient of MSE loss ∇θkL(Z; θk) is a random

variable whose expectation will take the linear form Bk(θk− θ∗). We start with

gradient for arbitrary time step k

∇θkL(Z; θk) = ∇θk(Ŷk − Yk)2 MSE def’n

= ∇θk [(〈θk, Xk〉 − Yk)2] Ŷk def’n from Prop. 1

= ∇θk [(〈θk, Xk〉 − 〈θ∗, Xk〉+ εk)
2] Yk def’n from Ass. 2

= ∇θk [(〈θk − θ∗, Xk〉+ εk)
2] 〈·, ·〉 distributivity

= 2(〈θk − θ∗, Xk〉+ εk)∇θk [〈θk − θ∗, Xk〉+ εk] chain rule

= 2(〈θk − θ∗, Xk〉+ εk)Xk

= 2〈θk − θ∗, Xk〉Xk + 2εkXk (*)

Taking expectation with respect to distribution Pk:

gk(θk) = EPk
[∇θkL(Z; θk)] g def’n

= EPk
[2〈θk − θ∗, Xk〉Xk + 2εkXk] by (*)

= 2EPk
[〈θk − θ∗, Xk〉Xk] + 2EPk

[εk]EPk
[Xk] E linear, εk indep.

= 2EPk
[〈θk − θ∗, Xk〉Xk] E[εk] = 0

= 2EPk
[Xk〈θk − θ∗, Xk〉] scalar and vector commute

= 2EPk
[Xk〈Xk, θk − θ∗〉] 〈·, ·〉 commutative

= 2EPk
[Xk(X

T
k (θk − θ∗))] 〈·, ·〉 matrix form

= 2EPk
[XkX

T
k ](θk − θ∗) matrix mult. associative

= Bk(θk − θ∗)
8



In the last step, we have defined the matrix Bk as twice the expected outer

product of Xk with itself, which has the following property.

Bk = 2EPk
[XkX

T
k ]

= 2
(
Cov(Xk, Xk) + EPk

[Xk]EPk
[Xk]

T
)

So if there exists k1, k2 ∈ N such that the covariance matrices differ or the

mean vectors differ

Cov(Xk1 , Xk1) 6= Cov(Xk2 , Xk2) or EPk1
[Xk1 ] 6= EPk2

[Xk2 ]

then Bk1 6= Bk2 . Assumption 1 provides the necessary k1, k2, so the proposition

is proved.

From the proof, we see that Bk depends only on the first two moments of

Xk:

Bk = 2
(
Cov(Xk, Xk) + EPk

[Xk]EPk
[Xk]

T
)

(2.1)

2.3 ODE Correspondence

Next, we show that the iterates {θk} generated by SGDm are a first order

numerical integration of a particular ODE. The procedure is similar to [29],

but we pay specific attention to the conditions on the ODE necessary to have

integration consistency, given the time-varying loss gradient. We start in

terms of the matrix-valued function B(t), which is assumed below to be a

continuous-time extension of the gradient matrix sequence Bk.

Assumption 3. Assume there exists matrix-valued function B(t), Lipschitz

continuous in t, such that {Bk} are samples spaced √η apart, i.e. Bk =

B(
√
ηk).

Assumption 3 means that Bk is sampled from a continuous B(t) with step-

size η acting as a scaling constant. One unit of t is ≈ 1√
η
discrete steps of k.

(Exact when 1√
η
is an integer.)

9



Assumption 4. Step-size, η > 0, and momentum parameter, µ ∈ [0, 1], are

constant ∀k ∈ N.

Proposition 2. Under Assumptions 3 and 4 the SGDm iterates {θk} numeri-

cally integrate the ODE system (2.2) with integration step √η and first order

consistency.

θ̈(t) +
1− µ
√
η
θ̇(t) + B(t)(θ(t)− θ∗) = 0 (2.2)

Proof. The proof proceeds two parts. First we derive a first order operator-

splitting integrator for the ODE (2.2), then we show that it is equivalent to

SGDm (1.1).

(Part 1: Operator-Splitting Integrator)

Let ξ : R 7→ R2d be the vector valued function of time whose first d elements

are θ(t), and last d elements are θ̇(t):

ξ(t) =

[
θ(t)− θ∗
θ̇(t)

]
(2.3)

i.e. ξ is a phase space transformation allowing us to rewrite ODE (2.2) in the

form of (2.9), which can then be split into a sum of separate systems f [1], f [2]

as follows

ξ̇(t) = f(ξ(t), t) (2.4)

ξ̇(t) =

[
0d×d Id×d
−B(t) −1−µ√

η
Id×d

]
ξ(t)

ξ̇(t) =

[
0d×d Id×d
0d×d 0d×d

]
ξ(t) +

[
0d×d 0d×d
−B(t) −1−µ√

η
Id×d

]
ξ(t)

ξ̇(t) = f [1](ξ(t), t) + f [2](ξ(t), t)

Let h > 0 be an integration time step, φ[1]
h,k(ξk) be the implicit Euler numerical

flow of f [1](ξ(t), t):

φ
[1]
h,k(ξk) = ξk + hf [1](φ

[1]
h,k(ξk), tk+1)

= ξk + h

[
0d×d Id×d
0d×d 0d×d

]
φ

[1]
h,k(ξk) (2.5)
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Let φ[2]
h,k(ξk) be explicit Euler numerical flow of f [2](ξ(t), t):

φ
[2]
h,k(ξk) = ξk + hf [2](ξk, tk)

= ξk + h

[
0d×d 0d×d
−B(tk) −1−µ√

η
Id×d

]
ξk (2.6)

The composed flow

φh,k := φ
[1]
h,k ◦ φ

[2]
h,k (2.7)

is a sequentially split operator, which has splitting error order 1 because (2.4)

is time-varying linear system [15]. The operators being composed, implicit

and explicit Euler, are both order 1 consistent with their respective systems

[21]. The overall order of consistency of a split operator is the minimum of

splitting error, and the orders of the composed flows [8]. So we have that (2.7)

approximates (2.4) with order 1 consistency.

(Part 2: SGDm Equivalency)

We will now show that (2.7) is equivalent to SGDm when integration

timestep h =
√
η, where η is the SGDm step-size. We start with the definition

of ξk+1 as the numerical flow of ξk:

ξk+1 := φh,k(ξk)

= φ
[1]
h,k(φ

[2]
h,k(ξk)) by (2.7)

= φ
[2]
h,k(ξk) + h

[
0d×d Id×d
0d×d 0d×d

]
φ

[1]
h,k(φ

[2]
h,k(ξk)) subst’n from (2.5)

= φ
[2]
h,k(ξk) + h

[
0d×d Id×d
0d×d 0d×d

]
ξk+1 def’n of ξk+1

= φ
[2]
h,k(ξk) + h

[
θ̇k+1

0d

]
matrix mult.

=

(
ξk + h

[
0d×d 0d×d
−B(tk) −1−µ√

η
Id×d

]
ξk

)
+ h

[
θ̇k+1

0d

]
subst’n from (2.6)

=

(
ξk + h

[
0d

−B(tk)(θk − θ∗)− 1−µ√
η
θ̇k

])
+ h

[
θ̇k+1

0d

]
matrix mult.

ξk+1 = ξk + h

[
θ̇k+1

−B(tk)(θk − θ∗)− 1−µ√
η
θ̇k

]
simplification

Recalling that ξk =

[
θk − θ∗
θ̇k

]
, the above immediately provides the following

11



two recurrence relations:

θk+1 = θk + hθ̇k+1 θ̇k+1 = θ̇k + h

(
−B(tk)θk −

1− µ
√
η
θ̇k

)
Now let integration time step h be the square root of SGDm step-size, h =

√
η,

and define vk =
√
ηθ̇k. Substituting h, vk, we proceed via elementary algebra:

θk+1 = θk +
√
η

(
vk+1√
η

) (
vk+1√
η

)
=

(
vk√
η

)
+
√
η

(
−B(tk)θk −

1− µ
√
η

(
vk√
η

))
θk+1 = θk + vk+1 vk+1 = vk + η

(
−B(tk)θk −

(1− µ)vk
η

)
vk+1 = vk − ηB(tk)θk − (1− µ)vk

vk+1 = µvk − ηB(tk)θk

Note that B(tk) = Bk (Assumption 3), and that Bk defines the time-varying

gradients induced by covariate shift and linear regression to a linear target

(Proposition 1). Hence, under those conditions, we have arrived at SGDm (1.1).

The proof is complete.

The reader may observe that, given a solution ξ(t) to the system ξ̇(t) =

A(t)ξ(t), the proof above shows that the SGDm iterates {θk} are precisely a first

order numerical approximation of the first d dimensions of ξ(t) =

[
θ(t)− θ∗
θ̇(t)

]
,

but the remaining d dimensions are approximated only up to a scale factor √η

by iterates {vk}. However, this is not an issue. Solutions θ(t) to the system

(2.2) are embedded within the first d dimensions of ξ(t), so the remaining d

dimensions and iterates {vk} do not affect the result.

The first order consistency guarantee in Proposition 2 means that when

step-size η is small and initial conditions agree between continuous and discrete

time, i.e. θ0 = θ(0), the continuous and discrete time trajectories approximate

each other as θk ≈ θ(k
√
η), where the difference between them depends on the

integration time step h =
√
η. The difference accrued in one step of k (local

12



error) and over arbitrarily many steps (global error) behave as follows [17].

Local Error Global Error

θ0 = θ(0) =⇒ θ1 = θ(h) +O(h2) and θk = θ(hk) +O(h2k) (2.8)

= θ(
√
η) +O(η) = θ(

√
ηk) +O(ηk)

2.4 Parametric Resonance for ODE Convergence
and Divergence

Next we connect Propositions 1 and 2, so that conditions sufficient for con-

vergence and divergence in (2.2) may be shown using established dynamical

systems theory. The conditions sufficient for divergence are precisely the condi-

tions for parametric resonance. We can theoretically guarantee this when the

matrix B(t) is periodic according to Theorem 1.

As per elementary results in linear ODE theory, system (2.2) can be trans-

formed into a linear time-varying first order form

ξ̇(t) = A(t)ξ(t) A(t) =

[
0d×d Id×d
B(t) 1−µ√

η
Id×d

]
(2.9)

such that solution trajectories θ(t) of (2.2) are embedded in solution trajec-

tories ξ(t) of (2.9). Moreover, (2.9) admits a fundamental solution matrix1 ψ(t)

such that the spectral radius ρ of ψ(T ) characterizes ODE instability, which

implies divergence for SGDm, as stated in Theorem 1.

Theorem 1. When B(t) is periodic such that B(t) = B(t + T ), the spectral

radius ρ of ψ(T ) characterizes the stability of solution trajectories of (2.2) as

follows:

• ρ > 1 =⇒ trivial solution θ(t) = θ∗ is unstable. All other solutions

diverge as θ(t)→∞ exponentially with rate ρ.

• ρ < 1 =⇒ trivial solution is asymptotically stable, all other solutions

converge as θ(t)→ θ∗ exponentially with rate ρ.
1A fundamental solution matrix for system (2.9) is any matrix-valued function of time

ψ(t) whose columns are linearly independent solutions to (2.9). We choose ψ(t) such that
ψ(0) = I2d×2d.

13



Proof. The proof of this theorem relies heavily on the well-established mathe-

matics of Floquet theory and the stability result is contained in Theorem 1.9

and Theorem 1.10 of [18]. Theorem 1.10 states that for a system of differential

equations of the form

ξ̇ = A(t)ξ, A(t+ T ) = A(t) (2.10)

where A(t) is piecewise continuous, the stability of the trivial solution ξ(t) ≡ 0

is determined by the spectral radius of the system’s monodromy matrix M

defined below

M = ψ−1(0)ψ(T ) where ψ̇(t) = A(t)ψ(t)

(Monodromy Matrix)

Matrix-valued functions ψ(t) are the system’s fundamental solution matrix,

and elementary existence results for linear systems allow one to choose a ψ(t)

such that ψ(0) = I so that the monodromy matrix simplifies as

M = ψ−1(0)ψ(T )

= I−1ψ(T )

= Iψ(T )

M = ψ(T )

Below we denote the spectral radius of ψ(T ) (and hence of M) as ρ.

(First Order Linear Form, Stability via Floquet)

Below we show that (2.2) can be transformed to the form (2.10) with A(t)

continuous such that trivial solution stability of (2.10) is equivalent to stability

of the solution θ(t) = θ∗.

Let ξ(t) be the phase space transformation of θ(t), similarly to the proof of

Proposition 2

ξ(t) :=

[
θ(t)− θ∗
θ̇(t)

]
so that for each t, θ(t) ∈ Rd and ξ(t) ∈ R2d. This means (2.2) (restated below)

θ̈(t) +
1− µ
√
η
θ̇(t) + B(t)(θ(t)− θ∗) = 0

14



is equivalent to the following first order linear form

ξ̇(t) = A(t)ξ(t) where A(t) =

[
0d×d Id×d
−B(t) −1−µ√

η
Id×d

]
Since B(t) is periodic and continuous, which is stronger than the requisite

piecewise continuity. Since all other submatrices of A(t) are constant, we have

that A(t) is also periodic and (piecewise) continuous. Now Theorem 1.10 in

[18] immediately provides the following

• ρ > 1 =⇒ trivial solution ξ(t) = 0 is unstable. All other solutions

diverge as ξ(t)→∞ exponentially with rate ρ.

• ρ < 1 =⇒ trivial solution is asymptotically stable, all other solutions

converge as ξ(t)→ 0 exponentially with rate ρ.

Since ξ(t) =

[
θ(t)− θ∗
θ̇(t)

]
:

• The trivial solution ξ(t) = 0 is equivalent to θ(t) = θ∗

• ξ(t)→ 0 is equivalent to θ(t)→ θ∗

• ξ(t)→∞ is equivalent to θ(t)→∞

The theorem is proved.

The spectral radius conditions ρ > 1 and ρ < 1 characterize when ODE

solution trajectories θ(t) will converge or diverge, and Proposition 2 tells us

that these solution trajectories are approximations of discrete time SGDm tra-

jectories {θk} under identical initialization. But does convergence or divergence

of θ(t) imply the same for SGDm? Experiment 3.1 empirically suggests that

the approximation is sufficient, since the boundary at ρ = 1 in Figure 3.1a

agrees with both continuous and discrete time.

However, given Theorem 1 and Proposition 2, we have a theoretical guar-

antee of SGDm’s divergence, but not its convergence. This is because the

divergence rate of θ(t) is exponential, and Proposition 2 provides a bound on
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long tail behaviour as θk = θ(
√
ηk)+O(ηk) from (2.8). Since the approximation

error is linear in time k, and the divergence rate is exponential, the divergence

rate dominates, and we are guaranteed that a diverging θ(t) corresponds to a

diverging {θk}. However, the same argument does not imply that a convergent

θ(t) corresponds to a convergent {θk}, because the linear error bound techni-

cally permits the discrete trajectory to escape θ∗ at a linear rate. Despite the

lack of theoretical guarantee, we see empirical agreement for both convergent

and divergent cases, but we defer theoretical proof to future work.

2.5 Example

A learning system which satisfies all of the above assumptions is online linear

least squares regression using SGDm with a fixed η, µ under a periodic covariate

shift. To be concrete, let data be sampled from the sequence of random variables

{Xk, Yk}k∈N defined as follows

Xk ∼ N (x̄k, 1)

x̄k = a cos(2πfk)

Yk = θ∗1Xk + θ∗2 + ε

ε ∼ N (0, 1)

where x̄k is the mean of covariates Xk at time k, θ∗ = [θ∗1, θ
∗
2]T are the target

weights, and ε is the iid observation noise. Note, this is precisely the setup for

Experiment 3.1.

We can use Theorem 1 to determine which values of η, µ, and covariate

shift frequency, f , will result in divergence or convergence of the learning

system. We numerically compute the fundamental solution matrix of the ODE

corresponding to this learning system and then calculate the spectral radius of

this matrix evaluated at time T . By convergence we mean that the learned

parameters will converge to the true underlying θ∗1 and θ∗2, and divergence

means they will move arbitrarily far from the true θ∗1 and θ∗2.
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We consider a squared error loss function,

L(z; θ) = (ŷ − y)2

= [〈θ,x〉 − (〈θ∗,x〉+ ε)]2

= [(θ1x+ θ2)− (θ∗1x+ θ∗2 + ε)]2

Hence, taking gradients at time k w.r.t. θk we have

∇θkL(zk; θk) =

[
2xk[(θk1xk + θk2)− (θ∗k1xk + θ∗k2 + ε)]
2[(θk1xk + θk2)− (θ∗k1xk + θ∗k2 + ε)]

]
Taking expected gradients,

E[∇θkL(zk; θk)] =

[
E[2[(θk1x

2
k + θk2xk)− (θ∗k1x

2
k + θ∗k2xk + εxk)]]

E[2[(θk1xk + θk2)− (θ∗k1xk + θ∗k2 + ε)]]

]
=

[
2[(θk1(1 + x̄2

k) + θk2x̄k)− (θ∗k1(1 + x̄2
k) + θ∗k2x̄k + E[ε]x̄k)]

2[(θk1x̄k + θk2)− (θ∗k1x̄k + θ∗k2 + E[ε])]

]
= 2

[
(θk1(1 + x̄2

k) + θk2 x̄k)− (θ∗k1(1 + x̄2
k) + θ∗k2x̄k)

(θk1x̄k + θk2)− (θ∗k1x̄k + θ∗k2)

]
= 2

[
θk1(1 + x̄2

k)− θ∗k1(1 + x̄2
k) + θk2x̄k − θ∗k2x̄k

θk1 x̄k − θ∗k1x̄k + θk2 − θ∗k2

]
= 2

[
(1 + x̄2

k) x̄k
x̄k 1

] [
θk1 − θ∗k1
θk2 − θ∗k2

]
In the notation of Proposition 1, we can write this as

gk(θk) = Bk[θk − θ∗]T with Bk = 2

[
(1 + x̄2

k) x̄k
x̄k 1

]
If we let x̄(t) = a cos(2πfη−

1
2 t), then we can satisfy Assumption 3 (i.e. Bk =

B(
√
ηk) with the matrix-valued function B(t)

B(t) = 2

[
(1 + x̄(t)2) x̄(t)

x̄(t) 1

]
From Proposition 2, we have that our learning system numerically integrates

an LTV of the form

θ̈(t) +
1− µ
√
η
θ̇(t) + B(t)(θ(t)− θ∗) = 0 with (θ(t)− θ∗) =

[
θ1(t)− θ∗1(t)
θ2(t)− θ2

∗(t)

]
(2.11)

Note that B(t) is piecewise continuous and periodic with period T = 1
f
.
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This second order ODE can be represented as a system of first order ODEs

with the transformation

ξ1 = θ1 − θ∗1

ξ2 = θ2 − θ∗2

ξ3 = θ̇1

ξ4 = θ̇2

so that the equation (2.11) can be written in standard first order linear form

ξ̇ = A(t)ξ: 
ξ̇1

ξ̇2

ξ̇3

ξ̇4

 =


0 0 1 0
0 0 0 1

−2(1 + x̄2(t)) −2x̄(t) µ−1√
η

0

−2x̄(t) −2 0 µ−1√
η



ξ1

ξ2

ξ3

ξ4

 (2.12)

The matrix B(t) is piecewise continuous and periodic, which implies the

matrix A(t) also shares these properties. The ODE (2.11) satisfies all the

assumptions needed to make use of Theorem 1 to determine the stability of

solution trajectories. We can obtain a fundamental solution matrix, ψ(t),

of (2.12) satisfying initial conditions ψ(0) = I4×4 by numerical computation

through the use of an ODE solver.

Once we have this matrix ψ(t), we evaluate it at time T = 1
f
to obtain

the system’s monodromy matrix. Now we only need to determine the spectral

radius, ρ, of ψ(T ) to determine the stability of solution trajectories for the

system. Details regarding why this is true are given in the proof of Theorem 1.

We repeat this process, sweeping over values of µ, η, and f to determine the

stability of solution trajectories for systems to triples of fixed values for these

hyperparameters. The results of this process are given in Figure 2.1 below.

Interestingly, the right column of 2.1 shows a band of minimum spectral radius,

which suggests that there exists an optimal µbest which does not resonate like

larger values of µ, and also has the fastest convergence rate. Further, the

optimal band is nearly horizontal, with only minor deviations toward the far

left where data approaches iid, which suggests that the optimality of µbest

applies across a very wide band of frequencies However, the location of µbest
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clearly changes with step-size η, and also likely depends upon other aspects of

the specific learning problem.
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(a) Spectral radius heatmap, η = 0.01
(b) Spectral radius heatmap, wide
range, η = 0.01

(c) Spectral radius heatmap, η = 0.005
(d) Spectral radius heatmap, wide
range, η = 0.005

(e) Spectral radius heatmap, η = 0.001
(f) Spectral radius heatmap, wide
range, η = 0.001

Figure 2.1: Spectral radii of the monodromy matrices induced by particular
momentum µ and period T values (x and y pixel coordinates, respectively).
Step-size η decreases with each row. Each column shares the same range of
µ, T . The right column shows the full range µ ∈ [0, 1] and a wide range of
periods T . Each left figure ‘zooms in‘ to the upper left corner of the figure to its
right. (a) corresponds to the µ, η, T as Experiments 3.1 and 3.2, with contour
lines identical to 3.1a 3.1b such that the white line separates the convergent
region below from the divergent regions above.
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Chapter 3

Validating Theory, then Ablating
Towards Conditions in the Wild

We now empirically evaluate the effect of resonance in learning problems.

First, Experiment 3.1 validates the theoretical predictions by investigating

the dynamics of a learning problem which closely matches the theoretical

assumptions in Chapter 2. Specifically, we assess whether or not the spectral

radius ρ predicts optimizer convergence or divergence. Then, in order to

investigate when similar phenomena can be seen in more realistic learning

problems, the remaining Experiments 3.2 - 3.6 sequentially move away from

theoretical assumptions. Each experiment makes a single step away from a

theoretical assumption, and sweeps a variable which controls the frequency

content of covariate shift. Hence, we are able to empirically asses the frequency

response in the resulting losses for increasingly realistic learning problems.

Across all experiments, input samples at each training step k are drawn

from Gaussian distributions with diagonal covariance matrices, i.e. Xk ∼

N (x̄k, cId×d), and we induce covariate shift by constructing a time-varying

mean sequence {x̄k}. Each mean sequence is designed such that its frequency

content (and hence the frequency content of Xk) can be swept with a single

parameter f or T . All sequences {x̄k} are designed such that iid sampling

is induced by setting f = 0 or T = 0, so that each experiment has an iid

baseline for comparison. The specification of x̄k in terms of its frequency sweep

parameter f or T is provided in Table 3.1 for each experiment.

Since divergence conditions are our focus, f, T are swept such that the
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resonating regions are highlighted, with µ sufficiently high that resonance will

occur. To demonstrate how SGDm can still be used effectively, all experiments

are repeated in Section 4 with µ reduced such that resonance is mitigated.

Table 3.1: Covariate shift details for each experiment.

Experiment Sweep Param. Mean Sequence {x̄k}k∈N
3.1 Validating Theory f ∈ [0, 0.05] x̄k = 0.5 sin(2πfk)

3.2 Ablating Periodicity f ∈ [0, 0.05]

x̄k = φ1x̄k−1 + φ2x̄k−2 + ξk

φ1 = 4φ2(φ2 − 1)−1 cos(2πf)

φ2, ξk, x̄1, x̄2 see Table 3.3

3.3 Ablating Expected Gradient T ∈ [0, 120]
x̄k =

{
ξ

2||ξ|| if b
2k
T
c ≡ 0 mod 1

−ξ
2||ξ|| if b

2k
T
c ≡ 1 mod 1

ξ ∼ N (0, Id×d) iid

3.4 Ablating Periodicity Further T ∈ [0, 50]
x̄k = ξi where i =

⌊
k

T

⌋
ξi ∼ N (0, vId×d) iid

3.5 Ablating Optimizer Linearity T ∈ [0, 100] x̄k same as above.

3.6 Ablating Model Linearity T ∈ [0, 100] x̄k same as above.

3.1 Experiment 1: Validating Theory

We start in a setting as close as possible to the theoretical predictions, with

linear regression for a quadratic loss, and covariate shift such that the mean

E[Xk] varies as a strict sinusoid. We perform regression in two weights (i.e.

inputs Xk and labels Yk are scalar-valued.) While fully stochastic SGD suggests

a single sample should be drawn from each Xk, we draw 20 samples from each

Xk, so that the loss gradient for each time step k is nearer to its expected value.

To be clear, this is not batching over time, as would be done for conventional

minibatches. Instead, we are drawing more samples from the distribution of

Xk at each instant in time k. Refer to Table 3.2 for details.

Since we have only two weights, the learning system’s underlying ODE can

easily be completely specified, such that the fundamental solution matrix can be

numerically computed. As per Theorem 1, we can use the spectral radius of the
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fundamental solution matrix evaluated at time T to make theoretical predictions

of where the system should converge or diverge. As depicted in Figure 3.1a, the

theory agrees very well with empirical results. This suggests that parametric

resonance, as predicted by Floquet theory, is indeed the dominant mechanism

behind SGDm divergence under covariate shift. Refer to example 2.5 for the

procedure used to compute the theoretical predictions (i.e. spectral radii ρ),

and Figure 2.1a for the full surface from which the contour lines in Figure 3.1a

are rendered.

Table 3.2: Details for linear regression sinusoidal covariate shift problem.

Sinusoid Mean Frequency f ∈ [0, 0.05]

Covariate Shift Mean x̄k = 0.5 sin(2πfk)

Input Sampling Xk ∼ N (x̄k, 1)

Target Function (Fixed ∀k)
Yk = θ∗1Xk + θ∗2
θ∗1, θ

∗
2 ∼ Uniform[−1, 1]

Model and Optimizer

Ŷk = θk,1Xk + θk,2

θ0,1, θ0,2 ∼ Uniform[−1, 1]

(θk)k∈N ← SGDm(η, µ)

η = 0.01, µ ∈ [0.95, 0.999]

k ∈ [0, 104]

3.2 Experiment 2: Ablating Periodicity

Here we repeat the same experiment, but with the mean of Xk varying stochas-

tically instead of deterministically.

The precise characterization of solution trajectory stability via Theorem 1

depends on the expected gradient to vary periodically over time given fixed

weights θ. In most realistic scenarios, however, we should not expect strictly

periodic time variation, which implies Theorem 1 is no longer strictly applicable

to characterize the stability of solution trajectories. But even with aperiodic

and/or stochastic time variation, our LTV system (2.9) might be similarly

susceptible to instability.
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(a) Resonance regions for sinusoidal x̄k (b) AR(2) Stochastic Mean

Figure 3.1: Empirical heatmap of SGDm for linear regression, overlaid by
contours of theoretical prediction. Each pixel is the distance ||θk−θ∗|| averaged
over the final 500 steps k and 10 runs. Coordinates are momentum µ (y-axis)
and covariate shift mean signal period T (x-axis, a) or period T corresponding
to the dominant frequency in the Xt signal (x-axis, b). Dark pixels converge
quickly and stably, bright pixels diverge exponentially. Contour show divergence
predictions from Theorem 1: white contour has ρ = 1, with ρ increasing with
redness.

Here we demonstrate instability by replacing our periodic covariate shift

mean with a mean that moves according to an AR(2) process. We run the same

experiment as before but instead of having the mean of Xk drifting according

to a periodic function, it moves according to an AR(2) process tuned to have

a frequency peak exactly at the frequency of the sinusoidal covariate shift of

Experiment 3.1. Refer to table 3.1 for details on the covariate shift. We can

see from the heatmap in Figure 3.1b that under this setting we observe very

similar resonance behaviour in the learning system, which aligns well with the

identical predicted stability regions.

Note that both theoretical and empirical results in Figures 3.1a and 3.1b

suggest that sufficiently low momentum values µ mitigate the resonance phe-

nomenon, which agrees with the role it plays in the ODE system: decreasing µ

increases damping. We also observe that resonance regions shrink as step size

η is decreased, see Section 4 for plots demonstrating this trend. Analytically

characterizing the bounds of stable µ, η in terms of system properties is an

interesting future direction.
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Table 3.3: Details for linear regression sinusoidal covariate shift problem.
Rather than choosing a frequency f and using it directly as in Table 3.2, we
use f together with the stationary distribution variance 0.1 to compute AR(2)
coefficients φ1, φ2.

Expected Dominant Freq. in x̄k f ∈ [0, 0.05]

x̄k Stationary Dist. (Fixed ∀f) P = N (0, 0.1)

Covariate Shift Mean

x̄k = φ1x̄k−1 + φ2x̄k−2 + ξk

ξk ∼ N (0, 10−5) iid
x̄1, x̄2 ∼ P

φ1 =
4φ2

φ2 − 1
cos(2πf)

φ2 s.t. [x̄k | x̄k−1 ∼ P ] ∼ P

Remaining Parameters Xk, Yk, Ŷk, θ
∗, θ0, (θk)k∈N, η, µ, k same as

Table 3.2

3.3 Experiment 3: Ablating Expected Gradient

Here we perform linear regression with periodic mean covariate shift, and ablate

the number of samples drawn from each Xk to show the effect of increasing

noise in the gradient signal. Linear regression is performed mapping R5 → R,

with the weights learned via SGDm. The mean sequence x̄k oscillates with

strict periodicity between ±x̄, where x̄ is a unit norm 5-vector randomly chosen

for each run. i.e. the mean signal is a square wave in R5 with period T . Refer

to Table 3.1 for details of the covariate shift.

Linear regression implies a quadratic loss, and periodic covariate shift

implies a loss with periodic time variation in expectation, so we are very near

to the setting in which Theorem 1 is directly applicable. However, as we ablate

from 5 samples to 1 sample drawn from each Xk, we move further away from

the expected gradient, towards the fully stochastic gradient setting. As we can

see in Figure 3.2 resonance is dampened by stochasticity in the gradient signal.

Losses are normalized with respect to the number of samples drawn from Xk,

so that loss and gradient magnitude are independent of the number of samples.

In all following experiments, 3.4 - 3.6, only a single sample is drawn from

each Xk, so that our results better reflect the modern setting where optimizers
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Figure 3.2: Regression w/ periodic x̄k. Warmer colors draw more samples from
each Xk. Each dot is avg. distance ||θk − θ∗|| over final 500 steps. Decreasing
samples per Xk scales down frequency response and shifts peaks to the right,
akin to mechanical damping. Each color has three peaks: the left peak is too
large to appear on the y scale for all curves, the center peak is small enough
to appear only for the black curve, and the right peak appears for all curves
(vanishingly small for the black curve.) Resonant responses are dampened by
increasing stochasticity in SGDm updates.

have access to noisy gradient estimates.

3.4 Experiment 4: Ablating Periodicity Further

We further depart from strictly periodic covariate shift by randomly sampling a

new mean from a normal distribution N (0, v2) after every T update steps. Since

we no longer have periodic time variation Floquet theory no longer provides

direct predictions of system behaviour. Nonetheless, we observe divergence

characteristic of the parametric resonance we have seen thus far, with a specific

band of mean switching intervals T having a highly divergent response. As

seen in Figure 3.3, we observe a strong dependence on the variance v2 of the

distribution from which our means x̄k are sampled, which is akin to the strong

dependence of parametric resonance on driving signal amplitude.

Similar to the dependence on mean switching variance v2 in Figure 3.3, we

also observe a strong dependence on the number of input space dimensions, as

seen in Figure 3.4. Also, the resonance occurs within the same band of mean
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Table 3.4: Details for linear regression square wave covariate shift problem.

Square Wave Mean Period T ∈ [0, 120]

Input Dimensionality d = 5

Covariate Shift Mean
x̄k =

{
ξ

2||ξ|| if b
2k
T
c ≡ 0 mod 1

− ξ
2||ξ|| if b

2k
T
c ≡ 1 mod 1

ξ ∼ N (0, Id×d) iid

Input Sampling Xk ∼ N (x̄k, 0.25Id×d)

Target Function (fixed for all k)
Yk = 〈θ∗[1:d], Xk〉+ θ∗d+1 + εk

θ∗ ∼ N (0, cId+1×d+1) where c = 0.25

εk ∼ N (0, 0.1)

Model and Optimizer

Ŷk = 〈θ[1:d], Xk〉+ θd+1

θ0 ∼ N (0, cId+1×d+1) where c = 0.25

(θk)k∈N ← SGDm(η, µ)

η = 0.01, µ = 0.95

k ∈ [0, 104]

switching intervals T . Given the sensitivity to driving signal amplitude in

Figure 3.3, this aligns with the fact that the expected norm of samples drawn

from a multivariate Gaussian increases with dimensionality, even with a fixed

covariance scale. Though we are as yet unsure if this accounts for the entirety

of resonance’s dependence on input dimensionality.

3.5 Experiment 5: Ablating Optimizer Linear-
ity

As explained in Section 2, a learning algorithm with linear time-varying gradi-

ents using SGDm as an optimizer corresponds to a discretization of an LTV

ODE. If we change any one of those conditions, the learning system no longer

corresponds to our LTV ODE. It is interesting to ask, however, whether reso-

nance can be observed in systems which do not correspond to a discretization

of our ODE.

To investigate this hypothesis we replace SGDm with ADAM as an update

rule for our learning algorithm. We no longer have the ODE representation of
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Figure 3.3: SGDm w/ stochastic x̄k, variance sensitivity. Regression w/ stochas-
tic x̄k. Each marker is avg. distance ||θk − θ∗|| over final 500 steps. Clearly,
resonance occurs even without periodicity from Theorem 1, and resonance is
very sensitive to the x̄k signal variance (i.e. amplitude).

Figure 3.4: SGD w/ stochastic x̄k, sensitivity to d. Same configuration as
Figure 3.3, but input dimensions d are varied instead of covariate shift variance.
Resonance is very sensitive to the number of input dimensions d.
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Figure 3.5: ADAM w/ stochastic x̄k, β1 sensitivity. Regression w/ stochastic x̄k.
Each marker is avg. distance ||θk − θ∗|| over final 2000 steps. No exponential
divergence as seen in Figures 3.3 and 3.4 suggests that frequency response is
significantly damped for ADAM.

this learning system, but we can empirically investigate the behaviour of the

system under covariate shift.

Here we use the same stochastic mean switching problem as the previous

experiment, where we regress from 5 dimensions to 1 with input samples subject

to a stochastic mean covariate shift. Again, we measure the distance between

learned weights θ and target weights θ∗, but we replace the SGDm optimizer

with ADAM, and we vary the ADAM parameter β1. Similar to the SGDm

optimizer, we can see in Figure 3.5 that there is a band of mean switching

intervals T for which convergence is worse. But unlike SGDm, there is no

divergence. Proper parametric resonance induces exponential divergence, which

is why the previous results were presented with Euclidean distances between

weights on the order of 1019. Note that in Figure 3.5, the frequency response

in weight space distance is instead measured on the order of 100.

3.6 Experiment 6: Ablating Model Linearity

Another relaxation of our conditions for the ODE representation is to use a

function approximator without a quadratic loss surface. To this end, we replace

our linear regression with a neural network. Like the previous experiment, we
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Table 3.5: Details for linear regression problem with stochastically switching
covariate shift mean.

Mean Switching Interval T ∈ [0, 50]

Mean Switching Variance v = 0.25 for Figure 3.4, v ∈ [0, 0.4] for
Figure 3.3

Input Dimensionality d ∈ [1, 9] for Figure 3.4, d = 5 for Figure
3.3

Covariate Shift Mean
x̄k = ξi where i =

⌊
k

T

⌋
ξi ∼ N (0, vId×d) iid

Remaining Parameters Xk, Yk, Ŷk, θ
∗, θ0, (θk)k∈N, η, µ, k same as

Table 3.4

no longer have correspondence with the ODE, but can empirically investigate

the system’s dynamics in terms of frequency response to covariate shift.

We reuse the mean switching covariate shift, but fit a nonlinear target

function using a fully connected ReLU network. See Table 3.7 for details. In all

previous experiments with linear regression, we measured frequency response

as distance from target weights ||θk − θ∗||. Here, we do not have access to the

target weights, and so report frequency response in terms of loss L against

the stationary distribution of {Xt}. In Figure 3.6, runs having loss < 0.05

converged to well-performing models, and those having loss > 0.3 perform

badly.

In order to better highlight the frequency response, 10 samples were drawn

from each Xk, so that the gradient signal is closer to the expected gradient.

As depicted in Figure 3.6, there is a band of mean switching intervals for

which convergence is damaged more than elsewhere, which is characteristic of

resonance. However, the effect is bounded, which is a marked difference from

previous experiments with SGDm and linear regression, where divergence was

unbounded exponential.
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Table 3.6: Details for linear regression problem with stochastically switching
covariate shift, optimized with ADAM instead of SGDm.

Mean Switching Interval T ∈ [0, 100]

Mean Switching Variance v = 1.0

Input Dimensionality d = 5

Covariate Shift Mean x̄k identical to Table 3.5

Input Sampling Xk ∼ N (x̄k, 0.1Id×d)

Target Function (fixed for all k) Yk, θ
∗, εk identical to Table 3.5

Model Ŷk, θ0 identical to Table 3.5

Optimizer
(θk)k∈N ← ADAM(η, β1, β2)

η = 0.01, β1 ∈ [0.9, 0.99], β2 = 0.999

k ∈ [0, 104]

Figure 3.6: Training a neural network with SGDm shows a peak response in
the loss around the band T ∈ [5, 40]. The y-axis is average test loss over the
final 2000 training steps over 20 runs, with test set obtained via the stationary
distribution of {Xk}. Shaded regions are 95% confidence intervals.
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Table 3.7: Details for neural network regression problem with stochastically
switching covariate shift.

Mean Switching Interval T ∈ [0, 100]

Mean Switching Variance v ∈ [0, 0.4]

Input Dimensionality d = 2

Covariate Shift Mean x̄k identical to Table 3.5

Input Sampling Xk ∼ N (x̄k, 0.1Id×d)

Target Function (fixed for all k)
Yk = cos(π||Xk||) + εk

εk ∼ N (0, 0.1)

Model
Ŷk = f(Xk; θk) two hidden layers of 20 activations
θ0 initialized as He et. al.

Optimizer
(θk)k∈N ← SGDm(η, µ)

η = 0.01, µ = 0.95

k ∈ [0, 2× 104]
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Chapter 4

Reducing Resonant Responses

In experiments 3.1 and 3.2, we see that as the momentum parameter is reduced,

the tendency to resonate is mitigated. This aligns with theoretical predictions,

which (in the context of those particular experiments) suggest that a sufficiently

low µ makes SGDm convergent across all frequencies in the band we evaluate.

Intuitively, this aligns with the role µ plays in the ODE, as it appears in

the following coefficient on the first order derivative of system (2.2) (i.e. the

system’s ‘damping’ coefficient), repeated below with the damping coefficient α

explicitly labelled:

θ̈(t) + αθ̇(t) + B(t)(θ(t)− θ∗) = 0 α :=
1− µ
√
η

(4.1)

When α = 0, the system has no damping (i.e. friction is zero, in the physical

analogue) so resonant responses are maximized. As α increases, damping

increases, and resonant responses are reduced. There are two ways to increase

α: reduce µ or reduce η.

4.1 Reducing the momentum parameter

Figure 2.1b shows the theoretical heatmap across all possible momentum values,

and across a much wider band of frequencies, which suggests a trend: setting µ

to a sufficiently low value will completely mitigate resonance, though setting µ

too low will worsen convergence rate. For now, we will set aside the observation

that µ too low worsens convergence rate, and we will now show that reducing

µ will reliably dampen resonance across all other experiments.
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(a) Regression w/ periodic x̄k, 5 sam-
ples per Xk

(b) Regression w/ stochastic x̄k, 0.4 x̄k
variance

(c) Regression w/ stochastic x̄k, d = 9 (d) Neural net w/ stochastic x̄k, x̄k
variance = 0.4

Figure 4.1: Re-running with reduced momentum values for highest resonance
configurations chosen from Experiments 3.3 (a), 3.4 (b, c), and 3.6 (d). In
all cases, reducing momentum significantly dampens resonant response, with
µ = 0.85 completely mitigating resonant response.

In 3.5, ADAM’s parameter β1 was varied, and we see that reducing β1

decreases the tendency to resonate. Since β1 is the nearest parameter to µ in

SGDm, the desired trend has already been demonstrated. For the remainder of

this section, we show the resonance-damping behaviour of µ in the remaining

experiments: 3.3, 3.4, and 3.6. In particular, from each experiment we choose

the configuration which had the highest tendency to resonate, and we modify

the experiment by running them with several decreasing values of momentum

µ. See Figure 4.1 for results. In Section 3, these experiments used momentum

µ = 0.95, and here we run with µ ∈ [0.85, 0.95], with all other experimental

parameters identical.
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4.2 Reducing the step-size

Another way to reduce tendency to resonate is suggested by the damping

coefficient (4.1): reducing step-size η. Here we repeat Experiments 3.1 and

3.2, including two smaller step-sizes η to empirically demonstrate that trend.

Specifically, Figure 4.2 shows the resonance heatmap and spectral radius

contour lines for regression in two weights with covariate shift, identically to

Experiments 3.1 and 3.2. The left column shows sinusoidal covariate shift, and

the right column the AR(2) covariate shift. Each row corresponds to a fixed

step-size η ∈ {0.01, 0.005, 0.001}, and it is clear that resonant, diverging regions

are significantly reduced in size as step-size is decreased, with a narrower band

of frequencies diverging, and the minimum momentum µ required for resonance

increasing towards 1. This trend is reflected in both the empirical heatmap

results, as well as the theoretically predicted spectral radius contour lines.
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(a) Resonance regions, sinusoidal x̄k,
η = 0.01

(b) Resonance regions, AR(2) x̄k, η =
0.01

(c) Resonance regions, sinusoidal x̄k,
η = 0.005

(d) Resonance regions, AR(2) x̄k, η =
0.005

(e) Resonance regions, sinusoidal x̄k,
η = 0.001

(f) Resonance regions, AR(2) x̄k, η =
0.001

Figure 4.2: Re-running with reduced step-size for Experiments 3.1 (a, c, e)
and 3.2 (b, d, f) and . In both cases, reducing step-size significantly dampens
resonant response.
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Chapter 5

Discussion and Limitations

In this work, we claim that the frequency response of SGDm is a useful property

in determining when it will diverge due to the frequency content the training

data process {Xk} under non-iid sampling. While we highlight failure modes

for SGDm, we do not intend to imply that SGDm is ineffective. Indeed, the

heatmaps in Figures 3.1a and 3.1b indicate that SGDm converges much more

often than it diverges, and that we can practically avoid resonance simply by

reducing the momentum parameter µ. As per Section 4, we find that sufficiently

low µ mitigates resonance.

In our theoretical analysis, we take expectation over observation noise and

over the distribution of inputs Xk, so the gradient coefficient matrix B(t) in

the ODE (2.2) is deterministic. This allows us to rigorously characterize when

resonance will occur, provided B(t) is periodic. Future work might exploit the

tools of stochastic differential equations in order to rigorously account for the

effects of stochasticity. The case when B(t) is aperiodic and stochastic is of

particular interest, since Experiments 3.2 and 3.4 demonstrate that resonance

still drives divergence with such B(t). In particular, Experiment 3.2 aligns

exactly with the theoretical predictions, suggesting that the resonance is in

response to the frequency content of Xt, not its periodicity.

For the sake of consistency across experiments, our non-iid sampling is

always induced by Gaussian Xk with a diagonal covariance matrix fixed over

time. But Assumption 1 is far more relaxed. Even if one wishes to adhere to

the strict periodicity requirements of Theorem 1, it is possible to induce time
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variation by varying any aspect of Xk’s distribution, including covariance struc-

ture. Comparing the effects of these different time variations is an interesting

future direction.

To our knowledge, this work is the first to investigate SGDm under non-iid

sampling from the ODE perspective. This perspective on non-iid sampling

reveals new insights, in particular the revelation that SGDm under non-iid

sampling numerically integrates a parametric oscillator, rather than the simple

undriven harmonic oscillator induced by iid sampling. In terms of physical

analogy, this is like the canonical spring-mass-damper oscillating system, but

rather than being driven by a periodic external driving force (e.g. the wind),

the system is driven by periodic changes in the stiffness of the springs. The

former is a simple harmonic oscillator, and the latter a parametric oscillator.

We leverage dynamical systems theory to analyze the stability of a learning

system using SGDm under non-iid sampling, and are able to provide conditions

for exponential divergence due entirely to the frequency content induced by

the non-iid sampling.

This work connects the literature analyzing SGDm from an ODE perspective

to the literature on stochastic gradient based algorithms under non-iid sampling.

Despite its age and establishment, understanding SGDm is an ongoing process.

We contribute to this process in a way that provides physical intuition, rather

than a merely algebraic proof. Finally, we hope that the connection we have

drawn to parametric oscillation in dynamical systems theory will provide a

stepping stone towards more advanced work in understanding non-iid sampling

and SGDm.

When assessing a new phenomenon like resonance, assessment on simple

problems is a critical first step, and we have endeavored to be comprehensive

in that assessment. But we only scratch the surface of more complex problems,

including more advanced optimizers and nonlinear models, so it is not yet clear

how big a role resonance plays in those settings. Similarly, for the sake of

experimental control and interpretability of results, we assess resonance on

synthetic data instead of real world data. While it is obvious that many sources

of real data have nontrivial frequency content (e.g. audio samples, machine
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control inputs, etc.) it is not yet clear when realistic frequency content will

resonate with the system trying to learn from it. The two primary future

directions for this work are to address these two gaps: to extend into the

frequency response of more complex optimizers and models, and into the

frequency content of real data.

Perhaps the most exciting future direction is the potential for engineered,

system-specific hyperparameter choice. In order to avoid resonant response in

a mechanical or electrical system under expected operations, engineers choose

the parameters of dampers, linkages, capacitors, motors, and other components.

These mechanical and electrical design choices are made via theoretical and

empirical analysis in the frequency domain. That is, by examining system

response to input signal frequencies. In the same way, machine learning en-

gineers might choose hyperparameters to avoid resonant responses in online

learning systems under covariate shift data conditions. Given sufficient under-

standing of the learning algorithm and the data, analytical guarantees may be

possible using techniques which build upon those employed in Section 2. But

even without such analytical guarantees, system design can still be aided by

empirical observations of its frequency response. Such methods are used in

established engineering fields [4], and they were the primary inspiration for the

frequency sweep experiments in Section 3. Whether the methods are analytical

or empirical, we are excited at the prospect of frequency domain methods for

online learning system design.
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