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ABSTRACT 

Wildfires are a natural part of Canadian ecosystems, but sometimes pose a threat to people.  

In Canada, when public safety is threatened by a wildfire encroaching into the wildland-urban 

interface (WUI), local authorities will typically recommend and lead evacuation of the area. 

During evacuations, roadway egress capacity has an important influence on evacuation efficacy. 

If the fire spreads quickly toward the community and egress capacity is insufficient, public safety 

can be compromised. We identify communities in Alberta (a province in western Canada) that are 

vulnerable to wildfire due to the configuration of the transportation network in relation to 

surrounding wildfire potential. Based on the existing literature, we first used metrics applied in  

Geographic Information Systems (i.e., GIS) to identify communities that are vulnerable for 

wildfire evacuation due to the geometric layout of their surrounding road network. Then to perform 

our analysis, 21 potentially vulnerable communities were selected based on expert input. We 

plotted fire hazard and transportation facility capacities for each community, and coupled and 

compared estimated fire travel times and evacuation travel times in a directional, scenario-based 

approach, to understand the potential for community egress against fire encroachment. Our 

results show that some communities (mainly within the boreal forest and Rocky Mountain 

foothills) have egress routes highly exposed to potential fire. Our findings also indicate that 

evacuation timing for some larger communities may be considered for further investigations, given 

relationships between estimated fire travel times and evacuation times. This work contributes an 

interdisciplinary assessment of community directional vulnerabilities for wildfire evacuation, 

bringing together wildland fire science and transportation engineering. To bridge research and 

practice, the results are presented in an interactive online map, and can be used to inform 

evacuation preparedness planning and proactive mitigation efforts.  
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PREFACE 

This thesis is an original work by Abdullah Al Zahid. The research included in Chapters 5 and 6 

is currently submitted for presentation at the TRB Annual Meeting, entitled as “Directional 

Analysis of Community Wildfire Evacuation Capabilities” and co-authored by Abdullah Al Zahid, 

Dr. Amy M. Kim and Dr. Jennifer L. Beverly; this paper is currently under review. The author 

acknowledges the work of Air Forbes (manuscript in preparation) in providing radial graphs of 

directional fire exposure in the analysis described in Chapter 5, directional fire spread rates in the 

analysis described in Chapter 6 and in identifying the 21 communities suitable for the analysis in 

Chapters 5 and 6.  

 

Disclaimer: This work is one part of a larger academic work in progress, and was developed with 

many major assumptions as part of an academic study towards an MSc degree. It is not to be used 

for decision making.  
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CHAPTER 1.  INTRODUCTION 

1.1 Background and Motivation  

 Wildfire is a natural phenomenon in Canadian ecosystems that sometimes poses a threat to 

public safety. Scientists are predicting more frequent and intense wildfires due to a growing 

prevalence of extreme fire weather, in turn, induced by climate change (Barbero et al., 2015; 

Wotton et al., 2017; Hanes et al., 2019). As a result, the number of wildfire evacuations is also 

increasing.  In Canada, annual evacuee numbers have increased since 1980, with 0.713 homes lost 

for every 100 people evacuated (Beverly & Bothwell, 2010; Government of Canada, 2021). Wong 

et al. (2020) reported that over one million people had to evacuate from California wildfires in 

2017 and 2019. Most fire management agencies in Canada aim to ensure the protection of people 

and rely on evacuations when public safety is threatened due to wildfire (Beverly & Bothwell, 

2011). Not all wildfires pose a threat to communities and prompt evacuations. Only a small fraction 

of fires cause safety issues, typically due to their proximity to populated areas coupled with fire 

intensities and rates of spread that exceed suppression capabilities. 

Accordingly, it is important for communities to understand their vulnerabilities during 

wildfire emergency situations that prompt evacuation – specifically considering roadway 

configurations and transportation accessibility in relation to surrounding wildfire potential. This 

information is necessary for developing evacuation plans, but can also inform community fire 

protection and transportation infrastructure investment strategies towards community safety. Road 

network capacity can be critical to how evacuations unfold and whether or not residents are 

successfully and safely evacuated. If a fire moves quickly towards a community and available road 

capacity is insufficient to accommodate citizens’ egress, possibly reduced due to fire-induced road 

closures, this can lead to travel delays (Zimmerman et al., 2007), gridlock, or, in the worst-case 

scenario, entrapment (Grajdura & Niemeier, 2022). In 2016, the Horse River Fire (also called the 

Fort McMurray Wildfire) in Fort McMurray, Alberta caused an estimated 88,000 people to 

evacuate. Despite unplanned contraflow and extensive use of air evacuation, a report published on 

the event indicated that the evacuation would have been even more complex if Highway 63 had 

not been expanded to four lanes and improved a few weeks before the fire (Institute for 

Catastrophic Loss and Reduction, 2019). 
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The transportation capabilities of other communities beyond Fort McMurray should be 

assessed, in relation to the potential for wildfire in the surrounding landscape, in order to determine 

which communities need further resources and attention to expand their evacuation capabilities, 

possibly through expansion of evacuation capacity or “Fire Smart” measures such as vegetation 

management and fire precautionary measures (FireSmart, 2001). This is challenging as both 

evacuation and wildfires are uncertain, dynamic, and dependent on many factors. Also, when a 

fire encroaches on a community, it can prompt road closures that restrict or eliminate possible 

evacuation routes. Wildfire evacuation decisions in Canada involve the interaction and 

coordination of multiple agencies that will depend on the characteristics of the fire and the location 

and size of the population to be evacuated, thus making it administratively and operationally 

complex (Beverly & Bothwell, 2011). Different agencies engaged in wildfire need to know how 

road closures could affect evacuation, and for a specific community, which fire spread directions 

could cause road closures, leading to longer egress durations and requiring earlier evacuation 

orders.  

1.2 Research Questions  

 Wildfire impacts on a community will depend on the trajectory and size of a fire as it 

encroaches on the built environment. If the fire environment (i.e., fuel, weather and topography) 

supports fast rates of spread along the fire’s trajectory, the time available to evacuate will be 

limited, causing a short to no-notice evacuation order. This sudden rush to leave the community 

can create traffic gridlock, resulting in delays (Chen et al., 2020). In this study, the following 

research questions were investigated within that context: 

1) Which communities may have less potential to quickly and safely evacuate due to the 

geometric layout of the surrounding road networks, combined with wildfire potential, 

thereby rendering them more vulnerable? 

We will answer the above question by performing a GIS-based analysis using metrics describing 

the road network and wildfire potential. From this step, we identify communities in fire-prone 

areas that would be suitable for transportation analysis of evacuation scenarios in the following 

steps (i.e., locations where future evacuations are possible due to the high levels of hazardous 

fuels surrounding the community, combined with limited evacuation routes). This work is 

contained in Chapter 4. 
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2) Which fire trajectories (i.e., from which direction) into a given community will necessitate 

a rapid or time-limited response due to road closures and resulting reduced community 

roadway capacity? 

We will answer the above question by plotting roadways and their capacities together with 

potential fire pathways identified in a prior study. From this step, we will identify roadways that 

are most likely to be under threat of closure due to proximity to fire pathways, and their 

contributions to the total community egress capacity. This work is contained in Chapter 5.  

3) For a given community and a given situation (i.e., trajectory of encroachment, fire weather 

conditions) and assuming the fire is a given distance away from the community and an 

evacuation is ordered, can the fire reach the community before it is evacuated? 

We will answer the above question by coupling minimum fire travel time along all possible 

trajectories into the community with simulated evacuation times. From this step, we will identify 

if a fire encroaching along a given trajectory can reach the community before it has been 

evacuated. Details of the approach are provided in Chapter 6. 

1.3 Main Research Objective and Tasks 

 The main objective of this research is to develop tools that can be applied to identify 

communities that are vulnerable during wildfire evacuation, due to the directional orientation 

and capacity of the transportation network combined with surrounding community fire exposure 

and potential fire travel times. Research questions are answered in three steps, which each 

correspond to Chapters 4, 5 and 6. A simplified conceptual diagram of the steps involved in 

different chapters is presented in Figure 1.1. Chapter 2 reviews the related literature and Chapter 

3 describes the data sources used for the analysis. The thesis is concluded in Chapter 7.  

 Chapter 4 addresses our first research question. We performed an analysis in GIS to 

identify communities in Alberta that are both highly exposed to potential wildfires and 

potentially vulnerable during evacuations due to limited road capacity. In total, 21 communities 

were selected for analysis based on the analysis described in Chapter 4 (10 communities) 

combined with those chosen with expert input (11 additional communities, personal 

communication [Air Forbes, May 18 2021]). 

 Chapter 5 addresses our second research question. Circular plots of 360 degrees showing 

fire exposure identified in a previous study (Beverly & Forbes, in review) and road capacities 
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are plotted to identify directional vulnerability with respect to evacuations. Our analysis from 

this step shows that some communities (e.g., Rainbow Lake and Swan Hills) have directional 

zones around them with limited evacuation routes and high fire exposure. The analysis identifies 

directions around the community where wildfire safety improvement measures can be prioritized. 

 

Figure 1.1: Thesis Overview 
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 To answer our third research question (Chapter 6), we compared the results of 

macrosimulation against minimum fire travel times from 5 km radial distance to the community 

center (10 km to 5 km for larger communities).  

 Finally, the results of these three steps are combined, compared, and represented in an 

interactive web platform, which can help decision-makers evaluate and prioritize community 

safety measures.  
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CHAPTER 2.  LITERATURE REVIEW 

 Section 2.1 briefly discusses the differences in emergency planning and evacuation studies 

for different disasters, with a focus on wildfire evacuation studies. Section 2.2 provides definitions 

of the key terms in the literature. Section 2.3 discusses different measures of transport evacuation 

modelling and 2.4 discusses fire hazards modelling. Finally, Section 2.5 summarizes and shows 

the gap in the literature where our work contributes to wildfire evacuation studies.  

2.1 Introduction 

In an emergency, the standard protective actions are to either shelter in place (SIP) or 

evacuate (Cova et al., 2011). The type of protective action taken varies by geographic region, 

hazard type, context and local conventions. For example, in Australia, the primary protective 

action is to “Stay and Defend” (McNeill et al., 2015; Tibbits & Whittaker, 2007), whereas in North 

America, evacuations predominate (Drews et al., 2014; McCaffrey et al., 2017). Evacuations can 

be classified as mandatory, recommended or voluntary (Rasid et al., 2000).  

Evacuation of a community can be caused by many reasons, including but not limited to 

hurricane, nuclear accident, flood, earthquake, volcanic eruption, or wildfire. Early evacuation 

studies were focused on nuclear power plant emergencies due to the 1979 Three Mile Island reactor 

incident that occurred in Pennsylvania, US (Pel et al., 2012). However, after a series of devastating 

hurricanes in the 1990s impacted coastal communities in the US, many evacuation studies shifted 

to hurricane contexts. Likewise, after the 9/11 terrorist attack, mass evacuation due to terrorist 

attacks became a focus (Pel et al., 2012). In recent years, climate change has shifted the focus yet 

again to flood and wildfire-related contexts (Intini et al., 2019b; Jolly et al., 2015) .  

Duration and other elements of an evacuation will vary due to the underlying cause. 

Hurricane evacuations usually encompass larger areas than wildfire or flash flood evacuations. 

Also, in hurricanes, emergency management and weather agencies are able to provide evacuation 

warnings several days to weeks prior, whereas wildfire or nuclear accidents cause evacuation with 

a shorter lead time. Wildfire evacuations are usually within hours or without any notice (called no-

notice) due to uncertainties associated with fire ignition and spread (Demange et al., 2020). Thus, 

evacuation studies that address different evacuation contexts can be expected to differ and models 

developed for one evacuation context would not necessarily be appropriate for another.  
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2.2 Definitions  

 Our study focuses on the transportation network in evacuation studies and some terms are 

commonly used in the literature, such as transportation network vulnerability and resilience. Also, 

in different chapters of this thesis, we used wildfire evacuation related terms such as wildland 

urban interface (WUI) and trigger buffer. There are many definitions of these terms in the 

literature. Below we define some of the common ones used in emergency planning and evacuation 

studies referenced in our literature review. 

Vulnerability: Multiple factors can influence the vulnerability of an affected population, 

and collectively, contribute to the community's overall vulnerability. These factors will vary 

depending on community size, evacuee’s response and fire behavior.  

Erath et al. (2009) defined road network vulnerability as the multiplication of the 

probability of experiencing a critical situation and the induced consequences, and they focused on 

transportation link failurerelated consequences across the road network. Furno et al. (2018) defined 

transportation system vulnerability as the limitation of the road network to absorb and react to the 

situations brought on by adverse events. These definitions acknowledge that community 

vulnerability with respect to transportation system and service varies based on the purpose of the 

work. For our analysis, we are looking to ascertain the vulnerability of a community with respect 

to wildfire evacuee transport, based on the possibility of facing a critical situation while evacuating 

due to limited capability of the available roads to accommodate evacuation – particularly in the 

event of a wildfire blocking roadways. 

Wildland-Urban Interface (WUI): WUI is defined as the area where built environment 

and the wildland vegetation meet (Butler, 1974), or where human inhabitants and the wildland 

vegetation start to interact (Radeloff et al., 2005). Due to the presence of people and human 

developments, WUI areas are associated with an increased likelihood of human-caused fire 

ignitions, and wildfires in these areas pose a threat to public safety and values (Calkin et al., 2014; 

Radeloff et al., 2018; Syphard et al., 2007). The WUI area is increasing with growing populations, 

causing amplification of the wildfire-related human risk in North America (Bénichou et al., 2021;  

Intini et al., 2020). 

Trigger buffer: A trigger buffer results when lines are drawn to connect a predefined set 

of fixed points encircling a community. When a spreading fire front arrives at any point on a 
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community’s trigger buffer line, an evacuation recommendation is activated (Cova et al., 2005). 

Trigger buffers often consist of prominent geographic or landscape features such as rivers, bridges, 

or roads used to define the timing of a recommended evacuation order.  

2.3 Transport Evacuation Modelling 

 The earliest evacuation models calculated trigger point distances, forming a buffer around 

a community called a “trigger buffer.” The U.S. Federal Emergency Management Agency (FEMA) 

developed a GIS model to estimate the trigger buffer for coastal areas for hurricane-caused 

evacuations (FEMA 2000). They applied the “decision arc” concept to identify the trigger buffer 

boundary. Similarly for wildfire, Cova et al. (2005) used fire spread modeling, GIS, and 

evacuation timing assumptions from interviewed experts to estimate evacuation trigger buffers. In 

another paper, the Wildland-Urban Interface Evacuation (WUIVAC) model was applied in 

different scenarios (Dennison et al., 2007). Larsen et al. (2011) evaluated the WUIVAC model 

using the 2003 Cedar Fire (Larsen et al., 2011). However, these approaches were still lacking to 

address how the evacuation time can vary based on the urgency to evacuate.  

Later, the WUIVAC model was combined with a spatiotemporal GIS approach with traffic 

simulation (Li et al., 2019). First using traffic simulation to estimate the total evacuation time, then 

producing probability-based trigger buffers, and finally combining the results of the two. In that 

study, the evacuation traffic simulation was done independent of the fire modeling, although the 

urgency to evacuate or type of evacuation notification (i.e., alert or mandatory order) depends on 

the fire’s proximity and rate of spread.  

2.3.1 Simulation of Transport Movement in Wildfire Evacuation Studies  

A common approach to model and assess a community evacuation due to wildfire is to use 

simulation, which are used for both wildfire spread and traffic evacuation models (Gwynne et al., 

2019; Intini et al., 2019). These models are used for evacuation planning purposes, modelling the 

potential outcomes of different fire and evacuation scenarios. Traffic simulations are used to 

estimate how the evacuation may occur based on evacuee decisions and response, hazard 

characteristics, transportation infrastructure, and evacuation decisions (Wahlqvist et al., 2021).  

 Traffic models are classified as macroscopic, mesoscopic, and microscopic. Microscopic 

simulations represent individual vehicles, with models of how vehicle behave in the presence of 
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infrastructure, other vehicles, and how they change lanes. Because these models are 

computationally intensive, they are typically applied when focusing on small geographic areas or 

specific transportation facilities, when greater detail about vehicle movements is desired (Intini et 

al., 2019; Burghout, 2005). Macroscopic models are usually preferred for large and/or complex 

spatial contexts where individual vehicle characteristics are less important, as they are 

computationally less intensive. Vehicles are represented on an aggregate level, such that vehicle 

representation is simplified and level of detail is low (Burghout, 2005). Macroscopic traffic 

simulation models represent vehicles in homogenous groups by the basic descriptors of speed, 

flow and density – and do not consider vehicles individually. Often this is analogous to fluid or 

gas flow phenomena, and the equations derived for these flows are used. The most common 

macroscopic model used in the traffic stream analysis is the Lighthill, Whitham, and Richards 

(LWR) model, also called a hydrodynamic model (Lighthill & Whitham, 1955). The LWR model 

can be used for analytical solutions for a single segment of a roadway; however, when temporal 

and spatial interaction of traffic flow exists, the solution method is typically simulation.  

 Wahlqvist et al. (2021), in the WUI-NITY platform, used the LWR model by discretizing 

the modeling process into small time steps. In our analysis, similar to Wahlqvist et al.'s (2021) 

approach, we also used the LWR model with discretized time step due to the simplicity of its 

implementation, alignment with our purpose of analysis, and the fast computation time.  

2.3.2 Coupling Fire Spread and Evacuation Simulation 

 Simulation-based approaches to model fire spread and traffic evacuations are prevalent in 

the literature. Ronchi et al. (2020) introduced the WUI-NITY simulation model on the Unity3D 

game engine, using FARSITE for fire modeling (Finney, 1998b) with trigger buffers calculated 

using a second sub-model and the LWR model for evacuation movement (Lighthill & Whitham, 

1955). Pedestrians are also included in the evacuation simulation. The sub-models allowed for a 

dynamic interchange of information between the fire spread and evacuation models and thus, 

corresponding decision processes.  

 FARSITE is an American fire growth simulation software model, whereas in Canada, the 

Canadian fire growth simulation software “Prometheus” is used (Tymstra et al., 2010) . Despite 

many similarities between these two fire growth models, fuel type and some other inputs used in 

FARSITE are different and should not be applied to the Canadian landscape. A separate study by 
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applying these two models in Sweden showed that these two models behave differently while 

predicting fire spread (Hagelin & Cluzel, 2016). Thus, there is still no coupling fire spread and 

simulation method for Canada, Australia, or other parts of the world. Our directional analysis 

(Chapter 5) involving the coupling of minimum fire travel time (worst case scenario) with 

macroscopic evacuation simulation is a basic first initiative in the Canadian context. 

2.4 Fire Modelling 

Wildfire is a dynamic process controlled by fuel, weather, ignition, climate, and human 

activities. Fire weather and behavior prediction is used to predict how a fire might behave 

depending on the weather conditions (Hély et al., 2001). 

The Canadian Forest Fire Behavior Prediction (FBP) System (Forestry Canada Fire Danger 

Group, 1992a) is widely used in Canada to predict fire behavior. The FBP System calculations can 

be computed in bulk using openly distributed code (cite the paper that documents the R package 

for the CFFDRS). Individual or small numbers of calculations can also be easily output with a 

simple FBP System calculator available as a downloadable computer application called “Red 

App.” The application outputs predicted fire behavior characteristics based on user inputs and were 

used to generate fire spread rates described in Chapter 5. The “Canadian Forest Fire Weather Index 

(FWI) System” and “Canadian Forest Fire Behavior Prediction (FBP) System” are the sub-systems 

widely used by the fire managers and practitioners to predict fire danger. 

2.4.1  Wildfire Risk Assessment in Canada 

 Fire risk is typically defined as the product of the likelihood and the potential impacts of 

wildland fire (Johnston et al., 2020). The Canadian Forest Fire Danger Rating System (CFFDRS) 

and its components Canadian Forest Fire Behavior Prediction System (FBP) (Stocks et al., 1989) 

and Canadian Forest Fire Weather Index (FWI) System (Van Wagner, 1987) are widely used for 

day to day operational fire management. These tools predict the danger of a fire but do not 

explicitly model fire risk (Johnston et al., 2020).  

In the past, the focus was primarily on fire response and suppression. (Johnston et al., 2020). 

However, after the Okanagan Mountain Park Fire (Sandink, 2009), which caused the evacuation 

of around 27,000 population and 239 homes lost, it brought national attention that fire research is 
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not only important for the forest industry but also for the general interest of public safety and the 

decision horizon should be for long-term mitigation actions.  

2.4.2 Fire Modeling Frameworks 

 In recent years, the advancement of computing power, graphics, and storage capacity has 

enabled researchers to produce spatial fire growth simulation models, such as FARSITE (Finney, 

1998a) and Prometheus (Tymstra et al., 2010). Prometheus is an automation of the FBP Systems 

equations executed on a spatial land cover/fuel layer using weather inputs. These simulation 

models and software can help understand continuous fire behavior in case of a fire.  

  Burn probability measures are extensively used in past research (Parisien et al., 2005). 

Burn probability simulation models are different than fire growth simulations. But their validity 

and accuracy is questioned due largely to the highly stochastic nature of wildfire events ( Beverly 

& McLoughlin, 2019) and discussed in Section 2.5.3.  

2.4.2.1 Prometheus and FARSITE Fire Growth Model 

 Prometheus is a deterministic fire growth simulation model developed in 2002 based on 

the Canadian Fire Forest Fire Behavior Prediction (FBP) System  of the Canadian Forest Fire 

Danger Rating System (CFFDRS)  (Forestry Canada Fire Danger Group, 1992; Tymstra et al., 

2010). This model is used extensively to predict probable fire behavior and helps to inform ire 

management decision making. It uses topographical features, fuel types, and weather to simulate 

fire growth using Huygens’ Principle of wave propagation.  FARSITE is a similar American model 

based on the U.S. fuel types and is widely used by U.S. practitioners (Finney, 1998a). As 

mentioned before, a study applying these two models in Sweden showed that these two models 

behave differently while predicting fire spread (Hagelin & Cluzel, 2016). 

2.4.2.2 Burn Probability Simulation 

 Burn probability models are based on the Monte Carlo Simulation approach, which 

involves repeated simulation of individual fire events using Prometheus or other fire growth 

models. Similar to our static analysis approach described in Chapter 3, Dye et al. (2021) used the 

outputs of burn probability simulation to develop fire metrics in their analysis. This approach is 

widely used in research and fire management planning to identify locations most likely to burn 

(Braun et al., 2010; Parisien et al., 2006; Beverly et al., 2009). Beverly & McLoughlin (2019) 
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investigated the correspondence between burn probability heat maps and burned areas observed in 

subsequent years for five study areas in Alberta, Canada. They found greater than 70% of the 

burned areas were located in the burn probability range where it was considered the least likely to 

burn. This essentially questions the validity and reliability of these simulation models. The study 

also showed that the choice of classification methods for mapping probability values in GIS is a 

subjective judgment that can alter the map's appearance and accuracy.  

2.4.3 Fuel as a Fire Hazard 

 Beverly et al. (2009) found that high or extreme simulated burn probability in west-central 

Alberta was primarily determined by the fuel composition in the area immediately around a 

location. Based on these findings, Beverly et al. (2010) assessed the exposure of the built 

environment with respect to vegetation, to ascertain its potential as an ignition source. Beverly et 

al. (2021) used the proximity of hazardous fuel as the basis for assessing wildfire exposure at both 

community and landscape scales. Wildfire exposure is a numeric rating that describes the potential 

for fire transmission to a location irrespective of weather conditions or other fire controls. The 

metric is reliable for identifying fire-prone locations across a region, with 70% of burned areas 

occurring in locations with fire exposure over 60%. For Static Metric Analysis in Chapter 4, we 

used wildfire exposure as one of the two static metrics of wildfire potential. A directional 

assessment of community exposure to hazardous fuel was introduced by Beverly & Forbes (in 

review). We build on this work by combining directional exposure assessments with fire travel 

times and a directional analysis of the roadways serving a community. The results of this combined 

fire and transportation analysis are communicated through a simple data visualization that can be 

used as a communication medium with government and local communities.  

2.5 Summary of Literature Review 

 Dye et al. (2021) presented a static analysis of basic road network characteristics to 

characterize evacuation vulnerability of communities in the rural Pacific Northwest, in GIS. In 

Chapter 4.2, we used a similar approach but using a different metric for the transportation network 

(minimum lanes to population ratio) and different biophysical wildfire inputs including wildfire 

exposure, and historical patterns of human-caused ignition points (see details in Chapter 4). 



13 

 Some recent studies, for example Ronchi et al. (2020), model fire spread as an input to 

evacuation transportation simulation; however, their focus was on overall risk, not directional 

vulnerability. Our approach of relating minimum fire spread rate in each 45 degree direction of a 

rural community, with evacuation traffic simulation (in Chapter 6) provides a directional 

vulnerability assessment that their study did not. Macroscopic simulation with the discretized 

LWR model is appropriate for our analysis, due to its ability to generate results in seconds due to 

computation simplicity, matching the computational detail of the fire spread model, and thus 

suitable to assess many rural communities quickly.  

 Fire hazard and the perception of risk are considered to be the most influential factors in 

evacuation behavior (McNeill et al., 2015; Lovreglio et al., 2019; Mozumder et al., 2008). 

Accordingly, we relate minimum fire travel time with our mobilization curve using Tweedie et 

al.'s (1986) Rayleigh distribution (in Chapter 6). Given that burn probability simulations may not 

be representative or useful for informing fine-scale activities in landscapes (Beverly & 

McLoughlin, 2019), we have used the landscape fire exposure metric (Beverly et al., 2021) as the 

primary basis of our network vulnerability analysis (in Chapter 5).  

 This literature review demonstrates that the impact of the directional vulnerability of the 

transportation network for wildfire evacuation has received little or no attention. As current 

wildfire evacuation planning does not include directional assessments of transportation 

vulnerability, this thesis develops a method to assess directional transportation vulnerability due 

to wildfire encroachment, and subsequent evacuation.  
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CHAPTER 3.  DATA SOURCES 

In this chapter, we introduce the data sources used to build the representation of Alberta 

communities and Alberta highway network. For the wildfire risk assessment part, the data sources 

used for calculating the “Wildfire Metrics” (used in Chapter 4) are introduced. 

3.1 Data for Communities and Transportation Network 

3.1.1 Communities 

The most current community population data were obtained from the 2016 Canadian 

Census (Statistics Canada, 2017a), using a downloadable tool called GeoSuite 2016. These data 

included information such as population centre (PC) name, PC type, population count, and 

representative PC point coordinates. Using definitions provided by Statistics Canada, the identified 

population centres are communities with a population of at least 1000 and a population density of 

400 persons or more per square kilometer. Population center boundary files were obtained in a 

shapefile format and population counts were downloaded in *.csv files. The ArcGIS  “Join Tool” 

was used to connect the boundary shapefiles with the population count data, making it a single 

shapefile with population count data. Finally, community centroids were determined by converting 

the polygons into point features in ArcGIS. The location of communities and the road network in 

Alberta is shown in Figure 3.1. 
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Figure 3.1: Population centre (community) locations and provincial road network. All 

communities are not shown; at this scale, some would be shown as overlapping. 
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3.1.2 Road Transportation Network Data 

 For the Chapter 4 analysis, we considered the paved road network consisting of freeways, 

controlled access highways, arterials, collectors, municipal and local roads. We assembled a 

complete network database of these road types from the ABMI Wall to Wall Human Foot Print 

Inventory. We did extensive manual corrections to integrate the different attributes from the 

Metadata file. The resulting integrated network contains 249,144 line segments with the minimum 

attributes required to assess the static metrics. 

The Alberta highway network, obtained from Alberta Transportation as part of a previous 

related study, was used for the analysis of Chapters 5 and 6. Based on attributes including, but not 

limited to, annual average daily traffic (AADT), highway length, and vehicle composition, the 

hierarchical classification of Alberta’s highway network consists of four classes designated as 

Levels 1-4 (Stantec Consulting Ltd., 2007):  

1. National Highway System (Level 1) facilities: Inter-provincial and international 

movement of people, goods and services are accommodated by these facilities. These 

Level 1 facilities are generally only connected with Level 2 facilities. The total length 

of Level 1 facilities throughout Alberta is around 5,689 km, or 18.4% of the Alberta 

network. 

2. Arterials (Level 2) facilities: These are similar to Level 1 facilities but only serve intra-

provincial routes. These Level 2 facilities generally only connect Level 1 and Level 3 

facilities. The total length of Level 2 facilities throughout Alberta is around 8,494 km, 

or 27.4% of the network. 

3. Collectors (Level 3) facilities: These facilities connect local roads and arterials. Access 

to these facilities are more frequent than Level 1 and 2 facilities and can serve traffic 

from communities or industrial developments. The total length of Level 3 facilities 

throughout Alberta is around 12,216 km, or 39.6% of the network. 

4. Locals (Level 4) facilities: Local roads primarily serve country residential and rural 

homesteads. The total length of Level 4 facilities throughout Alberta is around 4,097 

km, or 13.3% of the network.  

  We used roadway capacities contained in the Alberta Transportation dataset in the 

analyses described in Chapters 5 and 6.  
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3.2 Wildfire Data and Inputs 

3.2.1 Fire Exposure Data 

Our analysis makes use of a readily available map of wildfire transmission potential called 

landscape fire exposure (Beverly et al., 2021), hereafter referred to as fire exposure or exposure.  

Exposure has been calculated for the entire province of Alberta (Beverly et al., 2021) and a recent 

study characterized the amount and configuration of exposure around communities in Alberta 

(Beverly & Forbes, in review). Outputs of the latter study by Beverly and Forbes (in review) were 

obtained as inputs for analyzing transportation vulnerabilities with respect to wildfire evacuation 

in Chapter 5.  

Beverly et al. (2021) showed that most burned areas in Alberta occurred in locations with 

≥ 60 % exposure. Beverly & Forbes (in review) therefore consider locations with ≥ 60 % exposure 

as “critically exposed.” Critically exposed areas around the town of Jasper are shown in Figure 

3.2, along with the road network. The colored polygons denote locations that have exposure of 60 

percent or more. As the exposure assessments are based on proximity to hazardous fuels, they 

account for the mechanisms by which fires transmit from one location to another: radiant heat and 

ember transport. This exposure map is used while calculating the wildfire metric in Chapter 4. One 

limitation of the data is each cell is 100m x 100m or 1 hectare (ha) in resolution of the land cover 

raster file. The resolution is relatively coarse and fuels may not be well representative as FBP fuel 

system fuel types are simple categories (Forestry Canada Fire Danger Group, 1992).  
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 Figure 3.2: Fire Exposure (60 percent or more) map of 10 km buffer distance 

around Jasper Alberta.  
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CHAPTER 4.  DATA ANALYSIS 

 This chapter includes the wildfire data inputs that we used for our analysis in 

Chapter 5 and 6. The data analysis section of this chapter also presents a framework for assessing 

transportation vulnerability in relation to wildfire evacuation using GIS-based metrics. Results 

are used to identify ten vulnerable communities for further analysis in the following chapters. Also, 

the data inputs for the analysis in Chapter 5 is also included in this chapter. 

 

Disclaimer: This work is academic work in progress and not to be used for decision making 

4.1 Data Inputs 

4.1.1 Proportion Exposed Plots in Chapter 5 

 As mentioned in the previous chapter, Beverly et al. (2021) reported that areas burned by 

wildfire aligned with locations that had ≥ 60% exposure. Beverly & Forbes (in review) therefore 

defined critical exposure areas as those with ≥ 60% exposure and developed a method to 

quantitatively describe the directional pattern of fire exposure around a community using radial 

graphs. We use the results of that directional exposure assessment to explore if exposure pathways 

into communities align with road directions, which could result in loss of road capacity in the event 

of a wildfire, which was investigated in Chapter 5. By overlaying the roads with directional 

exposure Beverly & Forbes (in review), road network directions vulnerable to wildfire can be 

identified. 

Radial graphs of directional fire exposure from Beverly & Forbes (in review), were 

provided by the authors. Beverly & Forbes (in review) assessed directional fire exposure in one-

degree transects extending outwards from the community centroid for 15 km. This analysis was 

completed for 21 fire-prone communities in Alberta. The resulting radial graphs show the 

proportion of a given transect that is critically exposed. For example, if one-third of the transect 

intersects lands where exposure met or exceeded the critical threshold of 60%, then the directional 

exposure is 33%, whereas if the entire transect intersects critically exposed lands, the directional 

exposure is 100%.  
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4.1.2 Directional Fire Spread Rate as Data Input in Chapter 6 

 Potential fire travel times along each one-degree transect were calculated for spring and 

summer conditions for each community. This procedure was conducted by a fire modeler (A. 

Forbes, personal communication [July, 2021]) and involved estimating fire spread rates by fuel 

type using the FBP System, given assumptions about weather conditions. The time required for a 

fire to travel along a 5 km increment of the transect was estimated from the composition and 

amount of the intersecting fuel types. No attempt was made to account for barriers that could 

potentially arrest fire spread, those areas were simply assigned a spread rate of zero. Fire travel 

times were estimated for two 5 km increments extending out from the community centroid – 10 to 

5 km, and 5 km to centroid (0 km). The calculated fire travel times were then used to determine 

minimum fire travel time (𝑡1) for each of the 8 directions of a community (see Section 6.1Figure 

6.1 for model details).  

 Several assumptions are associated with these fire spread calculations. First, the fire spread 

rate is calculated using an assumed weather condition with Fine Fuel Moisture Code of 92.5, a 

Build-up Index of 92.7, and an Initial Spread Index of 14.7. These values represent the 95th 

percentile fire weather for fires occurring between 2006 and 2018, and thus a worst-case scenario 

(Beverly et al. 2021). Second, the spread rate along a transect is calculated by taking a weighted 

average of individual spread rates of different percent of fuel types that intersect the transact. In 

reality, the presence of a continuous patch of non-fuel/water/vegetated non-fuel land that are all 

assigned a rate of spread (ROS) of 0 m/min for the purposes of this study, might affect the 

progression of the fire by completely arresting fire spread. Likewise, it is possible that a fire could 

jump over non-fuel portions of a transect, such that ROS is not slowed at all. More complex spatial 

fire growth simulation approaches such as Prometheus were not used because these models do not 

model how fire can potentially jump over non-fuel patches. 

4.2 Data Analysis using GIS 

 In this chapter, GIS analysis is used to perform the initial identification of the vulnerable 

communities for their limited evacuation roadway geometric network in relation to the wildfire 

potential. The analysis included 122 communities in Alberta that had a population of at least 1000 

and population density of at least 400 persons per square km, as described in Section 3.1.1. The 



21 

GIS model consists of five network metrics for evaluating evacuation roadway vulnerability, 

which are combined with two wildfire potential metrics. 

An assessment of transportation vulnerability was based on five metrics: exit road capacity, 

road directionality, travel area, connectivity, and evacuee load (the latter including population). 

Four of these metrics  (i.e., exit road capacity, road directionality, travel area, connectivity) are 

similar to those developed by Dye et al. (2021). The aim of these transportation vulnerability 

metrics (including Dye et al.'s (2021) four metrics) is to characterize each community’s 

surrounding road network, on the potential to quickly and safely evacuate the community.   

Wildfire potential was gauged according to the amount of highly exposed land in the 

surrounding landscape, calculated in a separate study. Wildfire potential focusses on which parts 

of the surrounding landscape are capable of hosting a wildfire incident. By combining the scores 

from the transportation and wildfire metrics, an overall vulnerability score is calculated for each 

community. The result is that ten highly vulnerable communities are identified for further 

assessment in the following chapters. 

4.2.1 Network Vulnerability Metrics 

 While calculating the metrics, the circular buffers drawn from the community centroid 

extend outwards 15 km. This is because most of the communities show clear route directions for 

evacuating from or leaving the community at a 15 km distance. If a buffer smaller than 15 km (i.e. 

10 km) is used, it results in inclusion of local roads in the metric calculation, which are eventually 

merged into the highways. However, we also conducted a simple sensitivity analysis by 

performing the same calculations of the network metrics for 10 and 20 km buffer distances of each 

community.   

4.2.1.1  Exit Capacity (Dye et al., 2021) 

 The number of lanes for each road intersecting the 15 km circular buffer perimeter is 

counted for each community. 

4.2.1.2 Travel Area Metric (Dye et al., 2021) 

The travel area metric describes the curviness or indirectness of roads within a 15 km 

circular buffer. “Network Analyst” tool from ArcGIS is used to calculate the travel area metric. 

The travel area metric provides the maximum number of places that can be reached by traveling 
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15 km distance starting from the community centroid. If the road is straight, the resulting travel 

area will be larger than if roads are meandering or winding. Communities with larger travel areas 

are considered less vulnerable, because evacuees can travel faster away from the community than 

they would on a meandering road, assuming all other factors such as time and speed are equal. 

4.2.1.3  Connectivity (Dye et al., 2021) 

Connectivity was measured using the “Line and Junction Connectivity tool” in ArcGIS. It 

consists of the number of lanes approaching intersections within a community, within a 15 km 

circular buffer distance. The number of lanes in each intersection is summed using the “Join” tool 

for each community. This metric is based on the expectation that a well-connected network 

provides more flexibility for evacuation route choices. A higher number of connections means 

more efficient access for emergency responders and more options to possible destinations and 

directions. 

4.2.1.4  Road Directionality (Dye et al., 2021) 

This metric represents the directional routing options for an evacuating community. Road 

directionality is computed by the circular variance of the road network, based on the positions of 

available exit points along the circumference of the 15 km community buffer. Higher variance 

means more diverse alternatives to choose from. 

4.2.1.5  Evacuee Load 

This metric indicates the location (in radial distance from community centroid) and size of 

a roadway bottleneck for a community, determined against the community population. To 

calculate, circular buffers lines were drawn at 1 km intervals from the community centroid out to 

15 km distance. Intersection points between the buffer lines and the roadway network were 

identified using the “Intersect” tool for each buffer polygon.  Out of these 15 buffer lines, the 

buffer line which contains the smallest number of intersection points was selected. Then the 

corresponding total number of lanes on intersecting roads was found, and this was divided by the 

population of the community (in thousands) to find the community’s minimum number of lanes 

per evacuee. Figure 4.1 shows an illustration of how the metric is calculated; orange dots are the 

intersecting points of the roadway network with the circular buffer. 
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Figure 4.1: Evacuee load metric 

 

If the number of lanes to population ratio is small, the community has a more restrictive 

roadway bottleneck, and possibly greater congestion in egress. Thus, the ratio gives us some 

understanding of community size versus roadway capacity.  

4.2.2 Wildfire Metric 

Dye et al. (2021) used two metrics to ascertain wildfire potential: a burn probability map 

generated using wildfire simulations, and mean fireline intensity. As discussed in Section 2.4.2.2, 

Beverly & McLoughlin's (2019) study showed that simulated burn probability had limited value 

for mapping fire potential in Alberta’s forest ecosystems. Accordingly, we used an alternate 

wildfire metric, landscape fire exposure, which is based on grid cells’ proximity to nearby 

hazardous fuel and has been successfully validated in Alberta.  

As mentioned in Section 3.2.1, the exposure data used in this study was provided by 

Beverly & Forbes (in review). In that study, the characteristics of landscape fire exposure mapped 

by Beverly et al. (2021) were described for each community using a series of metrics; however, 

the magnitude of exposure was selected for use in this study because it provides an overall indicator 

of fire potential in the landscape surrounding the community. Also, Beverly et al. (2021) showed 

that between 2007 and 2019, most of the area burned by wildfires in Alberta occurred in locations 

with ≥ 60% exposure, and this was consistent for 10 of the 11 ecological units included in the 

study. In order to calculate the metric, a circular buffer of 15 km is drawn around the selected 

communities. The area with exposure ≥60% within the 15 km buffered area is calculated using the 

“Intersect” tool in GIS. Finally, area values are normalized between 0 and 1. 
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4.2.3 Evacuation Vulnerability Score 

 The calculation for the transportation vulnerability score is shown in (Eq. 4.1), which 

combines all five network vulnerability metrics introduced previously. The weighting for the 

“Evacuee load” metric is 0.5, as the index is biased toward larger populations. For each 

community, the normalized transportation vulnerability score was combined with the normalized 

wildfire potential score by taking an average using (Eq. 4.2) to produce an overall rating of 

transportation vulnerability to wildfire, which we defined as evacuation vulnerability score. The 

final scores calculated using (Eq. 4.2) are normalized between 0 and 1 for comparison purposes.  

 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒  

= (𝐸𝑥𝑖𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) + (𝑅𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦)

+ (𝑇𝑟𝑎𝑣𝑒𝑙 𝑎𝑟𝑒𝑎 𝑚𝑒𝑡𝑟𝑖𝑐) + (𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦)

+ 0.5 (𝐸𝑣𝑎𝑐𝑢𝑒𝑒 𝑙𝑜𝑎𝑑) 

(Eq. 4.1) 

 

 𝐸𝑣𝑎𝑐𝑢𝑎𝑡𝑖𝑜𝑛 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒

= (𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒

+ 𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒 𝑀𝑒𝑡𝑟𝑖𝑐 𝑆𝑐𝑜𝑟𝑒)/2 

(Eq. 4.2) 

 

 According to the above metrics, communities that exhibit the greatest vulnerability with 

respect to wildfire evacuation due to the geometric layout of road network are listed in Table 4.1. 

As expected, Table 4.1 shows that the most vulnerable communities are those with small 

populations, with the exception of Fort McMurray.  

Table 4.1: Communities with the Highest Evacuation Vulnerability Scores 

Ranking Community Name Evacuation 

Vulnerability Score 

Population 

1 Grande Cache 1 3,571 

2 Jasper 0.96 4,590 

3 Hinton 0.93 9,882 

4 Coleman 0.87 1,475 

5 Fort McMurray 0.84 66,573 

 The locations of all communities for which an evacuation vulnerability score was 

calculated are shown in Figure 4.2. Results show that these communities are mainly located in 
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areas with high fuel exposure, north of Edmonton or along the western border of Alberta with 

British Columbia. The color symbols use “Jenks natural break” symbology tool in ArcGIS.  
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Figure 4.2: Map of evacuation vulnerability metric scores. The scores are the normalized 

values of the averages of the transportation vulnerability metric (Eq. 4.1) and wildfire 

metric (Eq. 4.2).  
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 The highest community scores are summarized in Figure 4.3. Results indicate Grande 

Cache’s transportation vulnerability is high, but wildfire potential is lower compared to other 

communities; the overall vulnerability is ranked 5th. On the other hand, Hinton’s wildfire potential 

score is higher than Grande Cache but transportation vulnerability is lower, and thus ranked 3rd. 

 

Figure 4.3: Comparison of the communities exhibiting the highest levels of transportation 

vulnerability with respect to wildfire evacuation 

 The geographical positions of these highly scoring communities are mostly aligned with 

high fuel exposure areas, which is expected because this scoring is specifically focused on wildfire 

evacuation. However, a low vulnerability score does not mean that a community is not vulnerable 

for wildfire evacuation – i.e., low fire hazard and/or sufficient road network to accommodate 

evacuation. Rather, the focus of our analysis was to identify communities which potentially may 

be flagged as more vulnerable compared to others, and thus require further analysis – specifically, 

the directional analysis of Chapters 5 and 6.  
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4.2.4 Discussion of the GIS-Based Data Analysis 

 The goal of our analysis in this chapter was to answer the first research question: Which 

communities may have less potential to quickly and safely evacuate due to the geometric layout 

of their road networks, combined with wildfire potential, thereby rendering them more vulnerable?

 The communities with the highest transportation vulnerability scores were Grande Cache, 

Sexsmith, La Crète, Duchess and Magrath. Results show that remote communities are most 

vulnerable as they have limited routing options. However, some communities close to Edmonton 

also show high transportation vulnerability scores, possibly due to their large populations in 

relation to their available transportation network. Lloydminster was also shown to be vulnerable, 

but it is on the eastern border with Saskatchewan (i.e., the bounds of our geographic scope) and 

road layout data is not available, and thus requires further analysis beyond this one. 

Fort McMurray, Coleman, Grande Cache, Hinton, Jasper show high evacuation vulnerability 

scores. Some communities with high transportation vulnerability scores are not included in the 

final list of high scoring communities due to their low wildfire scores. These communities may 

require further attention for other types of natural disasters (if any), as they could face critical 

situations while evacuating. We emphasize that low vulnerability does not mean zero fire hazard 

– a community with low wildfire potential can still face quick spread surface fire and prompt 

evacuation.  

For communities with high transportation vulnerability, further detailed evacuation movement 

studies are recommended, in order to determine community evacuation plans that lead to more 

efficient evacuations, and in some cases, investments in transportation infrastructures. For 

communities more vulnerable to wildfire, additional evacuation considerations for people with 

different access levels and mobility should also be considered. Planned alternative solutions that 

are well communicated to the public are essential for safe evacuations. 
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CHAPTER 5.  STATIC DIRECTIONAL ANALYSIS 

In this chapter, directional wildfire trajectories into communities are assessed with respect 

to their potential for disrupting the transportation network and their corresponding loss of 

capacities due to this disruption.   

 

Disclaimer: This work is an academic work in progress and not to be used for decision making. 

Also, we did not estimate any likelihoods or probabilities; rather, the possibility of approaching 

fire from a direction with road closure. 

5.1 Introduction and Background 

 Most communities are connected to the larger transportation network by at least one 

roadway (if not, they are termed “fly-in, fly-out communities). When a wildfire encroaches into 

the built environment, it can interact with the surrounding transportation infrastructure. In some 

cases, this can create a compound impact, where the community must evacuate due to the fire but 

the fire itself is obstructing the use of some transportation facilities. If a fire impacts an important, 

high capacity road, it can cause significant loss in overall evacuation capacity and may prolong 

evacuation time. For example, during the 2018 Camp Fire in California, at least seven deaths 

resulted from evacuees becoming entrapped in their vehicles during evacuation due to traffic 

gridlock (Ramsey et al., 2020).  

By examining the characteristics of roadways, including where they are located and their 

capacities, in relation to the directions in which fires can enter the built environment, variations in 

vulnerability to wildfire can be assessed. Thus, we assess a community’s directional transportation 

capacity given possible closures due to fire exposure pathways (Beverly & Forbes, in review). To 

this end, we assess 21 communities in Alberta, Canada, identified as potentially high risk for fire 

(Beverly & Forbes, in review) and with limited roadway facilities, and thus deemed appropriate 

for investigation (Figure 5.1). Directional fire exposure assessments presented in radial graphs in 

Beverly & Forbes (in review) were used to explore how fire exposure pathways into each of the 

21 communities align with roadways, and thus identify which roadways are vulnerable and how 

community egress capacity is impacted when a roadway is inaccessible due to fire. Figure 5.1 

shows the locations and populations of these 21 communities. Most of these communities have 
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limited roadways (in terms of the number of roads and carrying capacities) connecting them to the 

larger provincial transportation network.  
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Figure 5.1: Locations of the selected 21 communities throughout Alberta, Canada 
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5.2 Modelling Framework 

A community’s total evacuation capacity is simply the sum of all available roads’ outbound 

capacities. We determine the radial locations and capacities of all roadways at 5, 10 and 15 km 

from the community centroid. These points were chosen for several reasons. First, Beverly & 

Bothwell (2011) reported that for evacuations between 1980 and 2007 documented in Canada, 

29% of the evacuations had wildfire distance data and 80% of those evacuations were prompted 

by a wildfire that had travelled within 10 km of the evacuated community. We also chose 5 km 

because even some small communities can be nearly 10 km across, which means a fire at 5 km 

would mean imminent danger for residents. These few discrete points were selected to make the 

resulting plots clear and understandable, with the assumption that roadway cross sections, and thus 

operational capacities, are not changing significantly between points. 

It was also possible to take continuous capacities from 0 to 15 km. However, this would 

make the plots more complex with possibly too much information, rendering important features 

more difficult to identify. So, it was decided that to calculate capacity every 5 km was a 

compromise to keep plots simple and useful, accepting some loss of information. To understand 

how critical a road closure incident is, we also calculated the capacity that remained after the road 

closure. As the basis of our analysis, directional fire exposure plots were merged with road 

capacities. As an example, the steps used to produce the combined plots of directional fire exposure 

and roadway capacity is shown for the community of the Slave Lake (Figure 5.2; see Figure 5.1 

for the location of Slave Lake within Alberta).  
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Figure 5.2: Map of Slave Lake (Google Earth). Slave Lake is a town of approximately 6,651 

residents located on the southeast shore of Lesser Slave Lake in central Alberta, at the 

junction of Highway 88 and Highway 2. 

 Step One: Using the circular buffer tool in ArcGIS, 5, 10, and 15-km circular buffers are 

drawn from the community centroid (as per the Statistics Canada community polygon (Statistics 

Canada, 2021, details in Section 3.1.1)), as shown in Figure 5.3. The road network is then 

intersected with the buffers using the “Intersect” tool from ArcGIS. Descriptive attributes of the 

intersecting points included road capacity, speed limit, pavement condition, and number of lanes. 

Figure 5.4 shows the road capacity values for each intersecting point for Slave Lake.  
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Figure 5.3:  5, 10, and 15-km circular buffer lines are drawn from the centroid 

 

Figure 5.4:  Intersecting points of buffer lines with roads, Slave Lake  
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 Step Two:  Using the geoprocessing tool “Generate Near Table” in ArcGIS, the angular 

direction of each intersecting point in relation to the community centroid was calculated. Note that 

the angles are given with respect to the horizontal x-axis, which we recalculated from the north in 

Excel using the “Table to Excel” tool from ArcGIS.  

 Step Three: With the roadway capacities at the intersecting points on each buffer and their 

corresponding radial direction, we found the total capacity for each buffer distance (5, 10, and 15 

km). Then for each road, we calculated the total roadway capacity remaining if that particular road 

was closed, for each of the three buffers. If two roads were less than or equal to 5 degrees apart, 

we assumed a potentially encroaching fire would block both. 

 Step Four: Using R Studio, we plotted the total road network capacities at buffer distances 

of 5, 10, and 15 km, and displayed the remaining (reduced) capacity at a road location as a “spike,” 

should that road be closed due to fire. The length of each “spike” indicates the contribution of the 

road in question to the total roadway capacity, at each buffer distance.  

A sample plot showing only total roadway capacities for Slave Lake, Alberta is shown in 

Figure 5.5. The y-axis on the right side of the figure measures total community egress capacity, 

while the rings represent capacity and how it decreases should a given roadway facility be 

unavailable. As an example, let us observe the red line. It shows that at 15 km distance from 

community centroid, total community egress capacity is around 8400 vph if all roadways are 

available. However, say northbound Highway 88 (represented by the pink diamonds) is closed due 

to wildfire encroaching from that direction. Then, total community egress capacity decreases to 

6400 vph at 15 km (which is indicated by a pink diamond at the radial location of the roadway at 

15 km), because Highway 88 contributes 2000 vph capacity to Slave Lake’s total egress capacity 

at 15 km. A similar observation is made for the capacities of Highway 88 at 5 and 10 km (identical) 

– total community egress capacity would drop from 6000 to 4000 vph should a wildfire encroach 

from the north and cause Highway 88 to be shut. This indicates that Highway 88 at 15 km has a 

sizable contribution to the total egress capacity of Slave Lake, and should a wildfire encroach from 

that direction and cause closure of Highway 88, a proportional reduction of this capacity occurs. 

Another point to note is that the total egress capacity is the same at 5 and 10 km but larger at 15 

km; it appears that Highway 2 (green squares) expands to an additional lane between 10 and 15 

km as indicated by the longer red “spike.”   



36 

 

Figure 5.5:  Community egress capacity (Slave Lake)  

Recall that  Beverly & Forbes (in review) measure the proportion of the one-degree transect 

that has fire exposures over the 60% threshold, which is shown on the left-hand y-axis in Figure 

5.6. Lobes on the exposure radial graph delineate potential fire pathways, with colors again 

corresponding to the buffer distance analyzed. Small or absent lobes in a given direction indicate 

little potential for fires to encroach on the community from that direction, at that buffer distance. 

Long and wide lobes indicate prominent potential fire pathways into the community. A road is 

most vulnerable to possible closure if it intersects a large exposure lobe. The exposure lobes are 

all relatively small in the case of Slave Lake, and all directional transects have less than 50% 

critical exposure, suggesting potential fire pathways into the community are limited (Beverly & 

Forbes, in review). This is not surprising given that the community is situated along a large lake, 

and a large wildfire in 2011 eliminated fuels to the southeast of the community. Also, the largest 

exposure lobes are to the south and southwest of the community, whereas the three roadways into 
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Slave Lake are to the north, northwest, and southeast. They also do not change direction 

appreciably between 5 and 15 km. This indicates that Slave Lake’s egress capacity is not highly 

threatened by wildfire. However, the graphs are not able to indicate whether the total egress 

capacity is sufficient for the community population. 

 

Figure 5.6: Community egress capacity and critical fire exposure levels (i.e., proportion of 

directional transect with ≥ 60% exposure), Slave Lake 

 Figure 5.7 shows results for Fox Creek. Highway 43 is the only major roadway serving this 

community, and its capacity remains the same at all buffer distances. Highway 43 leading 

southeast out of town (green box marker) aligns with a large and broad critical exposure lobe, 

indicating a fire pathway that extends into the community from 15 km (and likely, beyond). This 

suggests that the community is more vulnerable to a fire that encroaches from the southeast and at 

the same time, induces closure of Highway 43 from that same direction. Should that occur, 
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evacuation must occur northwest out of the community on the only other roadway available, at 

half the total community egress capacity. 

 

Figure 5.7: Community egress capacity and critical fire exposure levels (i.e., proportion of 

directional transect with ≥ 60% exposure), Fox Creek 

5.3 Interpreting Directional Road Vulnerability Plots 

 The radial graphs displaying directional capacities of the road network provide a 

standardized approach to assess communities and compare vulnerabilities across them. We present 

the results for five additional communities, to demonstrate how the graphs are interpreted and to 

highlight notable aspects of the plots. Plots for all 21 assessed communities are included in 

Appendix A.  
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5.3.1 Rainbow Lake 

 The community of Rainbow Lake (Figure 5.8) has only one egress route via Highway 58. 

There are nearly continuous unbroken fire pathways into the community from west to northeast in 

the clockwise direction. Critical fire exposure levels are more limited between the southeast and 

east. The eastward egress route is aligned with a somewhat limited fire pathway, but because this 

is the only way out of the community, via Highway 58, a fire encroaching from the east can create 

a critical situation for the community.  

 

Figure 5.8: Plot of directional road capacity for Rainbow Lake in relation to critical 

exposure levels (i.e., proportion of directional transect with ≥60% exposure) 

 Fires to the east of Rainbow Lake should be prioritized for detection and suppression 

action, even if the areas to the north or west might seem more of a priority based on the amount of 

critical fire exposure, independent of evacuation vulnerabilities. 

5.3.2 Lake Louise 

 All egress routes available for the community of Lake Louise (Figure 5.9) are located 

within large exposure lobes delineating potential fire pathways into the community, extending out 
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to the 10 km buffer, and in some directions, to 15 km. If a fire encroaches from the southeast or 

from the west or northwest, it will block a road and overall capacity will decrease. However, given 

that there are three available directions of egress and two are almost 180 degrees apart, it would 

not be possible for one fire to impact all three roads at once. The spikes in the radial graph show 

that a fire approaching from the southeast will cause a large reduction in capacity, as two roads 

(i.e., Highway 1 denoted by orange dots and Highway 1A denoted by green dots) are co-aligned 

and proximate in a single direction. 

 

Figure 5.9: Plot of directional road capacity for Lake Louise in relation to critical exposure 

levels (i.e., proportion of directional transect with ≥60% exposure) 

 

5.3.3 Blairmore 

Highway 3 in Blairmore provides two egress routes in opposing directions (Figure 5.10), 

neither of which overlaps with exposure lobes delineating potential fire pathways into the 

community. This shows that a fire approaching the community within the most prominent fire 
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pathways (i.e., from the north and northeast) will not block any roads, as the road network is 

oriented west to east. 

 

Figure 5.10: Plot of directional road capacity for Blairmore in relation to critical exposure 

levels (i.e., proportion of directional transect with ≥60% exposure) 

 

5.3.4 Swan Hills 

 The community of Swan Hills (Figure 5.11) has three evacuation routes with the same 

capacities, but all are within large exposure lobes delineating fire pathways into the community. 

However, as the directions are diverging, an advancing fire towards the community will possibly 

not block all routes at once. A fire encroaching from the southwest, west, northwest, north or due 

east would not impact the road network directly. Road network exposure is limited to fires 

encroaching from the south, southeast and north-northeast. 
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Figure 5.11: Plot of directional road capacity for Swan Hills in relation to critical exposure 

levels (i.e., proportion of directional transect with ≥60% exposure) 

 

5.3.5 Calling Lake 

 Like many communities, Calling Lake is located next to a water body, which eliminates 

fire exposure over a broad surrounding area to the west and northwest of the hamlet and also limits 

routes in and out. There is one prominent exposure lobe at 160 to 180 degrees. This south-southeast 

fire pathway does not directly overlap with any roads. It is evident from the radial graph that the 

road network is not vulnerable to disruption from fires encroaching on the community within the 

available fire pathways. 
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Figure 5.12: Plot of directional road capacity for Calling Lake in relation to critical 

exposure levels (i.e., proportion of directional transect with ≥60% exposure) 

 

5.3.6 Discussion of Results  

 We now discuss some notable findings from the radial graphs of the remaining 

communities. Communities with highly limited transportation connections – such as one roadway 

connecting to a larger highway– may be highly vulnerable to wildfire, depending on directional 

fire exposure and how it aligns with available roadway(s). The communities of Fort MacKay and 

Rainbow Lake are shown in Figure 5.13; each have only one connecting road. The point of 

concern, however, is that these roads appear to align with high fire exposure.  
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Figure 5.13: Community egress capacity and critical fire exposure levels (i.e., proportion of 

directional transect with ≥ 60% exposure), Fort McKay and Rainbow Lake (each with only 

one egress route) 

 In both Grande Cache and Wabasca (Figure 5.14), roadway egress capacity is directionally 

clustered (i.e., roads are proximate to each other, with radial positions that differ by less than 90 

degrees). Large fires in the vicinity of these communities could potentially obstruct all egress 

routes – from northeast to southeast in Grande Cache, and southeast in Wabasca. Grande Cache 

has relatively high exposure values along the northern egress route and in proximity to the 

northeast route. Wabasca has one egress route eastbound that aligns with an exposure lobe 

delineating a potential fire pathway, while the southwest route does not. This suggests that Grande 

Cache is potentially more vulnerable to egress route disruption than Wabasca.  

 



45 

 

Figure 5.14: Community egress capacity and critical fire exposure levels – communities 

with roads grouped in limited directions 

Some communities, such as Edson and Slave Lake, have egress routes with limited 

potential wildfire exposure (Figure 5.15), compared with the other communities discussed above.  

 

Figure 5.15: Community egress capacity and critical fire exposure levels - communities 

with limited directional fire exposure 
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5.4 Summary and Conclusion 

In this chapter, we have presented an approach to plot directional transportation capacities 

in order to identify road network vulnerabilities caused by fire exposure pathways into 

communities. Our analysis shows that some communities – like Rainbow Lake, Chateh and Fort 

MacKay – have limited evacuation routes that are also vulnerable to fire-induced closures due 

to their alignment within exposure pathways. Fire exposure lobes or pathways might be limited 

in a given direction, but the presence of a road with high capacity (in absolute value or as a 

proportion of the total community egress capacity available) or that is the only community egress 

route can make it a direction of concern to consider and prioritize for mitigation measures. 

Overall, this combined analysis of fire and transportation directional vulnerabilities 

identifies critical directions in which roadways are vulnerable to disruptions from wildfire, and 

provides some guidance towards decisions to prioritize community safety improvement measures 

towards wildfire evacuation capabilities and inform decisions about where to focus fire prevention, 

detection and suppression efforts. For example, FireSmart vegetation management treatments 

could be used to reduce or remove fuels along fire pathways that align with important egress routes. 

Banff, Canmore, Swan Hills, Lake Louise, Jasper, and Grand Cache were communities identified 

to potentially face road closures and thus reduced egress capacity should they experience wildfire 

encroachment, given that some of their routes are situated within very high fuel exposures. 

However, with multiple evacuating routes, they are potentially not as vulnerable as Rainbow Lake, 

Chateh or Fort MacKay.  
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CHAPTER 6.  DYNAMIC DIRECTIONAL ANALYSIS 

 This chapter presents a dynamic framework for analyzing a community’s directional 

vulnerability in a wildfire evacuation scenario. The same 21 communities of the previous chapter 

are used for analysis. The work of this chapter addresses the third research question: When a fire 

is a certain distance away from the community and an evacuation order is placed, will the fire 

reach the community before it can evacuate? 

 

Disclaimer: This work is an academic work in progress and not to be used for decision making. 

Also, we did not estimate any likelihoods or probabilities; rather, the possibility of approaching 

fire from a direction with road closure. 

6.1 Introduction 

Timely evacuation of a community does not depend solely on egress capacity and fire 

exposure; the relationship between population size and egress capacity must also be considered,  

among other human behavioral factors (discussed in Aguirre (2005), Grajdura et al. (2021) and 

Wong et al. (2020), amongst others), as well as fire travel times. We capture and compare these 

within two features: the minimum travel time of a fire into a community, and the estimated time 

for the community to evacuate considering a possible road closure and corresponding reduction in 

total community egress capacity.  

6.1.1 Model Setup 

A circular buffer around a community is divided into eight equal pie-shaped sections, each 

spanning 45 degrees, and the minimum fire spread time in each section was calculated. Estimated 

fire travel times were generated using the Canadian Forest Fire Behaviour (FBP) Prediction system 

(Forestry Canada Fire Danger Group 1992) for different fuel types present under assumed weather 

conditions. The fire travel time is 𝑡1
𝑠, where 𝑠 = 1 … 8 are the pie-shaped sections starting from 

due north marked as 0°, continuing clockwise such that 𝑠 = 1 is the section from 0-45 degrees, 

𝑠 = 2 is 45-90 degrees, and so on. Then, we used a macroscopic traffic simulation model (Lighthill 

Whitham and Richards, or LWR model) to estimate the time for evacuees to travel a safe distance 

(10 km) away from the community, 𝑡2
𝑠 . Finally, we compare 𝑡1

𝑠 and 𝑡2
𝑠 for each community as an 

indicator of potential community vulnerability to wildfire, for 𝑠 = 1 … 8. Segments spanning 45 
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degrees were chosen because larger segments omit spatial detail, whereas smaller segments 

introduced unnecessary detail and complexity in land cover data and roads. The difference between 

𝑡1
𝑠 and 𝑡2

𝑠 , Δ𝑡𝑠 = 𝑡2
𝑠 − 𝑡1

𝑠, was calculated for each directional segment. 

We consider the decision of when an evacuation is called. 29% of the evacuations between 

1980 and 2007 documented in Canada had distance data; of these, 80% were prompted by a 

wildfire that had travelled within 10 km of the evacuated community. To account for the spatial 

extent of the built environment, we classified communities into two categories: larger and smaller. 

A 5-km buffer was plotted around each community and assessed visually. Communities with 

limited development within the 5 km buffer were classified as smaller, whereas those with 

extensive development were classified as larger. Figure 6.1 indicates whether a community is 

classified as smaller or larger and Table 6.1 shows the list of these two community categories.  

Table 6.1: Smaller and Larger Communities 

Smaller (5 km buffer) Larger (10 km buffer) 

Assumption/Chateh Banff 

Bragg Creek Canmore 

Calling Lake Edson 

Exshaw Fort McMurray 

Lake Louise Hinton 

Rainbow Lake Slave Lake 

Swan Hills Whitecourt 

Wabasca 
 

Blairmore 
 

Fox Creek 
 

Grande Cache 
 

Jasper 

Fort McKay 

Coleman 
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Figure 6.1: Selected communities for analysis in Alberta, Canada. Community populations 

are taken from the 2016 Canadian Census (Statistics Canada, 2017) are shown next to 

community names. 
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 As an illustration, let us focus on Fox Creek (designated smaller) and Hinton (larger), 

shown in Figure 6.2. The pink and white circles delineate 5 and 10 km buffers, respectively, from 

the community centroid. For Hinton, the 5 km boundary contains extensive developed lands, 

whereas Fox Creek has minimal developed lands beyond a small core. A fire that reaches the 5 km 

buffer edge at Fox Creek would have to continue further before reaching the built environment. 

The default 5 and 10 km buffers utilized in this study were adopted as a simplified approach for 

assessing multiple communities across a large provincial jurisdiction in a standardized manner, 

and may not be suitable for all communities. We recommend developing more refined, customized 

buffer distances for individual community assessments to reflect the varied spatial footprint of the 

built environment.  

 

Figure 6.2: Variation in community sizes and their boundaries 

When the fire is 5 km from a smaller community, we assume a mandatory evacuation order 

is called; and for larger communities, orders are assumed to occur when the fire is 10 km away. 

For smaller communities, 𝑡1
𝑠 is the minimum possible time for the fire to travel from 5 km to the 

community centroid, for segment 𝑠 (and assuming residents should have evacuated before the fire 

reaches the community at 0 km). For larger communities, we assume an evacuation order is called 

at 10 km, and 𝑡1
𝑠 indicates the minimum time required for the fire to travel from 10 to 5 km in 𝑠 

(assuming residents evacuate before the fire reaches 5 km).  
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6.1.2 Evacuee Travel Time, 𝒕𝟐  

 The evacuation time 𝑡2
𝑠 required for residents to travel 10 km away from the community 

(assumed a safe distance for both smaller and larger communities) depends on whether segment 𝑠 

contains a roadway that would be obstructed by a fire in that segment, rendering the egress capacity 

provided by that road unusable. In our scenario-based analysis, as evacuation is assumed to begin 

when a fire is 10 km (for larger communities) or 5 km (for smaller communities) away from the 

community centroid. We calculate 𝑡2
𝑠 using the LWR model together with an evacuee mobilization 

time curve following the Rayleigh distribution. The parameter used for the Rayleigh distribution 

is related back to fire travel time, explained in the following section. 

6.1.2.1 Mobilization Curve 

Evacuation mobilization time is the period between when an evacuation order is issued and 

the time that evacuees depart (Yazici & Ozbay, 2008; Li et al., 2013). Before evacuees depart, 

several critical decisions and actions take place, including the decision to evacuate, preparation 

time, and loading into vehicles. Mobilization time includes all these decisions and actions, and 

assumes people are mobilized once they are in their vehicles and moving (Li et al., 2013).  

Mobilization time curves are also known as “S”-curves because of their shape. Various 

mathematical models including Artificial Neural Networks, sigmoid “S”-Curves, the Rayleigh 

distribution, and sequential logit model (Tweedie et al., 1986; Yazici & Ozbay, 2008; Radwan et 

al., 1985) are used to represent mobilization curves. Mobilization curves are widely used in the 

literature irrespective of the evacuation type, because they are not data intensive to produce and 

are mathematically simple in representing evacuee movement. However, these curves usually 

cover a shorter evacuation period (i.e., evacuation duration of less than a day) and do not capture 

variations with evacuation order type, time of the day variation, or disaster characteristics (Ozbay 

& Yazici, 2006). The mobilization curve represents a count of vehicles, for example, that are 

actually moving past a point/cordon, rather than evacuation demand (or an intention curve).  

 In defining a mobilization curve for input to the traffic simulation, we make some 

assumptions. First, the mobilization curve must be defined for the mode of transport based on 

whether evacuees are traveling on foot, or by vehicle, for example. In this study, evacuees are 

assumed to travel by vehicle. Second, Wahlqvist et al. (2021) assumed 14% of evacuees leave 

before an evacuation order is placed, while 5% never evacuate at all; the remaining 81% evacuate 
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after the evacuation order is called. Third, we assumed an evacuee vehicle occupancy of two, 

following Woo et al. (2017). With these assumptions, the estimated vehicular evacuation demand 

of a community such as Fox Creek is computed as 1,048 vehicles, given a population of 2,589 and 

assuming 81% of residents evacuate with two persons per vehicle, and all residents leave by 

vehicle (Statistics Canada, 2021). Finally, we assume the curve follows the Rayleigh distribution. 

Rayleigh distribution 

 Tweedie et al. (1986) first used the Rayleigh distribution to define a mobilization time 

curve (“S”-curve), which was used to perform a Monte Carlo simulation of the evacuation of 

Oklahoma's emergency planning zone required by the U.S. Nuclear Regulatory Commission 

(NRC). This curve represents the cumulative percentage of evacuees at each time period, which is 

also true for all S-curves. The equation is as follows: 

 
𝐹(𝑡) =  1 − exp (−

𝑡2

𝑀𝑀𝑇
) (Eq. 6.1) 

 

𝐹(𝑡)   is the cumulative percentage of total trips generated at time 𝑡 

𝑡   is time, in minutes 

𝑀𝑀𝑇   is the maximum mobilization time, in minutes 

 

The maximum mobilization time is the assumed time available to mobilize the last 

evacuee/vehicle. This time will vary for different communities and disaster types. Tweedie et al. 

(1986) took 𝑀𝑀𝑇 as 1800 minutes based on expert opinion. This S-curve is based on a single 

parameter and simple to use. In the case of an evacuation due to wildfire, the time when the fire 

hits a trigger buffer point to the time when all evacuees’ vehicles must be mobilized can be 

considered the maximum mobilization time, or 𝑀𝑀𝑇. Figure 6.3 shows the proportion of  

cumulative mobilized evacuees over time, for different maximum mobilization times. The curve 

represents moving vehicles generating evacuation demand.   
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Figure 6.3: Cumulative mobilization curve for Tweedie’s approach (Rayleigh Distribution) 

with changing maximum mobilization time.  

Radwan et al. (1985) S-Curve 

 Radwan et al. (1985) proposed an evacuation mobilization S-curve based on half loading 

time (𝐻) and public response (𝛼), shown in Eq. 6.2. 𝐻 represents the time at which half the 

vehicles in the system have been loaded onto the highway network, and 𝛼 represents the response 

of the public to the disaster, which affects the slope of the curve.  

 
𝑃(𝑡) =

1

1 + exp(−𝛼 ∗ (𝑡 − 𝐻))
 (Eq. 6.2) 

 

Where:  

𝑃(𝑡)   is the cumulative percentage of total trips generated at time 𝑡 

𝛼   is the shape parameter defining the curve's steepness 

𝐻   is half loading time, in minutes 

 This formula is used in evacuation simulation packages like TEDSS and MASSVAC too. 

However, it is difficult to determine half-loading time (𝐻) or curve steepness (𝛼) parameters 

without empirical knowledge. Figure 6.4 shows the variation of percent cumulative mobilized 

evacuees with time for different 𝛼 values. It shows that a slight change in 𝛼 value changes the 

steepness of the curve sharply, indicating the equation is very sensitive to the assumptions. 
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Figure 6.4: Radwan et al.'s (1985) cumulative mobilization curve with different values of 𝜶 

Sequential logit model 

 Fu (2004) and Fu et al. (2007) used the sequential logit model to develop a response curve 

model for hurricane evacuation. In the sequential logit model, the random utility function 𝑈𝑖
𝑐 

represents a household’s utility not to evacuate at time 𝑖, while 𝑈𝑖
𝑠 is the utility of the household 

to evacuate at 𝑖. These utility functions consist of a deterministic component represented by 𝛽𝑥′, 

where 𝛽 are parameters on explanatory variables 𝑥′, and a random error term 𝜀; i.e., 𝑈 = 𝑥′𝛽 + 𝜀. 

𝑃(𝑖)𝑠/𝑐 in Eq. 6.3 indicates the probability of a household to evacuate at the time 𝑖, if it has not 

already evacuated: 

 
𝑃(𝑖)𝑠/𝑐 =  

𝑒𝒙′𝜷

1 + 𝑒𝒙′𝜷
 

(Eq. 6.3) 

 

Where:  

𝑃(𝑖)𝑠/𝑐  is the probability of a household to evacuate at the time 𝑖, given that it has not evacuated 

𝒙′  are explanatory variables which can include distance to shelter location, time of day, speed, 

road condition, risk or hazard, and others 

𝜷 are estimated parameters 
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Lognormal distribution 

 Ronchi et al. (2020) used a lognormal distribution to define the Wildland Urban Interface 

& Unity 3D (WUI-NITY) platform's mobilization curve (Ronchi et al., 2020). The lognormal 

curve has two parameters, 𝜇 and 𝜎, which are not assigned particular physical meaning like the 

parameters introduced for the previous evacuation mobilization curves. It is not realistic to assign 

any single specific µ and σ values for all communities, as parameters will vary with the duration 

of the evacuation, population, and evacuation order type (mandatory or voluntary).  

 We chose to use the Rayleigh distribution following Tweedie et al. (1986) because of its 

simplicity in the absence of data. Other approaches rely on parameters that lead to various 

difficulties. For example, the lognormal distribution is defined by parameters 𝑢 and 𝜎, which we 

are unable to define. In addition, the two parameters would require calibration for each community 

based on their particular attributes. A similar problem arises with Radwan et al.'s (1985) formula 

–any fixed H and 𝛼 cannot be predefined for all communities, rather they must be calculated for 

each community individually based on its attributes. Thus, we deemed the Rayleigh distribution 

most suitable for our analysis over other distributions given its simple, intuitive, and single 𝑀𝑀𝑇 

parameter, and thus moved forward with its use in our analysis. 

 In this thesis, 𝑀𝑀𝑇 is defined as the fire spread time towards the community, for each 

directional segment 𝑠. It is the time between when the fire intersects the trigger buffer and 

mandatory evacuation is called (i.e., at a distance of 5 or 10 km, depending on the community size 

category of “smaller” or “larger”), and when the fire is assumed to reach the community (0 or 5 

km, for smaller and larger communities, respectively). Thus, 𝑀𝑀𝑇 =  𝑡1
𝑠 , 𝑠 ∈ 1 … 8. 

6.1.2.2 Traffic Simulation 

The simulation is based on the principles of the Lighthill-Whitham-Richards (LWR) 

model, a hydrodynamic model defining the relationship between vehicle density and flow 

(Lighthill & Whitham, 1955). The model is based on the hypothesis that at any point on a roadway, 

flow 𝑞 (in vehicles/hour) is a function of density, 𝑑 (vehicles/km). The model is shown in Eq. 6.4, 

showing that flow and density are related to a law of conservation of vehicles. Here, 𝑑(𝑥, 𝑡) and 

𝑞(𝑥, 𝑡) represent density and flow, respectively, as a continuous function of space and time. 
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 𝑛(𝑥) ∗ 𝜕𝑑(𝑥, 𝑡)

𝜕𝑡
+

𝜕𝑞(𝑥, 𝑡)

𝜕𝑥
= 0 

(Eq. 6.4) 

 

Where: 

𝑛(𝑥)  is the number of lanes at roadway distance 𝑥 

𝑑(𝑥, 𝑡)  is traffic density at roadway distance 𝑥 and time 𝑡, in vehicles/lane/km 

𝑞(𝑥, 𝑡)  is traffic flow at roadway distance 𝑥 and time 𝑡, in vehicles/hour 

 

 The LWR model includes continuous functions, and thus we discretize time in intervals 𝑀 

to perform a simulation. We assume time interval 𝑀 to be 0.01 minutes or (0.6 seconds). Although 

smaller 𝑀 leads to a better approximation of the continuous equations, the results are similar 

whether 𝑀 is 0.01 or minutes. The 10-kilometer distance is discretized into 10 cells and each cell 

is considered as 1km. The discretized version of the equation is shown in Eq. 6.5.  

 
 𝑑𝑖(𝑚 + 1) = 𝑑𝑖(𝑚) +  

𝑀

𝑙𝑖 ∗ 𝑛𝑖
∗ [𝑞𝑖𝑛,𝑖(𝑚) − 𝑞𝑜𝑢𝑡,𝑖(𝑚)] (Eq. 6.5) 

 

Where: 

𝑚  is the iteration number for 𝑀 

𝑑𝑖(𝑚)  is the average traffic density in section 𝑖 at 𝑚 

𝑙𝑖 is the length of section 𝑖 

𝑛𝑖 is the number of lanes in section 𝑖 

𝑞𝑖
𝑖𝑛(𝑚) is the inflow in section 𝑖 at 𝑚  

𝑞𝑖
𝑜𝑢𝑡(𝑚) is the outflow in section 𝑖 at 𝑚 

We also use Greenshield’s linear speed-density relationship (Greenshields et al., 1935): 

 
𝑣 =  𝑣𝑓 ∗ (1 −  

𝑑

𝑑𝑗
) (Eq. 6.6) 

 

Where: 

𝑑 is density in vehicles/lane/km 

𝑑𝑗 is the maximum or jam density 

𝑣𝑓 is the maximum (or free-flow) speed of the roadway in question. 
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Although the speed at jam density is zero in Greenshields' model, we follow Ronchi et al. 

(2020) and use 5 kph (kilometers per hour), assuming that vehicles will still be moving very slowly 

at very high densities. In addition, as part of the simplification of the traffic simulation, we assume 

that vehicles cannot enter the downstream section if jam density is reached on that section. As with 

all macroscopic traffic models, intersection operations and vehicle dynamics like overtaking are 

not considered. It is important to note that we distributed demand amongst available roadways 

proportionate to each road's capacity – a major assumption that should be revisited in future work. 

6.2 Sensitivity Associated with Seasons 

To explore the variation between the two seasons most fire-prone in Alberta, the same 

calculation is performed separately for spring conditions. The results show that although some 

communities show differences in the results of Δ𝑡 values for each segment 𝑠, Δ𝑡𝑠, between the 

different seasons, their highly vulnerable directions (red colored) remain the same. Moreover, the 

relative rankings of the directions with respect to evacuation vulnerability remain the same for 

most communities. Specifically, for the smaller communities, 88% of the directions are ranked as 

the same for both seasons. For the larger communities, 75% of the directions retain the same rank. 

There are some small differences in rankings; for the smaller communities, for example, 99% of 

differences are only one step (i.e., ranked 5 in summer condition and ranked 4 in spring).  

As spring conditions are drier than summer, the relative wildfire rate of spread is higher 

and shows smaller Δ𝑡 values. For most directions, the differences are small and remain very close 

for these two consecutive seasons. The results indicate that road and fuel positions remain 

unchanged during seasons; the most vulnerable directions remain the same. The overall seasonal 

calculation indicates that although we performed the analysis for the worst seasonal condition 

(spring) of the year, this analysis can also be used to prioritize critical evacuation directions in 

other seasons.  

6.3 Results 

The difference between the minimum fire travel time 𝑡1
𝑠 and evacuation time 𝑡2

𝑠 , Δ𝑡𝑠, was 

calculated for each directional segment 𝑠, and for both spring and summer conditions (the most 

fire-prone seasons of the year in Alberta), with comparison facilitated by normalizing Δ𝑡𝑠 values 
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between 0 and 1 separately for each community. These normalized values are to compare 

directions for each community individually. The results are presented in an interactive online map 

created with ArcGIS Pro version 2.9.1, which can be accessed via email request to the author’s co-

supervisors.  

Simulation results change with the fire travel times in different seasons, because the 

mobilization curve’s 𝑀𝑀𝑇 parameter depends on fire spread rate. As spring conditions are drier 

than summer, the relative wildfire rate of spread is higher and thus Δ𝑡 values are often slightly 

smaller than for summer. Despite this, we note that the most vulnerable segments, and relative 

rankings of directions with respect to evacuation vulnerability, remained largely similar for each 

community. For the smaller communities, 88.4% of the directions are ranked the same for both 

seasons; for the larger communities, this was 75%. 

Figure 6.5 shows example outputs for three communities classified as “larger” (results will 

be discussed in 6.3.1). A direction is deemed vulnerable if a fire from that direction is estimated 

to reach the community before or close to when the community can evacuate fully (which of course 

depends on whether roadways are also contained within the directional segment in question). 

When Δ𝑡𝑠 is small or negative (shown in red) for directional segment 𝑠, it indicates high 

vulnerability, with fire reaching the community in a close or even shorter time than residents can 

evacuate 10 km away. When Δ𝑡𝑠 is large, vulnerability is low (green – up to 250 minutes additional 

time for evacuees to reach 10 km compared with fire travel times). The colours are chosen using 

the Symbology tool in GIS, and represent direct Δ𝑡𝑠 values, and not the normalized values. Details 

of the results are discussed in the following sections. 
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Figure 6.5: Dynamic directional analyses for Hinton, Slave Lake and Whitecourt 

6.3.1 Larger Communities  

Our analysis shows that fires entering communities from certain directions pose greater 

threats. For example, for Slave Lake, a fire coming from west or east will impact roads that are 

limited for this community (Figure 6.5). Although potential road closures make these directions 

more vulnerable, the directional segment containing a northbound road is green. This suggests that 

potential road closure alone does not indicate vulnerability, but rather depends on a combination 

of wildfire travel times and roadway egress capacities. 

For Whitecourt, the west-northwest directional segment 𝑠 = 7 is red, with Δ𝑡7 = −53 

minutes, indicating that a potential fire entering the community from that direction could enter 53 

minutes faster than evacuation to 10 km can occur, considering that the road leaving the 

community in the west-northwest direction is closed due to fire encroachment. The results also 

indicate that the other directions are not critical, suggesting that this community could further 

investigate and prioritize fire mitigation measures in this direction, and evacuation planning 

measures with this in mind. For Hinton, the results show that all directions may be of some concern 

to the community, particularly those spanning 135 to 315 degrees (segments 𝑠 = 4,5,6,7). Overall, 

however, no direction is clearly flagged like that of Whitecourt.  

Of the seven larger communities, Fort McMurray, Whitecourt, Banff, and Canmore have 

directional segments shown in red, indicating fast fire travel times combined with sizable roadway 
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capacity shortfalls, suggesting concern for community evacuation. Of the 56 total directional 

segments associated with these larger communities (i.e., eight per community), 13 segments (23%) 

were assessed as highly vulnerable (red) and of evacuation concern. Of these 13 segments, Banff 

and Canmore share nine. This is expected due to the fact that both communities have relatively 

large populations (7847 and 13992, respectively) compared to their egress capacities, and both are 

situated in landscapes with high fire exposure. In addition, both are popular summer recreation 

and tourist destinations, and populations swell in the summer season. 

 We now compare our static and dynamic analyses results, and discuss the relationship 

between the results. Plots of the static analysis for Hinton and Whitecourt are shown in Error! 

Reference source not found., to compare against the results of the dynamic analysis shown in 

Figure 6.5. The two communities have similar total road capacities and populations. From Error! 

Reference source not found., it appears that Hinton (population 10,200) has continuous fire 

pathways or lobes to the southwest at all three buffer distances assessed (5, 10, and 15 km), which 

coincide with one of the four egress routes available. Large lobes exist at 10 and 15 km distances 

to the northwest and southeast, which also overlaps egress routes, but less so at 5 km. However, 

Figure 6.5 provides a comparison of the times which fire can enter the community and people are 

able to egress; results suggest that community evacuation should be able to occur in a relatively 

timely fashion, given estimated fire travel times, potential roadway closures, and subsequent 

throughput capabilities on the remaining open roads. However, one hour may not be a sufficient 

buffer between evacuation to 10 km and the fire reaching the community at 5 km. The community 

may consider fire mitigation actions between 135-315 degrees around the community.  
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Figure 6.6: Comparing results from Ch. 5 analysis, Hinton and Whitecourt 

 For Whitecourt (population 9,900), Figure 6.6 indicates that the main continuous fire 

pathway is to the east/southeast, with large lobes at all three distances. Figure 6.5 reinforces the 

observation from Figure 6.6 but also reveals another direction of major concern to the northwest. 

It is shown in red due to negative Δ𝑡 values, which results from the fact that fire travel times in 

that direction are small compared with community egress capabilities resulting from closure of the 

road towards the northwest (Highway 43, which provides significant capacity to the community 

as shown in Figure 6.6).  

 The static and dynamic analyses are based on different fire (exposure versus travel times, 

respectively) as well as transportation metrics (roadway capacity versus throughput times, 

respectively). As a result, the results show different perspectives on community vulnerability, with 

the first reflecting vulnerability based on static observations of the infrastructure and biophysical 

environment, and the second considering the movement capabilities of both fire and people. The 

results of the static analysis could be used to inform fire mitigation and vegetation management 

(such as FireSmart) approaches, while the dynamic analysis may be more informative towards 

considering and eventually designing community early warning systems.  

6.3.2 Smaller Communities 

The smaller communities assessed show less evacuation vulnerabilities compared with the 

larger communities, due to their very small populations (i.e., often in the hundreds). Only four of 
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the 14 small communities (Rainbow Lake, Chateh, Fort MacKay, and Grand Cache) exhibit 

concerns, shown in Figure 6.7. As with Hinton, static analyses of Rainbow Lake and Fort MacKay 

(Figure 5.13) suggest considerable vulnerabilities, particularly Rainbow Lake, due to critical fire 

exposures overlapping only one egress route each. The dynamic results of Figure 6.7 appear to 

mirror the static results, which is somewhat different from what we observed for the large 

communities of Hinton and Whitecourt. Figure 6.7 indicates that the travel times of fires entering 

Fort MacKay and Rainbow Lake in the same segments in which their egress routes are located are 

smaller than or close to community evacuation times, which is cause for concern. Other than those 

segments, however, the rest are light to dark green indicating more than adequate capability for 

the community to evacuate via the sole egress route available. 

 

Figure 6.7: Results for smaller communities are showing red directions mainly due to road 

closures 

The remaining 10 small communities may be adjacent to landscapes with critical fire 

exposure levels, but their roadway capacities are more than adequate to accommodate their small 

populations in an emergency evacuation.  

6.4 The Storyline ArcGIS Online Map 

The findings of all the analyses are also presented on an interactive online web page, 

created using the visual storyline tool from ArcGIS online. Access can also be requested via email 
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from the author’s thesis co-supervisors. The storyline shows the gradual steps of analysis from 

Chapters 4-6 in a single web page. 

The storyline consists of the Introduction, Steps 1-3 (each representing the corresponding 

three chapters of the analyses presented in this thesis) and About Us section. Steps 1-3 sections 

contain interactive web maps hosted by ArcGIS online. Compared to the static visual maps 

presented in this thesis, these online maps provide more interactive features and details for readers. 

Maps can be zoomed in or out, communities can be searched for using the search icon, legends 

can be shown or minimized and most critically, detailed results for each community can be found 

in a pop-up window by clicking on the community centroid. Such an intuitive information and 

communication medium is important for communicating such results to experts and practitioners. 

6.5 Summary and Conclusion 

 This chapter presented a dynamic method to assess directional wildfire evacuation 

vulnerability for communities, and addressed the third research question. To do so, we calculated 

Δ𝑡𝑠, the difference between fire travel time 𝑡1
𝑠 and evacuation time 𝑡2

𝑠 (Δ𝑡𝑠 = 𝑡2
𝑠 − 𝑡1

𝑠) for each of 

eight directional segments 𝑠 = 1 … 8 for each community.  

 Our findings show that some communities, including Banff, Canmore, Hinton and 

Whitecourt, may face critical wildfire evacuation situations for some directions. The larger 

communities generally exhibit higher potential to face critical evacuation situations compared to 

the smaller communities. However, some smaller communities (e.g., Rainbow Lake) have only 

one or two access roads, potentially rendering them vulnerable in the case of a road closure. In 

general, directions with short estimated fire travel times compared with longer estimated 

evacuation times are deemed to be more vulnerable. 

 Our work provides insights into the vulnerability of communities under threat of wildfire 

and subsequent evacuation. The plots from Chapter 5 would indicate that directions with high fuel 

exposure with overlapping road networks would be the most vulnerable, but the analysis of this 

chapter shows this may not necessarily be the case due to small population or the directional setting 

of roads. A community with relatively less fuel exposure overall but a large population and relative 

limited road capacity may potentially be more vulnerable. Fuel exposure, road capacities and 

population interact to determine a community’s vulnerability to wildfire, and our work assesses 

this interaction in a simple and easy-to-communicate approach. To the best of our knowledge, 
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there are no existing approaches to illustrate the directional evacuation vulnerability of 

communities with respect transportation infrastructure and wildfire spread risk. 
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CHAPTER 7.  CONCLUSION 

 We provide an overview of the goals and main tasks of this research (Section 7.1), 

summarize key findings (7.2), discuss research contributions (7.3), and limitations and scope for 

further research (7.4). 

7.1 Overview of Research 

 This research combines simple transportation engineering and wildland fire science 

techniques to identify communities in fire-prone areas of Alberta, Canada, that have evacuation 

vulnerabilities. Community vulnerabilities are identified based on the attributes of the 

communities, the transportation network, and the surrounding landscape fire hazard, and addresses 

three research questions through three corresponding chapters. In Chapter 4, we used GIS-based 

analysis to identify vulnerable communities using readily available metrics applied to the data 

assembled for this thesis research. A total of 21 communities vulnerable to potential wildfire and 

evacuation were chosen using expert judgment. In Chapter 5, fire hazards and transportation 

capacities – simple, static quantities – were plotted together to understand the directional 

vulnerabilities of roadways on community egress capacity with respect to fire. In Chapter 6, the 

directional vulnerabilities for evacuation were assessed using more “dynamic” methods relying on 

fire travel times coupled with simulated community evacuation times, in a scenario-based analysis 

approach. The evacuation simulation was carried out using a constructed evacuation mobilization 

curve (transportation demand, informed by the fire travel time) input to a macroscopic traffic 

simulation model. Then, for each directional segment (eight in total for each community), the fire 

travel times were compared against estimated evacuation times, considering potential roadway 

closures based on scenarios of fire encroachment, and directional vulnerability was assessed. 

Overall, this thesis research sheds light on how communities’ roadways, and in turn, evacuation 

capabilities, may be vulnerable depending on the direction in which fires encroach, thus providing 

insights for directions of concern with respect to community fire mitigation and evacuation 

planning (particularly rapid or time-limited responses).  
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7.2 Main Findings 

 In Chapter 4, we identified communities that have vulnerable road networks due to their 

geometric layout and the potential for wildfire-induced evacuations. We found that the five most 

vulnerable communities with respect to fire exposure are also among the 10 most vulnerable 

communities, based on both wildfire and transportation characteristics.  

In Chapter 5, we identified fire trajectories around communities that will necessitate a rapid 

or time-limited response due to their impacts on road capacity. We identified the directions where 

a fire can cause road closures and induce evacuation situations of potential criticality. Rainbow 

Lake has limited fire exposure pathways to the east, but as it is the only route available for 

evacuation, any fire approaching from this direction can pose threats to public safety. Similar to 

Rainbow Lake, we showed that Chateh and Fort MacKay each have only one evacuating route 

through a fire exposure pathway. We also found Banff, Canmore, Swan Hills, Lake Louise, Jasper 

and Grand Cache could all face road closures during wildfire events, as all of their roads are 

situated in pathways of critical exposure. Although they have multiple evacuating routes, 

community size and evacuation demands remain in question (addressed in Chapter 6). We also 

found that Edson, Slave Lake, and Wabasca have limited surrounding lands with critical exposure 

levels, and thus are less vulnerable to wildfire evacuation.  

 In Chapter 6, we compare the estimated time required for a community to evacuate, in 

scenarios where fire travels into a community in a given direction of approach. Directional 

vulnerability results when a road with a high capacity aligns with a fire exposure pathway, or 

potential fire entry route into the built environment, and the potential road closure causes 

potentially problematic evacuation times compared with fire travel times. We found that the larger 

communities are showing comparatively higher potential to face critical evacuation situations. 

Communities with small populations are generally less vulnerable, given they require little road 

capacity to evacuate. However, some small communities have very limited evacuation routes, 

making them highly vulnerable in the case of road closure (sometimes the only road available). 

The seasonal analysis for spring and summer conditions shows relative vulnerability remains 

largely similar across these two seasons. Overall, we found that communities including Banff, 

Canmore, Hinton, Rainbow Lake, Grand Cache and Whitecourt may face critical evacuation 

situations in some directional scenarios of fire encroachment.  
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7.3 Contributions 

7.3.1 Academic Contributions 

This research contributes a simple and fast-to-apply tool to assess community directional 

vulnerabilities with respect to wildfire evacuation, bringing together wildland fire science with 

transportation operations within an integrated analysis framework showing multiple directional 

scenarios of fire encroachment within a single diagram. Our directional analysis approach – around 

which our key research contributions focus – reveals the directional context of vulnerability 

considering fire travel times, road closures, and resulting community evacuation capabilities. 

Although it might seem that communities having high fuel exposure would have the highest 

evacuation vulnerability, our directional analysis shows other variables such as road capacity, the 

directional layout of high capacity roads, and population play an important role in determining 

community transportation vulnerability for wildfire evacuation. A community with limited 

surrounding land areas classed as high exposure, but a large population and relatively limited road 

capacity, can potentially be as vulnerable during evacuation, if not more so, than a community 

with high fuel exposure but many egress routes and a small population. To the best our knowledge, 

directional community assessments of roadways combined with wildfire have not previously been 

seen in the literature, and our approach can be considered a starting point for further work within 

this directional, interdisciplinary line of inquiry. 

7.3.2 Contributions for Practice 

This research provides simple results to characterize community vulnerabilities during 

potential evacuation due to wildfire, from both the wildfire and transportation perspectives, and 

identifies how communities are vulnerable. This can, in turn, be used in strategic emergency 

management planning work – allocating resources to communities (by provincial and/or federal 

agencies) and by communities, particularly towards fire mitigation approaches (like FireSmart), 

early warning systems, and both community and provincial-level evacuation planning efforts. 

Agencies can use our results in their efforts towards allocating and prioritization often limited fire-

fighting resources. In evacuation planning, the results may inform strategies for more efficient 

community egress. For example, staged evacuations may be planned, considering the spatial 

layouts of communities and neighborhoods with respect to the directional transportation 

vulnerabilities identified in the directional scenario analysis of Chapter 6. 
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7.4 Limitations and Future Work 

 This research has key limitations and directions for future improvements and extensions. 

Our work is a simple, relatively high-level analysis of community wildfire vulnerability, to be used 

for informing resource allocation and planning towards a more detailed study of individual 

communities (including agent-based simulation studies, for example), in developing fire 

mitigation and evacuation plans. There are also key limitations that should be noted and addressed 

in future work. First, the assumption of community boundaries pertaining to communities either 

designated “smaller” or “larger” may be revisited to include buffers more specific to each 

community assessed. Second, we assumed that demand is proportionally divided up between 

multiple egress routes, whereas demands for each would differ if we were to consider evacuation 

destinations. To address this, efforts should be made towards apportioning community egress 

demands to roadways more consistent with community land use patterns or the locations of 

reception centres towards which evacuees are directed; these efforts could also include 

consideration and the use of other traffic simulation methods. Third, our analysis is bounded by 

provincial boundaries and does not include local unpaved roads, which could impact potential 

evacuation routes and thus may be revisited in future analyses. Fourth, in the fire spread rate 

calculation, we simplified the calculation with several identified assumptions, considering that the 

spread rate varies due to the continuous presence of non-fuel patches. As mentioned before, other 

more complex approaches are also limited and do not necessarily improve our limitations. Also, 

the exposure assessment is a landscape level analysis and it uses simplifications about the hazard 

fuel classes.  In addition, for small remote communities with highly limited road access, in future 

work air transport may be considered as a possible evacuation mode, or evacuees may be directed 

on roadways towards airstrips and other air transport facilities.  
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APPENDIX A - Plots of all communities  

 Following the method described in Section 5.2, individual plots for each of the selected 21 

communities are presented in this Appendix A. All the populations mentioned in this section are 

collected from the latest population Census (2016) conducted by Statistics Canada (Statistics 

Canada, 2016). 

Banff: 

 Community facts: Banff is a community located within Banff National Park and situated 

close to the western border of Alberta with British Columbia. It is a highly popular tourist 

attraction. Highway 1 passes through Banff, providing most of its roadway egress capacity. It has 

a population of about 8,875 residents. 

 

Figure: Plot of Proportion Exposed and Road Capacity for Banff 
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Blairmore: 

 Community facts: Blairmore is a community located in the Rocky Mountains, very close 

to the southwest border of Alberta with British Columbia. It is the principal commercial center of 

the Municipality of Crowsnest Pass. Highway 3 passes through Blairmore and contributes all its 

roadway egress capacity.  

 

Figure: Plot of Proportion Exposed and Road Capacity for Blairmore 
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Bragg Creek: 

 Community facts: Bragg Creek is located in southern Alberta, 30 kilometers west of 

Calgary, situated on the southeast side of the Elbow River. Highway 66 and 22 intersected just 

south of the community. It is a popular recreational spot.  

 

Figure: Plot of Proportion Exposed and Road Capacity for Bragg Creek 
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Calling Lake: 

 Community facts: Calling Lake is located in northern Alberta, situated on the southeast 

side of Calling Lake and along Highway 813. Its population is about 299 people.  

 

Figure: Plot of Proportion Exposed and Road Capacity for Calling Lake 
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Canmore: 

 Community facts: Canmore is located in the Alberta Rockies, west of Calgary. It is a tourist 

attraction, well-known for recreational activities like skiing and mountain biking. Its population is 

about 13,992. 

 

Figure: Plot of Proportion Exposed and Road Capacity for Canmore 
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Chateh: 

 Community facts: Chateh, also known as Assumption, is an unincorporated community 

located in northern Alberta. It is connected to the rest of Alberta only by Highway 58, and has a 

population of around 883 people. 

 

Figure: Plot of Proportion Exposed and Road Capacity for Chateh 
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Coleman: 

 Community facts: Coleman is a community located in the Rocky Mountains with a 

population of around 1,475. It is situated very close to Blairmore along the border of Alberta and 

British Columbia. Highway 3 is the only route through the community.  

 

Figure: Plot of Proportion Exposed and Road Capacity for Bragg Creek 
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Edson: 

 Community facts: Edson is located in Yellowhead County along Highway 16, and its 

population is about 8,414. 

 

Figure: Plot of Proportion Exposed and Road Capacity for Edson 
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Exshaw: 

 Community facts: Exshaw is a community located very close to Canmore along Highway 

1 and the Bow River. it is a very small community with population about 412. 

 

Figure: Plot of Proportion Exposed and Road Capacity for Exshaw 

 

  

  



85 

Fort MacKay: 

 Community facts: Fort MacKay is located in northwestern Alberta, just north of Fort 

McMurray along Highway 63 and Athabasca River. Its population is about 742. 

 

Figure: Plot of Proportion Exposed and Road Capacity for Fort MacKay 
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Fort McMurray: 

 Community facts: Fort McMurray is located in northwestern Alberta, along Highway 63 

and the Athabasca River. Its population is about 66,573, its size due to the proximity of the oilsands 

operations. 

 

Figure: Plot of Proportion Exposed and Road Capacity for Fort McMurray 
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Fox Creek: 

 Community facts: Fox Creek is a community located in northwestern Alberta, along 

Highway 43, with a population of about 2,589. 

 

Figure: Plot of Proportion Exposed and Road Capacity for Fox Creek 
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Grande Cache: 

 Community facts: Grande Cache is a community located in West-Central Alberta, with a 

population of about 3,571. It is connected to Hinton and Grande Prairie via Highway 40.  

 

Figure: Plot of Proportion Exposed and Road Capacity for Grande Cache 
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Hinton: 

 Community facts: Hinton is a community located in West-Central Alberta, with a 

population of about 9,882. It is connected to Jasper to the west and Edmonton to the east via 

Highway 16.  

 

Figure: Plot of Proportion Exposed and Road Capacity for Hinton 
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Jasper: 

 Community facts: Jasper is a community located in the Rocky Mountains on the border 

between Alberta and British Columbia, with a population about 4,590. It is the commercial center 

of Jasper National Park. Jasper is a popular tourist destination. 

 

Figure: Plot of Proportion Exposed and Road Capacity for Jasper 
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Lake Louise: 

 Community facts: Lake Louise is in the Rocky Mountains near the border of Alberta and 

British Columbia, with a population of about 1,028. It is at the junction of Highway 1 and Highway 

93. Lake Louise is a very popular tourist attraction, and a hamlet of Banff National Park. 

 

Figure: Plot of Proportion Exposed and Road Capacity for Lake Louise 
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Rainbow Lake: 

 Community facts: Rainbow Lake is a community located in north-west Alberta, near the 

end of Highway 58. It has a population of about 795.  

 

Figure: Plot of Proportion Exposed and Road Capacity for Rainbow Lake 
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Slave Lake: 

 Community facts: Slave Lake is a community located on the southeast shore of Lesser 

Slave Lake, at the junction of Highway 88 and Highway 2. It has a population of about 6,651.  

 

Figure: Plot of Proportion Exposed and Road Capacity for Slave Lake 
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Swan Hills: 

 Community facts: Swan Hills is a community located in Northern Alberta, at the junction 

of Highway 33 and Highway 32 with a population about 1,301.  

 

Figure: Plot of Proportion Exposed and Road Capacity for Swan Hills 
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Wabasca: 

 Community facts: Wabasca is a small community situated at the intersections of Highway 

754 and Highway 813, with a population of about 1,585. It is located in between the North and 

South Wabasca Lakes. The forestry and oil-gas industry primarily drive the economy of the 

community. 

 

Figure: Plot of Proportion Exposed and Road Capacity for Wabasca 
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Whitecourt: 

 Community facts: Whitecourt is located in central Alberta with a population of 10,204. It 

is at the junction of Highway 43 and Highway 32, at the confluence of the Athabasca River, 

McLeod River, Sakwatamau River and Beaver Creek. 

 

Figure: Plot of Proportion Exposed and Road Capacity for Whitecourt 
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Appendix B – Relative Direction Rankings for the Smaller Communities, 

Summer and Spring Conditions 

Community Name Directional Segment 

(Degrees from north, 

clockwise) 

Rank in Spring 

Condition 

Rank in Summer 

Condition 

Rainbow Lake 1-45 (segment 𝑠 =1) 6 7 

 46-90 (segment 2) 1 1 

 91-135 (segment 3) 2 2 

 136-180 (segment 4) 8 8 

 181-225 (segment 5) 7 6 

 226-270 (segment 6) 4 4 

 271-315 (segment 7) 3 3 

 316-360 (segment 8) 5 5 

Swan Hills 1-45 (segment 1) 5 5 

 46-90 (segment 2) 1 1 

 91-135 (segment 3) 3 3 

 136-180 (segment 4) 6 6 

 181-225 (segment 5) 8 8 

 226-270 (segment 6) 2 2 

 271-315 (segment 7) 4 4 

 316-360 (segment 8) 7 7 

Fox Creek 1-45 (segment 1) 8 8 

 46-90 (segment 2) 7 7 

 91-135 (segment 3) 1 4 

 136-180 (segment 4) 4 1 

 181-225 (segment 5) 3 3 

 226-270 (segment 6) 2 2 

 271-315 (segment 7) 6 6 

 316-360 (segment 8) 5 5 

Jasper 1-45 (segment 1) 6 5 

 46-90 (segment 2) 4 8 

 91-135 (segment 3) 7 6 

 136-180 (segment 4) 3 3 

 181-225 (segment 5) 8 7 

 226-270 (segment 6) 2 2 

 271-315 (segment 7) 1 1 

 316-360 (segment 8) 5 4 

Lake Louise 1-45 (segment 1) 5 5 

 46-90 (segment 2) 7 7 

 91-135 (segment 3) 8 8 
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 136-180 (segment 4) 2 2 

 181-225 (segment 5) 3 3 

 226-270 (segment 6) 6 6 

 271-315 (segment 7) 1 1 

 316-360 (segment 8) 4 4 

Grande Cache 1-45 (segment 1) 2 2 

 46-90 (segment 2) 3 3 

 91-135 (segment 3) 8 7 

 136-180 (segment 4) 5 5 

 181-225 (segment 5) 4 4 

 226-270 (segment 6) 7 8 

 271-315 (segment 7) 6 6 

 316-360 (segment 8) 1 1 

Coleman 1-45 (segment 1) 2 2 

 46-90 (segment 2) 3 3 

 91-135 (segment 3) 7 7 

 136-180 (segment 4) 8 8 

 181-225 (segment 5) 5 5 

 226-270 (segment 6) 6 6 

 271-315 (segment 7) 4 4 

 316-360 (segment 8) 1 1 

Blairmore 1-45 (segment 1) 1 1 

 46-90 (segment 2) 6 6 

 91-135 (segment 3) 7 7 

 136-180 (segment 4) 4 4 

 181-225 (segment 5) 3 3 

 226-270 (segment 6) 2 2 

 271-315 (segment 7) 8 8 

 316-360 (segment 8) 5 5 

Fort MacKay 1-45 (segment 1) 8 8 

 46-90 (segment 2) 6 6 

 91-135 (segment 3) 7 7 

 136-180 (segment 4) 1 1 

 181-225 (segment 5) 2 2 

 226-270 (segment 6) 4 4 

 271-315 (segment 7) 5 5 

 316-360 (segment 8) 3 3 

Exshaw 1-45 (segment 1) 5 5 

 46-90 (segment 2) 6 6 

 91-135 (segment 3) 1 1 

 136-180 (segment 4) 3 3 
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 181-225 (segment 5) 7 7 

 226-270 (segment 6) 4 4 

 271-315 (segment 7) 8 8 

 316-360 (segment 8) 2 2 

Bragg Creek 1-45 (segment 1) 1 1 

 46-90 (segment 2) 2 2 

 91-135 (segment 3) 4 4 

 136-180 (segment 4) 3 3 

 181-225 (segment 5) 6 5 

 226-270 (segment 6) 5 6 

 271-315 (segment 7) 8 8 

 316-360 (segment 8) 7 7 

Wabasca 1-45 (segment 1) 1 1 

 46-90 (segment 2) 4 4 

 91-135 (segment 3) 2 2 

 136-180 (segment 4) 8 8 

 181-225 (segment 5) 7 7 

 226-270 (segment 6) 6 6 

 271-315 (segment 7) 5 5 

 316-360 (segment 8) 3 3 

Chateh 1-45 (segment 1) 5 5 

 46-90 (segment 2) 8 8 

 91-135 (segment 3) 6 6 

 136-180 (segment 4) 1 1 

 181-225 (segment 5) 2 2 

 226-270 (segment 6) 3 3 

 271-315 (segment 7) 4 4 

 316-360 (segment 8) 7 7 

Calling Lake 1-45 (segment 1) 4 4 

 46-90 (segment 2) 3 3 

 91-135 (segment 3) 2 2 

 136-180 (segment 4) 1 1 

 181-225 (segment 5) 5 5 

 226-270 (segment 6) 7 7 

 271-315 (segment 7) 8 8 

 316-360 (segment 8) 6 6 
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Appendix B – Relative Direction Rankings for the Larger Communities, 

Summer and Spring Conditions 
 

Community Name Directional Segment 

(Degrees from north, 

clockwise) 

Rank in Spring 

Condition 

Rank in Summer 

Condition 

Banff 1-45 (segment 1) 8 8 

 46-90 (segment 2) 3 3 

 91-135 (segment 3) 2 2 

 136-180 (segment 4) 6 6 

 181-225 (segment 5) 5 5 

 226-270 (segment 6) 4 4 

 271-315 (segment 7) 1 1 

 316-360 (segment 8) 7 7 

Canmore 1-45 (segment 1) 7 7 

 46-90 (segment 2) 5 5 

 91-135 (segment 3) 1 1 

 136-180 (segment 4) 2 2 

 181-225 (segment 5) 8 8 

 226-270 (segment 6) 6 6 

 271-315 (segment 7) 4 4 

 316-360 (segment 8) 3 3 

Edson 1-45 (segment 1) 7 7 

 46-90 (segment 2) 2 2 

 91-135 (segment 3) 3 1 

 136-180 (segment 4) 4 4 

 181-225 (segment 5) 5 5 

 226-270 (segment 6) 1 3 

 271-315 (segment 7) 6 6 

 316-360 (segment 8) 8 8 

Fort McMurray 1-45 (segment 1) 4 4 

 46-90 (segment 2) 7 6 

 91-135 (segment 3) 6 7 

 136-180 (segment 4) 2 2 

 181-225 (segment 5) 8 8 

 226-270 (segment 6) 5 5 

 271-315 (segment 7) 3 3 

 316-360 (segment 8) 1 1 

Hinton 1-45 (segment 1) 6 6 

 46-90 (segment 2) 5 5 

 91-135 (segment 3) 8 8 

 136-180 (segment 4) 3 1 
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 181-225 (segment 5) 4 4 

 226-270 (segment 6) 1 3 

 271-315 (segment 7) 2 2 

 316-360 (segment 8) 7 7 

Slave Lake 1-45 (segment 1) 5 4 

 46-90 (segment 2) 4 5 

 91-135 (segment 3) 2 1 

 136-180 (segment 4) 3 3 

 181-225 (segment 5) 6 6 

 226-270 (segment 6) 7 7 

 271-315 (segment 7) 1 2 

 316-360 (segment 8) 8 8 

Whitecourt 1-45 (segment 1) 4 4 

 46-90 (segment 2) 6 6 

 91-135 (segment 3) 2 2 

 136-180 (segment 4) 3 5 

 181-225 (segment 5) 8 8 

 226-270 (segment 6) 7 7 

 271-315 (segment 7) 1 1 

 316-360 (segment 8) 5 3 

 

 

 

 


