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Abstract

The Einstein equation with a negative cosmological constant Λ in the five

dimensions for the Randall-Sundrum II model, which includes a black hole,

has been solved numerically. We have constructed an AdS5-CFT4 solution

numerically, using a spectral method to minimize the integral of the square

of the error of the Einstein equation, with 210 parameters to be determined

by optimization. This metric is conformal to the Schwarzschild metric at an

AdS5 boundary with an infinite scale factor. So, we consider this solution as

an infinite-mass black hole solution.

We have rewritten the infinite-mass black hole in the Fefferman-Graham

form and obtained the numerical components of the CFT energy-momentum

tensor. Using them, we have perturbed the metric to relocate the brane

from infinity and obtained a large static black hole solution for the Randall-

Sundrum II model. The changes of mass, entropy, temperature and area

of the large black hole from the Schwarzschild metric are studied up to the

first order for the perturbation parameter 1/(−Λ5M2). The Hawking tem-

perature and entropy for our large black hole have the same values as the

Schwarzschild metric with the same mass, but the horizon area is increased

by about 4.7/(−Λ5).

Figueras, Lucietti, and Wiseman found an AdS5-CFT4 solution using an

independent and different method from us, called the Ricci-DeTurck-flow

method. Then, Figueras and Wiseman perturbed this solution in a same

way as we have done and obtained the solution for the large black hole in the

Randall-Sundrum II model. These two numerical solutions are the first math-



ematical proofs for having a large black hole in the Randall-Sundrum II. We

have compared their results with ours for the CFT energy-momentum tensor

components and the perturbed metric. We have shown that the results are

closely in agreement, which can be considered as evidence that the solution

for the large black hole in the Randall-Sundrum II model exists.
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1

Chapter 1

Randall-Sundrum as a

Braneworld Model

Most of the current theories in gravity are aimed to unify gravity with

other fundamental forces and particles in nature. One of the candidates is

string theory, with the principal assumption that the spacetime is a higher-

dimensional one while we are living in a four-dimensional spacetime. So we

need to assume extra spatial dimension(s) for these theories.

From an historical point of view, Nordström [49] was the first one who

proposed the idea of an extra dimension in 1914. In his work, he showed that

one could unify gravity with electromagnetism by assuming an extra spatial

dimension. After Einstein published his general relativity theory, Kaluza [34]

and Klein [39] suggested the first five-dimensional model to unify gravity and

electromagnetism, working in the Einstein general relativity framework with

one compactified extra dimension.

Another higher-dimensional model is the braneworld model. The first
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braneworld model was proposed in 1998 by Arkani-Hamed, Dimopoulos, and

Dvali [4, 5], known as the ADD model, based on Rubakov and Shaposhnikov’s

idea, proposed in 1983 [54]. It is a six-dimensional model, with two flat

compactified extra dimensions, to solve the hierarchy problem. It should be

mentioned that the ADD model requires at least two extra dimensions, but it

can have more than two. Other braneworld models were proposed for solving

the hierarchy problem by Randall and Sundrum, known as RSI [52], and RSII

[53]. The RS model is a warped five-dimensional braneworld model with an

extra dimension that can be large and not compactified for the RSII.

In this chapter, we review the basic definition and geometric formalism

for the braneworld model [45, 51, 56, 61]. Then, we focus on the Randall-

Sundrum models and their characteristics.

1.1 Braneworld Model

1.1.1 Definition

The braneworld model includes a higher-dimensional spacetime that is

called the bulk and a lower-dimensional spacetime called the brane, which

is embedded in the bulk. All matter and fields in the standard model are

supposed to propagate on the subspace manifold, the brane, but gravity is

the only force that can propagate through the whole space, the bulk. In the

braneworld model, our four dimensional universe is considered as a 3-brane,

which is a 1+3 hypersurface, surrounded by a higher-dimensional spacetime.

From the geometric aspect, the brane is a hypersurface that is embedded

in a bigger space and can evolve in time. We can relate the geometry of
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a spacetime and the surface within it, since the embedding will affect the

geometry of the surface. In the braneworld, a singular distribution of energy-

momentum tensor is a characteristic of the brane. This makes the mass-energy

distribution confined to the brane as a surface rather than the bulk as the

full spacetime. So, instead of having a nonsingular energy-momentum tensor

that has units of energy per volume of the bulk spatial volume, it has units

of energy per volume of the brane spatial volume. In some special cases there

is a symmetry in the model as well, which makes the brane as a set of fixed

points of that symmetry.

For the next section, we try to go through the geometric formalism for

the braneworld model, specifically for the five-dimensional model. We will

see how the geometric character of the spacetime can be described with the

singularity characteristic of the energy-momentum tensor in the braneworld.

1.1.2 Geometry for the Braneworld Model

The bulk, the manifold M, has the coordinate system {xA}, with A =

0, 1, 2, 3, 4 for the five-dimensional spacetime, and the metric gAB. The brane,

a submanifold S, is a hypersurface or surface of codimension one, a 3 + 1-

dimensinal surface in the five-dimensions, with an intrinsic coordinate system

{ya} with a = 0, 1, 2, 3. The line element on the brane can be described by

the metric hab as

hab = gABeA
a eB

b . (1.1)
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This is called the induced metric or the first fundamental form of the hyper-

surface. {eA
a } are the projection operators defined as

eA
a =

∂xA

∂ya
. (1.2)

They are tangent vectors on the brane.

We can describe the hypersurface with an equation φ(xA) = 0. Then the

unit normal vector for the timelike hypersurface, nA, can be defined as

nA =
φ,A

|gBCφ,Bφ,C |
1
2

, (1.3)

so eA
a nA = 0. We consider the case in which the gradient of φ is spacelike at

φ(xA) = 0, so the nA is spacelike as well. Then the normal vector points in

the direction of increasing φ.

The inverse of the induced metric, the intrinsic metric for the hypersurface,

can be determined by

hAB ≡ habeA
a eB

b = gAB − nAnB. (1.4)

We shall calculate whether the covariant derivative on the bulk, defined

as $A, differs from the covariant derivative on the brane, defined as Da. We

restrict our calculation to a tangent vector field, V A, where V A = V aeA
a , so

V AnA = 0.

The definition for Db, as an intrinsic covariant derivative, is the projection
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of $BVA on the hypersurface, so

DbVa ≡ $B VAeA
a eB

b . (1.5)

By doing some calculation, it can be shown that the right hand side of (1.5)

is Va,b−Γc
abVc, which is the known expression for the covariant derivative with

Γc
ab =

1

2
hcd(had,b + hbd,a − hab,d). (1.6)

Now, we try to find the components of the vector $BV AeB
b to see its tangential

and normal components on the hypersurface. $BV AeB
b can be written as

gA
C $B V CeB

b and gA
C can substitute with (1.4), so

$BV AeB
b = (nAnC + haceA

a eCc) $B V CeB
b

= (nC $B V CeB
b )nA + hac($BV CeB

b eC
c )eA

a .
(1.7)

Vector V C is a tangent vector on the hypersurface; therefore nCV C = 0. Then

nC $B V C = −V C $B nC . Using (1.5), we have

$BV AeB
b = hac(DbVc)e

A
a − V c($BnCeC

c eB
b )nA. (1.8)

If we define

Kab ≡ $BnAeA
a eB

b , (1.9)

then

$BV AeB
b = DbV

aeA
a − V aKabn

A. (1.10)
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Kab is called the extrinsic curvature or second fundamental form, which is

the normal component of the bulk covariant derivative of a tangent vector on

the hypersuface. Kab is a symmetric tensor, Kab = Kba. We can write the

extrinsic curvature as

Kab =
1

2
(£ngAB)eA

a eB
b , (1.11)

where £ is the Lie derivative.

As it was shown, the extrinsic curvature Kab is an extrinsic feature of

the hypersurface which measures the bending of the hypersurface, the brane,

in the spacetime manifold, the bulk, while the induced metric, hab, is an

intrinsic feature of the brane. By means of these tensors we can determine

other geometrical aspects of the hypersurface.

Next, we want to find the relation between the Riemann tensor in the

bulk and the same tensor on the brane in terms of the extrinsic curvature

and the induced metric. The intrinsic curvature tensor by using the covariant

derivative on the hypersurface is written as

DaDbV
c − DbDaV

c = −Rc
dabV

d. (1.12)

Rc
dab has the same form that we know for the Riemann tensor in terms of the

Γc
ab in (1.6) and its derivatives. The following quantity,

!B!CeA
a eB

b eC
c − !C!BeA

a eB
b eC

c = −RA
DCBeD

a eC
c eB

b , (1.13)

is the one that we need to calculate in order to find the required relation.

Considering (1.10), if we put V A = eA
a , then for a timelike hypersurface we
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have

$BeA
a eB

b = Γc
abe

A
c − Kabn

A. (1.14)

After doing some algebra, the projection of the Riemann tensor for the

bulk on the hypersurface is given by the following relation:

RA
BCDea

AeB
b eC

c eD
d = Ra

bcd + (Ka
dKbc − Ka

c Kbd). (1.15)

This equation is called the Gauss equation.

The projection of the Riemann tensor for the bulk along the normal vector

of the hypersurface will give us

RABCDnAeB
b eC

c eD
d = DdKbc − DcKbd. (1.16)

This equation is called the Codazzi equation. We can see that the bulk cur-

vature can be expressed in terms of the brane curvature and the extrinsic

curvature and its derivative. So even here, we can see the effect of the em-

bedding of the brane in the bulk.

The Einstein tensor for the bulk, GAB = RAB − 1
2RgAB, includes the

following parts:

−2GABnAnB = bR + (KabKab − K2), (1.17)

GABeA
a nB = DbK

b
a − DaK, (1.18)

using the contracted form of the Gauss-Codazzi equations. bR = habRc
acb is

the Ricci scalar for the brane, and K ≡ habKab = !AnA. The Gauss-Codazzi
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equations gives us part of the Einstein equations on the brane, which we need

to work with. The remaining part GABeA
a eB

b cannot be written only in terms

of hab and Kab; it involves the Lie derivative of Kab in the n direction.

The brane, as a hypersurface, splits the space into two regions. We want

to see how this affects our quantities in the both regions while we jump across

the hypersurface from one region to the other one. We have two regions of the

spacetime, M+ and M−, which have a common boundary, the hypersurface,

S. The metric on M+ is g+
AB with coordinate system xA+, and the metric on

M− is g−
AB with the coordinate system xA−. The following definition will be

helpful throughout the rest of the explanation:

[V ] ≡ V (M+)|S − V (M−)|S, (1.19)

where V is our tensorial quantity, and calculating [V ] shows the change of

the quantity when we jump from one region to another one. The unit normal

vector, nA, points from M− to M+. The value of [nA] and [eA
a ] are zero.

As mentioned, the induced metric and the extrinsic curvature are the charac-

teristics of the hypersurface, so we need to check the [V ] for them. Applying

[V ] for hab gives

[hab] = 0. (1.20)

Eq. (1.20) is called the first junction condition. This means that both metrics

g+
AB and g−

AB induce the same metric on the hypersurface. This is the required

condition in order to have a well-defined hypersurface.

For [Kab], the condition is different. It happens that [V ] in (1.19) is not

zero but can be described by the stress-energy tensor on the hypersurface.
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We consider the stress-energy tensor of the hypersurface as

T AB
S = SabeA

a eB
b |gCDφ,Cφ,D|

1
2 δ(φ), (1.21)

where, as mentioned, φ = 0 is the equation of the hypersurface. If we do an

integral for the Einstein equation, GAB = κ2
5TAB, around the hypersurface

including both regions and using (1.17) and (1.18), we can derive that

[Kab] = κ2
5(Sab −

1

3
habS). (1.22)

This is called the second junction condition. This junction condition is known

as the Israel junction condition [33]. Here, we can see that the energy-

momentum singularity can be related to the jump of the extrinsic curvature

through the brane as a geometric aspect of the spacetime.

All the mentioned quantities and the relations are covering the geometry

and dynamics of the braneworld. For the next section, we will have a review

on the Randall-Sundrum model and see how we can apply these relations for

the Randall-Sundrum model as an example of the braneworld.

1.2 The Randall-Sundrum Model

In 1999, Randall and Sundrum [52, 53] proposed two of the first braneworld

models with a negative cosmological constant for the bulk metric, which at-

tracted a lot of attention. As mentioned, the standard model fields are con-

fined to the brane in the braneworld. The role of the five-dimensional cosmo-

logical constant is to balance the effects of the four-dimensional sources in five
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dimensions, in order to have a flat brane. It is quite different from the role

of the four-dimensional cosmological constant. Assuming the five-dimensional

cosmological constant results in having a curved five-dimensional background,

we can still keep our brane flat by introducing the curved extra dimension(s)

in a warped extra-dimension model so that the four-dimensional cosmological

constant vanishes [54].

The Randall-Sundrum model (RS) was proposed in two types, RSI and

RSII. RSI [52] has two branes with negative and positive tensions and for

RSII, the brane with negative tension was sent to the infinity. The metric

and basic characteristics for the RS models will be explained in the following

lines.

1.2.1 RSI

For RSI, we are looking for an Einstein equation solution for a five-

dimensional bulk enclosed with two 3-branes, one of which should look like

our world. We assume that our extra dimension is compactified, defined as

a S1/Z2 orbifold, where S1 is a one-dimensional sphere (a circle) and Z2 is

the multiplicative group of {−1, 1}. It would fix two points along the extra

dimension y, y = 0 and y = πR = L, which are locations for the two 3-

branes. In addition, we want our four-dimensional brane to be flat and static.

Fig.(1.1) shows the schematic set-up for the RS model. An ansatz metric that

would satisfy above criteria has the following form as

ds2 = e−2A(y)ηabdxadxb + dy2. (1.23)
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Figure 1.1: The schematic set-up for the RS model (taken from [9])

Here ηab is the metric for Minkowski space-time and e−2A(y) is the warp-

factor, depending only on the extra dimension coordinate y that makes the

metric non-factorizable. After defining the general form of the metric, we

need to find A(y) for the metric, which needs to be a solution of the five-

dimensional Einstein equation as GAB = κ2
5TAB. κ5 ≡ 1

M3
5
, where M5 is the

five-dimensional Planck mass scale.

Assuming a five dimensional AdS bulk with a positive tension brane on

AdS boundary and a negative tension brane without any matter on the brane

can be described by the following Einstein-Hilbert action

S =

∫
dyd4(x

√
−5g (M3

5 R − Λ5) −
∫

dyd4(x
√
−4h (λ+ δ(y) + λ− δ(y − L)).

(1.24)

Here 4h is the determinant of the four-dimensional metric induced from the

five dimensional metric 5gAB with determinent 5g for the y = constant brane

and Λ5 is the five dimensional cosmological constant. The gauge is chosen in

a way that branes are located at y = 0 and y = L. The action S depends on
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the five dimensional metric, its derivatives, which is included in Ricci scalar,

and the four dimensional metric induced on the brane, which is induced from

the five dimensional metric. For the general case, we can have a matter field

localized on the brane, but for the action (1.24), it is assumed that there is

no matter fields. Solving the Einstein equation for G55 gives

6A′2 = − Λ5

2M3
5

, (1.25)

A′ is defined as the derivative of A(y) with respect to the y. (1.25) implies

that Λ5 should be negative to have a real solution, so we have an AdS5 model.

We impose the Z2 symmetry, which makes the two sides of the brane mirror

images of each other and define k2 as − Λ5

12M3
5
. This gives us A(y) = k|y|, so

the complete form of the metric (1.23) is

ds2 = e−2k|y|ηabdxadxb + dy2, (1.26)

for −L " y " L. The Z2 symmetry about the brane is incorporated with the

|y| term. We can see that under this symmetry, acting on coordinates like

(xa, y) −→ (xa,−y), the metric is invariant. We also apply a Z2 symmetry

about the brane at y = L, even though that is not directly implied by the

form of the metric (1.26). The metric (1.26) is the RSI metric in the simplest

form. It can be shown that even if ηab is substituted by any vacuum solution

of the Einstein equation in four dimensions, the resulting metric still would

be a solution for the RS model in five dimensions.

Solving the Einstein equation for the Gab components and considering that
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the Israel junction condition [33] should be satisfied on the branes imply that

λ+ = −λ− = 12kM2
5 . (1.27)

Calculating the extrinsic curvature for the metric on the both sides of the

brane at y = 0 for y −→ 0+ and y −→ 0− shows that [Kab] '= 0. So,

the space-time is singular at the brane. Using the five-dimensional Einstein

equation, GAB = κ2
5TAB, gives us the energy-momentum tensor as

κ2
5TAB = −Λ5 gAB − 6kea

Aeb
Bηab(λ+δ(y) + λ−δ(y − L)). (1.28)

In our case we assume zero stress-energy tensor on the brane, except for a

Lorentz-invariant brane tension or cosmological constant tuned to the value

that would allow the brane to be the flat Minkowski metric in the AdS5 bulk.

Thus, we can see that the spacetime singularity on the brane is related to the

energy-momentum tensor on the brane and can be considered as the brane

tension.

We can perturb the action (1.24) around our background metric ηab. For

a perturbed metric g(0)
ab defined as ηab + ε(0)ab , the term related to the four

dimensional action is

S ⊃ M3
5

(1 − e−2kL)

k

∫
d4(x

√
−g(0) bR, (1.29)

where bR is the four-dimensional Ricci scalar on the brane. From this action,

we can find the relation between the Planck mass MP l in four dimensions and
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the five-dimensional Planck mass M5 scale as

M2
P l = (1 − e−2kL)

M3
5

k
. (1.30)

The brane with the negative tension at y = L is the one that has the

standard model confined on it. It can be shown that by adjusting kL ≈ 35,

we can have the energy scale on this brane around 1 TeV. Therefore, this

brane is called the TeV brane. The energy scale for the brane with positive

tension is around the Planck scale, so it is called the Planck brane. We can

see that the energy hierarchy can be absorbed from the Planck brane toward

the TeV brane. So, the first RS model provides a solution for the hierarchy

problem.

1.2.2 RSII

We take the limit as L −→ ∞ for the RSI metric (1.26). This means

that the negative tension brane would be sent to infinity, and we have one

brane with positive tension in RSII. It is supposed that we are living on this

brane. We introduce the coordinate transformation for y to z, defined by the

function z ≡ sgn(y)(ek|y| − 1)/k. After applying this transformation for the

metric, we have

ds2 =
1

(k|z| + 1)2
(ηabdxadxb + dz2). (1.31)

This metric is a conformally flat metric. In this case, the Planck mass is

derived as M2
P l = M3

5
k , so we do not have an explanation for hierarchy problem

in RSII. In figure (1.2), the schematic plot for RSII is shown.

The behavior of gravity around the brane can be studied in RSII. The
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Figure 1.2: The schematic plot for the RSII model (taken from [58])

metric can be rewritten as

ds2 = g(0)
ABdxAdxB. (1.32)

Now, we can perturb the metric g(0)
AB and define the perturbed metric as

gAB ≡ g(0)
AB + hAB. We will work in an RS gauge where [58]

h55 = ha5 = 0 , ∂ahab = 0 , ha
a = 0. (1.33)

After considering all the conditions, the equation of motion for the per-

turbed metric is

[−∂2
z + V (z)]ψab = ηcd∂c∂dψcd, (1.34)

where ψab ≡
√
|z| + 1/k hab and V (z) = 15k2

4(k|z|+1)2 − 3kδ(z). V (z) can be

considered as a volcano type gravitational potential as a result of the brane

presence. Assuming ψab ∝ ûm(z) eiKcxc
, to make the variable separated, gives

us

[−∂2
z + V (z)]ûm(z) = m2 ûm(z), (1.35)
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where m2 = −KaKa, and m is the four-dimensional mass for the ûm(z) mode.

Equation (1.35) is a Schrödinger-like equation that can be solved to find the

different gravitational mass around the brane. We should choose solutions

that satisfy the Z2-symmetry around the brane (the review for solutions is

given in [53]). Finding all gravitational modes leads us to find the perturbed

metric around the brane at y = 0. The behavior of the modes shows that the

higher-dimensional gravity is localized around the brane, despite the fact that

the extra dimension is extended to infinity. We can calculate the gravitational

potential for different mass on the brane, see [53, 23]. From that, we can

conclude that the four-dimensional theory of gravity is recovered on the brane.

From a different point of view, the Einstein equations for the RS model

on the brane is derived in [56]. The result shows that the Einstein equation

in four-dimensions in the low-energy limit is recovered on the brane world.

Using the derived equation shows that the negative brane in RSI does not

have the right signature for gravity, but the RSII model does.

Therefore, having all those results for RSII shows that it can be a good

candidate for a braneworld model in higher dimensions to be studied.
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Chapter 2

Black Holes in the RS II

Braneworld Model

The study of black holes in higher dimensions attracts much attention

for theoretical physicists for different reasons regarding to the application for

their work.

From a mathematical point of view, we are dealing with more complicated

theories. First, we can consider different kinds of black objects in higher di-

mensional with different features to study. Studying the higher-dimensional

black hole spacetime shows that the horizon topology is different from the

four-dimensional one, which is S2. The first vacuum solution for a spherically

symmetric black hole in higher dimensions is the Tangherlini metric with hori-

zon topology SD−2 [60]. We can generalize this and add a D −N flat spatial

line element to the black hole solution of the N-dimensional Einstein equation

in vacuum with horizon topology SN−2. This black hole solution is called a

black brane with horizon topology defined as SN−2×RD−N , and if D = N +1
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it is called a black string [22]. On the other hand, for the rotating black holes,

we have more parameters to work with, since the higher are the dimensions

for a rotating black hole, the more are the independent components of the

angular momentum [48].

From an applicational point of view, the following reasons can be men-

tioned for studying black holes in higher dimensions. First, producing the

higher-dimensional black hole in colliders is predicted by Giddings and Thomas

in [24] for the first time, which could be considered as a experimental proof for

one or more extra dimensions if such black holes are ever observed. A good

review on the subject can be found in [7, 35], written by Caviglia and Kanti.

Second, the first achievement to derive the Bekenstein-Hawking area-entropy

relation in string theory has been done for a five-dimensional black hole [57].

Therefore, we can consider the higher-dimensional black hole to examine how

the string theory, as a potential candidate for quantum gravity, works for

black holes. And, there are many other reasons to encourage us to investigate

more about the higher-dimensional black holes. A good and complete review

on black holes in higher dimensions can be found in [14].

Studying the braneworld model, as a higher-dimensional model, shows

that the four-dimensional weak gravity can be recovered on the brane. But,

the strong gravity, especially black holes, is hard to study because of the dif-

ficulty for solving the Einstein equation.

For the braneworld model, we expect to have the energy scale at the TeV

scale for gravity on the brane. The possibility of creation of a small black

hole in high-energy colliders is predicted in [10] for the compact braneworld

model, ADD. Small black holes can be defined as black holes which have their
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horizon radii smaller than the size of the extra dimension. In [20, 21] it was

showed that the black hole in the braneworld model may escape from the

brane as a recoil. It was explained as an interaction between the brane and

the small black hole in the context of a field theory model, in which a black

hole can be described as a massive scalar.

For a braneworld model with a compactified extra dimension and asymp-

toting to Md × S1, where Md is the d-dimensional Minkowski spacetime, we

have two types of black hole with different horizon topologies in our theory,

called the Kaluza-Klein theory. These black objects are classified as localized

black holes in the bulk and as black strings. For a localized black hole, the

solution for d = 3 is derived in [19, 6], and for d ≥ 4, the numerical solution

for the Schwarzschild black hole has been constructed in [42].

The homogeneous black string metric can be defined as

ds2 = habdxadxb + dy2, (2.1)

where hab is considered as a black hole solution in d-dimensions and y as the

coordinate in the same direction as the S1. But, according to the Gregory-

Laflamme instability explained in [27, 28], when the radius of the horizon is

smaller than the length of the S1, the black string solutions can be unstable.

Considering this fact, the properties of the black string are studied analytically

and numerically. A review on Kaluza-Klein black holes can be found in [31].

Turning to the RSII braneworld model, we can consider the model as an

explanation for having our universe as its domain wall while including the

extra dimension. Therefore, finding an astrophysical-size black hole solution
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on the brane is desirable. Many attempts have been made to find the large

black hole solution for RSII, both analytic and numeric. However, no solution

for this kind has been found until recent works of [16, 17] and our work, which

will be explained in the next chapters. There are conjectures for the existence

or non-existence for the large black hole and some numerical approach for the

small black hole in RSII. In this chapter, we will review these works.

2.1 Analytical Attempts for Finding a Black

Hole in RSII

The first attempt to find a black hole in RSII has been done in [8]. One

may consider the metric

ds2 =
l2

z2

(
dz2 + habdxadxb

)
, (2.2)

where l is the AdS radius. hab can be any Ricci-flat metric in order that

(2.2) satisfies the Einstein equation with the negative cosmological constant.

Therefore, substituting the Schwarzschild metric for hab gives us a black string

with a warp factor in the RSII model.

For this solution, the Ricci scalar and the square of the Ricci tensor are

finite everywhere, but the square of the Riemann tensor is proportional to

z4/r6, where r is the radial coordinate. Therefore, it diverges at z → ∞,

where the AdS horizon is located, and it is singular at r = 0. On the other

hand, the radius of the black string shrinks as we move from the brane to

infinity, so the solution is unstable according to the Gregory-Laflamme insta-
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bility [27, 28]. Therefore, this black string solution cannot be considered as a

static black hole.

In addition to the black string (2.2), other attempts to find the exact

five-dimensional black object solution have also failed. However, Emparan et

al. [13] constructed an exact black hole solution for the RSII model in four

dimensions, where we have an AdS4 bulk and (2+1)-dimensional brane. The

metric is constructed from an AdS C-Metric, which is an accelerating black

hole solution for the Einstein equation [38, 50]. The authors suggested that

an exact solution for a black hole on a 3-brane may be found by using the

analog of the C-metric in five dimensions. But, such solution has not been

found yet.

It is hard to find an exact solution for the black object in RSII. Despite

this fact, in [37] an exact brane-localized black hole has been found in the

near-horizon region as an extremal black hole. The near-horizon geometrical

analysis [43] has been applied, which simplifies the problem because of the

symmetries. This reduces the bulk Einstein equation to a regular ODE to be

solved. But, even the existence of this solution would not ensure that there

can be a static black hole solution for the whole bulk.

Some other attempts have been done to find a black hole in RSII analyt-

ically, using perturbation. The first example was constructed by Karasik et

al. [36], using matched asymptotic expansions, but they were actually incon-

clusive over whether the solution existed.

Therefore, we can conclude that no analytical solution for a five-dimensional

static black object in RSII was found until recently, as will be reported below.
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2.2 Application of AdS/CFT Correspondence

for the Black Hole in RSII

Assuming the AdS/CFT correspondence [3, 46] for the braneworld, we

can describe physics in the bulk of an AdS space-time by a conformal field

theory living on the brane as the boundary. So, solving the D+1-dimensional

classical equations for the bulk is equivalent to solving the D-dimensional

gravity coupled to strongly coupled conformal fields, which means Gµν =

8πGD〈Tµν〉CFT . According to [11], the conjecture holds for strong gravity on

the brane as well. Then, the dynamics of the black hole derived by solving the

bulk equations in D + 1-dimensions classically corresponds to the dynamics

of the D-dimensional quantum-corrected black holes on the brane, which is

described by considering the conformal field theory plus gravity. For the

Randall-Sundrum model, the brane is the boundary of the asymptotically AdS

bulk, and we can apply the AdS/CFT correspondence to study the existence

of the black hole in the model. It is only a conjecture to assume that the

AdS/CFT correspondence holds, since it is hard to solve the problem on both

sides to check whether it really works in this case or not.

Emparan and et al. [11] and Tanaka [59] assumed that AdS/CFT holds

so that CFT in the large N limit is used to study the quantum effects of the

black hole localized on the brane. N is defined as l
lPl

, where l is the AdS

radius and lpl is the Planck length. The conformal symmetry for the CFT at

the IR regime on the brane is valid, so we have no mass gap, and any finite

temperature black hole can emit CFT modes as Hawking radiation. In this

description, they considered that the effective degrees of freedom is O(N2)



2.2. Application of AdS/CFT Correspondence for the Black Hole in RSII 23

so as mentioned the large number of CFT modes are involved and the black

hole is considered as a huge source of radiation which accelerates the mass

loss and makes the lifetime of the black hole short.

A brane observer would see a four dimensional black hole on the brane

with quantum correction which makes the area decrease due to the Hawking

radiation, while the bulk observer would see the deformation of the geometry

in the bulk as classical evaporation of a five-dimensional black hole. So, it is

concluded that there is no static black hole solution in RSII. The other point

that should be considered is that the AdS/CFT correspondence may not be

valid where the black hole radius is as small as the AdS radius, l, since the

CFT modes in the UV regime must be considered as the bulk graviton and

they can not be used as dual CFT degrees of freedom. So, the evolution of

a small black hole may not be correctly explained by applying the AdS/CFT

correspondence.

To sum-up, these groups deduced that there is no large static black hole

in RSII by assuming that AdS/CFT holds for the model.

In reference [18], Fitzpatrick, Randall, and Wiseman give an example and

a reasoning that the above argument in [11] and [59] may not be justified.

First, they point out that the black string defined by the metric (2.2) is

an example for the static quantum corrected black hole for hab defined as

the Schwarzschild black hole, in contrast to what is in reference [11] and

[59] where the authors claimed that there is no static black hole. For this

example, the induced metric on the brane is exactly the four-dimensional

Schwarzschild metric solution, so there is no place for the QFT contribution

to the energy-momentum tensor and no backreaction effect from the CFT is
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available. However, we know that the black string is unstable.

The second point is that the argument in [11] and [59] depends on the weak

coupling calculation by applying the free field theory idea to the CFT, while

according to the AdS/CFT conjecture, the CFT is a strongly coupled field

theory on the brane correspondence to the bulk solution. Considering that the

CFT at large ’t Hooft coupling cannot be solved, a heuristic method is used

by applying a confinement mechanism. Then, it is shown that the number of

accessible states to the radiation is not O(N2) and we will have O(1) degrees

of freedom which leads to the small rate of the Hawking radiation. Their idea

is that this reduction in the degrees of freedom is related to the curvature,

so the presence of the small amount of curvature leads to make most of the

CFT degrees of freedom inactive. It is also mentioned that the possibility of

the non-existence of static localized large black hole is not removed by this

reasoning, it can only illustrate what is not justified in the reasoning.

2.3 Numerical Attempts for Finding a Black

Hole in RSII

In [62], Wiseman developed a numerical method, called the elliptic relax-

ation method, to study the behavior of relativistic stars in the RSII model.

The method was applied to solve the Einstein equation for the RSII static

metric, which was parameterized with three free functions. Assuming that

the metric is axis-symmetric, solving the Einstein equation yields the ellip-

tical partial differential equation that can be solved numerically with proper

asymptotical boundary conditions. Kudoh et al. [40, 41] try to construct the
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black hole solution in RSII, based on the method used in [62]. The small

localized black hole solution was found numerically. The horizon size of this

black hole was smaller than 0.2l, where l is the bulk curvature scale. But, the

code failed to work for large horizon radius because of a lack of convergence.

This result can be seen as evidence for the existence of a small localized black

hole in RSII but not for a large one.

Yoshino [63] tried to modify the coordinates to make a more accurate code

with a fourth-order accuracy in differentiation on the bulk while the accuracy

in [40, 41] has the second-order accuracy in differentiation. The numerical

result in [63] shows that there is a nonsystematic error for the case with non-

zero tension on the brane. According to the result, Yoshino claimed that even

small localized black holes do not exist in RSII for this set-up.

Despite all the mentioned conjectures basis on either the non-existence of

black holes in RSII or the existance of the small black holes, Figueras, Luci-

etti, and Wiseman (FLW) [16] constructed a black hole solution by solving

the elliptic Ricci-DeTurck flow equation numerically. The metric has a static

black hole solution on the AdS boundary, which is conformal to the four-

dimensional Schwarzschild metric. The numerical technique for the Ricci-

DeTruck equation and flow to solve the Einstein equation was discussed in

[30]. Afterwards, Figueras and Wiseman [17] perturbed the numerical results

for the AdS5-CFT4 solution found in [16]. The perturbation gives an RSII so-

lution with a large brane-localized black hole. This result was the first report

on finding the large black hole solution in RSII successfully.

Meanwhile, the same problem has been probed by our group, including S.

Abdolrahimi, C. Cattoën, D. N. Page, and Shime Yaghoobpour Tari [1, 2].



2.3. Numerical Attempts for Finding a Black Hole in RSII 26

We have found the same result that confirms the existence of a large black hole

in RSII. We have used a different and independent method to find an AdS5-

CFT4 solution by solving the Einstein equation. Then, we have perturbed

our solution in the same way as FW to find the large black hole solution. In

the following chapters, we present our work as the subject of this thesis.

In Chapter 3, we will describe the spectral method that we have used to

find the numerical solution for the Einstein equation with the negative cos-

mological constant. We will go through all the numerical results and plots for

the metric and its energy-momentum components. C. Cattoën has written

the numerical code in MATLAB for finding the solution for Einstein equation.

Shima Yaghoobpour Tari has worked with the code, written the required files

in Maple, and tranferred them to MATLAB code to get the numerical results

and plots, as well as the final check for the values for the integrals in Maple to

confirm the MATLAB result. The energy-momentum tensor components has

been calculated in Maple by Shima Yaghoobpour Tari, using the numerical

result.

In Chapter 4, the perturbed metric, which is the large black hole metric in

RSII spacetime, will be derived. The mass, temperature, entropy and area for

the RSII black hole metric will be compared with the Schwarzschild metric

up to the first-order of the perturbation parameter.

A comparison between the FLW result and our result has been made for

different components of the energy-momentum tensors in Chapter 5. It can

be seen that the numerical results are in close agreement, which can confirm

the existence of the large black hole in RSII. The comparison is made by

finding the fitting functions for FLW results and ours. Shima Yaghoobpour
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Tari has done the numerical calculations for finding the fitting functions in

Maple, which S. Abdolrahimi has also done in parallel as a check.

In chapter 6, we will try to wrap up all the results and make a conclusion

regarding what we have done.
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Chapter 3

Infinite-Mass Black Hole in the

RS II Braneworld Model

Our work is focusing on finding a large static black hole in the RSII model.

First, we start by constructing a five-dimensional numerical solution for the

Einstein equation with a negative cosmological constant, Λ. The metric is

an AdS5-CFT4 solution, asymptotically conformal to the Schwarzschild met-

ric, where the Schwarzschild metric is located at the AdS5 boundary with an

infinite scale factor, so it can be considered as a black hole with an infinite

mass. We derive the energy-momentum tensors numerically for the infinite-

mass metric to use them for the next step, which is the perturbation of the

infinite-mass black hole metric, and check the energy-momentum conserva-

tion.

In this chapter, we will go through all the steps, numerical methods, and

results that we have done in our work.
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3.1 Method Description for Finding the Infinite-

Mass Black Hole

3.1.1 Setup for a Trial Metric

We try to set up a trial black hole metric on the basis of the RSII metric

by adding some smooth functions to remove the problem we ran into for the

first proposed black string metric based on the RSII model [8]. Then, we will

solve the Einstein equation for this trial metric. We start with the AdS metric

(2.2), with hab defined as the Schwarzschild metric. So, we try to make our

metric by looking at the black string metric,

ds2 =
l2

z2

[
− U(r)dt2 + U(r)−1dr2 + r2(dΩ2) + dz2

]
, (3.1)

where U(r) = 1− 2M
r and dΩ2 = dθ2 +sin2 θdφ2 is the unit two-sphere metric.

Applying the transformation y = 2M
r , z = 2M

v and choosing units so that

l = 1, the black string metric becomes

ds2 =
dv2

v2
+

v2dy2

y4(1 − y)
− 4v2(1 − y)dt2 +

v2

y2
dΩ2, (3.2)

with 0 ≤ y ≤ 1, where y = 1 is the black hole horizon, and 0 ≤ v ≤ ∞,

where v = 0 is the AdS horizon. As mentioned before, the metric is singular

at v = 0, since the curvature diverges for y > 0 at v = 0. We replace this

singularity by a regular axis, where we add y2 terms to the metric. And, we

parameterize the resulting metric by four free functions. Then the infinite
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black hole metric is

ds2 = A
dv2

y2 + v2
+ B

(y2 + v2)dy2

y4(1 − y)
− 4C(y2 + v2)(1 − y)dt2 + D

v2

y2
dΩ2. (3.3)

Applying another transformation, x = y2

y2+v2 , gives

ds2 = A(1− x)
[

dx

2x(1 − x)
− dy

y

]2

+ B
dy2

xy2(1 − y)
− 4C

y2(1 − y)
x

dt2 + D
1 − x

x
dΩ2,

(3.4)

where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and A, B, C, and D are smooth functions of x

and y that all approach unity for x = 0.

The coordinate boundaries are these: x = 0 is the infinite AdS boundary

that is conformal to the Schwarzschild metric, x = 1 is the center, the axis

of symmetry where the two-sphere shrinks to zero, y = 0 is the extremal

Poincare horizon, and y = 1 is the black hole horizon. The metric (3.4) is

the one that we are going to work on in order to find the functional form of

A(x, y), B(x, y), C(x, y), and D(x, y) as polynomials in x and y.

The most general metric satisfying all the symmetries for our problem

has five components. On the other hand since the metric functions depend

non-trivially on the two coordinates, x and y, and the choice of these is gauge

dependent, one can reduce the number of the metric components to three.

The common method for finding a unique solution for the Einstein equation

numerically is to fix the gauge before discretization. Otherwise, one will have

a family of solutions parametrized by one function that is gauge dependent.

But in our case, we assume four unknown functions instead of three as men-

tioned, and we will get a unique solution. Our explanation for this result can

be related to our restriction of A(x, y), B(x, y), C(x, y), and D(x, y) to poly-
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nomials for simplicity; we also tried rational functions, but they did not seem

to work numerically so well, as shall be mentioned later. Having polynomials

of some fixed finite order means that with such restricted functions, some

gauges are better than others. For clarification, we can consider the case of a

spherically symmetric static metric

ds2 = −A(x)dt2 +
1

B(x)
dx2 +

1

C(x)
dΩ2. (3.5)

If we consider the restriction for A(x, y), B(x, y), and C(x, y) to be poly-

nomials, then with having all three functions, one can find A(x) = 1 − x,

B(x) = x4 − x5, and C(x) = x2 solves the vacuum Einstein equations. How-

ever, if one choose the gauge B(x) = 1, no polynomials of finite order would

give an exact solution, and we would expect greater error. On the other hand,

we are not looking for an exact solution, so with our restriction to have a fixed

order of polynomials for each function, surely we would get a better result

with more functions, even if for an exact solution one or more functions would

be just gauge.

At the boundaries, for x = 0, the metric has to be conformally Schwarzschild,

so we impose A = B = C = D = 1 there; for x = 1, at the center, we impose

A = D for regularity; and for y = 1, the black hole horizon, we impose B = C

since the surface gravity should be constant and positive at the horizon. Ap-

plying these conditions, solving the Einstein equation to the lowest order in

x, and considering that our solution has to be regular everywhere between

the horizons leads us to the preliminary functional form of A(x, y), B(x, y),
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C(x, y), and D(x, y) as

A(x, y) = 1 − x(1 − x)(1 + 2f(y)) + x2g(y) + x2(1 − x)PA(x, y),(3.6)

B(x, y) = 1 + xf(y) + x2PB(x, y), (3.7)

C(x, y) = 1 + xf(y) + x2PB(x, y) + x2(1 − y)PC(x, y), (3.8)

D(x, y) = 1 + x(1 − x)(1 + f(y)) + x2g(y) + x2(1 − x)PD(x, y). (3.9)

Now, our problem is to solve the Einstein equation numerically for the

metric (3.4) in order to find the six unknown smooth functions f(y), g(y),

PA(x, y), PB(x, y), PC(x, y), and PD(x, y), which for simplicity we took to

be polynomials (or rational functions in some trial calculations that did not

work so well).

3.1.2 Minimization Method for Solving the Einstein

Equation

We have constructed a trial metric, which is regular at boundaries. For the

next step, our goal is to find the metric as a solution that satisfies the Einstein

equation for the vacuum in the five-dimensional bulk. The five-dimensional

Einstein equation is

Rαβ =
2

3
Λ5 gαβ, (3.10)

where Λ5 is the cosmological constant for the five-dimensional bulk and Rαβ

is the Ricci tensor. For an AdS model in D dimensions, Λ can be defined in
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terms of a length scale l as

ΛD =
−(D − 1)(D − 2)

2l2
. (3.11)

In our model, Λ = −6/l2 for D = 5. We set l = 1 for the unit system that we

are working in, then we define Eαβ as

Eαβ = Rαβ + 4gαβ. (3.12)

Therefore, the Einstein equation in the bulk is Eαβ = 0. Now, we define

an integral I, the integrated square error of the Einstein equation, as

I =

∫
EαβE

αβ
√

−(5)g d5x, (3.13)

where (5)g is the metric determinant. We choose a fixed finite range for t,

defined as ∆t = 2π, to get a finite integral. The metric determinant (5)g is

∝ 1
x6 and at x = 0, the infinite AdS boundary, diverges. So, we assume that

EαβEαβ falls off fast enough to make the integral converge.

To find the metric components, we plug the functions (3.6)-(3.9) into the

metric (3.4) to calculate Eαβ , the metric determinant, and finally the integral

I. Then, we use a spectral method to minimize the square error that lead

us to have a metric which gives a good approximation to satisfying Eαβ = 0.

In the next sections, we describe the numerical method and results that we

derive.
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3.1.3 Numerical Method to Minimize the Squared Er-

ror of the Einstein Equation

We use a computational code, running in the MATLAB environment,

to do the minimization for the squared error of the Einstein equation. The

computational code is designed to do two main jobs in order to solve our

required problem. The first one is the calculation of the two dimensional

integral numerically, and the second one is optimization. The numerical inte-

gration method is based on Gauss-Lobatto quadrature in two dimensions, and

the optimization method is an unconstrained nonlinear optimization. Their

accuracies can assure us that we are numerically near an exact solution for

our problem. Both methods have defined commands on MATLAB. In the

following lines, we give a brief description about how these methods work and

how our code works.

The quadrature rule is a numerical integration formula for the definite

integral as

I(f) =

∫ b

a

f(x)dx ≈
n∑

j=0

wjf(xj), (3.14)

where {xj} are called the nodes and defined on the interval [a, b] and {wj}

are weights assigned to each xj . This formula is to be exact for polynomials

of some maximum order. f(x) can then be written as W (x)g(x), where W (x)

is a defined function and g(x) is a polynomial. Then,

I(f) =

∫ b

a

W (x)g(x)dx ≈
n∑

j=0

w′
jg(xj). (3.15)
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Then for each such function, xj and w′
j would be determined by means of the

known orthogonal polynomials.

As an example, for the interval [−1, 1], W (x) = 1 and g(x) as a polynomial

of degree j, the assigned orthogonal polynomials would be Legendre polyno-

mials. The nodes {xj} are the jth root of a j-degree Legendre polynomial and

wj is

wj =
2

(1 − x2
j )[P

′
n(xi)2]

. (3.16)

Integrals on any other finite interval can be converted to the ones over [−1, 1].

So this example is a proper one to calculate the integral.

For the Gauss-Lobatto quadrature, both ends of the interval are counted

as nodes in addition to the other nodes. This is an accurate calculation for

the polynomials up to the (2n − 1)-degree for the n + 1 nodes.

The Gauss-Lobatto quadrature is the base for calculating the integral in

the MATLAB algorithm that we use to evaluate our integral, which is a

two dimensional integral in the two nontrivial coordinate x and y [55]. The

mentioned algorithm is designed to evaluate the integral numerically over a

rectangular region. The command is

Q = TwoD(FUN, a, b, c, d), (3.17)

which approximates the integral

I(f) =

∫ b

a

∫ d

c

f(x, y)dydx. (3.18)
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For this program c and d can be constant or functions of x but a and b must be

constants. FUN evaluates f(x, y) as a vector. It takes arrays of x and y and

give back the values as Zi = f(xi, yi) since the efficiency of the program is in

the vectorization of the function f(x, y). Another good point in using TwoD

is that it can handle a singularity on the boundary, and it is an accurate one.

The default absolute error tolerance in the program is 10−5, but there is an

option to assign it to make it more accurate.

The optimization method is an unconstrained nonlinear optimization. The

command is

[x, fval] = fminsearch(fun, x0, option). (3.19)

The fminsearch algorithm uses the Nedler-Mead simplex algorithm [44].

In this method, the program is designed to minimize a non-linear function of n

variables only by means of the function value and not by any of its derivatives,

which generally is called the direct simplex search method. This method can

often handle discontinuity.

The algorithm works in a way that it finds the local minimum of a scalar

function, fun, of several variable, starting with a set of initial values x0, and

it returns the final values x according to the local minimum and the value

of the function fval which is the minimum value of the function after doing

the optimization. It would do it in an iterative way until it would reach the

desired tolerance that is mentioned in the command or the default criteria set

by the algorithm.

Now, we are going to see how our code works for our problem. We use

the GRTensor package in the Maple software to make the metric (3.4) and
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calculate the Eαβ components and integrand of (3.13). Then, we transfer

all our components to MATLAB for using them in our code to find our six

unknown functions f(y), g(y), PA(x, y), PB(x, y), PC(x, y) and PD(x, y)

for plugging back in (3.6)-(3.9).

To start evaluating the integral and then minimizing it, we define these

functions as known polynomials with unknown coefficients. For the code,

we have tried three types of the polynomials: Taylor, shifted Legendre and

Pade-Legendre. The shifted-Legendre are defined as P̃n(x) = Pn(2x − 1),

P̃n(x) =
1

n!

dn

dxn
[(x2 − x)n], (3.20)

for xε[0, 1]. The Pade-Legendre is the division of two different orders of

shifted-Legendre.

We start with the 0th of each polynomials and to get the more accurate re-

sult try the higher order polynomials step by step. The Taylor series had the

slowest rate of convergence for the optimization, the Pade-Legendre was not

as good as the shifted-Legendre, and finally our best choice was determined

by the shifted-Legendre. So from now on we will use the shifted-Legendre to

describe the code.

The functions dependent only on y are defined as

L(y) =
N∑

i=0

aiP̃i(y). (3.21)
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The functions dependent on x and y are defined as

L(x, y) =
N∑

i=0

N∑

j=0

aijP̃i(x)P̃j(y). (3.22)

Here N is the highest order that we use in each run, which reduces the integral

to some amount, so we need to do several runs to get down to our desired

tolerence. ai and aij are called coeffn, which we want to determine by doing

the optimization. As mentioned, in the optimization command (3.19), we

need to give the code initial values, x0, in order to get back the final values

x. We choose the initial values for our coefficients, coeffn0, equal to zero

for the first run of each order. After doing each run, the final values will

be substituted for the initial values for the next run, until the optimization

terminates for reaching the tolerance defined in the code.

For shifted-Legendre the number of coefficients for the L(y) is equal to

N+1, and for L(x, y) is equal to (N+1)2. We need to calculate this number at

each order so we consider the initial values as a vector with 2[N+1]+4[(N+1)2]

components. Then we need to adjust the code in order to read the initial

values properly. As an example, the number of the initial values for the order

one is 2 × 2 + 4 × 4 = 20, where the first two components are for f(y), the

next two component are for g(y), the next four, the fifth through the eighth,

are for PA(x, y), and so on.

The other thing that we adjust for each order before doing the integral and

optimization is determining the terminate tolerance for x, y and the integral

value. We start with 10−5 but at the last run we need to put it 10−10. As

mentioned, if the code reaches to this accuracy for any of them, the run would
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be terminated, and it would give us the final values and the integral value

with the plot of the integrand of the integral.

We make the functional forms of L(y) and L(x, y) and their derivatives on

Maple and then transfer them to MATLAB. This is faster to do in advance

and then plug back into the code, but sometimes it made it possible that a

mistake happens. So we have a test run when we want to go to the next

order.

The test run is doing the integral without the optimization. When we

want to do the test run, the initial values of the new order is given in a way

that we put the same final values for the last run of the previous order for

the coefficients with the same terms for both orders and then the remaining

initial values would be zero. With this set of the initial values the integral

should have the same value for both orders. If it would happen, we can be

sure that the transfer has been done properly. Each order runs up to four to

five times. When we see that the integral does not change much anymore, we

can go to next order.

We will give the details of all our numerical results and plots for the

infinite-mass black hole metric (3.4), which is what we are looking for in the

first stage of our problem.
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3.2 Numerical Results for the Infinite-Mass

Black Hole Metric

3.2.1 Finding the Infinite-Mass Black Hole Metric

As described in the previous section, we choose different shifted-Legendre

polynomials with constant unknown coefficients as variables for f(y), g(y),

PA(x, y), PB(x, y), PC(x, y) and PD(x, y) and vary them numerically to

minimize our integrand I, (3.13), in our defined finite boundary.

Choosing A = B = C = D = 1 gives the value of integral as I ≈ 4038.

The integrand as a function of x and y, before any optimization, is shown

in Fig.(3.1). We run the code for different orders, four to five times for each

order, up to order six with 210 coefficients. For the sixth-order at the last

run, the value of the integral was reduced to 0.00004238, nearly eight orders of

magnitude smaller than the one without optimization. The maximum value

for the squared error, EαβEαβ , within the five-dimensional spacetime for the

sixth-order is 0.000154. In Table 3.2.1, the numbers of the coefficients and

the values of the integral for each order is reported. As it can be seen in Table

3.2.1, the rate of convergence is slowed down as we have used the higher-order

polynomials. It was too time consuming to continue to order seven to check

whether the rate of convergence is continuing to slow, but conceivably it is,

because of the gauge issue discussed earlier. The plots of the integrand as a

function of x and y for all orders is shown in Fig. 3.2 and Fig. 3.3, the progress

that we made through each step can be seen through the plots.

The numerical form of functions f(y) and g(y) in the complete form and
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Order No. of Coefficients I
0 6 69.6986
1 20 1.5656
2 42 4.779 × 10−1

3 72 2.390 × 10−2

4 110 2.535 × 10−3

5 156 5.416 × 10−4

6 210 4.238 × 10−4

Table 3.1: The number of coefficients and the numerical result for the integral
(3.13) for each order of polynomials functions used in the code

Figure 3.1: EαβEαβ as a function of x and y for A = B = C = D = 1
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(a) 0th-Order Polynomial (b) 1st-Order Polynomial

(c) 2nd-Order Polynomial (d) 3rd-Order Polynomial

Figure 3.2: The integrand of integral (3.13) as a function of x and y for
different shifted-Legendre polynomials from order-zero to order-three
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(a) 4th-Order Polynomial

(b) 5th-Order Polynomial

(c) 6th-Order Polynomial

Figure 3.3: The integrand of integral (3.13) as a function of x and y for
different shifted-Legendre polynomials from order-three to order-six
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PA(x, y), PB(x, y), PC(x, y), and PD(x, y) up to third-order in x are given

as

f(y) = −0.60547 − 0.47885y + 0.16108y2 − 0.03931y3 (3.23)

+ 0.07277y4 − 0.04354y5 + 0.00354y6, (3.24)

g(y) = 0.60118 − 0.37010y + 0.19724y2 + 0.16101y3

+ 0.002320y4 − 0.04978y5 + 0.00066y6,

PA(x, y) = 0.09288 − 1.63742y + 2.60281y2 + 1.50520y3 (3.25)

− 3.41379y4 + 1.55702y5 − 0.16769y6 + (−1.6177 + 14.32732y

− 27.60537y2 + 15.18000y3 + 4.10989y4 − 4.89926y5 + 0.37898y6)x

+ (4.16674 − 47.08375y + 143.17413y2 − 199.37753y3

+ 157.81384y4 − 78.71069y5 + 20.52872y6)x2 + O(x3),

PB(x, y) = 0.43149 − 0.80874y + 0.89419y2 − 0.31160y3 (3.26)

− 0.09758y4 + 0.08441y5 − 0.00483y6 + (0.21851 + 0.08687y

− 1.72664y2 + 2.47145y3 − 0.92513y4 − 0.07910y5 + 0.05733y6)x

+ (−0.24942 + 0.72760y + 3.13465y2 − 9.10834y3

+ 8.03310y4 − 3.11900y5 + 0.42050y6)x2 + O(x3),

PC(x, y) = −0.57665 + 1.55879y − 1.01295y2 − 0.17390y3 (3.27)

+ 0.75253y4 − 0.43954y5 + 0.06057y6 + (0.05855 − 3.00551y

+ 5.52990y2 − 3.60880y3 − 0.34211y4 + 2.029580y5 − 0.97860y6)x

+ (−0.29591 + 4.44010y − 12.09689y2 + 9.21164y3

+ 4.86955y4 − 13.57664y5 + 6.75727y6)x2 + O(x3),
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(a) A(x, y) (b) B(x, y)

(c) C(x, y) (d) D(x, y)

Figure 3.4: A(x, y), B(x, y), C(x, y), and D(x, y) as functions of x and y

PD(x, y) = −0.15534 + 0.49821y − 0.20727y2 − 1.30841y3 (3.28)

+ 1.09944y4 − 0.23064y5 − 0.02496y6 + (+0.16801 − 2.00146y

+ 5.16551y2 − 7.46325y3 + 8.91066y4 − 7.66198y5 + 2.77780y6)x

+ (−0.35730 + 5.18626y − 26.07180y2 + 71.93564y3

− 110.66600y4 + 86.74014y5 − 27.03106y6)x2 + O(x3).

The cofficients were rounded to five digits.

Plugging back the functions (3.23)-(3.28) into the equations (3.6)-(3.9)

gives the numerical form of functions A(x, y), B(x, y), C(x, y), and D(x, y).

The numerical result for these functions can be found in Appendix A.

Figure (3.4) shows the plots for functions A(x, y), B(x, y), C(x, y), and

D(x, y) as functions of x and y. Having the functional form of A(x, y), B(x, y),
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(a) gxx(x, y) (b) gxy(x, y) (c) gyy(y, y)

(d) gtt(x, y) (e) gθθ

Figure 3.5: The components of metric (3.4) as functions of x and y

C(x, y), and D(x, y) gives us the components of metric (3.4), and this is our

solution for the first part of our problem. In Figure (3.5), the plots for the

metric components as functions of x and y are shown. So, we have the numeric

metric for the infinite-mass black hole.

Having the numerical form of the metric helps us to analyze some features

of the metric through the plots for different quantities. At black hole horizon,

y = 1, the metric for t = const. slices can be written as

ds2 = A(x)
1

4x2(1 − x)
dx2 + D(x)

1 − x

x
dΩ2, (3.29)
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with

A(x) = 1 + 0.85959x + 0.221970x2 − 0.66519x3 + 0.63763x4 (3.30)

− 0.97718x5 + 1.53365x6 − 0.96168x7 − 0.29554x8 + 0.18927x9,

D(x) = 1 + 0.07021x + 0.14336x2 + 0.22442x3 − 0.15951x4 (3.31)

+ 0.54809x5 − 0.71742x6 + 0.60302x7 − 0.19459x8 + 0.02494x9.

For the metric (3.29), the squared Ricci tensor, RµνRµν , and Ricci scalar, R,

as functions of x are calculated and plotted in Fig. 3.2.1. We can see that

both of them are finite through the interval x ε[0, 1]. The squared Ricci tensor

is 12 at x = 0 (the infinite AdS boundary) and 48.49 at x = 1 (the axis of

symmetry), and the values for the Ricci scalar are −6 at x = 0 and 11.75 at

x = 1.

Figure 3.6: The squared Ricci tensor, RµνRµν , and Ricci scalar, R, on the
black hole horizon surface for metric (3.29) as a function of x.
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In Fig. 3.7, the contour lines for the gtt = const. surfaces and gθθ = const.

surfaces are plotted. gθθ = const. surfaces can be considered as different radii

for sphere defined by the line element dΩ2. In Fig. 3.7.a, it can be seen that

the gauge that we have chosen to work with for our metric leave gθθ rather

independent of y. In addition, we have studied the behavior of the fourth

root of the Weyl tensor, (CαβγδCαβγδ)
1
4 . In Fig. 3.10, the fourth root of Weyl

tensor as a function of x and y is plotted. We can see that it is zero along the

AdS boundary, x = 0, and the extremal Poincare horizon, but it is not zero

at the black hole horizon, y = 1, and at the center. The maximum value is at

(x, y) = (1, 1), which is 4.863.

(a) gtt = const. contour lines (b) gθθ = const. contour lines

Figure 3.7: (a) The gtt = const. contour lines are from 16 at the leftmost to
1
32 at the rightmost; each value is the half of the preceding one and (b) The
gθθ = const. contour lines are from 32 at the leftmost to 1

16 at the rightmost;
each value is the half of the preceding one.
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Figure 3.8: The fourth root of Weyl tensor, (CαβγδCαβγδ)
1
4 , as a function of

x and y.

3.2.2 Energy-Momentum Tensor for the Infinite-Mass

Black Hole

In this section, we are trying to find and study the behavior of the

energy-momentum tensor at the AdS boundary. The derived infinite-mass

black hole metric is conformally Schwarzschild at the infinite AdS boundary,

x = 0. Using this feature in the Fefferman-Graham expansion [25, 26, 29]

leads us to determine the energy-momentum tensor on the boundary. It is

good to mention that the energy-momentum tensor in the Fefferman-Graham

expansion is a mathematical tensor that can be related to the CFT energy-

momentum tensor on the boundary in the dual CFT picture, assuming that

AdS/CFT can be applied for our situation. But, it is different from the non-

zero bulk energy-momentum tensor as a source for the Einstein equation.
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For the infinite region, the asymptotic form of the five-dimensional bulk

metric near the boundary can be written as

ds2 = dr2 + e2rg̃µν(r, x)dxµdxν , (3.32)

where r ∼ ln v, which is the outward proper distance as one approaches the

AdS boundary at infinite proper distance, and x is not the same coordinate

used for the numerical result but instead it denotes all the other four coordi-

nates other than r.

According to the Fefferman-Graham coordinate system, any AdS metric

can be rewritten in the form (3.32) with

g̃µν(r, x) = g(0)
µν (x) + e−2r(−1

2
R(0)

µν (x) +
1

12
g(0)

µν (x)R(0)(x)) (3.33)

+ e−4rg(4)
µν (x) − 2e−4rrh(4)

µν (x) + e−4rtµν(x) + O(e−6r).

g(0)
µν (x) is a asymptotic conformal metric on AdS boundary and R(0)

µν (x) is the

Ricci tensor for the g(0)
µν (x) metric. Solving the bulk Einstein equation as a

second-order differential equation in the radial coordinate r for the Fefferman-

Graham form determines g(0)
µν (x) as a conformal metric on the AdS boundary

and the tensor tµν(x) as a divergenceless and traceless tensor after applying

the boundary condition. The terms g(4)
µν (x) and h(4)

µν (x) are functions of the

Ricci tensor R(0)
µν (x); see [15] for their exact definitions. As mentioned, we

set g(0)
µν (x) = gSch

µν for our metric (3.4) at the r = ∞ boundary. The gSch
µν is

the Schwarzschild metric, which is Ricci-flat. So, the only non-zero terms in

(3.33), which is an expansion up to order O(e−6r), are the terms including
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g(0)
µν (x) and tµν(x). The metric has the asymptotic form

ds2 = dr2 + e2r

[
eβ

dy2

y4(1 − y)
− 4eγ(1 − y)dt2 + eδ

1

y2
dΩ2

]
, (3.34)

β = e−4r tr
r(y) + O(e−6r),

γ = e−4r tt
t(y) + O(e−6r),

δ = e−4r tθ
θ(y) + O(e−6r).

trr, ttt, and tθθ are the components of the traceless, divergenceless tensor

tµν (y), which is diagonal in our coordinate system. In accordance with the

AdS/CFT correspondence, the gravitational field on the brane can be related

to the expectation value of the energy-momentum tensor for the CFT with

large N , number of the CFT fields involved, and strong coupling as

Gµν = 8πG4〈T CFT
µν 〉. (3.35)

See [11, 47]. Having the metric in Fefferman-Graham form and using equation

(3.35) can relate the tµν to 〈T CFT
µν 〉 as 〈T CFT

µν 〉 = tµν/(4πlG5) [17].

Comparing our numerical metric with the metric form (3.33) results in

finding tµν as a function of y. We apply the coordinate transformation for

x and y with v = y(1−x
x )

1
2 ∼ er to find the asymptotic form of the infinite

black hole at large v to compare with the Fefferman-Graham form. At our

boundary for x ∼ y2

v2 , we find the energy-momentum tensors as functions of y,

by using the coefficients of the first and second orders of x in A(x, y), B(x, y),

C(x, y), and D(x, y), which are functions of y. We call them A1(y), B1(y),
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C1(y), and D1(y) for the coefficient of x and A2(y), B2(y), C2(y), and D2(y)

for the coefficient of x2. Then, we calculate trr, ttt, and tθθ by using these

functions with the following formulas:

tr
r(y) = − 1

16
y4

[
11 − 14y − (10 − 14y − 3A1)A1 − 4A2 (3.36)

− 16B2 − (12y − 13y2)
dA1

dy
− 2(y2 − y3)

d2A1

dy2

]
,

tt
t(y) = − 1

16
y4

[
− 1 − 2y + 2(1 + y + 3A1)A1 (3.37)

− 4A2 − 16C2 + y2dA1

dy

]
,

tθ
θ(y) =

1

16
y4

[
5 − 4y − (6 − 4y + 3A1)A1 (3.38)

+ 4A2 − 16D1 + 16D2 − 2(y − y2)
dA1

dy

]
.

Plugging back the functions A1(y), B1(y), C1(y), and D1(y) and A2(y),

B2(y), C2(y), and D2(y) from our numerical results to the equations for trr,

ttt, and tθθ, (3.36)-(3.38), gives us

tr
r(y) = −0.01174y4 + 0.38148y5 − 0.85298y6 + 1.36570y7 − 2.01560y8

+ 1.91160y9 − 0.80470y10 + 0.08460y11 − 0.00739y12 + 0.00496y13

− 0.00181y14 + 0.00023y15 − 0.00001y16, (3.39)

tt
t(y) = 0.00341y4 + 0.48856y5 − 1.18280y6 + 1.10450y7 − 0.03021y8

− 0.65406y9 + 0.36864y10 − 0.03968y11 − 0.00739y12 + 0.00496y13

− 0.00181y14 + 0.00023y15 − 0.00001y16, (3.40)
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tθ
θ(y) = 0.00261y4 − 0.40736y5 + 0.86236y6 − 0.78244y7 + 0.28004y8

+ 0.02035y9 − 0.03666y10 + 0.01027y11 − 0.00739ey12 + 0.00496y13

− 0.00181y14 + 0.00023y15 − 0.00001y16. (3.41)

(a) (b)

(c)

Figure 3.9: The energy-momentum tensor components as functions of y. The
vertical axis corresponds to the energy-momentum components divided by y4.

(a) trr(y)
y4 vs. y (b) ttt(y)

y4 vs. y (c) tθ
θ(y)
y4 vs. y

It can be shown that the energy-momentum tensors tµν(y) behave as y5

asymptotically [16, 17]. Our numerical functions of tµν tensors are polynomi-

als that start from y4, which can be related to the numerical error since the

coefficient of this term is small for all components. Fig. 3.9 show the plots of

trr(y)
y4 , ttt(y)

y4 , and tθθ(y)
y4 versus y.

The constraints on trr, ttt, and tθθ as the energy-momentum constraints
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can be derived as

tr
r + tt

t + 2tθ
θ = 0, (3.42)

2y(1 − y)
d

dy
(tr

r) + y(tt
t − tr

r) + 4(1 − y)(tθ
θ − tr

r) = 0. (3.43)

Equation (3.42) is the traceless condition for the energy-momentum tensor,

tµµ = 0, and equation (3.43) corresponds to tµr
;µ = 0. Checking our numerical

result for the energy-momentum conditions, (3.42) and (3.43), shows small

deviations from zero, which can be explained as the numerical error. In Fig.

3.10, the tµµ and tµr
;µ are plotted for different y in [0, 1] interval. For traceless

condition, the maximum deviation is 4.57×10−4 and for the tµr
;µ = 0 condition,

it is 1.82 × 10−3.

(a) (b)

Figure 3.10: The behaviour of the energy-momentum tensor constraints for
different y from 0 to 1 to see the deviation of the numerical result from 0 (a)
tµµ vs. y (b) tµr

;µ vs. y

We have the infinite-mass black hole metric numerically. Now, we are

ready to do the perturbation on this metric in order to find the finite-mass

black hole on the brane in RSII, which will be the subject of the next chapter.
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Chapter 4

Large Black Hole in the RS II

Braneworld Model

Finding the numerical metric with an infinite mass black hole leads us

to the next step, where we perturb our metric to find a large static black

hole with a finite mass. Our derived metric in the last chapter is confor-

mally Schwarzschild with infinite mass at the infinite AdS boundary, x = 0.

We perturb the metric by replacing the infinite AdS boundary with an RSII

brane with induced metric, γµν . We apply the Israel junction condition to be

satisfied on the brane in order to find the perturbed metric.

In this chapter we will go through all calculations for finding the perturbed

metric and study the perturbed metric to see how the mass, area, entropy and

temperature of our metric is different from the Schwarzschild metric.
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4.1 The Finite-Mass Black Hole

4.1.1 The Perturbed Metric

Derived from last chapter, the infinite-mass black hole, defined by the

metric (3.33), has the RSII brane at r = ∞, AdS boundary. The metric,

recalled from the previous chapter, is

g̃µν(r, x) = g(0)
µν (x) + e−2r(−1

2
R(0)

µν (x) +
1

12
g(0)

µν (x)R(0)(x)) (4.1)

+ e−4rg(4)
µν (x) − 2e−4rrh(4)

µν (x) + e−4rtµν(x) + O(e−6r),

with g(0)
µν (x) = gSch

µν as the conformal Schwarzschild metric. We need to perturb

the metric to find the finite mass black hole. In order to do that, we replace

the RSII brane at r = ∞ with an RSII brane at finite proper distance r =

− ln ε for ε = e−r 2 1. We suppose that there is no matter on the brane.

Perturbations change the conformal metric g(0)
µν (x) as

g(0)
µν = gSch

µν + ε2hµν , (4.2)

with the perturbation metric hµν . For metric (4.2), the Ricci tensor is not zero,

and the same is true for the e−2r term in the Fefferman-Graham expansion.

The perturbation would effect the tracelessness of tµν(x), but we can still use

the values of tµν(x) from the infinite mass black hole bulk solution because it

is multiplied by e−4r in the Fefferman-Graham expansion, and we are working

to lowest non-trivial order in ε2.
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The extrinsic curvature for the brane is calculated as

Kµν = −1

2
∂r[e

2rg̃µν(r, x)]. (4.3)

The derivative is taken with respect to distance from the brane with the

induced metric on the four-dimensional hypersurfaces, γµν , and the derivative

is evaluated at zero distance from the brane. On the other hand, the second

fundamental form is [Kµν ] = −2γµν . We assume the Z2 symmetry to be

satisfied on the brane, so we have a mirror image on the opposite side of the

brane and Kµν = −γµν . So, up to the first order in ε2, the Israel junction

condition gives

g(2)
µν = −1

2
R(0)

µν +
1

12
R(0)(x)g(0)

µν = −2ε2tµν . (4.4)

As mentioned, up to this order the tµν is considered traceless. Then, the Ricci

tensor for the metric (4.2) is calculated as

R(0)
µν = 4ε2tµν . (4.5)

Using equation (4.5) with tµν(y) calculated from the infinite metric leads us

to have the perturbed part of metric hµν and then the spherically symmetric

static metric g(0)
µν in (4.2). The induced metric on the brane can be found as

γµν =
1

ε2
g̃µν =

1

ε2
gSch

µν + hµν + O(ε2). (4.6)
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The bulk Einstein equation plus the Israel junction condition on the brane

without matter imply that the Ricci scalar for the metric on the brane is zero.

So, to the first order in ε2 = 1/R2
0 = (3/2)/(−ΛM2), the metric on the brane

can be written as

4ds2 = (R2
0 + 2b)

dy2

y4(1 − y)
− (R2

0 + 2c)4(1 − y)dt2 + (R2
0 + 2d)

1

y2
dΩ2. (4.7)

We consider to work on a gauge where ht
t = 0 for a general static spherically

symmetric metric on the brane, which means that we choose the coordinate

y so that on the brane gtt = −(1− y) after rescaling t in a way that gtt = −1

at radial infinity, y = 0. Therefore, for a general metric on the brane that has

zero Ricci scalar to lowest order in the metric perturbation on the brane, the

hµν can be found as

hy
y(y) = 2b(y) = −2y2(1 − y)

3(4 − 3y)

(
F + y

dF

dy

)
, (4.8)

ht
t(y) = 2c(y) = 0, (4.9)

hθ
θ(y) = hφ

φ(y) = 2d(y) =
y2

6
F (y), (4.10)

where F (y) is defined as

F (y) =
2 − 3y

(4 − 3y)2

∫ y

0

(4 − 3u)trr(u)

u3(2 − 3u)2
du. (4.11)

According to (4.11), having trr(y) from the infinite-mass black hole leads

us to find F (y) and the hµν(y) components afterwards. So, we have the

perturbed metric, which has a finite-mass black hole on the brane.
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Considering the limit of gravity measurement allows us to have the length

scale l ≤ 1 mm [32, 46]. Assuming this, upper limit of l is ∼ 6×1031 lP l. Then,

we can calculate the lower limit of five-dimensional cosmological constant as

∼ −6 × 106 (∼ −2 × 1065 in Planck unit). The Schwarzschild radius for a

solar mass is ∼ 3 × 103 m (∼ 2 × 1038). Therefore, we have ε ≤ 3 × 10−7,

where ε2 = l2/R2
0.

We can rewrite the metric (4.7) as a function of F . We define a new radial

coordinate ρ = 2M/y. Then up to the first order in ε2 = (3/2)/(−ΛM2), the

metric (4.7) on the brane is written as

4ds2 = γµνdxµdxν (4.12)

=

[
1 − 1

(−Λρ2)

ρ− 2M

ρ− 1.5M

(
F − ρdF

dρ

)](
1 − 2M

ρ

)−1

dρ2

−
(

1 − 2M

ρ

)
dt2 +

[
ρ2 +

1

(−Λ)
F

]
dΩ2,

where the coordinate t is rescaled by a factor 4M , so the time component of

metric γµν is −1 as ρ → ∞. In the next chapter, we will use this metric to

do our calculations.

The next step is applying what we have found to our case to find the

metric for the finite-mass black hole numerically. It is what we are going to

describe in the next section.
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4.1.2 The Numeric Form of the Finite-Mass Black Hole

Metric

As mentioned in the previous chapter, it can be shown that the asymptotic

behavior of tµν goes as y5, and we know that tµν is traceless. This behavior of

tµν implies that F approaches to unity as y goes to zero. But our numerical

result behaves as y4 asymptotically and has a small deviation from being

traceless. However, we can consider the above characteristics for tµν and try

to find the traceless conserved fits for trr, ttt, and tθθ. We define t̂ r
r , t̂ t

t , and

t̂ θ
θ as follows:

t̂ r
r (y) =

y5

12(4 − 3y)

[
6(1 − y)F + y(2 − 3y)

dF

dy

]
, (4.13)

t̂ t
t (y) = 3t̂ r

r (y) − 2ε̂(y), (4.14)

t̂ θ
θ (y) = −2t̂ r

r (y) + ε̂(y), (4.15)

ε̂(y) =
y5

12(4 − 3y)2

[
12(1 − y2)F − y(12 − 14y + 3y2)

dF

dy
(4.16)

− y2(1 − y)(4 − 3y)
d2F

dy2

]
.

The new components t̂ r
r , t̂ t

t , and t̂ θ
θ are traceless, and their leading term is

starting with y5.

In order to find these refined components, we assume F (y) is a polynomial

with three unknown coefficients, a1, a2, and a3 and define a squared error

function to minimize as

E =

∫ 1

0 [(t̂ r
r − trr)2 + (t̂ t

t − ttt)2 + 2(t̂ θ
θ − tθθ)2]dy

y8

∫ 1

0 [(trr)2 + (ttt)2 + 2(tθθ)2]dy
y8

. (4.17)
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Plugging back the F (y) in equations (4.14)-(4.16) and minimizing the error

(4.17) results in finding a1, a2, and a3. So, we have F (y) as

F (y) = 1 − 1.002y + 0.434y2 − 0.059y3. (4.18)

This gives E = 0.00139 for these values of a1, a2, and a3. Using this refined

F (y) leads us to find t̂ r
r , t̂ t

t , and t̂ θ
θ . In Fig. 4.1, we plot the difference between

the energy-momentum components derived form our numerical results and

the ones derived from minimizing the error (4.17) as traceless and conserved

components as functions of y. Also, we compared the same functions divided

by y5.

We can plug back the function F (y) in equations (4.8)-(4.10), which give

us the perturbed part of metric in (4.2), hµν , as

hy
y(y) = 2b(y) (4.19)

= −2y2(1 − y)

(12 − 9y)
(−0.002 − 0.134y + 0.257y2 − 0.059y3),

ht
t(y) = 2c(y) = 0, (4.20)

hθ
θ(y) = hφ

φ(y) = 2d(y) =
y2

6
(1 − 1.002y + 0.434y2 − 0.059y3). (4.21)

We have found the metric for the finite-mass black hole completely. For

the next section, we will see how this black hole differs from the Schwarzschild

black hole.
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(a) tr
r(y)
y5 in red and t̂ r

r (y)
y5 in blue (b) trr(y) − t̂ r

r (y)

(c) tt
t(y)
y5 in red and t̂ t

t (y)
y5 in blue (d) ttt(y) − t̂ t

t (y)

(e) tθ
θ(y)
y5 in red and t̂ θ

θ (y)
y5 in blue (f) tθθ(y) − t̂ θ

θ (y)

Figure 4.1: Comparing energy-momentum tensor components between the
ones derived from numerical results, Eqs.(3.39)-(3.41), and the ones derived
from traceless and conserved fittings, Eqs.(4.14)-(4.16) by using Eq.(4.18).

The plots on the left-hand side are tµν(y)
y5 in red and

t̂ ν
µ (y)

y5 in blue, and the

ones on the right-hand side are tµν(y) − t̂ ν
µ (y)



4.2. The Mass, Temperature, Entropy and Area for the RSII Black Hole 63

4.2 The Mass, Temperature, Entropy and Area

for the RSII Black Hole

We have found a large black hole on the brane in the RSII model by

perturbing the infinite-mass black hole conformal to the Schwarzschild black

hole. Now, we are going to see if there is a difference between the ADM mass,

Hawking temperature, entropy and area for RSII black hole and Schwarzschild

black hole.

Up to the first order in perturbation parameter, 1/(−ΛM2), we calculate

the mentioned quantities as

MRSII ≈ 1

2
R0 + O

(
1

Λ2M3
ln (−ΛM2)

)
, (4.22)

TRSII ≈ 1

8πM
+ O

(
1

Λ2M5
ln (−ΛM2)

)
, (4.23)

SRSII ≈ 4πM2 + O

(
1

Λ2M2
ln (−ΛM2)

)
, (4.24)

ARSII ≈ 4π[R2
0 + F (1)] + O

(
1

Λ2M2
ln (−ΛM2)

)
(4.25)

≈ 16πM2 +
4π

−Λ
F (1).

Here F (1) is the value of the function F (y) at the black hole horizon, y = 1.

The entropy is calculated by using the surface gravity (temperature) and the

mass using the first law of the black hole thermodynamics, dM = TdS. It

can be seen that the ADM mass is exactly M with the surface gravity 1/(4M)

and the mass-entropy relation would stay the same as the Schwarzschild to

the lowest order and also the same relation for the Hawking temperature,

regardless of our numerical results. On the other hand, the horizon area is
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increased from the Schwarzschild one, which is ASch = 4π(2M)2, by a term

equal to 4πF (1)/(−Λ).

The value of F (y) at the black hole horizon is 0.373. So, the difference

from Schwarzschild black hole to an RSII black hole on the brane with the

same ADM mass M increases the area by ∆A = 4πF (1)/(−Λ) ≈ 4.67/(−Λ)

but gives no change in the Hawking temperature and entropy. Therefore,

we have shown that the large black hole on RSII brane is extremely close to

what general relativity would predict. However, we should have in mind that

all of these results are valid up to the first order in the expansion parameter

1/(−ΛM2).

In the next chapter, we will try to compare our result with the FLW [16, 17]

results as the first works that have been done numerically on the existence of

the large black holes in the RSII model.
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Chapter 5

Comparison of the First

Independent Calculations

As mentioned, Figueras, Lucietti, and Wiseman [16, 17] have found the

solution for the same problem, with an independent approach. They kindly

gave us their detailed numerical results to compare with ours. So, we had the

chance to show that both numerical solutions are closely in agreement. In the

following discussion, we will explain all calculations that we have done to do

this comparison.

5.1 Comparison of the Energy-Momentum Ten-

sor Components

As explained in the previous chapter, the perturbed part of the metric on

the brane can be calculated by using the function F (y), (4.8)-(4.11). Then,

up to the first order in ε2 = (3/2)/(−ΛM2) and for the radial coordinate ρ,
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ρ ≡ 2M/y, we have rewritten the metric on the brane as

4ds2 = γµνdxµdxν (5.1)

=

[
1 − 1

(−Λρ2)

ρ− 2M

ρ− 1.5M

(
F − ρdF

dρ

)](
1 − 2M

ρ

)−1

dρ2

−
(

1 − 2M

ρ

)
dt2 +

[
ρ2 +

1

(−Λ)
F

]
dΩ2.

It can be shown that the asymptotic behavior of tµν(x) at x = 0 and ρ→ ∞,

ρ 3 2M , should go as 1/ρ5 in order that the infinite-mass metric, (3.3),

satisfy the Einstein equation. The same result has been concluded by FLW

in [16, 17]. In addition, the asymptotic behavior of tµν(x) implies that the

function F approaches unity as ρ goes to infinity. Considering the mentioned

conditions for tµν(x) and F plus the traceless and conserved constraints for

energy-momentum tensors, tµν(x) can be defined as functions (4.14)-(4.16) to

fit with the FLW data and our data.

The numerical result for our energy-momentum tensor components, tOur
µν (x) =

t(1)µν (x), has been derived as a function of y for y ≡ 2M/ρ. They have a small

deviation from being traceless and conserved and also start with a y4 term.

Therefore, we try to find a fit, F1 ≡ FOur, as a cubic polynomial with the con-

stant term set to unity and other three constant coefficients to vary. Plugging

back the fit function into equations (4.14)-(4.16) gives us a traceless and con-

served energy-momentum tensor, tF1
µν(x). The FLW energy-momentum tensor

components, tFLW
µν (x) = t(2)µν (x), are given as discrete points, 200 points for

each component, traceless and conserved. We try to find a fit, F2 ≡ FFLW

and resultant energy-momentum components, tF2
µν(x). In order to find the fits,
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we define the integral Ji,

Ji=

∫
ρ4∆t(i)µν∆tµν(i)

√
−(4)γd4x

∫
ρ4tFLW

µν tµνFLW

√
−(4)γd4x

, (5.2)

as the mean-square error to minimize and find the coefficients for the fitting

function Fi (i = 1 for our data and i = 2 for the FLW data). ∆t(i)µν =

tFi
µν − t(i)µν in the numerator is tFi

µν − t(i)µν . For increasing the weight of the large-

ρ part, the factor ρ4 is included in the numerator. However, the integrals

are still dominated by the small-ρ part since tµν(x) drops off asymptotically

as 1/ρ5 [16, 17]. The integral in the denominator, with the value equal to

0.00315, makes the Ji a normalized mean-square error. It is calculated by

using tFLW
µν (x) from the FLW data for both J1 and J2. We have used the

trapezoidal rule to approximate the integral as a sum with the FLW discrete

data. The integral Ji can be simplified as

Ji=

∫
ρ6∆t(i)µν∆tµν(i)dρ∫
ρ6tFLW

µν tµνFLWdρ
. (5.3)

For our numerical result, minimizing J1 for JOur ≈ 0.00139 gives us F1 = FOur

as a function of ρ as

FOur≈1−1.002

(
2M

ρ

)
+0.434

(
2M

ρ

)2

−0.059

(
2M

ρ

)3

, (5.4)

and for the FLW data, the minimized value of the normalized mean square

error is JFLW ≈ 0.0000620 for F2 = FFLW as

FFLW≈1−1.062

(
2M

ρ

)
+0.554

(
2M

ρ

)2

−0.120

(
2M

ρ

)3

. (5.5)



5.1. Comparison of the Energy-Momentum Tensor Components 68

The ratio between JOur and JFLW gives us JOur ≈ 22JFLW . This comes

from the fact that our data is less accurate than the FLW data. For our

spectral method, we have used only 210 parameters to vary for minimization,

whereas FLW have used grids of 40 × 40 (or 1600 points) and of 160 × 160

(or 25600 points). In addition, the coefficients of two Fi have large relative

differences, but it is not the same for the ratio of the two cubics in each point.

The latter ratio never differs by more than 1.3% from unity, which shows that

the fitting functions to our data and the FLW data are in a good agreement.

An 11th order polynomial fitted to the FLW data gives J11 ≈ 0.0000572

for

F11 = 1 − 1.1241

(
2M

ρ

)
+ 1.956

(
2M

ρ

)2

− 9.961

(
2M

ρ

)3

+ 35.475

(
2M

ρ

)4

− 75.962

(
2M

ρ

)5

+ 99.432

(
2M

ρ

)6

− 73.694

(
2M

ρ

)7

+ 18.726

(
2M

ρ

)8

+ 13.990

(
2M

ρ

)9

− 12.366

(
2M

ρ

)10

+ 2.900

(
2M

ρ

)11

. (5.6)

This error is close to the cubic polynomial for the FLW data, 92% JFLW .

Therefore, FFLW is good and easy enough to work with. Fig. 5.1 shows the

F11 polynomials as a function of ρ and at the bottom, the differences between

FOur and FFLW with F11 is plotted. However, it has been multiplied by 50 to

make it clear since the differences are too small to show.

Table 5.1 shows the different values of Ji, using (5.3), where we have used

tF11
µν derived from the fitting function F11, tFOur

µν derived from the fitting func-

tion FOur, and tFF LW
µν derived from the fitting function FFLW .
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Figure 5.1: The top curve is the 11th order polynomials fitted to the FLW
data. The two bottom curves are the differences between the F11 fit with FOur

and FFLW fits multiplied by 50. The bottom curve is 50(FFLW − F11), and
the middle curve is 50(FOur − F11)

The integral (5.3) gives JOur fit vs. FLW data ≈ 0.000214 ≈ 3.4JFLW ; there-

fore it can be seen that tFOur
µν generated by our FOur fits to the FLW data

much better than it fits to our data, which is about 6.5 times better. It is

not unexpected, since the fit to our data was required to be traceless and

conserved, where our data was not.

We also have found that J4 = JOur fit vs. FLW fit ≈ 0.000146 ≈ 2.4JFLW ,

which is 9 times better than the fit directly extracted from our data. It can

be explained by the same reason mentioned before, which is the constraints

applied to tFOur
µν (x) for being traceless and conserved.

Having the fitting functions and using equations (4.14)-(4.16) give us the

energy-momentum components. Each energy-momentum component for the

F11 fit, which is the most accurate one, is plotted and the difference between

this component to the same component for FOur and FFLW is multiplied by
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tF11
µν tFFLW

µν tFour
µν

tFLW
µν J11 ≈ 0.0000572 JFLW ≈ 0.0000620 J3 ≈ 0.000214

tFFLW
µν J5 ≈ 0.000004793 0 J4 ≈ 0.000146
tF11
µν 0 J5 ≈ 0.000004793 J6 ≈ 0.000156

Table 5.1: Different values of Ji calculated by using Eq.(5.3), with ∆t(i)µν as
the difference between the column tµν and the row tµν .

10 and shown in Fig. 5.2.

The ratios between the values of each energy-momentum component de-

rived from the FOur to the corresponding component derived from the FFLW is

plotted in Fig. 5.3. The ratios between the values of each energy-momentum

component derived from the fitting functions to the corresponding FLW com-

ponent is plotted in Fig. 5.5. These ratios are generally within 1-2% of unity,

with the maximum differing by less than 2.9%.

The trace of the square of the energy-momentum tensor, T = tµν t
ν
µ =

(t t
t )2 + (t ρ

ρ )2 + 2(t φ
φ )2, is plotted for the F11 fit in Fig. 5.4(a). The ratio be-

tween T for different fits and T FLW, calculated directly from the FLW data,

is plotted in Fig. 5.4(b). These ratios are in agreement within 3% of unity.

Comparing the energy-momentum tensor components shows a good agree-

ment for the two independent calculations done for finding the large black hole

in RSII model. For the next section, we try to compare more quantities that

can be calculated or plotted.
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(a) (b)

(c)

Figure 5.2: The blue curve in each graph is the energy-momentum tensor
component for fitting function F11 as a function of ρ, and the other two
curves are differences between each energy-momentum tensor component from
F11 and the same component for FOur and FFLW multiplied by 10. (a) The
blue curve is tρF11

ρ , the green one is 10(tρF11
ρ − tρFF LW

ρ ), and the red one is

10(tρF11
ρ −tρFOur

ρ ). (b) The blue curve is ttF11
t , the green one is 10(ttF11

t −ttFF LW
t ),

and the red one is 10(ttF11
t − ttFOur

t ). (c) The blue curve is tθF11
θ , the green one

is 10(tθF11
θ − tθFF LW

θ ), and the red one is 10(tθF11
θ − tθFOur

θ ).
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Figure 5.3: The blue, red, and green lines are the ratios of t ρFOur
ρ , t tFOur

t , and

t θFOur
θ to the corresponding components from FFLW , respectively.

(a) (b)

Figure 5.4: (a) Scaled T F11 = tF11
µν tµνF11

vs. ρ. (b) The blue, green, and red
lines are the ratios of T F11, T FFLW, and T Four to T FLW, respectively.
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(a) (b)

(c)

Figure 5.5: The ratios of t νF11
µ , t νFFLW

µ , and t νFour
µ to the FLW data t νFLW

µ .
(a) The red, green, and blue lines are the ratios of t ρF11

ρ , t ρFFLW
ρ , and t ρFour

ρ

to the FLW data t ρFLW
ρ , respectively. (b) The red, green, and blue lines are

the ratios of t tF11
t , t tFFLW

t , and t tFour
t to the FLW data t tFLW

t , respectively.
(c) The red, green, and blue lines are the ratios of t θF11

θ , t θFFLW
θ , and t θFour

θ

to the FLW data t θFLW
θ , respectively.
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5.2 Comparison of the Metric

The perturbed part of the brane metric (4.7), hν
µ, can be calculated by

means of equations (4.8)-(4.10). The hρF11
ρ derived by using the F11 fit is

plotted in Fig. 5.6(a), and the ratios of hρ
ρ generated by FOur, FFLW , and F11

are shown in Fig. 5.6(b). The ratios of the hρ
ρ, which involve the derivative

of Fi, have deviations from unity up to 9.3%. Therefore, when we are nei-

ther near the black hole horizon, ρ = 2M in our gauge, nor near 2M/ρ = 0,

where hρ
ρ = 0 at both limits, the deviation value of gρρ from the Schwarzschild

value cannot be described precisely by our FOur. However, the deviation for

the FLW fit from the F11 fit is a few percent, which can be an independent

confirmation for their result.

Recalling Eq.(4.25), the horizon area is shifted from the Schwarzschild

value ASch = 4π(2M)2 to ARSII = 4π[(2M)2 + F (1)/(−Λ)], where F (1)

is the value of F at y ≡ 2M/ρ = 1, on the black hole horizon. The fit

to the FLW data gives F FLW (1) ≈ 0.372, and the fit to our data gives

F Our(1) ≈ 0.373, which shows an agreement within 0.3%. Then, the change

from the Schwarzschild black hole to an RSII black hole on the brane with

the same ADM mass M increases the horizon by 4.67/(−Λ) for the FLW fit

and by 4.69/(−Λ) for our fit.

There is one more quantity, the Weyl tensor, that we can use to make

another brief comparison. We have used different coordinates for our met-

ric from those used by FLW, which makes comparisons over the entire five-

dimensional manifold difficult. The minimum value for the length scale given

by the inverse fourth root of the total trace of the square of the Weyl tensor,



5.2. Comparison of the Metric 75

(CαβγδCαβγδ)−
1
4 , can be calculated at the corner x = 1 and y = 1, the inter-

section of the axis and the black hole horizon. The value for our metric is

0.206 and for the FLW metric is 0.198, which are within 4% of each other.

(a) (b)

Figure 5.6: (a) hρF11
ρ . (b) The blue, green, and red curves are the ratios

h ρFour
ρ

h
ρFFLW

ρ
, h ρFour

ρ

h
ρF11

ρ
, and h

ρFFLW
ρ

h
ρF11

ρ
, respectively.

(a) (b)

Figure 5.7: (a) hθF11
θ . (b) The blue, green, and red curves are the ratios

h θFour
θ

h
θFFLW

θ

,
h θFour

θ

h
θF11

θ

, and
h

θFFLW
θ

h
θF11

θ

, respectively.

Therefore, we have shown that all plots and results that we can derive

from FLW and our data are in a close agreement. So, this can be considered

as a good confirmation for the existence of the large black hole in RSII.
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Chapter 6

Conclusion

We can consider the RSII braneworld model as a good candidate for

describing our four-dimensional universe, the brane, with an extra dimension,

in which the four-dimensional physics is recovered on the brane. We probe

the existence of large black holes for the RSII model. Because of the astro-

physical observation of such black holes, the non-existence of large black holes

in the RSII model would be strong evidence against the practicality of the

model. On the other hand, a black hole in the RSII model can be different

from a black hole in four-dimensional general relativity, so it might be a good

opportunity to study the extra dimension using astronomical observations of

black holes.

We have constructed a large black hole solution in the RSII model nu-

merically in two steps. First, an infinite-mass black hole has been found by

using a spectral method to minimize the integral of the squared error for the

Einstein equation, with four free functions to be found and 210 parameters

to vary. For the next step, the perturbation has been applied to move the
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location of the brane from infinity and find the large black hole. Finally, we

have derived a closed-form approximation metric, (4.12), for the black hole

on the brane.

We also have concluded that to the first order in our perturbation param-

eter 1/(−ΛM2), the Hawking temperature and entropy of the derived black

hole is the same as the Schwarzschild black hole with the same ADM mass

M . But, the black hole horizon area is increased by 4.69/(−Λ) from the

Schwarzschild black hole horizon area with mass M .

Figueras, Lucietti, and Wiseman have found a large black hole solution in

RSII. Our approach to the problem is independent from the FLW approach.

FLW solved the full non-linear Einstein equation with the brane boundary

condition. But, we solved the problem by a perturbative approach, which

is a distinct and original way to find the large black hole in RSII. We have

provided evidence in support of the FLW result by comparing their numerical

results to ours. We have found the fitting functions (5.4) and (5.5), respec-

tively to our data and their data, and we have shown that our results agree,

within numerical errors, with theirs.

The large black hole that we have found is quite close to the Schwarzschild

black hole, and this solution can lead us to still consider the RSII model as

a possible candidate for describing our universe in a model including extra

dimension.
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Appendix A

The Numerical Results for

Metric Functions

The functions A(x, y), B(x, y), C(x, y) and D(x, y) in the metric (3.3), after

numerically minimizing the integral of the squared error (3.13) by 6th order

polynomials with 210 coefficients are given by the following expressions, with

all of the coefficients rounded to five digits after the decimal place:

A(x, y) = 1 + (0.21094 + 0.95771y − 0.32215y2 + 0.07863y3

− 0.14553y4 + 0.08707y5 − 0.00708y6)x

+ (0.483120− 2.96522y + 3.12221y2 + 1.58758y3

− 3.26594y4 + 1.42017y5 − 0.15995y6)x2

+ (−1.71060 + 15.96474y − 30.20818y2 + 13.67479y3

+ 7.52368y4 − 6.45629y5 + 0.54667y6)x3
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+ (5.78445 − 61.41107y + 170.77950y2 − 214.55752y3

+ 153.70395y4 − 73.81142y5 + 20.14974y6)x4

+ (−11.34737 + 143.59002y − 527.23697y2 + 941.06600y3

− 951.41715y4 + 539.77303y5 − 135.40474y6)x5

+ (14.60367 − 212.76740y + 940.10896y2 − 2014.17705y3

+ 2340.50264y4 − 1423.20017y5 + 356.46300y6)x6

+ (−11.53285 + 191.11234y − 965.53690y2 + 2306.98150y3

− 2889.53569y4 + 1827.70113y5 − 460.15121y6)x7

+ (5.01719 + −94.50791y + 529.64141y2 − 1357.87635y3

+ 1776.26250y4 − 1148.20207y5 + 289.36969y6)x8

+ (−0.90738 + 19.65670y − 120.15064y2 + 323.38343y3

− 433.62615y4 + 282.63877y5 − 70.80546y6)x9, (A.1)

B(x, y) = 1 + (−0.60547 − 0.47885y + 0.16108y2 − 0.03931y3

+ 0.07277y4 − 0.04354y5 + 0.003540y6)x

+ (0.43149 − 0.80874y + 0.89420y2 − 0.31160y3

− 0.09760y4 + 0.08441y5 − 0.00482y6)x2

+ (0.21851 + 0.08687y − 1.72664y2 + 2.47145y3

− 0.92513y4 − 0.07910y5 + 0.05733y6)x3

+ (−0.24942 + 0.72759y + 3.13465y2 − 9.10834y3

+ 8.03309y4 − 3.11900y5 + 0.42049y6)x4
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+ (0.11567 + 0.85762y − 8.90011y2 + 22.33435y3

− 24.96171y4 + 13.30179y5 − 2.72886y6)x5

+ (0.11933 − 2.07556y + 11.88780y2 − 30.32368y3

+ 37.81788y4 − 22.84820y5 + 5.46718y6)x6

+ (−0.03621 + 0.99966y − 7.11882y2 + 20.49026y3

− 28.00052y4 + 18.39565y5 − 4.74288y6)x7

+ (0.00555 − 0.20539y + 1.74472y2 − 5.66200y3

+ 8.40417y4 − 5.81216y5 + 1.52634y6)x8, (A.2)

C(x, y) = 1 + (−0.60547 − 0.47885y + 0.16108y2 − 0.03931y3

+ 0.07277y4 − 0.04353y5 + 0.00354y6)x

+ (−0.14516 + 1.32670y − 1.67755y2 + 0.52746y3

+ 0.82884y4 − 1.10767y5 + 0.49529y6 − 0.06057y7)x2

+ (0.27707 − 2.97720y + 6.80878y2 − 6.66724y3

+ 2.34156y4 + 2.29259y5 − 2.95084y6 + 0.978589y7)x3

+ (−0.54534 + 5.46359y − 13.40233y2 + 12.20018y3

+ 3.69101y4 − 21.56518y5 + 20.75440y6 − 6.75727y7)x4

+ (0.63505 − 6.58020y + 16.26668y2 − 7.88244y3

− 32.05193y4 + 69.62487y5 − 57.58350y6 + 17.59022y7)x5

+ (−0.42810 + 5.02395y − 14.87309y2 + 10.13469y3

+ 30.26574y4 − 73.46057y5 + 62.70428y6 − 19.32214y7)x6
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+ (0.15406 − 2.23357y + 9.56540y2 − 15.94279y3

+ 4.13362y4 + 20.02335y5 − 24.13180y6 + 8.41885y7)x7

+ (−0.01891 + 0.44363y − 2.86261y2 + 7.61814y3

− 9.31272y4 + 4.24741y5 + 0.75762y6 − 0.87134y7)x8, (A.3)

D(x, y) = 1 + (0.39453 − 0.47885y + 0.16108y2 − 0.03931y3

+ 0.07276y4 − 0.04354y5 + 0.00354y6)x

+ (0.05130 + 0.60697y − 0.17110y2 − 1.10809y3

+ 1.02899y4 − 0.23688y5 − 0.02783y6)x2

+ (0.32335− 2.49967y + 5.37277y2 − 6.15484y3

+ 7.81122y4 − 7.43134y5 + 2.80293y6)x3

+ (−0.52530 + 7.18773y − 31.23730y2 + 79.39889y3

− 119.57662y4 + 94.40212y5 − 29.80903y6)x4

+ (0.58030− 12.77895y + 87.87779y2 − 284.24264y3

+ 463.83801y4 − 369.81230y5 + 115.08588y6)x5

+ (−0.13189 + 14.60642y − 144.69672y2 + 529.23363y3

− 899.73602y4 + 725.67077y5 − 225.66361y6)x6

+ (−0.30734 − 11.10747y + 144.89421y2 − 565.76399y3

+ 982.58529y4 − 797.70747y5 + 248.00979y6)x7

+ (0.29947 + 5.31976y − 82.06726y2 + 330.24011y3

− 579.34304y4 + 472.44205y5 − 147.08568y6)x8
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+ (−0.08325 − 1.22603y + 20.06377y2 − 81.40275y3

+ 143.32172y4 − 117.33319y5 + 36.68467y6)x9. (A.4)

Note that after plugging the 6th order polynomials with (3.23)-(3.28), the

polynomials A, B, C, and D end up having slightly higher order and 249

coefficients with 39 of them not independent.


