University of Alberta

MULTIVARIATE STATISTICAL MONITORING OF A HIGH-PRESSURE LDPE AND

EVA CoPOLYMER INDUSTRIAL PROCESS

by

Vikas Kumar

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

Chemical Engineering

Department of Chemical and Materials Engineering

Edmonton, Alberta
Fall 2002



il

National Library
of Canada du Canada
Acquisitions and

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

Acquisitions et

Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell

- copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission. '

Bibliothéque nationale

services bibliographiques

395, rue Wellington
Otiawa ON K1A ON4

Your file Votre rélérance

Our §lo Notre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve 1a propriété du
droit d’auteur qui protége cette thése.
Ni la thése mi des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-81426-2

- Canada



University of Alberta

Library Release Form

Name of Author: Vikas Kumar

Title of Thesis: Multivariate Statistical Monitoring of a High-Pressure LDPE and
EVA Copolymer Industrial Process

Degree: Master of Science

Year this Degree Granted: 2002

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

m AL
Vikas Kumar
CME 536
University of Alberta

Edmonton, AB
Canada, T6G 2G6

Date: A& 0T A00X



University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled Multivariate Statisti-
cal Monitoring of a High-Pressure LDPE and EVA Copolymer Industrial
Process submitted by Vikas Kumar in partial fulfillment of the requirements for the
degree of Master of Science in Chemical Engineering.

Sirish L. Shah
(Dept. of Chemical & Materials Engineering)

..................

U. Sundararaj
(Dept. of Chemical & Materials Engineering)

P. M. Hooper
(Dept. of Mathematical & Statistical Sciences)



Abstract

The high-pressure LDPE industrial process operates under supercritical operating
conditions, and therefore, it becomes imperative to devise schemes to prevent abnor-
mal situations. Extreme deviations from normal operating region lead to conditions
such as: loss of normal reaction, decompositions of the reactants and lost production
due to the outages. Multivariate Statistical Process Control strategies operate on
top of the DCS system to detect and diagnose abnormal process behavior in order
to give the operators an opportunity to take preventive operational actions. Process
engineers may also use this for off-line diagnosis of poorly understood processes for
modifications in operating procedures.

In this work, data from a commercial LDPE/EVA copolymer high-pressure unit
using an OPC server installed on the DCS is used to build empirical models and
perform fault detection. Issues related to data transfer, preprocessing and filtering
followed by development of PCA (Principal Components Analysis) models for various
grades and first principles modelling of critical equipment will be presented. These
models were used to detect process shifts. Process data from various real faults were
considered and it was established that PCA could be employed to predict and diagnose
process faults. The study closes with recommendations for online implementation of
this process monitoring scheme and a new strategy based on multivariate statistics

for product quality design.
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Chapter 1

Introduction

1.1 Multivariate Statistical Process Control

Polymer manufacturing has seen tremendous growth in the last half century with
scores of products or grades being manufactured for specific applications from sin-
gle process units. This requirement of multi-grade production has led to research
in industry to search for mechanistic or empirical models for a greater insight into
complicated processes. Mechanistic models based on reaction kinetic analysis have
been reliable as far as process and approximate product design is concerned, but fall
short of exactly defining the correlations under various process operating conditions
required for manufacturing multiple grades. As a result, technical research and devel-
opment groups have developed recipe based production wherein operating conditions
are defined for grades which are then fine tuned with operating experience. The draw-
back of this approach is that new grade development requires costly trials and in case
of operation breakdown or faults, there are very few tools available to diagnose the
reasons for the situation leading to the unexplained outage. At most, historical uni-
variate plots are obtained and the best possible explanation based on reaction kinetics
is made. It is fairly well understood by research and operation groups that many of
the process variables in a unit are highly correlated and hence process monitoring
should be based on techniques which look at all the critical variables simultaneously.
This is only possible by using multivariate statistical tools for monitoring and product
design.

In the modern day process industry, hundreds of process variables are being sam-

pled and stored for every unit. Whether the control strategy be implemented via



Distributed Control Systems (DCS) or multiple-loop Programmable logic controllers
(PLC), these systems are capable of generating process variable data sets which are
overwhelming in size. Most industrial chemical processes are multivariate in natare
and multivariate statistical techniques are being employed to condense these data
sets. The condensed data is subsequently used for knowledge extraction to improve
process monitoring and closed loop control. We can take advantage of the fact that
many of the process variables are correlated and therefore, it may be be possible
to develop relationships between them. Additionally, since most of the data being
recorded is redundant, informed decision-making is done based on processl knowledge
and by employing multivariate statistical techniques to select only useful information
for further analysis.

The most common methods for data reduction are Principal Components Analy-
sis(PCA) and Partial Least Squares(PLS). PCA is used for large data sets of processes
containing significant redundancies. It compresses the data set to fewer pseudo vari-
ables or scores which capture most of the variance of the original data matrix. PLS
also known as projection to latent structures, is a dimensionality reduction technique.
PLS uses two blocks of data and systematically compresses them. It maximizes the
covariance between the predictor variable matrix X, comprising process variables and
the predicted matrix Y, comprising quality variables.

PCA is a common procedure to reduce the dimensionality of the process variable
space and was discovered by Pearson (1901), and further developed by Hotelling
(1933,1947), followed by recent researchers (Wold and Geladi 1987, Mardia and
Bibby 1982, Kresta and MacGregor 1991, Jackson 1991). Application of PCA has
been demonstrated by both academic and industrial researchers. While substantial
work has been done and published on data collected from simulations (Himes and
Georgakis 1994, Kasper and Ray 1992, Ku and Georgakis 1995, MacGregor 1994,
Raich and Cinar 1994, Raich and Cinar 1995, Luo and Himmelblau 1999), detailed
applications of the techniques on industrial data have not been published as widely,
probably due to the proprietary nature of the data. Omne of the earliest works on
PCA applications on industrial data was published by researchers from a major man-
ufacturer and marketer of chemical products Showa Denko K. K., of Japan (Moteki

and Arai 1988a). This work was oriented towards improving the understanding of

2



the behavior of a high pressure polymerization process for product quality design.
Journal and conference proceedings articles have also been published by researchers
from industry , notably DuPont, and academics on how PCA can be applied to in-
dustrial data for process monitoring(MacGregor and Kiparissides 1991, Piovoso and
Pearson 1992, Kosanovich and Nomikos 1994, Piovoso and Kosanovich 1994, Wise
and Gallagher 1996, Kourti and MacGregor 1998), but none of these give process
details and special operating events of the plant being studied. From the collection
of published work on applications of PCA and PLS for process monitoring, fault de-
tection and diagnosis over the last one and a half decades, few industrial applications
have been published using real process data. The exceptions are Skagerberg 1992
and Zheng 2001, who have also described operation event history which have lead to
faults. (Skagerberg and Jan 1992, Zheng and Chen 2001).

In the current work, PCA is used to model a high pressure polymerization process,
using data from a server on the DCS of an operating plant, for use in fault detection,
diagnosis and control. Correlation studies are carried out to aid product quality
design. Plots such as the Squared Prediction Error(SPE) and Hotelling 72, which
condense most of the process variation into single plots, are used to monitor the
process. This study mainly employs multivariate statistics to build empirical models;
and mechanistic modelling is used to derive the mass flowrate of reactants through

the reactor.

1.2 Organization of the Thesis

The thesis is concerned with issues of PCA modelling, fault detection and diagnosis
for a polymerization process. Each chapter begins with an introduction giving the
reader an overall picture of the subject present therein.

Chapter 2 lays down the theoretical background to PCA, its properties and the
charts used for monitoring the polymerization process. SPE plots utilized as a single
window for observing the process are presented as an effective tool for fault detection
and subsequent root cause diagnosis.

This research work on high pressure polymerization fault detection and diagnosis

has been supported by AT Plastics Inc., Edmonton. Chapter 3 gives a process de-



scription of the high pressure ICI process,used by AT Plastics to manufacture many
different grades of LDPE(Low density polyethylene polymer) and EVA(ethylene vinyl
acetate) copolymers. The objectives of this research study are defined in this chap-
ter. Various special operating procedures are also described in some detail; these
procedures will be referred to in later chapters.

Chapter 4 details the standard procedures used for data pre-processing. These
procedures are applied uniformly to data from all grades before performing PCA
modelling. This chapter also describes the issues involved in doing first principles
modelling of a hyper compressor handling fluid at supercritical state. The modelling
was done to derive mass flow rate through the compressor, and hence, the reactor.

Chapter 5 is concerned with a highly researched and poorly understood phenomena
of reactants decomposition in the high pressure polymer industry; the occurrence of
which generally causes a unit outage. The data used for the study is from a real
decomposition in the plant that occurred while cooler cook operation taking place.
Issues of model development using data from similar grades and fault prediction are
also described here.

Chapter 6 discusses another frequent cause of unit shutdown in the polymerization
industry which is loss of reaction. The case in which a catalyst or initiator pump
failure leads to a loss of reaction is discussed. Issues of model development using data
from similar grades and fault prediction are described.

Chapter 7 presents correlation charts which can be used for development of simple
monitoring techniques and product quality design.

Chapter 8 gives the conclusions and future work. Within the chapter are sug-
gestions for improvement in process control at AT Plastics Inc. and a strategy for
implementation of an on-line fault detection and diagnosis scheme using Multivariate

Statistical Process Control.



Chapter 2

Basic Theory of Fault Detection
and Diagnosis using Principal
Components Analysis

2.1 Introduction

The modern process industry is heavily instrumented and has large historical databases
of process variables. The problem is to find effective ways of extracting useful informa-
tion from this data. The basic idea behind PCA is data compression and knowledge
extraction. This is done by finding fewer factors than the original data set which will
describe the major trends in the process thereby reducing the number of variables
to be monitored. Since the information in a process does not lie in a single process
variable, PCA is used to capture the variance information in process variables with
respect to each other or in other words how they ‘co-vary’ (Wise and Gallagher 1996).
In such a condition, information is extracted from a data set to reduce the number
of variables to be monitored. Using this dimension reduction technique, models are
set up using historical data. Special events are detected when the process variables

deviate significantly from the ‘in control’ model developed using historical data.

2.2 Properties of PCA

The objective is to model a single block of data, X € R**™ with n observations and m
variables. The main idea is to explain the covariance structure through a few linear

combinations of the original variables. We take advantage of the fact that the original



m variables are correlated and most of the variability can be explained by as few as ¢
pseudo or latent variables (¢ < m), also called ¢ principal components. Consider an
observation at a single time instant x with m variables. The m linear combinations

of these variables are also called scores and are defined as following,

t) = pux1 +paurs + oo + PmiTm (2.1)

ty = P1oZ1 + PaZs + ... + Pl

bt = P1mT1 + PomZ2 + oo + PrmTm

where 1, o, ...., T,, are the m observations at a sampling instant from the data matrix
X. In terms of capturing the variance, the first principal component of x is that linear

combination that has maximum variance and is defined as,
1 =Xp, (2.2)

and is subject to | p; |= 1 The second principal component is that linear combination

which has the next greatest variance,
ta = XPg (2.3)

and is subject to | py |= 1. The vectors p; and p, are orthogonal to each other and
hence, both #; and ¢, are uncorrelated. On considering n samples of observations,
with m variables, forming a data matrix X, which is a subset of the population data
matrix and has been mean autoscaled, we may find a sample correlation matrix 3
from which the corresponding eigenvalues A;, and eigenvectors p; with i = 1,2,....m

are evaluated by solving an eigenvalue decomposition of the correlation matrix.
£=8=(n-1)"'XTX = PAP" (2.4)

The principal components loading vectors are the orthonormal column vectors
of the matrix P ¢ R™*™ from the above solution and A ¢ ™*™ contains the non-

negative real eigenvalues of decreasing magnitude (A; > Ay > ..M\, > 0) along

6
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Figure 2.1: Projection of the Data-Matrix

its main diagonal with zero off-diagonal elements. This is equivalent to performing
singular value decomposition(SVD) on the data matrix X (Chiang and Braatz 2000).
It should be noted that the eigenvalues are the variances of the principal components
(PC’s) or in other words,

Var(ti) = N\ (2.5)

In effect PCA decomposes the observation matrix X as,

X=TPT= itip? (2.6)
i=1
where X, is the approximation of the original data matrix X. PCA is scale dependent
and the matrix is auto-scaled, or by another appropriate way depending upon the
variables in the data matrix as explained in §4.2.

Since this is a dimension reduction technique we choose only a certain number
of principal components ¢ < m , which explain most of the variability in the data.
Information on the number of PC’s to be used has been given by Wold 1978, Geladi
and Kowalski 1986 and Jackson 1991. A useful method for selection of those number



of PC’s which minimizes the loss function is via the following expression:

~ SPE,
loss function = 1 (2.7)
i=1
where SPE is calculated as,
SPE:): = Z(Xi,new - }A(i,new)z (28)

i=1
This loss function would keep going down with respect to the value of g. The loss
function is plotted against various values of g to locate that value of ¢ where the slope
starts turning and is no longer linear.

In this work, the preliminary selection of the number of PC’s in the model is done
by performing a scree test of the eigenvalues, \; of the covariance matrix. The point
where the profile is no longer linear is chosen as the cut off point for the number of
PC’s. In addition, the number of PC’s in the model should explain a minimum of
80% of the variance in the data. In some cases cross validation with another ‘normal’
data set is done for the final selection of the number of PC’s adopted in the model.

The following properties hold for PCA,

1. var(ty) > var(ty) > .... > var(tm)

2. mean(t;) = 0;Vi

3. tTty = O;Vi £ k

4. No other orthogonal expansion of ¢ components exists which captures

a higher cumulative variance of the data set.

2.3 Application

After a PCA model is built based on Normal Operating Conditions (NOC) when only
common cause variation exists, we may predict the future behavior of the plant by
comparing the present operation with this normal plant model. The tools used to
achieve the above are score plots, Hotelling T plot and the squared prediction error

or the SPFE plot.



Score Plot
PC-1v.PCS3

PC-3 Scores

PC-1 Sores

Figure 2.2: Score plot of PC-1 vs PC-3 showing the control ellipse and the dense
scatter of ‘NOC’ operation

2.3.1 Monitoring charts based on Principal Components

The steps for developing the aforesaid plots are as follows:

New observations are projected using the model to get new scores,

(2.9)

ti,new = XnewDPi

A score plot is then obtained by plotting any two principal components against
each other, e.g., t1 vs t3 (or PC-1 vs PC-3). See Fig.2.2 for an ‘in-control’ score plot.
During normal operation 99% of the plotted points in a score plot will lie within
a threshold contour called the control ellipse which is calculated by considering the
bivariate distribution of the two principal components scores. This threshold is a
solution to the Hotellings T? generalization of the squared distance for a certain level
of significance.

The residuals are calculated as,

N T
€pew = Xinew — Xjinew — Xnew — t"i,newpi (210)

9



Hotelling's T2 Plot
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Figure 2.3: Hotelling 72 Plot

Thereafter the new projected scores and the residuals are used to calculate statistics
for monitoring the process.
The Hotelling 77 statistic is calculated as follows:
q 2 q 2
t: t:
=) L=% 1 2.11
3=1 =1

where ¢ is the number of PC’s in the model. We scale each t? with the reciprocal of
its variance to ensure that each PC term plays an equal role in the calculation of T?
statistic irrespective of the amount of variance it explains in the X data matrix (See
Fig.2.3).

The PC’s from (g+ 1, ....,m) explain only a small amount of the total variance in
the data matrix X and generally represents random noise. Since the variances of the
lower PC’s are small, scaling the scores with these small variances may blow up the
T? statistic and indicate an out of control situation. Hence the T? based statistical
test on the first ¢ PC’s provides a more robust test for detecting deviations in the

process.
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Figure 2.4: SPE Plot

2.3.2 SPE Plot

Abnormal events may also be detected by computing the Q-statistic or the Squared
Prediction Error (SPE,) which is the sum of the squared residuals of the new obser-
vation vector at every sampling instant. The procedure for calculating the SPE, plot
has been explained by (Jackson 1991) and (Kresta and MacGregor 1991). The con-
trol limits for the SPE, plot are computed from historical data, using approximate
results for the distribution of the quadratic forms (Jackson 1991). When an abnormal
event occurs in the process plant, it results in a change in the correlation structure
of the data matrix X and the event will be detected by a high value of SPE,. This
means that the projection model is no longer valid for that observation. The SPE,

is calculated as follows,
SPEz = Z(Xi,new - }A{i,new)z (2'12)
i==1
The value of SPE, during the ‘in control’ state is small and below the control limits

(See Fig.2.4). Changes in SPE, in this condition represents fluctuations that are due
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to common cause variations. Another definition for the SPE, is the total sum of
variations in the residual space. Work on the threshold limit calculation for SPE,

was done by Jackson and Mudholkar 1991, and is calculated as follows,

hoCon/20 Oaho(ho — 1)- 1.
O :01[._95____2_{_1+2—(?__(_§_~_)]h0 (2.13)
91 01
where 0; = 370 X, for i =1,2,3, and hg = 1 — 20 with c, being the normal
2

deviate corresponding to (1 — «) percentile in a normal distribution.

2.4 Fault Identification

In the event of detecting a violation of the T? threshold, the next step is to calculate
the contribution of each process variable to the individual scores at the n** observation
step. The following procedure is followed, (MacGregor and Kourti 1995, Miller and
Heckler 1998):

2
E.i_

1. The normalized scores, - are calculated.
1

2. Identification of those 'k’ scores which are causing the process to move out
of the ‘normal-operating-condition’(NOC) is done by finding the scores with
£2
> 5(T2)

3. The contribution of each process variable to the ‘out-of-NOC’ is calculated as

follows,

t;
Contij = +pijlx5 — p] (2.14)

where p; ; is the (i, j)™ element from the loading matrix comprised by the subset

of ‘k’ PCs. The negative contributions are neglected.

4. The total contribution of the j** process variable, z;, is evaluated.

k
Cont; = Z cont; ; (2.15)

i=1
where ¢ = 1, 2.., k since we are identifying those ‘k’ scores which are causing the

process to move out of of ‘NOC’ region(refer to step 2 above).
5. The contributions of all process variables are then plotted on a single graph.
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An alternative scheme for fault identification is based on quantification of the total
variation of each of the process variables in the residual space (Wise at al,1989).
This method is based on an observation vector at each sampling instant and is the

normalized error vector,

Res; = g-j— (2.16)
where r; is the jth variable of the residual vector and §; is the standard deviation of
the jth variable in the training set of observations (Chiang and Braatz 2000). The
normalized error vector is then plotted on a single graph in the form of percentage
contribution to the SPFE,. The highest contributors are the process variables causing

the process to go out of ‘NOC’ (Kresta and MacGregor 1991, Himes and Georgakis
1994, MacGregor 1994).

2.5 Conclusions

Projection methods are very effective in condensing, analyzing, monitoring and di-
agnosing operational problems. In this thesis, the statistical technique applied for
fault detection and diagnosis is PCA. This technique is a powerful predictor of slow
or incipient faults which are frequent in many process units. The main tools used are

the Hotelling T statistic, the 2D score plot and the SPE plot.
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Chapter 3

High Pressure Polymerization
Process

3.1 Introduction and Scope of Work

This project on multivariate statistical process monitoring, fault detection and di-
agnosis of LDPE and EVA production, is based on data obtained from reactor R-V
(read R-five, the fifth reactor) unit of AT Plastics Inc., Edmonton, Canada. The
company is a pioneer in the production of special resins and has been in operation
for over five decades. R~V is the most recently built unit of five manufacturing units
at the Edmonton site and is based on the High Pressure ICI Autoclave process for
manufacturing LDPE and EVA copolymers. The unit produces more than 35 grades
of specialty EVA resins and is controlled using a TDC3000 Honeywell DCS. The pro-
cess description and special operating procedures relevant to the current work are

explained in the following sections.

3.2 Process Description

Autoclave Process: This process, popularly known as the ICI process, is charac-
terized by supercritical operating conditions with pressures in the range of 150 — 300
MPa and relatively moderate temperatures of 200 — 300°C . The polymerization is
carried out in stirred autoclave reactors with negligible heat loss through the walls
of the reactor. The same unit may also be used for co-polymerization where the
comonomer is injected at the final compressor suction. The unit has successive trains

of compressors with inter-cooling and vapor-liquid separation equipment before the
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Figure 3.1: Autoclave Reactor

feed enters the reactor in four separate streams. The unconverted gases from the
reactor are cooled and recycled after separating the liquid in vapor-liquid separation
equipment which are cyclonic or pressure let down systems. Since the conversion of
ethylene to polymer is determined by the temperature difference across the reactor,
the feed gas is brought in at low temperatures and the reaction temperatures are
set fairly close to the temperature where ethylene decomposes to carbon, hydrogen
and methane. If decomposition occurs, it is strongly exothermic and on initiation will
proceed rapidly to increase pressure beyond the vessel design pressures and have to be
relieved through special relief systems. The decomposition products are diluted with

water before they are vented to atmosphere in order to avoid aerial decomposition.

3.2.1 Reactor

A rotary stirrer driven by an induction motor installed internally in a high-pressure
tubular reactor is typical of reactors used in the ICI process (See Figure 3.1). The

polymerization is carried out by a free radical mechanism initiated with a mixture of
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organic peroxides introduced in specific zones of the reactor or into the feed gas. To
control reaction temperature and to avoid hot spots caused by non-uniform mixing, it
becomes imperative to have excellent mixing through out the reactor. The motor, its
housing and the stirrer have to be designed to avoid local hot spots which may cause
ethylene decompositions. The stirrer speed and mechanical design are chosen to avoid
polymer build up on the shaft and to achieve high turbulence. Polymer build up on
the stirrer shaft leads to quality problems, shaft vibration and potential hot spots.
The stirrer has a proprietary design of multiple paddles and baffles arrangement.
The baffles also act as partitions between reaction zones in the reactor. Initiator is
introduced in each zone and each zone has independent temperature control loops.
The residence time varies from 10 seconds to over a minute. Single pass conversion
varies from anywhere from 9 to 22 % (See Fig 3.2). The reactor is jacketed and
circulating hot oil is used for start-up and initiation of the polymerization reaction.
The reaction is then sustained by the exothermicity of the reaction and initiator

addition. In case of decomposition, multiple bursting discs on the reactor vessel wall
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ensure the release of decomposition products from the reactor. The reactor is not
the only equipment in which decomposition occurs. Local hot spots in the secondary
compressor or in other high-pressure zones may also lead to decompositions. Aside
from hot spots, small amounts of oxygen may also initiate decompositions; hence
it is essential to seal the low-pressure section and purge thoroughly after an annual
shut-down or any outage where the system has been depressurized. Decomposition
is a critical fault, and industry is looking for ways to predict it so that it

can be avoided or its effects minimized.

3.2.2 Recycle and polymer processing

The reactor effluent is cooled and sent to a high-pressure separator to separate the
polymer from the unreacted feed gases. The overhead stream from the separator com-
prising unreacted feed is recycled through a series of coolers and cyclonic separators
to the secondary compressor suction. Cyclonic separation is carried out to remove low
molecular weight polymer from the recycle gases. This stream combines with fresh
feed at the secondary compressor suction. The polymer from the high-pressure sep-
arator is sent to a low-pressure separator (See Fig.3.2). Then the separated polymer
is sent to the extruder. The low-pressure off-gas is partly vented to control impuri-
ties accumulation in the circulating gas environment and the balance is recycled to
primary compressor suction. Vinyl acetate copolymerizes with ethylene and is added
at secondary compressor suction. The recipe may have up to 40wt% viny! acetate,

and as the grade is changed, there will be a change in plant operating conditions.

3.2.3 Special equipment

Initiator Pumps: Initiators for this process are generally mixtures of peroxides in
solvent that are injected into the reactor using multi-cylinder, mechanically driven
pumps. The multi-cylinder pumps are usually double acting and driven hydraulically
with stroke speed reset by the temperature in the reactor. This control loop is a
difficult control problem and an interruption or unsteady flow of catalyst may lead to
decomposition or a loss of reaction. A loss of reaction occurs when the polymerization
slows down and the monomers are not converted. The major problem in these pumps

is leaking seals. This occurs because the solvents used with the the peroxides attack
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the sealing material (which is usually made of PTFE). Some peroxides may also
deposit on the packing or the internal valves of the pump. Excessive deposit may
damage the seals and may also cause the ball check valve to get stuck leading to a
loss of reaction.

High pressure reciprocating compressors: In an LDPE plant a primary
compressor is usually a two stage machine and raises the pressure of the feed gases
to 15 — 30MPa. A secondary compressor raises the pressure to 150 — 300MPa. The
variation of density of ethylene and its mixtures with vinyl acetate leads to different
compression ratios over the two stages of the secondary compressor. This results in
large pressure differences over the compressor. The major problems to be considered
are leakages from the compressor seals, and the cyclical fatigue failures of the cylinders
and valves. Small amounts of additional low molecular weight polymer is formed and
deposits in the piping, equipment and compressor internals. This can to lead to
nucleation raising the probability of forming cavities supporting generation of hot
spots where ethylene break down may occur.

In the high pressure process, there are two compressors in series which raise the
pressure of the feed gas to supercritical operating pressures. These are the primary
compressor and the secondary compressor. The primary compressor raises the pres-
sure of primarily fresh feed gas with a small component of recycle gas (about 6W¢.%
of the total) to 15 — 30MPa. The secondary compressor has higher volumetric capac-
ity compared to the primary compressor since it compresses both the fresh feed gas
from the primary compressor and recycle gas which is around 74Wt.% of the total
throughput through the reactor. The outlet pressures achieved are supercritical and
are in the range of 150 — 300MPa. In addition to the mechanical challenges of design
and maintenance, there are some major problems associated with the compression

process. These are:

1. Low molecular weight polymer is formed at these conditions which deposits in

the associated piping and equipment.

2. Break down of ethylene to carbon, hydrogen and methane might occur if there
are local hot spots, i.e. decomposition. This leads to equipment damage or

activation of pressure relief devices.
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3. The recycle component and the supercritical conditions make the process cal-

culations for mass flowrate tedious and requires computing power.

Overpressure Relief Equipment: The high pressure section of the plant has
isolation and dump control valves in case of emergency shut down. In addition, the
piping and equipment have bursting discs which are designed to release the contents in
case of over pressure. The reactor vessel is protected from over pressure, especially in
case of decomposition by four bursting discs. These discharge into vent stacks which
have automatic water injection systems to prevent auto ignition of the decomposition

products.

3.3 Data Server and Variable Selection

In this application an OPC server(Object linking and embedding for Process Control)
was used to access data from the Universal Control Network (UCN) of a Honeywell
TDC3000 DCS. The OPC servers used Microsoft’s OLE technology to communicate
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with clients and permits standards for real-time data exchange between Windows
based software applications and process control hardware. The data communication
between the server and the DCS was via two serial RS-232 serial interface cards
installed on one of the marshalling cabinets on the Universal control Network of the
DCS (See Fig.3.3).

The polymerization reaction variables and the online product physical properties
like Melt Index, Vinyl Acetate Wt.%, etc. are accessed using this system. Other
variables accessed are the reactor process temperatures in various zones, the catalyst
injection rates (these control the reaction temperatures), the reactor pressure, the feed
temperature, the feed flow rate (derived from the secondary compressor variables),
the product cooler variables, the recycle system variables, the propagation additives
and the stirrer motor power. A total of 48 variables (also called tags) are stored every
six seconds. In reality eight points are accessed in one second followed by the next
set of eight points the next second until all the forty eight tags have been accessed
and stored in a cycle of six seconds. The cycle is then repeated continuously. All the
forty-eight tags could not be accessed at the same instant due to data transmission

limitations from the DCS to the OPC server.

3.4 Special Events in Plant Operation

One special operating condition and two faults are summarized in this section. These

special events will be discussed in subsequent chapters.

3.4.1 Cooler Cooking

The recycle stream from the high-pressure separator to the recycle gas coolers has
entrained low molecular weight polymer (called low melt), which, upon cooling, forms
a scale on the tube internal surfaces. With time, scale also forms on the suction and
discharge piping of the secondary compressor, the inter-coolers, the feed gas coolers
and the product coolers (See Fig.3.2). This leads to increased pressure drop and a
higher fouling factor affecting both conversion and plant throughput. Cooler cooking
is an exchanger surface cleaning operation which is done to revive heat exchanger

efficiency by operating the exchangers at temperatures significantly higher than the
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normal operating temperatures. At this condition the polymer and wax build up
melts and is swept away with the feed or product gases, leaving the heat exchange

surfaces clean. The product made during cooler cooks is off-grade material.

3.4.2 Reactants Decomposition

The lower alkenes are endothermic compounds; i.e. energy must be added to the com-
ponent elements to produce the compound-this energy is +12.5kcal/mole for ethylene.
Whereas propylene, another lower alkene, requires severe conditions to decompose
explosively, ethylene decomposes under routine operating conditions (Britton and
Wobser 1986). While ethylene undergoes a controlled exothermic reaction to form
polymers, it may also undergo other exothermic reactions which may lead to a ‘ther-
mal runaway’ and finally a decomposition reaction. A thermal runaway is defined as
the increase of thermal rate acceleration of an exothermic reaction system from any
temperature at which the rate of heat gain exceeds the rate of heat loss from the sys-
tem. Alternatively, ethylene decomposes by two other methods, sudden compression,
especially in the presence of impurities like diatomic gases, and by direct ignition.The

decomposition initiating mechanisms are as follows:

e Thermal Runaway: Fire exposure, excessive temperature, stagnation, low-

flow conditions, catalysis, excessive inlet temperature, heat of adsorption.

e Direct Ignition: Hot spot, flame propagation from associated equipment or

piping, friction.

e Compression ignition: Trapped diatomic gas/presence of air, short compres-

sion time.

Numerous experimental studies have shown that thermal runaway decomposition
is dependant on temperature, pressure and the geometry of the equipment in which
the decomposition occurs. The locus of the critical temperature at which decompo-
sition might occur is inversely proportional to the pressure of the system as outlined

in the Frank-Kamenetski thermal analysis (Kanury 1977).
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3.4.3 Loss of Reaction

The temperature of each zone of the reactor is controlled individually by regulating
the rate of catalyst injection to that particular zone. The rate of catalyst injection
in turn affects the polymerization rate proportionally which raises the temperature
of the zone due to the exothermic nature of the reaction. Thermocouples installed in
the zone will measure the temperature and will transmit the reading to the controller
for action. In this reactor, we have a single loop feed back PID control strategy. Since
the conditions in different zones may feed back on each other, good control of reaction
temperature becomes imperative. It is well known that such exothermic polymeriza-
tion reactors are open loop unstable reactors (van Heerden 1953, van Heerden 1958).

These processes are characterized by:
1. High degree of conversion achieved after ignition.
2. Some feedback of heat along the reaction path.
3. Existence of three stationary states which satisfy the boundary conditions.

More recent research shows that more than three stationary or steady states are
possible (Jaishinghani et al., 1977) and (Schmidt et al., 1981). Closed loop control
strategies maintain the reaction temperature at the desired temperature, which is
around the closed loop steady operating point. Loss of reaction in a zone is a con-
dition where the reaction cannot be sustained in one or more zones as the controller
is unable to reject a large disturbance and the reactor moves to a new stable but
undesirable operating point. Two of the stationary points are stable. One of these
has a low reaction temperature and a low conversion, the second has a high reaction
temperature and near complete conversion. The intermediate state is an unstable
one which is the operating stationary point. The cause of loss of reaction may be

categorized as:

1. An unforeseen breakdown of the initiator or catalyst pump-this is the most

serious disturbance and generally causes shut down.

2. A feed or initiator flow disturbance.
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3. A disturbance in pressure control of the reactor which feeds back in the tem-

perature loop.

In this thesis, PCA modelling is used for fault detection and can be used to predict

the fault if it is slow to develop.

3.4.4 Grade Transitions

While it is preferred to have long campaigns for a particular grade, high inventory
and less grade changes, the final operational policy depends greatly upon market
forces. Therefore, operating multi-product plants is a demanding task and the goal is
to achieve optimum capacity utilization; this is important to the profitability of the
company. Conflicting interests of marketing, manufacturing, and plant control have
to be balanced.

The complexity of operating procedures during grade change depends upon the
difference in their recipes. Product changeover consists of partially overlapping activ-
ities, i.e. phasing out the previous product; adapting and changing over to the new
product; and developing analytical procedures to determine the new product qual-
ity. Generally the grade change is achieved dynamically by continuously the catalyst,
modifiers and other conditions. In certain cases, however, the recipes are so widely
different, especially with regard to the catalyst type, that the product change requires
stopping the reaction and then restarting. Process complexity is increased when an-
other operation like a cooler cook is done simultaneously with the grade change to

minimize downgrade material.

3.5 Concluding Remarks

In summary the process is very difficult to operate due to its dynamics and supercrit-
ical operating conditions. Incidents like breakdown of a catalyst pump leaves no time
for the operators to take the spare pump in line and forces a short unit outage due
to loss of reaction. There are multiple safety interlocks because of the critical con-
ditions of operation which demands high standards of instrumentation maintenance
for plant on-stream reliability. Operating complexity is increased due to grade slides

and special operating conditions.
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Chapter 4

Industrial Data Analysis

4.1 Introduction

The objective in this chapter is to explain the procedures adopted and applied con-
sistently to data on the various products and operating conditions in this plant. The
metrics used for assessment of abnormal situations are also consistently applied to
various situations. Consistent assessments will aid industry in understanding the im-
portant and often difficult points involved in applying statistical tools to make process
decisions.

Adequate care has to be taken to use appropriate tools for improvement in quality
and productivity of the process. Since the thesis concerns the production aspects of
LDPE and EVA, statistical process control(SPC) techniques have been chosen to
monitor and model in order to develop control strategies in the future (Kim and
Larsen 1998).

Modelling of this process is a complex task (Piovoso and Pearson 1992)

e Multiple grades are manufactured by the same process unit based on market

forces.
e Unplanned disturbances occur related to the unit itself.

e Unscheduled changeovers or special operating procedures are used to revive

operating efficiency.

e Modifications are sometimes done to the standard operating procedure for a

grade.
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It should be noted that the model developed is only applicable to the conditions
under which the data was gathered. This has been experienced while doing this
work and has been cited by other researchers (Piovoso and Pearson 1992, Kresta
and MacGregor 1991). The following sections give a description of the tools and the
- application of these tools to plant data to create PCA models. These models are

subsequently used for fault detection and diagnosis.

4.2 Data Preprocessing

Information was collected on the operating procedures and grade campaign produc-
tion plans of the plant and a procedure was developed for preprocessing the data by
grade or event.

The data pretreatment or preprocessing procedures essentially consist of selection
of variables for monitoring, autoscaling and removal of outliers. The objectives while

developing a standard procedure for data preprocessing were:

e Should be applicable and fairly easy to use by a process engineer.
e Should be necessary for the development of monitoring models.
e To be optimized to minimize computing costs.

e Should be adaptable and consistent.

of The selection of variables using the loadings matrix (refer to equation 2.4) could

be done in a number of ways including(Kasper and Ray 1992):

1. We could examine the loadings of the first few components and look for clusters
which signify highly correlated variables. One variable out of these clusters may

be selected with little loss of information.

2. Variables with consistently low values of loadings may be dropped as their
correlation with other variables is weak. These do not explain the process in

any significant way.

3. Or in another approach, the variable with the largest loading in the first compo-
nent is selected and the PCA modelling is repeated. The process is repeated un-

til there are just enough variables to explain the process (Kasper and Ray 1992).
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The first two selection methods from above were adopted for our case and 48
variables were chosen. Since the unit was generally run at capacity with the exception
of cooler cooks and transitions, the mass flow rate of the reactants did not vary
greatly during normal operation. A mechanistic model to evaluate the flow rate was
specifically developed to study the effect of flow rate variation during cooler cooks
and grade transitions.

The data was queried from the OPC server at the plant site using SQL (struc-
tured query language) program files. Data for the 48 variables (Appendix A) was
accessed by the server in a sequential cycle of six seconds and stored in database fold-
ers, as explained earlier. This data was then queried for every 12hour shift using SQL
program files, since all the transitions and special operations performed are logged
by the shift personnel. By following a shift by shift wise query routine, it was easier
to follow and understand the operations. The queried data was in 48 individual files
for the 48 variables being accessed. Their total size was close to 440M B so they
are compressed and stored in a user folder. Monthly data was queried in the above
fashion and recorded on a data CD and taken to the university for further processing.

Each data files had three pieces of information (See Appendix B):

1. Date and time stamp for the recording.
2. The process value recorded to the third decimal place.

3. The status of the tag or sensor being accessed, whether it was on or off.

A Unix based Perl script was then used to cut and paste the process variable value
from the 48 files to a matrix format. This data matrix was then transferred to a
Windows environment as a .txt file for further processing. The data matrix was
then loaded to MATLARB software and the following operations were performed in

sequence:

1. The first operation was to eliminate data vector columns of: variables which
had nearly constant values like controller set points and some controller out-
puts, variables with consistently low loadings identified from earlier modelling
experiences, variables not relevant to the current grade. The controller outputs

from only catalyst pumps that were on-line were kept.
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2. The feed flowrate calculation was carried out using a secondary compressor

model developed in MATLAB and was appended to the data matrix as a data

vector.

3. The data matrix was then averaged over every six observations and then filtered

using EWMA filtering.

4. The data matrix was then scaled so that each variable had zero mean and unit

variance, except for gas environment analyzer process variables.

A number of normal or in-control steady-state regular operating data sets were
preprocessed in the above fashion and appended to model the operation of a particular
polymer grade. Since equipment changes (eg.catalyst pumps) lead to changes in
the model (i.e. one equipment may have a different operating mean and variance
than another), we only used data when similar equipment was operating. The PID
tuning constants of the controllers also remained the same during the various grade
runs. There is a gain scheduling built in for safeguarding against larger than usual
plant disturbances. Adequate precautions were taken to reject data during abnormal
disturbances and only ‘steady- state’ data was considered.

Preprocessing of data is crucial for the following reasons:

e PCA is purely a data driven technique.

e PCA based fault detection assumes steady state data for the model.

e PCA is scale dependant and therefore, data sets have to be scaled adequately.

Although we can manually detect outliers by inspection of plots, it is undesirable
to do this because of the high volume of data involved. Therfeore, an EWMA linear
filter was designed to filter raw data. The filter parameter value used varied based on
the grade and the level of variance in the operation. The models obtained from filtered
data have better resolution to special events, and minimize false alarms since noise is
removed from measurements. Several months of data have been collected in various
grades, cooler cook operations and other special events. The normal operation data

set and scaling are crucial to the successful application of the procedure (Kresta and
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MacGregor 1991). The following features are required for the selection of the data

set and scaling:

1. The ‘NOC’ data set variation should be large enough to avoid false alarms.
However, if the variance is too high then the model becomes ‘thick’ and becomes
insensitive. It has been shown in this work that high variance models are used

for fault detection in high variance operations and vice versa.

2. The scaling is done to give equal weight to all the variables for modelling. Auto
scaling, that is, mean centering followed by scaling all variables to unit variance,
is the most popular. However, variables with very small variance are not scaled
to unit variance as they may become too large following scaling and may falsely

dominate the model.

3. No extraneous variables are included since they may increase the threshold of

the SPE plot (Kresta and MacGregor 1991).

4.3 Data Filtering

Process measurement noise may be electrically generated or process generated. Elec-
trically generated noise is due to issues like cable shielding, grounding etc. and pro-
cess noise is due to turbulence, multiphase flows, variations in mixing etc. (Seborg
and Mellichamp 1989). Signal noise leads to reduced resolution and may cause false
alarms in process monitoring schemes. These effects are reduced via filtering or signal
conditioning before doing statistical modelling. Averaging over every six samples was
carried out followed by exponential smoothing.

An exponential low pass filter was used to smooth the data sets by removing the
high frequency fluctuations in the data. This filter can be represented by a first order

transfer function or a first order differential equation,

(1) = a(t) — 7, 200 (4.1)

where z(t) is the measured value at time instant ¢, y(t) is the filtered value at that
sampling instant and 7y is the time constant of the filter. 7; is selected based on

the frequency range of noise associated with the measured variables. However, the
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selected filter time constant should be smaller than the dominant time constant of
the process. Here it is the residence time of the reactor which varies from 35 to 47
seconds for most grades and operating events. In the case of using the strategy for

closed loop control the condition for choosing the filter time constant is,

Tf < Tdominant (42)

Since the noise frequency range is an important consideration, a higher value of
7s gives more smoothing. Though higher smoothing results in good resolution, we
compromise on the prediction time of faults since a dynamic lag is introduced (Seborg
and Mellichamp 1989). In PCA modelling the filter time constant depends on the
noise associated with the measurements. After development of the PCA model based
on a certain ‘NOC’ data set we cross-validate with another ‘NOC’ data set in the
same polymer grade to check that the SPE plot 99% threshold is not violated more
than the stipulated one out of every hundred samples. In the case that the violation
is higher than the stipulated figure we increase the smoothing by increasing the filter
time constant or increase the number of PC’s in the model.

The digital form of the exponential filter is written using backward difference form

for the derivative in equation 4.1, we get,

dy Yn — Yn—-1
27 e gn  InTl 4.3
dt Nt (43)

where n and n — 1 signify subsequent sampling steps. On substituting equation 4.3

in equation 4.1 we get,

Tn = Ty Un ;@Z’n-l + Yy
Yn = Tn —Tf 'yn ‘“A?zn—-l
At T i
Yn = Yn—1

AT Tt A
yn - ’yl'n + (1 - 7)yn—1
(4.4)
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Figure 4.1: Raw Data Plot

where v is defined as,

(4.5)

In our case v = 0.13 to v = 0.15 were used for the exponential filter, which give
filter time constants in the range 7y = 40 to 74 = 34 seconds. For simplicity, this
filter was applied to all data vectors, including the noisy flow variables, and may
not be sufficient for products with higher variance. One reason for high variance is
that the PID tuning constants of the controllers are the same for all grades. The
exponential filter of the form given in Equation 4.4 has been used throughout this
work for smoothing data before performing PCA modelling. Figures 4.1 and 4.2 show

a comparison between raw and filtered data.

4.4 Secondary Compressor Model and Dynamic
Flowrate Calculation

The high pressure process has a recycle stream of unreacted monomer which is cooled

and recycled back to the secondary compressor suction. The secondary compressor
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operates at fixed speed, and therefore, the suction and discharge conditions will deter-
mine the feed gas rate through the reactor.The feed gas rate is an important variable
which affects product quality and plays a role in special events like decompositions
and loss of reaction. A model of the compressor has been developed using thermo-
dynamic correlations obtained from archives at AT Plastics Inc. Fig 4.3 gives the
steps followed to determine the flowrate. A program was written in Matlab software
to calculate the flow rate at every sample instant. The model is readily adaptable to
an online model since it takes the data vector and the model and associated function
files take less than 0.25 seconds for execution on an Intel Pentium 4,1.4 Ghz speed

desktop machine.

4.5 PCA Modelling

A number of pre-processed data matrices for the same grade were combined or used to
develop a PCA model. The data from different campaigns were merged to have a large
representative data set. The modelling was done using a multivariate statistics and
control performance assessment software called ProcesDoc (Matrikon Inc.) and
cross checked using the PCAGUI in MatLab PLS tool box. The data was first plotted

and combined with the plant log (history) of the operations to visually determine the
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‘steady state’ data for the modelling. As explained in Chapter 3, the correlation
matrix was estimated and an eigenvalues decomposition carried out to obtain the
loadings matrix P,. The success of the monitoring scheme depends on the following

major aspects (Wise and Kowalski 1990):

1. The accuracy of the loadings matrix, F, which must be estimated from data
having good excitation or a high signal-to-noise ratio compared to the opera-
tion under consideration. The accuracy is improved with large data sets and

preprocessing as explained in Chapter 4.

2. Only events similar to those used in the model can be compared with the ‘nor-
mal’ model. In other words, a global model may be too ‘thick’ to detect faults
and a model developed from data with low variance or a low signal-to-noise
ratio will give false alarms for an operation with high variance or a high signal-

to-noise ratio.

The number of principal components (the number of eigenvectors in the loadings
matrix) were elected by performing a scree test and in some cases confirmed by cross
validation of the model with a ‘normal’ data set. Fig.4.4 is the scree plot for one
polymer grade and shows the cut off line for the number of PC’s adopted in the
model.

Generally the eigenvectors associated with eigenvalues \; > 1 corresponding to
seven PC’s were chosen and have been found to be sufficient for our purpose. The
cumulative variance with seven principal components in most grades was between
88 to 90% or these seven PC’s described between 88 to 90% of the variance in the
process. See Fig.4.5 and Table 4.1 for the same grade showing the cumulative variance
and the loadings matrix, the associated eigenvalues and the tag configuration for the
same grade respectively.

Additionally, the contribution of each variable to the individual PC’s are depicted
in the loadings plots(Figures 4.6 and 4.7) for the first two PC’s of this grade. In
this case, PC1 encompasses the feed conditions such as mass flowrate, secondary
compressor variables (which essentially define the mass flowrate), feed gas pressure,
the catalyst consumption and the feed temperature. PC2 captures all the reactor

temperatures.
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The covariance or correlation matriz, the loadings matriz, the associ-
ated eigenvalues and the tag configuration comprise the PCA model. The
standard data set used for modelling and the standard statistics (the minimum and
maximum values, mean and variance for each process variable) are stored. Data from
a fault or a shift in operating point is compared to the standard set. The usefulness of
comparing fault data to the standard data is explained in detail in the later chapters
on fault detection and diagnoses.

Another useful tool used to analyze the data and relationships between variables is
the color plot of the variable correlation matrix . It is a variant of the correlation ma-
trix color plot and includes the correlation of between PC scores and the variables. It
is developed by appending the scores columns to the data matrix and then evaluating
the correlation matrix. This matrix has an additional advantage in that it shows the
set of variables explained by the specific PC’s. The correlation matrix is then plotted
in color as shown in Fig.4.8. The first 40 columns are process variable correlations
and the the columns 41 through 47 represent the correlations of the PC scores to the
variables. The smallest and largest elements of the combined correlation matrix are
assigned the first and last colors given in the color bar. Colors for the remainder of
the elements in the combined correlation matrix are intermediate and are shown in
the color bar. As expected there is no correlation amongst the PC scores. A detailed
explanation on the application of this plot is given in the chapter on quality design.

For instance, the first principal component is positively correlated with the sec-
ondary compressor temperatures (suction and discharge variables 23 and 24), but is
negatively correlated with the catalyst injection rates. This matches our operational
knowledge of the process; that is, the higher the compressor suction temperature the
lower the mass flow . Hence, we require lower catalyst injection rates to sustain the
reaction. Catalyst injection rates, however, have minor correlation with the secondary
compressor conditions. The correlations can generally be explained physically or via

reaction kinetics.
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4.6 Conclusions

Data preprocessing for development of statistical models is by far the most time
consuming step. Therefore, it is of utmost importance that the steps involved for
data pretreatment be chosen with care. A priori process knowledge for variable
selection, statistical requirement of autoscaling were done alongwith data filtering.
The flowrate variable in the data matrix helped in the resolution of process variables

responsible for some process faults as presented in subsequent chapters.
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Calculation of critical properties of the components at certain
temperature and pressure at secondary compressor suction

!

Apply mixing rules to obtain constants of the equation of state

l

Calculation of critical properties of the gas mixture at supercritical
conditions

Selection of appropriate form of equation of state for supercritical
conditions

l

Link the model with the data matriX and run numerical solver for
calculation of density of gas mixture at various stages of compresso

———

h 4

Calculation of flow rate using hardware specifications of compressd
and combine with the data matriX for PCA modelling

Figure 4.3: Secondary Compressor Model for Flowrate Calculation

35



Eigenvalue

Cum. Var. (%)

EFigenvalue Scree Plot
Grade 2842AC

15

10 ¢

-
S

20 24 28
O 3224
AR

(o g .
AR SRR St

Figure 4.4: FHigenvalue Scree Plot

Cumulative Variance Plot

100
t=le

80
7O

60 |

50
40
30
20
10

PC-#

Grade 2842 AC

R

i e

16 20 24 28 32 36

Cum.var.(%)|

BV A2 ket sl . BES RYTVE ok krd DB RTV

Figure 4.5: Cumulative Variance Plot: Seven PC’s

36



cum.

S.No. [Variable Eigenvalues Variance | PC-1| PC-2| PC-3| PC-4| PC-5| PC-6| PC-7
1{Flowrate 16.16]  40.39] 0.79] -0.17[ 051] -0.06] 0.06] -0.04] 0.16
2JAI51001B.PV 6.40| 56.39] -0.84| 0.03] 027] -0.30] -0.11] 000} 0.1
3JAI51001C.PV 437 67.31] 0.77] 0.05] -042] -022] -0.14] 0.18| 0.14
4}AI51001D.PV 3.33] 75.65] -0.90] 0.14] -0.22[ 0.00] -0.01] 0.20{ -0.02
51AI53501.PV 2.43| 81.73] -0.30] -0.03] 0.25{ 055} 025/ 060 0.19
6JAI53502.PV 146] 85.37] 044] -0.11] 017[ 055 0.38] 047] -0.03
7{Fi51007.PV 1.15] 88.24] -0.83] 0.06] 0.28] -0.05 0.14] -0.06{ -0.04
8{F154010.PV 0.82] 90.28{ -0.87] 0.00] 0.1} 032} 0.19] -0.03] -0.08
9JF154121.PV 0.60] 91.78] -0.82] 0.03} 023} -0.13] 0.09] 0.14] 0.20

10}i152005.PV 0.49] 93.00{ -0.37] -0.05| 043[ 015 -0.01} -0.20{ -0.57
11JLIC52001.PV 041 94.04] 065 015 -059] -021} -0.10] 0.10j 0.15
12{PI51135.PV 0.37] 94.96] 089 -0.12] 0.07{ -0.20} -0.08] 0.07{ -0.02
13|P151176.PV 0.28/ 9567| 0.88 -0.16f 0.37{ -0.20f -0.06] -0.01f 0.03
14}P152051.PV 0.27] 96.33] -0.34] 0.19] -0.69| -040] -0.23] 0.26[ 0.01
15]PI152054.PV 0.23| 96.91] 0.66] 0.05 -0.17) 0.02] 024 0.00] -0.25
16]PIC52021.0UT 0.20] 9742 065/ -0.15] 0.39] -044] -0.14] 0.26f 0.02
17}PIC52021.PV 0.17] 97.84] -0.03{ 016/ -0.09] -0.24| 0.23] 0.31] -0.61
18{PI1C52022.PV 0.13] 9817] 084} -0.19] 042{ -0.22} -0.10f -0.04] -0.03
19]8153016.PV 010 98.43] -0.94] 0.02{ 012} -007) 004 -0.02} 0.05
20]T151015.PV 0.09] 9866/ -0.18/ 0.23] -0.85| -0.08] 0.13{ -0.05; 0.01
21JTI51021A.PV 0.09] 98.88 092 -0.14] 0.24] 041 0.07} 0.06] 0.04
22JTI51154.PV 0.08/ 99.08) -0.30f 0.18| -0.69; 046/ 0.24] 0.18] 0.01
23]TI51158.PV 0.07] 99.24] 073} 0.08 -0.50{ 0.07; 0.03] -0.09 0.05
247151164 .PV 0.06] 99.39] 0.83] -0.10f -0.04] -0.20{ -0.14f 0.22] -0.25
25{T152022.PV 0.06) 99.52] 0.06/ 078/ 0.26] 031 -0.33) 0.02] 0.06
26(T152024.PV 005 9964 047) 069] 0.13] 0.13] -043] -0.06] -0.04
27{T152026A.PV 0.03] 99.72) 0.07/ 080} 007 041 -0.34] 0.01{ -0.03
28|T152029A.PV 0.02) 99.78] 0.12] 0.84] 0.11] -0.25{ 041} -0.01} -0.01
29§TI52031A.PV 0.02] 99.82] 0.09f 064/ 0.05] -048f 047} -0.06f 0.17
30JTIC52005.PV 0.02] 9986/ -0.81f 0.12] -0.26] -0.32| -0.19] -0.05{ -0.21
314TIC52021D.0UT 0.01] 99.89] -0.84| -0.04] 0.34] -024] -0.11] 0.19 0.13
32{TIC52021D.PV 001 9992{ 0.1 081 041 023] -042f 0.05] 0.00
33]TIC52025D.0UT 001 99.94] -0.88] -0.05f 0.32{ -0.20| -0.11] 0.25| = 0.10
34]TIC52025D.PV 0.01] 99.95 0.16] 081} 041 0.23] -044] 0.05/ 0.00
35JT1C52027D.0UT 0.01] 99.97] -0.10] -0.23] 0.06] -050] -0.32| 048] -0.13
36{TiC52027D.PY 0.00f 9998 0.10f 0.85f 0.19] -0.10} 0.19] 0.16] -0.11
37]TIC52028D.0UT 0.00) 99.99] -0.84] 0.06] -0.09{ -040] -0.29] -0.01f 0.02
38TiC52028D.PV 0.00] 99.99] 0.19] 0.82] 0.15] -0.25{ 0.39] 0.02} -0.04
394TIC52030D.PV 0.00; 100.00f 0.22{ 0.63] 0.20{ -047( 0.45] -0.10] 0.13
40]TIC52034.PV 0.00} 100.00f 0.98{ -0.07 -0.10f -0.01[ 0.00] 0.10] 0.03

Table 4.1: Loadings and Tag Configuration of the model with seven PC’s
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Figure 4.6: Loadings Plot:PC 1
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Correlation Malrix of 40 variables and PC Scores

Figure 4.8: Correlation Matrix
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Chapter 5

Fault Detection and Diagnosis:
Decomposition

5.1 Introduction

This chapter explains the procedure employed to simplify and understand the process
data and give conclusions from an off-line multivariate PCA analysis related to data
from a decomposition (often termed as decomp in industry) during a campaign in the
18z« class of products, which are 18% Vinyl Acetate content copolymer.
Multivariate Statistical Process Monitoring, Fault Detection and Diagnosis using
Principal Components Analysis (PCA) was demonstrated by Jackson, 1980. It was
shown that these methods were suitable to analyze highly correlated process data.
The advantages of using these methods are their capability to handle large data sets,
typical in the chemical process industry, and dimension reduction via monitoring cer-
tain key statistics as in Shewart charts. While the theoretical development of Principal
Component Analysis was done by Pearson, 1901 and became a part of the multivari-
ate statistical tools, the application of the PCA based fault detection and diagnosis
method began only in the last two decades. Wise, 1991 and MacGregor and his
co-workers (Kresta and MacGregor 1991, Kosanovich and Nomikos 1994) have done
pioneering work on PCA and PLS (Partial Least Squares) as applied to monitoring
and control of the process industry. The techniques have also been demonstrated on
the standard shell control problem for process monitoring and control by Kasper and
Ray, 1992. Although we know the underlying principles in the unit processes and op-

erations in the chemical process industry, it is daunting to set up a mechanistic model
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of the same for monitoring and control; hence,the increasing popularity of the PCA
and PLS based fault detection and diagnoses. However, an important pre-condition
for diagnosis of root cause/s for a fault is sound process knowledge.

In this thesis we study the process of ethylene and vinyl acetate monomers under-
going exothermic reactions to form polyethylene and ethylene-vinyl acetate copoly-
mers. Contaminants like oxygen and hydrogen react with the monomers in other
exothermic reactions to create side products. Alternatively as explained earlier in
Chapter 3, §section 3.4, ethylene and its mixtures may be directly decomposed at
local hot spots or by sudden compression in the presence of impurities like diatomic
gases. Such reactions may lead to a thermal runaway and finally an explosive decom-
position (Britton and Wobser 1986). Thermal runaway is the main mechanism by
which decomposition occurs in these high pressure LDPE reactors.

Decomposition of ethylene and its mixtures has been researched widely both at
laboratory and industrial scale. This research has lead to safer and better design of
equipment and procedures in the high pressure technology area. To avoid decompo-
sitions, the polyethylene industry has proprietary operating procedures or ‘recipes’
based on thermodynamic considerations and operating experience. To reduce the in-
cidence of decompositions, strategies such as tighter automatic controls, mechanistic
models for multivariable controllers and model predictive control have been imple-
mented. All of these are geared towards tighter control at the ‘recipe’ operating point.
As mentioned previously this knowledge, even if it has marginal success, is closely
guarded for commercial competitiveness. Therefore, it is important to develop sim-
ple data based strategies which are easily implementable with a reasonable degree of
accuracy and success to avoid decomposition and other faults.

During the campaign of the 18% VA class of products in October 2001, a decom-
position was experienced at AT Plastics R — V unit. This decomposition event took
place while a routine cooler cook (refer to Chapter3, §section 3.4.1) operation was
taking place. The decomposition resulted in a rapid rise in temperatures and reactor
pressure and the reactor’s safety bursting discs gave way. This rapid increase to ab-
normally high temperatures and pressure is typical once decomposition reactions have
been initiated since the decomposition reactions are strongly exothermic. Although

routine, cooler cooks are considered as special operating conditions since the reactor
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is not at the stable operating point during the heating cycle but returns to it during
the cooling cycle. To avoid temperature runaway, the changes in operating conditions
should be small and the controllers should be well tuned.

As a result of the decomposition, unit R — V was shut down with the automatic
safety interlocks. The operating data for the campaign was later queried from the

server to perform a detailed multivariate statistical analysis of the event.

5.2 Model Development

To detect a fault, the process operations data is compared with a ‘normal’ oper-
ation model. Since the decomposition took place during a cooler cook operation,
statistically a different zone of operation than the general production conditions, a
typical ‘normal’ operation model would lead to misleading conclusions. Following the
philosophy highlighted by other researchers (Kresta and MacGregor 1991), an appro-
priate model using data only from similar events was developed to study the cause of
decomposition.

A basic statistical comparison tells us that the ‘normal’ operation model has
lower variances than those cooler cooks. Therefore, the ‘normal’ model ellipsoid
is ‘thinner’ and will show the whole cooler cook operation as a violation of the 99%
threshold. See Fig.5.1 for a score plot in the same grade which shows the ‘normal’
operation as a dense central scatter and the cooler cook as a deviation from the
‘normal’ operation regime. Figure 5.2 shows univariate trend plots of the compressor
temperatures indicating that they are highly correlated with each other. The peaks
in the figure correspond to the planned increases in temperature during cooler cook.
It is these temperature excursions along with other changes in the plant which show
up as violations of the ‘normal’ operation regime in Fig.5.1. Thus our ‘normal’ model
must be representative of the cooler cook operation.

To develop a model for the decomposition analysis, data from siz cooler cook
operations in the same class of polymer grades with essentially the same feed miz
were chosen and combined to form the representative data set. Process data from
six cooler cooks which were done during the three days prior to decomposition were

used to develop the ‘normal’ model. The cooler cook operation data which ended in
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Figure 5.1: Cooler Cook comparison with normal operation

a decomposition was cross-validated with the 'normal’ model.

Every cooler cook operation lasts for 1 to 1.5 hours and has been explained in
detail §Section 3.4.1. The data from six cooler cooks was preprocessed using the
steps outlined in the §Sections 4.2 and 4.3. Qut of the 61 variables filtered and
processed, 35 process variables were considered significant and used in the model.
These included the analyzer readings of the gas composition, the electrical power to
the stirrer motor, the secondary compressor variables defining the feed flowrate, the
reactor temperature and pressure variables and the conditions of temperature and
pressure in the high pressure separator and recycle gas coolers. The physical product
quality variables of Melt Index and % Vinyl Acetate content were dropped since the
online analyzers are recalibrated during cooler cook operations.

The advantage of an off-line analysis is that we can use process knowledge to
remove known abnormalities from the representative data set. Thus variation due to
random disturbance is dropped from the data set and only variation due to common
cause is used in the model. This is done by plotting every variable to obtain a better
understanding of the process variation. A part of the data set may have to be dropped

if a special operation is done which is not a normal procedure during a cooler cook.
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Trend Plot of Compressor Temperatures(Scaled)
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Figure 5.2: Cooler Cook comparison with normal operation trends

There may be abnormalities due to a malfunction in a control loop or equipment. We
may also drop the variable altogether if through process knowledge ,it is believed that
the variable has only remote possibility of being a cause of the fault. This is done to
minimize false alarms and increase resolution for root cause diagnoses of the fault.

For example see figures 5.3 and 5.4 show two process variables with ‘abnormal’
trajectories in the sixth cooler cook. If these are in included as part of the model ,
the SPE value will be high at these times and the threshold limit will also increase
thus reducing the resolution of variables responsible for the fault. However, in all
such cases, process knowledge is the principal factor which helps us decide the list of
variables which may be eliminated. In this case after choosing the 35 critical process
measurements, data considered ‘normal’ was used to develop the model.

Fig. 5.5 shows the SPE of the same data used for development of the model by
appending six cooler cooks during the same campaign. Since the cooler cook is a
special operation there is a lot of variance in the SPE value.Fig. 5.6 shows the 2D
scores plot which also shows the high variance of the cooler cook operation since the
points are in a dense cluster as is usually seen for a ‘normal’ production campaign.

See fig. 2.2 for a normal operation 2D scores plot.
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Trend Plot of PIC52022.PV (Scaled)
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Plot showing abnormal variation of High Pressure Separator pressure
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\% Cumulative
Associated Variance
PC |Figenvalue Explained Variabies Explained

Feed flowrate, Fresh VA flowrate,
CO2 content,Reactor Stirrer
current, Extruder speed, Secondary
Compressor temperature and
pressure conditions, Product cooler
conditions,Catalyst Injection rates,
Feed temperature, Reactor pressure
PC1 16.92 48.34/control valve opening

Ethane content, Reactor feed gas
[pressure, Reactor pressure, HP
separator pressure, Reactor lower

PC2 9.53 75.56/Zones temperatures
PC3 4.22 87.6/Zone 1 temperatures
PC4 1.43 91.7|Gas environment analyzers

Table 5.1: Decomp Model PC’s and their significance

The model captured 92% of the process variance with only 4 PC’s. The eigenvalue
scree plot and the cumulative variance are shown in the figures 5.7 and 5.8. A
description of the 4 PC’s, associated eigenvalues and the variables explained by each

PC are given in the Table 5.1, and the loadings table is given in Appendix C.

5.3 Detection and Root Cause Diagnosis of Event

The break down of the correlation structure amongst process variables is termed
as ‘failure’ of the process model. The SPE may violate the 99% confidence limit
due to special events like decreasing the pressure of process equipment below the
‘normal’ operating limit. A fault, however, is generally detected when many variables
contribute to violation of the confidence limits of the SPE plot.

Cross validation of the whole set of operation data, for the day on which the
decomposition occurred, was done with the developed model using the chosen 35
variables.

In Fig.5.9 the SPE value exceeds the confidence or threshold limit, during the
final cooler cook. The SPE value continued to violate the threshold limits This
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Eigenvalue Scree Plot for cooler cook model
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Figure 5.7: Decomp Model Eigenvalue Scree Plot
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cooler cook had the quality of a sustained violation of the threshold limit, until the
decomposition,i.e. its 'fingerprint’ was different from the earlier cooks in the same
grade.

The next step was to plot the contribution of each variable to the SPE value.
Using this technique we isolate the variables respounsible for the SPE violation or
fault. The percentage contributions of the all the process variables in the model to
the SPE violation of the 99% threshold ,can be plotted for each sample instant of the
violation as shown in the bar plot of Fig. reffig:decompcontribution11195. Successive
plots like Fig. reffig:decompcontribution11195 will point out the variables which are
the largest contributors to the SPE violation.

Another way to find the variables responsible for the violation would be to note
the contribution of each variable at every sample instant the SPE plot is above the
99% threshold. Thereafter plot the SPE contributions versus time as shown in the
Fig.5.14.This technique has shown to promise for online implementation. Since the
variables which have a sustained high percentage contribution towards the fault are
most responsible, we may eliminate the other variables from the contribution plot
unless the variable increases in importance as time proceeds. The contributions of all
the 35 variables are plotted versus time in Fig.5.14and plot in the time series sense
for all the 35 variables and Fig. 5.15 shows the top five contributors.

Decompositions has been widely researched in the high pressure polymerization
industry but the kinetics are still not well understood. The following observations

were made about the character of the decomposition analyzed in this work,

1. This decomposition occurred due to a combination of a number of variables
being out of normal operating regime. This clearly why we need a multivariate

analysis to detect faults.

2. The temperature of zone 2 of the reactor was consistently higher than normal
operating levels and the pressure of the reactor was also high. The reactor
pressure set point was also a high contributor to the SPE plot;it had been
stepped up continuously during the cooler cook. Zone 2 temperature and reactor
pressure were the highest contributors to the fault. The reactor internal check

post-decomp also confirmed that the decomposition was initiated in zone2 of
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the reactor.

3. The fourth highest contributor was the secondary compressor suction pressure
which relates to the mass flowrate through the reactor. The flowrate model
showed that while the flowrate was not as low as for the other cooler cooks, it
did a contribute to the fault. See Fig.5.13 for a plot of flowrate versus sampling

instants.

4. The fifth largest contributor was the ethane content of the system. Ethane is
one of the products of a decomposition reaction (Britton and Wobser 1986)
in addition to carbon, hydrogen and methane. Though it is the result of a
decomposition, when the ethane level starts to increase, it may be an important
indicator of an impending fault. However,the purge rate from the unit was not
available and we could not confirm that the increase of ethane beyond normal

levels was due to decomposition.

Trend Plot of Mass Flowrate (Scaled)
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Figure 5.13: FLOWRATE in kg/hr versus sampling time for the six earlier cooler
cooks and for the final cooler cook which ended in a decomposition
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Trend Plot of %Contributions of all 35 Variables
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Figure 5.14: Trend Plot of percentage contributions of all 35 variables during the
violation of the SPE threshold.It is hard to distinguish the top five contributors from
such a combined plot.

Trend Plot of variables which are the top five contributors to the fault.

[ -]
, P1052021sp

A51041Bpv

PISH136/64py

2
11
L0
S9!
81
71
6
5 ‘ : = : -
9 18 7 % 45 4 6 7 81 % %
Sample

Figure 5.15: Trend Plot of the top five contributors to the violation of the SPE
threshold.
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5.4 Conclusions

The conclusions from the PCA analysis are:

1. Faults can be predicted using PCA based monitoring schemes although it is not
necessary that a prediction will end in a decomposition. This technique can
detect breakdown of normal variable correlation structure; i.e. variables do not

have the same relationships as during normal operation.

2. Many faults are multivariate phenomena. As seen from the univariate plots,
none of the of all the 35 variables showed any remarkable departure from their
normal levels. Thus, univariate monitoring techniques may be used for event

detection but are less useful for faults.

3. A reasonable prediction time is possible and corrective action can be facilitated

by the variable contribution plots.

4. Even if PCA is not implemented online, it remains a potent analytical tool for

offline process diagnosis.

5. Only similar situations can be compared. The PC scores plot of the decom-
position model showed high variance;therefore,recursive techniques will have to

applied for online implementation of the scheme.

6. The six earlier cooler cooks did not end in an undesirable situation while the
seventh cooler cook did cause a decomposition and unit outage. Therefore,
automation of cooler cooks will help standardize such operations and prevent

faults.
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Chapter 6

Fault detection and Diagnosis:
Loss of Reaction

6.1 Introduction

Ethylene polymerization is exothermic in nature and the temperature increase across
the reactor is a measure of the extent of conversion of ethylene monomer to polymer.
The temperature increase across the reactor is limited by the spontaneous decompo-
sition temperatures of ethylene and its comonomer. In continuous polymerization,
a thermal equilibrium is maintained by removing heat at the same rate as is gener-
ated by the reaction. The heat removal is achieved by adding cold feed gas, which is
generally at a steady mass flow rate. The polymerization is controlled by regulated
addition of polymerization initiators commonly called catalyst. In effect the exit tem-
peratures of the reactor become measures of the extent of polymerization and hence
recipes will require that the temperatures be controlled within tight boundaries at
a given reactor pressure and catalyst mix. It is important to understand that the
temperatures in various zones of the reactor are highly correlated and the catalyst
pumps injection rates in the various zones are also highly correlated. These results
have been proved by doing correlation studies which are described in the next chap-
ter. High correlation amongst the temperatures in the different zones of the reactor
assists prediction of loss of reaction since an abnormal shift in the operating curve
of one pump will directly influence the speed of the lower zone pump. This will lead
to a break down in the normal correlation structure and through process monitoring,

we will see an increase in the SPE and it will detect an event. This event may lead
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to fault.

Loss of reaction in polymerization reactors is a condition in which the reaction
temperature in the different zones cannot be sustained and this is an indication of low
reactant conversion. This condition may start at the first or top zone and spills over to
other lower zones since there is an equilibrium between all exit and inlet temperature
conditions. In such conditions the reaction shifts to another stable operating point
with very low conversion values. This situation is fairly common in the polymerization
industry. Any knowledge extraction leading to further insight into the phenomenon
of loss of reaction using general operation data is of immense value to the industry.

The reasons for loss of reaction have been explained in some detail in §Section

3.4.3 and are reproduced below:

1. An unforeseen breakdown of the initiator or catalyst pump. This is the most

serious disturbance and generally causes a shut down.
2. A feed or initiator flow disturbance.

3. A disturbance in pressure control of the reactor which feeds back in the tem-

perature loop.

The catalyst pumps are gravity fed from catalyst mixing tanks and storage vessels.
The pumps themselves are high pressure, double-acting reciprocating units driven by
individual hydraulic units giving a pulsating flow. The stroke length is controlled by
the temperature controller of that zone; i.e. the catalyst injection rate is controlled by
the dedicated closed loop temperature controller of the zone into which the catalyst

is injected. Loss of reaction due to pump breakdown occurs because of many reasons:

1. An increase in the leaks through seals can affect the pump stroke length required

to maintain temperature.

2. Catalyst in the seat of check valves can lead to valve malfunction which will

also affect the stroke length.

3. Abrupt failure of a part, an interlock trip or power outage.
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Trend Plot of TIC52021D.0OUT ( Zone 1A pump) and TIC52025D.0UT(Zone 1B pump) Catalyst Pump Outputs
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Figure 6.1:  Trend Plot of Catalyst Pump Outputs in ZonelB showing Pump
Changeover

Loss of reaction due to the first two causes occurs slowly and there is good poten-
tial it will be predicted by PCA techniques, enabling corrective action by operators.

Abrupt failures may be detected but there is no time to avert a fault.

6.2 Model Development

A case study was performed on loss of reaction in zone 1B of the reactor in a 28%
vinyl acetate class of product campaign. The fault occurred due to pump failure.
Each zone of the reactor is has one operating catalyst pump and is backed up by one
spare pump. It may be pertinent to point out that due to critical operating condi-
tions and cyclic stresses experienced by the catalyst pumps, they have comparatively
higher breakdown incidences. Depending on the running schedule of pumps and the
preventive maintenance carried out on them, their operating curves can change over
time. After five days of production with a particular combination of catalyst pumps,
one pump was changed over previous to the loss of reaction breakdown. See Fig.6.1,
the spare pump taken in line has a smaller stroke length to sustain the reaction tem-

perature in the same zone. The stroke length of ZonelA pump is not affected after
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Trend Plot of Reactor Temperatures (Scaled)
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Figure 6.2: Trend Plot of Temperature Loops of Reactor

the catalyst pump in Zonel B is switched. Therefore, if the pumps are switched in any
zone during a campaign there will be a mean shift in the operating point of that pump
and will be shown as a bias in the SPE plot. To avoid this problem, data selected for
the PCA model used the same set of pumps as when the loss of reaction occurred.
Another way to deal with pump switching is to carry out mean correction for the
data values for the pump output whenever pumps are switched. This correction may
be applied with online implementation using pre-developed PCA monitoring models.
Despite precautions taken by operations staff when a catalyst pump is changed, the
reactor temperatures are still disturbed as seen in the Fig.6.1. Note that after the
change-over, the temperatures are fairly steady until the loss of reaction. Additionally
it should be highlighted that the output of the pump of zonelB, TIC52025D.0UT,
does not show any remarkable change and a loss of reaction is experienced without
any pre-warning based on a univariate analysis of the critical variables. However, a
multivariate PCA analysis of the operation data gave a prediction time close to 40
minutes which could be used for corrective action.

For the model development, the data taken only while the same set of catalyst

pumps were operating as those at the time of the loss of reaction was used. A total
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of 4250 observations of 37 variables were used (See Fig.6.1). The chosen variables
were the same as those in the decomposition model with additional online physical
properties of the product(See Appendix D for the list of variables and their associ-
ated loadings in the model). The standard steps as outlined in Chapter 4 for data
pre-processing were followed and a PCA model was developed. Using 5 Principal
Components of the model explained 88% of the variance of the data. See Figures 6.3
and 6.4 for the scree plot and the cumulative variance captured by the PC’s respec-
tively. A description of the PC’s and the variables which they describe are given in
Table 6.1. This description is derived from the eigenvalues and the magnitude of the

loadings associated with each PC.
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Figure 6.3: Scree Plot:Five PC’s selected for Loss of Reaction model

6.3 Detection and Root Cause Diagnosis of Event

During the production of 28% VA class of products, an incidence of loss of reaction
was chosen for detailed analysis. Reactor ZonelB experienced loss of reaction due to
its catalyst pump failure leading to a cascade effect in the lower zones and a short

unit outage. The pump failed due to something referred to as ‘ball-over’ in industry
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Figure 6.4: Plot showing cumulative variance captures by Five PC’s selected for
Loss of Reaction model

parlance which means that initiator deposited in check valves causing a malfunction.
There was a gradual reduction in the catalyst flow rate until the flow ultimately
stopped. Since the fault occurs over a long time, prediction of an impending fault
should be possible.

Operation data for the day of the loss of reaction due to this pump failure was
cross validated with the model developed in §Section6.2 . Hotelling’s and SPE plots
were obtained as shown in Figures 6.9, 6.10 and 6.10. Sample instant 1 to the final
sample instant 10707 at which the failure occurred were considered for cross vali-
dation. It was observed that the threshold was violated at sample 9619 (See Fig.
6.10)and the corresponding variable contribution plot ( see Fig.6.8 showed that the
main contributor was the mass Flowrate evaluated from the secondary compressor
variables as outlined in §Section 4.4. The univariate plot of the compressor interstage
pressure shown in Fig.6.15 shows the abnormal cycle which caused other variables of
the secondary compressors to exit their normal operation zones. This combination
caused the violation of the SPE 99% confidence limit. One example is the higher tem-

perature at the second stage discharge when the interstage pressure dipped causing
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PC # | Associated Eigenvalues | Cumulative | Variables Explained
Variance

content, Product MI and Vinyl Acetate
content, Stirrer motor current,
Secondary compressor variables,
Reactor pressure, HP separator
pressure, Product cooler outlet
temperature, Reactor Zonel A catalyst
pump output, Feed gas temperature.

PC1 16.1 43.5 Feed flowrate, Gas environment ethane

PC2 8.8 674 Product cooler inlet temperature,
Reactor ZonelB and lower zones
catalyst pumps outputs, Reactor
ZonelB and lower zones temperatures,
Zone

PC3 3.7 77.5 Reactor Zone 1A and 1B temperatures

PC4 1.99 82.8 Gas environment CO, content, Return
gas cooler outlet temperature

S . .

PC5 1.8 87.6 Extruder speed, Gas environment CO,
content, Return gas cooler outlet
temperature

Table 6.1: Table showing PC#,associated eigenvalue, variance captured,variables

covered by the various PC’s
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Figure 6.5: SPE Plot of Model
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PC-5: Loss of Reaction
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Figure 6.7: Score Plot showing violation of threshold:Loss of Reaction
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Figure 6.8: SPE contribution plot sample instant 9619 showing the flowrate and
compressor variables as the top contributors:Loss of Reaction

an increase in the compression ratio. For the reactor, this condition is not critical but
it may cause an imbalance in the two stage secondary compressor leading to higher
wear.

Fig. 6.10 shows the SPE remains at roughly the same value until sample 10075
after which there is a sharp rise. Fig.6.12 shows a bar plot of the contribution of all
the variables at sample instant 10075. Similar to the contribution plots obtained in
the discussion on decomposition in the Chapter 5, plots of contribution of all the 37

variables considered in the model were plotted in the manner described below,

e The SPE rises sharply after sample instant 10075 and ZonelB catalyst pump

output becomes a significant contributor to the threshold violation.

e Percentage contribution of the variables was noted for every fifth sampling in-

stant starting from sample 10115 to the final sample instant 10707.

e A combined plot of the contribution values of all the 37 variables was done and

is shown in Fig. 6.14
The combined plot of all contributions for 121 observations gives us a picture of
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Figure 6.9: Hotelling’s Plot showing violation of threshold:Loss of Reaction
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Figure 6.10: SPE:Loss of Reaction owing to catalyst pump failure
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Figure 6.11: SPE:Loss of Reaction owing to catalyst pump failure

the event history leading to the fault(see Fig. 6.14). Flowrate , inter-stage pres-
sure and secondary compressor second stage discharge temperature were initially the
main contributors. All of these, however, combine to produce an undesirable varia-
tion in flowrate due to the variation in compressor suction temperature and interstage
pressure. At sample instant 10420 (or observation 61) ZonelB catalyst pump out-
put (T1C52025D.0UT) becomes a distinct contributor (over 10% contribution) and
it remains a high contributor until the loss of reaction at sample instant 10707 (or
observation 121). Meanwhile, the flowrate contribution is reduced to below 5% con-
tribution. However, the interstage conditions remain high contributors throughout

the time period studied.
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in SPE starts:Loss of Reaction

SPE Contributions - (10682)

3 Hotelling's threshold also violated at this sample point
i 20 T | | ’ ' ‘ ‘ | |
E 15 TIC52025D.0UT i
« 10 A
% 5 ST
o 0 & % EREE R ‘m« -~. e eI RO o o I R
> » 1 3 3 4 4 4 4 4 4
o) 0 0 0 9]
s 2288 228 8 8 8
o 9@ = 0o N © =2 9 9O N N |
0 0 W 0] o) = 4) N ® o) 6] i
= N 0 K~ p o 0 B =2 N N
o 3y 3 3 * 3 3 3 2 =2 &
7 < < < p < < < 3 0 0D
Tags < T E 9 .
% Cnr.| 2007 1612 0047 OM0 0087 OXR AOM 4310 3717 00k 0009 4

Figure 6.13: SPE contribution plot matching with sample instant at which
Hotelling’s threshold is also violated:Loss of Reaction

66



- flowrate
 AI51001B.PV
- - AI51001C.PV
- AI53501.PV
ke AI53502.PV

} —&— F151007.PV
|

- F154121.PV 1
—— 152005.PV 3
e PI51135.PV |
PI51176.PV
; PI152051.PV
PI152054.PV
|+ PIC52021.0UT
e PIC52021.PV
@ PIC52021.SP
Compressor PIC52022.PV
discharge - S153016.PV
temperature , . -~ TI51015.PV
~ TI51021A.PV |
TI151154.PV
oae TIS1158.PV
Lo TI51164.PV
- TI52022.PV
T152024.PV
—+— TI52026A.PV _
| e TI52029A. PV %
|~ TI52031A.PV
o TIC52005.PV
- TIC52021D.0OUT |
e TIC52021D.PV
- TIC52025D.0UT
——TIC52025D.PV |
TIC52027D.0UT
-+ TIC52027D.PV
- TIC52028D.PV
—— TIC52030D.PV
Lo TIC52034.PV

Compressor
inter-stage

pressure

|
i

1
21
31
Y
51
61
7
81
91
101
11
121

Figure 6.14: Trend Plot of Contribution of all variables in model:Loss of Reaction
at monitoring point 121

67



NS s

Trend ot o P51 762V (Sczled)

660 - ~--—-~~ e mmT l"-"fnﬂp,l.:\:—";f ________________
B : i | v e | ;
. ' /f’/, i \%g“ - ‘

655 - - -~ - - o A R +\»»\:Q B

1300 2618 3927 5236 9163

10472

1781 13090

Figure 6.15: Trend Plot of interstage pressure PI51176.PV :Loss of Reaction

il e

Tn:nd Plot ofHowxate (Sczled)
10656 - - e L T T Ferrr Ere S B —— TR
10.670 | ‘ f | | | o]
|

—_
<
B
(S ]
auuvrn]‘nn

5236 6545 7854 9163
Sample

R B R
1309 2618 3927

10472

13090

11781

Figure 6.16: Trend Plot of Flowrate:Loss of Reaction

68



6.4 Conclusions

It is clear from the operation log and the PCA analysis that the reason for loss
of reaction was the failure of the catalyst pump of ZonelB. Flowrate is a critical
variable in the reaction kinetics but its contribution was not significant when the loss

of reaction occurred. The conclusions of the analysis in this chapter are:

e Flowrate was initially an important contributor but fell to insignificant levels

before the final loss of reaction.

e Interstage pressure and the associated final discharge temperature remained
high contributors. Presently the cooling on the interstage is a single loop PID
control. Since this is not a feed forward or multivariable control scheme, any
change in the compressor suction conditions or the cooling fluid conditions will
disturb the compressor variables until they are corrected by other actions. A
redesigned control strategy for maintaining the interstage pressure under suction
or cooling fluid disturbances needs to be devised. The compressor interstage
and discharge variables are the effect of changes in suction conditions of the
compressor. Using our process knowledge we see, there is clearly no connection

in this case between the loss of reaction and the compressor variables

e ZonelB catalyst pump was changed over in a shift previous to the one in which
the fault occurred. The first pump had run satisfactorily for more than four

days of the same campaign.

e Apart from the compressor variables, the catalyst pump in ZonelB was the
main contributor to the fault. This is the most plausible reason for the

loss of reaction.
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Chapter 7

Product Quality Design

7.1 Introduction

In the speciality polymer manufacturing business, various product specifications need
to be satisfied for specific applications in diverse areas. The unique specification de-
mands of the customer requires producers such as AT Plastics to continuously develop
new polymer grades or products that are tailored to the required molecular structure
to obtain the desired processing and physical properties. The quality design of new
products is the job function of the technology researchers, chemists and engineers in
industry and requires speed and efficiency to satisfy market demands and keep one
step ahead of the competition.

Product quality design entails specifying ‘recipes’ or the set of operating conditions
alongwith catalyst mix and property modifiers for manufacturing the target product.
Analysis of reaction kinetics coupled with operating experience is utilized to specify
the operating conditions. This technique is still very popular but has the following

drawbacks:

e The relationship between the desired molecular structure and the kinetic model

is not always well understood.

e Production trials need to be carried out which are costly since low quality off-

grade material is made for most of the trials.

e Crucial time may be lost since trials generally require management approvals

causing more delays and longer time to market.
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A smarter, more efficient approach for product quality design was proposed by
researchers at a polymer manufacturing facility at Showa Denko, Japan (Moteki and
Arai 19884) which combined multivariate statistical tools with reaction kinetic anal-
ysis for product quality design. Thereafter, little has appeared in the literature as
extension to the quality design tools using their techniques.

The major advantage in using this approach is that it is a reliable tool for defining,
based on real plant operation history, the set of process conditions required for a
particular product quality. Thereafter, reaction kinetic analysis may be performed to
determine possible operating conditions in terms of safety.

The objective of this chapter is to develop a simple tool based on
multivariate statistical analysis which will define a set of process operating
conditions that will result in the desired product quality. The set of process
conditions may then be fine-tuned using reaction kinetics studies to obtain
even higher product quality. This chapter proposes the steps to be followed for
new product design by using multivariate statistical correlation charts and regressed

property models.

7.2 Multivariate Statistical Tools for Product Qual-
ity Design

Development of multivariate statistical tools for generating ‘recipes’ or instructions
for plant operation will give the engineers and research chemists a mathematical way
to design new products based on real plant performance history. The steps to perform

the product design are:

e Selection of on-line property and laboratory data for molecular structure and
physical properties for all grades being manufactured in the plant. For the cur-
rent work we have online melt index measurement (a macro physical property
and an inverse measure of the viscosity and an inverse measure of Molecu-
lar weight). The other property measured online is the vinyl acetate (VA)
comonomer content of the manufactured polymer. The VA content controls
certain properties of the manufactured polymer such as its softening temper-

ature. Other response quality variables which may be measured for future
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work are T,(melting point), T.( Crystallization temperature), a( heat of fu-
sion)and density. These properties will suffice to define the physical properties
required for most applications. For special analyses we could also measure
M, (weight average molecular weight), M, (number average molecular weight),
MWD (molecular weight distribution), SCB(Short chain branching), LCB(Long
chain branching), unsaturated groups, distribution of SCB and LCB, viscosity
and ESCR (Environmental Stress Cracking resistance) (Moteki and Arai 1988a)

Selection of critical operating parameters in the processing unit. This can be
done using PCA analysis by rejecting variables with low loadings in the PC’s in
the model. For the current work, 36 plant operation variables and a calculated
variable of mass flowrate have been found to explain most of the variability in

the plant.

Collection of required laboratory data and operation data for the various grades

manufactured in the plant.

Development of regressed relationships between the product quality variables

(response variables) and the operating data (predictor variables).

Development of correlation charts for the quality variables and the plant oper-

ating data.
Selection of a product closest to the desired properties.

Determination of operating parameters required to obtain desired quality us-
ing correlation charts. The proposed process operating conditions are then
introduced into the regressed relationships of product quality and optimized to
obtain the final operating parameters. Finally, a check for operating feasibility

is carried out using reaction kinetics and operating experience.

Management approval and trials can then be carried out at the predicted con-
ditions to ensure the desired product quality is achieved with the new set of

operating conditions.
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The most common use for LDPE and its copolymers is in film, lamination and
adhesives and hence, the optical properties of haze, gloss, clarity etc. are important
specifications. These depends on crystallinity, which in turn is related to the molecular
structure with respect to SCB and LCB respectively. In addition to transparency,
the melt processing characteristics and mechanical properties depend upon molecular
weight and molecular weight distribution. Previous research (Moteki and Arai 1988a)
shows that the dependant variable (product properties, which are also called response
variables such as thermal properties, or molecular structures such as SCB and LCB)
can be satisfactorily explained by regressed relationships using the plant operating
conditions and the feed mix. However, the operating conditions required to obtain
certain molecular weight and rheology are hardest to predict. With more powerful
computing and alternative techniques using transformations, it may be possible to
have higher accuracy regressed relationships between the response property variables
and the process conditions.

In this work MI(melt index) and the Vinyl acetate content are available as online
physical property measurements. Regressed relationships for MI and other quality
variables have not been developed due to the non availability of exhaustive quality
data and the focus during this study being on fault detection and diagnosis. The
development of correlation matrices and simple approaches to developing greater in-
sight to product quality design using PCA are explained in the subsequent sections.

Correlation matrices for some grades appear in Appendix F.

7.3 Correlation studies

LDPE manufactured in the high pressure process is very commonly used for film
and lamination. The properties of haze, gloss and clarity are important specifications
which are highly correlated to crystallinity, SCB and LCB distributions and molecular
weight distribution (Moteki and Arai 1988a). Therefore, if we are to use multivariate
statistical tools for product quality design , we need to have reliable quantitative re-
lationships like multivariate regressed models between structure (product quality or
response variable) and the process operating conditions (process variables or predic-

tor variables). It is also known from kinetic reaction analysis that the polymerization
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Correlation between Melt Index and other variables

Value

Figure 7.1: A Bar chart for MI correlation with plant parameters

conditions are highly correlated to each other and even small changes in pressure,
temperature profile of reactor, feed temperature, mass flowrate, feed mix for copoly-
mer, etc. will cause changes in both the physical properties and molecular structure
of the polymer. Therefore, to apply quantitative relationships to design a product,
we need to first have a thorough understanding of the correlation and its direction
between both quality variables and process variables. The correlations between vari-
ables and their directions with respect to each other will guide the fixing of operating
conditions required to obtain a desired product quality. Since the current work does
not have exhaustive quality data, regressed relationships have not been developed.
However, the techniques to apply the quantitative relationships for product quality
design using correlation studies and PCA are explained in this section.

The correlation matrix for a product is developed by: collecting appropriate oper-
ating data with maximized excitation; preprocessing the data; auto scaling the data
matrix and evaluating the covariance matrix. In other words the correlation matrix
between process variables is in the form of a covariance matrix of the processed and
scaled quality and operating data. A word of caution is that since the data is obtained

under routine operating conditions, there may not be enough excitation in some in-

74



Product Cooler
outet
Temperature

Compressor
temperatures
Zone 2
Lower Zones

Stirrer
Current
Compressor

suction
Pressure

Product
cooler inlet
Pressure

Temperature Temperature
Zone 1A Zone 1B

0.39

Melt Index

temperature

.31

Feed Gas/
reactor

Vinyl Acetate
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put variables to see a strong correlation. Hence, some correlations which are obvious
from process knowledge may not show up in the correlation matrix. To overcome
this problem in part, the data has been chosen from cooler cook events together with
normal operating data and the data matrix has been lagged using cross-correlation
maximization and process knowledge before evaluation of the correlation matrix. In
future, the data matriz to be used for correlation studies should be chosen from nor-
mal operation which includes cooler cooks or grade slides and then lagged appropriately
using cross-correlation mazximization and process knowledge.

Since melt index is the only property available for the current work the technique
is used to design and control melt index of the product. In the case considered
below, cooler cook and normal operating data from the 18% VA class of products is
considered. Following the afore mentioned steps the correlation matrix was obtained.

The observations were:

e See Fig. 7.1 for a bar chart of the correlation of the product’s melt index with
other variables of the plant. The same correlation is shown in another organi-
zational chart (See Fig.7.2) giving the relative importance of variables affecting
the melt index of the product. These plots provide a guide to the technology re-
searchers, chemists and engineers in industry who are devising operating recipes
for new products. The plots show that the melt index is negatively correlated to
the mass flowrate. It is also negatively correlated to compressor pressure vari-
ables and positively correlated to the compressor temperature variables which
are in effect variables guiding the flowrate through the system. Vinyl acetate
content of the product is a strong factor for melt index control and shows up as
highly positively correlated. Another interesting feature is the different direc-
tions in which the temperatures in the various zones of the reactor act on the
melt index of the product. While the top zone is positively correlated to the
the melt index, zone 2 is negatively correlated and the lower zones have positive
correlations. The reactor pressure has negative correlation to melt index. Feed
gas temperature, another important reaction variable has a fairly high positive
correlation with melt index. This knowledge can go a long way in guiding recipe

formation and operating guidelines as the critical features affecting the product
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quality are highlighted. However, there is a word of caution and that is reaction
kinetics explains that flowrate and melt index are positively correlated but the
same is not seen in the correlation matrix we have obtained. One reason for this
is that since feed gas temperature has a strong positive correlation to melt index
and during cooler cooks the feed gas temperature is raised substantially which
eclipses the normal effect of the product hardening (reduction in melt index) in
the case of slowing down of the reactor ( reduction in flowrate). In future data
with the same feed gas temperature and varying flow rates could be used to
study the effect of flowrate on melt index. Other anomalies like a low negative
correlation between flowrate and the online vinyl acetate content measurement
need to be studied in greater detail. The correlation between flowrate, vinyl
acetate flow rate and the compressor variables is satisfactory in this analysis

and follows our normal understanding of the process.

Fig.7.3 is a color representation of the correlation matrix. It gives an overall
picture of the correlations occurring amongst all the variables in the plant. Some
features which are easily distinguishable are the strong correlations amongst the
compressor variables, the reactor temperatures and the reactor catalyst pumps.
Strong correlations exist amongst the top zone temperatures and the catalyst
pumps. There is a correlation amongst the upper zone catalyst pumps injection
rate with those in the lower zones and hence, the possibility of prediction for
loss of reaction. The strong positive correlation between flowrate, the extruder
speed, stirrer motor current and fresh feed rate follow our normal understanding
of the process and give credence to the procedures adopted for fixing lags in the

data matrix.

In addition to general guidelines to the direction a plant should take in controlling

product quality, the above correlation plots can also be used in conjunction with

regressed relationships for deciding on a recipe for a special product. The correlation

charts give an overall view of the way in which a certain product quality is affected

by various plant operating parameters . Small changes in operating variables can be

made and inserted in to quantitative regressed relationships, between product quality

and plant operating variables, to give the final operating conditions.
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Figure 7.3: Correlation color matrix: Notice the correlations of parameters with
MI (variable no.2), the highly correlated compressor variables (nos.15 to 19), the
highly correlated reactor temperatures (nos.20 to 24), the highly correlated variables
of Zonel (nos.26 to 29).
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7.4 PCA model: Information on dominant factors

The prime objective of PCA is to simplify and compress the operating and quality
data into fewer factors which describe most of the variability of the plant. While
selection of process variables can make a significant impact on PCA based analysis,
it has been found that up to 90% of the character of the complicated process can be
explained by five to seven PC’s for all the grades of products manufactured and the
special operations in the unit. The loadings of the various PC’s give a macroscopic
view of the correlations amongst the variables in a PC and the dominant factors

controlling the quality of the polymer produced. The observations were as under,

e The first principal component, PC1 explains from 43% up to 52% of the vari-
ability in the process. This means that the process is controlled around 50% by
the high loadings variables in the first PC. These are the flowrate, the reactor
pressure and the product cooler outlet temperature in the positive direction
and; the melt index, vinyl acetate content, stirrer motor current and the feed

gas temperature in the negative direction.

e PC2, the second principal component covers most of the reactor temperatures.
The dominant variables in this PC are the product cooler inlet pressure and zone
1 temperatures in the positive direction and; zone 2 and lower temperatures in

the negative direction. The PC explains up to 20% of the plant variability.

7.5 Conclusions

The advantages in applying the above techniques for product quality design are:

e Production trials are minimized thus improving economic efficiency and plant

safety.

e A reliable mathematical tool based on real plant performance history for product

design can be used for improving product quality.

e The critical parameters for product quality control are highlighted. For exam-

ple, if the top zone of the reactor plays the greatest role in defining the product
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quality for a certain class of products, the industry move to selectively have

better control strategies for the top zone temperatures.

e There will be an increase in confidence to quote for new ’grades’ of product for
customers. The structure and properties of speciality polymers from competing
industry can be measured and quality design tools based on multivariate statis-
tical analysis can be used be to seek operating conditions to develop the same

quality of polymers.
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Chapter 8

Conclusions

8.1 Contributions of this Thesis

In summary the contributions of this thesis are:

e It has been shown using real industrial data from a high pressure
polymerization unit that PCA can be successfully employed for fault

detection and diagnosis.

Widely researched issues like decomposition of reactants can be detected as gross
deviations from the ‘normal’ operation regime. Loss of reaction in reactors due
to catalyst pump failures can also be predicted since the operating variables
in the reactor are highly correlated. Using a combination of contribution plots
and process knowledge, on-line schemes may be devised to avoid recurrence of

such events.

e Only similar operating events can be compared with each other.

It has been established that the model set up for analyzing an event has to
be from similar operating conditions with similar variance information. The
decomposition fault detection and diagnosis could be done only after a model
was set up using a series of cooler cook operating data appended together from
a similar class of 18% VA content products. Additionally, spare pumps may be
able to deliver the same flow rate at different loadings and may generate a bias
in the on-line monitoring index in case of change over(refer §Section 6.2). This
requires mean correction of data in case the spare equipment is taken in line

during the monitoring of the same campaign.
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e A first principles model has been made for the compressor to calculate

the mass flow rate of reactants through the reactor.

The model has an ability to evaluate flow rate by taking an observation vector
as input at every sampling instant and can be implemented as an on-line algo-
rithm. The flowrate evaluation has helped the resolution of the factors actually
responsible for the faults as it is established that flowrate dips or turndown of
up to 66% of the rated flowrate can be be handled by the process without the

occurrence of a fault.

e The chapter on product quality design lays out simple and effective
ways to improve ‘recipe’ formation and process monitoring. The corre-
lation charts give a mathematical handle to the technology researchers, chemists
and engineers in industry to develop new products or ‘grades’ in combination
with quantitative regressed relationships. There is however, a word of cau-
tion and that is that regressed relationships may have error if used outside the
range of observations and the same has been experienced internally by ICI
researchers. One way to work around this problem is to choose a grade al-
ready being manufactured closest to the one being developed and then check
or compare the suggested new operating conditions for the target grade using
the regressed relationships. The new operating data can then be cleared from a
process feasibility and safety angle by using the knowledge of reaction kinetics
and operating experience. The correlation charts also point to the critical vari-
ables which may need advanced strategies for better control to improve product
quality. It is also established that cooler cook or grade slide data should be used
to develop correlation charts and for future implementation of model predictive

or multivariable control strategies, as this data has the maximum excitation.

8.2 Recommendations for Future Work

Need for Online Recursive PCA: PCA models built from historical data are
time-invariant while the process plants are time-varying. This is a limitation in case

online implementation of the scheme is to be carried out to monitor the process using
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the monitoring indices of Hotelling’s T2 and SPE. It has been seen in this study that
the PCA models may change due to:

e Changes in operating means and variances which occur with change in plant

throughput and equipment.

e Changes in the correlation matrix and the number of PC’s in the model due to

process unit revamps or equipment replacement.

In order to minimize false alarms, the need to recursively update models and the
threshold limits for the monitoring indices is required. This will also give a handle
to operators since they may re-initialize the monitoring system in case of special
operations and equipment changes. In the case of grade slide and the initiation of
a new campaign the system may be re-initialized to set up a new operating model
which can be retained for the rest of the campaign for monitoring until there is an
equipment change or a special operating event.

Here, we list some directions for future research:

e The major hurdle of establishing the fact that PCA can be used to detect many
major faults using industrial data has been crossed. To derive real benefits the
scheme has to be implemented on-line using recursive techniques. The issues
of on line data access followed by adequate data pre-processing and evaluation
of flowrate in a time efficient manner have to be researched and implemented.

Recent research on this area has been reported in (Li and Qin 2000).

e Post on-line implementation, operator training has to be carried out for diag-
nosis and corrective action in case a fault is detected by the monitoring indices.
This step calls for the development of user friendly interaction methods whereby
the operator can effectively call for contribution plots and then zero-in using
variable elimination methods based on memory and experience. Prior to imple-
mentation of the scheme it is strongly recommended to automate cooler cooks
and grade slides. Since these are routine and very frequent operations, au-
tomation will standardize these events thereby improving the resolution of real

process faults.
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e The chapter on product quality design is an initiation of product design by a
mathematical method. This can become a crucial and important tool in real
product design. Future research should be geared towards developing quantita-
tive relationships for all the important quality variables and setting up correla-

tion charts for all grades.
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Appendix A

Process Variables Logged by Data
Server

89



AT Plastics Inc.

1]AI51001B.PV Gas A (PV)

21AI51001C.PV Gas B (PV)

3]{AI51001D.PV Gas C (PV)

4{A153501.PV M1 (PV).

5|AI53502.PV V.A. (PV)

6|F151007.PV Fresh Feed Flow Rate (PV)

7|F154010.PV Modifier Mass Flow (PV)

8]Fi54121.PV Total Comonomer Mass Flow (PV)

9]1152005.PV Stirrer Motor Amps (PV)
101LIC52001.PV Seperator Level (PV)
11|P151164.PV Compressor Pressure P1 (PV)
12|Pi51176.PV Compresser Pressure P2 (PV)
13|P152051.PV Product Cooler Presure P3 (PV)
14|P152054.PV Reactor Pressure P4 (PV)
15]P1C52021.0UT |Reactor Pressure P5 (OUT)
16}P1C52021.PV Reactor Pressure P5 (PV)
17|P1C52021.SP Reactor Pressure P5 (SP)
18]PIC52022.PV Separator Pressure P6 (PV)
19|8153016.PV Extruder Speed (PV)
20|T151015.PV Return Gas Cooler Temp T1 (PV)
21|TI51021A.PV Return Gas Cooler Temp T2 (PV)
22|TI51154.PV Compressor Temp T3 (PV)
23|T151158.PV Compressor Temp T4 (PV)
24|T151164.PV Compressor Temp T5 (PV)
25{T152022.PV Reactor Thermo Couple TR1 (PV)
26§T152024.PV Reactor Thermo Couple TR2 (PV)
271TI52026A.PV Reactor Thermo Couple TR3 (PV)
28|TI152029A.PV Reactor Thermo Couple TR4 (PV)
291TI52031A.PV Reactor Thermo Couple TR5 (PV)
30|TIC52005.PV Product Cooler Temp TP1 (PV)
31|TiC52021D.0UT |Cat. Injection Pump TC1D (Output)

32

TiC52021D.PV

Reactor Thermo Couple TC1D (PV)

33

TIC52021D.SP

Reactor Thermo Couple TC1D (Set Point)

34

TIC52021E.0UT

Reactor Thermo Couple TC1E (Output)

35

TIC52025D.0UT

Cat. Injection Pump TC2D (Output)

36

TIC52025D.PV

Reactor Thermo Couple TC2D (PV)

37

TIC52025D.SP

Reactor Thermo Couple TC2D (Set Point)

38

TIC52025E.0UT

Cat. Injection Pump TC2E (Output)

39

TIC52027D.0UT

Cat. Injection Pump TC3D (Output)

40

TIC52027D.PV

Reactor Thermo Couple TC3D (PV)

41

TIC52027D.SP

Reactor Thermo Couple TC3D (Set Point)

42

TIC52027E.OUT

Cat. Injection Pump TG3E (Output)

43

TiC52028D.0UT

Cat. Injection Pump TC4D (Output)

44

T1C52028D.PV

Reactor Thermo Couple TC4D (PV)

45{TIC52028D.SP  [Reactor Thermo Couple TC4D (Set Point)
46}TIC52028E.OUT |Cat. Injection Pump TC4E (Output)
471TIC52030D.PV  |Reactor Thermo Couple TC5D (Set Point)
48|T1C52034.PV Feed Gas Temp TF1 (PV)

Figure A.1: Process Variables logged by server
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Appendix B
Raw Data File

91



Tagname: PIC52021.PV

ip_trend time

07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02
07-FEB-02

DB BN DN W W W RRRNWDR W W WR DN W WDRNWWIWWER NN DN W W W N

ip trend value ip trend gstatus

1399.
1399.
1399.
1399,
1399.
1399.
1399.
1399.
1399.
1399,
1399.
1399.
1399.
1399.
1399.
1399.
1399.
1399.
1399.
.900
1400.
1400.
.300
1400.
1400.
1400.
1399.
1399.
1399.
.900
1399.
1399.
1400.
1400.
1400.
1400.

1399

1400

1399

900
900
600
600
600
600
600
600
600
600
600
600
600
600
900
900
900
900
900

300
300

300
300
300
900
900
900

900
900
600
600
600
600

Figure B.1: Raw Data File Format
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Appendix C
Cooler Cook Model Loadings
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Variable PC-1 PC-2 PC-3 PC-4
flowrate 0.92 -0.31 0.19 -0.02
Al51001Bpv -0.23 0.59 -0.37 -0.62
Al51001Cpv -0.63 -0.26 0.03 0.6
F154121pv 0.82 0.01 -0.36 0.08
1152005pv 0.81 -0.02 0.09 -0.23
P151135/64pv 0.86 -0.23 -0.16 0.26
PI51176pv 0.83 -0.38 0.29 -0.22
P152051pv 0.67 -0.6 0.23 0.15
P152054pv RFG Pr -0.23 -0.94 -0.14 -0.04
PIC52021sp -0.31 -0.91 -0.09 -0.17
PIC52021pv -0.25 -0.92 -0.21 -0.1
PIC520210ut 0.85 0.36 0.28 0.13
PIC52022pv 0.3 -0.58 0.34 0.3
S153016pv 0.9 -0.03 0.21 0.04
T151015pv -0.86 0.19 0.09 0.28
T151021Apv -0.94 0.25 -0.05 -0.01
T151164pv 1 -0.93 0.26 -0.16 0.01
T151158pv 1 -0.95 0.2 0.01 -0.04
T151154pv 2 -0.95 0.16 0.06 -0.11
T152022pv 1A -0.13 0.1 0.94 -0.08
T152024pv -0.76 0.07 0.61 -0.1
T152026Apv -0.47 -0.08 0.85 -0.14
T152029Apv 0.31 0.93 0.09 0.08
T152031Apv 0.4 0.9 0.08 0.05
TIC52005pv -0.86 0.07 0.12 0.34
TIC52021Dout 0.85 -0.38 0.27 -0.1
TIC52021Dpv . -0.6 0.05 0.73 -0.04
TIC52025Dout 0.78 -0.49 0.32 0.02
TIC52025Dpv -0.71 0.05 0.67 -0.1
TIC52027Dout 0.84 0.48 -0.06 0.15
TIC52027Dpv 0.39 0.84 0.26 0.13
TIC52028Dout 0.65 0.63 0.15 -0.13
TIC52028Dpv 0.26 0.95 0.09 0.07
TIC52030Dpv 0.4 0.9 0.08 0.03
TIC52034pv RFG T -0.87 0.26 -0.34 0.07

Figure C.1: Cooler Cook Model Loadings
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Appendix D

Loss of Reaction Model Variables
and Loadings
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[Variable PC-1 PC-2 PC-3 PC-4 PC-5
flowrate 0.91 -0.25 0.08 -0.06 0.13
Al51001B.PV 0.94 -0.07 -0.16 0.13 0.06
Al51001C.PV 0.09 -0.39 -0.09 0.53 0.42
Al53501.PV -0.97 0.10 -0.01 -0.03 -0.15
Al53502.PV -0.78 -0.36 -0.06 0.15 0.25
FI51007.PV 0.37 -0.19 -0.15 0.25 -0.23
FI54121.PV 0.65 -0.21 -0.38 0.34 0.30
1152005.PV -0.69 0.16 0.10 -0.49 -0.15
PI151135.PV -0.83 0.25 0.24 -0.19 -0.28
PI51176.PV -0.92 0.23 0.18 -0.06 -0.19
PI152051.PV -0.62 0.59 -0.08 0.42 -0.02
PI152054.PV 0.93 0.11 0.12 -0.18 -0.10
PIC52021.0UT -0.83 -0.51 -0.02 0.12 -0.07
PIC52021.PV 0.95 0.23 0.15 -0.03 -0.03
PIC52021.SP 0.95 0.26 0.10 -0.08 0.02
PIC52022.PV 0.92 0.20 0.25 0.09 -0.04
S153016.PV 0.06 -0.19 0.05 0.26 -0.47
TI51015.PV 0.94 0.26 0.06 0.02 -0.05
TI51021A.PV -0.15 -0.02 -0.43 -0.65 0.46
TI51154.PV 0.41 -0.38 -0.56 -0.30 0.29
TI51158.PV -0.60 -0.57 0.00 -0.42 0.21
TI51164.PV 0.66 0.54 0.02 -0.19 0.13
T152022.PV 0.39 0.48 -0.65 -0.09 -0.09
TI52024.PV -0.52 0.55 -0.59 0.03 -0.15
TI52026A.PV 0.01 0.67 -0.62 -0.01 -0.28
T152029A.PV 0.41 -0.84 -0.23 -0.07 -0.24
TI52031A.PV 0.21 -0.90 -0.07 -0.11 -0.31
TIC52005.PV 0.86 0.45 0.05 -0.01 -0.10
TIC52021D.0OUT -0.90 -0.36 -0.09 -0.01 0.04
TIC52021D.PV 0.00 0.47 -0.77 -0.05 -0.08
TIC52025D.0UT -0.32 -0.60 -0.51 0.25 0.23
TIC52025D.PV -0.16 0.68 -0.66 0.04 -0.20
TIC52027D.0OUT -0.13 -0.96 -0.14 0.00 -0.12
TIC52027D.PV 0.51 -0.72 -0.36 -0.02 -0.24
TIC52028D.PV 0.52 -0.79 -0.20 -0.05 -0.23
TIC52030D.PV 0.32 -0.85 -0.12 -0.14 -0.34
TIC52034.PV -0.90 -0.05 024 0.24 0.04

Figure D.1: Loss of Reaction model variables and loadings
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Appendix E

Correlation Matrix for 18% VA
Product Cooler Cook
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