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 The Effect of Choice Environment and Task Demands on Consumer Behavior:  

Discriminating Between Contribution and Confusion  

1. INTRODUCTION 

 Choices, whether they are made in actual markets (revealed preference or RP) or in surveys 

(stated preference or SP), provide information about the preferences of individuals.  These choices also 

contain what researchers interpret as “noise” or unexplained variation; a variety of techniques (e.g. 

statistical design theory, econometric specifications, and the combination of stated and revealed 

preference data) have been used to understand preferences and separate the signal from noise.  However, 

in applying these tools we have tended to focus on the information provided by the choices themselves, 

to the detriment of understanding the effect of the choice environment or the task demands on the 

observed choice behavior, the quality of the information provided, and noise levels. 

 Task demands (or the choice environment)
1
 can  be characterized by such factors as choice set 

size (the number of alternatives the individual is choosing from), the number of attributes under 

consideration within alternatives in a choice set,  the correlation structure of the attributes of the 

alternatives in the choice set, the number of and sequence of choices the individual is asked to make 

during the “task”, as well as a variety of other factors.  While the definition of the choice set, and the 

implications of choice set definitions on empirical results (Swait and Ben-Akiva, 1987a,b), has received 

some attention in the literature, there has been little attention paid to the characterization of the choice set 

or other dimensions of task demands. 

                     
1
The term task demand is often associated with SP data while the choice environment is often used to describe RP 

choice contexts.  However, there are many common characteristics between RP and SP environments.  Recently, 

there has been a movement to exploit the advantages of each form of data.  The fusion of RP and SP data has many 

desirable characteristics such as the controlled nature of the design matrix from the SP data and wider ranges of 

attribute levels (Ben-Akiva et al. 1994).  However, this fusion creates an additional set of issues: RP and SP data are 

typically based on very different data structures, with different levels of complexity, and in fact, different sources for 

decision complexity. RP choice sets may be quite large, individual specific, and display a large variation in the 

attributes of each alternative.  SP choice data, on the other hand, generally arise from researcher-defined choice sets.  

Thus, the complexity  involved in stated preference choice tasks can be quite different than the environmental 

characteristics of revealed preference data. Hence, we must ask: will the different task demands of SP and RP data 

affect their pooling and potentially offset the benefits associated with fusion?  We assess this issue using a case study 

involving RP and SP recreational site choice data. 
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 Task complexity is illustrated by Figure 1, in which an individual is presented with alternatives 

(A,B, and C) in attribute space (X1,X2).  One of the individual’s indifference curves is depicted as I.   If 

the individual is asked to choose between A and B it is clear that A dominates B and the demands on the 

individual, in terms of choice complexity, are relatively low.  Situations that force consumers to make 

tradeoffs, like choosing between A and C, are more challenging and reveal more information about 

preferences, albeit imposing greater cognitive demands on the individual.  Will the variance or noise 

associated with choice be increased in this case? Will the respondent use different strategies when 

choosing from the set {A,B} versus the set {A,C}? 

 Consider the case illustrated in Figure 2 in which preferences, illustrated as the shaded 

indifference area, are depicted as being “uncertain.”  In this case the impact of task demands may be even 

greater.  The uncertainty about preferences can be exacerbated by task demands and may result in less 

consistency in choice, leading to higher variance in statistical models.  Characterizing complexity or task 

demand and incorporating it into statistical models may aid in our understanding of choice and help us 

design tasks that provide more information and less noise. 

This paper presents an analysis of context effects on choice in the same tradition as Heiner 

(1983), who investigated the processing capacity of consumers.  We characterize task demands and 

incorporate them into random utility models of choice.  We describe task demands using entropy, a well-

known information theoretic measure which provides a summary measure of the uncertainty inherent in 

the choice environment.  We model choice as a function of attributes in a traditional compensatory model 

but include our summary measure of task complexity in the variance term of the model.  Both entropy 

and cumulative entropy are included in the model to account for the fact that task demands are partly 

defined by the current choice set, and partly by prior effort expended (which we term “cumulative 

cognitive burden”). We use this model to examine choice data from a number of contexts.  It is worth 

noting that in such a model elasticities are now made up of two components: a direct effect through the 

impact on utility and an indirect effect through the impact on complexity.   

Our results indicate that task complexity significantly affects the variance of  choice in a fashion 

that is consistent with notions of limited  consumer processing capacity and cognitive budgets.  
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Employing six case studies that examine choice within very different product classes, we find that 

complexity affects variance in a non-linear fashion with both very difficult and very easy choices 

resulting in near random choice behavior.  Furthermore, we find that pooling across the six cases, we 

cannot reject the null hypothesis that complexity affects these very different choice processes in a similar 

fashion.  This is an interesting finding suggesting a generalizability of our formulation over a variety of 

product classes.  We also find some evidence of fatigue and learning effects in the different case studies, 

although the cumulative effects are not as systematic as the direct impacts of complexity on choice. 

 We begin the paper with a brief review of the literature on task complexity and choice, then 

outline several possible measures of complexity.  We next expound on our chosen measure of 

complexity, entropy, as a form of characterizing task demands.  A statistical modeling approach, that 

includes entropy in the variance function, is presented in Section 3.  Examples using choice data from 

different situations are then examined in Section 4.  The paper concludes with a discussion of the 

implications of our findings and future research topics. 

 

2. COMPLEXITY AND CHOICE 

2.1 Task Environment, Respondent Processing Ability and Choice Outcomes 

 A variety of  authors in the economics literature have discussed the limitations of  an individual’s 

ability to process information and the implications of these limitations on choice behavior.  Much of this 

literature relates to choices under uncertainty (e.g. difficulty in evaluating risks, ambiguity or lack of 

information about the risks, and difficulty in decision making under risk).  Uncertainty about the 

attributes of options often plays a role in explaining limitations of human processing capability.  For 

example, Heiner (1983) argues that  agents cannot decipher the complexity of  the situations they face 

and thus make decisions that appear to be sub-optimal.  He argues that the complexity and uncertainty 

surrounding a choice situation often leads consumers to adopt simplified strategies.  Heiner suggests that 

more effort should be expended to understand the role that complexity plays in choice behavior. 

 A more formal examination of the processing limitation argument is presented by de Palma et al 

(1994).  They model consumers with different abilities to choose such that an individual with lower 
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ability to choose will make more errors in comparisons of marginal utilities. They outline the 

implications of limited processing capability on choice and discover that heterogeneity in the ability to 

choose over a sample of individuals produces widely different choices, even if in all other aspects the 

individuals are identical.  In our context, we suggest that the complexity of the decision problem will 

affect the ability to choose, and thus for any given individual, ability to choose will differ depending on 

the task demands.  Similar conclusions arise from the literature on “bounded rationality” (March, 1978; 

Simon, 1955). 

 There are relatively few empirical applications of the literature on processing limitations.  A 

notable exception is Mazzotta and Opaluch (1995), whose objective is to empirically test the validity of 

Heiner’s (1983) hypothesis concerning complexity and choice behavior. Mazzota and Opaluch relate 

complexity in a contingent behavior choice task to variance in an econometric choice model, which is a 

restricted form of the model we shall present later. They find support for the hypothesis of imperfect 

cognitive ability and for the notion that increasing complexity increases the “noise” associated with 

choice. 

 Literature in Human Decision Theory examines the notion that individuals change their decision 

making “heuristics” as task complexity changes.  The selection of choice strategy is hypothesized to 

depend on the trade off  between costs of effort in making the attribute comparisons versus the benefits 

of making an accurate choice (essentially, it is assumed that respondents make a cognitive effort versus 

outcome accuracy tradeoff).  Shugan (1980), for example, suggests that the costs of decision making to 

the individual are associated with his or her limited processing capability, the complexity of the choice, 

time pressure and other factors.  He constructs a conceptual  “confusion index” which attempts to 

measure the effort required by the individual to make the choice.  In a similar vein, Bettman et al. (1993) 

examine the impact of task complexity, measured as the degree of negative correlation between 

attributes, on the decision making strategy chosen by the consumer. These researchers suggest that 

providing more difficult choices may lead to richer information on preferences as respondent processing 

effort increases with complexity. 
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 However, alternatives to the effort-accuracy tradeoff have also been advanced.  It has been 

suggested that individuals may attempt to avoid conflict in situations where choices are complex, leading 

to the use of simpler choice heuristics when attributes are negatively correlated. For example, Keller and 

Staelin (1987) suggest that complexity may have an inverted U-shaped relationship with decision 

effectiveness.  That is, as the situation becomes more complex, individuals initially exert additional effort 

and become more effective, until a point is reached where their effectiveness begins to deteriorate.  

Tversky and Shafir (1992) show that when the choice environment is made complex (by adding 

alternatives or making the choice alternatives similar, but not identical), some individuals opt to delay 

choice, seek new alternatives, or even revert to a default (or status quo) option.  Similar findings by 

Olshavsky (1979), Payne (1976), Payne et al. (1988) and Simonson and Tversky (1992) suggest that the 

context and complexity of the decision, as described by the number of attributes, correlation between 

attributes, number of alternatives, time pressure and various other factors, significantly influence 

decisions.   

 The concept of complexity affecting choice also applies to repeated choice situations, wherein 

additional choices may increase the cumulative cognitive burden.  In SP choice tasks, individuals are 

generally asked to face repeated choice decisions (say, R1 replications) to decrease data collection 

costs. There is some evidence of fatigue effects in SP choice experiments (Bradley and Daly, 1994) 

although there is also some counterevidence suggesting this fatigue effect may be minimal (Brazell et al. 

1995). In some cases respondents may actually become more proficient at the choice task as they are 

exposed to more replications (i.e. learning occurs).   

The notion that complexity affects decision making conflicts with the traditional notion of value 

maximization used in economics: individuals are assumed to be able to assign values to alternatives, and 

choose the alternatives with the highest value, independent of context.  To address this issue, we design a 

mechanism that reflects the degree of complexity associated with a task.  We incorporate this measure 

into statistical models of choice in a fashion consistent with the notion of context-based decision making. 

We assume that the basic mechanism whereby choice complexity affects our ability to infer taste 
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parameters in a sample of respondents is through the distributions of choice alternative utilities; 

specifically, we assume that complexity impacts the variance of the utility distributions.
2
   

 Given the research previously reviewed, we present and discuss two hypotheses for subsequent 

investigation. 

H1: The variances of the latent utilities will be convex in the level of complexity. 

 As individuals face increasing complexity they will respond with increasing information about 

their tradeoffs (decreasing variance) but, beyond some point of complexity, greater inconsistency across 

individuals will be found, and so variance increases.  This hypothesis is based on a blend of the literature 

described above in which increasing complexity has been shown to result in improved performance up to 

a point.  After this point individuals may avoid conflict or use simple heuristics to make choices. 

H2: The variance of utility is a convex function of cumulative cognitive burden. 

 A common sequence of events for a respondent in an SP choice task may be: (1) learning for 

some number of replications, followed by (2) the application of the learned behavior during another 

number of replications, and finally, (3)  fatigue sets in, leading to less consistent choice behavior. This 

would lead us in general to expect a U-shaped (convex) relationship between variance and cumulative 

cognitive burden. However, the dominance of the fatigue or learning effect in any given task (perhaps 

due to the number of replications, the number of attributes, or lack of familiarity with the choice) may 

produce a strictly increasing or decreasing relationship between cognitive burden and variance in any 

given empirical data set. 

2.2 Representing The Effect of Complexity and Cumulative Cognitive Burden in Choice Models 

 In this section the objective is to characterize the complexity of choice environments through a 

measure that can capture its various dimensions.  Some dimensions of such a measure have already been 

discussed above (the number of attributes, the number of alternatives, negative correlation of attributes, 

                     
2
This is particularly important in the case of pooling SP and RP data, in which the very different choice contexts may 

have significant effects on the parameters and the variance terms.  Pooling without accounting for context differences 

may produce inefficient estimators and predictions. 
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etc.).  Note, however, that each of these quantities is a component of complexity rather than an overall 

measure. 

 Distance between alternatives in attribute space, which is related to the correlation structure of 

the attributes, is a candidate for capturing the degree of overall complexity involved in a choice context. 

Suppose we wish to examine choice sets with 3 alternatives, described by K-vectors of attributes xA, xB 

and xC.  These distance measures can generally be constructed as sums of distance norms (e.g. absolute 

value distance or Euclidean distance) for vectors xi and xj, i,j{A,B,C}. In Figure 1, for example,  the 

calculation of the difference in attribute levels would represent as a large positive value the dominance of 

alternative A over B.  If two alternatives were very similar, these metrics would produce a small value.  

While such measures would reflect the distance between alternatives in attribute space, they may not 

capture the number of alternatives in the measure of complexity. These measures also require that all 

attributes be commensurable, a requirement that usually cannot be met. 

 In order to design a more complete, and a more formally defined, measure of complexity, we turn 

to information theory to provide a measure of information or uncertainty. Information theory refers to an 

approach taken to characterize or quantify the amount of information contained in an experiment or 

phenomenon
3
 (Soofi, 1994; Shannon, 1948).  Given a set of outcomes (or alternatives, in our context) 

{ , ,... , }x j Jj 1  that are described by a probability distribution  ( )x , the entropy (or uncertainty) of 

the choice situation is defined as  

H X H x xx j j
j

( ) ( ) ( ) log ( )      0 .    (1) 

In a case with J alternatives in a choice set, entropy reaches its maximum if each of the J are equally 

likely.  If the number of equally likely alternatives increases, entropy also increases. Thus, the number of 

alternatives in the choice set directly affects the level of complexity, making this measure a useful 

mechanism for testing hypotheses regarding the impact of the number of alternatives on choice variance.  

Entropy is minimized if there is one dominant alternative in the choice set.  For example, if one 

                     
3
Information theory and entropy are used in other contexts in economics but these typically involve the use of the 

maximum entropy principle as an estimator in a statistical context (see Sengupta, 1993). 
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alternative has a probability of one and the others have probabilities of zero, entropy achieves its 

minimum of zero. The degree of attribute correlation and number of attributes also play a role since these 

elements will affect the assignments of probabilities. 

 An additional aspect associated with the use of entropy as a measure of task complexity is the 

fact that cumulative entropy can be used to assess the impact of cumulative complexity of multiple 

choice tasks (i.e. cumulative cognitive burden).  Cumulative entropy provides a measure of the amount of 

uncertainty faced by individuals as they make sequences of choices.
4
 

 Our measure of task complexity is incorporated into a discrete choice econometric model as a 

parametrization of the variance (or scale) of the stochastic error term of the utility function. Details on 

the econometric model and the incorporation of the complexity factor in the variance term are described 

below. 

 

3.0 THE STATISTICAL MODEL 

3.1 Model Derivation 

 Suppose that certain task demands or environmental conditions E n  apply to all the alternatives 

of the n-th choice set Cn (where n is the index of an individual decision-maker, in the case of RP data, or 

the index of a decision-maker/replication combination in the case of SP data). Suppose further that the 

utility function for the i-th alternative in Cn  is additive, as below: 

U Vin in in    ,       (2) 

where Vin   is the systematic component and  in  is the stochastic component. As postulated in the 

previous section, we assume that E n  affects the utilities only through the stochastic component. More 

precisely, we shall assume that differences in environments generate differential consistency levels in 

observed behavior across individuals, which will be reflected in (2) by affecting the variances of the 

assumed distribution for the disturbances. 

                     
4
It should be noted that cumulative entropy corresponds to a measure of the joint uncertainty level over choice sets if 

the replications are assumed to be independent.  This suggests that cumulative entropy is measuring the response to 

the uncertainty generated by the entire task or group of choice sets in an SP survey. 
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 The probability that individual n chooses alternative i Cn  is given by 

P U U j i i j C

V V j i i j C
in in jn n

in in jn jn n

    

      

Pr{ , , , }

Pr{ , , , } 
    (3) 

If we were to assume that the  in ’s are IID Gumbel with a common scale factor  , we would derive the 

very familiar Multinomial Logit (MNL) model from (3) (see Ben-Akiva and Lerman, 1985, chapter 5). 

  We shall suppose, however, that the  in ’s are Gumbel distributed, independent across n and 

i Cn , with scale factors  in n n nE i C  ( ), , where it is required that  in  0 . That is to say, the 

error terms are independent, but not identically distributed. The density functions for the individual error 

terms are given by (see, e.g., Ben-Akiva and Lerman, 1985) 

f Ein n n in in( ) exp[ exp( ( ) )], ,               (4) 

so that the variances are   in n nE2 2 26 / ( ) . Our derivation is somewhat, but not unduly,  complicated 

by the assumption that the scale factors vary by individual observation, specifically, as a function of the 

individual’s environmental or task conditions E n . Multiply (1) by the scale factor  n nE( )  to obtain 

   n n in n n in n n inE U E V E( ) ( ) ( )       .   (5) 

 Say that the random variable   is Gumbel distributed with scale factor  . Then it is a property 

of the Gumbel distribution (see Ben-Akiva and Lerman 1985, 105) that, for any scalar   0 ,   is also 

Gumbel distributed, but with scale factor  / . Therefore in (5) the random variables  n n inE( ) , all n 

and i Cn , are IID Gumbel with unit scale factors. Thus, if we multiply both sides of the probabilistic 

event in (3) by n nE( )  0 , we leave the probability statement unchanged: 

P E V E

E V E j i i j C

E V V E j i i j C

in n n in n n in

n n jn n n jn n

n n in jn n n jn in n

    

     

      

Pr{ ( ) ( )

( ) ( ) , , , }

Pr{ ( )[ ] ( )[ ], , , }

  

  

   

  (6) 

Because of the IID property of the error differences   n n jn in nE j i i j C( )( ), , ,    , it then 

follows that choice probability (6) is simply a MNL model, but with systematic utilities n n inE V( )  : 

P
E V X

E V X
in

n n in in

n n jn jn

j Cn








exp[ ( | ) ( | )]

exp[ ( | ) ( | )]

  

  
  ,    (7) 
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where we have made explicit the role of parameter vectors  and  , and X in  is a K-vector of attributes 

for alternative i and person n. Ben-Akiva and Lerman (1985, 204-207) make mention of this model for 

the purpose of treating heteroscedasticity within the context of the MNL model.
5,6

 

 The Heteroscedastic MNL model has basically the same properties as the MNL model, notably 

Independence of Irrelevant Alternatives (IIA) and uniform cross-elasticities.  However, when a variable is 

common to the mean of the utility and its variance, the elasticity contains two components: a direct effect 

arising from changes in the means and an indirect effect from changes in variance.  For example, if price 

is in the utility function and also is a component of a complexity index in the variance, a price increase 

for one alternative will have a direct effect reducing the attractiveness of this alternative.  However, if 

this price increase makes the products more similar, it will increase the difficulty associated with choice 

in the marketplace.  This may increase variance and could lead to an additional loss.  If the attribute 

change leads to complexity reductions the indirect effect could offset the direct effect.  Thus, market 

share elasticity depends not only the attributes of the alternatives but also on market conditions or the 

positioning of available alternatives.  

3.2 Incorporating the Effect of Choice Complexity in a Choice Model 

 As stated in Section 2, we propose to summarize the effects of the complexity of the decision 

environment on choice via the information theoretic measure entropy, defined as 

H P Pn in in

i Cn

 


 ln( )   ,      (8) 

where Pin  is the probability of the outcome i Cn . 

 A measure of the probability of selection of the alternatives is required to operationalize entropy 

as a complexity measure. Obviously, if we knew the true values of the choice probabilities the entire 

                     
5
The parallel between this derivation and that used to derive heteroscedasticity corrections for the general linear 

model should be apparent. 
6
Note that the derivation of (7) assumes that the scale factors vary only by individual and not by alternative. If the 

scale factors vary by alternative, then probabilities (3) and (6) will not be equal. Swait and Stacey (1996) show, 

however, that it is possible to derive an expression similar to (7) for the more general case of the scale factors 

varying by alternative. They do so by deriving a MNL-like model with alternative-specific scale factors as a special 

case of a Tree Extreme Value model (McFadden 1981, Daly 1987). For the purpose of this paper, however, we shall 

use the slightly less general model form (7), with person-specific scale factors. 
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choice modeling exercise (including all this complexity!) would be unnecessary. However, we do not 

know the true choice probabilities, so we must construct an a priori estimate that will sufficiently 

characterize the choice context to allow us to better separate information from “noise” in the choice data. 

In this paper we construct a measure of the probability of choice based on a “flat prior” over attribute 

levels.  That is, we assign equal weights within a normalized attribute space to the main effects of all 

attributes in the choice set.  This provides us with a measure of probability of choice as derived from an 

assumed MNL model: 

~ ( )
exp[ ]

exp[ ]





in n

in

jn

j C

X
X

X
n






 .     (9) 

Here,  is the set of flat prior weights (a vector of 1’s, perhaps scaled to account for differences in 

attribute units). Thus, the level of uncertainty about a choice set is described using a measure of 

similarity of alternatives, where similarity is based on an attractiveness metric calculated using a set of 

equal prior weights. The resulting approximate entropy measure is, thus, 

~ ~ ( ) ln[~ ( )]H X Xn in n in n

i Cn

 


   .    (10) 

Based on this entropy approximation, we also define our proxy for cumulative cognitive burden, namely, 

cumulative entropy: 

~ ~
, ... ,

'

'

 n

r

n

r

r

r

H

for r

for r R











 





0 1

2
1

1
      (11) 

where r refers to replication index, R is the total number of replications seen by each respondent and 
~
H n

r
 

is the entropy of the r-th replication (given by equation 10) for individual n. 

 The definition of the prior and the use of main effects only (rather than main effects and 

interaction effects) may be modified based upon available information.  For example, if information is 

available from another choice task, or if demographic characteristics provide information on the 

preferences of the individual, this information could be used to construct an informed prior. Our use of 

the flat prior can be considered an approximation to the true level of  information since we have not 
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included interaction effects and we have not constructed individual-specific priors.  However, it is 

important to note that we do not wish to make behavioral assumptions about the consumer.  Rather, we 

are constructing an index that characterizes the task demands on the respondent.  More accurate 

information about the consumer should help us construct a more accurate measure of the task demands or 

complexity the consumer faces, but it may be that the benefit of such additional refinement is marginal.
7
 

 Note that for any given choice set C n , entropy is constant across alternatives. Hence, it can be 

used to parametrize the scale of the error terms in model (7). In our empirical research, we assume that 

the scale factor for the r-th replication of the n-th respondent is given by 

       n

r

n

r

n

r

n

r

n

r

n

rH H H(
~

| ) exp[
~

(
~

) ~ (~ ) ]   1 2

2

3 4

2
 ,  (12) 

which guarantees that the scale factor is always nonnegative. Other functional forms for the argument of 

the exponentiation operator could be adopted that would permit testing hypotheses H1 and H2. However, 

(12) has the appeal of simplicity, and so was adopted for our work. 

 

4.0 CASE STUDIES 

 We have arranged our empirical work into two sections: first, we shall examine the evidence 

from several SP choice studies indicating that accounting for choice complexity and cognitive burden 

impacts inferences about taste parameters; next, we shall examine a case that contains both RP and SP 

data sources and determine the extent to which differences in choice complexity impact the individual  

and pooled estimates of these choice data. 

4.1 Evidence of the Impact of Choice Complexity and Cumulative Cognitive Burden in SP Data 

 Table 1 presents a summary description of six SP choice studies in which we have individually 

or jointly been involved in the past three years.
8
  The first four studies involve choices that are more 

familiar to environmental and resource economists: (1) campground site choice, (2) Caribou passive use 

                     
7
While we employ a simple prior in our empirical analysis, we have done some limited exploration of  the 

implications of modifying this prior and re-estimating the models based on more informative priors (such as might be 

available from other studies or from iterative improvement within a study). Our limited experience indicates an 

insensitivity of our conclusions to more informative priors. 
8
Where possible, we have included references about the studies. The remaining studies are of a proprietary nature, 

and hence a number of details must remain undisclosed. 
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(Adamowicz et al. 1995), (3) moose hunting site selection (Adamowicz et al. 1996) and (4) mode choice 

at a tourist recreation location. The remaining two studies, however, are quite different: (5) choice of 

frozen concentrate orange juice and (6) provider selection for a certain consumer loan product. The latter 

were included to enlarge the scope of applicability of our empirical findings. 

 To interpret the results to be presented later on, it is important that we understand how the SP 

choice data were collected. These studies have a number of features in common: 

1. The choice task was presented in the form of a paper and pencil exercise, with the choice alternatives 

presented as columns in a table, the first column of which named the attributes. The values of the 

attributes were provided in the cells of the table itself. The full task faced by a respondent had from 8 

to 16 choice sets, depending upon the study; these were  arrayed sequentially for the respondent, 

generally one to a page. 

2. Within each study, all choice tasks had fixed choice set size. 

3. A glossary of attributes and their levels, as well as instructions on how to perform the task (including 

a sample choice situation), preceded each choice task.. 

Essentially, the task display and choice collection format was the same in all the studies. Five of the 

studies were conducted in North America. In almost all studies respondents were either pre-recruited or 

recruited by random digit dial. With the exception of the moose hunting site selection (Study 3), 

respondents received a questionnaire in the mail; Study 3 brought respondents to a central facility. 

 The studies do differ, however, in a number of factors (again, see Table 1): each involves a 

different product or service, individual choice sets have 3 to 6 alternatives, product/service descriptions 

involve anywhere from 5 to 14 attributes, and respondents were exposed to 8 to 16 replications. 

 Table 1 makes it clear that the experimental designs underlying each study resulted in different 

entropy levels (calculated as per expression 10). Entropy, our proxy for choice complexity, can vary 

between 0 and the natural logarithm of the choice set size. An examination of Table 1 will show that the 

designs of five out of the six studies basically filled their entire theoretical entropy range. The exception 

to this was Study 6 (consumer loan provider), which had a truncated lower limit for the entropy range: 

the design’s entropy levels ranged from 0.710 to 1.379, whereas the theoretical range is 0 to 1.386. For 
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the moment, note that none of these experimental designs were originally drawn up with the intent of 

achieving any specific levels of entropy; instead, the design criterion was the achievement of 

orthogonality between attributes. 

4.1.1 Individual SP Case Analysis 

 Table 2 presents an overview of the estimation results for these six SP studies. We present the 

log likelihood values for both the (homoscedastic) MNL and the Heteroscedastic MNL models. The final 

column of the table presents the likelihood ratio statistic for the hypothesis that there is no effect of 

choice complexity or cumulative cognitive burden on respondents’ choice behavior. This statistic jointly 

tests hypotheses H1 and H2, previously specified, by testing that the parameter vector =0 in the 

parametrized scale function (12). In four of the six studies (namely, studies 1, 3, 4 and 5), the hypothesis 

that =0 cannot be rejected for 0.05. In study 2, this hypothesis cannot be rejected for 0.16. Only in 

study 6 is the hypothesis soundly rejected. (We shall subsequently discuss a possible explanation for this 

result in study 6.) The effect of entropy is strongest in study 1, which also happens to be the task with the 

greatest number of attributes (14) and the largest choice sets (6 alternatives). Thus, we find overall 

support for the notion that choice complexity and its cumulative effect impact the information that we 

receive from these SP choice tasks, conducted in the form we described above. 

 Let us now examine Table 2 for support for hypothesis H1 in the individual studies. To remind 

the reader, that hypothesis states that the variances (scales) of utilities should have a convex (concave) 

relationship with choice complexity. In terms of the parametrized scale function (12), under H1 we would 

expect parameter 1  to be positive and  2  negative. This occurs very clearly in two of the studies (1 and 

4), for which the asymptotic t-statistics for these parameters are above 2.0 in absolute value. In the 

remaining studies the two parameters are not individually significantly different from zero. However, in 

most of the studies the two parameters nonetheless have the expected signs. Thus, we are led to conclude 

that in the studies examined there is some strong evidence that choice complexity impacts the inferences 

that can be drawn from respondents’ choice behavior. (See also Section 4.1.2 below.) 

 Hypothesis H2 states that the cumulative cognitive burden imposed on the respondent will in 

general have a convex (concave) relationship with the variance (scale) of the utility functions. The 
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reasoning behind this hypothesis is that respondents are assumed to go through a “learning-performance 

plateau-fatigue” sequence during the course of the task (see prior discussion in Section 2.1). The 

completion of the entire sequence will depend upon whether the task is long and complex enough, 

relative to some total effort level deemed acceptable by the respondent (perhaps akin to some “task 

effort” budget defined by him/her prior to undertaking the task). Under H2, and assuming that the 

sequence is completed, we expect that parameter  3  will be positive and  4  negative. 

 Table 2 shows that only studies 2 and 5 display statistically significant estimates for  3  and  4 . 

In study 2 (Caribou passive use), we have the general concave form postulated in H2 between scale and 

cumulative effort. This is shown in Figure 3, where we plot estimated scale value versus cumulative 

entropy. We have assumed, for display purposes, that an individual either receives a sequence of eight 

less complex choice sets (each with entropy equal to 0.50) or eight more complex sets (entropy equal to 

1.0). Note that in study 2 the maximal entropy is about 1.1. In either case, the estimated scale function 

peaks at a cumulative entropy of about one, which corresponds in the “easy” task to 2 choice sets and in 

the “hard” task to only one choice set. After that, the scale rapidly deteriorates towards zero (i.e. variance 

increases continuously). 

 A zero scale is a critical value because  the corresponding choice behavior is essentially random, 

hence completely uninformative with respect to the tradeoffs.  In Study 2 the task is unfamiliar to 

respondents (making tradeoffs between wilderness area sizes, forest industry employment, individual tax 

payments, etc).  Respondents were asked to review a considerable amount of descriptive material before 

completing the task.  The respondents appear to learn in the first few choice tasks as they engage in this 

unfamiliar activity.  However, they appear to learn quickly and fatigue sets in after 3-4 choice sets.  It 

may be that respondents learn to focus on key attributes to simplify the task and tire quickly once this 

heuristic is established.  The “overhead” associated with the descriptive material may also contribute to 

their fatigue. As well, these choice sets included a status quo option.  The cumulative cognitive burden 

may result in respondents choosing the status quo option as a means of dealing with the uncertainty, as in 

the experiments conducted by  Tversky and Shafir (1992). 
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 In study 5 (frozen concentrate orange juice choice), we have statistically significant evidence that 

respondents remain in the “learning” phase of the sequence we mentioned above. Parameter  3  is 

statistically significant but negative in sign, while  4  is positive in sign, though marginally significant. 

Figure 3 shows the learning pattern quite clearly, indicating that scale increases with replication of the 

decisions. (The effect does not differ between the “easy” and “hard” choice set sequences.) A possible 

reason for this result is that respondents (the main shoppers in the households) found the choice sets 

somewhat unfamiliar at first, perhaps because orange juice choice may not be based on highly 

compensatory evaluations. This led to less consistency in behavior across individuals in the earlier choice 

sets to which they were exposed. However, as they progressed through the task, their preferences became 

clearer and led to more consistent behavior, reflected in higher scale (lower variance). This explanation is 

especially interesting when we consider that in this task respondents were exposed to 16 distinct choice 

sets, the highest among the studies presented here. 

4.1.2 Cross-Product Class SP Case Analysis 

 Viewing the results presented thus far in Table 2, we were motivated to conduct an additional 

test. We posed ourselves the question: Could it be possible that the effect of choice task complexity is 

commensurable across these six SP choice studies? If such a condition were to hold, it would lend strong 

support to the generalizability of the study-by-study results discussed above. 

 Accordingly, we pooled the data for the six choice studies in such a fashion that taste parameters 

and cumulative cognitive burden parameters (i.e. the  vectors and the corresponding 3’s and 4’s) were 

maintained specific to each study. However, the impact of current choice task complexity was 

constrained to be equal across all six data sets. The resulting pooled model has 139 parameters and a log 

likelihood of -38,372.3; the corresponding individual studies have 146 parameters and a log likelihood of 

-38367.6. Hence, the hypothesis that the impact of choice task complexity is equal across the six studies 

can be tested with a chi-squared statistic of 9.4 with 7 degrees of freedom. The hypothesis cannot be 

rejected at the 95% confidence level. 

 To us, this is quite a surprising result. A priori, we would not have anticipated that the impact of 

task complexity on the scale of the underlying utility functions would generalize across six very different 
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product classes. That they do may be the result of the degree of design and survey technique 

commonalities among them (see discussion above); however, another,  non-exclusive explanation is that 

the entropy measure we proposed as an index of choice complexity adequately captures the impact of 

utility similarity between alternatives on the variance of tradeoffs implicit in choices across a relatively 

wide variety of product classes. As we shall subsequently note, this seeming generalizability encourages 

us to suggest certain uses of the choice complexity concept in the design of choice tasks. 

 Using the joint model, we are able to calculate that the optimal entropy is approximately 1.0, 

with a 95% confidence band of 0.2 entropy units, across the six studies (see Figure 4)
9
. This means that 

the choice scenarios with current entropies between about 0.8 and 1.2 yielded the highest scale (i.e. 

lowest variance) of the unobserved utility component. This in turn implies that scenarios in this range 

most contributed to the formation of the estimated taste parameters, and conversely, that scenarios with 

entropies well below 0.8 and well above 1.2 contributed more “confusion” to the estimation process than 

those within the confidence band. 

 It is interesting to compare this “optimal” band of [0.8,1.2] entropy to the design entropy values 

for each study (see Table 1). It will be noted that only study 6 (consumer loan product) has an entropy 

design range close to this “optimal” band. This may underlie the aforementioned result (see section 4.1.1) 

that only in study 6 was there no discernible effect of current entropy. The other five studies in Table 1 

have scenarios with entropy values well outside this band, especially below the band. This may imply 

that the corresponding designs (geared at generating design matrices orthogonal in attributes) contain 

runs that are statistically uninformative with respect to tradeoff parameter inferences; that in fact, such 

scenarios increase rather than decrease variance, thus contributing to the “noise” instead of the taste 

parameter “signal” in the data. 

4.2 Choice Complexity and the Combination of RP/SP Choice Data 

 The six SP case studies we examined in the previous section present quite clear evidence that 

choice complexity and cumulative cognitive burden can affect the quality of the information obtained 

                     
9
  The estimated variance was obtained by a Monte Carlo simulation. 
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from SP choice experiments. We now examine the impact of differential levels of complexity on the 

combination of multiple choice data sources, specifically, RP and SP data. 

 The data we utilize involve the selection of recreational hunting sites in Alberta, Canada. As 

described in greater detail in Adamowicz et al. (1996), RP choice data were collected from hunters in the 

form of “trip logs” that elicited information on all their hunting trips in the 1992 season. Thus, the RP 

choice data are actually frequencies of visitation to a number of different wildlife management units 

(WMU’s). In addition, these hunters provided perceptions of quality attributes (moose populations, 

hunter congestion, hunter access, forestry activity). Other attributes (road quality and distance to site) 

were calculated by researchers. 

 These same hunters were also submitted to an SP task with sixteen replications, each involving 

choice between two generic WMU’s (described using the same six attributes stated above) or not going 

moose hunting. The dependent discrete variable in this data source was the categorical choice indicator. 

These data have already been used as one of the six SP studies examined in Section 4.1 (i.e. study 3). 

 In-depth discussion of these data are given in Adamowicz et al. (1996), to which the reader is 

directed for further details. For the purposes of this exercise, we have utilized the entire RP sample 

available (representing a total of approximately 930 hunting trips), but have sampled from the full SP 

choice data available in such a way that both data sources have an equivalent number of trips 

represented. This obviates the need to specify a weighting scheme for the data sources when pooling 

them (see the discussion in Adamowicz et al. 1996), removing this as an issue in the combination 

process. 

 As we indicated previously in Table 1, the  SP data (which involves trinomial choice sets) has an 

entropy range from 0.117 to 1.088, versus a theoretical maximum of 1.099 for trinomial sets. In 

comparison, the RP data has a much wider entropy range of 0.007 to 2.565. This difference is principally 

due to the fact that some hunters are aware of a large number of WMU’s (a maximum RP choice set size 

of 13 different sites is observed in the data).  The RP choice sets are based on the individual’s awareness 

of sites and thus we would expect a correlation between individual’s experience and their choice set size.  

The previously reported analysis of the Moose SP data (see Section 4.1) showed that choice complexity 
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did not significantly affect the variance/scale of the estimated utilities. A point of great interest is 

whether the much wider entropy range in the RP data leads to a similar finding. 

 As described in note 1, there are often advantages associated with the joint estimation of SP and 

RP data.  For the purposes of combining these two data sources, we shall utilize the following definition 

for the scale function of choice set n: 



 

      
n

n n

n

r

n

r

n

r

n

r

H H

H H

if n is an RP observation





   









exp[
~

(
~

) ]

exp[
~

(
~

) ~ ( ~ ) ]

1 2

2

1 2

2

3 4

2

5

if n is the r th replication

of an SP observation

     (13) 

Note that in RP observations there is no effect of cumulative entropy since there are no replications
10

. 

We have also added a parameter ( 5 ) that captures average scale differences between RP and SP data 

sources, all other factors being equal. This scale function parameter has traditionally been the only one 

considered in combining RP and SP data sources (Adamowicz et al. 1994, Adamowicz et al. 1996, Ben-

Akiva and Morikawa 1990, Ben-Akiva et al. 1994, Hensher 1994, Swait et al. 1994). 

 The usual approach to combining RP and SP data is to control for average scale differences 

between sources. In terms of scale function (13), only parameter  5  is allowed to vary. Table 3 shows 

the estimation results for this model in column (3). (Only parameters from scale function 13 are 

presented. All taste parameters are omitted for the sake of brevity and clarity.)
11

  The estimated value of 

 5  is significant at the 95% confidence level, and the traditional view of combining the two data sources 

would compare this model with the models in columns (1) and (2). The likelihood ratio statistic for the 

“traditional pooling” would then be 33.8 with 14 degrees of freedom. The corresponding chi-squared 

critical value at the 95% confidence level is 23.7, so the hypothesis of equal taste parameters across data 

sources is rejected, despite controlling for average scale factor differences between the data sets. 

 Table 3 also presents the estimation results for heteroscedastic MNL models of the Moose RP 

and SP data in columns (4) and (5). Comparing first the heteroscedastic MNL RP model of column (4) 

                     
10

  If time series data were available we could model cumulative entropy in an RP setting, where it may be 

interpreted as a proxy for experience. 
11

 Full modeling results will be made available upon request. 
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with its homoscedastic version in column (1), we note that the likelihood ratio statistic is 91.6 with 2 

degrees of freedom. This shows the very strong effect that choice environment has on the RP choice data 

by itself. This stands in contrast to the SP data (columns 2 and 5 of Table 3), for which the equivalent 

statistic is 9.6 with 4 degrees of freedom. Thus, taken each by itself, the two data sources evince very 

different choice environment effects: very strong in the RP data, exhibiting a concave relationship 

between scale and complexity; and just significant at the 95% confidence level in the SP data, exhibiting 

the concave relationship postulated by hypothesis H1. We believe that one of the reasons the effect of 

choice complexity is so much stronger in the RP data than in the SP data is due to the former’s much 

wider entropy range. 

 Now let us consider pooling the two data sets, considering the impact of choice complexity on 

both RP and SP sources. Column (6) presents this combined model. It is immediately apparent that 1  

and  2 , marginally significant in the SP entropy model in column (5), become well-defined and 

statistically significant in the joint model of column (6). This may be due to the extended entropy range 

of the RP data. In this combined model, the effect of cumulative cognitive burden on scale basically 

disappears, as evidenced by the low t-ratios of  3  and  4 . Interestingly, parameter  5 , which ceteris 

paribus measures the average scale difference between the two data sources, is not significantly different 

from zero in column (6), whereas it was significantly different from zero in the “traditional pooling” 

model of column (3). As for the parameters defining the impact of choice complexity on the RP data ( 1  

and  2 ), these continue to have a strong effect on the scale factor (though the quadratic effect is only 

significant at the 90% confidence level), as in column (4). 

 We are interested in two questions involving the full model in column (6). First, does the pooling 

of RP and SP data sources benefit from the consideration of choice complexity in both data sources vis-à-

vis the traditional method? To answer this question, we calculate the likelihood ratio statistic between 

models (6) and (3) to be 78.4 with 6 degrees of freedom, which compared to the critical value of 12.6 (at 

the 95% confidence level) leads us to conclude that the answer is a categorical “yes”! The second 

question is motivated by the observation made above that the RP and SP data cannot be pooled by the 

“traditional” method: does consideration of choice complexity in the pooling process enable one to pool 
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these two data sources? While one would also have liked the answer to this question to be “yes”, we must 

unfortunately report that the answer is  “no”. This is due to the large likelihood ratio statistic of 56.6 with 

14 degrees of freedom, based on the comparison of model (6) against models (4) and (5). Note that this 

hypothesis has an even larger statistic than was the case in the “traditional” pooling process (models 1, 2 

and 3), for which the value was 33.8 with 14 degrees of freedom.  However, this likelihood ratio test is 

very rigorous and seems to overstate the  differences between the parameter vectors.   The linear 

relationship between the two vectors, which indicates that they are equal up to a positive scale, is clearly 

displayed in Figure 5. 

 Taken together, the results in this section indicate two things to us. First, consideration of the 

impact of choice complexity in pooling of multiple choice data sources is strongly supported by the 

example. We surmise this result is generalizable.  Second, pooling of multiple data sources is a 

recognizably complicated affair, based on a myriad of assumptions. Examination of the parameters on 

entropy in Table 3 for RP and SP choices reveals that the impact of entropy on these data types is quite 

different.  This is illustrated in Figure 6 where the scale function parameters from model (6) are used to 

construct scale factor estimates by data source.  Note that the RP scale rises with entropy while the SP 

scale peaks at about 0.7.  Higher entropy in the RP context may indicate individuals with more 

experience (and thus larger choice set sizes).  The design used in the SP task contains few complicated 

choices and thus only parallels the RP context for low entropy choices (or inexperienced recreationists).  

This may be a substantial component in explaining the rejection of the hypothesis of pooling.  This raises 

the issue of designing SP tasks to replicate environments of the  application of interest.  We return to this 

issue below. 

 

 

5. DISCUSSION 

 Our study of six SP choice experiments has lent strong support to the idea that the decision 

environment and choice task characteristics can influence the quality of the statistical information 

obtained from the data. In the cases in which the effect of choice complexity was less important, it may 
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well be due to limitations in the experimental design (specifically, a limited entropy range) rather than an 

absence of impact. 

 In our opinion, one of the results of great import for future work was our inability to reject the 

hypothesis that the impact of choice complexity on latent utility scale was the same  across the six SP 

studies examined. This points to a possible generalizable use of the entropy measure to characterize 

choice task difficulty across a range of product classes. This would permit use of the complexity concept 

to formulate general SP choice task design principles (more about this in the following section).  The 

emergence of this somewhat general result across a variety of product types may be considered as 

evidence for the notion that individuals do process alternatives on the basis of their attribute components, 

along the lines of Lancasterian demand theory. 

 As hypothesized by us (and supported by literature in the human decision making area), the 

relationship between the variance of latent utilities and choice complexity has been found to be convex in 

the cases examined. Thus, increasing complexity improves (i.e. decreases variance) choice modeling 

estimation results to a point, but thereafter additional complexity increases “noise” levels in the data. 

This corresponds to the Bettman et al. (1993) results on choice in situations with negatively correlated 

attributes, which suggest that consumers “take on” SP choice tasks with more interest and commitment 

than in other decision situations. At some point, however, increasing complexity leads to idiosyncratic 

behavior, which increases variance (in analogy to Keller and Staelin’s 1987 decision-effectiveness 

hypothesis). 

 We have also found that cumulative effort (or cumulative cognitive burden) in an SP task can 

have an effect on the quality of the information derived from the choice experiment. We have postulated 

that consumers undergo a “learning-performance plateau-fatigue” sequence during the course of the 

choice task, for which there is some support among the six data sets we examined. Figure 3 illustrates 

that the entire sequence may or may not be played out in any particular study, but we certainly believe 

that cumulative cognitive burden should be a factor in designing any SP choice task. 

 Though we developed our conceptual framework and approach based on our interest in choice 

experiments and the application of SP models to real markets, we have also seen in Section 4.2 that the 
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analysis of RP choice data can benefit from modeling the impact of choice environment. In the single 

example presented in Section 4.2, the effect of complexity on the RP model was very significant. In the 

case of RP data, making the scale factor for each individual respondent a function of entropy (or some 

other measure of choice set complexity) is a way to rank choice sets in terms of their contribution to 

establishing taste parameters estimates. We believe the application of our concepts to RP data deserves 

future research. 

 As we stated in closing Section 4.2, it would seem that modeling the effect of choice complexity 

on the variance of utilities is helpful when pooling RP and SP data sources. However, our results with 

this one application indicate that we may currently be taking too simplistic an approach to combining 

multiple data sources.  We are moving beyond modeling the average variance differences between data 

types and are beginning to model the components of variance within and between data series.  Including 

choice complexity in the combined scale function improves joint model fit by a large amount, but it may 

also serve to differentiate RP and SP tasks more sharply. This should not discourage us, of course, but 

instead lead us to seek further factors to consider that will eventually enable pooling of the data sources. 

 One such factor is the replication of application context entropy levels in the SP task.  In our 

RP/SP case study, for example, the SP entropy levels are noticeably lower than the RP context (see 

Figure 6).  This may be a significant contributor to the rejection of the hypothesis of  equal taste 

parameters.  An important question in designing SP tasks should be the degree to which its choice 

context matches the application’s complexity level. 

 

6. CONCLUSION AND EXTENSIONS 

 Some economists (e.g. Heiner 1983, de Palma et al. 1994), but generally psychologists and 

consumer behavior researchers (e.g. Bettman et al. 1993, Keller and Staelin 1987, Tversky and Shafir 

1992), have put forth the idea that consumer choice behavior can be affected by context and decision 

environment complexity. We have developed a specific model form that enables us to test this idea 

empirically. Our examination of several SP choice experiments and one RP data set lends strong support 

that what we term “choice complexity” is an important factor to consider when modeling choice 
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behavior, both at the task design stage and during econometric model estimation. Complexity can also 

impact the pooling of multiple choice data sources. 

 Individuals display a wide distribution of information processing capability. For example, level 

of expertise should lead to different signal to noise ratios between individual respondents. Certain socio-

demographics may be correlated with respondents’ ability to process information. Thus, an interesting 

avenue for research would be testing for the effect of different indicators of processing capabilities when 

collecting and modeling SP choice data. 

 The results presented in this paper are very strongly dependent upon the operationalization of 

choice complexity through the entropy measure. We have defined an approximate entropy index 

assuming equal weights for all attributes. Future research should more closely examine the impact of this 

assumption. Limited testing on our part indicates, however, that sensitivity of the results to refinements 

of the prior weights may be quite low. 

 An important caveat applies to our work, as well as that of almost all empirical choice modeling 

work in the literature: we continue to assume that individuals behave in a compensatory fashion. 

Research in psychology and consumer behavior has long suggested that individuals may adopt a number 

of different decision strategies as a function of choice complexity. In fact, we have argued that one of the 

possible reasons for the convexity of the relationship between variance and complexity is that at high 

complexity levels choice behavior across a group of individuals becomes less consistent (i.e. variance 

increases). This upturn in variance may be due to the employment of different strategies by different 

individuals in the sample. Thus, a necessary avenue for future research is to investigate choice models 

that recognize this heterogeneity in decision strategies as a means to utilize alternative model forms as a 

function of the choice context. 

 Our results point to an exciting line of research in the design of SP choice tasks. Today, the 

individual choice sets that an individual respondent will encounter are generally selected so as to meet 

certain desirable statistical properties (e.g. attribute orthogonality) that will be especially useful during 

the model estimation stage. This results in some number of choice sets that must be shown to 

respondents. Then, generally on the basis of experience (or at most, on the basis of some pre-testing), 
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some number of replications per respondent is decided upon. Clearly, the experimental designs are 

defined completely independently of respondents’ cognitive abilities and their willingness to expend 

some “cognitive budget” during the task. This paper has shown that it is possible to account a posteriori 

for the effect of task complexity and cumulative respondent effort. However, using the concepts 

developed in this paper, would it not seem eminently possible to develop a SP choice task design 

principle that sought to maximize the signal-to-noise ratio (i.e. information content) of the data to be 

collected, subject to constraints related to respondents’ cognitive abilities and “cognitive budgets”? This 

new design principle would not simply be applied to design the choice sets, such as current technologies 

do, but also to determine choice set sequencing and task length for different types of respondents.



28 

REFERENCES 

Adamowicz, W., P. Boxall, M. Williams and J. Louviere. 1995. Stated Preference Approaches for 

Measuring Passive Use Values: Choice Experiments versus Contingent Valuation. Department of 

Rural Economy Staff Paper 95-03. 31pp. 

 

Adamowicz, W., J. Louviere and M. Williams. 1994. Combining Stated and Revealed Preference 

Methods for Valuing Environmental Amenities. Journal of Environmental Economics and 

Management. 26:271-292. 

 

Adamowicz, W., J. Swait, P. Boxall, J. Louviere and M. Williams. 1996. Perceptions versus Objective 

Measures of Environmental Quality in Combined Revealed and Stated Preference Models of 

Environmental Valuation. Journal of Environmental Economics and Management. Forthcoming. 

 

Ben-Akiva, M. and T. Morikawa. 1990. Estimation of Switching Models from Revealed Preferences and 

Stated Intentions. Transportation Research. 24A (6):485-495. 

 

Ben-Akiva, M. M. Bradley, T. Morikawa, J. Benjamin, T. Novak, H. Oppewal and V. Rao. 1994. 

Combining Revealed and Stated Preferences Data. Marketing Letters. 5(4). 

 

Ben-Akiva, M. and S. Lerman. 1985. Discrete Choice Analysis: Theory and Application to Travel 

Demand. MIT Press: Cambridge, MA. 

 

Bradley, M. and A. Daly. 1994. Use of Logit Scaling Approach to Test for Rank-order and Fatigue 

Effects in Stated Preference Data, Transportation. 21:167-184. 

 

Bettman, J.R., E.J. Johnson, M.F. Luce and J.W. Payne. 1993. Correlation, Choice and Conflict. Journal 

of Experimental Psychology: Learning, Memory and Cognition. 19:931-951. 

 

Brazell, J., J. Gray-Lee, J. Louviere, B. Dallaert, M. Pullman. 1995. Nobody Will Do That! An Empirical 

Investigation of Survey Length Effects on Response Rate and Reliability in Choice Model 

Experiments. Presented at the INFORMS 1995 Marketing Science Conference, July 2-5, 1995, 

Sydney, Australia. 

 

Daly, A. 1987. Estimating ‘Tree’ Logit Models. Transportation Research B, 21B(4):251-267. 

 

De Palma, A., G.M. Myers and Y.Y. Papageorgiou. 1994. Rational Choice Under an Imperfect Ability to 

Choose.  American Economic Review. 84:419-440. 

 

Heiner, R.A. 1983. The Origin of Predictable Behavior. American Economic Review. 73:560-595. 

 

Hensher, D. 1994. Stated Preference Analysis of Travel Choices: The State of the Practice. 

Transportation 21:107-133. 

 

Keller, K.L. and R. Staelin. 1987. Effects of Quality and Quantity of Information on Decision and 

Effectiveness.  Journal of Consumer Research. 14:200-213. 

 

Louviere, J. 1987. Analyzing Decision Making - Metric Conjoint Analysis, Sage University Paper #67, 

Sage Publications: Newbury Park, CA. 



29 

March, J.G. 1978. Bounded Rationality, Ambiguity and the Engineering of Choice. Bell Journal of 

Economics. 9:587-608. 

 

Mazzotta, M. and J. Opaluch 1995. Decision Making When Choices Are Complex: A Test of Heiner’s 

Hypothesis. Land Economics. 71(4):500-515. 

 

McFadden, D. 1981. Econometric Models of Probabilistic Choice, in Structural Analysis of Discrete 

Data With Econometric Applications, D. McFadden and C. Manski, Editors. MIT Press, Cambridge, 

MA, 198-272. 

 

Olshavsky, R.W. 1979. Task Complexity and Contingent Processing in Decision Making: A Replication 

and Extension. Organizational Behavior and Human Performance. 24:300-316. 

 

Payne, J.W. 1976. Task Complexity and Contingent Processing in Decision Making: An Information 

Search and Protocol Analysis. Organizational Behavior and Human Performance. 16:366-387. 

 

Payne, J.W., J.R. Bettman and E.J. Johnson. 1988. Adaptive Strategy and Selection in Decision Making. 

Journal of Experimental Psychology: Learning, Memory and Cognition. 14:534-552. 

 

Sengupta, J.K. 1993. Econometrics of Information and Efficiency. Kluwer Academic Publishers, 

Dordrecht.  

 

Shannon, C.E. 1948. A Mathematical Theory of Communication. Bell System Technical Journal. 27:379-

423. 

 

Simon, H.A. 1955.  Behavioral Model of Rational Choice. Quarterly Journal of Economics. 69:99-118. 

 

Simonson, I. and A. Tversky. 1992. Choice in Context: Tradeoff Contrast and Extremeness Aversion. 

Journal of Marketing Research. 29:281-295. 

 

Shugan, S.M. 1980. The Cost of Thinking. Journal of Consumer Research. 7:99-111. 

 

Soofi, E.S. 1994. Capturing the Intangible Concept of Information. Journal of the American Statistical 

Association. 89:1243-1254. 

 

Swait, J. and M. Ben-Akiva. 1987a. Incorporating Random Constraints in Discrete Models of Choice Set 

Generation, Transportation Research B. 21(2):91-102. 

 

Swait, J. and M. Ben-Akiva. 1987b. Empirical test of a constrained choice discrete model: mode choice 

in Sao Paulo, Brazil, Transportation Research B. 21(2):103-115. 

 

Swait, J. and E.C. Stacey. 1996. Consumer Brand Assessment and Assessment Confidence in Models of 

Longitudinal Choice Behavior. Presented at the 1996 INFORMS Marketing Science Conference, 

March 7-10, 1996, Gainesville, FL, 

 

Swait, J., J. Louviere and M. Williams. 1994. A Sequential Approach to Exploiting the Combined 

Strengths of SP and RP Data: Application to Freight Shipper Choice. Transportation. 21:135-152. 

 

Tversky, A. and E. Shafir. 1992. Choice Under Conflict: The Dynamics of Deferred Decision. 

Psychological Science. 3:358:361. 



30 

 Table 1 - SP Study Descriptions 
 

 

 

Task Characteristics Design Entropy Characteristics 

 

Study 

 

# Resp. 

Choice Set 

Size 

 

# Attributes 

 

# Repl. 

Design 

Minimum 

Design 

Maximum 

Theoretical 

Maximum 

1. Campground Choice 1,786 6 14 8 0.050 1.568 1.792 

2. Caribou Passive Use 364 3 5 8 0.000 1.099 1.099 

3. Moose Hunting Site 

Selection 

104 3 6 16 0.117 1.088 1.099 

4. Tourism Site Mode 

Choice 

425 3 5 10 0.040 1.099 1.099 

5. Frozen Concentrate 

Orange Juice 

280 4 5 16 0.107 1.229 1.386 

6. Consumer Loan 

Product 

862 4 12 12 0.710 1.379 1.386 
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Table 2 - Impact of Choice Complexity and Cumulative Cognitive Burden in Six SP Choice Studies 
 

 

Homoscedastic MNL 

Model 

 

Heteroscedastic MNL Model 
 

 

Study 

 

# 

Params 

 

 

Log Lik 

 

# Params 

 

 

Log Lik 

 


1

 

(t-stat) 

 


2

 

(t-stat) 

 


3

 

(t-stat) 

 


4

 

(t-stat) 

Likelihood Ratio 

Statistic 

Calc. (df) 

1. Campground Choice 19 -15590.9 23 -15583.5 0.295 
(2.6) 

-0.156 
(-2.3) 

-0.023 
(-1.4) 

0.002 
(0.7) 

14.8 (4) 

2. Caribou Passive Use 12 -2658.2 16 -2654.9 -0.159 
(-0.7) 

0.353 
(1.7) 

0.580 
(3.2) 

-0.285 
(-2.9) 

6.6 (4) 

3. Moose Hunting Site 

Selection 

28 -692.9 32 -688.1 2.042 
(1.6) 

-1.735 
(-1.7) 

-0.085 
(-1.0) 

0.011 
(1.2) 

9.6 (4) 

4. Tourism Site Mode 

Choice 

21 -2960.8 23 -2957.9 1.957 
(2.4) 

-0- 

 

0.161 
(1.5) 

-0- 

 

5.8 (2) 

5. Frozen Concentrate 

Orange Juice 

13 -3783.2 17 -3778.5 0.868 
(1.3) 

-0.476 
(-1.1) 

-0.065 
(-2.3) 

0.004 
(1.7) 

9.4 (4) 

6. Consumer Loan 

Product 

33 -12705.4 35 -12704.7 0.108 
(0.6) 

-0- 

 

-0.005 
(-1.1) 

-0- 

 

1.4 (2) 

7. Six Pooled Products   139 -38372.3 0.296 
(2.9) 

-0.152 
(-2.4) 

  9.4 (7) 

Cumulative Entropy:                             Campground Choice -0.025 
(-1.5) 

0.002 
(0.7) 

Caribou Passive Use 0.500 
(2.0) 

-0.255 
(-1.9) 

Moose Hunting Site Selection -0.148 
(-1.8) 

0.018 
(2.2) 

Tourism Site Mode Choice 0.071 
(0.3) 

-0.018 
(-0.4) 

Frozen Concentrate Orange Juice -0.062 
(-2.3) 

0.004 
(1.7) 

Consumer Loan Product -0.028 
(-1.7) 

0.002 
(1.5) 
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Table 3 - Estimation Results, Combination of Moose Hunting Site Selection RP and SP Data 
 

 

 

 

Scale Function 

Parameters 

(1) 

RP 

(t-stats) 

(2) 

SP 

(t-stats) 

(3) 

RP+SP 

(t-stats) 

(4) 

RP (Entropy) 

(t-stats) 

(5) 

SP (Entropy) 

(t-stats) 

(6) 

RP+SP (Entropy) 

(t-stats) 


1

 
    2.042 (1.6) 3.974 (3.2) 

 
2

 
    -1.736 (-1.7) -2.954 (-3.0) 


3

 
    -0.085 (-1.0) -0.049 (-0.6) 


4

 
    0.011 (1.2) 0.005 (0.6) 


5

 
  -0.280 (-2.4)   0.507 (0.8) 


1

 
   2.784 (3.7)  1.849 (3.0) 


2

 
   -0.562 (-2.6)  -0.313 (-1.7) 

       

Total # Parameters 21 28 35 23 32 41 

Log Likelihood @ 

Conv. 

-1378.8 -692.9 -2088.6 -1333.0 -688.1 -2049.4 
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Figure 1 - Preferences and Alternatives 
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Figure 2 - Uncertain Preferences and Alternatives 
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Figure 3 - Estimated Relationship Between Utility Scale and Cumulative 

Cognitive Burden 
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Figure 4 - Estimated Relationship Between Utility Scale and Choice 

Complexity (Joint Model) 
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Figure 5 - Proportionality of Pooled Coefficients with and without Entropy 
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Figure 6 - Comparison of Moose Hunting Site Selection Estimated RP and SP 

Scale Factors as a Function of Complexity 
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