ULGVERSITY OF ALBERTA

A Constraint Satisfaction Approach to Timetabling,

BY

Don Banks < C >

A thesis submitted to the Faculty of Graduate Studies and Research in partial ful-
filiment of the requirements for the degree of Masters of Science.

DEPARTMENT OF COMPUTING SCIENCE

Edmonton, Alberta
Fall 1996



l * l National Library
of Canada

Acquisihons and

Bibliothéque nationale
du Canada

Direction des acquisttions et

Bibliographic Services Branch  des services bibliographiques

394 Wellington Street 395, rue ¥
Ottawa Ontang Ottawa (1.
VA (M4 1A ONA

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

Your tile  Volre rélérence

QOur e Nutre réterence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliolthéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa these
de quelque maniéere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
théese a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protéege sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-612-18232-0

Canada



UNIVERSITY OF ALBERTA

RELEASE FOR)I

NAME OF AUTIOR: Don Banks

TITLE OF THESIS: A Constraint Satisiaction Avvroach to Timetabling
DEGREE: Masters of Science

YEAR THIS DEGREE GRANTED: 1996

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientilic
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided neither the thesis nor sy
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

(Signed) . . . . . .
Don Banks
248 Brookside Terrace
Edmonton, Alberta
Canada, TGl 416

Date: . . /. .



UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Grad-
nate Studies and Research for acceptance, a thesis entitled A Constraint Satisfac-
tion Approach to Timetabling submitted by Don Banks in partial fulfillment
of the requirements for the degree of Masters of Science.

// ’ v g y
- o ')/l’ [é//{}/z'//

.................

Dr. A. Meisels (Co-Supervisor)

e
Dr. F. Lau\)(Exte@al)
N Yo, I
i - >

Dr. R. Goébel (Examiner)

R Y.

Dr. T.A. Marslund (Chair)

.........



Abstract

The general timetabling problem is an assignment of activities t¢ fixed time intervals,
adhering to a predefined set of resource availabilities. Timetabling nroblems are dithi

cult to solve and can be extremely time-consuming without some computer assistance.
In this thesis the application of constraint-based reasoning to timetable generation is
examined. Specifically, we consider how a timetabling problem can be represented as
a Constraint Satisfaction Problem (CSP). and propose an algorithm for its solution
which improves upon the basic idea of backtracking. Normally, when a backtracking
routine fails to find a solution, there is nothing of value returned to the user; how-
ever, our algorithm extends this process by iteratively adding constraints to the ('SP
representation. This algorithm can be considered a general methodology for handling
over-constrained networks. We solve three high school timetabling problems using
this algerithm, yielding master timetables which are superior to human-generated
timetutles, since we are consistently able to schedule more than 98 percent of the
studests. Furthermore, a generalized random model of timetabling problems is pro-
yosed. This model creates a diverse range of problem instances, which are used to
virify oar search algorithm and identify the characteristics of difficult timetabling
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Chapter 1

[ ]
Introduction
Timetabling prot arise in many real world situations. Although many computer-
ized techniquer or timetable construction, obtaining acceptable results is often
difficult. In re.  years, constraint-based reasoning has gained much attention in

the Artificial Intelligence community. Using the CSP paradigm, our aim is {0 model

and solve high school timetabling problems.

1.1 Overview

There is no standardized or commonly accepted terminology when describing the gen-
cral timetabling problem. We begin with a loose description of this problem before
discussing its variety. First, there are the participants which need to be scheduled,
such as teachers, lessons, lecture halls, pieces of equipment and so forth. Generally,
there will be more than one set of participants. Next, there is a set of time slots which
dictate fixed points of activity commencement and termination. These time slots can
also be called periods, hours, or even days; ihe important characteristic is that there
is a specific number of them, each with pre-determined starting and stopping times.
The third component of the timetabling problem is the set of availabilities, which
dictate the subset of time slots in which each participant is able to be scheduled. In
the simplest timetabling problems, the availabilities are simply lists of time slots for

each participant. However, more complicated problems arisc i1 there are constraints



on the availabilitics. For example, in the conference scheduling problem, if the par
ticipants are lecture theatres and the time slots are one hour intervals, there may be
an availability which sayvs that no lecture theatre may have more than one conference
at the same time.

Timetabling and scheduling are two different problerus, although in the literature
the terms are sometimes used interchangeably. The main difference is that timetables
make use of fixed, pre-arranged time slots. Schedules, on the other hand. can have
their activities beginning and ending at arbitrary points in time.

The major areas of timetabling applications are manpower allocation. transporta
tion problems and school timetabling. The commonality between all of these types of
problems is the time constraint. This requirement says that no two participants may
simultaneously occupy the same “block™ of time. Manpower allocation, for example,
generally describes a problem in which employees are scheduled into shifts, within
other constraints such as a minimum number of hours per week for each employee,
Other constraints may or may not be present in timetabling problems. svew o« an
industrial shop requiring its machines to perform tasks in a certain order, i+ 1ail-
way requiring 3 engineers on duty at a time, and so forth. It is the nature of these
constraints which distinguish diflerent timetabling problems.

Furthermore, the scheduling goals of timetables may also differ. Some problems
may require a single, “master timetable” of global events, or individual timetables,
such as those issued to students, for a number of different resources. Some constraints
in the timetabling problem are rigid and must not be violated, while others may
be relaxed at an individual’s preference; for instance, a bank may have the rigid
requirement that its employees be scheduled between the hours of 9 am to 5 pm,
while there may be a preference amongst the employees as to which days are taken
off. Finally, some timetabling problems may involve the satisfaction of a number of
constraints, while others require optimization. The satisfaction problem, which is the
more simple of the two, may ask the question, “Can these students be scheduled in

a school with 30 rooms?”, while an optimization problem might be, “What is the
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fewest number of rooms required to schedule these students?”.

The existing literature on timetabling is rich and diverse. 1t would seem that
there are as many different timetabling problems as there are solution techniques.
‘The main effort in this field recently has been seen in the Operations Research (OR)
and Artificial Intelligence (Al) communities. The OR approach has been generally
that of Integer Lincar Programming. Using this strategy a timetabling problem is
expressed as a system of lincar equations. Al rescarchers have been using another
general technique: constraint logic programming. Several CLP languages, such as
CHIP [15] and Pecos [8] have been developed specifically for solving scheduling prob-
lems. The general technique is to express the problem using logic predicates, and
proceed to find a solution by using backtracking and various heuristics. Within con-
straint logic programming lies a specific means of representing problems known as the
Constraint Satisfaction Problem (CSP). Research on CSP’s has blossomed in the last
decade. However, most of the experimental work has been done on random binary
constraint satisfaction problems. There have been relatively few reports of successful
applications of CSP’s to real world timetabling problem:s.

The contributions of this thesis are threefold. First, we have produced a CSP
representation of a complex, real-world timetabling problem. Modelling a real world
problem is difficult, since there are many nuances which need to be expressed. For ex-
ample, our problem deals with constraints on the number of teachers in each subject,
a finite capacity of rooms in the school, classrooms having a maximum of thirty stu-
dents, and so forth. Much of the work in the literature on school timetabling focusses
on more simple problems, such as room assignment or teacher scheduling, allowing for
convenient reductions of the problem. However, our problem encompasses the broad
problem of creating a master timetable of courses, along with scheduling students into
their specified courses. The second contribution of this thesis is our solution tech-
nique. By prioritizing the various constraints, our algorithm will iteratively add the
constraints t2 the problem, building upon the solution until no further improvements

can be made. This technique is a general methodology for handling over-constrained



networks. which is applicable to any constraint legic problem. Our ('SP tepresenta
tion is justified by the algorithm’s performance on three local high schools, an which
we are able to schedule more than 98% of the students. The third contribution of this
thesis is the random problem generator. We are able to demonstrate the robustne ss
of our algorithm by solving a diverse range of timetabling problems. We show thit.
in most cases, our algorithm can satisfactorily schedule 95% of the students within a
school of any particular number of rooms and courses offered. The amount of compu
tational time required by the algorithim is limited to a few minutes. Farthermore, th
generator helps us to idertify ditficult to solve timetabling problems. These problems
can then be recrcated, by giving the algorithm the same random seed. for testing on

future timetabling algorithms.

1.1.1 Specification of the Problem

This thesis encompasses threc broad areas of work: timetable problem representa-
tion, solution methods and random problem testbeds. We describe a timetabling
problem found in high schools in Edmonton, Alberta. This particular problem in-
volves creating a master timetable of courses into periods. The schools being studied
have eight periods per week in each of two school semesters. Some courses are sched-
uled within one semester, while others are full year courses which must be taken in
both semesters. Courses are divided into sections of students, and cach section is
scheduled into its own period. The input to the problem consists of a list of student
course selections. The objective is to satisfy as many of the student course selections
as possible by scheduling the sections of the courses into the ecight weekly periods.
Furthermore, the teachers of the school and the capacity of the school are considered.
There are only a certain number of teachers for cach subject, and so there is a limit
on *he number of courses of each subject that can be taken at a time. As well, there
is a limit on the total number of rooms in the school, and there cannot be oo many
courses scheduled during any particular period.

A solution is one that satisfies all of the students’ sets of course selections; however



in practice this is not always possible. Therefore, we define a satisfactory solution
as one that meets N, % of the students’ course demands. The value of N, can
be manipulated by the user, and is generally accepted at being between 95 and 100.
In reality, the large high schools will settle for between 92 and 97 percent student

satisfaction.

1.1.2 Motivation

There are several reasons for examining the application of CSP’s to timetabling
problems. First, it is valuable to understand the performance of search algorithms
on structured, non-random constraint networks. As will be discussed in the next
chapter, experimentation on CSP’s has been mostly performed on contrived, “toy”
problems, or purely random problems. These experiments are useful for obtaining a
general understanding of search-intensive problems. Our research serves to comple-
ment previous results by examining more practical applications. The CSP represen-
tation of a real world problem is indeed practical, and we illustrate that existing CSP
solution techniques can be applied. Of particular interest is our use of non-binary
constraints as a means of structuring global attributes. These constraints clearly
add to the difficulty of the problem. In the literature, non-binary constraints are
often overlooked in CSP experimentation. Further motivation for our work is that
timetabling is extremely common and is seen in everyday situations. As we have
discussed, there are many different types of scheduling problems and many different
solution techniques. We believe that understanding one particular problem enables
a better understanding of other timetabling problems. Since we have gained experi-
ence in modelling constraints and handling over-constrained networks, these general
techniques can be applied under different timetabling circumstances.

The described high school timet: 'ing problem is extremely challenging. In fact,
at a local school of about 1650 stu. the administration requires severai man
weeks to arrive at a satisfactory mas.cr timetable. There is no existing software

available to perform the scheduling for them. Although they use a database to store
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student records, teachers’ hours and validate course requests, the actual assignment of
periods 1,...,8 to course sections, and checking for course conflicts must be done by
hand. Lastly, although school timetabling problems have been frequently examined
[1] [5] [9], often the problems are simplified and do not include all of the actual
constraints. We believe our representation of the problem is complete, and wonld

not require any “fine-tuning” by a human scheduler.

1.1.3 Summary and scope of the thesis

In chapter 2 of this ihesis we introduce the reader to the Constraint Satisfaction
Problem. We provide a simple example of the CSP being applied to an imaginary
problem, the Zebra Problem, and discuss some CSP solution techniques.

In chapter 3 of this thesis we explore the background behind the timetabling
problem. There is indeed a wide variety of solution techniques: constraint logic
programming, integer linear programming, simulated annealing, genetic algorithms
and many others. We consider the place of high school timetabling within the context
of all scheduling problems.

In the fourth chapter we present our CSP representation of the local high school
timetabling problem. We have chosen a compact representation requiring a manage-
ably low numi of constraints. The variables of our CSP are courses within the
school. Recall that a course is actually a set of sections of lessons which meet in the
same period three times per week. Therefore, we express the domains as tuples of
period values. For example, a course with three sections may have a legal domain
value of (1,2,4), indicating that the three sections will be in periods 1, 2 and 4 respec-
tively. A heuristic we use to greatly reduce the domain size is to eliminate domains
with the same period appearing more than once: that is, a tuple of values such as
{1,2,2} would not be considered. There is nothing wrong with having two sections
of a course scheduled in the same period, but we choose to ignore this practice in the
interest of diversifying the sections to increase th: chances of student satisfaction,

and decreasing the domain sizes and the overall search space.
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In chapter 5 we propose an algorithm that iteratively adds constraints before
proceeding with a backtracking search. We define the binary constraints to occur
between pairs of courses chosen by the same students. We find that binary constraints
between all pairs of chosen courses results in no solution existing to the problem. Thus
a constraint weighting function is required to decide which constiaints will satisfy the
most students. Given two courres, one with z students enrolled, the other with y,
and given that k students have registered in both courses, we define the weigh:ting of

the binary constraint between the two courses as
k/min(z,y)

A threshold value is used to determine the minimum weighting to include the binary
constraints, and a forward checking routine is used to solve the specified CSP — which
implies assigning periods to sections — and a master timetable is specified. Then,
the procedure iterates and raises the threshold to include more binary constraints,
which should increase the number of students successfully scheduled. The iterations
continue until too many binary constraints are added and no solution can be found.
Using three high schools’ student data, we are able to successfully schedule more
than 98% of the students.

In chapter 6 we explore the idea of generating random timetabling problems.
Although we show in chapter 5 that our algorithm performs well on three local high
schools’ student data, we would like a wider array of test problems. In particular, we
are interested in varying the tighiness and quantity of the constraints. We introduce
the two non-binary constraint classes of the timetabling CSP as the global rooms
constraints and the teachers’ constraint. The rooms constraint states that given a
school with r rooms, no more than r courses can be scheduled in any period, since
there would not be enough rooms. The teachers constraint says that given a subject,
such as English, which has k instructors available, no more than k sections of that
subject can be scheduled at a time, since there would be an insufficient number of
teachers. By varying the number of students, courses and rooms in our random

model, we are able to create a large testbed of problems akin to the random oinary
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model used by other researchers. With the addition of non-binary constraints we
have modified the forward checking algorithm. Several experiments reveal that when
the number of rooms approaches some minimum, there is a sharp rise in the amount
of effort needed to find a solution. We also identify difficult-to-solve problems when
the number of courses becomes high and the number of students low. For the large
part, though, our algorithm is almost always able to- satisfactorily schedule at least
95% of the students on the randomly generated data.

We present our conclusions and discuss some possible future work in chapter 7.

o



Chapter 2

Background on Coastraint

Satisfaction Problems

Constraint-based reasoning is a simiple means of representing a wide variety of prob-
lems. In this chapter we proceed with a succinct definition of the CSP, before dis-
vussing some of the solution techniques and drawbacks of the previous work on CSP

experimentation.

2.1 The Constraint Satisfaction Problem

The CSP has thrce components: the domains, variables and constraints. Each CSP
consists of a set of variables {zy...2,}, each with an associated domain of values
Dy ...D,. A solution to a constraint satisfaction problem is an instantiation of each
variable to one particular value from its domain, such that none of the constraints
are violated. Constraints, therefore, are relations between variables which describe
their legal values. These relations may be represented in an extensional or intensional
manner. [or example, suppose variable a has the domain {1,2,5} and variable b has
the domain {2,3,4}. A binary constraint — one that proposes the valid instanti-
ations between fwo variables — may exist which says that a < b. An extensional

representation of this relation is a subset of the Cartesian Product of the two domains



giving the legal pairs of values:
{(1,2).(1.3).(1.4).(‘2.3).(2.-1)}
While an intensional representation of this relation would be:
{(a,b)la € {1,2.5},b € {2.3.4}.a < b}

Another way of stating the extensional relation between two variables is to use a con-
straint matrix. This matrix of Boolean values declares the valid and non-permissable

pairs as true and false values. For example,

I 00
1 10
1 1 0

illustrates the constraint a < b, where the columns are the different values of a,
the rows are the values of b and a “1” (true) corresponds to a valid pair of values,
while the “0” (false) represents an invalid pair. This matrix structure allows for some
convenient CSP pre-processing algorithms to eliminate domain values. For instance,
the column of zeroes in the matrix tells us that the value “5” for the variable yields
no legal instantiations of variable b, therefore, “5” can be pruncd from the domain
of a before any searching begins. However, this constraint matrix structure is really
just an implementational detail, as it is an internal representation of data.

Not all constraints are binary. A unary constraint is one that applies to a single
variable. Suppose, for example, there are five variables in a CSP, cach representing
one of the days of the week Monday through Friday for an employee. The domains of
these variables might consist of hours of the day. A unary constraint may explicitly
say that the employee does not work past 8 pmon any day. Thus, each variable would
have the hours beyond 8 pm removed from its domains. Typically, unary constraints
are pre-processed. More complicated constraints which can arise are non-binary. For
example, suppose we have three variables, a, b and c, each with the domain {0...9}.

A non-binary (or ternary in this case) constraint may enforce that:

{(a,b,¢)la + b+ c = 15}



A non-binary constraint which includes all n variables of the CSP is known as a
global constraint. Non-binary constraints are not usually explicitly stored as Boolean
matrices, since this often requires an impractical amount of time to compute and

store. These constraints are gener 1lly represented intensionally.

2.1.1 A sample problem

Determining the variables, domains and constraints of the CSP is the first step in
finding a solution. This first step is not always easy, as some problems do not lend
themselves to such a clear structure. As an example, let us define the zebra problem.
This problem is one that has been often mentioned in CSP papers, serving to test
new CSP algorithms {17]. The problem is simple enough to understand, but large
cnough to demonstrate the efficiency of an appropriate CSP representation.

The zebra problem goes a. foliows: There are five houses; in each house there is a
woman of diflerent nationality, each woman has a different pet, each woman smokes a
different brand of cigarettes, each "voman drinks a different beverage, and each house

is a different color. We know the following facts about the situation at hand:

¢ The Englishwoman lives in the red house

The Spaniard owns the dog

Coffee is drank in the green house

The Ukrainian drinks tea

The ivory house is to the right of the green house
e Oldgolds are smoked by the woman who owns the snail

® Kools are smoked in the yellow house

Milk is drank in the middle house

The Norwegian lives in the house on the far left

11



e The woman who smokes Chesterfields lives next to the woman who owns the

fox

The woman who owns the horse lives next to the yellow b i<

Lucky Strikes are smoked by the woman who lives in the orange house
e The Japanese smokes Parliaments

e The Norwegian lives next to the blue house

e One woman drinks water

e One woman owns a zebra

The problem asks where do each of the women live, what color are their houses,
what are their pets, which cigarettes do they smoke and which beverages do they
drink? There is only one solution to this problem, despite the 25° possible different
combinations. How can this problem be cast as a CSP? In other words, what arce the
variables, domains and constraints which allow us to conveniently solve the problem?

An initial, naive approach may be the following: Supposc there are 20 variables:
five for owner-pet pairs, Englishwoman- Pet, Spaniard-Pet, and so on, cach with the
domain {dog, horse, fox, sna:l, zebra}, five variables for the owner-color pairs:
Englishwoman-House, Spaniard-House ..., each with the domain {red, grecen, bluc,
wory, yellow}, as well, similar definitions for the sets of variables owner-smokes and
owner-drinks. What are the constraints under this scheme? We know, for example,
that the Englishwoman lives in the red house, so the variable for Englishwoman-Iouse
could be pre-defined to be “red”. However, we have no information with respect to
other owners and their pets. Furthermore, information such as “the ivory house is to
the right of the green house” are difficult to account for. A good CSP representation
is one with constraints that arc as specific and as descriptive as possible. Under this
naive approach, there are many variables which cannot be constrained at all.

A better representation of this problem is as follows. There are 25 variables,

one for each of the five nationalities, and one for each of the five colors, beverages,

12



cigarettes and pets. If we number the houses from left to right as 1,2,3.4.5, we now
have the dornainsfor each of the variables, {1,2.. ., 5}. The constraints arc now easily
described. For example, “The Englishwoman lives in the red house” is simply saying
that the variable for “Englishwoman” must have the same value (house number)
as the variable for “Red”. Similarly, the variable “Spaniard” must be equal to the
variable “Dog”. These kinds of equality constraints can be specifically modelled by
the relation:

Englishwoman = Red

or by using the intensional notation of the legal pairs of values:

{(1,1),(2,2),(3,3),(4,4),(5,5)}

Since we are given the statement, “the Norwegian lives in the house on the far
left”, the domain of the variable “Norwegian” could be initialized to 1.

The “next to” constraints, such as green is next to ivory, are easily modelled since
we have numbered the houses 1 through 5. We know that 1 is next to 2, 2 is next
to 1 and 3, and so forth, so the general relation of “next to” is modelled by using

absolute values:

{IGreen — Ivory| = 1}

or
{(1,2),(2,1),(2,3),(3,2),(3,4), (4,3),(4,5), (5,4)}

This formulation of the problem is superior to the naive approach because it
ezploils the natural structure of the problem. By enumerating the houses 1 through

5, the other participants in the problem are more easily identified.

13



2.2 Solution techniques

2.2.1 Backtracking

A solution to a CSP consists of an assignment to each variable of one value from its
domain, such that all of the constraints are satisfied. A typical method of finding
a solution to a CSP is a tree scarch algorithm. Also known as backtracking, the
most naive form of this algorithm was discovered more than a century ago, and has
been rediscovered many times since. In simplest terms, the backtracking algorithm
will at each step instantiate a variable with 2 value from its domain. Then. all of
the constraints that the variable participates in are checked, and if one is violated,
the procedure must backtrack to a previonsly instantiated variable in the tree. This
process is systematic, and will check all possible values from each domain until a
variable is satisfied. If there are n variables, each with uniform domain size d, the
search space may be thought of as a tree, with the “root” being the first variable to
be instantiated, and each node in the tree having branches to d nodes for the next
variable. Therefore, in the worst case the algorithm explores d” nodes, but just n in
the best case if a solution is found without any backtracking.

In general, this naive backtracking algorithm is not used in practice. When an
inconsistent variable is found, the backstep is only one node in the search tree. There
are other more complicated tree search algorithms which have received attention. The
Backjumping routine of Gaschnig[13], for example, attempts to minimize the number
of nodes visited by backtracking directly to the variable which is in conflict. A dif-
ferent approach is the explicit forward checking algorithm of Haralick and Elliot[13].
When the search routine instantiates a variable it looks ahead to the future, unin-
stantiated variables, and removes from their domain any values which are currently
incompatible. If the domain of a variable is completely annihilated, the procedure

backtracks chronologically.
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2.2.2 Branch and Bound

Branch and bound, like naive backtracking, is a refrospective technique, meaning that
a new value is sclected to try to extend an incomplete solution by “looking back” to
test consistency. However, branch and bound serves to find a mazimal solution, i.e.
one that violates the fewest number of constraints. Backtracking, on the other hand.
will halt if it has found a perfect solution — one that violates no constraints — or
has exhausted all of the possibilities.

Branch and bound will initially build up a partial solution, keeping track of the
number of constraint violations. The complete solution may result in, say v violations.
which then becomes the bound of the search. The algorithm then systematically
attempts all other possible “branches” of the search tree, but now will abort the
current branch if the partial solution has exceeded v violations. If a partial solution
is completed, and has fewer than v constraint violations, then v is now updated and
this solution is saved as the “best” so far. The Branch and Bound algorithm is
considere an “anytime” algorithm, becouse at any point in the search process, there
is a best solution available to the user. The quality of the solution is proportional to

the algorithm’s running time.

2.2.3 CSP Experiments

In the literature are many discussions on experiments on CSP’s. These experiments
are usually performed on benchmark problems, such as the “Zebra” problem or the
n-queens problem, or experiments may be on completely random problems. In the
n-queens problem, a n x n chess board is used to position n queens such that none are
attacking each other. Random CSP’s are produced by an algorithm which generates
binary constraints by creating random Boolean matrices. The experimenter can vary
the number of constraints, the “tightness” of the constraints (referring to the ratio
of 0’s to 1's in the matrices), as well as the number of variables and the size of the

domains. These random CSP’s have the virtue of offering a diverse range of problems



which are easy to generate. There have been few reported experiments on problems
with non-binary constraints, however.

Experiments are usually performed to test new backtracking algorithms or heuris-
tics. The two main types of heuristics are variable and value ordering. The former
will determine the order in which the variables are instantiated by the search algo-
rithm, while the latter orders the values within the domains to be instantiated. The
success or failure of a heuristic or algorithm is usually judged by the total number of
consistency checks (which is better than simply measuring the run-time, since that
may vary from machine to machine). The forward checking routine, for example,
can require several orders of magnitude fewer consistency checks than the simple
backtracking routine on the same problem.[13]

Our research follows from these ideas of CSP experimentation. There are, how-
ever, some shortcomings of the previous work in this area which we have overcome.
The general random binary CSP’s do not resemble anything in reality, since real
world problems are far more structured in nature. In fact, these random problems
are only useful for a theoretical examination of CSP properties. While this work is
useful, our work is more centred on a practical application. Since we have developed
an algorithm specifically for timetabling problems, it would be pointless to test it
on purely random binary CSP problems. Furthermore, our problem has non-binary
constraints, which are not included in the general binary model. Thus, we sce the
motivation in developing a random timetabling problem model. We wish to create
an adequate supply of problems with differing binary and non-binary constraints.
This model has three parameters, the number of courses (variables in the CSP), the
number of students (which influences the distribution of the binary constraints and
the domain sizes) and the capacity of the school (for the non-binary constraint). In
doing so, we are able to generate a diverse range of timetabling problems suitable
for testing our algorithm. Furthermore, we identify difficult to solve timetabling in-
stances which occur when the global capacity of the number of rooms approaches a

minimum value, depending on the number of students.
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We propose a backtracking algorithm which iteratively adds constraints to the
network until no solution remains. Backtracking algorithms will either find a solution,
and then halt, or else find no solution and halt. In the latter case, the user is left with
nothing of value. However, our algorithm assigns wcights to the binary constraints
and then iteratively adds them to the CSP. The motivation for these steps is that if
all of the constraints are added, then there is no solution at all. Several iterations
may be necessary until a satisfactory solution is found. However, there will always
be a timetable generated, and the user may halt the search routine at any time to
retrieve the best result found up to that point.

Having described the constraint satisfaction problem, we will proceed in the next
chapter with a formalization of timetabling, and describe some of the previous work

in timetable generation.
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Chapter 3

Background on Timetabling

The problem of timetabling is the focus of ongoing research in both the Artificial
Intelligence (AI) and Operations Research (OR) communitics. In general terms,
timetabling is a matter of resource allocation. Activities (or “participants™) consume
resources, which are to be scheduled over time. The problem may he to create a
master schedule for ai. rsources, or to create individual schedules for cach activity.
Timetabling refers to ti. particular set of scheduling problems where the starting and
completion times available for the activities are known in advance. ‘The scheduling
process requires satisfying or sometimes optimizing a number of constraints. These
constraints may assert things such as activity durations, resource capacities, resource
availability, and so forth. Further, these constraints may neced to be rigidly enforeed,
or may be relaxed with a particular level of preference. The rigid constraints will
define the subspace of allowable solutions, while the relaxable constraints characterize
the quality of the scheduling solutions. Timetabling is a problem which is known to
be NP-Complete(7] . In this chapter we will offer precise definitions of the three
main categories of scheduling problems --- manpower planning, transportation, and
academic scheduling. We will further describe the difference between the Al and OR
approaches to solving the scheduling problem before looking specifically at some past

applications of CSP’s to timetabling problems.
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3.1 Timetabling constraints

Let us discuss the basic timetabling problem. First, there is the set of participants
being scheduled. Within this set may exist the resources and activities. Under this
general model, it is the activities which consume resources, and the activities are
to be scheduled.  However. not all timetabling problems require both sets: there
may simply be one uniform group of participants being scheduled. Furthermo:: . the
terms “resources” and “activities”, can be interchangeable; for example, under the
common class-teacher timetabling problem, groups of students (classes) are assigned
teachers, or the problem may be viewed as teachers being assigned classes. The next
component of the timetabling problem is the set of time slots. These are simply
pre-determined, fixed points in time at which the activities begin and end. The third
component of the general timetabling problem are the availabilitics. Each participant
may have specific times at which they can or cannot be scheduled. Therefore, the
availabilities may be thought of as sets of legal time slots for each participant. A
solution to a timetabling problem is an assignment of the activities to the time slots,
such that all of the availabilities are met.

There may also be availabilities which are rules, specifying legal combinations of
activities to resources. For example, “each class needs one and exactly one teacher”
is an availability. Or, “employees must not work a night shift followed by a morning
shift the next day” is another. The nature of the availabilities are what distinguish
different timetabling problems. Thus, in the next section we describe the main types
of availabilitics, also known as constraints, before proceeding with some particular

examples from the literature.

3.1.1 Not-equals (mutual exclusion) constraint

At the heart of most scheduling problems is the fact that events cannot occur at the
same time. Indeed, were this constraint not present, the problem would either be

extiemely easy, or not a timetabling problem at all. To demonstrate these mutual
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exclusion constraints, consider a problem of Examination timetabling. This problem
is commonly faced by Universities when. at the end of the term, final examinations
are to be taken by students. As a simple example, suppose there are five exams,
E; ... Es, which need to be scheduied, and there are three days in the examination
period, Monday, Tuesday and Wednesday. Each student can only take one exam in

each day.
e The participants of the problem are the examinations (five)
e The time slots of the problem are days (three)

e The availabilities are that no student can take more than one examination in
a day. The difficulty is that there are some students who are taking more than
one exam. As long as there is at least one student taking £; and [, then [

and E; may not be scheduled on the same day.

Suppose that a check of the class lists reveals that there are some students who must
take E; and E3, E; and E4, and onc student who takes Ej, Ey and I5. Therefore,
there are not-equals constraints between the pairs of courses, [y-Iy F,-F,, Ey-1Ls,
Ey-FE4 and E4-Fs.

A solution to this problem is an assignment of days to the five examinations, such

that all of the availabilities are met. One such solution is:

e F, is scheduled on Monday

E; is scheduled on Monday

E5 is scheduled on Tuesday

E4 is scheduled on Tuesday

Ej5 is scheduled on Wednesday

The not-equals constraints in this example are simplistic, since there is only one

group of participants being scheduled. The more typical case is when there are two
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groups of participants, resources and activities. This same examination timetabling
problem could have the added scheduling need of the exams being assigned to rooms.
Now, there are two groups of participants, examinztions and rooms, both of which
are being assigned to time slots. The intrinsic not-equals constraints which exists
in this problem are that no two exams can take place in the same room, nor can
two rooms be assigned to the same exam. This constraint between two participants

describes the bipartite scheduling problem|[3].

3.1.2 Capacity constraints

The capacity constraint can exist in many different ways. One type of capacity
constraint is an upper or lower limit on the participants being scheduled. Returning
to the examination scheduling problem, a school may be faced with a problem of a
shortage of rooms. If there are r rooms, then a capacity constraint enforces that no
more than r exams may be schedule! during one particular time slot. Other capacity
constraints can exist when there is more than one group of participants. In hospital
shift scheduling, for instance, each shift may require exactly three doctors and five

nurses.

3.1.3 Temporal constraints

The third type of constraint describes temporal relationships between the activities
being scheduled. One kind of temporal constraint is logically expressed by a formula
(I1 4+ d < 12), where 11 and I2 are time points representing beginnirg and ending
times of activities, and d is a minimal delay that elapses between the two time
points [8]. In exam scheduling, there may be a required one day (d = 1) break
between any students examinations. Or, in course scheduling, a physics lecture may
be folloved immediately by a physics laboratory (d = 0). Further, complex sequences
of operations may be represented by Boolean functions such as during(Jy, J3) (job 1

must occur while job 2 is occuring), precedes(J,, Jz2), overlap(Jy, J;). In short, these



constraints enforce some sequential relationship between the times assigned to the

resources.

3.1.4 Coanstraint preferences and problem difficulty

In real timetabling problems, not all of the constraints need to be satisfied for a so-
lution to be acceptable. As well, it may not even be possible for all of the constraints
to be satisfied. In either of these cases, some degree of preference must be specified
as to which constraints are more important than others. Constraints which specify
suitable time slots for activities, such as, a particular instructor would like to teacl
only afternoon classes, are often assigned weightings. The constraints involving in-
structors with a higher seniority, or more unavoidable time restrictions, are assigned
a higher weighting. The objective, then, is to find the solution which maximizes the
total weighting of satisfied constraints. Another option is to simply climinate unim-
portant constraints until an acceptable solution can be found. Generally, the most
important constraints are the not-equals constraints, since they are the fundamental
basis for the timetable.

The nature of the constraints describe three levels of theoretical dificulty in
timetabling problems. The simplest goal is feasibility, the decision problem. Here,
we are asked, is there a feasible solution to the constraints? In the examination
timetabling problem, we may ask, given 25 exams and a particular set of availabil-
ities, are six time slots enough to allow a suitable timetable to be constructed? In
reality, the feasibility scheduling question is relatively uninteresting. The second type
of scheduling goal is Satisfiability, which asks the question, what is a feasible solu-
tion to the problem? Finally, optimization, the most difficult of the objectives, says,
assuming we are given a cost function that estimates the quality of each solution,

which is the best? This problem is analogous to finding all satisfiable solutions.

to
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Figure 3.1: The applications of timetabling generation discussed in the literature.



3.2 Examples of timetabling problems

In this section we describe the t%ree main arcas in which timetabling problems can
be found. with particular emphasis on academic scheduling. Figure 3.1 supplies the
reader with an illustration of these three main arcas. In the following sections we

stress the differences between each category of problems.

3.2.1 Manpower allocation

Also known as the general manpower planning problem. here employees must be
assigned to shifts on a daily or weekly basis. Any institution, such as a hospital,
factory or bank may have several shifts which require differing numbers of personnel.

The formal definition of the problem is:

o The participants are sets of employces. Each set represents a group with
different scheduling needs, such as doctors, nurses, janitors, and so forth. The

other participants are the sets of tasks
o The time slots are gen.rally shifts, several hours in duration

o The availabilities are: (Mutual Fzclusion) Each employce has only one task
at a time, and each task is accomplished during its available hours, (Capacity)
Each task has the required number of employees assigned to it. Fach employee

has a maximum number of working hours that can be allocated.

For example, a ship yard may require 1 chief, 1 foreman and 7 operators for cach
of its three 8 hour shifts in a day. This rigid constraint is coupled with the fact
that each individual employee is constrained by the number of shifts they may work
over the week or month. There may be other preferences, for example in [I1] P.
Jacques found in his study of the Banque Bruxelles that management wished to have
employees not work two consecutive weeks of night shifts, or to work six consecutive

days. Constraints of this type are typical to some of the various manpower planning



problems. As well, the set of tasks may be omitted in some problems. if each employvee

has one particular job to perform at all times.

3.2.2 Transportation problems

The transportation problem deals with a network of locations, a corresponding func-
tion determining the cost of travel between each location, and a set of participants
which will be travelling across the network. There will exist some kind of time con-
straint, which asserts the particular times on which the agents may or may not be
in particular locations. For example, Puget [14] describes locomotive scheduling as
a transporiation problem. In this problem, given a set of trains and their departure
and arrival time and stations, the goal is to minimize the number of locomotives
required to meet the entire railway demand. Thus, each locomotive requires its own
schedule of stations and departure times. More generally we define the transportation

problem as:
e The participants are a set of resources and a set of locations
¢ The time slots are generally days or hours

® The availabilities are: (Mutual Ezclusion) Each resource can only be in one
location at a time, and each location is visited by a resource during its available
times. (Capacity) Each location is visited by a resource a particular number of
times. (Temporal ) Each sequence of locations visited by the each resource has

an associated cost

First, there are similarities between the transportation and manpower allocation
problems; resources are analogous to employees, as both can only be assigned to one
location or task at the same time. However, while tasks require a particular number of
employees at a given time, locations require a total number of resource visits over the
entire schedule. Furthermore, the transportation problem has the added temporal

constraint of measuring the cost of travel. The problem may be posed as a question
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of satisfaction — can the network be travelled within a total cost - or a question of
optimization — what is the minimal cost for travelling the entire network. Another
transportation problem may be seen in the scheduling of games for a professional
sports league. Teams are scheduled into cities, and there must be exactly two teams
scheduled to be in the same city at the same time. The goal is usually to reduce
the amount of travel for each team. Additionally, constraints seen in the Manpower
planning problem may also arise: teams may not be able to play on three consecutive

days, for example.

3.2.3 Academic scheduling

The third and final type of timetabling problem is academic scheduling. There can
be no doubt as to the prevalence of such problems; virtually every school requires
a schedule of some kind. In the literature, there are two main types of academic
scheduling tasks: exam scheduling and class-teacher assignment. We have already
shown an instance of the general exam scheduling problem. T'his task, as mentioned,
is seen mainly at University level institutions. Because universities offer such flexible
programs for their students, with many elective courses, the stu-lents will have diverse
sets of course selections. Because of the limited time period - usually two wecks -
in which to schedule exams, the problem becomes increasingly difficult if there are a
large number of students which need to be satisfied. Further, there may exist room
capacity constraints, which state that the number of students writing an exam may
not exceed the number of seats in the room in which it is being written. Under this
formulation, the exam scheduling problem is not unlike the graph coloring problem.
In fact, graph coloring techniques have often been applied to solve this problem[3).
The second type of academic scheduling problem lies at the centre of this rescarch
— generating a school’s master timetable. There are many different formulations of
this problem, as schools throughout the world have different scheduling needs. These

“needs”, or scheduling goals, will include some or all of the following:

i. assigning teachers to classes
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ii. assigning teachers to time slots (creating teacher’s schedules)
ii. assigning students to classes

iv. assigning students to time slots (creating student’s schedules)
v. assigning classes to time slots (creating a master timctable)
vi. assigning classes to rooms

where a “class” is defined as a group of students who meet at particular times of
the week for their lessons in a particular subject. Now, there are few real world
school scheduling problems which would require the satisfaction of all of the goals
(2) through (vi). A particular school may only require satisfying goals (i) and {v1),
for example, while the other four goals may be trivial or irrelevant. We mey jlentify
threc general categories of timetabling problems, primary schools, univers;. s and
high schools. Primary schools usually conform to a “home-room” model; that is,
the students remain together as a class throughout the day. So, the only scheduling
task that exists may be (i), assigning teachers to classes, (i7), assigning teachers to
time slots, and (7i1), assigning students to classes. Additionally, in crowded schools
goal(vi) may also be of concern. Universities can often be more simple. The mas-
ter schedule is determined before the students select their courses, and is based on
projected demand. Then, students are left to themselves to register in courses at par-
ticular times in a conflict free manner. Professors usually only teach between one and
three courses per semester, so creating their schedules is trivial. Therefore, the only
problems that remain are (v) and (vi). High School problems are the most varied.
Some high schools also use the “home-room” model, while others let their students
freely register in the courses they wish. In the latter, more difficult version of the
problem, the students supply the administration with a list of courses they wish to
take, and, provided they are eligible to register in these courses, the students’ course
demands must be satisfied. Teachers are usually specifically trained in one area of

expertise, such as Chemistry and Music, so they must also be assigned to classes. A
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high school timetabling problem (HSTTP) would usually be a combination of goals
(1), (iv), and (vi).

We can describe the general HSTTP problem as:

o The participants are generally teachers ar.. classes (or classrooms)

¢ The time slots are lessons, approximately 1 hour in length.
The availabilities will always include:

¢ no teacher may teach two lessons at the same time. or be required to be in two
different rooms at the same time. There is one and only one teacher required

for every course.

¢ no student may receive two lessons at the same time, or be required to be in

two different rooms at the same time.
Next, there are -:*her constraints which may or may not he relevant:

a. teachers have a minimum and maximum number of hours of instruction per

week
b. teachers can only teach certain classes
c. teachers have preferred working hours
d. certain classes need to be assigned certain types of class rooms
e. rooms have student capacities
f. classes have student capacities
g. classes need to be scheduled at particular times
h. classes may need to be scheduled in a certain sequence

1. the school has a finite number of classrooms



J. students prefer to take lessons at a particular time or semester

k. students may receive a minimum and maximum number of hours per week of

instruction

l. students may have preferences on which teacher they receive instruction from

Constraint (d), for example, may refer to a fact like physical education must be
scheduled in the gymnasium. As well, note the difference between constraints (e) and
(f). While constraint (e) refers to a physical limit on the number of students who
can be in one room at the same time, (f) is some number set by the administration.
For example, a special work experience class may require that at most five students
be in any one lesson at a time. For constraint (g), classes that are scheduled at
particular times may refer to, say, being only in the morning, being only on a specific
day, or being scheduled only in a particular semester. Constraint (h) may occur if,
for example, a course such as Biology is required to have its Laboratory scheduled
immediately afterwards. Constraint (!), as remarkable as it sounds, actually is taken
into account at one local high school. The students there, as a reward for good
attendance, are given the opportunity to select their individual teachers for the next
year’s courses. Again, we would certainly not expect to find » real world problem
which exhibited all of the constraints a through !, only a particular subset may apply.
As will be seen in the review of previous work, using different combinations of the
goals and constraints renders a wide array of problem formulations and necessary

solution methods.

3.3 Major approaches to timetabling

3.3.1 Integer Linear Programming

The Operations Research community was the first to investigate solving complex
scheduling problems, and other such combinatorial problems. Their approach is a

quantitative one. The idea is to represent the constraints into a system of i:near



equations of several variables, a technique known as integer linear programming.
The idea is that a Boolean proposition, such as (-~ or r, — r3), could be expressed
equivalently as the equation z, +(1—=x2)+x3 > 1, where the Boolean values true and
false are denoted by i and 0 respectively. Therefore, solving a complete scheduling
problem involves solving a system of possibly several hundreds of linear equations
such as this. Additionally, capacity constraints can also be simply represented by the
same idea. If there is a shift where 6 of our 10 craftsmen must be working, for example,
the linear equation is ¢; + ¢, . . .+c10 = 6, where any c; is a Boolean valucs (1 for true,
0 for false) stating if craftsman c; is working on that shift. Integer lincar programniing
has the advantage of allowing these optimization problems to be expressed exactly.
This approach also allows for the incorporation of weighted constraints quite easily.
Consider the general mathematical model of the class-teacher timetabling problem
presented by de Werra:

We are given a collection of q courses Ky ... K,; course K\; consists of k; lectures
of one pericd each. The total number of periods is p. The students are divided into
r groups Sy,...S, such that in each S, all students take exactly the same courses;
Li is the maximum number of lectures which can be scheduled at period k - i.e.
the number of available classrooms. We define Yie = 1 if a lecture of course A is
scheduled at period & and Yik = 0 otherwise. We let C;; be an objective function of
assigning course K; to period k, where a high value indicates a high preference for
Yirk = 1, and a low or 0 value for Cj.value corresponds to a preference for y; = 0.
The problem that remains, then, is to maximize the overall quality of the solution:
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This example shows how ILP reduces a concrete real world problem to an abstract.
mathematical problem of solving equations. For any reasonably sized school. this
problem would require extensive computational time, however the solution that is
returned is guaranteed to be optimal. The main shortcoming of this technique, and
of Integer linear programming in general, is that in the event the constraints are
too strong, there may not be any solution at all. In this case, nothing of value is
returned to the user. This problem can be avoided by transforming some constraints
into prefercnce constraints, and incorporating them into the cost function; but in this

case finding a solution may take far too much time. ]

3.3.2 Reduction to graph-coloring

Since there already exists several methods for solving the graph-coloring problem,
many theorists have found it appealing to apply these ideas to timetabling. A graph-
coloring problem is a classical NP-complete problem wherein a graph G is an asso-
ciated set of vertices V, and a set edges E between various vertices. The problem
is to color the vertices such that no two vertices can be the same color if there is
an edge between them. An early attempt at applying graph coloring to timetabling
was by Neufeld and Tartar [10]. They proposed a model in which each vertex of the
graph represented lecture, and an edge occurred between lectures which could not be
scheduled at the same time. By assigning a period to each color, their timetabling
problem was completely specified. However, in practice their model is not applicable
to actual timetabling problems. The graph coloring paradigm is too simplistic to

convey all of the nuances of a real timetabling problem.

3.3.3 Constraint Logic Programming

The more recent approach to formulating scheduling problems is seen in the constraint-
based methodologies developed in the Al regime. This area includes CLP (constraint
logic programming) and CSP (constraint satisfaction problems). Like the OR ap-

proach of timetabling, one is allowed precise, mathematical definitions of the con-
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strain’s which define the problem being solved. These constraints may be symbolicin
nature, asserted as predicates. such as before, during, and so on. The main advantage
to these techniques is the distinction made between the formulation of the problem,
and the algorithms and heuristics which solve the problem. Therefore., given one
particular formulation of constraints, we are still free to choose any type of scarch
algorithm to manipulate these constraints. This flexibility has lead to the design of
extensible scheduling systems, which attempt to efficiently model a wide range of
real-world problems. The PROLOG language, based on the principles of unification
and resolution. was the first such system. Constraint logic programining can often
find a solution faster than ILP. Smith et al. [16] have identificd three main reasons
why this may be the case. First, there is the idea of constraint propagation. Once one
variable has been assigned a value from its domain, the effect of this assignment can
be propagated throughout the network (forward-checking) to determine its effects
on other domains. Further to propagation, constraint programming exceeds 1LP in
that it can better capitalize on heuristics during the search process.  Because the
solution to a CSP is built on an iterative process, solving cach variable at a tin,
backtracking when stuck, a heuristic can often point the search in the best direction.
Finally, Smith notes that CSP representations are often more compact than their
ILP counterparts. CSP models are declarative, allowing for an expressive and flex-
ible formulation. The symbolic encoding of the constraints means that a particular
problem representation often needs fewer variables and constraints than an Integer
Linear Programming formulation of the same problem. Further:nore, CLP languages
are not restricted to using backtracking as a search method. Most such languages

also have branch and bound available for partial constraint satisfaction problems.

3.3.4 Hierarchical Constraint Logic Programming

HCLP is an extension of general constraint logic programming formalized by Wil-
son and Borning [2] which allows for the expression of constraint preferences as well

as strict requirements. The authors propose a generalized software implementation



which allows the user to deter."ne the relative importance of constraints, known
as a hierarchy. In addition to scheduling problems, their work also allows for the
sitnulation of such things as electrical circuits, mechanical linkages, and graphical
caleulators. The user may specify ranges of acceptable values for the variables in the
problem, and the constraint preference level as being required, strong, medium or
weak. There also exist comparators, which are fun-tions that evaluate the quality of
solutions, using a least-squares or weighted sum method. There can be one, global
comparator or local comparators applied to various levels of the hierarchy. There-
fore, an optimal solution depends on the structure of the hierarchy of constraints
and functions used for their evaluation. The internal search process used by HCLP
is backtracking guided by the heuristics of satisfying required constraints first, then
strong constraints, and so forth. The main contribution of HCLP is the numerical,
weighted handling of preference constraints in an efficient manner. However, ex-
pressing a high school timetabling problem such as our own would be extremely time
consuming, since cach of the thousands of constraints would need to be explicitly

hard-coded.

3.4 Previous Work

The thrust of our research lies in representing school timetabling problems as a
Constraint Satisfaction problem. An important step is to consider the previous work
do« in this arca. However, formulating comparisons is difficult, because of the wide
range of problems being solved. Even though there has been considerable work on
school timetabling, schools’ differing needs have led to many different representations

and solution methods.

3.4.1 An initial approach

Meisels, Ell-sana’ Gudes [9] looked at a heuristic approach to a particular high school

system. The model they worked with was akin to the more simplistic “home-room”
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timetabling problem, however. In their problem, cach class of students remain to-
gether for the entire term. Although different classes may take different subjects. it
is known in advance which students would assigned to which particular class. It is
also known in advance the teachers that will be teaching which warticular classes.
So the problem that remains is creating a master schedule which has teachers as-
signed to classes ( goal ¢, as described in the previously section), such that no teacher
has to teach more than one class during a time slot, and no class has to be taught
more than one lesson in a time slot. From this information, a constraint satisfac-
tion problem view can be quite easily seen. The variables of the CSP are defined
by the authors to be teacher-class pairs. The domains of the variables will be the
time-slots of the week. Each of the five days of the school week are divided into m
hour long periods, and so the domain sizes will be m x 5. The constraints will he
binary between the teacher-class variables. Specifically, the constraints are of the
mutual exclusion form, occurring between any two variables which share a class or a
teacher. The mutual exclusion constraint simply states that the two variables may
not take on the same value. Further, there exist unary constraints on the variables
which represent teachers’ restricted hours. Some part time teachers may only teach
in the afternoon, for example, and any variable with a part-time teacher would have
the morning time-slots removed from its domain.

Once the problem has been expressed in this manner, a divide and assign decom-
position technique can be applied. The authors show that by reducing the problen:
to smaller sub-instances, a solution can be found with minimal effort, since consistent
solutions form a large fraction of the search space. However, this divide and assign
techniques is made possible by the fact that there are no non-binary constraints in
the problem.

In all, this CSP representation is successful. The problem naturally lends itself to
having binary mutual exclusion constraints, whic% are simple for the search algorithm
to work with. However, clearly this constraint alone does not sufficiently represent

a real world high school timetabling. The given problem makes use of much prede-
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termined, implicit knowledge. For example, knowing which courses the students will
take, and that each class remains together as a group, completely eliminates the task
of scheduling individual students. Further, the problem docs not make any mention
of global, non-binary constraints on the variables, which ar indeed present in our
own local problem. For example, it may be that there are a tinite number of rooms of
a certain type, such as one gymnasium for physical education classes. As such, there
would have to be an n-ary constraint, where n is the number of variables, ensuring
that no two class-period variables have physical education at the same time. The
existence of non-binary constraints makes the problem more difficult to express as
a CSP. Thus, this particular CSP representation is adequate for a simplified high
school tinietabling problem, and gives us an excellent first look at how the CSP can

be used, but unfortunately does not consider enough "real-world” constraints.

3.4.2 A CSP Representation with Flexible Constraints

Feldman and Golumbic [6] consider the use priority constraints in their CSP repre-
sentation. The rescarchers are strictly looking at generating schedules for University
students, based on their course preferences. Input to the program consists of a list
of courses that the student is willing to take, and a lower and upper bounds on the
number of courses willing to be taken. This would imply that only some, or possi-
bly all, of the student’s list of requested courses be included in the schedule. The
student also supplies, if desired, a list of time constraints. These constraints may be
times during the day classes may or may not be scheduled or entire days in which
classes must not be scheduled. As well, the student may specify a range of hours for
each day in which classes may be scheduled. The output from the program should
be a schedule which best meets all of the student’s wishes. The master timetable of
course offerings and professor’s timetables have already been created by hand and are
known by the program. Where this research is significant is in the observation that in
a practical scheduling system, it is generally the case that some constraints must be

satisfied while others can be relaxed. This fact implies that if at first no solution can



be found, then particular time constraints will be omitted until an optimal solution
can be found. (Referring back to the list of scheduling goals in the previous section,
this problem is a combination of goals i4/ an iv, with constraints of type J and k).

The representation of the proilem as a CSP is as follows. Variables are represented
by each course included on the student’s list of requests. The domains of the variables
are all of the offerings of the particular course, as given by the master timetable. Since
it may turn out that not all of the courses requested will be scheduled, this CSP has
the unique property of having variables which may not be instantiated. As such. a
null "dummy” value is added to each of the domains, representing a non-scheduled
course. There are many constraints, the first of which is the binary mutual exclusion
constraint between courses. As seen in the previous representation, this constraint
models the fact that no two courses may be scheduled at the same time. Second,
there are unary constraints on the variables, corresponding to the student’s preferred
hours of instruction choices. Any hour of the day which is deemed undesirable is
removed from all of the domains. The same effect occurs for the range of hours
specified; those hours outside of the range are also omitted from the domains.

The upper and lower bounds on the number of courses are not as easy to facilitate.
Since they apply to all of the variables, the effect is a non-binary constraint. From
here, the authors proceeded to experiment on actual student data an test different
search strategies. Regular backtracking, various forward checking and hill-climbing
strategies were measured against their running times and how often an optimal so-
lui.on - one meeting all of the student’s requests - was gencrated. Not surprisingly,
a tradeoff between speed and optimality existed, where word-wise forward checking
was the fastest on average,fand a heuristic ordering of the courses proved to be the
most optimal.

In comparing this research with that of Meisels et al, it is clear that both suc-
cessfully model a timetabling problem. Both strategies do, of course, begin with &
great deal of knowledge handed vo them. The decomposition technique of [9] had the

luxury of knowing that the students did not need to be considered as individuals,



only as a single group known as the class. The student scheduling problem described
in this section makes use of the given master schedule, and the teacher’s schedule
isn’t relevant. A further similarity is that both employ unary constraints to reduce
domains, and use binary mutual exclusion constraints to ensure classes aren’t sched-
uled at the same time. The methods differ in that the student scheduling method
makes use of constraint relaxation, as well as non-binary time constraints. A further
difference is in the scale of the problem — the decomposition method of [9] sched-
ules a large number of teachers and classes while the CSP described in this section
will only generate a timetable for one student. Yet, neither of these two methods
will adequately solve high school timetabling common to North America — one that

requires scheduling of both students and teachers.

3.4.3 A Constraint Relaxation Approach

Yoshikawa et al. [5] have described a general purpose Constraint Relaxation Problen
solver, known as COASTOOL. Their research focussed on solving extremely compli-
cated Japanese High School scheduling problems, which include 30 classes (a defined
group of students),60 teachers and 34 time-slots during a week. However, instead of
using the CEP formulation discussed in the previously cited works, this research uses
a CRP, or Constraint Relaxation Problem method. A CRP is the same as a CSP, in
that both have variables, domains and constraints; the only difference is that some
constraints have penalty values associated with them, and the goal is to minimize
the total penalty due to inconsistencies.

The CRP formulation of the problem is as follows. Each variable represents a
lesson and its domain is the set of all time-slots during a week. There are a number
of real world constraints modelled under this representation. First, there are mutual
exclusion constraints, meant to enforce that no teacher and no class is scheduled
to be at different lessons at tae same time. Further, there exist unary constraints
which model teachers’ schedules. Many of the teachers are preferred to work on

certain days, or at certain times of the day, and as well the schools prefer that many
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lessons are to be taught at particular times of the day. So the unary constraints will
rule out particular time-slot values from the domains of the constrained variables.
Furthermore, there is also a binary constraint that two lessons for a two credit subject
should be taken two days or more apart by a class. All of these constraints are
assigned penalty values, which may be manipulated until the most desirable master
timetable is produced. The researchers claim that timetabling by hand requires 100
man hours, whereas using their software requires only about a tenth of that.

It is the problem solving method of their CRP formulation which is the most in-
triguing. Theirs is a two stage process, using what they call a Really-Full-Lookahead
Greedy (RFLG) algorithm. First, an initialization of all of the variables is made,
using an arc-consistency algorithm. The arc-consistency removes values that cannot
satisfy a constraint from the domains of the variables. In this first stage of the al-
gorithm, an inconsistent assignment of variables is never made. If arc-consistency
eliminates all of the values of its domain, then the variable will remain uninstan-
tiated. The authors note that without this guarantee, a poor initialization could
result in highly undesirable exponential computational time. The second stage of
the algorithm will utilize typical Hill-Climbing techniques to assign values to the re-
maining variables, such that the total penalty of violated constraints is minimized.
This second stage is actually Minton’s Minimum-Conflicts Hill Climbing algorithm
(1992).

In all, the COASTOOL software proved to be invaluable to the high schools, as
the number of man hours expended on timetabling was greatly reduced. However,
the authors admitted that their work does not adequately model global ( non-binary)
constraints, and that some of the master timetables created needed to he modified
before actual use. As again, it is apparent that this formulatization of the problem
suffers from the drawbacks seen in the previous two methods. In North American
high schools, students have a wide variety of subject selections, and it is not practical
to simply group together students into common classes. A truly beneficial timetabling

system would be one that considered not just teachers’ individual needs, but every



students’ dernands as well.
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Chapter 4

Representation of a High School
Timetabling Problem as a CSP

This research focusses on high-school timetabling. Of all of the school scheduling
problems, high-school timetabling is the most difficult. Unlike primary schools, high
students do not remain together in “home rooms”, and instead each student attends
a different set of courses during the week. University timetabling is made easier by
separating the problem into assigning lectures to rooms, and then letting the stu-
dents register individually for their courses. In general, the High School Timetabling
Problem (HSTTP) consists of scheduling teachers and students to classes, such that
all constraints hold (for example, no two teachers are scheduled to the same class
and no student has two classes at the same time). In this chapter, we are concerned
with the problem of representing this HSTTP as a Constraint Satisfaction Problem
(CSP).

4.1 The data motivating the research

The high school timetabling problems that are the centre of the present investigation
arise from schools in Edmonton, Alberta. It is a large problem ranging in size from
250 to 2200 students and having between 45 and 320 courses to timetable. A course is

defined as a group of students who meet three times per week for instruction. There
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is one and only one teacher assigned to instruct each of these three lessons. A course
identifier consists of the subject of the course and a number indicating the relative
content level of the course. For example, Science 10 refers to the first science course
students may take, while Science 20 would be for those who have completed Science
10. A less academic version of Science 10 would be Science 13, which in turn would
be followed by Science 23. The students have much freedom in the courses they will
take. Each student provides the school with a list of desired courses four mcnths
in advance of the school year. This list will include selections of the core subjects,
such as English, Math, or Science, as well some options, like Creative Writing, Band
or Drama. It is an absolute requirement that the students receive instruction in
any core course they choose, providing they are eligible to register in the course. The
students will nced these core courses in order to gain admittance to most universities.
Students have individualized schedules based on the courses that they select. There
are 8 periods in each week, with each period divided into 3 non-overlapping time

slots. Each day has 5 time slots. A sample blank timetable is shown in Figure 4.1.

Mon. Tue. Wed. Thr. Fri.

9:00am 1 2 1 2 1

10:00am | 3 | 4 | 3 | 3 | 2

11:00am 5 5 4 5 4

1:00pm 6 |7 |6 | 6 | 7

2:00pm 8 8 7 8 -

Figure 4.1: Sample blank timetable

To clarify; if a student is scheduled to have Chemistry 30 in period 1, he would
attend this class every Monday, Wednesday and Friday at 9:00 am. This structure

implies that a student may register in at most 8 different courses in a term, but
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may certainly register in fewer. Some courses may be in high demand. For example,
if Math 20 has numerous students register for it, the course is divided into many
sections, where each section refers to a specific group of students who will always
meet at the same period for the lesson. The maximum number of students allowed
in one section is thirty, so if 110 students register in Math 20. then 4 sections will be
allocated for this course, with each ideally having roughly 27 students. Most courses
have betwe~n 1 and 4 sections, but some, such as English 10, have as many as 13.
Each section will then be assigned a period number of 1 through 8. Therefore, part
of the goal of this timetabling problem is, given all of the student’s requests, assign a
period number from 1 to 8 to each section of each course, and assign the students to
a section for each course chosen, such that no student is assigned to more than one
section in the same period. The other piece of the puzzle is scheduling the teachers.

Each teacher is required, by contract, to teach 7 of the 8 periods per week. It is
known beforehand which teachers are able to teach which subjects. So, an English
teacher may teach any of English 10 through 33. Some teachers may teach many
different subjects. At any rate, the result is that each full-time teacher will be sched-
uled to teach 7 periods per week, and each section must have a teacher. However,
the actual process of determining the teachers’ schedules is not a part of the problem
at hand, since the administration of the high school prefers to do this themselves.
Nonetheless, one of our goals is to have a final solution which guarantees that valid
teachers’ schedules can be generated from the resulting master timetable. A method
for scheduling the teachers is shown at the conclusion of this chapter.

Additionally, the school has two separate semesters of instruction. The first
semester lasts from September to January, and the second is from February to June.
The local high schools offer two types of courses - half-credit and full-credit. Most.
of the “core” courses, such as Math and English are full-credit, while other “op-
tions”, such as Accounting and Law are half-credit. A half-credit course is simply
scheduled into a period in either the first or second semester. A full-credit course

can be scheduled throughout both semesters, and would be taken in a certain period



for the whole year. However, there is also the possibility that a full-credit course
may be scheduled as a “double-block™ in one semester or the other. For example. a
student scheduled for the full-credit Science 10 in the first semester may attend this
subject in periods 1 and 2. In general, the majority of the full-credit courses will
be taken throughout the year, in both semesters; however, for educational reasons
it may be better for students to completely learn one subject in the first semester
before continuing in a different subject in the second semester. Furthermore, these
“double-block” instances will always be scheduled in consecutive periods. In fact, the
school’s administration has decided that these courses must occupy one of 4 pairs of
periods: Periods 1 and 2, 3 and 4, 5 and 6 or 7 and 8. So, there are two terms which
need to be scheduled, but the terms are not independent since some corrses are held
in the same time slot throughout both. Students register for both terms in advance,
and since a student may take up to 8 courses in a term, a student may select as many

as 16 courscs beforehand.

4.1.1 Formalized definition of the HSTTP

Returning our attention to the previous chapter, where we identified the six main
goals of academic scheduling problems, the current problem is a combination of goals
(227),(iv) and (v). There is also the additional task of assuring that goal (i) is able to
be met. Goal (vi), assigning classes to rooms, is also not relevant to our work, and
is handled by the administration.

From our set of possible constraints seen in chapter 3, constraints (8), (f) and (7)
are relevant in the scheduling process. Constraint (b) raises the issue that teachers
are only available to teach certain subjects. For example, suppose there are exactly 3
Physics teachers. Constraint (b) would therefore assert that no more than 3 Physics
courses can be scheduled in the same period, otherwise there would not be enough
teachers for all of them. Constraint (f) imposes that no more than 30 students may
be scheduled into one particular cluss. Constraint (?) tells us that we may not have

more courses scheduled in any one period then there are rooms in the school.
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Now, for this problem we are given:

The school offers ¢ courses, eg. Accounting 10, Biology 10... Zoology 39
The school has n students
The school has r total rooms

Every course C;, 1 <1 < ¢, has an associated subject S;. For instance. Math
10 through Math 33, all belong to the subject, “Math™. But. English 10-35,
Creative Writing 30. and Comparative Literature 20 - 30 all belong to the

subject “English™.
There are = different subjects offered by the school.

Every course C;, 1 < i < ¢ is subdivided into Ji section, y that the sections
may be referenced as Cy;. The course Accounting 10 may have five sections, for
example. The period of the third section could be referenced by ("1, assuming

Accounting 10 was the first course in the databasc.
Each subject S;, 1 <7 < z. has a number of available teachers 7

Each student submits a list of desired courses L; for both terms, where cach

L; C {Cl,...,Cc}

The school has 8 weekly periods

The formalization to the proliiem is:

The participants in the problem are the sections of the ¢ courses

The time slots are numbered 1...8

The availabilities are that: Each of the lists of course selections L;, are able
to be scheduled for each student, i.e. the student is not required to attend the

same lecture at the same time
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o The total number of sections of each subject S; does not exceed T; during any

period

e The total number of sections does not exceed r during any period.

Additionally, we desire the n individual student timetables to be generated from
the resulting assignment of periods to sections, such that each list of course selections
L; is satisfied. This goal is also subject to the constraint that no more than 30
students can be scheduled into one section. By no means does this problem fit any
classical description of the types of timetabling problems discussed in Chapter 3. The
main constraint, that the students must have the courses they have chosen available
to them, is of the not-equals variety. However, there are also two distinct capacity

constraint in this problem.

4.2 HSTTP as a CSP

In order to formulate the HSTTP problem as a Constraint Satisfaction Problem. we

must define what are to be the variables, domains and constraints.

4.2.1 Variables

Each variable represents a course C;, such as Math 10. Further, each course has a

number of attributes associated with it:
¢ the number of sections 7i in that course

¢ the number of students enrolled in that course

the capacity of each section in that course (typically 30 for all courses)

e the subject S; of that course

the semester type of the course which can be one of the five values shown in

Figure 4.2



FIRST TERM. HALF CREDIT COURSE (H1)
FIRST TERM. FULL CREDIT COURSE (D1)
YEARLY FULL CREDIT COURSE (F)

SECOND TERM, HALF CREDIT COURSE (H2)
SECOND TERM, FULL CREDIT COURSE (D2)

Figure 4.2: Types of semestered courses.
4.2.2 Domains

The domains of the variables each consist of an m-tuple of periods, where m is the
number of sections of each course. Each tuple consists of m periods in the range {
1...8 }. Therefore, in the general case a 3-sections course wonld have the domain
values < 1,1.1 >, < 1.1.2 >. < L1.3 >,...and so on. The result of this choice js
that domain sizes becomes an unmanageable 8", where m is the number of sections
of the course. However, we may employ a simple technique to prune the dorains.
If we enforce that no period’s value appe .rs more than once in cach permutation,
then the domain values for the 3-section course become < L23 > < 1,2,4 >,
1,2,5 >,... < 6,7,8 >. The domain size in this case would be 56, as opposed 1o
the size of 512 which would exist under the complete representation. In effect, we
are enforcing unary constraints that are overly strong. We acknowledge that this
over-constraint may have the consequence that no solution crisls when there may
have been one otherwise. However, the tradeoff is that finding a solution shonld now
be much easier. The natural heuristic of disallowing multiple sections in the same
period reduces the size of the domains from 8" to at most 70, and therefore the total
search space is reduced exporentially. The maximum domain size of 70 occurs when
the number of sections is four au! the tuples are < 1,2,3,4 >, < 1,2,3,5 >,... <
9,6,7,8 >. Additionally, this heuriszic directly corresponds to what the actual high
school schedulers do; only rarely will a caurse be “doubled up” in the same period.
We believe that disallowing these occurances will diversify the sections, which should
more quickly lead to acceptable solutions and avoid clashes of sections being scheduled

at the same time.

Courses with large numbers of sections are also wori i istrating. A variable



representing a course with 8 sections would have a domain size of 1, simply containing
< 1,2,3,4,5,6,7,8 >. In the event that the course has more than 8 sections, some
overlap is impossible to avoid. So, in this case we assume that the first 8 sections of
the course have the implicit < 1..8 > distribution, while the remaining sections obey
the non-overlap rule. For example, a 10 sections course would have the domain values
<1,2><1,3>,..<7,8 >, which actually correspond to < 1,1,2,2,3,4...8 >
,<1,1,2,3,3,4...8>,...<1,2...6,7,7,8,8 >. In this case, the domain size is 24,
the same as a 2 scction course.

However, in the event the course is full credit but only in one term, (i.e. is of
type D1 or D2 above), then the domain becomes a permutation of {1,3,5,7}. For
these cases, it is assumed the course will be placed in a double block of 1-2, 3-4, 5-6
or 7-8, meeting with the administration’s needs. The possible values of a 3-section
course of this type would be < 1,3,5>,<1,3,7 >,< 1,5,7 >, and < 3,5,7 >.

For the first type of domain, semestered courses, we see that there are four distinct
domain sizes, 8,24,56 and 70. The size of 8 occurs when m mod 4 is 1, where m
is the number of sections, and the size of 24 occurs when m mod 4 is 2, and so on.
Courses which have 8 sections exactly are automatically assigned the trivial value
<1,2,3,4,5,6,7,8 >. For the “double-block” variables, the domain sizes are 4, 6, 4
and 1, corresponding to courses with 1 ...4 periods; the size of 4 is induced when m

mod 4 is 1, 6 when m mod 4 is 2, and so on.

4.2.3 Constraints

Student course selection constraints

The given input to the problem consists of the student course selections. The resulting
final timetable must be one that somehow has the necessary available sections open
for all of the student requests. If we wanted to represent the scheduling needs eractly,
we would have a non-binary constraint for each set of student course requests. Such

a non-binary constraint would enforce that there are the available sections open for a



student to enroll in all of the chosen courses. For example, suppose the following. a
student decides to register in Accounting, Biology and Computer Science; Accounting
is a half-credit course offered in the first term. and has 1 section: Biology is double-
block course offered in the first term, and has 1 section: and Computiug Science is
a full year course (takes place over both terms) and has 2 sections. Now, a 3-ary
constraint can be employed which guarantees that the available sections are open in
these courses, for this student. This constraint would deem, for instance, that if the
permutations < 1 >,< 1,2 > and < 5,7 > were assigned to Accounting, Biology and
Computing Science respectively, this would be unacceptable, since the student would
be forced to attend Accounting and Biology in period 1. (Note that since Biology is
a double-block course, the student attends it in periods 1 and 2). On the other hand.
the permutations < 4 >, < 7,8 >, < 4,5 > assigned to the three courses would he
acceptable. The student would take Accounting in period 4, Biology in periods 7 and
8, and Computing Science in period 5. (Note that Accounting and Biclogy would
be taken only in the first term. while Computing Science is taken in both terms in
period 5).

We can see that the non-binary constraint responsible for enforcing section avail-
ability is complex. The problem quickly becomes over constrained under this formu-
:ation. Virtually every course (variable) participates in a non-binary constraint with
many other variables. To illustrate, consider a popular course such as English 10. If
three hundred students register in this course, then the variable for English 10 be-
comes constrained with every other course being taken by each of the three hundred
students. Thus, when the English 10 variable is assigned a value, all of the three
hundred associated constraints must be verified for consistency. If, at some point in
the search, this English course has been assigned an incompatible value with the rest
of the problem, then backtracking to this variable and changing its value means that
300 constraints need to be re-verified. Changing the value of this variable could mean
that other constraints are no longer valid, and the effects of one variable change are

propagated to many other variables.
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We have developed a set of binary constraints which will estimate the section
assignment needs. It would not be possible to transform the more exact non-binary
constraints directly into binary constraints, thus, we are motivated to find some form
of estimation of the exact needs of the student requests. We identify two kinds of
binary constraints — sulset and intersection constraints. The subset constrajnts
occur brtween courses in the same term. This constraint between two courses says
that one course’s pern-utation of period values cannot be a subset of the other. The
idea of this constraint is to avoid a student being left with the same period as the only
open time for two courses that are registered for. For example, suppose a student
chooses three courses, A, B and C, the first two having two sections, and the latter
with one section. If both A and B are given the permutation < 4,7 >, one might
conclude that this was fine, the student could take A in period 4, and B in period 7.
However, if C' were now given the value < 4 >, this is not acceptable. Thus, between
one pair of these courses there is a subset constraint necessary, which would deem
that the two courses’ permutation may not be equal to or a subset of the other. With
Just one subset constraint, together with the natural heuristic of avoiding duplicate
courses, we have now guaranteed that the assignment of periods to sections for these
three courses will satisfy the student.

If this subset constraint is thought of as a list of valid pairs of values between
variables, we may explicitly define the constraint for a number of different cases, i.e.,
if a subset constraint exists between courses D and E, and D is a 3 section course

and F has 2 sections, then the non-permissable values would be:
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Course D | Course E

<1,23>| «<1,2>
<1,23>| <1.3>
<1,2,3>| <2.3>

<1,2,4>| <1,2>

<6,7,8>| <7,8>
Now suppose cour< \ is a full eredit course occurring only in the first or second
terms (i.e. isof ty; F2). Course A now takes on values < 1,3.5 >< 1,3.7 >
..., but the sections ...ciselves are actually being scheduled in < 1,2,3,4,5,6 >

)

<1,2,3,4,7,8 >, ... So the non-permissable values would be:

Course A | Course B

<L35>| «<1,2>

<1,3,5>| «<1,3>
<L35>| <1,4>

The second kind of mandatory constraint is the intersection constraint. These
constraints arise between courses which are taken in different terms. These con-
straints say that one permutation of sections must include at least one similar value
with the other permutation. For example, < 1,2,3 > intersects with < 2,7,8 >,
while < 1,2,3 > does not intersect with < 6,7,8 >. While the idea behind the
subset constraint was to force flexibility in the section assignments, the intersection
constraint works the opposite way. A simple example can demonstrate why this
constraint is necessary:

Suppose a student picks 7 full-year courses, one half credit course in the first term,
and one half credit course in the second term. The student’s timetable will consist of
the full 8 courses in each term. Now assume that all of the full year courses have 8

sections and are trivially given a permutation which has one section in each period.
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Suppose both of the twe half credit courses only have one section each. For the full
year courses, we observe that the student must be assigned to sections in 7 different
periods. Recall that full-year courses are taken in the same time-slot in each of the
two terms. Therefore, the two half credit courses must be scheduled in the same
period, since this period is the only empty slot in both terms, for this student. The
irtersection coustraint enforces this requirement.

Having identified the nature of the two types of binary constraints, subset and
intersection, we may now proceed with identifying exactly when these constraints are
applied.

First, we will illustrate the cases where it is mandatory that the binary constraints
exist. In these examples, if the constraints are violated, a student will be unable to
attend some of the enrolled courses. The rules for identifying mandatory binary
constraints ar« as follows:

A student picks a set of v courses, C;...C,.

® Rule 1. Consider each pair (C; , C;) of courses. If C; and C; both have one
section, and both occur in the same term, ( i.e. both courses are of type H1,
D1, or F; or both courses are of type H2, D2, or F), then a mandatory subset

constraint exists between C; and C;.

Rule 1 simply states that if two courses chosen by a student have 1 section, and
both are taken in the same term, then these courses must not be scheduled in the

same period. If they were, the student could not attend them both.

¢ Rule 2a. Suppose the set of courses Cj ... C, fits the template { F,F,F,F,F,F,F,
H1,H2 }, that is, the student has picked 7 courses of type F (full-year), 1 course
of type H1 (half-year, first term only), and 1 of type H2. Then, a mandatory

intersection constraint exists between the H1 and the H2 courses.

Rule 2a says that the two courses of type H1 and H2 must occur at the same time.

Since the seven full year courses occupy the same period on the student’s schedule
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for both terms, there must be only one period open on the schedule, which is the

same period in each term.

o Rule 2b. Suppose the set of courses () ..., fits the template { F.IF.FF.FF,
D1,D2 }. A mandatory intersection constraint exists between the D1 and the

D2 courses.

e Rule 3. Suppose the set of courses C,...C, fits the template { F,FF 11,
H1,H1,D2 } Two mandatory intersection constraints are needed, one between
the first H1 and the D2, and one between the scoond H1 and the D2, Rule 1
may or may not have already been needed to create a constraint between the

*wo ccurses of type HI.

e Rule 3b. For the template { F,F,F,F.FF,112,112,D1 }. two mandatory constraints

are needed, one for each H2 and D1 combination.

These rules illustrate some clearly defined cases where the constraints must be
enforced, and the rules tell us exactly which courses need to be constrained. Further
to these mandatory constraints, we also identify estimator constraints. In the follow-
ing examples, we show when these constraints need to be applied. However, unlike
the mandatory constraints, it is not clear which exact courses need to be constrained.

Consider the following rule:

Estimator Rule: Ifa student selects a course of n sections, and also
selects d courses (in the same term) with 1 or jfewer sections, d > n, the

n-section course is subset-constrained by 7 - n + 1 of the other courses.

This rules tells us the situations where binary constraints are necessary.

e Example: A student picks 3 full year courses, A, B, and C. A has | section, 3
has 2, C has 3. No binary constraints are needed. Any combination of values

for A,B and C will allow the student to attend all three courses.



e lixampule: A student piclis 5 full year courses, A through E. A, B, and C each
have 3 sections, i has 2. I7 has 1. Subset constraints are needed between A-B,
A-C and B-C. These will guarantee that 5 different periods will appear in the
permutations of A, B and C. D and E could then be anything, and are not

constrained.

o Example: A student picks 16 half year courses, 8 in each term. Each course
has one scection. A constraint weuld exist between each course in the first term.

and each in the second erm. { /4 total of 56 constraints in all).

Estimator constraints never exist beiween half-credit courses occuring in different
terms. When two courses are potentially going to be constrained, their course types(a
value H1 through F discussed above) must be considered. Constraints can only exist
between courses which are of the same type, or in the cases where there is some
overlap in time between the two courses.

Now, suppose a student’s list of choices look like this:

Course | Type | Sections
A H1 1
1 4

C D1 1

D F 4

E F 3

F F 15

G F 2

H D2 2

I D2 4

The student has picked a difficult set of selections. He will have the maximum 8
periods occupied in each term. What are the estimator constraints?

First of all, when dealing with these “double-block” courses of type (i¢) and (v),
their number of sections is thought of as being twice the actual number, since two

periods will actually be occupied. So course C really has 2 sections, H has 4 and 1



has 8.

Consider the first term (courses A through G).

Course | Sections
F 15
B 4
D 4
E 3
C 2
G 2
A 1

Course F can never be constrained with anything, as it ha« -ize > 8. Now, course

B has 4 sections. There are 5 other courses with 4 or fewer sections. So in the

Estimator Rule, n = 4,d = 5, and there are 5 — 4 + | constraints needed on B. These

are applied to D and E. The same rule is applied to course D, and it is determined

that it must be constrained to courses B and E. So our set of constraints so far is {

B-D, B-E, and D-E }. The rule is applied to course E, and it is determined that it

must be constrained with course C. Finally, the Estimator Rule tells us the ' must

be constrained with G. So the constraints are { B-D, B-E, D-E, E-C, €-G}. As for

the second term:

Course | Sections
F 15
I 8
D 4
H 4
3
B 2

Courses I and F will never be constrained. Furthermore, D has 4 sections, but

there are only 3 other courses with 4 or fewer sections. So D, and H by the same

legic, will not be constrained. E has 3 sections, but there is only 1 other course with

A or fewer sections, so E is not constrained. G will not be corstrained either. So



no new constraints are added when the second term is considered, and the overall
set of constraints remains { B-D, B-E, D-E, E-C, C-G}. The motivation for using
these estimator constraints is that they will diversify the scheduled periods and, as
experiments show, are much more likely to result in student satisfaction. Ultimately,
though, there is some luck involved, since there is no guarantee that when all of the
constraints are amassed, a solution still remains. Furth=rmore, we are disregarding
the real world constraint of at most 30 students per s:ction, and simply “hoping™
that our estimator constraints will appropriately diversify the courses " . shall
see in the next two chapters, it would seem through the use of iterativ.i: addiny  he

binary constraints, satisfactory solutions can indeed be fou: d.

Non-Binary Constraints

The non-binary constraints are never meant to be estimations, instead they are exact.
All of the non-binary constraints are included in any solution attempt. There exists
a non-binary teacher’s constraint, which is designed to ensure the final solution will
still allow for successful scheduling of the teachers. There is one such constraint
for each of the twelve subjects, and the constraint covers all of the courses in each
subject.

If there are f full-time teachers for a given subject, this constraint says that there
may not be more than f courses of the subject scheduled at one particular period.

Suppose we have three Chemistry teachers, and six chemistry courses. Let’s say
these six courses have 5 sections, 4 sections, 4 sections, 3 sections and 1 section
respectively.

Thus, if these 5 Chemistr); courses took on the values:
o Chemistry 10: {1,2,3,4,8}

o Chemistry 13: {1,3,5,7}

o Chemistry 20: {1,4,6,8}

o Chemistry 25: {2,5,7,8}

(&4
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o Chemistry 30: {5}

Then the non-binary constraint is satisfied, because no more than 3 Chemistry
courses are scheduled at one time.

Does this guarantee that the teachers are scheduable? The local constraint is thet
teachers must be working for seven of the eight periods. Note that if the number
of sections in a subject is not a multiple of seven, then there will be excess periods
which are made up by a part-time teacher (or a teacher of a different subject). There
is a simple argument which proves that all of the (full-time) teachers will be able to
teach seven periods, conflict free. Think of the number of sections of a subject in
each period being summed. In the above example for Chemistry. we can total the

nuinber of sections in the 8 periods as:
3,3,3,3,3,1,2,3

This subject has three teachers, and since our non-binary constraint is met, no
more than three lectures take place at a time. Now, to schedule the teachers in a
conflict free manner, simply look at the totals for each pericd and have each teacher
assigned to the seven periods with the most sections currently available, and then
decrement these seven totals by 1. Thus, for Chemistry the first teacher would be
assigned to work in all of the periods except period 6, (which has the fewest courses

available, 1). The totals for the sections in each period would now be:
2,2,2,2,2,1,1,2

The next teacher could now choose to have either period six or seven as their
“free” period. If this teacher did not want to teach in period seven, the totals are
reduced to:

1,1,1,1,1,1,0,1

Now, the last teacher gets the remaining courses. This routine for assigning sections
to teachers is guaranteed to be conflict-free, if the non-binary constraint is met, i.c.

in general, if there are k teachers then no period has more than k sections. The

)



periods with exactly k sections are assigned to all teachers, while the other periods
are decreased incrementally. At the ith step, there can not be any periods with more
than k — 7 scctions still available. Therefore, the routine must end up with seven 1's
after the (k — i + 1)th step. There will be exactly k s.ps In the routine since there
are k teachers. In the case where the number of sections is not a multiple seven, the
routine ends with less than seven 1's, and so these are the periods assigned to a part
time teacher.

The other non-binary constraint is the global room constraint. This constraint is
meant to enforce that the school cannot exceed its’ capacity. If there are r rooms,
then there may not be more than r courses scheduled during one particular period.

We have concluded our discussion on this CSP representation of the given HSTTP.

However, are there other CSP formulations that arise from the same problem?

4.2.4 An Alternative CSP formulation

® Variables represent individual sections of courses.
¢ The domains are simply the period values 1...8.

¢ Suppose a student chooses courses A and B. A binary constraint exists.

between one section (variable) of each of A and B

o The same non-binary constraints from the original representation would

exist

Under this scheme, there are far more variables present in the problem — close to
1000 for a mediumn sized school. However, the domain sizes are reduced to being all of
size 8, or 1 for the double-block case. But notice that we are no longer able to employ
the unary constraint of forcing sections of the same course to have different values. In
turn, without the unary ronstraints, we will need more binary constraints to enforce
section availability for students. For example, if a student picks two courses, each of

which have 8 sections, there would be no constraint needed under the original scheme.

5
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However, since it may turn out that all sixteen sections end up being scheduled in
same period, we would need a binary constraint between one section of each course to
guarantee the student may attend both courses. Since we will need one constraint for

«ry pair of courses chosen by every student, the number of constraints under this
fuimulation will be enormous. As we shall see, the problem is over-constrained as it
is, and many constiaints will need to be relaxed. So, compared with the original CSP,

this alternative one will have more variables, and more constraints. a much bigger

search space without the unary constraints, and is therefore considered inferior.

fady |
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Chapter 5

Solving the High School
Timetabling Problem

5.1 Overview

Thus far we have discussed the nature of the scheduling problem and reviewed pre-
vious work in this area. We have also described an actual high school timetabling
problem. Further, we have given this real world problem a representation as a Con-
straint Satisfaction Problem.

In this chapter we will examine the process of solving Constraint Satisfaction
Problems based on three particular high school timetabling problems. The task at
hand is to come up with an instantiation of all of the variables (courses) which satisfy
all of the constraints. But what is to be done if such an instantiation does not exist,
or is too costly to find? As we shall see, certain constraints will have to be eliminated
from the problem.

Further, once all of the courses have been assigned periods, our task is not yet
finished, since the students need t., be scheduled into these classes. We then mea-
sure the success of our timetable by the number of students which are successfully

scheduled.
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5.2 Three local high schools

Three different high school timetabling problems have been experimented on. Al-
though each of the problems involved the same types of constraints, the resulting
CSP’s were different in nature. The smallest of these schools, Old Scona Academic,
has only 248 students, with 13 different subjects and 45 different courses. A second
school, Ross Sheppard Composite, has 1661 students, 33 subjects and 218 courses.
The largest of the three schools, Harry Ainley Composite, has 2236 students, 48
subjects and 320 courses. The actual process of scheduling students in these schools
begins four months in advance of the beginning of the school year. In April, stu-
dents select their courses for the term starting in September. At Harry Ailey and
Ross Sheppard, the administration will then decide on matters such as the number
of teachers for each subject based on the students’ selections. The next action is
to devise a master timetable, in conjunction with scheduling teachers and students
within this timetable. This step requires several man-weeks of effort, and may not
be completed until July or August. Allowances need to be made for students who
decide to switch programs, or enroll in the school not until late in the summer, or
students who enroll but simply never show up. Cons=quently, once the school year
begins there may be additional timetable adjustments that need to be made.

High school timetablers strive for 100 percent satisfaction of student and teacher’s
timetables. The definition of “satisfaction” with respect to a student’s timetable is
that all of the requested courses are successfully scheduled within the 8 periods
of the two terms. An unsatisfied student request s usually due to some unusual
combination of “option” courses, or because of a set of courses which cover the three
different grade levels. In the event that the timetabler cannot satisfy a student’s
course requests, there are three options. First, and most frequently, the student is
asked by the administration to select different courses in lieu of those that cannot
be scheduled. Second, if the scheduling conflict is due to a course being full, the
administration may simply exceed the capacity of a course by registering additional

students. Third, if too many students are not being scheduled for a certain course,
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the administration may open another section for that course. However, this action
may be impossible or impractical, since another room and another teacher would be
needed. If all of the teachers already have their schedules satisfied. adding another
section of a course may require hiring a part-time teacher. At Old Scona, the student
satisfaction rate is nearly always 100 percent. Ross Sheppard claims to have at worst
92 percent, and a Harry Ainley scheduler has quoted a similar figure for her school.
It is worth noting that (ld Scona does not make use of the “double-block” course,
as described in the previous chapter, while the other two schools do. Scheduling the
teachers is not a goal of our software, since the administration staff prefer to do this
themselves. However, by use of the non-binary teacher’s constraint, we ensure that

scheduling the teachers is guaranteed to be possible.

5.3 Expressing the timetabling problems as a CSP

Let us summarize the constraints used in our CSP model as described in the previous
chapter. Of the binary constraints, there are the not-subset type, which enforce
that courses are to have sections at different times. There are also the intersection
constraints, which assert that two courses in different terms have to be scheduled in
the same period. There are two kinds of non-binary constraints: room and teacher
constraints. A complete representation of the problem is one that includes these
constraints, using the rules described carlier, on all courses. However including all
of these binary constraints leads to an unsolvable, over-constrained CSP. A CSP
with no solution is highly undesirable, since there is nothing of value returned to the
scheduler. We need some additional rules which dictate the number of constraints to

be used by the CSP solver routine.

5.4 The Algorithm

The general algorithm used to solve all school timetabling problems of the nature

described in this work must be flexible. Even if all of the constraints are not enforced,
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a solution still may be returned which ultimately satisfies all of the student requests,
The algorithm we have developed operates within several steps. Fssent ially, the CSP
begins with no binary constraints at all, and some instantiation of the variables is
found which satisfies the non-binary and unary constraints. Recall that the unary
constraints enforced that no tuple of periods would have the same period more than
once. This first step, solving with no binary constraints, is an improvement over a
completely random assignment, since the non-binary constraints force the sections
to be spread mostly evealy over the 8 periods in each term. We perform 10 trials
of solving this under-constrained problem, each time randomizing the order of the
domains of the variables. The randomization is truly a necessary step, since otherwise
all of the initial variables (courses) would have sections assigned to periods 1, or
{1,2}, or in general {1,2..m} for an m-scction course, until the global capacity of the
school’s rooms is met. This tactic would result in period i being filled immediately,
while period 8 would be virtually unused. Consequently, much backtracking would
be required to correct this misguided attempt. Working with the best solution found
from the 10 trials, the CSP is “repaired” by adding binary constraints based on
students who are not satisfied. The process begins again, except now instead of
having no binary constraints we add in those constraints which pertain to courses
with one section. This value, one section, may be thought of as a threshold. The
threshold will be incremented as necessary until there is either 100 percent student
satisfaction or no solution is found — and the algorithm halts. We will describe
these steps further detail, but first let us summarize the general pseudocode of the
algorithm in Figure 5.1.

We have chosen to use a backtracking routine instead of Branch and Bound. Gn
a problem of this size, with this many constraints, Branch and Bound requires an im-
practical amount of time to arrive at a complete solution [4]. Furthermore, a Branch
and Bound soluticn which minimizes the number of course constraint violations does
not mean that the solution is optimal, since we evaluate the quality of cur solu-

tions by the total number of students who are able to scheduled. In fact, one course
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TIMETABLING ALGORITHM

(). determine enrollment matrix
1. “hreshold.section « 0;
2. hireshold.enroll « 1;

3. Repeat

4. GenerateCSP(threshold)

5. For i=1 to 10 Do

6. randomize domains
7. Order Variables

8. SolveCSP

9. Schedule Students

10. Change thresholds

11. Until no solution exists

Figure 5.1: Generic High School timetabling algorithm

constraint violation may result in several students being unable to be scheduled.

Step 0. - Determine Enrollment matrix

The enrollment matrix is used to determine which pairs of courses are taken to-
gether by students. This informatica is then used by the threshold.enroll value to
determine which courses are included as constraints in the CSP. The matrix is n x n,
where n is the number of variables (courses) in the problem. For every pair of courses
occuring in a student’s registration selections a counter value at the corresponding
matrix element is increased; i.e. if a student selects Math 10 and English 10, then
EnrollMatriz(Mathyo, Enge) is incremented by 1. After all of the student requests
are examined, the matrix values are then scaled by dividing each value by the to-
tal number of students registered in the smallest of the two courses. For example,
suppose there are 200 students in Math 10 and 150 in English 10. Now suppose we
count that 135 students have selected both Math 10 and English 10. The element
EnrollMatriz(Mathyo, Eng,o) becomes 135/150 = 0.9. Therefore, we are left with
a matrix of values between 0 and 1. High values indicate strong correlations between

two courses, and therefore it is more important that thcse courses be constrained.



Low values indicate that it is less important that these courses be constrained. There
are many 0's in this matrix: no siudent can take two different English courses for

example, so all matrix elements between English courses are 0.

Step 4. GeuerateCSP(threshold)

This routine is passed the two threshold values, section and enroll. The binary
constraints are added to the CSP only if one of the variables being constrained
has at most threshold.section sections; if it has exactly threshold.section sections
then the corresponding EnrollMatrir element must be greater than or equal to
threshold.enroll. This step serves to gradually increment the number of constraints
in the p..blem, while hopefully including the constraints that are the most vital to

satisfying student selections.

Step 5. fori =1 to 10

Within this algorithm lies a loop that randomizes the domains and solves the CSP.
The number of iterations, ten, was chosen as a means of reducing the chances of
starting with poor orderings of the dornains. The number ten is somewhat arbitrary,
but does keep the total time of solving the largest school to within thirty minutes on
a Sun 3/60 Workstation. Experiments show that choosing a larger number of test
iterations increases the search time without any appreciable effect on the quality of

the final solution.

Step 7. Order Variables

The order of the variables refers to the order \n which the backtracking routine will
assign va'ues to the variables. A good heuristic ordering of the variables can greatly
reduce the cost of finding a solution. [18]. In our work, he best ordering strategy
tkat has been found is by domain size, smallest to largest. This means that variables

with domain size 1 (an 8 section full year course or a 4 section double-block course)
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are assigned their values first, while the largest domain size of 70 (a 4 section full

year course) will be assigned its value last.

Step 8. Solve CSP

This step involves most of the computational time. SolveCSP could be any exist-
ing CSP algorithm, but for our experiments is the backtracking algorithm called
forward — checking. This particular algorithm is a considerable improvement over
chronological backtracking. Experiments on several different problems [19] [17] have
shown forward-checking to require the fewest consistency checks on average. Further-
more, many existing software packages such as the CHIP scheduler also use forward
checking. Forward checking has been found t4 he easiiy adapted to the non-binary
case [19]. The general forward checking algerithm works by deleting values from the
domains of variables not yet assigned a value. For the non-binary constraints, we
simply delete all elements of the domains containing the value of a counter whic.. has
equaled its capacity. For example, suppose we have 10 Math courses and 3 teach-
ers. Now suppose we assign the first three Math courses the permutations of periods
<1,2,4>,<1,4>,<4,8 >. Now, period 4 has met its capacity of 3 Math courses.
So, the next 7 Math courses will have all permutations which contain a 4 in them
deleted from their domains.

For each solution attempt the number of consistency checks is recorded. If no
solution is found, the program terminates, since too many constraints have been
added. The solution found which satisfies the most students course selections is

returned.

Step 9. Scheduling the students

After the CSP has been solved, and we are left with a master timetable, the individual
students must be scheduled so that their course requests are met. We have determined
that the ordering of the students to be scheduled can make a difference. We choose

to order the most difficult to schedule students first; a “difficult” student to schedule



is one who chooses many courses with few sections in them. thereby causing less
flexibility in the student’s timetable. If we leave a difficult to schedule student until
last, it may turn out that one of the sections he has chosen is full (30 students), and
there may not be any other choices. Therefore, we define the difliculty of a student’s
set of choices by summing the number of sections in each course he has selected, and
then dividing by the number of courses chosen. The most difficult to satisfy student
would be assigned a value of 1, while any student with a value of 6 or greater will
likely be easily scheduled. The actual method chosen for scheduling the students is a
simple greedy algorithm. Each student is assigned to the section of the course which
currently has the fewest students already registered in it.

The number of successfully scheduled students is recorded. If this value exceeds
the previous best, the solution is saved, and will be available once the program

terminates.

Step 10. Change thresholds

The thresholds are manipulated in order to increase the number of constraints that
are in the CSP, and hopefully yield a better solution. At this step the threshold.enroll
value is decreased by 0.25. The value of 0.25 will roughly increase the number of rele-
vant courses — i.e. those that can participate in a binary constraint — by 10%. If the
value of threshold.enroll is reduced to 0, the threshold.section value is incremented
by 1. This means that there will be 4 iterations of the main loop for each increment

of the threshold.section variable.

5.5 Experimental Results

This algorithm effectively schedules more than 98 percent of the students in the two
largest schools, Harry Ainley and Ross Sheppard, and 100 percent of the students in
Old Scona. The largest school, Harry Ainley required the most computational time.

The best solution was not fund until the threshold.section variable equaled 4, and
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school l students l satisfied | percent i t.scction l t.enroll | cc’s
Harry Ainley 2236 2199 98.35 4 0.25 | 179329
Ross Shep. 1661 1641 95.80 3 0.75 88923
Old Scona 248 248 | 100.00 2 0.75 14008

Figure 5.2: Experimental results on the high schools. The number of satisfied stu-
dents is shown, along with the final values of tiie thresholds when the final solution
was found. The consistency checks indicate the relative workload. All of these ex-
periments were completed in under five minutes of run time.

the threshold.enroll variable was 0.25 . Beyond these values no solution was found.
Let us summarize the results of these algorithms in terms of the number of students
scheduled in the best case, along with the value of the threshold parameters v hen the
best solution was found, and the number of consistency checks required for finding
the successful solution. The results are shown in Figure 5.2.

One drawback with this algorithm is the time required when no soiution exists.
Once the “fine line™ is crossed, and too many constraints exist, the amount of work o
prove that no solution exists becomes unmanageable — several hours on a large school
such as Harry Ainley. Since we have found that once a solution attempt exceeds one
million consistency checks, the probability of the routine actually terminating in a

solution approaches zero, we impose t'- halting limit.

5.5.1 Unsatisfied students

In the two large schools, roughly two percent of the students cannot be satisfied. The
source of difficulty in student scheduling is either “clashing” times allocated for time
slots, or a course having thirty or more students. The latter case actually occurs
infrequently. Of the 37 students that were not scheduled at Harry Ainley, only eight
were not scheduled because of sections being full; at Ross Sheppard the fraction was
only three of twenty. At any rate, this problem is not too serious in reality. The
school administration is willing to be flexible on the upper limit of thirty students in
a room, if absolutely necessary. The issue of time clashes for courses is more difficult.

Below is an example of a partial incompatible schedule for a student:



Course Periods offered
Chemistry 1,5,6
Accounting 1.6

Drama 5

Spanish 6

In this example, the student will be unable to register in one of the four courses.
It is required, by law, that students reccive instruction in any core course in which
they have registered. Chemistry is such a course, while the other three are options.
The scheduling algorithm can ensure that registering in a core course always takes
precedence over the options. Thercfore, we have found that all of the students in the
three schools have schedules which allow attendance in all of the desired core courses.
For the options, the student may either take the course by correspondence, or simply
register in a different course.

Thus far we have shown that our algorithm performs well on three schools’ data.
In the following chapter, we will show the results of more experiments on a wide
testbed of randomly generated school timetabling problems, and identify the condi-

tions for hard timetabling problems.



Chapter 6

A testbed of random high school

timetabling problems

6.1 Overview

In the previous chapter we saw that the CSP representation of the timetabling prob-
lem was easily solved, and gave satisfactory scheduling results for the three high
schools. However, does our algorithm only perform well on these three specific prob-
lem instances? We seek to validate our CSP model by measuring its performance
on general high school timetabling problems. In this chapter we propose a model
for a random high school timetabling problem generator. We then proceed to test
our CSP algorithm on many possible experimental Cases, and determine that certain
problems result in constraint networks which are much more difficult to solve than
others.

In most previous work on solving constraint satisfaction problems, researchers
have tested new algorithms or heuristics on random binary CSP’s. A random binary
CSP can be described by the tuple < n, k,pl, p2 >, where n is the number of variables
and k is some uniform domain size; p; and p, are define as follows: The variable prisa
measure of the number of binary arcs (constraints) on the constraint network vs. the
total number of possible constraints. Note that for a CSP with n variables, there are

nx(n-1)/2 total possible binary constraints. A p1 value of 0 describes a CSP with no
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constraints. A CSP which has all of its variables constrained by every other variable
has a p, value of 1. In our problem there are two different types of binary constraints,
subset asid intersection. Does this imply that we need a separate m value measures
for each of the binary constraints? No, since it is impossible for a pair of variables
to participate in both a subset constraint and a intersection constraint, the two sets
of constra:r: are disjoint. Therefore, one p; value appropriately measured the total
number of consiraints versus the maximum possible total. A second measurement of
the CSP’s difficulty is the value p,, which indicates the “tightness” of the constraints.
A tight constraint is said to be one which is difficult to satisfy. In other words, the
constraint has many non-permissable pairs of values. The variable p,, then, is exactly
defined by the ratio of tuples allowed out of all possible tuples

Given the tuple < n,k,pl,p2 > it is a simple matter to construct a random
CSP which conforms to these parameters. However, a drawback in this approach
is that these random problems bear no semblance to any real world situation. Qur
own timetabling problems are far from “random” in this manner. If we think of
the constraints in our problem as matrices of 0’s and 1’s, (permissable and non-
permissable pairs of values) they would not be characterized as a haphazard array of

values, such as:

(001 10101 1y
10011010
01110111
01010101
11000111
00111110
11101010
\0 1 01 010 1/

This example, showing a p, value of 0.5, has no meaning and would never arise in
our timetabling problem. If we consider the simple case of two single section courses

which may not be scheduled in the same period, then the resulting constraint matrix
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would be:

(01111111\
10111111

1101 1111
I 1101111
1 1110111

11111011
11111101
111 111 0

The reader should realize that these Boolean matrices are really just an imple-

mentational detail, but the point is that real constraints are highly structured and
would not be accurately modeled by one simple value, p,. Furthermore, the param-
eter p; does not accurately describe the distribution of binary constraints in a real
timetabling problem. The constraints themselves are highly localized around partic-
ular variables in the problem — usually single section courses -— while many other
variables remain unconstrained altogether. A further drawback seen in the typical
work on random b .ary constraint problems is the use of k, the uniform domain size.
Certainly, our ows problem features variables with domain sizes ranging {rom 4 to
70, so a single vali.. k is too restrictive for our purposes. By far the most interesting
property of our tii tabling constraint networks, though, is the inclusion of non-
binary constraints. 1. - simple binary model (n,k,pl, p2) cannot easily be adapted
to include random non-binary constraints, since there are so many different possible
ways a non-binary constraint can be formulated. Clearly, then, some other method
of problem generation is needed. Also seen in the literature is the use of such “toy”
problems as the zebra problem or the n-queens problem. These problem instances
are of course not applicable in our work since only an extremely narrow range of
CSP’s, which bear no resemblance with timetabling constraint networks, would be
seen.

We desire a random timetable problem generator which will provide us with a

supply of problems with binary and non-binary constraints of varying quantity and



tightness. The goal is to provide evidence that our s ‘arch routine is as generalized
as possible, and can successfully create a timetable fo, any school which uses this
particular weekly scheduling system. A further motivation in creating a random
problem generator is in identifying “hard” timetabling problem instances. It is an
interesting problem in itself to understand what makes a problem hard, since we can
then predict in the future which other problem instances may be hard. There is
a particular phenomenon seen in random binary constraint problems known as the
phase transition [16]. This transition refers to the small region of problems which are
exponentially difficult to solve, or to at least prove that no solution exists. Normally,
constraint satisfaction problems with many solutions are solved quickly, sirce the
search routine may halt when just one solution is found (as our algorithm does).
These are known as under constrained problems. Over constrained problems are
those that arc proven to have no solution after an exhaustive search. Prosser [12] and
others have found that the phase transition of binary constraint satisfaction problems
occurs between these areas of under constrained and over constrained problems. Here,
the expected number of solutions will likely be extremely small, and the solutions
may be “clustered” in one particular area of the search tree. As far as is currently
known, this region of difficult problems does not depend on the search algorithm
being used; finding a solution will likely be difficult regardless of the method.

Our random problem generator is able to create a broad range of timetabling
problems, including some that are particularly difficult to solve. However, their is
no sharply pronounced transition from easy to extremely difficult to solve problems
as seen in the binary CSP. There are some distinctly difficult problems which occur
when the capacity constraint for the number of rooms in the school approaches a

minimum. Other difficult problems exist, but not with any predictable fashion.

6.2 A realistic problem generator

The emphasis of this chapter is on creating a wide range of realistic data. Further, we

wish to understand what are the properties of the CSP we are solving; in other words,
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what makes them different from truly random CSP’s. The presence of non-binary
constraints makes this work particularly interesting, as does the use of non-uniform
domain sizes of the variables. Additionally, we wish to examine what eflect varying
the real world parameters of our problem has on the time required to solve the
problem, and the overall success (number of students scheduled) of the problems.
We first identify three critical parameters of the high school timetabling problem

at hand:

= The numbers of students in the school (n)
— The number of courses offered by the school (c)

= The number of rooms (global capacity) in the schoo! (1)

In an effort to cover a broad range of problems, in our generator the number of
students will vary from 200 to 2500, the number of courses ranges from 20 to 400;
the number of rooms is a function of the capacity of the school. Given the n students,
who choose from the ¢ courses, the minimum value of r is the smallest number of
rooms which can accommodate all of the resulting classes. We chose the ranges of
the parameters to be values which represent the extremes of the high schools found
in Edmonton, Alberta.

To generate a random timetabling problem, one needs a random set of student
course selections. From these selections, the binary constraints can be formulated,
as described in Chapter 4. But how are these random course selections created in
a realistic manner? First off we notice that the actual number of courses selected
by each student is a random variable in itself. Each student can take a maximum
of 8 periods of instructions per term. Since there are 2 terms, there are in fact 16
“blocks” that a student can fill. Full year courses count as two blocks, occupying the
same period in each term; double-block courses are also two blocks, while half credit
courses are occupy one block. While 16 is the maximum, few students at the non-
academic schools elect to spend all of their time in the classroom. Some students only

take just enough courses to graduate. If all 16 periods were occupied, there would
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be more constraints generated, and additionally the students would be more difficult
to schedule once a master timetable was created. The point of this discussion is that
our random course selections should correspond in number per student as closely as
poss.ble to reality. After analyzing the schools' data, we may plot the number of

“blocks” of instruction time per student as a histogram. as shown below.

30
percent 20 Grade 10
frequency

10

-8 9 1011 12 13 14 15 16

Number of blocks (b)

Figure 6.1: Frequenc... u. students taking indicated number of blocks of conrses.
Y-axis indicates the percent of the total students taking the given number (b) of
blocks of instruction time. There are different histograms for each grade. Grade 10
students are more inclined to be academicaly orientated, meaning that in grades 11
and 12, there are fewer students who select 16 blocks of instruction.

We may use these graphs for choosing the number of courses that cach particu-
lar student will select. A random number of blocks of instruction can be assigned
to a student by considering the individual probabilities of the student choosing a
particular number of blocks.

Now. our random model also must accurately describe which courses are taken
by the students. In other words, courses such as English, which virtually all students
must take, should be selected in an appropriate frequency relative to obscure courses
such as Beauty Culture. This seems simply to be an issue of measuring the actual en-

rollment in each course, determining what percent of the students take which courses,



and then randomly giving students various course selections. However, we must also
consider that the random model features as a variable the total number of courses
offered by the school (C). So we must ensure that no more than C different courses
appear in the students’ course selections. To incorporate this fact, we have proceeded
as follows. First, the maximum value of C in our generator is 404, which corresponds
to the total number of different courses offered by Harry Ainley — which happens to
be the largest high school in Western Canada. Using the real student course selection
data of this school, all courses are measured by the number of students which register
in each. The number of students enrolled becomes the course weighting, w;. The
values w; through wygs are sorted in decreasing order. Now, suppose we ask for a
random problem from a school with C = 150 courses. We would then discard the
weightings w;s; through waey, and let T'W be the sum of the weigh!s w,; to wse.
Next, cach student, given a particular random number of blocks of instruction b as
described above, imust now be given a random set of course selections. For each
course, a random number between 1 and TW is selected. and then this number is
converted into a course based on the course weightings. For example, suppose the

values of the weightings were:
1 English 10, w; = 520
2 Math 10, w, = 480

3 French 10, ws = 450

150 Law 10, Wisg = 95

TW = 5032
A random number x between 1 and 5032 is chosen; if  is between 1 and 520 the
random course is Engiish 10, if z is between 521 and 1000 the randon: course is Math

10, and so on. Once we are given the number b of blocks for each of the n students,
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we can proceed to choose the courses in the manner. Duplicate courses (the same
course picked twice by a student) would not be permitted.

A less important random variable in the random model is the actual ratio of
students in each grade. The students are not split amongst the three grades evenly.
Using data from the two composite high schools, the frequency of grade 10, 11 and 12
students respectively are 36%, 30%, and 34%. However. what makes this fact more
interesting is that students do not necessarily take all courses of their specifie grade
level. For example, most Grade 11 students would be expected to take “20" level
courses, such as English 20, Math 23, Biology 20 and so on. In fact, some Grade 11
students may be seen taking Grade 10 option courses that were not taken the year
before. Or, a Grade 11 student may be excelling in some subject and is already at the
“30” level of the course. Further, students who fail to complete a core course (such as
English) raay be asked to retake that course the next vear. At any rate, were it not
for this fact our timetabling problem could be much more simple, since the course
selections would be three disjoint sets, one for each grade. To accurately model this
important detail of studeats taking courses cither above or below their normal level,
the database of course selections for the two composite schools needed to be scanned
for such occurances. Each course will have a grade “offset” associated with it which
indicates the probability that the course is being .taken by a student of a different
grade level. Once a course is chosen using the method described above, the offset s
used and it is randomly decided if the student will actually be in the same course at
a grade below or above. Most courses normally expect 1 or 2 students to be from
a different grade, with the exception being Band 30 which includes students evenly
throughout the three grades.

We may now summarize the steps involved in creating a random timetabling prob-
lem consisting of n students and ¢ courses. This routine assumes that the weightings
w; throvgh wye4 for the courses have been calculated.

The first step in verifying the correctness of this random model is to experiment

with parameters of n and ¢ corresponding to the three real schools. In other words,
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RANDOM-TIMETABLING-PROBLEM(n, ¢)

1. For each course 7,7 = 1to cdo
TW = TW 4+ wy;
2. For cach student s, s = 1 ton do
r = random(0,1);
calculate b from histogram of associated grade of student
3. For cacli course, 1 to b do
4. repeat
7 = random(1,TW)
find course C from weightings
until C not already in Course.Select[s]
x = random(0,1)
if v < of fset[C] add lower grade course C' to Course.Select|s]
clse add course (' to Course.Sclect[s)

Figure 6.2: Algorithm which returns n random sets of course selections in the set
Course.Select[l...n] -— a random set of course selections for a timetabling problem

how well does the random model predict the actual data? We may simply call the
above procedure with the parameters n = 248, ¢ = 45 to represent Old Scona. n
= 1661, ¢ = 351 to represent Ross Sheppard, and n = 2236 and ¢ = 404 for Harry
Ainley. The table below summarizes the experimental results and comparisons with
the results on the actual data. For this test we generated 100 trials for each of the
three parameter settings and recorded the average number of students satisfied and
the average number of consistency checks. The results are shown in Figure FIG-
URE:reef.

From these observations, the random problems clearly have a strong correspon-
dence with reaiity. In general, there are fewer students being satisfied on the random
data than on the actual course selections. There may be a simple reason: the “ran-
dom” students are more likely to choose strange, i.e. truly random combinations
of courses. In reality we may assume that students have particular interests and
choose courses which reflect this fact. Courses such as Physics, Chemistry and Biol-

ogy may appear together frequently in a student’s course selections. In other words.



School | n | ¢ |a%sat | r.% sat. | a.# c.cs | r.# .o
Harry Ainley | 2236 | 404 98.35 | 9793 179320 IR1593
Ross Sheppard | 1661 | 351 98.80 | 98.10 88923 104772

Old Scona 248 | 48 100 | 99.00 14008 21005

Figure 6.3: Experiment: results. The parameters n and ¢ represent the number of
students and number of courses in the school. The average percentage of students
satisfied (a.% sat.; on the actual school data is shown, followed by the same per-
centage (r.% sat.) on the randomly generated school data for the parameters n and
c. These numbers are the averages of 100 trials. The results are also shown for the
actual number of consistency checks (a.# c.c’s) required, along with the number of
consistency checks for the random school data.

the course selections are not independent events. There may be fewer constraints
generated when the course selections come in a more predicatable (realistic) way, but
clearly the effect is not overly significant. The algorithm’s failure to duplicate the
100 percent satisfaction on the students of Old Scona was due to the inclusion of the

“offset™ of students taking a course at a grade level different from their own.

6.2.1 Experiments

Having provided evidence that ther. : - .. » . . merates valid data, we may now
proceed with experiments on a wide ra.ge of rawcom problems. Here, we introduce
the number of rooms parameter r. This value r in the CSP corresponds to the
global capacity of the non-binary rooms constraint; no period may have more than
r courses scheduled at a time. Once a random problem is created, we may calculate
the minimum value of rooms by summing up the total blocks of classroom time and
dividing by eight. If it were possible to schedule such a school, every room wonld
be full for each of the eight periods per week. Experiments quickly show that there
is no problem that can be solved with such a rigid constraint, however. Normally
there needed to be at least three empty rooms for a reasonably sized school. Usually
a small school (less than 500 studerts) could suvcessfully schedule its students with
one room more than the necessary. For our experiments we calculate the minimnam

value of r once the random school is generated, and then proceed to vary » from
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this minimum value to some upper limit. We now present the code fragment for

generating a wide range of timetabling CSP’s.

RANDOM-TIMETABLING-GENERATOR

1. ¥or n = 200 to 2500 by 100 do

2. For ¢ = 24 to 404 by 25 do

3. P = random-timetabling-problem(n,c)
1, caleulate IR,

5. For r = Rypin to Rpin + 10

v. solve(P,r)

'To make the experiments more manageable, the scarch routine halts if no satisfac-
tory solution was found after one million consistency checks. Previous experiments
demonstrated that it was extremely unlikely (only one occurance in over two hundred
attempts) that any scarch that went beyond one million checks would ever terminase
with a solution; the end result was ultimately that no solution was found. The tol-
erance for a successful solution was deemed to be 98% student satisfaction: at this
point the search would also terminate.

To examine the properties of the three critical parameters — students (n), courses
(c) and rooms(r) -— we must first consider each variable separately. To proceed we
first consider the eflect of varying the number of students in the model by holding ¢
at a constant value of 200 courses and r at R, + 5. We are scarching for the effect
of varying the number of students on both the overall search time in consistency
checks, and the actual quality of the solution in number of students satisfied. For
this experiment we have solved 100 random problems at each of the 20 student values
500 through 2500 (the number of students is incremented by 100). The results are
shown in Figure 6.4.

As the .umber of students increzsed, the model became increasingly difficuit to
reach 98% student satisfaction. However, this effect tapers off as the number of
students increases beyond 1800. On the one hand, as more students are added to

the problem, there are inore binary constraints from the students’ course selections,
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Figure 6.4: Effect of number of students on search time. Here, the parameters are
C = 200 courses, and r = R,,;n + 5 rooms. Each data point represents the average
number of consistency checks for one hundred different random problems.

and the problen is harder to solve. -0 nally, the final scheduling of students i,
more difficult since there are more ¢ -ies with close to thirty students. Satisfving
the global constraint also becomes more difficult as more stndents are added to the
problem; since r is held at R,.in + 5, and R, is increasing, the fraction of available
rooms decreases. However, as the number of students becomes vory large, the number
of “singletun™ courses (those with 1 section only) goes down, since more students
means that more sections are required. Courses with many sections (6 or more) are
almost always easy to schedule; due to the chosen representation of the dm‘nains of
the CSP, the courses (variables) ar~ furced to have only one of cach of the 8 periods
in their instantiated values, so there is little choice. The sineleton courses are most
difficult to schedule because they participate in the most “mandatory constraints”
as described in chapter 2. All of these factors influence the amount of work needed
to find a solution. But what of the student satisfaction rate? We have noted that
the algorithm will halt after one million consistency checks if no satisfactory solution

of 98% is found. In fact, ail of the 100 tests o each of the 20 student values 500



through 2500 were able to find an acceptable solution. This fact, however, most
likely suggests that the chosen values of the constants, C' = 200 and r = Ryin +5
are “casy” in the sense that no matter what the number of students, a solution can
be found.

A more difficult set of problems can arise with different parameter settings. If we
let ¢ = 400 and r = R,.;» +5, and now vary the number of students from 1000 to 2500.
Under these conditions the satisfaction tolerance rate of 98% is much more difficult
to reach. Now, recording the average number of consistency checks is much less
meaningful, since we are intentionally halting after one million. We instead consider
the ratio of trials which are able to successfully find a schedule that satisfies 98% of
the students. In the graph below, we have plotted the effect of varying the number of
students on the probability that the algorithm returns a successful solution, based on
100 instances at each of the 15 values of 1000 through 2500 students. These results

»o+shown in Figure 6.5.
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Figure 6.5: The Effect of varying number of students on probability of success with
a given tolerance. For example, At a tolerance rate of 98%, the algorithm continues
searching until 98% of the students are satisfied, or one million consistency checks
are made. For these experiments, the parameters are ¢ = 400 courses, and r =
itmin + 5 rooms. Each data point represents the average probability of success over
100 experiments.



As more students are added, the problems becomes increasingly difficult up to a
certain point: but again, with more and niore students there are fower "singleton™
courses, which are always a burden to the scarch routine. As the number of students
approaches 1900 the probability of solving the problem beconies nearly zero with a
tolerance rate of 98%.

Note that we could arbitrarily change the tolerance of 98%. If we were to use
92%, for example, there would be complete success from the algorithm. In this
event, the number of consistency checks (c.c.’s) would also be mueh less. Of course,
92% student satisfaction is generally not acceptable in a real high school. For this
same set of difficult problems, we may simply record the best satisfaction rate found.
Therefore, for this test we eliminate the halting criteria of 98% and the scarch routine
continues until either 100% satisfaction is reached or one million ¢.¢’s have been made.
The average of 100 trials is taken. and these results are shown in Figure 6.6.
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Figure 6.6: Number of students vs. average best satisfaction rate. The parameters
are ¢ = 400 courses and r = R, + 5 rooms. Each data point represents the average
of 100 student success rates. Each experiment terminated returning the best schedule
found.

In general, for any set of random problems described by the paii of values «

¢,r >, where ¢ € {200...2500} courses, r € {Rpin... Itmin + 5} rooms, as the
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number of students increases we sce two effects. First, the difficulty (measured by
consistency checks) tends to increase up to a certain point, after which the difficulty
remains constant and slightly deteriorates. This phenomenon is likely due to the
decreasing number of “singleton” courses with more students in the school. Second,
the probability of finding a satisfactory snlution begins at 100%, for a school of very
few students, and then decreases, reaching 0 if there are many courses or there is a
tight global constraint.

We may continue experimenting by considering the effect of varying the number
of courses, C in the random model. Here, we are directly manipulating the number of
variables in the CSP. If we use constant values of n = 1500 students, and r = R,,;;n +5
rooms, an appropriate range for ¢ iz 150 to 400 courses. Here, there is a direct
correspondence between increasing th.- rumber of courses and increasing the difficulty
of the problem. Under these conditios: the average number of sections per course
decreascs, since we are giving the students more courses to choose from. As a result,
there are more binary constraints needed, since there are more courses with a small
number of sections (between 1 and 3). It is worth noting that, in reality, if the
number of students registering in a course is fewer than some minimum value —
fifteen for example — then the course may simply be cancelled. Another option may
be to “merge” two small courses into the same classroom, receiving instruction from
the same teacher. Our random model does not take these actions inio consideration,
however, and when the number of courses becomes jarge, there may be some courses
with very few students registering in them. Not only does this waste “space” in
the school by allocating an entire room for these few students, but it adds another
singleton course which may participate in many binary constraints. At any rate, it is
clear from these results that increasing the number of courses increases the difficulty
of the problem. This property of the random model is true regardless of the constant
values chosen for n and r.

The third variable in the random model is the global capacity, (r), which indicates

the number of available rooms in the school. In general, there may be no more than



r courses scheduled in any one period, per term. For any reasonably sized school,
setting r = Rpin, i.e. the minimum number of rooms in the school which can schedule
all of the students at a time, results in no solution to the CSP. Let us first -nsider a
typical school of n = 1000 students with ¢ = 200 courses to choose from. Depending
on the random course selections, the value of R,,;, will be between 56 and 58. Let
us vary the number of rooms from Rp.in to Bmin + 9 and examine the succes:  ite of
the algorithm. For these experiments we again choose 100 random problem instances
for each of the 10 values of 7. Hcwever, in the spirit of reducing the variance of
the results, for these experiments we generate the same set of 100 random problems,
only changing the constant r each time. The graph in Figure 6.7 plots the effect of
varying r versus the probability of finding a schedule satisfying 98% of the students.
On the horizontal axis is the variable k, where the number of rooms is Tmin + k, and

the vertical axis shows the resulting probability of success.
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Figure 6.7: Effect of number of excess rooms on success rate, 22200, n=1000. Fach
point represents the average success rate of 100 problems. The tolerance rate is 98%.

We see a sharp breakpoint between problems with no solution and those that can
be solved within one million consistency checks. At R, + 2, none of the problems

have solutions, while at Ry, + 4 virtually all do.
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It would seem, then, that although there exists a theoretical minimum value
IRmin which can be calculated, there also exists a more “practical” minimum value
for 7. If the number of rooms is lower than this practical minimum, the chances of
finding a solution may be extremely small. It is also important to note that we set a
halting limit of one million consistency checks; the actual workload to prove that no
solution exists is much larger. Allowing the forward checking routine to perform an
exhaustive search usually results in at least one hundred million consistency checks,
if r is chosen to be slightly greater than Ry,. Therefore, knowing the practical
minimum of a particular problem would be useful. If we say that the practical
minimum is Rpnin + k, then the value k tends to increase as the size of the problem
increases. Consider another set of problems, now with n = 2000 students and ¢ = 200
courses. We again demonstrate that there exists a practical minimum value of r in

Figures 6.8.
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Figure 6.8: Effect of number of excess rooms on success rate, c=200, n=2000. The
tolerance rate is 98%.

It is not clear how one could calculate the practical minimum value of r, at present
i can only be estimated by considering experimental results.

What makes the timetabling problem difficult? Since there are two main types of
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constraints in tis problem, binary and non-binary, it is interesting to consider what
effect each are having. Let us return our attention to the experimental results shown
in Figure 6.4. There. we had constant values of ¢ = 200 courses and a global capacity
of Ry.in -+ 5. Let us repeat these experiments, only now without any reference to the
non-binary constraints — the global capacity constraint and the teachers’ constraints
for each subject. We again record the average number of consistency checks from
100 trials. (We are generating i he same 100 random problems as used for the data in
Figure 6.4). The results for these experiments are shown in Figure refPIGURE:g6.
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Figure 6.9: Number of students vs. c.c’s, no non-binary constraints included. ¢ = 200
courses, 7 = R,.:n + 5 rooms. The tolerance rate is 98%.

We repeat these experiments, only now including the non-binary constraints and
omitting any reference to the binary constraints. These results are shown in Fig-
ure 6.10.

The given set of problems proves to be much less difficult when either the non-
binary or binary constraints are not included. Comparing the consistency check totals
in these Figures 6.9 and 6.10 with Figure 6.4, we sec that they are certainly not
cumulative. That is, if one were to add the consistency check totals for the problems

with only binary constraints with the non-binary problems, the total is of course
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Figure 6.10: Number of students vs. c.c’s, no binary constraints. ¢ = 200 courses,
7 = Iyin + 5 rooms, tolerance rate is 98%.

much less than the consistency check totals of the problems with both binary and
non-binary constraints. This fact is not surprising. It is certainly the combination
of both types of constraints that makes the timetabling problem so difficult. To
illustrate, let us consider the master timetable created when tuere are no non-binary
constraints. Recall that (in general) no student can pick more than one cot “se of the
same subject. For example, a student cannot be taking English 20 and English 30,
since the former is a prerequisite to the latter. Theréfore, there are never any binary
constraints between courses of the same subject. Thus, a master timetable with no
non-binary constraints would tend to have more courses of the same subject scheduled
in the same period. However, once we include the non-binary teachers’ constraint,
this tactic no longer returns a valid schedule. Since there is a finite number of English

teachers, it would be impossible to schedule all of the courses in the same period.
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Chapter 7

)

Summary and Future Work

7.1 Conclusions

This thesis has encompassed the high school timetabling problemy. We have devel
oped a constraint satisfaction model that captures all of the real-world attributes of
an actual timetabling problem. Although the problem is over-constrained, we have

devised a met','~l~ - of incrementally adding constraints to the problem and build-

ing on thy solution until no further improvements can be made. Qur
resulti- s good or better than those developed by scliool adminis-
tre tew minutes of computational time to generate. We have
ai setabling problem generator which supplies an adequate
te. his generator to verify the success of our algorithm and
iden .«v 10 solve probleins.

The wuneiabling problem appears frequently in many real world situations. For
this reason, there has been considerable effort devoted to automated timetabling. The
major approaches to solving these complex problems are integer linear programming,
seen in the Operations Research community, and the constraint logic programming
metho-ls of Artificial Intelligence researchers. A diverse range of timetabling prob-
lems have been studied in the literature. This diversity is due to the many scheduling
goals and constraints which can be in place. Some constraints may be seen as maxi-

mum or minimum limits, such as the number of hours worked by an employee; some
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constraints arc issues of resource  ring. such as a classroom not heing available to
two classes at the same time; other constraints are global in nature, such as requiring,
a locomotive network to be scheduled with at most ten trains in service. Further-
more, some constraints are subject to being satisfied with a degree of preference,
satisfied rigidly, or perhaps optimized. Because of the many different timetabling
and scheduling problems which can arise, many different solution techniques have
been developed.

Our work has been centred on applying the constraint satisfaction problem (CSP)
to a local high school timetabling problem. The problem we have studied involves
an assignment of cight weekly periods to the sections of sehool courses. Fach of the
students provides a list of course selections which must be satisfied. The sections
of the course are scheduled such that there is at least one section for cach course
available to the student. However, with as many as 2000 students registered, we
have found it becomes impossible to satisfy all of the student’s demands. Therefore,
we view the course constraints as being relarable, in the sense that not all of them
need to satisfied. The rigid constraints in our problem involve the teachers and rooms
of the school. Both of these constraints pertain to a finite capacity; there are a linuted
number of teachers for cach subject and a limited number of rooms in each school.

We have proposed a constraint satisfaction model for the high school timetabling
problem. The problem is formulated with courses as variables, and tuples of period
values as domains. Both binary and non-binary constraints are used to model student
course requests and school capacity and teacher constraints. Our CSP formulation
of the problem leads to a network with a manageable number of variables, and,
though over constrained, can result in finding adequate solutions. Other potential
formulations of the problem, such as having the variables represent cach section, lead
to having too many variables — there would be more than a thousand for a large
high school — and even more constraints than our own over constrained network.

A natural heuristic for the domains we have discovered is to exclude the possibility

of duplicate periods appearing in the corresponding tuple of values. Certainly, this



idea corresponds to the steps taken by a1 life schedulers, who initially seek to
diversify a timetable as much as possible. rurther, eliminating duplication greatly
reduces the size of the domains and results in 2 much smaller search space.

The forward-checking algorithm successfully solves the formulated CSP. While hu-
man schedulers are sometimes happy with 95% student satisfaction, we have reached
at least 98% on three local high schools. Additionally, school administrators report
spending several man-wecks on the timetabling project, while our program requires
at most two hours, but generally much less. The innovation in our solution method
is the process of iteratively adding constraints to the network. Iterative solutions
may be poor at first but will improve to some upper limit, until no solution can
be found. The main advantage ol our iterative method is there will always be a
timetable output to the scheduler . Because of the iterative constraint addition, a
“best” solution always exists at any point in the search. Our algorithm is one of
a classification known as “anytime” algorithms, those whose utility is a function of
computation time, wherein a solution exists at any point in time. In general, tree
search routines will terminate if no solution is found, and there is nothing of value left
to the uscr, except the knowledge that the constraints were too strong. Additionally,
we have designed a greedy algorithm which schedules the students once the master
timetable is completed. The scheduling of the teachers and assigning classes to rooms
are problems left to the administration of the schools, since that is their preference.
The timetables generated by our software have have been validated by the schools.

Finally, in this thesis we have proposed a random model of the school timetabling
problem. By identifying the three critical parameters of the number students, number
of classrooms and number of courses, we have created a diverse testbed of realistic
timetabling problems. Since three high schools alone would be insufficient testing for
our algorithm, the primary motive for our random timetabling model was to supply a
sufficiently large set of realistic problem instances. Our timetabling model is superior
to the typical CSP random binary model of < n, k,p,,p, > for our purposes. Since

our search algorithm solves timetabling problems, it is pointless for it to be tested on
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problems with no intrinsic real world meaning generated by the typical random binary
CSP. Furthermore, we bave identified « .o particularly difficult to solve timetabling
instances. These particular instances can be recrcated, by giving the generator the
same paramelers and same random sced, so that comparisons can be made with

other, improved timetabling algorithms.

7.2 Future work

The software we have developed is currently only a batch scheduling system. That
is, there is some human, pre-determined input, which the user feeds into a “black

box”

, and then a master timetable is returned. In reality, the scheduler would need
to be interactive rather than batch. There may be many levels of preference within
a schedule that the constraints do not adequately model. Certain courses may, for
whatever internal reasons, simply need to be scheduled at certain times. The idea
behind interactive scheduling is that the user would work in tandem with the com.

puter to solve the problem. A hvman scheduler may wish to manipulate things such

as:
¢ The number of sections in a course.
e The number of teachers available for a particular subject.
e The semesters in which a course is offered.
e The availability of rooms at certain times.

Reasonably, it may not be apparent what changes need to be made until after a
few iterations of the scheduling process. For example, if a large number of swudents
are not being satisfied, opening up another section of a course may prove to he
beneficial. Or, it may be realized that more teachers need to be hired if the demand
for a course is higher than expected. These human decisions can be greatly influence
the success rate of a timetable. The CSP model can be extended to accommodate

some these interactive decisions. For example, deciding that a particular course



must be scheduled at a certain period could be handled as a unary constraint which
climinates all non-desirable period values.

Furthermore, an interactive scheol timetabling system would need to handle the
frequent “last minute” changes. Generally, in September the high schools face stu-
dents who 2+ registering late, or making changes to their submitted course requests.
An interac’ ve package would allow a master timetable to be “repaired” to accept
these changes without beginning the entire scheduling process over again. Begin-
ning again would prove to be catastrophic to the administration, since most of the
students already have their individual timetables.

There are many interesting issues within the software engineering aspect of timetabling.
The graphical interface of an interactive scheduling package would require much in-
genuity. The display would require the whole master timetable, the list of unsatisfied
students and their courses, as well as the consumed resources for each period, i.e. the
available rooms and teachers. Such an interface would probably best realized under
the popular “point and click” paradigm.

The most important future work that should be done is a theoretical look at
other applications for the CSP in scheduling. There is no end to scheduling and
timetabling problems found in the world. Employee shift timetabling, examination
scheduling and so on are all worth considering. At any rate, the timetabling problem

will continue to be a source of research interest in the years come.
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