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Abstract

The objective of this thesis is to design an optimal LQ-boundary controller for
SCR, which is a model of coupled parabolic-hyperbolic PDEs with an ODE. The
problem is a boundary control one because the manipulated variable u is the ammonia
gas at the inlet (z = 0).Our purpose is to find an optimal uopt to reduce the amount
of NOx and ammonia slip as much as possible.

The augmented infinite-dimensional state space representation is used to solve
the optimal state-feedback control problem. By using the perturbation theorem, the
thesis shows that the system generates a C0-semigroup on the augmented state space.
Furthermore, the dynamical properties of both the original and the augmented sys-
tems are examined. Under some technical conditions, we show that the augmented
system generates an exponentially stabilizable and detectable C0-semigroups. The
linear-quadratic control problem has been solved for the augmented system. A de-
coupling technique is implemented to decouple and solve the corresponding Riccati
equation. Monolithic catalyst reactor and Selective Catalyst Reduction (SCR) mod-
els are used to test the performances of the developed controller through numerical
simulations.
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Chapter 1

Introduction

Diesel engine is one of the most extensively used categories of engines in industrial

equipment and commercial vehicles, especially in heavy duty ones such as trains,

buses, trucks, and ships. This is due to its durability, low cost and also because of

the safety of the diesel fuel, since it is less volatile and its vapor less explosive than

gasoline [43]. A diesel engine is a compression ignition engine. Air is introduced

into the piston during the cylinder downstroke. The piston then moves upwards,

compressing the air which increases its temperature and pressure. Near the top of the

stroke, fuel is injected, which ignites. The chemical reaction releases heat, which forces

the piston down, changing chemical energy into mechanical work. However, diesel

engines have many disadvantages, especially environmental ones. The pollution is one

of the major drawbacks of diesel engines, especially for NOx and ammonia slip NH3

which are dirty and hazardous to health [40]. To deal with this challenging problem

many approaches have been developed in various aspects such as improvement of the

fuel quality, diesel oxidation catalysts (DOC), diesel particulate filters (DPF) and also

exhaust gas recirculation (EGR) to control the oxides nitrogen (NOx) and the engine

efficiency. All of these desirable techniques are called after-treatment techniques.

Reduction of NOx emissions using the selective catalytic reduction (SCR) technology

is one of the most cost-effective technologies for this task. SCR can convert NOx

into N2 with the aid of a catalyst .This is done by injecting urea solution, which

is stored in a special tank, into the hot stream at the inlet of SCR, where urea

decomposes into gaseous NH3 and can be stored in the catalyst. After that we

use the stored NH3 to convert NOx into N2, H2O and a small amount of carbon
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dioxide (CO2). Nevertheless, the SCR is not a perfect device since there are some

technological drawbacks such as its high cost, high back pressure of pipes and space

requirement. In addition, there is a risk to produce the ammonia slip during the

process. Ammonia slip refers to the emission of ammonia, which is the result of

excessive ammonia injection. However, when comparing to its advantages we can say

that the SCR technique is one of the most promising technologies which guarantees

the reduction of toxic emissions and saves a large amount of fuel [48]. It is obvious

that the injection of urea would be the most important factor to get good results

in reducing NOx, however, inappropriate urea injection can lead to bad results. For

instance, if we inject an amount of urea that is less than the optimal amount it

would result in the insufficient input of NH3 needed to optimize the reduction of

NOx. On the other side, injecting a higher amount than the optimal one of the urea

results in the ammonia slip which is undesirable ( [37,38]) and here appears the main

challenge. Therefore, we need to build an optimal control system that can reduce the

emissions of NOx and at the same time make sure that the ammonia slip is below

the allowed limit. Unfortunately, few studies have been done to perform this task

especially because the entire model of SCR is a huge system with a complex Partial

differential equations (PDEs).

Partial differential equations (PDEs) are used to describe a wide variety of phe-

nomena in science and engineering. Dynamic systems that are described by PDEs are

usually called distributed parameter systems. Control problems for those systems can

be studied by using infinite-dimensional state space description. This representation

has a main advantage of keeping the distributed nature of the system ( [22, 23, 34]).

PDEs are classified into hyperbolic, parabolic and elliptic, and each one has its ap-

plications in real life. Moreover, the dynamics of some systems can be described

by coupled PDEs of different types. In our case, SCR that carries out gas-solid

phases, such that the transport phenomena in the gas phase are dominated by con-

vective mechanism and are modeled by first-order hyperbolic PDEs concerning the

concentrations and temperature, whereas the dominant transport mechanism of the

temperature in the solid phase is diffusion and the transport phenomena are modeled

by second-order parabolic PDE. Moreover, in the same solid phase the concentrations

are modeled by ODEs.
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Linear quadratic (LQ) optimal control plays an important role in the control lit-

erature. The linear quadratic regulator design involves the determination of an input

signal to drive a linear system from initial state to a desired state while minimizing

certain quadratic cost criteria. The main advantage is that the optimal input is ex-

pressed as a state feedback that guarantees the exponential stability of the closed-loop

system ( [20, 23]). The infinite-dimensional state space approach, which is based on

the well-known operator Riccati equation, has been used for both hyperbolic PDEs

( [5–8,10,12,13,16,19]) and parabolic PDEs ( [11,14,28,31]). In the hyperbolic case,

the operator Riccati equation has been converted into a matrix differential equation,

while in the parabolic case, the eigenvalues and eigenfunctions of the system gen-

erator have been used to convert the ORE into a set of finite number of algebraic

Riccati equations. In [17], optimal control of coupled parabolic and hyperbolic PDEs

has been solved by using state-space approach combined with a decoupling base tech-

nique to solve the corresponding Riccati equation. The present paper extends the

state-space approach to a system of interacting parabolic-hyperbolic PDEs with an

ODE. Moreover, the focus here is on a boundary control system in which the input

variable appears in the boundary conditions. Hence, an extended state space ap-

proach is used to solve the control problem ( [23]).

This thesis is organized in the following manner. In Chapter 2, an introduction

of Distributed Parameters is presented, then the notion of Semi Group Theory is

introduced, and some properties of Reisz spectral operators are shown. Then we

highlight the Cauchy problem in a Hilbert space and introduce the method of dealing

with the boundary control systems. We also introduce important concepts in the

control problems, such as stability, stabilizability and detectability. Finally, we gave a

brief idea about the Linear quadratic problems. In chapter 3, we describe of the Linear

quadratic (LQ) optimal control in the general case of coupled parabolic-hyperbolic

PDEs and an ODE with a description of the scalar coefficients of the non-linear PDEs

model of interest and its linearization. Moreover, the augmented infinite-dimensional

state-space representation of the linearized system is demonstrated on a Hilbert space.

The has been solved for the parabolic subsystem .Also we focuse on the analysis

of the dynamical proper ties (generation property, exponential stabilizability and
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exponential detectability) of the system, which are needed to guarantee the existence

and uniqueness of solution of the control problem .Then we show the main work, where

the linear-quadratic optimal control problem is solved and develop an algorithm to

solve the corresponding operator Riccati equation. We then give an expression of the

state feedback regulator. Finally, the case study of monolithic catalytic reactor is

studied and our developed algorithm is applied to the reactor model where numerical

simulations are performed to show the performances of the LQ-feedback controller.

chapter 4 focuses on the entire model of SCR as a case study of the general case

the only difference is that the coefficients of the system are not anymore scalars

but matrices, so we applied the same algorithm where numerical simulations were

performed to show the performances of the LQ-feedback controller in the case of the

entire model of SCR.
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Chapter 2

Introduction of Distributed
Parameters systems

A wide variety of phenomena can be described by partial differential equations (PDEs)

and this kind of system is called distributed parameter system. Concerning con-

trol problems, distributed parameter systems can be formulated in the same way as

lumped parameter systems (those described by ordinary differential equations) just

instead of working with finite-dimensional space and matrices we work in appropriate

infinite-dimensional space and appropriate operators. The power of the control of

infinite-dimensional systems is that you will be able to catch all phenomena, because

neglecting the distributed nature of the original system may lead to false conclusion.

In the next section we introduce an important notion in the infinite-dimensional sys-

tems, which is the semigroup theory.

2.1 Semigroup Theory

In finite-dimensional spaces we always study matrix exponential functions as a solu-

tion of any type of our control problem ẋ = Ax+Bu, so it is natural to ask whether

similar properties of those exponential functions can be found in infinite-dimensional

spaces. Semigroup can be considered as the exponential function of an operator,

which, however, is no longer bounded [24]

Definition 2.1.1. :

Let X be Hilbert space and (T (t))t≥0 ⊂ L(X) linear bounded operators

∀ t ≥ 0 T(t):X → X is called C0 − semigroup on X if it satisfies:
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T (0) = I

T (t+ s) = T (t)T (s) t, s ≥ 0

T (t)x→ x, t→ 0+∀x ∈ X

Example 2.1.1. If we consider A as a real matrix such that A ∈ Rm×m, the family

(eAt)t≥0 is C0-semigroup on the Hilbert space Rn

Definition 2.1.2. Let (T (t))t≥0 be a C0−semigroup on Hilbert space H . The operator

A is called the infinitesimal generator of the C0 − semigroup (T (t))t≥0 if

Ax = lim
t→o+

T (t)x− x

t
, ∀x ∈ D(A)

D(A) is the set of elements in H such that the limit exists.

Theorem 2.1.1. Let (T (t))t≥0 be a C0 − semigroup on Hilbert space H with the

infinitesimal generator A . ∀x ∈ D(A) and ∀t ≥ 0 the following properties hold:

(i) T (t)x ∈ D(A) and d
dt
(T (t)x) = AT (t)x = T (t)Ax.

(ii) T (t)x− x =
∫ t

0
T (z)Axdz.

As the infinitesimal generator of any C0-semigroup is very important we always

need necessary and sufficient conditions for a linear operator on Hilbert space H to

be the infinitesimal generator and those conditions are described in the following

Hille-Yosida theorem .

Theorem 2.1.2 (Hille-Yosida Theorem). : Let H be a Hilbert space and A is a linear

operator on H. A is the infinitesimal generator of a C0 − semigroup (T (t))t≥0 if and

only if

(i) A is closed and D(A) is dense in H.

(ii) there exist positive constants M ,ω and β ∈ R

∀ β > ω, such that β ∈ ρ(A) the resolvent set of A,The following hold

∥R(β,A)p∥ ≤ M
(β−ω)p

∀p ≥ 1

where R(β,A) = (βI − A)−1 is the resolvent operator

in this case ∥T (t)∥ ≤Meωt.

After introducing some notions of a linear operator, we introduce adjoint of this

linear operator which is always needed in control problems.
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2.1.1 Adjoint of a linear operator

Calculus of Adjoint of linear operator is very important in the domain of control

because it is very useful to solve Lyapunov or Reccati equations.

The inner product on Hilbert space H is given by :

< x, y >= < y, x > =

∫ 1

0

x(z)y(z)dz ∀x, y ∈ H

Definition 2.1.3. Let A ∈ L(H1, H2), where H1 and H2 are Hilbert spaces.the ad-

joint operator is the unique operator A∗ ∈ L(H2, H1) that satisfies :

< Ax, y >H2=< x,A∗y >H1

Definition 2.1.4. Let A be a linear operator on Hilbert space H. D(A) Domaine of

definition of A which is supposed to be dense in H. The adjoint operator A∗ : D(A∗) ⊂

Z → Z of A is defined as follows. D(A∗) = [y ∈ Hsuch that there exists a y∗ ∈

H satisfying < Ax, y >=< x, y∗ > ∀x ∈ D(A)]

∀y ∈ D(A∗) the adjoint operator A∗ is defined in terms of y∗ by A∗y = y∗

Example 2.1.2. Let H = L2(0, 1) and A the operator which is given by :

(Ax)(ξ) = −dx
dξ
(ξ), where D(A) = {x ∈ L2(0, 1)|x is absolutely continuous with dx

dξ
∈

L2(0, 1), x(0) = 0} A is a closed linear operator .

We caclulate its adjoint as follows:

< Ax, y >= −
∫ 1

0
dx
dξ
(ξ)y(ξ)dξ = −[x(ξ)y(ξ)]10 +

∫ 1

0
x(ξ)dy

dξ
(ξ)dξ

this can be written in the form < x, y∗ > if and only if y(1) = 0 and dy
dξ

∈ H

.So A∗y = dy
dx

with D(A∗) = {y ∈ L2(0, 1)|y is absolutely continuous with dy
dξ

∈

L2(0, 1), y(1) = 0}

Example 2.1.3. Let H = L2(0, 1) and A the operator which is given by :

(Ax)(ξ) = −d2x
dξ2

(ξ), where D(A) = {x ∈ L2(0, 1)|x, dxdξ is absolutely continuous with
d2x
dξ2

∈

L2(0, 1),
dx
dξ
(0) = dx

dξ
(1) = 0}

A is a closed linear operator .

We caclulate its adjoint as follows:

< Ax, y >=

∫ 1

0

d2x

dξ2
(ξ)y(ξ)dξ = [

dx

dξ
(ξ)y(ξ)]10 −

∫ 1

0

dx

dξ
(ξ)

dy

dξ
(ξ)dξ
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= [x(ξ)
dy

dξ
(ξ)]10 −

∫ 1

0

x(ξ)
d2y

d2ξ
(ξ)dξ

This can be written in the form< x, y∗ >if and only if dy
dξ
(0) = dy

dξ
(1) = 0 and d2y

dξ2
∈ H

So A∗y = d2y
dξ2

with D(A∗) = {y, dy
dξ

∈ L2(0, 1)|y are absolutely continuous with d2y
dξ2

∈

L2(0, 1),
dy
dξ
(0) = dy

dξ
(1) = 0}.

In the most of cases concerning linear partial differential systems it is hard to find the

exact solution .So we always need to find the best approach to deal with this situation

that’s it is very important to introduce the following section of Riesz-spectral operators.

2.2 Riesz-spectral operators

This section gives a representation of a large classes of linear partial differential sys-

tems of both parabolic and hyperbolic types.

Definition 2.2.1. A sequence of vectors {ϕn, n ≥ 1} in Hilbert space H can be a

Reisz basis for H if the following two conditions hold:

(i) span{(ϕn)n≥1} = H

(ii) there exist positive constants r and R such that : ∀N ∈ N and (αn)1<n≤N ∈ R

r
N∑

n=1

|αn|2 ≤ ∥
N∑

n=1

αnϕn∥2 ≤ R
N∑

n=1

|αn|2

Theorem 2.2.1. Let A closed linear operator on Hilbert space H has simple

eigenvalues {λn, n ≥ 1} and its corresponding eigenvectors {ϕn, n ≥ 1} form a Riesz

basis in H.

(i) If {ψn, n ≥ 1} are the eigenvectors of the adjoint of A corresponding to the

eigenvalues {λn, n ≥ 1}.Then the {ψn} can be suitably scaled so that {ϕn}, {ψn}

are biorthogonal

(ii) ∀z ∈ H has a unique representation

z =
∞∑
n=1

< z, ψn > ϕn

8



Definition 2.2.2. Let A be a linear closed operator on a Hilbert space H, with eigen-

values {λn, n ≥ 1} and corresponding eigenvectors {ϕn, n ≥ 1} form a Riesz basis in

H

A is a Riesz-spectral operator If there is no two points a, b ∈ {λn, n ≥ 1} can be joined

by segment entirely ∈ {λn, n ≥ 1}.

The next theorem gives us the representation of operators based on its eigenfunc-

tions and eigenvalues.

Theorem 2.2.2. Suppose that A is a Riesz-spectral operator with eigenvalues {λn, n ≥

1} and corresponding eigenvectors {ϕn, n ≥ 1} .{ψn, n ≥ 1} are eigenvectors of A∗

such that < ϕn, ψm >= δnm .Then A has the following representation :

Az =
∞∑
n=1

λn < z, ψn > ϕn ∀z ∈ D(A)

With

D(A) = {z ∈ H|
∞∑
n=1

|λn|2| < z, ψn > |2 <∞}

Example 2.2.1. Let H = L2(0, 1) and A the operator which is given by :

(Ax)(ξ) = −d2x
dξ2

(ξ), where D(A) = {x ∈ L2(0, 1)|x, dxdξ is absolutely continuous with
d2x
dξ2

∈

L2(0, 1),
dx
dξ
(0) = dx

dξ
(1) = 0}

A has the eigenvalues λn = −n2π2, n ≥ 0 and the corresponding eigenvectors

ϕn(ξ) =
√
2cos(nπξ) for n ≥ 1 , ϕ0 = 1 form an orthonormal basis for L2(0, 1) A

is the Riesz-spectral operator given by

Az =
∞∑
n=1

−2n2π2 < z, cos(nπξ) > cos(nπξ) ∀z ∈ D(A)

Where

D(A) = {z ∈ L2(0, 1)|
∞∑
n=1

n4π4| < z,
√
2cos(nπξ) > |2 <∞}.

2.3 Cauchy Problem in a Hilbert space

Let A be the infinitesimal generator of a C0 − semigroup (T (t))t≥0 on H

homogenous Cauchy problem is given by:{
ẋ(t) = Ax(t) t ≥ 0

x(0) = x0 ∈ D(A)
(2.1)
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Based on Theorem 3.1.1 the solution of this Cauchy problem is that :

x(t) = T (t)x0

On the other hand the non-homogeneous Cauchy problem is that:{
ẋ(t) = Ax(t) + f(t) t ≥ 0

x(0) = x0 ∈ D(A)
(2.2)

Definition 2.3.1. x(t) is a classical solution of (2.2) on [0, tf ] if the following prop-

erties hold:

(i) the function x and its derivative are continuous on [0, tf ]

(ii) x(t) ∈ D(A) and satisfies (2.2) ∀t ∈ [0, tf ]

Remark 1. x(t) is the solution of (2.2) on [0,∞) if x(t) is the classical solution on

[0, tf ] ∀t ∈ [0, tf ]

if f is a continuous function on [0, tf ] and x is a classical solution of (2.2) on

[0, tf ].So Ax(.) is a continuous function on [0, tf ] and x is given by:

x(t) = T (t)x0 +

∫ t

0

T (t− θ)f(θ)dθ (2.3)

2.3.1 Perturbations and Triangular systems

In control f of the non-homogeneous Cauchy problem is determined by the following

state feedback:

f(t) = Dx(t) D ∈ L(H)

The new Cauchy problem :{
ẋ(t) = (A+D)x(t), t ≥ 0

x(0) = x0
(2.4)

With the corresponding mild solution:

x(t) = T (t)x0 +

∫ t

0

T (t− θ)Dx(θ)dθ

Theorem 2.3.1. The operator A+D is the infinitesimal generator of a C0−semigroup

(TD(t))t≥0 which is the unique solution of the following equation

TD(t)x0 = T (t)x0 +

∫ t

0

T (t− θ)DTD(θ)x0dθ, x0 ∈ H

10



In a large scale of control applications , we often deal with multivariable and

coupled systems . It may be easier to make those systems on the triangular form

to use the next theorem, which gives us a good way to deal with C0 − semigroup

generated by multivariable triangular operator from the one which is generated by

the diagonal entries of such operator

Theorem 2.3.2. A1 and A2 are the infinitesimal generators of respective C0 −

semigroups T1(t) and T2(t) on respective Hilbert spaces H1 and H2 Assume that

:

∥Ti(t)∥ ≤Mie
rit, i = 1, 2. and D ∈ L(H1, H2) Then the operator A =

(
A1 0
D A2

)
is the infinitesimal generator of the C0 − semigroup T(t) on H = H1 ⊕H2

with D(A) = D(A1)⊕D(A2) , T (t) =

(
T1(t) 0
S(t) T2(t)

)
and ,

S(t)x =
∫ t

0
T2(t− θ)DT1(θ)dθ

2.3.2 Boundary control systems

In many applications the model does not fit into the standard formulation (2.2).

Therefore we need to reformulate this problem to get the standard form and that is

possible for sufficiently inputs. However to do that we need to extend the state space.

Let a class of abstract boundary control problems to be on this form:⎧⎪⎨⎪⎩
ẋ(t) = Ax(t), x(0) = x0

Bx(t) = u(t),

y(t) = Cx(t),

(2.5)

where A : D(A) ⊂ H → H, u(t) ∈ U a separable Hilbert space

B : D(B) ⊂ H → U such that D(A) ⊂ D(B)

Definition 2.3.2. The control system (2.5) is considered a boundary control system

if the following hold:

(i) The operator A : D(A) → H which is defined by:

Ax = Ax ∀x ∈ D(A) with D(A) = D(A) ∩D(B) is the infinitesimal generator of

a C0 − semigroup on H

(ii) There exists a B ∈ L(U,H) such that ∀u ∈ U,Bu ∈ D(A). the operator AB is

an element of L(U,H) and BBu = u, u ∈ U

11



Let suppose that (2.5) is a boundary control system .The following abstract dif-

ferential equation on H is well posted{
ż(t) = Az(t)−Bu̇(t) + ABu(t),

z(0) = z0
(2.6)

Theorem 2.3.3. Lets take the boundary control system (2.5) and the abstract Cauchy

problem (2.6).by considering that u ∈ C2([0, τ ];U) ∀τ > 0.

if z0 = x0 −Bu(0) ∈ D(A), then the relation between the solutions of (2.5) and (2.6)

is :

z(t) = x(t)−Bu(t)

and the classical solution of (2.5) is unique

However, and after reformulating (2.5) to (2.6) the derivative of the control term

is included, and to avoid this undesirable term we have to extend the state space to

He = U ⊕H and we put the new augmented state as follows: xe(t) =

(
u(t)
z(t)

)
, and

the new input is ũ = u̇.Then we get the new augmented system :

ẋe(t) =

(
0 0

AB A

)
xe(t) +

(
I

−B

)
ũ(t) (2.7)

xe(0) =

(
(xe0)1
(xe0)2

)

2.4 Stability, Stabilizability,and Detectability

In the design of feedback controls the stability is one of the most important phenom-

ena.It is always desirable to guarantee this aspect of stability.

2.4.1 exponential stability

Definition 2.4.1. A C0-semigroup (T (t))t≥0 on a Hilbert space H is exponentially

stable if there exist positive constants M and r such that: ∥T (t)∥ ≤Me−rt t ≥ 0

r is called the decay rate

An important criterion to prove the exponential stability is Lyapunov criterion

12



Theorem 2.4.1. Let (T (t))t≥0 be C0 − semigroup on Hilbert space H, and A be its

infinitesimal generator.

(T (t))t≥0 is exponentially stable if and only if there exists a positive operator P ∈

L(H) which is the solution of the following Lyapunov algebraic equation

PAx+ A∗Px+ x = 0 ∀x ∈ D(A) such that P (D(A)) ⊂ D(A∗)

2.4.2 Exponential stabilizability and detectability

Definition 2.4.2. Let A be the infinitesimal generator of the C0 − semigroup T(t)

on Hilbert space H and B ∈ L(U,H), where U is a Hilbert space .

(i) We say that
∑

(A,B,−) is exponentially stabilizable if there exists a feedback oper-

ator K ∈ L(H,U) such that A+BK generates an exponentially stable C0−semigroup

TBK(t)

Let C ∈ L(H,Y ) which Y is a Hilbert space

(ii) We say that
∑

(A,−, C) is exponentially detectable if there exists an operator

L ∈ L(Y,H) such that A + LC generates an exponentially stable C0 − semigroup

TLC(t)

To relate between the stability and detectability properties of the boundary control

systems to the extended systems we introduce the following theorem:

Theorem 2.4.2. Considering that the boundary control system (2.5) is exponentially

stabilizable
∑

(A,B,C) and its extended system is that
∑

(Ae, Be, Ce),

(i) Assuming that 0 ∈ ρ(A) and AB ̸= 0 the
∑

(Ae, Be, Ce) is exponentially stabiliz-

able if and only if

ker(sI (AB)∗) ∩ ker(0 (sI − A)∗) ∩ ker(I −B∗) = 0 ∀s ∈ C+
0

(ii) Assuming that 0 ∈ ρ(A), the
∑

(Ae, Be, Ce) is exponentially detectable if and only

if

ker(sI − Ae) ∩ kerCe = {0}

13



2.5 Linear Quadratic problem

LQ-optimal control is widely used in control problems for infinite-dimensional state

space systems which can be obtained from the Operator Riccati Algebraic Equation.

Let,
∑

(A,B,C) denote the following linear time-invariant infinite-dimensional state-

space systems: {
ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t)
(2.8)

Such that the state x(t) ∈ H a real separable Hilbert space with inner product< ., . >,

the input u(t) ∈ U and the output y(t) ∈ Y, where U and Y are real separable Hilbert

spaces also B ∈ L(U,H),C ∈ L(U,H)

Let put the cost functional as follow:

I(x0;u) =

∫ ∞

0

(< y(p), y(p) > + < u(p), u(p) >)dp (2.9)

Our main goal is to minimize this cost functional. According to Zwart and Curtain(

[23]) if the system
∑

(A,B,C) is exponentially stabilizable then ∀x0 ∈ H and there

exists an input u ∈ L2([0,∞);U) such that the cost functional I is finite. That’s

why the exponential stabilizability guarantees the well posedness of the minimization

problem. We can get this optimal feedback by solving the following Operator Riccati

Algebraic Equation .:

[A∗Q+QA+ C∗C −QBB∗Q]x = 0∀x ∈ D(A); (2.10)

where Q ∈ L(H) is a positive self − adjoint operator and Q(D(A)) ⊂ D(A∗).

Theorem 2.5.1. Consider the infinit-dimenstional system
∑

(A,B,C). Assume that

(A,B) is exponentially stabilizable and (C,A) is exponentially detectable. The Op-

erator Riccati Algebraic Equation (2.10) has a unique positive self-adjoint solution

Q ∈ L(H) and ∀x0 ∈ H. The functional cost I is minimized by the unique control

uopt which is :

uopt(t) = Kx(t) t ≥ 0, x(t) = e(A+BK)txo;

where K = −B∗Q ∈ L(H,U)

The feedback semigroup (e(A+BK)t)t≥0 is exponentially stable .
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Chapter 3

Control of parabolic-hyperbolic
PDEs-ODE

3.1 Mathematical Model

In this chapter, we are interested in the following coupled 3 by 3 parabolic-hyperbolic

PDEs and ODE in one spatial dimension.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂zp
∂t

= d
∂2zp
∂ξ2

+ f1(zp, zh, k)

∂zh
∂t

= −v∂zh
∂ξ

+ f2(zp, zh, k)

dk

dt
= f3(zp, zh, k)

(3.1)

with the following initial and boundary conditions

∂zp
∂ξ

|ξ=0 =
∂zp
∂ξ

|ξ=1 = 0 and zh(ξ = 0) = zh,in

zp(ξ, 0) = zp,0(ξ) and zh(ξ, 0) = zh,0(ξ) and k(0) = k0

(3.2)

where (zp, zh, k) ∈ H = L2(0, 1) × L2(0, 1) × R denotes the state variables of the

system, ξ ∈ [0, 1] and t ∈ [0,∞) represent the space variable and time, respectively.

The functions f1, f2 and f3 are non-linear continuous functions. The function zh,in ∈

L2(0, 1) is the input variable. The parameter d and v are positive constants.

To solve the corresponding linear-quadratic control problem, the linearization of the

above system around a steady-state profile is needed. For this purpose, let us denote
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by zp,ss and zh,ss and kss the components of the system steady state.⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂z̃p
∂t

= d
∂2z̃p
∂ξ2

+m11(ξ)z̃p +m12(ξ)z̃h +m13(ξ)k̃

∂z̃h
∂t

= −v∂z̃h
∂ξ

+m21(ξ)z̃p +m22(ξ)z̃h +m23(ξ)k̃

dk̃

dt
= m31(ξ)z̃p +m32(ξ)z̃h +m33(ξ)k̃

(3.3)

with the following new initial and boundary conditions

∂z̃p
∂ξ

|ξ=0 = 0
∂z̃p
∂ξ

|ξ=l = 0 and z̃h(ξ = 0) = zh(ξ = 0)− zh,ss(ξ = 0)

z̃p(ξ, 0) = zp,0(ξ)− zp,ss(ξ), z̃h(ξ, 0) = zh,0(ξ)− zh,ss(ξ) and k̃(0) = k0 − kss

(3.4)

where z̃p = zp − zp,ss, z̃h = zh − zh,ss, and k̃ = k − kss are the state variables in

deviation form and the functions mij, 0 ≤ i, j ≤ 3 are the Jacobians of the nonlinear

terms evaluated at the system steady state.

m11(ξ) =
∂f1(zp, zh, k)

∂zp
|ss, m12(ξ) =

∂f1(zp, zh, k)

∂zh
|ss, m13(ξ) =

∂f1(zp, zh, k)

∂k
|ss

m21(ξ) =
∂f2(zp, zh, k)

∂zp
|ss, m22(ξ) =

∂f2(zp, zh, k)

∂zh
|ss, m23(ξ) =

∂f1(zp, zh, k)

∂k
|ss

m31(ξ) =
∂f3(zp, zh, k)

∂zp
|ss, m32(ξ) =

∂f3(zp, zh, k)

∂zh
|ss, m33(ξ) =

∂f3(zp, zh, k)

∂k
|ss.

Let us denote by z =
[
z̃p z̃h k̃

]T
the new state and by w = z̃h(ξ = 0) the new

input. Then, the above linear system can be formulated as an abstract boundary

control problem on the Hilbert space H [23],⎧⎨⎩
dz(t)

dt
= Az(t) z(0) = z0

Bz(t) = w(t)

(3.5)

where A is the linear operator defined by

A =

⎡⎢⎢⎢⎣
d
∂2

∂ξ2
+m11(ξ) m12(ξ) m13(ξ)

m21(ξ) −v ∂
∂ξ

+m22(ξ) m23(ξ)

m31(ξ) m32(ξ) m33(ξ)

⎤⎥⎥⎥⎦ (3.6)

on its domain of definition

D(A) =

{
z ∈ H : z̃p, z̃h,

dz̃p
dξ

are absolutely continous,
dz̃h
dξ

× dz̃p
dξ

× d2z̃p
dξ2

∈ (L2(0, 1))3
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and ∂z̃p
∂ξ

|ξ=0 = 0), and ∂z̃p
∂ξ

|ξ=l = 0
}
.

The input operator B : H → R is given by

B =
[
0 Iξ=0 0

]
The objective is to find an operator B ∈ L(R, H) such that for all w ∈ R, Bw ∈

D(A), the operator AB is an element of L(R, H) and BBw = w. If B is chosen under

the following form

B =

⎡⎣ bp(ξ)
bh(ξ)
bk(ξ)

⎤⎦ · I (3.7)

then the condition Bu ∈ D(A) is satisfied if:

d(bp(ξ)w)

dξ
(ξ = 0) = w

dbp
dξ

(ξ = 0) = 0 ⇔ dbp
dξ

(ξ = 0) = 0 (3.8)

and
d(bp(ξ)w)

dξ
(ξ = l) = w

dbp
dξ

(ξ = l) = 0 ⇔ dbp
dξ

(ξ = l) = 0 (3.9)

Also, the condition BBw = w is satisfied if:

(bh(ξ)w)|ξ=0 = bh|ξ=0
w = w ⇔ bh(ξ = 0) = 1 (3.10)

Now we are in a position to define the operator A : D(A) → H by Az = Az on its

domain D(A) = D(A)
⋂
ker(B). Let us consider the new state v(t) = z(t) − Bw(t)

and the new input u(t) = ẇ(t). Then

v̇(t) = ż(t)−Bẇ(t) = Az(t)−Bẇ(t)

= A(v(t) +Bw(t))−Bẇ(t) = Av(t)−Bu(t) + ABw(t)

By using the augmented state x =

[
w
v

]
∈ H := R⊕H, the system can be written

as follows {
ẋ(t) = Âx(t) + B̂u(t) x(0) = x0

y(t) = Ĉx(t)
(3.11)

where the operators Â, B̂ and Ĉ are given by

Â =

[
0 0
AB A

]
; B̂ =

[
I
−B

]
, Ĉ = C[B I] (3.12)
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The operator AB is given by

AB =

⎡⎣ (AB)1
(AB)2
(AB)3

⎤⎦ =

⎡⎣ d ∂2

∂ξ2
+m11 m12 m13

m21 −v ∂
∂ξ

+m22 m23

m31 m32 m33

⎤⎦⎡⎣ bp
bh
bk

⎤⎦
Due to the fact that the operator AB acts on elements on R (space independent

elements), then if we assume that the functions bp and bh are constants (In this case

and according to Equation (4.31) bh should equal to 1), the operator AB can be

simplified and becomes

AB =

⎡⎣ m11bp +m12 +m13bk
m12bp +m22 +m23bk
m31bp +m32 +m33bk

⎤⎦ · I :=

⎡⎣ γ1
γ2
γ3

⎤⎦ · I

In this case, the operator B̂ becomes

B̂ =

⎡⎢⎢⎣
1

−bp
−1
−bk

⎤⎥⎥⎦ · I (3.13)

3.2 Eigenvalues Problem

In functional analysis the eigenvectors of a compact self-adjoint operator form an or-

thogonal basis for the Hilbert space, but for large classes of linear partial differential

systems of parabolic and hyperbolic types the operators are non-self-adjoint, whose

eigenvectors may not be orthogonal but that do form a Riesz basis, which is a very

important concept. Indeed, any element in the state space can be uniquely repre-

sented as a linear combination of the Riesz basis (even if the basis is not orthogonal)

by using the corresponding bi-orthogonal sequence (i.e. the eigenfunctions of the ad-

joint operator). This concept plays an important role in view of solving the Riccati

equation associated with the parabolic subsystem. In this section, the eigenvalues

and eigenfunctions of parabolic operator A11 are found, which are used in Section 4.3

to solve the optimal control problem.

A11 = d
d2·
dξ2

+m11(ξ) · I

The domain of definition of A11 is:

D(A11) = {z ∈ L2(0, 1) : z and
dz

dξ
are absolutely continuous

dz

dξ |ξ=0

=
dz

dξ |ξ=1

= 0}
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If λ is an eigenvalue of the operator A11 and ϕ is the eigenfunction associated with

λ. The eigenvalue problem associated with the operator A11 is given by

A11ϕ(ξ) = λϕ(ξ)

which can be written as:

d
d2ϕ(ξ)

dξ2
+ (m11(ξ)− λ)ϕ(ξ) = 0, ξ ∈ [0, 1]

ϕ′(0) = ϕ′(1) = 0

(3.14)

The above problem is challenging due to the fact that α = m11(ξ) − λ is space-

dependent. To address this issue, we divide the interval [0, 1] into a finite number of

segments (h), such that the value of α is constant at each segment and equal to the

average value of the function α(ξ), which is defined by

αi = h

∫ i/h

(i−1)/h

α(ξ)dξ, i = 1, 2, · · · , h

Under this assumption, the boundary value problem (3.14) can be approximated by:

d2ϕi(ξ)

dξ2
+
m11(ξi)− λi

d
ϕi(ξ) = 0, ξ ∈ [ξi, ξi+1], i = 1, 2, · · · , s (3.15)

subject to boundary conditions:

ϕ′
1(0) = 0 (3.16)

ϕi−1(ξi) = ϕi(ξi), ϕ′
i−1(ξi) = ϕ′

i(ξi), i = 2, 3, · · · , s (3.17)

ϕ′
s(1) = 0 (3.18)

Condition (3.17) is a consequence of the fact that ϕ and ϕ′ are absolutely continuous.

Each boundary value problem has a non-trivial solution if

ω2
i =

m11(ξi)− λi
d

> 0, i = 1, 2, · · · , s (3.19)

Under this condition, the solution of (3.15) is given by :

ϕi(ξ) = ai sin (ωiξ) + bi cos (ωiξ) , ξ ∈ [ξi, ξi+1], i = 1, 2, · · · , s (3.20)

where ai and bi are integration constants. Observe that conditions (3.16)-(3.18) con-

sists of 2s equations, however, 3s unknowns (ai, bi and ωi) should be found. Then
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to simplify the calculations, it is assumed that for all 1 ≤ i ≤ s, ai = bi − b1 (this

assumption is compatible with condition (3.16) which gives us that a1 = 0). In this

case, the eigenfunctions are given by

ϕi(ξ) = bi [cos (ωiξ) + sin (ωiξ)]− b1 sin (ωiξ) , ξ ∈ [ξi, ξi+1], i = 1, 2, · · · , s (3.21)

Conditions (3.17) can be rewritten explicitly for all 1 ≤ i ≤ s as follows

bi [sin(ωiξi) + cos(ωiξi)]−bi−1 [sin(ωi−1ξi) + cos(ωi−1ξi)] = b1 [sin(ωiξi)− sin(ωi−1ξi)]

(3.22)

and

b1 [ωi cos(ωiξi)− ωi−1 cos(ωi−1ξi)] = biωi [cos(ωiξi)− sin(ωiξi)] +

bi−1ωi−1 [sin(ωi−1ξi)− cos(ωi−1ξi)]

(3.23)

The above equations can be written in the following compact form[
Ai Bi

A′
i B′

i

] [
bi
bi−1

]
=

[
Ci

C ′
i

]
(3.24)

where Ai, Bi, Ci, A
′
i, B

′
i and C

′
i are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ai = sin(ωiξi) + cos(ωiξi)

Bi = − sin(ωi−1ξi)− cos(ωi−1ξi)

Ci = b1 [sin(ωiξi)− sin(ωi−1ξi)]

A′
i = ωi [cos(ωiξi)− sin(ωiξi)]

B′
i = ωi−1 [sin(ωi−1ξi)− cos(ωi−1ξi)]

C ′
i = b1 [ωi cos(ωiξi)− ωi−1 cos(ωi−1ξi)]

(3.25)

The solution of Equation (3.24) is given by (provided ∆i = AiB
′
i − A′

iBi ̸= 0)

bi =
B′

iCi −BiC
′
i

∆i

and bi−1 =
AiC

′
i − A′

iCi

∆i

(3.26)

which leads to the following relation between ωi, ωi−1, and ωi−2

B′
i−1Ci−1 −Bi−1C

′
i−1

∆i−1

=
AiC

′
i − A′

iCi

∆i

(3.27)

On the other hand, Equation (3.18) implies

bsωs cos(ωs)− bsωs sin(ωs)− b1ωs cos(ωs) = 0 (3.28)
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and then

bs =
b1

1− tan(ωs)
(3.29)

Also, by using the expression of ωs in Equation (3.26), one gets

b1
1− tan(ωs)

=
B′

sCs −BsC
′
s

∆s

:= h(ωs, ωs−1) (3.30)

To get all ωi, it is assumed that ωs is known. Here it is chosen to be an infinite

sequence of the form ωs = (ωn
s )n≥1 = (nπ)n≥1. In this case, Equation (3.29) implies

that bs = b1 and consequently ϕn
s = bs cos(ω

n
s ξ). If we choose bs = b1 =

√
2, then

the orthonormality of the base ϕn
i is guaranteed. Therefore, ωs−1 = (ωn

s−1)n≥1 can

be found by solving Equation (3.30). Finally, we can get all ωn
i by solving Equation

(3.27). The corresponding eigenvalues are given by the following equation:

λni = m11(ξi)− d(ωn
i )2 (3.31)

3.3 Dynamical System Properties

This section is devoted to the dynamical properties of system such as generation

property, exponential stabilizability and exponential detectability. These properties

are needed to guarantee the existence and the uniqueness of the solution of LQ-control

problem. The following result holds.

Lemma 1. Let us consider the operator Â defined by Equation (4.33), then Â is the

infinitesimal generator of a C0 semigroup on H.

Proof. According to [23, Lemma 3.2.2], it is enough to show that A is infinitesimal

generator of a C0-semigroup on H since AB ∈ L(R, H). Note that the operator A

given by (4.38a) can be written as

A =

⎡⎢⎢⎢⎣
d
∂2

∂ξ2
0 0

0 −v ∂
∂ξ

0

0 0 m33

⎤⎥⎥⎥⎦+

⎡⎣ m11 m12 m13

m21 m22 m23

m31 m32 0

⎤⎦ := A0 +D

The operator d
∂2

∂ξ2
is the infinitesimal generator of C0-semigroup on L2(0, 1) (see

Example 2.3.7 in [23]). Also, the operator −v ∂
∂ξ

is the infinitesimal generator of

21



C0-semigroup on L2(0, 1) (see Example 2.2.4 in [23]). Hence, the operator A0 is the

generator of a C0-semigroup on H since all diagonal entries of A0 are the generators

of C0-semigroups (see [23, Lemma 3.2.2].

On the other hand, D is a bounded operator (since all the functions mij, 1 ≤

i, j ≤ 3 are bounded), therefore we can conclude by the perturbation theorem that

the operator A generates a C0-semigroup on H, see [23, Theorem 3.2.1].

The following result states that, under some technical conditions, the functions bp

and bk can be chosen to guarantee the exponential stabilizability of the pair (Â, B̂).

Proposition 1. Let us consider the operator pair (A,B), where A and B are given

by Equations (4.38a) and (4.38b), respectively. Then, bp and bk can always be chosen

to guarantee that there exists an operator K ∈ L(H,R) such that A+BK generates

an exponentially stable C0-semigroup on H. Moreover, if 0 ∈ ρ(A) and ∀s ∈ C+
0 ,

ker(sI (AB)∗) ∩ ker(0 (sI − A∗)) ∩ ker(I − B∗) = {0}, then the operator pair

(Â, B̂) generates an exponentially stabilizable C0-semigroup on H.

Proof. First, let us prove the exponential stabilizability of (A,B). IfK = [k1, k2, k3] ∈

L(H,R), then the operator A+BK can be expressed as follows

A+BK =

⎡⎢⎢⎣ d ∂2

∂ξ2
+m11 + bpk1 m12 + bpk2 m13 + bpk3
m21 + k1 −v ∂

∂ξ
+m22 + k2 m23 + k3

m31 + bkk1 m32 + bkk2 m33 + bkk3

⎤⎥⎥⎦
Now let us choose k1 = −(β+m11)b

−1
p (β > 0), k2 = −m12b

−1
p and k3 = −m13b

−1
p and

substitute in the operator A+BK. This results the following form

A+BK =

⎡⎢⎢⎣ d ∂2

∂ξ2
− β 0 0

m21 + k1 −v ∂
∂ξ

+ α11 α12

m31 + bkk1 α21 α22

⎤⎥⎥⎦
where the functions αij, 1 ≤ i, j ≤ 2 are given by

α11 = m22 −m12b
−1
p , α12 = m23 −m13b

−1
p

α21 = m32 − bkm11b
−1
p , α22 = m33 − bkm13b

−1
p
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According to [35, Lemma 5.1], the operator d ∂2

∂ξ2
−β generates an exponentially stable

C0-semigroup on L2(0, 1). Therefore, it is enough to show that the operator

A =

[
−v ∂

∂ξ
+ α11 α12

α21 α22

]
generates an exponentially stable C0-semigroup. To do so, the operator A can be

written as follows

A =

[
−v ∂

∂ξ
+ α11 0

α21 α22

]
+

[
0 α12

0 0

]
:= A0 +D0

Since the operator−v ∂
∂ξ
+α11 generates an exponentially stable C0-semigroup (see [6]),

then the operator A0 generates an exponentially stable C0-semigroup T0(t) if the

function α22 is negative. In this case, there exist positive constants M and α such

that

∥T0(t)∥ ≤Me−αt, for t ≥ 0.

Therefore by using the perturbation theorem [23, Theorem 3.2.1], the operator A

generates a C0-semigroup TD(t) such that

∥TD(t)∥ ≤Me(−α+M |α12|)t

Hence bp and bk can be chosen in such a way to guarantee both (1) α22 < 0 and (2)

−α +M |α12| < 0. Consequently, the operator A generates an exponentially stable

C0-semigroup and so is the opeartor A+BK. The exponential stabilizability of (Â, B̂)

is an immediate consequence of [23, Exercise 5.25].

Similarly, the exponential detectability of the operator pair (Ĉ, Â) is stated in the

following proposition.

Proposition 2. Let us consider the operator A given by Equation (4.38a) and C =

C0 · I, where C0 is any matrix of bounded functions and rank(C0) = 2. Then there

exists an operator L ∈ L(H) such that A + LC generates an exponentially stable

C0-semigroup on H. Moreover, if 0 ∈ ρ(A), then the operator pair (Â, Ĉ) generates

an exponentially stabilizable C0-semigroup on H.

Proof. Let C0 = (cij)1≤i,j≤3 and let us consider L under the following form

L =

⎡⎣ l1 0 0
0 l2 0
l3 l4 l5

⎤⎦
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The operator A+ LC is⎡⎢⎢⎣ d ∂2

∂ξ2
+m11 + l1c31 m12 + l1c32 m13 + l1c33
m21 + l2c31 −v ∂

∂ξ
+m22 + l2c32 m23 + l2c33

m31 + l3c11 + l4c21 + l5c31 m32 + l3c12 + l4c22 + l5c32 m33 + l3c13 + l4c23 + l5c33

⎤⎥⎥⎦
Let us choose l1 = −m11c

−1
31 , l2 = m21c

−1
31 (c31 ̸= 0) and l3, l4, l5 are the solutions of the

following system of equations

l3c11 + l4c21 + l5c31 = −m31

l3c12 + l4c22 + l5c32 = −m32

l3c13 + l4c23 + l5c33 = −m33 − η for some η > 0

provided that rank(C0) = 2. In this case, the operator A+ LC becomes

A+ LC =

⎡⎢⎢⎣ d ∂2

∂ξ2
m12 + l1c32 m13 + l1c33

0 −v ∂
∂ξ

+m22 + l2c32 m23 + l2c33
0 0 −η

⎤⎥⎥⎦
The resulting operator is triangular and all its diagonal entries generates an expo-

nentially stable C0-semigroup and so is the operator A + LC. The exponential de-

tectability of (Ĉ, Â) is an immediate consequence of [23, Exercise 5.25].

Remark 2. Note that the choice of L assumes that c31 ̸= 0 however, if c31 = 0 it is

possible to change the form of L to triangularize A+LC. More general, if we choose

a full matrix L, it may be possible to generate a weaker condition of detectability.

Indeed, it is enough to have L as solution of the equation LC0 = D0 where D0 is a

diagonal matrix with negative entries.

3.4 Optimal Control Design

In this section, the aim is to design an optimal linear-quadratic (LQ) state feedback

controller for the linearized system Σ(Â, B̂, Ĉ) given by Equations (4.32)-(4.33). Our

objective is to find a control law to minimize the following cost functional:

J(x0, u) =

∫ ∞

0

(⟨y(s),Py(s)⟩+ ⟨u(s),Ru(s)⟩)ds (3.32)

where the operator P = P ·I = (pij ·I)1≤i,j≤4 such that the matrix P is symmetric and

positive semi-definite and R = r ·I such that r > 0. It has been shown in the previous
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section that the pair (Â, B̂) is exponentially stabilizable and the pair (P1/2Ĉ, Â) is

exponentially detectable. It is well-known that, under those conditions, the solution

of the LQ-control problem can be obtained via the corresponding Operator Riccati

Equation (ORE) ( [23]).

[Â∗Q+QÂ+ Ĉ∗PĈ−QB̂RB̂∗Q]x = 0 ∀x ∈ D(Â) and Q(D(Â)) ⊂ D(Â∗) (3.33)

which admits a unique non-negative self adjoint solution and for any x0 ∈ H, the

quadratic cost (4.34) is minimized by the unique control u given for any t ≥ 0 by

u(t) = Kx(t) := −R−1B̂∗Qx(t), x(t) = e(Â+B̂K)tx0 (3.34)

Moreover, the C0-semigroup e(Â+B̂K)t generated by the closed-loop system is expo-

nentially stable on H. Let us assume the operator Riccati equation (4.35) admits a

diagonal solution of the following form:

Q =

⎡⎢⎢⎣
q1 0 0 0
0 q2 0 0
0 0 q3 0
0 0 0 q4

⎤⎥⎥⎦ (3.35)

where qi ∈ L(L2(0, 1)), 1 ≤ i ≤ 4 are non-negative and self-adjoint operators. Equa-

tion (4.35) gives the following system of equations:

0 = p11c
2
1 − rq21 (3.36a)

0 = γ1q2 + p12c1c2 + rbpq1q2 (3.36b)

0 = γ2q3 + p13c1c3 + rq1q3 (3.36c)

0 = γ3q4 + p14c1c4 + rbkq1q4 (3.36d)

0 = A∗
11q2 + q2A11 + p22c

2
2 − rb2pq

2
2 (3.36e)

0 = m21q3 + q2m12 + p23c2c3 − rbpq2q3 (3.36f)

0 = m31q4 + q2m13 + p24c2c4 − rbpbkq2q4 (3.36g)

0 = A∗
22q3 + q3A22 + p33c

2
3 − rq23 (3.36h)

0 = m32q4 + q3m23 + p34c3c4 − rbkq3q4 (3.36i)

0 = m33q4 + q4m33 + p44c
2
4 − rb2kq

2
4 (3.36j)

Note that the operators bp, bh , andbk are operators defined from R to L2(0, 1)

under the form Bu = b(z)u. The adjoint operator of B is defined from L2(0, 1) → R
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and is given by

B∗x =

∫ 1

0

b(z)x(z)dz

which represents the average value of the function bx on the interval [0, 1]. With

this fact, the Riccati equation is to become a set of integro-differential equations that

are not easy to solve. To avoid this problem, the output of the adjoint operators

b∗p, b
∗
h and b∗k are to be substituted by the distributed functions instead of the average

values. However, the average values will be used to calculate the optimal input which

is defined in Equation (3.34) and can be found by the following expression:

u(t) = −r−1

[
q1x1(t)− bp

∫ 1

0

q2(z)x2(t, z)dz

−
5∑

i=1

bhi

∫ 1

0

[q3(z)x3(t, z)]i dz − bk

∫ 1

0

q4(z)x4(t, z)dz

]
(3.37)

where q1, q2, q3, q4 are the unique solutions of Equations (3.36a), (3.36e), (3.36h) and

(3.36j), respectively. Now, we can solve these four equations separately and use the

matrix P to force the other equations to be satisfied.

• Equation (3.36a): This equation is very easy to solve

p11c
2
1 − rq21 = 0

which gives

q1 = |c1|
√
p11
r

(3.38)

• Equation (3.36e): The equation can be written as follows[
A∗

11q2 + q2A11 + p22c
2
2 − rb2pq

2
2

]
x = 0 ∀x ∈ D(A11)

Let us put α = p22c
2
2 and β = bprbp. To solve the above equation, the inner

product form of the equation is to be used. For all x, y ∈ D(A11), one has

< q2x,A11y > + < A11x, q2y > + < βx, y > − < q2x, αq2y >= 0

If we take x = ϕm and y = ϕn, we have the following equation

< q2ϕm, A11ϕn > + < A11ϕm, q2ϕn > + < βϕm, ϕn > − < q2ϕm, αq2ϕn >= 0
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To use the eigenvalues and eigenvectors found in Section 3, the above equation

is solved on each subdivision of the interval [0, 1]. Indeed, the equation can be

written on [ξi, ξi+1] as follows

λin < qi2ϕ
i
m, ϕ

i
n > +λim < ϕi

m, q
i
2ϕ

i
n > + < βϕi

m, ϕ
i
n > − < qi2ϕ

i
m, αq

i
2ϕ

i
n >= 0

By setting βi
mn =< βϕi

m, ϕ
i
n > and qi2,mn =< qi2ϕ

i
m, ϕ

i
n > for i = 1, 2 · · · s, we

obtain the following equation:

(λin + λim)q
i
2,mn + βi

mn− < qi2ϕ
i
m, αq

i
2ϕ

i
n >= 0 (3.39)

On the other hand, any element x ∈ L2(0, 1) can be written as follows:

x =
∞∑
k=0

< x, ϕk > ϕk and then the following holds:

< qi2ϕ
i
m, αq

i
2ϕ

i
n >=< qi2ϕ

i
m,

∞∑
k=0

< αqi2ϕ
i
n, ϕ

i
k > ϕi

k >=
∞∑
k=0

< αqi2ϕ
i
n, ϕ

i
k >< qi2ϕ

i
m, ϕ

i
k >

=
∞∑
k=0

< qi2ϕ
i
n, αϕ

i
k > qi2,mk =

∞∑
k=0

< qi2ϕ
i
n,

∞∑
k=0

< αϕi
k, ϕ

i
l > ϕi

l > qi2,mk

=
∞∑
k=0

∞∑
l=0

< αϕi
k, ϕ

i
l >< qi2ϕ

i
n, ϕ

i
l > qi2,mk =

∞∑
k=0

∞∑
l=0

αklq
i
2,nlq

i
2,mk

where αi
kl =< αϕi

k, ϕ
i
l >. Then Equation (3.39) becomes

(λin + λim)q
i
2,mn + βi

mn −
∞∑
k=0

∞∑
l=0

αi
klq

i
2,nlq

i
2,mk = 0 (3.40)

If it is assumed that ∀ n ̸= m qi2,mn = 0 is a solution of equation (3.40), one gets

the following quadratic equation:

2λinq
i
2,nn + βi

nn − αi
nn(q

i
2,nn)

2 = 0 (3.41)

which admits two solutions and only the positive one is to be used.

qi2,nn =
λin +

√
(λin)

2 + βi
nnα

i
nn

αi
nn

(3.42)

Finally, the expression of the function q2 is given by

qi2x =
∞∑
n=0

λin +
√
(λin)

2 + βi
nnα

i
nn

αi
nn

< x, ϕi
n > ϕi

n (3.43)
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• Equation (3.36h): The equation can be written as

[
A∗

22q3 + q3A22 + p33c
2
3 − rq23

]
x = 0

Remember that A22 = −v d
dξ

+m22 defined on

D(A22) = {h ∈ L(0, 1) : h is absolutely continuous h(0) = 0} and its adjoint

A∗
22 = v d

dξ
+m22 definedD(A∗

22) = {h ∈ L(0, 1) : h is absolutely continuous h(1) = 0}.

Then Equation (3.36h) can be written as follows

v
d(q3x)

dξ
+m22q3x+ q3

(
−vdx

dξ
+m22x

)
− rq23x+ p33c

2
3x = 0

Then the function q3 should satisfy the following differential equation

v
dq3
dξ

+ 2m22q3 − rq23 + p33c
2
3 = 0, q3(1) = 0 (3.44)

The condition q3(1) = 0 is equivalent to q3x ∈ D(A∗
22) for all x ∈ D(A22) then

(q3x)(1) = 0.

Equation (3.44) can be solved numerically. However, if we assume that the

function m22 is space independent, an explicit solution can be found. Indeed,

let us introduce the following notations.

a1 =
r

v
, a2 =

m22

v
, a3 =

p33c
2
3

v

µ1 =
−a2 −

√
a22 + a1a3
a1

, µ2 =
−a2 +

√
a22 + a1a3
a1

µ3 = 2
√
a22 + a1a3, q3 =

1

q3 + µ1

Using the above notations, Equation (3.44) can be written as follows

dq3
dξ

= a1q
2
3 − 2a2q3 − a3 = a1(q3 + µ1)(q3 + µ2)

On the other hand, the derivative of q3 with respect to ξ is

dq3
dξ

= −dq3
dξ

1

(q3 + µ1)2
= −a1(q3 + µ1)(q3 + µ2)

(q3 + µ1)2
= −a1(q3 + µ2)

q3 + µ1

= −a1(q3 + µ1 − µ1 + µ2)

q3 + µ1

= −a1 − µ3q3
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Consequently, Equation (3.44) is converted to the linear initial value differential

equation
dq3
dξ

+ µ3q3 = −a1, q3(1) =
1

µ1

which has the following explicit solution

q3(ξ) =

(
1

µ1

+
a1
µ3

)
eµ3(1−ξ) − a1

µ3

and then the function q3 is given by the following expression

q3(ξ) =

[(
1

µ1

+
a1
µ3

)
eµ3(1−ξ) − a1

µ3

]−1

− µ1 (3.45)

• Equation (3.36j): It is a quadratic equation that can be solved easily. It can

be written as follows

rb2kq
2
4 − 2m33q4 − p44c

2
4 = 0 (3.46)

which has two solutions and the positive one is given by

q4 =
m33 +

√
m2

33 + rb2kp44c
4
4

rb2k
(3.47)

Remark 3. It can be easily observed that in order to solve the equation (3.36a),

(3.36e), (3.36h) and (3.36j), the values of the constants p11, p22, p33, p44 and r

are needed. The remaining off-diagonal elements of P can be found by solving

the remaining equations. In what follows, an algorithm to solve the general

Riccati equation (4.35).

• Algorithm to solve ORE (4.35):

– Choose positive p11, p22, p33, p44 and r to find q1, q2, q3, q4.

– Solve the off diagonal equations (3.36b), (3.36c), (3.36d), (3.36f), (3.36g),

(3.36i) to get explicitly pij, i ̸= j.

– Check if the resulting P is positive. If P is not positive then,

– Choose a new p11, p22, p33, p44 and r to find new q1, q2, q3, q4 and solve

again the off-diagonal equations until we get a positive P .
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• State feedback control: To implement the state-feedback control given by

Equation (4.39), we need to rewrite it in terms of the original variables. For

this purpose, let us substitute u = ẇ and x1 = w, x2 = z̃p − bpw x3 = z̃h − bhw

and x4 = k̃ − bkw in Equation (4.39)

−rẇ(t) = q1w(t)− bp

∫ 1

0

q2(z)(z̃p − bpw)dz

−
5∑

i=1

bhi

∫ 1

0

[q3(z)(z̃h − bhw)]i dz − bk

∫ 1

0

q4(z)(k̃ − bkw)dz

−rẇ(t) =

[
q1 +

∫ 1

0

(
b2pq2(z) +

5∑
i=1

bhi
[q3(z)bh]i + b2kq4(z)

)
dz

]
w(t)

−
∫ 1

0

(
bpq2(z)z̃p(z) +

5∑
i=1

bhi
[q3(z)z̃h]i + bkq4(z)k̃

)
dz

Then the function w satisfies the following linear differential equation

ẇ(t) + τw(t) = γ(t), w(0) = 0 (3.48)

where τ is a constant given by the following expression

τ = r−1

[
q1 +

∫ 1

0

(
b2pq2(z) +

5∑
i=1

bhi
[q3(z)bh]i + b2kq4(z)

)
dz

]
and γ is a function of the SCR states and given by

γ(z̃p, z̃h, k̃) = r−1

[∫ 1

0

(
bpq2(z)z̃p(z) +

5∑
i=1

bhi
[q3(z)z̃h]i + bkq4(z)k̃

)
dz

]
Consequently, the optimal (to be injected ammonia) state feedback control is

given by

Cg
NH3(0) = w(t) + zh,0(0) = e−τt

[∫
eτtγ(z̃p(t), z̃h(t), k̃(t))dt−G(0)

]
+ zh,0(0)

(3.49)

where G is the anti-deriavtive function of eτtγ(t).

3.5 Case Study: Monolithic catalyst Reactor

Monolithic catalyst reactor (see Figure 1) is used to demonstrate all the above theo-

retical development. In this reactor, an endothermic reaction A→ B takes place and
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Figure 3.1: Monolithic catalyst

the objective is to keep the temperature at the surface as high as possible.

The energy balance law is used to describe the dynamics of the gas tempera-

ture, surface temperature and housing temperature. The gas temperature (Tg) is the

temperature of the gas that enters to the monolithic reactor. Since the monolith

represents the solid-phase in the catalytic, its temperature determines how fast or

slow the surface reactions will take place, it is called the surface temperature (Ts).

The housing temperature (Th) represents the heat transfer from the monolith to the

catalyst housing and subsequently to the ambient environment. It is assumed that dif-

fusion transport phenomenon is negligible in the gas phase and the only controllable

input is gas temperature inlet Tg(0, t) = u. Under these assumptions, the process

dynamics can described by the following dimensionless PDEs (see [62]):

∂Ts(z, t)

∂t
=
∂2Tc
∂ξ2

+ ase

γTs
1 + Ts − bs(Ts − Tg)− cs(Ts − Th) (3.50)

ϵ
∂Tg(z, t)

∂t
= −∂Tg

∂ξ
+ ag(Tc − Tg)− bg(Tg − Th) (3.51)

dTh
dt

= ah(T
4
h − T 4

a ) + bh(Ts − Th) (3.52)

with the following boundary and initial conditions:

∂Tc(0, t)

∂ξ
=
∂Tc(1, t)

∂ξ
= 0, Tg(0, t) = Tgin = u, Tc(ξ, 0) = Tg(ξ, 0) = Th(ξ, 0) = 0

(3.53)

where Ta is the dimensionless ambient temperature; bs, cs, ag, bg, ah and bh are the

dimensionless heat transfer coefficients; γ is the dimensionless activation energy and

as is the dimensionless heat of the reaction (see [21]). The control objective is to
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regulate the catalyst temperature around its desired value along the reactor by ma-

nipulating the gas temperature at the inlet of the reactor.

To simulate the model equations (3.50)-(3.53) at steady-state, the values of the

system parameters are given in Table 3.1. Also, we choose the manipulated variable

at steady-state equal to 2. By using MATLAB, the steady-state profiles for the gas,

surface and housing temperatures are given in Figure (3.2).

Table 3.1: Model parameters for Monolithic catalyst Reactor

Parameter ϵ as γ bs cs ag bg ah
Value 0.01 -0.03 -1.4 1.0 15.62 0.5 0.5 0.001
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Figure 3.2: Surface,gas and housing temperatures at steady state

Except m11 and m33, all the functions mij, 1 ≤ i, j ≤ 3 are constants and given

by

m12 = 1, m13 = 15.62, m21 = 50, m22 = −100, m23 = 50, m31 = 0.02, m32 = 0.

On the other hand, it has been observed that the variation of m33 is very small and it

can be estimated bym33 = −0.02. Form11, the interval has been divided into 5 subin-
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Table 3.2: Values of m11 over space

ξ [0, 0.2] [0.2, 0.4] [0.4, 0.6] [0.6, 0.8] [0.8, 1]
m11(ξ) -18.2 -20.3 -21.4 -20.3 -18.3

tervals, where the function m11 is estimated by its average in each subinterval.Table

(3.2)

To calculate the eigenvalues, it is assumed that the length of the reactor is divided

into 5 equally spaces. The first five eigenvalues of the parabolic operator are given

by:

λ1n = {−18.22,−18.62,−18.21,−20.22,−20.22, . . . }

λ2n = {−20.38,−20.72,−20.31,−22.36,−22.36, . . .}

λ3n = {−23.46,−23.42,−23.34,−23.46,−23.39, . . .}

λ4n = {−20.30,−22.56,−20.64,−21.75,−23.95, . . . }

λ5n = {−18.20,−28.07,−57.68,−107.03,−176.43, . . .}

The corresponding eigenfunctions are given by:

ϕ1
n =

{√
2 cos(1.4ξ),

√
2 cos(0.65ξ),

√
2 cos(−0.12ξ),

√
2 cos(1.43ξ),

√
2 cos(1.42ξ), . . .

}
ϕ2
n = {1.5 cos(0.28ξ) + 0.13 sin(0.28ξ), 1.96 cos(0.65ξ) + 0.54 sin(0.65ξ),

1.4 cos(1.4ξ)− 0.0025 sin(1.4ξ), 4.73 cos(1.43ξ) + 3.3 sin(1.43ξ),
4.7 cos(1.42ξ) + 3.31 sin(1.42ξ), . . .}

ϕ3
n = {10 cos(1.4ξ) + 8.59 sin(1.4ξ),−7.72 cos(1.42ξ)− 9.14 sin(1.42ξ),

3.1 cos(1.39ξ) + 1.67 sin(1.39ξ),−1.2 cos(1.4ξ)− 2.62 sin(1.4ξ),
−1.17 cos(1.41ξ)− 2.6 sin(1.41ξ), . . .}

ϕ4
n = {−13.37,−0.0037 cos(1.5ξ)− 1.418 sin(1.5ξ),−1.35 cos(0.58ξ)− 2.77 sin(0.58ξ),

1.67 cos(−1.2ξ) + 0.25 sin(−1.2ξ), 0.22 cos(1.9ξ)− 1.2 sin(1.9ξ), . . .}

ϕ5
n =

{√
2,
√
2 cos(πξ),

√
2 cos(2πξ),

√
2 cos(3πξ),

√
2 cos(4πξ), . . .

}
To solve the corresponding Riccati equation (3.44) in the case study, the algorithm

developed in the previous section is implemented. The output operator is chosen to

be C = I and p11 = 0.3, p22 = 0.2, p33 = 10, p44 = 10 and r = 10. In this case, the

functions qi, 1 ≤ i ≤ 4 are given by the following expressions

q1 = 3.1623 and q4 = 1.2
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The expression of the function q2 at each subdivision is expressed by using (4.43) :

q12z = 4.29(zTϕ1
1)ϕ

1
1+4.2(zTϕ2

1)ϕ
2
1+4.3(zTϕ3

1)ϕ
3
1+3.88(zTϕ4

1)ϕ
4
1+3.87(zTϕ5

1)ϕ
5
1

q22z = 3.85(zTϕ1
2)ϕ

1
2+3.8(zTϕ2

2)ϕ
2
2+3.864(zTϕ3

2)ϕ
3
2+3.5(zTϕ4

2)ϕ
4
2+3.52(zTϕ5

2)ϕ
5
2

q32z = 3.3652(zTϕ1
3)ϕ

1
3+3.36(zTϕ2

3)ϕ
2
3+3.38(zTϕ3

3)ϕ
3
3+3.3625(zTϕ4

3)ϕ
4
3+3.372(zTϕ5

3)ϕ
5
3

q42z = 3.87(zTϕ1
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The exact expression of q3 is given by the following expression:

q3(ξ) =
[
200.05e201(1−ξ) − 0.05

]−1 − 0.05

By solving the off-diagonal equations, the matrix P is given by

P =

⎡⎢⎢⎣
0.3 0.0054 0 −1.7286

0.0054 0.2 −0.0063 −0.1004
0 −0.0063 10 −0.0009

−1.7286 −0.1004 −0.0009 10

⎤⎥⎥⎦ (3.54)

which has the eigenvalues [0.0005, 0.1997, 10, 10.3] and then the positivity of P is

guaranteed.

The state feedback is given by Equation (3.49). This controller is applied on the

nonlinear system . The closed-loop responses are shown in Figures 3.3-3.5. It can be

observed that, the designed optimal controller is able to reject the effect of the initial

condition in 5 seconds and surface, gas, and housing temperatures converge to their

desired steady-state profiles .
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Figure 3.3: Closed-loop surface temperature.

Figure 3.4: Closed-loop gas temperature.

The closed-loop errors are shown in Figures 3.6-3.7 confirms our results and it

is observable that the errors converge to zero in 5 seconds which means that our

controller drive the closed-loop to the steady states for any initial condition.
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Figure 3.5: Closed-loop housing temperature.

Figure 3.6: Closed-loop trajectory of Ts − Ts,ss.
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Figure 3.7: Closed-loop trajectory of Tg − Tg,ss.
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Chapter 4

Optimal Control of Selective
Catalytic Reduction

4.1 Process Description and Modelling

4.1.1 Reaction Mechanism

The reaction Mechanism describes how the chemical reactions occur. We consider

that the only species adsorbed on surface is the NH3. In this case many studies have

been reported [39,41,42], where we can find the details of this mechanism

An aqueous urea solution is required to reduce NOx. Urea plays the main role

concerning the formation of gaseous ammonia. Urea decomposition is described in

the following reactions [29]:

H4N2CO −→ NH3 +HNCO (4.1)

HNCO+ H2O −→ NH3 + CO2 (4.2)

The thermal decomposition reaction (4.1) takes place upstream of the SCR catalyst.

The NH3 formed is further adsorbed on the surface of the SRC catalyst.It has been

observed that the hydrolysis reaction (4.2) has significant effect concerning the for-

mation of NH3.Then it is much better to take this reaction into account.

After the step of NH3 formation we now describe the process how this NH3 can

reduced the nitrogen oxides by converting it to nitrogen and water which are less

harmful than NOx The reactions are [29]:
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4NH3 + 2NO+ 2NO2 −→ 4N2 + 6H2O (4.3)

4NH3 + 4NO+O2 −→ N2 + 6H2O (4.4)

8NH3 + 6NO2 −→ 7N2 + 12H2O (4.5)

The reaction (4.3) is the best pathway because it can convert NOx to nitrogen and

water very fast and it is preferable to reaction (4.4) and reaction (4.5).The oxida-

tion of ammonia can be an obstacle for maximum conversion of NOx The reaction

mechanisms are [29]:

4NH3 + 3O2 −→ 2N2 + 6H2O (4.6)

NH3 + 5O2 −→ 4NO + 6H2O (4.7)

4.1.2 The Complete SCR Model

The SCR catalytic converter typically consists of a ceramic substrate in the form of

a honeycomb monolith with thousands of parallel channels of about 1 mm hydraulic

radius. The surface of the channels is covered with a washcoat containing a catalyst.

We consider a single channel as being representative of the converter as a whole. We

model the channel as a right circular cylinder and this case can use a 2D axisymetrical

model. Further, by using a lumped capacitance model in the radial direction we can

further reduce the model to a single spatial dimension [45]. We have to consider the

bulk gas phase and the surface, with the two being coupled via heat and mass transfer

coefficients. The complete model [46,47] of bulk gas contains four species (NO, NO2,

NH3, and O2). The mass balance equations are PDEs as follows:

The Mass balance

∂cgj (z, t)

∂t
= −v

∂cgj
∂z

+
kjma

ϵ
(csj − cgj ), j = NO,NO2, NH3, O2 (4.8)

Equation(4.8) describes the masse balances of each components, and it is considered

as a hyperbolic class of PDEs.

There are three terms in Equation(4.8) which are: accumulation of species ,convective
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term, and diffusion of mass from bulk gas to washcoat

cj,v,km,a, and ϵ are the concentration of component ‵j′,the linear gas velocity

which is assumed constant along catalyst channel, the mass transfer coefficient; the

mass and heat transfer area per unit of catalyst volume; the porosity in the catalytic

washcoat layer or the void fraction .

The mass balances of each component in the washcoat pores are shown in the

following equations

(1− ϵ)
∂csj(z, t)

∂t
= kjma(c

g
j − csj)±G

∑
σkrk, j = NO,NO2, NH3, O2 (4.9)

Equation (4.9) is the same as the pervious one, just in this case the accumulation

takes place only in 1 − ϵ, and instead of a convective term we have a heat source

which is generated by the chemical reactions. The accumulation of species in the

surface is very small compared to other terms , that is the reason behind neglecting

this accumulation term. So the final form of the mass balance at surface is, where G

is active catalytic surface area and σk is the stoichiometric coefficient of each reaction,

rk are reaction rates of each reaction

kjma(c
g
j − csj) = ±G

∑
σkrk, j = NO,NO2, NH3, O2 (4.10)

The mass balances of intermediate species :

Intermediate species are the adsorption/desorption of gases on the reaction sites

on the surface. They have have a significant role in modelling SCR. Thus the ammonia

intermediate species surface coverage equation can be written as follows:

dΩNH3(z, t)

dt
=

a

Ωcap
NH3

(rad − rdes − r4) (4.11)

ΩNH3 is the coverage of stored ammonia on the surface of catalyst; Ωcap is the

storage capacity.
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The Energy balance

The total enthalpy balance in the bulk gas gives us the gas temperature as follows:

∂T g(z, t)

∂t
= −v∂T

g

∂z
+

hma

ρgcpgϵ
(T s − T g) (4.12)

Equation (4.12) is a hyperbolic PDE which consists of three terms :the accumula-

tion of heat, the heat convection, and inter-phase heat transfer from gas to monolith.

]hm,ρ
g ,cpg,T g,and T s e are the conductive heat transfer coefficient between bulk gas

and monolith ,the exhaust gas density, an exhaust gas specific heat capacity, temper-

ature of exhaust gas, and the surface temperature.

The total enthalpy balance in surface gives us the surface temperature as follows:

∂T s(z, t)

∂t
=

λs

ρscps
∂2T s

∂z2
− hma

ρscps(1− ϵ)
(T s − T g)− hextaext

ρscps(1− ϵ)
(T s − T ext)

− a

ρscps(1− ϵ)

5∑
j=1

∆Hjrj (4.13)

The Equation (4.13) is a parabolic PDE λ is the thermal conductivity; T ext is the

temperature of surroundings; and ∆H is the standard reaction enthalpy. respectively.

We conclude that the model of SCR includes hyperbolic and parabolic partial

differential equations (PDEs), and ordinary differential equation (ODE) that are cou-

pled.

Reaction rates

The reaction rate defines how fast the chemical reaction consumes reactants and

produces products. In our case reaction rates are introduced as the following:
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r1 = 2.53 ∗ 106e
−3007

T s
csNOc

s
NO2

csNH3

1 + 1.2042 ∗ 10−3csNH3

(4.14)

r2 = 2.36 ∗ 108e
−7151

T s
csNOc

s
NH3

1 + 1.2042 ∗ 10−3csNH3

(4.15)

r3 = 7.56 ∗ 108e
−8507

T s
csNO2

csNH3

1 + 1.2042 ∗ 10−3csNH3

(4.16)

r4 = 1.32 ∗ 107e
−15034

T s ΩNH3 (4.17)

r5 = 9.11 ∗ 1010e
−14503

T s
csO2

csNH3

(1 + 1.2042 ∗ 10−3csNH3
)(1 + 1.5053 ∗ 10−3csO2

)
(4.18)

rad = 0.82csNH3
(1− ΩNH3) (4.19)

rdes = 3.67 ∗ 106e
−12992(1− 0.310ΩNH3)

T s ΩNH3 (4.20)

Note that the unit of the reaction rates ri, 1 ≤ i ≤ 5 is mol/s.m2 and the unit for

rad and rdes is mol/s.m
3.

The parameters, mass and heat transfer coefficients, and functions used to express

the reaction kinetics that are used in Equations (4.8)-(4.13) are shown in Tables 4.1

and 4.2, respectively.
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Table 4.1: Model parameters for SCR [29]

Parameter Value Unit

a 2666 [m2m−3]
aext 1 [m2m−3]
hext 35 [Wm−2K−1]
ϵ 0.68 [%]
ρs 1770 [kgm−3]
cps 900 [Jkg−1K−1]
λs 1 [Wm−1K−1]

Ωcap
NH3

209 [mol/m3]
∆H1 -378.534 [kJmol−1]
∆H2 -407.129 [kJmol−1]
∆H3 -341.664 [kJmol−1]
∆H4 -316.839 [kJmol−1]
∆H5 -226.549 [kJmol−1]

Table 4.2: Mass and heat transfer coefficients for SCR [29]

Parameter Equation Unit

hm = 19 + 0.1748T g − 18.318 ∗ 10−6(T g)2 [Wm−2K−1]
kNO
m = 2.745 ∗ 10−6(T g)1.75 [ms−1]
kNO2
m = 2.212 ∗ 10−6(T g)1.75 [ms−1]
kNH3
m = 2.959 ∗ 10−6(T g)1.75 [ms−1]
kO2
m = 2.399 ∗ 10−6(T g)1.75 [ms−1]

4.1.3 Control Objectives

The SCR catalyst technology theoretically can reduce up to 90% percent of NOx,

but this is not the case for many reasons. For example, there are some disturbances

that may affect the control performance of a SCR, and one of them is the continues

fluctuations of NOx concentrations because the speed of diesel engine is not constant,

also the urea solution has a direct effect on the ammonia, so the under/overdosage
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of urea can lead to disturbance in the control of SCR, Finally the disturbance of

the gas temperature at the inlet it may affect the SCR performances. Our control

objective is to keep the performances of SCR as high as possible and to drive this

system to achieve the optimal performances regardless, of the previous disturbances.

The ammonia dosage at the inlet is the only manipulated variable, so finding the

optimal dosage of ammonia is our challenging objective. Good control performance is

achieved if the tailpipe concentration of NOx is less than 50 ppm, and the ammonia

slip is less than 20 ppm, so we need to perform some simulations by changing values of

concentrations and temperature of gas at the inlet to determine which is the perfect

steady states that we can linearize around.

4.1.4 Abstract Cauchy problem on the Hilbert space Z

In this section we reformulate our boundary control problem to an abstract Cauchy

problem which fits our standard formulation (2.2) . It is possible to reformulate such

problems on an extended state space so that they do lead to an associated system in

the standard form [23].

The Final models of SCR with the Boundary Conditions are given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂T s(z, t)

∂t
=

λs

ρscps
∂2T s

∂z2
− hma

ρscps(1− ϵ)
(T s − T g)− hextaext

ρscps(1− ϵ)
(T s − T ext)

− a

ρscps(1− ϵ)

∑5
j=1∆Hjrj

∂T g(z, t)

∂t
= −v∂T

g

∂z
+

hma

ρgcpgϵ
(T s − T g)

∂cgNO(z, t)

∂t
= −v∂c

g
NO

∂z
+
kNO
m a

ϵ
(csNO − cgNO),

∂cgNO2(z, t)

∂t
= −v∂c

g
NO2

∂z
+
kNO2
m a

ϵ
(csNO2 − cgNO2)

∂cgNH3(z, t)

∂t
= −v∂c

g
NH3

∂z
+
kNH3
m a

ϵ
(csNH3 − cgNH3)

∂cgO2(z, t)

∂t
= −v∂c

g
O2

∂z
+
kO2
m a

ϵ
(csO2 − cgO2)

dΩNH3(z, t)

dt
=

a

Ωcap
NH3

(rad − rdes − r4)

(4.21)
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With the following Boundary Conditions:⎧⎪⎪⎨⎪⎪⎩
T g(0, t) = T g

in

cgj (0, t) = cgj,in, j = NO,NO2, NH3, O2

∂T s(0, t)

∂z
=
∂T s(L, t)

∂z
= 0,

(4.22)

We reformulate the problem to match the general case. The system can be written

as follows: ⎧⎪⎨⎪⎩
∂zp
∂t

= d∂2zp
∂ξ2

+ f(zp, zh, k)
∂zh
∂t

= −V ∂zh
∂ξ

+ g(zp, zh, k)
dk
dt

= h(zp, zh, k)

(4.23)

Such that the states are:

zp = T s, zh =
[
T g cgNO cgNO2 cgNH3 cgO2

]T
=
[
zh1 zh2 zh3 zh4 zh5

]T
, k = ΩNH3

The coefficients are: d =
λs

ρscps
, V = diag(v.I4)

Finally the non-linear functions are:

f(zp, zh, k) = − hma

ρscps(1− ϵ)
(T s−T g)− hextaext

ρscps(1− ϵ)
(T s−T ext)− a

ρscps(1− ϵ)

∑5
j=1 ∆Hjrj

h(zp, zh, k) =
1

Ωcap
NH3

(rad − rdes − ar4)

g(zp, zh, k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hma

ρgcpgϵ
(T s − T g)

kNO
m a

ϵ
(csNO − cgNO)

kNO2
m a

ϵ
(csNO2 − cgNO2)

kNH3
m a

ϵ
(csNH3 − cgNH3)

kO2
m a

ϵ
(csO2 − cgO2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
g1(zp, zh, k)
g2(zp, zh, k)
g3(zp, zh, k)
g4(zp, zh, k)
g5(zp, zh, k)

⎤⎥⎥⎥⎥⎦

The final models with the boundary conditions are stated as follows:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂zp
∂t

= d
∂2zp
∂ξ2

+ f(zp, zh, k)

∂zh
∂t

= −V
∂zh
∂ξ

+ g(zp, zh, k)

dk

dt
= h(zp, zh, k)

(4.24)
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Where the boundary conditions are:

∂zp
∂ξ

|ξ=0 =
∂zp
∂ξ

|ξ=1 = 0 and zh(ξ = 0) = zh,in

zp(ξ, 0) = zp,0(ξ) and zh(ξ, 0) = zh,0(ξ) and k(0) = k0

(4.25)

where (zp, zh, k) ∈ H = L2(0, 1)× (L2(0, 1))5×R denote the state variables of the

system, ξ ∈ [0, 1] and t ∈ [0,∞) represent the space variable and time, respectively.

The functions f and g and h are non-linear continuous functions. cgNH3(ξ = 0) the

component number 4 of the function zh,in ∈ L2(0, 1) is the input variable. The only

difference between the previous case and this case is that V is diagonal matrix rather

than scalar .

To solve the corresponding linear-quadratic control problem, the linearization of

the above system around a steady-state profile is needed. For this purpose, let us

denote by zp,ss and zh,ss and kss the components of the system steady state.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂z̃p
∂t

= d
∂2z̃p
∂ξ2

+m11(ξ)z̃p +m12(ξ)z̃h +m13(ξ)k̃

∂z̃h
∂t

= −V
∂z̃h
∂ξ

+m21(ξ)z̃p +m22(ξ)z̃h +m23(ξ)k̃

dk̃

dt
= m31(ξ)z̃p +m32(ξ)z̃h +m33(ξ)k̃

(4.26)

With the following new initial and boundary conditions

∂z̃p
∂ξ

|ξ=0 = 0 and
∂z̃p
∂ξ

|ξ=l = 0 and z̃h(ξ = 0) = zh(ξ = 0)− zh,ss(ξ = 0)

z̃p(ξ, 0) = zp,0(ξ)− zp,ss(ξ) and z̃h(ξ, 0) = zh,0(ξ)− zh,ss(ξ) and k̃(0) = k0 − kss
(4.27)

Where z̃p = zp − zp,ss and z̃h = zh − zh,ss and k̃ = k − kss are the state variables in

deviation form. The functions mij, 0 ≤ i, j ≤ 3 are the Jacobians of the nonlinear

terms evaluated at the system steady state.

m11(ξ) =
∂f(zp, zh, k)

∂zp
|ss, m12(ξ) =

∂f(zp, zh, k)

∂zh
|ss, m13(ξ) =

∂f(zp, zh, k)

∂k
|ss

m21(ξ) =
∂g(zp, zh, k)

∂zp
|ss, m22(ξ) =

∂g(zp, zh, k)

∂zh
|ss, m23(ξ) =

∂g(zp, zh, k)

∂k
|ss

m31(ξ) =
∂h(zp, zh, k)

∂zp
|ss, m32(ξ) =

∂h(zp, zh, k)

∂zh
|ss, m33(ξ) =

∂h(zp, zh, k)

∂k
|ss.
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From the other hand and to clarify more we have that:

m12 =
[

∂f(zp,zh,k)

∂zh1
|ss ∂f(zp,zh,k)

∂zh2
|ss ∂f(zp,zh,k)

∂zh3
|ss ∂f(zp,zh,k)

∂zh4
|ss ∂f(zp,zh,k)

∂zh5
|ss
]

m21(ξ) =

⎡⎢⎢⎢⎢⎢⎢⎣

∂g1(zp,zh,k)

∂zp
|ss

∂g2(zp,zh,k)

∂zp
|ss

∂g3(zp,zh,k)

∂zp
|ss

∂g4(zp,zh,k)

∂zp
|ss

∂g5(zp,zh,k)

∂zp
|ss

⎤⎥⎥⎥⎥⎥⎥⎦ m23(ξ) =

⎡⎢⎢⎢⎢⎢⎣
∂g1(zp,zh,k)

∂k
|ss

∂g2(zp,zh,k)

∂k
|ss

∂g3(zp,zh,k)

∂k
|ss

∂g4(zp,zh,k)

∂k
|ss

∂g5(zp,zh,k)

∂k
|ss

⎤⎥⎥⎥⎥⎥⎦

m22 =

⎡⎢⎢⎢⎢⎢⎢⎣

∂g1(zp,zh,k)

∂zh1
|ss ∂g1(zp,zh,k)

∂zh2
|ss ∂g1(zp,zh,k)

∂zh3
|ss ∂g1(zp,zh,k)

∂zh4
|ss ∂g1(zp,zh,k)

∂zh5
|ss

∂g2(zp,zh,k)

∂zh1
|ss ∂g2(zp,zh,k)

∂zh2
|ss ∂g2(zp,zh,k)

∂zh3
|ss ∂g2(zp,zh,k)

∂zh4
|ss ∂g2(zp,zh,k)

∂zh5
|ss

∂g3(zp,zh,k)

∂zh1
|ss ∂g3(zp,zh,k)

∂zh2
|ss ∂g3(zp,zh,k)

∂zh3
|ss ∂g3(zp,zh,k)

∂zh4
|ss ∂g3(zp,zh,k)

∂zh5
|ss

∂g4(zp,zh,k)

∂zh1
|ss ∂g4(zp,zh,k)

∂zh2
|ss ∂g4(zp,zh,k)

∂zh3
|ss ∂g4(zp,zh,k)

∂zh4
|ss ∂g4(zp,zh,k)

∂zh5
|ss

∂g5(zp,zh,k)

∂zh1
|ss ∂g5(zp,zh,k)

∂zh2
|ss ∂g5(zp,zh,k)

∂zh3
|ss ∂g5(zp,zh,k)

∂zh4
|ss ∂g5(zp,zh,k)

∂zh5
|ss

⎤⎥⎥⎥⎥⎥⎥⎦
m32 =

[
∂h(zp,zh,k)

∂zh1
|ss ∂h(zp,zh,k)

∂zh2
|ss ∂h(zp,zh,k)

∂zh3
|ss ∂h(zp,zh,k)

∂zh4
|ss ∂h(zp,zh,k)

∂zh5
|ss
]

To get the steady states many simulations have been done using different input values

of gas temperature/concentrations. Using finite difference method in MATLAB at

the optimal boundary conditions of SCR. The simulations of steady states are shown

in the figures 4.2-4.3.
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Figure 4.1: Concentration of ΩNH3 at steady state
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Figure 4.2: Concentrations of gas components at steady state

We use those values of steady states to get the functions mij. The functions mij

are given as follows:
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Figure 4.3: Gas and Surface temperatures at steady state
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m11 = − hm,ssa

ρscp(1−ϵ)
− hextaext

ρscp(1−ϵ)
− a(3007r1,ss+7151r2,ss+8507r3,ss+15034r4,ss+14503r5,ss)

ρscp(1−ϵ)T 2
s,ss

m12 =
[
−a[(0.1748−2∗18.318∗10−6Tg,ss)(Ts,ss−Tg,ss)−hm,ss]

ρscp(1−ϵ)
0 0 0 0

]
m13 = −1.32∗107a∆H4e

−15034
Ts,ss

ρscp(1−ϵ)

m21 =

⎡⎢⎢⎢⎢⎢⎢⎣

hm,ssa

ρgcgpϵ

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦

m22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a[(0.1748−2∗18.318∗10−6Tg,ss)(Ts,ss−Tg,ss)−hm,ss]

ρscspϵ
0 0 0 0

4.8∗10−6a(csNO−cg,ssNO )(T g,ss)0.75

ϵ
−kNO

m,ssa

ϵ
0 0 0

3.871∗10−6a(csNO2−cg,ssNO2)(T
g,ss)0.75

ϵ
0 −kNO2

m,ssa

ϵ
0 0

5.18∗10−6a(csNH3−cg,ssNH3)(T
g,ss)0.75

ϵ
0 0 −kNH3

m,ss a

ϵ
0

4.2∗10−6a(csO2−cg,ssO2 )(T g,ss)0.75

ϵ
0 0 0 −kO2

m,ssa

ϵ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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m23 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
m31 =

ΩNH3,ss[47.7∗109(1−0.310ΩNH3,ss)e

−12992(1−0.310ΩNH3,ss)

Ts,ss +19.84∗1010ae
−15043
Ts,ss ]

Ωcap
NH3∗T 2

s,ss

m32 =
[
0 0 0 0 0

]
m33 = −

0.82csNH3+(
1.48∗1010ΩNH3,ss

Ts,ss
+3.67∗106)e

−12992(1−0.310ΩNH3,ss)

Ts,ss +1.32a∗107e
−15034
Ts,ss

Ωcap
NH3

Let us assume that the new state is by z =
[
z̃p z̃h k̃

]T
and the new input is given

by w = z̃h4|ξ=0 =
[
0 0 0 I|ξ=0 0

]
z̃h = Mz̃h. Then, the above linear system

can be formulated as an abstract boundary control problem on the Hilbert space H

( [23]),

⎧⎨⎩
dz(t)

dt
= Az(t) z(0) = z0

Bz(t) = w(t)

(4.28)

Where A is the linear operator defined by

A =

⎡⎢⎢⎢⎣
d
∂2

∂ξ2
+m11(ξ) m12(ξ) m13(ξ)

m21(ξ) −V
∂

∂ξ
+m22(ξ) m23(ξ)

m31(ξ) m32(ξ) m33(ξ)

⎤⎥⎥⎥⎦
and:

D(A) =

{
z ∈ H : z̃p, z̃h,

dz̃p
dξ

are absolutely continous,
dz̃h
dξ

× dz̃p
dξ

× d2z̃p
dξ2

∈ (L2(0, 1))3 and

∂z̃p
∂ξ

|ξ=0 = 0), and
∂z̃p
∂ξ

|ξ=l = 0

}
The input operator B : H → R is given by

B =
[
0 M 0

]
The objective is to find an operator B ∈ L(R, H) such that for all w ∈ R, Bw ∈

D(A), the operator AB is an element of L(R, H) and BBw = w. If B is chosen as
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follows: B =

⎡⎣ Bp(ξ) · I
Bh(ξ) · I
Bk(ξ) · I

⎤⎦, such that Bh(ξ) =

⎡⎢⎢⎢⎢⎣
Bh1(ξ)
Bh2(ξ)
Bh3(ξ)
Bh4(ξ)
Bh5(ξ)

⎤⎥⎥⎥⎥⎦, where Bu ∈ D(A).

To get B we need to use those two conditions:

First conditions is Bu ∈ D(A) which gives us the following :

d(Bp(ξ)w)

dξ
(ξ = 0) = w

dBp

dξ
(ξ = 0) = 0 ⇔ dBp

dξ
(ξ = 0) = 0 (4.29)

and
d(Bp(ξ)w)

dξ
(ξ = l) = w

dBp

dξ
(ξ = l) = 0 ⇔ dBp

dξ
(ξ = l) = 0 (4.30)

Second condition is BBw = w which is hold if:

MBh(ξ) · I = Bh4|ξ=0
w = w ⇔ Bh4(ξ = 0) = 1 (4.31)

Lets assume that A : D(A) → Z such that Az = Az, and D(A) = D(A)
⋂
ker(B).

By transform the state as we did in the pervious section into v(t) = z(t) − Bw(t)

where the new input is u(t) = ẇ(t), we get the following abstract Cauchy problem:{
ẋ(t) = Âx(t) + B̂u(t) x(0) = x0

y(t) = Ĉx(t)
(4.32)

Where the operators Â, B̂ and Ĉ are given by

Â =

[
0 0
AB A

]
; B̂ =

[
I
−B

]
, Ĉ = C[B I] (4.33)

Such that c3 = diag(cii), 1 ≤ j ≤ 5, where cii are scalars.

The operator AB is given by

AB =

⎡⎣ (AB)1
(AB)2
(AB)3

⎤⎦ =

⎡⎣ d ∂2

∂ξ2
+m11 m12 m13

m21 −V ∂
∂ξ

+m22 m23

m31 m32 m33

⎤⎦⎡⎣ Bp

Bh

Bk

⎤⎦ · I

Due to the fact that the operator AB acts on elements on R (space independent

elements), then if we assume that the functions Bp , Bh and bk are constants (In this

case and according to Equation (4.31) bh4 should equal to 1, then the operator AB

can be simplified and becomes

AB =

⎡⎣ m11Bp +m12Bh +m13Bk

m12Bp +m22Bh +m23Bk

m31Bp +m32Bh +m33Bk

⎤⎦ · I :=

⎡⎣ γ1
γ2
γ3

⎤⎦ · I
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By taking : A11 = d ∂2

∂ξ2
+m11, A22 = −V ∂

∂ξ
+m22 the extended operators Â and B̂

are given by: Â =

⎡⎢⎢⎣
0 0 0 0
γ1 A11 m12 m13

γ2 m21 A22 m23

γ3 m31 m32 m33

⎤⎥⎥⎦ · I, B̂ =

⎡⎢⎢⎣
1

−Bp

−Bh

−Bk

⎤⎥⎥⎦ · I

4.2 Eigenvalues Problem and Dynamical System

Properties

4.2.1 Eigenvalues Problem

As we introduced in the pervious section of eigenvalues problem the same process is

going to be apply on the new values of m11 in order to get eigenvalues and eigenfunc-

tions . We have that m11 varies over the space as follows:
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Figure 4.4: Variation of m11
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ξ [0, 0.2] [0.2, 0.4] [0.4, 0.6] [0.6, 0.8] [0.8, 1]
m11(ξ) -65 -59 -54 -50 -45

To calculate the eigenvalues, it is assumed that the length of the reactor is divided

into 5 equally spaces, and by applying our procedure as it is described in the pervious

section we get The first five eigenvalues of the parabolic operator as follows:

λ1n = {−65.02,−65.42,−65.01,−67.02,−67.02, . . . }

λ2n = {−59.08,−59.42,−59.01,−61.06,−61.06, . . .}

λ3n = {−65.06,−56.06,−55.94,−56.24,−55.99, . . .}

λ4n = {−50,−52.26,−50.34,−51.45,−53.65, . . . }

λ5n = {−44.9,−54.77,−84.38,−133.73− 203.13, . . .}

The corresponding eigenfunctions are given by:

ϕ1
n =

{√
2 cos(1.4ξ),

√
2 cos(0.65ξ),

√
2 cos(−0.12ξ),

√
2 cos(1.43ξ),

√
2 cos(1.42ξ), . . .

}
ϕ2
n = {1.5 cos(0.28ξ) + 0.13 sin(0.28ξ), 1.96 cos(0.65ξ) + 0.54 sin(0.65ξ),

1.4 cos(1.4ξ)− 0.0025 sin(1.4ξ), 4.73 cos(1.43ξ) + 3.3 sin(1.43ξ),
4.7 cos(1.42ξ) + 3.31 sin(1.42ξ), . . .}

ϕ3
n = {10 cos(1.4ξ) + 8.59 sin(1.4ξ),−7.72 cos(1.42ξ)− 9.14 sin(1.42ξ),

3.1 cos(1.39ξ) + 1.67 sin(1.39ξ),−1.2 cos(1.4ξ)− 2.62 sin(1.4ξ),
−1.17 cos(1.41ξ)− 2.6 sin(1.41ξ), . . .}

ϕ4
n = {−13.37,−0.0037 cos(1.5ξ)− 1.418 sin(1.5ξ),−1.35 cos(0.58ξ)− 2.77 sin(0.58ξ),

1.67 cos(−1.2ξ) + 0.25 sin(−1.2ξ), 0.22 cos(1.9ξ)− 1.2 sin(1.9ξ), . . .}

ϕ5
n =

{√
2,
√
2 cos(πξ),

√
2 cos(2πξ),

√
2 cos(3πξ),

√
2 cos(4πξ), . . .

}
4.2.2 Dynamical System Properties

Our approach to prove the exponential stabilizability and the exponential detectabil-

ity is the same. Rather than dealing with v as scalar we have now a matrix V. So the

following results hold by the same proofs.

Lemma 2. Let us consider the operator Â defined by Equation (4.33), then Â is the

infinitesimal generator of a C0 semigroup on H.

53



The following result states that, under some technical conditions, the functions Bp

and Bk can be chosen to guarantee the exponential stabilizability of the pair (Â, B̂).

Proposition 3. Let us consider the operator pair (A,B), where A and B are given by

Equations (4.38a) and (4.38b), respectively. Then, Bp and Bk can be always chosen

to guarantee that there exists an operator K ∈ L(H,R) such that A+BK generates

an exponentially stable C0-semigroup on H. Moreover, if 0 ∈ ρ(A) and ∀s ∈ C+
0 ,

ker(sI (AB)∗) ∩ ker(0 (sI − A∗)) ∩ ker(I − B∗) = {0}, then the operator pair

(Â, B̂) generates an exponentially stabilizable C0-semigroup on H.

To guarantee the exponential stabilizability of (Â, B̂) we need to verify that the

choice of Bp and Bk give us that α22 < 0 and in the same time give us dBp(ξ=0)

dξ
=

dBp(ξ=l)

dξ
= 0 which are two conditons{

α22 < 0 (1)
dBp(ξ=0)

dξ
= dBp(ξ=l)

dξ
= 0 (2)

By setting that Bp = bk = I the condition (2) holds. Concerning the condition (1)

the figure (4.5) shows that the condition(1) also holds
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Figure 4.5: Variation of α22
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The exponential detectability of the operator pair (Ĉ, Â) is stated in the following

proposition.

Proposition 4. Let us consider the operator A and C given by Equations (4.38a)

and (4.38c), respectively. If C2 has full rank, then there exists an operator L ∈ L(H)

such that A + LC generates an exponentially stable C0-semigroup on H. Moreover,

if 0 ∈ ρ(A), then the operator pair (Ĉ, Â) generates an exponentially stabilizable

C0-semigroup on H.

Proof. Let us consider L under the following form

L =

⎡⎣ L1 0 0
L2 0 0
L3 L4 L5

⎤⎦
The operator A+ LC is⎡⎢⎢⎣ d ∂2

∂ξ2
+m11 + L1C1 m12 m13

m21 + L2C1 −V ∂
∂ξ

+m22 m23

m31 + L3C1 m32 + L4C2 m33 + L5C3

⎤⎥⎥⎦
Let us choose L1 = −m11C

−1
1 , L2 = m21C

−1
1 , L3 = m31C

−1
1 (C1 ̸= 0), L4 = m32C

−1
2

and L5 can be chosen (always possible) m33 + L5C3 = −η for some η > 0. In this

case, the operator A+ LC becomes

A+ LC =

⎡⎢⎢⎣ d ∂2

∂ξ2
m12 m13

0 −V ∂
∂ξ

+m22 m23

0 0 −η

⎤⎥⎥⎦
The resulting operator is triangular and all its diagonal entries generates an expo-

nentially stable C0-semigroup and so is the operator A + LC. The exponential de-

tectability of (Ĉ, Â) is an immediate consequence of [23, Exercise 5.25].

4.3 Optimal Control Design

In this section, the aim is to design an optimal linear-quadratic (LQ) state feedback

controller for the linearized system Σ(Â, B̂, Ĉ) given by Equations (4.32)-(4.33). Our

objective is to find a control law to minimize the following cost functional:

J(x0, u) =

∫ ∞

0

(⟨y(s),Py(s)⟩+ ⟨u(s),Ru(s)⟩)ds (4.34)
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Where the operator P = P · I =

⎡⎢⎢⎣
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

⎤⎥⎥⎦ · I

Such that (p13)1×5 = p∗31, (p23)1×5 = p∗32, (p43)1×5 = p∗34, (p33)5×5.

The matrix P is symmetric and positive semi-definite and R = r · I such that

r > 0. It has been shown in the previous section that the pair (Â, B̂) is exponentially

stabilizable and the pair (P1/2Ĉ, Â) is exponentially detectable. It is well-known that,

under those conditions, the solution of the LQ-control problem can be obtained via

the corresponding Operator Riccati Equation (ORE) ( [23]).

[Â∗Q+QÂ+ Ĉ∗PĈ−QB̂RB̂∗Q]x = 0 ∀x ∈ D(Â) and Q(D(Â)) ⊂ D(Â∗) (4.35)

which admits a unique non-negative self adjoint solution and for any x0 ∈ H, the

quadratic cost (4.34) is minimized by the unique control u given for any t ≥ 0 by

u(t) = Kx(t) := −R−1B̂∗Qx(t), x(t) = e(Â+B̂K)tx0 (4.36)

Moreover, the C0-semigroup e(Â+B̂K)t generated by the closed-loop system is ex-

ponentially stable on H. Let us assume the operator Riccati equation (4.35) admits

a diagonal solution of the following form:

Q =

⎡⎢⎢⎣
Q1 0 0 0
0 Q2 0 0
0 0 Q3 0
0 0 0 Q4

⎤⎥⎥⎦ (4.37)

To guarantee that Q is positive we need just to make sure that (Q1)1×1, (Q2)1×1,

(Q3)5×5, (Q4)1×1 are non-negative and self-adjoint operators.

Let’s take Q3 as follows:

Q3 =

⎡⎢⎢⎢⎢⎣
q11 q12 q13 q14 q15
q12 q22 q23 q24 q25
q13 q23 q33 q34 q35
q14 q24 q34 q44 q45
q15 q25 q35 q45 q55

⎤⎥⎥⎥⎥⎦
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Equation (4.35) gives the following system of equations:

T i
11 = c∗1p

i
11c1 −Qi

1r
iQi

1 (4.38a)

T i
12 = γ∗1Q

i
2 + c∗1p

i
12c2 +Qi

1r
iB∗

pQ
i
2 (4.38b)

T i
13 = γ∗2Q

i
3 + c∗1p

i
13c3 +Qi

1r
iB∗

hQ
i
3 (4.38c)

T i
14 = γ∗3Q

i
4 + c∗1p

i
14c4 +Qi

1r
iB∗

kQ
i
4 (4.38d)

T i
22 = A∗

11Q
i
2 +Qi

2A11 + c∗2p
i
22c2 −Qi

2Bpr
iB∗

pQ
i
2 (4.38e)

T i
23 = m∗

21Q
i
3 +Qi

2m12 + c∗2p
i
23c3 −Qi

2Bpr
iB∗

hQ
i
3 (4.38f)

T i
24 = m∗

31Q
i
4 +Qi

2m13 + c∗2p
i
24c4 −Qi

2Bpr
iB∗

kQ
i
4 (4.38g)

T i
33 = A∗

22Q
i
3 +Qi

3A22 + c∗3p
i
33c3 −Qi

3Bhr
iB∗

hQ
i
3 (4.38h)

T i
34 = m∗

32Q
i
4 +Qi

3m23 + c∗3p
i
34c4 −Qi

3Bhr
iB∗

kQ
i
4 (4.38i)

T i
44 = m∗

33Q
i
4 +Qi

4m33 + c∗4p
i
44c4 −Qi

4Bkr
iB∗

kQ
i
4 (4.38j)

Note that the operators Bp, Bk and the components of the operator Bh are oper-

ators defined from R to L2(0, 1) under the form Bcu = B(z)u. The adjoint operator

of Bc is defined from L2(0, 1) → R and is given by

B∗
cx =

∫ 1

0

B(z)x(z)dz

which represents the average value of the function Bx on the interval [0, 1] as we

stated in the previous section. In our case we have a solution of Riccati equation on

each subdivision With this fact, the Riccati equation is to become a set of integro-

differential equations that are not easy to solve. To avoid this problem, the output of

the adjoint operators B∗
p , B

∗
h and B

∗
k are to be substituted by the distributed functions

instead of the average values. However, the average values will be used to calculate the

optimal input which is defined in Equation (4.36) and can be found by the following

expression:

u(t) = −r−1

[
Q1x1(t)−Bp

∫ 1

0

Q2(z)x2(t, z)dz

−
5∑

i=1

Bhi

∫ 1

0

[Q3(z)x3(t, z)]i dz −Bk

∫ 1

0

Q4(z)x4(t, z)dz

]
(4.39)

57



where Q1, Q2, Q3, Q4 are the unique solutions of Equations (4.38a), (4.38e), (4.38h)

and (4.38j), respectively. Now, we can solve these four equations separately and use

the matrix P to force the other equations to be satisfied.

Qi
1, Q

i
2, Q

i
3, Q

i
4 are the unique solutions of Equations:

T i
11x = 0

T i
22x = 0

T i
33x = 0

T i
44x = 0

(4.40)

respectively. The same procedure is going to be followed in order to get the solution

Q. In order to make this system hold

T i
khx = 0 (1 ≤ k, h ≤ 4, k ̸= h) (4.41)

We use the matrix P to force all off-diagonals of (4.35) to be zeros.

Solution Qi
1:

For each subdivision Qi
1 is the solution of the equation T i

11x = 0, so it is given as

follows:

Qi
1 =

√
c1pi11c1
ri

(4.42)

Solution Qi
2:

In order to get Qi
2 we need to solve the equation T i

22x = 0.

By following the same method as the previous section we get Qi
2 by the following

expression :

Qi
2x =

∞∑
n=0

λin +
√
(λin)

2 + βi
nnα

i
nn

αi
nn

< x, ϕi
n > ϕi

n (4.43)

Such that:

c2p
i
22c2 = βi , Bpr

iBp = αi, βi
mn =< βiϕi

m, ϕ
i
n >, Qi

2,mn =< Qi
2ϕ

i
m, ϕ

i
n > i =

1, 2 · · · s

Solution Qi
3:
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Solving T i
33x = 0 in order to get Qi

3 on each subdivision, we will start by solving

T 1
33 = 0

T 1
33x = 0 → A∗

22Q
1
3x+Q1

3A22x+ c3p
1
33c3x−Q1

3Bhr
1b∗hQ

1
3x = 0

We have that A1
22 = −V d

dξ
+m22. Assuming that the length of each subdivision is

L. Changing the length to 1 by substituting ξ by ξ
L
, so we get that A1

22 = −V L d
dξ
+m22

with D(A1
22) = (h ∈ L(0, 1)/h, a.c and h(0) = 0)

We have that V is a diagonal matrix, so (V L)∗ = (V L), then (A1
22)

∗ = V L d
dξ
+m∗

22

Where D((A1
22)

∗) = (h ∈ L(0, 1)/h, a.c and h(1) = 0).

Substituting those operators terms into T 1
33x = 0 we get that:

V L
d(Q1

3x)

dξ
+m∗

22Q
1
3x+Q1

3(−V L
dx

dξ
+m22x)−Q1

3Bhr
1b∗hQ

1
3x+ c3p

1
33c3x = 0

V L
dQ1

3

dξ
+m∗

22Q
1
3 +Q1

3m22 −Q1
3Bhr

1b∗hQ
1
3 + c3p

1
33c3 = 0

On the other hand we have that Q1
3x ∈ D((A1

22)
∗) then (Q1

3x)(1) = 0. We conclude

that we get Q1
3 by solving this equation{
V L

dQ1
3

dξ
+m∗

22Q
1
3 +Q1

3m22 −Q1
3Bhr

1b∗hQ
1
3 + c3p

1
33c3 = 0

Q1
3(1) = 0

(4.44)

Concerning others terms Qi
3 we get the same equation except in the boundary con-

dition we have to ensure the continuity of the Q3 so we get the following equation

{
V L

dQi
3

dξ
+m∗

22Q
i
3 +Qi

3m22 −Qi
3Bhr

ib∗hQ
i
3 + c3p

i
33c3 = 0

Qi
3(

(i−1)∗L
s

) = Qi−1
3 ( (i−1)∗L

s
) i ≥ 2

(4.45)

According to [1, Corollary 6.7.36], the following result holds.

Proposition 5. If we assume that V, pi33 > 0, then Equations (4.44)− (4.45) have a

unique non-negative solution

Remark 1. The condition V > 0 is usually satisfied in chemical processes applica-

tions.
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Let’s put that: pi33 =

⎡⎢⎢⎢⎢⎣
α11 α12 α13 α14 α15

α12 α22 α23 α24 α25

α13 α23 α33 α34 α35

α14 α24 α34 α44 α45

α15 α25 α35 α45 α55

⎤⎥⎥⎥⎥⎦, so the system of equations

(4.44)− (4.45) gives the following 15 Odes :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v
dqi11
dξ

+ 2ri1 −Di
1rD

i
1 + c11α11c11 = 0

v
dqi12
dξ

+ ri2 −
kNO
m,ssaq

i
12

E
−Di

1rD
i
2 + c11α12c22 = 0

v
dqi13
dξ

+ ri3 −
kNO2
m,ssaq

i
13

E
−Di

1rD
i
3 + c11α13c33 = 0

v
dqi14
dξ

+ ri4 −
k
NH3
m,ss aq

i
14

E
−Di

1rD
i
4 + c11α14c44 = 0

v
dqi15
dξ

+ ri5 −
k
O2
m,ssaq

i
15

E
−Di

1rD
i
5 + c11α15c55 = 0

v
dqi22
dξ

− 2kNO
m,ssaq

i
22

E
−Di

2rD
i
2 + c22α22c22 = 0

v
dqi23
dξ

− kNO
m,ssaq

i
23

E
− k

NO2
m,ssaq

i
23

E
−Di

2rD
i
3 + c22α23c33 = 0

v
dqi24
dξ

− kNO
m,ssaq

i
24

E
− k

NH3
m,ss aq

i
24

E
−Di

2rD
i
4 + c22α24c44 = 0

v
dqi25
dξ

− kNO
m,ssaq

i
25

E
− k

O2
m,ssaq

i
25

E
−Di

2rD
i
5 + c22α25c55 = 0

v
dqi33
dξ

− 2k
NO2
m,ssaq

i
33

E
−Di

3rD
i
3 + c33α33c33 = 0

v
dqi34
dξ

− k
NO2
m,ssaq

i
34

E
− k

NH3
m,ss aq

i
34

E
−Di

3rD
i
4 + c33α34c44 = 0

v
dqi35
dξ

− k
NO2
m,ssaq

i
35

E
− k

O2
m,ssaq

i
35

E
−Di

3rD
i
5 + c33α35c55 = 0

v
dqi44
dξ

− 2k
NH3
m,ss aq

i
44

E
−Di

4rD
i
4 + c44α44c44 = 0

v
dqi45
dξ

− k
NH3
m,ss aq

i
45

E
− k

O2
m,ssaq

i
45

E
−Di

4rD
i
5 + c44α45c55 = 0

v
dqi55
dξ

− 2k
O2
m,ssaq

i
44

E
−Di

5rD
i
5 + c55α55c55 = 0

q1mn(1) = 0, qimn(
(i−1)∗L

s
) = qi−1

mn (
(i−1)∗L

s
), (i > 1and1 ≤ m ≤ n ≤ 5)

(4.46)

Such that : ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Di
1 = qi11Bh1 + qi12Bh2 + qi13Bh3 + qi14Bh4 + qi15Bh5

Di
2 = qi12Bh1 + qi22Bh2 + qi23Bh3 + qi24Bh4 + qi25Bh5

Di
3 = qi13Bh1 + qi23Bh2 + qi33Bh3 + qi34Bh4 + qi35Bh5

Di
4 = qi14Bh1 + qi24Bh2 + qi34Bh3 + qi44Bh4 + qi45Bh5

Di
5 = qi15Bh1 + qi25Bh2 + qi35Bh3 + qi45Bh4 + qi55Bh5⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ri1 = a11q
i
11 + a21q

i
12 + a31q

i
13 + a41q

i
14 + a51q

i
15

ri2 = a11q
i
12 + a21q

i
22 + a31q

i
23 + a41q

i
24 + a51q

i
25

ri3 = a11q
i
13 + a21q

i
23 + a31q

i
33 + a41q

i
34 + a51q

i
35

ri4 = a11q
i
14 + a21q

i
24 + a31q

i
34 + a41q

i
44 + a51q

i
45

ri5 = a11q
i
15 + a21q

i
25 + a31q

i
35 + a41q

i
45 + a51q

i
55
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a11 =
a[(0.1748−2∗18.318∗10−6Tg,ss)(Ts,ss−Tg,ss)−hm,ss]

ρscspϵ

a21 =
4.8∗10−6a(csNO−cg,ssNO )(T g,ss)0.75

ϵ

a31 =
3.871∗10−6a(csNO2−cg,ssNO2)(T

g,ss)0.75

ϵ

a41 =
5.18∗10−6a(csNH3−cg,ssNH3)(T

g,ss)0.75

ϵ

a51 =
4.2∗10−6a(csO2−cg,ssO2 )(T g,ss)0.75

ϵ

Solution Qi
4:

Finally in order to get Qi
4 we need to solve T i

44x = 0

T i
44x = 0 → A∗

33Q
i
4x+Qi

4A33x+ c4p
i
44c4x−Q4Bkr

iBkQ4x = 0

in our case we have that A33 is a scaler function and we assume that Bkr
iBk = rik so

in to get Qi
4 we need just to solve this second order equation :

2m33Q
i
4 + c4p44c4 − rik(Q

i
4)

2 = 0 (4.47)

The variation of m33 is shown in the following figure : its obvious that the variation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ξ

-0.03923447

-0.039234468

-0.039234466

-0.039234464

-0.039234462

-0.03923446

-0.039234458

-0.039234456

-0.039234454

-0.039234452

-0.03923445

m
3

3
(ξ

)

Figure 4.6: Variation of m33

of m33 is very small, that’s why it’s acceptable to take m33 = −0.0392
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so we are going to choose the appropriate p44 to make this equation has two solutions

and finally we choose the positive one Q4 on this form :

Qi
4 =

m33 +
√
m2

33 + rikc4p
i
44c4

rik
(4.48)

Algorithm to solve ORE (4.35):

• Choose pi11,p
i
22,p

i
33,p

i
44 and ri to find Qi

1,Q
i
2,Q

i
3,Q

i
4 such that Q is positive

• solve the off diagonal equations (4.41) to get (piij i ̸= j) and check if this results

in a positive P i. If P i is not positive then

• Choose a new pi11,p
i
22,p

i
33,p

i
44 and ri to find new Qi

1,Q
i
2,Q

i
3,Q

i
4 and solve (4.41)

until we get det(P i
k) > 0 (1 ≤ k ≤ n) such that n is the size of the matrix P i

State-feedback control: In order to implement the state-feedback control given

by Equation (4.39), we need to rewrite it in terms of the original variables. For this

purpose, let us substitute u = ẇ and x1 = w, x2 = z̃p − Bpw x3 = z̃h − Bhw and

x4 = k̃ −Bkw in Equation (4.39)

−rẇ(t) = Q1w(t)−Bp

∫ 1

0

Q2(z)(z̃p − bpw)dz

−
5∑

i=1

Bhi

∫ 1

0

[Q3(z)(z̃h −Bhw)]i dz −Bk

∫ 1

0

Q4(z)(k̃ −Bkw)dz

−rẇ(t) =

[
Q1 +

∫ 1

0

(
B2

pQ2(z) +
5∑

i=1

Bhi
[Q3(z)bh]i +B2

kQ4(z)

)
dz

]
w(t)

−
∫ 1

0

(
BpQ2(z)z̃p(z) +

5∑
i=1

bhi
[Q3(z)z̃h]i +BkQ4(z)k̃

)
dz

−rẇ(t) =

[
Q1 +

5∑
i=1

∫ ih

(i−1)h

(
B2

pQ
i
2(z) +

5∑
i=1

Bhi

[
Qi

3(z)bh
]
i
+B2

kQ
i
4(z)

)
dz

]
w(t)

−
5∑

i=1

∫ ih

(i−1)h

(
BpQ

i
2(z)z̃p(z) +

5∑
i=1

bhi

[
Qi

3(z)z̃h
]
i
+BkQ

i
4(z)k̃

)
dz
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Then the function w satisfies the following linear differential equation

ẇ(t) + τw(t) = γ(t), w(0) = 0 (4.49)

where τ is a constant given by the following expression

τ = r−1

[
Q1 +

5∑
i=1

∫ ih

(i−1)h

(
B2

pQ
i
2(z) +

5∑
i=1

Bhi

[
Qi

3(z)bh
]
i
+B2

kQ
i
4(z)

)
dz

]
and γ is a function of the SCR states and given by

γ(z̃p, z̃h, k̃) = r−1

5∑
i=1

∫ ih

(i−1)h

(
BpQ

i
2(z)z̃p(z) +

5∑
i=1

bhi

[
Qi

3(z)z̃h
]
i
+BkQ

i
4(z)k̃

)
dz

Consequently, the optimal (to be injected ammonia) state feedback control is given

by

Cg
NH3(0) = w(t)+zh,0(0) = e−τt

[∫
eτtγ(z̃p(t), z̃h(t), k̃(t))dt−G(0)

]
+zh,0(0) (4.50)

where G is the anti-deriavtive function of eτtγ(t).

4.4 Simulations

4.4.1 Calculations of Q1, Q2, Q3, Q4 in each subdivision

After applying our algorithm we get the following results in each subdivision:

1-Solution over [0 0.2]

For ξ ∈ [0 0.2] we have that the appropriate values are :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p111 = 100

p122 = 5

p133 = 107

⎡⎢⎢⎢⎢⎢⎢⎣
3 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦
p144 = 0.01

r1 = 0.1

we get that :

Q1
1 = 63.826 (4.51)
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Q1
2x = 0.0384 < x, ϕ1

1 > ϕ1
1 + 0.382 < x, ϕ2

1 > ϕ2
1 + 0.0385 < x, ϕ3

1 > ϕ3
1 (4.52)

+0.0372 < x, ϕ4
1 > ϕ4

1 + 0.0373 < x, ϕ5
1 > ϕ5

1

Concerning Q1
3 we solve the ODEs systems numerically with MATLAB using ode45

function, and to make it easy to check the positivity of the matrix, the average has

been taken by using mean function in MATLAB for all coefficients. the solution Q1
3

are given as follows:

Q1
3 = 107

⎡⎢⎢⎢⎢⎣
4.7 0.005 0.00033 0.00025 0.0002

0.0005 0.033 0.0006 0.0005 0.0004
0.00033 0.0006 2.761 0.00075 0.0006
0.00025 0.0005 0.00075 0.32 0.0008
0.0002 0.0004 0.0006 0.0008 0.101

⎤⎥⎥⎥⎥⎦ (4.53)

To check the positivity we need just to make sure that all eigenvalues of this matrix

are positive.

Eigenvalues are :

σ(Q1
3) = 107 [0.0323, 0.1001, 0.320003, 2.761, 4.701]

.

Q1
4 = 0.0587 (4.54)

To guarantee that those values work we get the matrix P 1 as following:

P 1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −0.007 35 −4440 −2213 −2861 −4355 −0.1
−0.007 5 −4 −0.02 −0.02 −0.02 −0.02 0

35 −4.2 3 ∗ 107 0 0 0 0 1.2
−4440 −0.02 0 3 ∗ 107 0 0 0 1.2
−2213 −0.02 0 0 3 ∗ 107 0 0 1.2
−2861 −0.02 0 0 0 3 ∗ 107 0 1.2
−4355 −0.02 0 0 0 0 3 ∗ 107 1.2
−0.1 0 1.2 1.2 1.2 1.2 1.2 0.01

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Eigenvalues are :

σ(P 1) =
[
24.12, 17.85, 0.0087, 3 ∗ 107, 3 ∗ 107, 3 ∗ 107, 2.89 ∗ 107, 2.8 ∗ 107

]
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because all eigenvalues are positives we conclude that P is a positive matrix

2-Solution over [0.2 0.4]

For ξ ∈ [0.2 0.4] we have that the appropriate values are :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p211 = 100

p222 = 10000

p233 = 107

⎡⎢⎢⎢⎢⎢⎢⎣
2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎦
p244 = 100

r2 = 0.1

we get that :

Q2
1 = 63.826 (4.55)

Q2
2x = 84.63 < x, ϕ1

2 > ϕ1
2 + 84.14 < x, ϕ2

2 > ϕ2
2 + 84.73 < x, ϕ3

2 > ϕ3
2 (4.56)

+81.87 < x, ϕ4
2 > ϕ4

2 + 81.87 < x, ϕ5
2 > ϕ5

2

Q2
3 = 107

⎡⎢⎢⎢⎢⎣
3 0.000018 0.00001 0.0000087 0.000007

0.000017 0.0024 0.000023 0.000017 0.000014
0.00001 0.000023 0.045 0.000026 0.00002
0.0000086 0.000017 0.000026 0.0019 0.000027
0.000007 0.000014 0.00002 0.000027 0.00005

⎤⎥⎥⎥⎥⎦ (4.57)

σ(Q2
3) = [486.6, 19288.6, 23755.04, 453591.9, 30000291.54] > 0

Q2
4 = 1.47 (4.58)
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The matrix P 2 is given as follows:

P 2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 −9 2655 −1872 −940 −1211 −1836 −11
−9 10000 −172676 0.0001 0.0001 0.0001 0.0001 −0.02
2655 −172676 2 ∗ 107 0 0 0 0 −1234.5
−1872 0.0001 0 2 ∗ 107 0 0 0 −0.12
−940 0.0001 0 0 2 ∗ 107 0 0 −0.12
−1211 0.0001 0 0 0 2 ∗ 107 0 −0.12
−1836 0.0001 0 0 0 0 2 ∗ 107 −0.12
−11 −0.02 −1234.5 −0.12 −0.12 −0.12 −0.12 100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Eigenvalues are :

σ(P 2) =
[
56.72, 92.88, 8515.57, 1.98 ∗ 107, 2 ∗ 107, 2 ∗ 107, 2 ∗ 107, 2 ∗ 107

]
> 0

3-Solution over [0.4 0.6]

For ξ ∈ [0.4 0.6] we have that the appropriate values are :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p311 = 100

p322 = 2

p333 = 105

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
p344 = 1

r3 = 0.1

we get that :

Q3
1 = 63.826 (4.59)

Q3
2x = 0.0153 < x, ϕ1

3 > ϕ1
3 + 0.017 < x, ϕ2

3 > ϕ2
3 + 0.018 < x, ϕ3

3 > ϕ3
3 (4.60)

+0.0177 < x, ϕ4
3 > ϕ4

3 + 0.0179 < x, ϕ5
3 > ϕ5

3

Q3
3 =

⎡⎢⎢⎢⎢⎣
15 ∗ 104 18.34 12.22 9.17 7.33
18.34 1265 24.45 18.34 1467
12.22 24.45 12000 27.51 22
9.17 18.34 2751 50000 2934
7.33 14.67 22 29.34 7625

⎤⎥⎥⎥⎥⎦ (4.61)
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Eigenvalues are :

σ(Q3
3) = [1264.90, 7624.90, 12000.14, 50000.04, 150000] > 0

Q3
4 = 2.76 (4.62)

to guarantee that those values work we get the matrix P 3 as following:

P 3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

105 −0.1 7393 −27281 −2661.5 −9826 −26336 −276
−0.1 2 −15 −0.04 −0.04 −0.04 −0.04 0.02
7393 −15 105 0 0 0 0 20
−2728 −0.04 0 105 0 0 0 61
−2661.5 −0.04 0 0 105 0 0 61
−9826 −0.04 0 0 0 105 0 61
−2634 −0.04 0 0 0 0 105 61
−276 0.02 20 61 61 61 61 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Eigenvalues are :

σ(P 3) =
[
0.175, 2, 60000, 105, 105, 105, 105, 1.4 ∗ 105

]
> 0

1-Solution over [0.6 0.8]

For ξ ∈ [0.6 0.8] we have that the appropriate values are :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p411 = 100

p422 = 0.001

p433 = 108

⎡⎢⎢⎢⎢⎢⎢⎣
9 0 0 0 0

0 9 0 0 0

0 0 9 0 0

0 0 0 9 0

0 0 0 0 9

⎤⎥⎥⎥⎥⎥⎥⎦
p444 = 0.9

r4 = 0.1

we get that :

Q4
1 = 63.826 (4.63)

Q4
2x = 10−5 < x, ϕ1

4 > ϕ1
2+9.56∗10−6 < x, ϕ2

4 > ϕ2
4+9.93∗10−6 < x, ϕ3

4 > ϕ3
4 (4.64)
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+9.72 ∗ 10−6 < x, ϕ4
4 > ϕ4

4 + 9.32 ∗ 10−6 < x, ϕ5
4 > ϕ5

4

Q3
3 =

⎡⎢⎢⎢⎢⎣
1.4 ∗ 109 −1027.33 −216.93 −1921.7 202.14
−1027.33 5 ∗ 106 −1044.4 −355.84 −25.4
−216.93 −1044.4 3 ∗ 108 1377.61 418.88
−1921.7 −355.84 1377.61 304372 1253.46
202.14 −25.4 418.88 1253.46 12 ∗ 106

⎤⎥⎥⎥⎥⎦ (4.65)

Eigenvalues are :

σ(Q4
3) =

[
1.4 ∗ 109, 3 ∗ 108, 3 ∗ 105, 5 ∗ 106, 12 ∗ 106

]
> 0

Q4
4 = 16.83 (4.66)

to guarantee that those values work we get the matrix P 4 as following:

P 4 = 106

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 13e−11 43 −58 −7.7 −22 −56 0.0016
13e−11 9 −0.009 0 0 0 0 2.5e−12

43 −0.009 9 0 0 0 0 −0.007
−58 0 0 9 0 0 0 −0.007
−7.7 0 0 0 9 0 0 −0.007
−22 0 0 0 0 9 0 −0.007
−56 0 0 0 0 0 9 −0.007
0.016 2.5e−12 −76e−6 −0.007 −0.007 −0.007 −0.007 0.9e−6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Such that: e−p = 10−p p ∈ Z

Eigenvalues are :

σ(P 4) =
[
0.000048, 0.52, 12.12 ∗ 105, 9 ∗ 108, 9 ∗ 108, 9 ∗ 108, 9 ∗ 108

]
> 0

5-Solution over [0.8 1]

For ξ ∈ [0.8 1] we have that the appropriate values are :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p511 = 100

p522 = 0.06

p533 = 107

⎡⎢⎢⎢⎢⎢⎢⎣
4 0 0 0 0

0 4 0 0 0

0 0 4 0 0

0 0 0 4 0

0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎦
p544 = 0.001

r5 = 0.1
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we get that :

Q5
1 = 63.826 (4.67)

Q5
2x = 0.00067 < x, ϕ1

5 > ϕ1
5 + 0.00054 < x, ϕ2

5 > ϕ2
5 + 0.00035 < x, ϕ3

5 > ϕ3
5 (4.68)

+0.00022 < x, ϕ4
5 > ϕ4

5 + 0.00015 < x, ϕ5
4 > ϕ5

5

Q5
3 =

⎡⎢⎢⎢⎢⎣
1060.28 −154.15 −32.55 −288.36 30.33
−154.15 1456.5 −156.71 −53.4 −3.8
−32.55 −156.71 993.2 206.7 62.85
−288.36 −53.4 206.7 1716.3 188
30.33 −3.8 62.85 188 1745.4

⎤⎥⎥⎥⎥⎦ (4.69)

Eigenvalues are:

σ(Q5
3) = [2002.7, 1631.5, 1540.9, 891.14, 905.5] > 0

Q5
4 = 0.0054 (4.70)

to guarantee that those values work we get the matrix P 2 as following:

P 5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

300 −0.0009 6301 −62262 −28134 −38065 −60952 0.1
−0.0009 0.06 −63 0 0 0 0 0
6301 −63 4 ∗ 107 0 0 0 0 −2

−62262 0 0 4 ∗ 107 0 0 0 −2
−28134 0 0 0 4 ∗ 107 0 0 −2
−38065 0 0 0 0 4 ∗ 107 0 −2
−60952 0 0 0 0 0 4 ∗ 107 −2
0.1107 0 −2 −2 −2 −2 −2 0.001

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Eigenvalues are :

σ(P 5) =
[
0.00081, 0.06, 53.2, 4 ∗ 107, 4 ∗ 107, 4 ∗ 107, 4 ∗ 107

]
> 0

Finally we substitute those values in equation (4.50) to get the optimal input

Cg
NH3(0).
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4.4.2 Implementation and discussions

:

The developed controller has been applied to the non-linear system and numerical

simulations have been performed on the closed-loop non-linear system. Indeed, the

expression of optimal amount of ammonia to be injected (Equation(4.50)) is imple-

mented in the closed-loop system. Finite difference discretization method is adopted

here by using the Crank-Nicholson scheme in MATLAB.

• Figure [4.7] shows the optimal input trajectory
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Figure 4.7: Optimal input trajectory

• Figure [4.8] shows that surface temperature increases until it converges to the

steady states. Almost our controller needs 500 second to drive this trajectory

to the steady state

• Figure [4.9] describes the closed-loop trajectory for the gas temperature, it

shows that gas temperature decreases for the first time, then it stats increasing

until it converges to steady states. Our controller takes almost 500 second to

reach to desired level

• Figures ([4.10], [4.11]) are the same. Those figures show that NO and NO2 in

bulk of gas decrease until they reach to our steady states which guarantees that

70



]

395

2000

400

405

410

1500 1

415

T
s

420

0.8

425

time

1000

430

0.6

ξ

435

0.4500

0.2

0 0

Figure 4.8: Surface temperature of the closed loop
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Figure 4.9: Gas temperature of the closed loop

the performance of our controller is good, It is obvious that after 400 second

the gas concentration of NO and NO2 at the inlet is less than 50 ppm which is

our objective

• Finally Figure 4.12 is the gas concentration of ammonia slip. This figure shows

that NH3 converges very fast comparing with others components, and this is a
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Figure 4.10: Gas concentration of NO in the closed loop
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Figure 4.11: Gas concentration of NO2 in the closed loop

good results because ammonia slip is the most dangerous one, it can seen that

ammonia converge to the steady state after just 50 second

• Figure (4.13) shows the L2-norm of the errors between the process states and

the corresponding steady-states at time t. This confirms the reliability of the

developed algorithm.
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Figure 4.13: trajectories of tracking errors

4.5 Conclusions

4.5.1 Summary

The objective of this thesis is to design a Linear Optimal Control of a coupled

Parabolic-hyperbolic PDEs and ODE and apply it to the SCR . An Introduction to
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Infinite-Dimensional Linear Systems is described as mathematic tools for the con-

trol of PDEs. Many concepts are introduced to use later in designing our con-

troller. The fact of having the control input at the boundary makes the problem

challenging, since in this case an augmented state space approach is needed to write

the infinite-dimensional representation. After linearization of the Non-linear general

model around steady states, the abstract boundary control problem approach is used

to rewrite the problem in the standard form. Because of this approach the system is

extended. Solving eigenvalues and eigenfunctions problem for parabolic Operator is

needed in order to write this operator in Reisz-Spectral basis and solving Operator

Reccati Equation (ORE).The exponential stabilizability and detectability has been

proved to guarantee the existence and the uniqueness of optimal control input. As-

suming that the solution of ORE is diagonal enables us to decouple the system of

ORE and to make it easier to solve. An algorithm is developed in order to get the op-

timal control input. In order to test the performances of our controller, a Monolithic

Catalyst Reactor(MCR) has been studied as the case study. Models for a MCR are a

combination of coupled hyperbolic and parabolic PDEs, and ODE.The parabolic PDE

represents the solid temperature. The hyperbolic PDE represents gas temperature.

The last equation which is an ODE represents housing temperature. By considering

that manipulated variable is gas temperature at the inlet (u = T g(t, 0)) our controller

has been tested on this model and it has been shown that the performances of our

controller are very good, and our optimal input drives the closed loop to steady states

very fast.

The main focus of this study is to test the controller described above on the SCR

models. Models for a SCR consist of coupled hyperbolic and parabolic PDEs and

ODE. The hyperbolic PDEs represent the concentrations of the gas phase components

and the gas phase temperature. The parabolic PDE represents the solid temperature.

ODE represent the coverage of stored ammonia. The main difference between the SCR

models and the general case is that instead of having one hyperbolic PDE, we have

multiple hyperbolic equations. The same proofs are stated for SCR, just substituting

v scalar with V matrix. Also, getting the exact solution of hyperbolic operator is not

realizable as in the scalar case, so a system of ODEs equations are stated and solved

numerically in order to get Q3.

74



Good results have been found when we apply our controller, and the closed loop

converges to the steady states at a good real time. The results have also been con-

firmed by the errors between the closed loop and the steady states.

4.5.2 Directions for Future Work

There are many options for the future work to improve the performances of this

optimal control. Design an optimal controller in a discretize the system to make

it technically trivial to apply , and also to avoid the problem of unboundedness of

operators. Also we know that the measurements of the reaction rates and heat and

mass transfer coefficients cannot be made without affecting the systems that’s why in

our future work we need to add some uncertainties to the SCR model. To control our

output matrix, a Kalman Filter is one of the best approaches that we can use it to

estimate all states, especially concentrations which are hard to measure them along

SCR. Analysis of the closed-loop CSR system is another direction of future research

(see [9]).
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