Bl e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)

Your tile Volre tetérence

Ow e Notre réterence

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité d’impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont éte
dactylographiées a I'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

University of Alberta

A Multiprocessor Based Controller for the PUMA 560 Robot

©®

William Darin Ingimarson

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree
of Masters of Science

Department of Electrical Engineering
Edmonton, Alberta
Spring 1993

1 ey

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, ioan,
distribute or sell copies of
his/her thesis by any means and
in any form cr format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Weliington
Ottawa (Ontario)

Your e Volte réfrence

Our tie Notre réldrance

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protége sa
thése. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN ©-315-82252-X

Canada

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: William Darin Ingimarson
TITLE OF THESIS: A Multiprocessor Based Controller for the PUMA 560

Robot

DEGREE: Masters of Science
YEAR THIS DEGREE GRANTED: 1993

Permission is hereby granted to the UNIVERSITY OF ALBERTA LI-
BRARY to reproduce single copies of this thesis and to lend or sell such copies
for private, scholarly or scientific research purposes only.

The author reserves all other publication rights and other rights in asso-
ciation with the copyright of the thesis, and except as hereinbefore provided
neither the thesis nor any substantial portion thereof may be printed or oth-
erwise reproduced in any material form whatever without the author’s prior

written permission.

T L
(Signed) /" i gl e >
“Permanent Address:
5119 39th Street,
Innisfail, Alberta,
Canada

Date: Apr}/ 22 197 7

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty
of Graduate Studies and Research for acceptance, a thesis entitled A Mul-
tiprocessor Based Controller for the PUMA 560 Robot submitted by
William Darin Ingimarson in partial fulfillment of the requirements for the
degree of Masters of Science.

G bk

Dr. V. G. Gourishankar (Supervisor)

0 s (L4

Dr. R. E. Rink

Hog (_ ~

Dr. l'(Z

‘ A
Date: /'9;/‘/‘)(! //"S

Abstract

The design, fabrication, and testing of a multiprocessor based controller for
the Unimate PUMA 560 robot manipulator is the main topic of this thesis.
The controller is designed to provide a flexible and reconfigurable platform for
implementing sophisticated robot control algorithms. The controller handles
convenient selection of user defined control algorithms via a multi-window
user interface implemented under the X Window System. The controller also
supports a control variable logging facility and graphical plotting of controller
response to aid in control algorithm analysis.

This thesis also reviews current multiprocessor robot controllers. A descrip-
tion of the real-time operating system selected for the project is given, and
the hardware and software designs for the project are described. Experimental

results for a test scenario of control algorithm evaluation are included.

Acknowledgements

I would like to express my gratitude towards my supervisor, Dr. V. G. Gour-
ishankar, for his continued guidance and encouragement (not to mention pa-
tience) throughout the duration of this project. In addition to Dr. Gouris-
hankar, I would also like to thank Dr. R. E. Rink and Dr. H. Zhang for
agreeing to sit on my defence committee.

The many hours of technical assistance and advice received from David
Stewart of Carnegie Mellon University were greatly valued and appreciated.
Without his help, this project could not have achieved what it has.

In addition to the above, there are a number of other people to whom 1|
would like to offer my thanks. For the marathon coffee sessions and “burger
and beer” stress therapy I would like to thank my fellow graduate students Don
Murray and Gloria Chow. I would also like to express my appreciation and
thanks to Mitch Peacock for the “fishing trips” and for being a friend that I
could always depend on. Mere thanks could never repay the support, patience,
and understanding Carolyn Walker has shown during the time I have spent
on this project. She has made many sacrifices and spent many weekends and
nights alone without complaint or criticism while 1 was burning the midnight
oil. And last, but certainly not least, I would like to thank my parents Barbara

and Bill for their support and encouragement during this often stressful time.

Without my “support group” of friends and family I doubt that this thesis
would have been completed. I will be forever indebted to these people for
their supr.ort.

The financial assistance for this project cannot go without mention, as
the project would not have been possible without it. The Department of
Electrical Engineering, University of Alberta provided financial support via
teaching assistantships and equipment grants, and the Natural Sciences and
Engineering Research Council of Canada (NSERC) provided support through

operating and equipment grants to my supervisor.

Contents

1 Introduction 1
1.1 Kruszewski'sController.o oo 6
1.2 Limitations of Kruszewski's Controller 8
1.3 Proposed Controller. 9
14 ThesisOutline. i i it ittt et e v 11

2 Literature Survey 13
21 Introduction « v v v i v bt it e e e e e 13

2.2 Techniques and Concepts Used in Multiprocessor Based Robot
Controllers . « « v v v v v e e e e e e e e e e e e 14

2.3 Overview of Coarse-Grained Multiprocessor Based Robot Con-

BPOLIETS & v v v e e e e e e e e e e e e e e 19

2.3.1 Heterogeneous Controllers 19

2.3.2 Homogeneous Controllers. 22

2.3.3 Concluding Remarks 29

3 Design Methodology 32
3.1 System Requirements 32
32 Design Method 33

33 DataFlowAnalysiso 34

3.4 Task Structuring o oo it i 35
3.5 Mapping of Modules to Hardware 41
3.6 The Real Time Operating System 42
3.7 Local Configuration of Chimera Il 46
3.8 Assignment of Task Priorities 47
Controller Hardware 50
4.1 Introduction v v v v v i i it e e 50
4.2 Designlssues 51
4.3 Non-Real-TimeSystem 51
44 Real-TimeSystemo, 54
Controller Software 56
51 DesignGoals 56
5.2 Software Module Description. 58
521 UserlInterfaceo 58
52.2 Robot Manager 59
5.2.3 Motion Generator Task 60
524 Controller Task 66
5.2.5 DataLogger Task 67
5.2.6 Prefilter and Hardware Status Task 68
5.3 Configuration Files 71
5.3.1 Controller Configuration File 71
5.3.2 State Variable Table Configuration File 72
5.3.3 DVME-601 Configuration File 73
534 HomePositionFile 74
5.4 RTS to NRTS Communication Library 74
55 DeviceLibraries oo o 78

56 Device Drivers. . . - . . v ¢ v v it it e e e e e 79

5.6.1 Device Driver for the DVME-601 - dadc.c 81

5.6.2 Device Driver for the DVME-628 - ddacc 82

5.6.3 Device Driver for the VMEbus Encoder Board - veb.c . 82

5.7 Description of ExecutableFiles 84

6 Results 85
6.1 Introduction« v i vt ittt 85
6.2 Timing and Testing of Libraries and Device Drivers 85
6.3 Implementation of the PID Control Algorithm 87
6.3.1 Tuning the PID Controller 90

6.4 Tracking Performance of PID Control Algorithm 92

7 Conclusions and Suggestions for Future Research 100
7.1 Featuresofthe MRC 100
7.2 Suggestions for Future Research 101
Bibliography 104
A System Configuration 113
A.l System Memory Maps 113
A.2 Board Configurations 115
A.2.1 Bit-3 Model 412 VMEbus to VMEbus Adapter 115

A.2.2 Ironics IV-3220 Single Board Computer 115

A.2.3 Datel DVME-601 Analog to Digital Converter 118

A.2.4 Datel DVME-628 Digital to Analog Converter 120

A.2.5 VMEbus EncoderBoard 120

A.3 CHIMERA II Configuration File. 122

B PID Controller Module and Configuration Files 125

B.1

B.2

Servo Server Module for PID Controller. v v - 126
B.l.1 ModuleSourceo eeees e 126
Configuration files for Robot Controller« .. 137
B.2.1 Controller Configuration File" 137
B.2.2 State Variable Table Configuration File for PID Controller138
B.2.3 DVME-601 Configuration File 139

B.2.4 Home Position Fileo vvvevveoe 139

List of Tables

2.1 Heterogeneous multiprocessor robot controllers. 20
2.2 Homogeneous multiprocessor robot controllers 31
6.3 Execution times for time-critical functions. 86
6.4 Gains forthe PIDcontroller 91
A.5 System Memory map for A32 address space. 114
A.6 System Memory map for A24 address space. 116
A.7 System Memory map for A16 address space. 117
A.8 Local jumper settings for the Bit3 VMEbus to VMEbus Adapter . 117
A.9 Base Address Settings for the IV-3220SBCs 117
A.10 Jumper settings for the DVME-601 A/D Converter 118
A.11 Port Assignments for the DVME-601 A/D Inputs 119
A.12 Jumper settings for the DVME-628 D/A Converter 120
A.13 Port Assignments for the DVME-628 D/A Outputs 121

A.14 Jumper settings for the VMEbus Encoder Board 121

List of Figures

10
11
12
13
14

15
16

The PUMA 560 Industrial Robot, and peripherals. . . .
Block diagram of the Unimation Control Computer. . .

Kruszewski’s Controller for the PUMA 560.

The top-level DFD forthe MRC.
Communication and Synchronization Symbols.

Task Diagram forthe MRC.
Hardware for the Multiprocessor Based Robot Controller
Frequency Response of the Prefilter

Joint 1 Motion and Control Signal at 50% speed
Joint 2 Motion and Control Signal at 50% speed
Joint 3 Motion and Control Signal at 50% speed
Joint 4 Motion and Control Signal at 50% speed
Joint 5 Motion and Control Signal at 50% speed
Joint 6 Motion and Control Signal at 50% speed

Modified VMEbus Encoder Board jumper layout.

ooooo

.....

Modified VMEbus Encoder Board address decoding wiring.

36
39
40

52

69

94
95
96
97
98
99

123
124

Chapter 1

Introduction

In order to pursue research in robot manipulator control, it is necessary to
have a suitable hardware and software environment to test various control
algorithms. Some control algorithms may require only simple position feed-
back, while others may require more complicated types of feedback such as
joint velocity, acceleration or torque. Vision-oriented controllers will of course
require the input from an image processing system, and computationally in-
tensive control algorithms may require additional processing capability. These
criteria imply that a controller that is to be used in a research environment
be easily expandable, adaptable, and capable of being reconfigured. Unfor-
tunately, most industrial robots come from the factory with a simple, built
in control law such as individual joint PID control [Cra89], and lack the re-
quired flexibiiity for research purposes [MB89, GC88]. The Robotics Control
Group of the Department of Electrical Engineering purchased a Unimation
PUMA 560 Industrial Robot in 1988 for educational and research purposes.
However, the Unimation controller suffers from the aforementioned limitations

of typical industrial robot controllers.

The PUMA 560 is a six degree of freedom revolute joint industrial robot
manipulator. The complete system as supplied by the manufacturer consists of
the robot manipulator, a rack-mountable control computer, a teach pendant,
peripherals (such as I/O modules or a diskette drive), and software required to
control the robot [Uni85). A terminal for issuing commands and editing robot
control programs in the VAL-II operating system may be connected to the
control computer via a 9600 baud serial port. Communication with external
on/off devices and sensors is handled by the I/O module. A diskette drive is
used to store robot control programs and program data. The teach pendant is
used to manually move the robot through a task and record those motions in
the control computer for later playback. The PUMA 560 robot manipulator
and its peripherals are shown in Figure 1.

The control computer is composed of three main sections. A DEC LSI-
11 computer, six digita! servo control boards (one for each joint of the arm),
and the six power amplifiers (three on each power amplifier assembly). The
LSI-11, which resides on a standard DEC LSI-11 Bus backplane along with its
memory and /O cards, performs system supervision and path planning tasks.
An “A” Interface card connects the LSI-11 Bus to the proprietary Unimation
Servo Bus, and to the six digital servo cards located there, via a “B” Interface
card residing on the latter bus. See Figure 2 for the block diagram of the
Unimation control system.

Each servo card contains a hardcoded PID control algorithm running on
a Rockwell 6503 microprocessor [Cra89]. The PID controllers use the angular
position of the robot joints as their feedback signal. The reference angle is
supplied by the LSI-11, and the control outputs (in the form of voltages) are
sent to the joint amplifiers. The outputs of the amplifiers drive the manip-

ulator’s six permanent magnet DC servomotors. It is not possible to easily

modify either the path-planning software running on the DEC LSI-11 or the
control algorithms on the 6503 servo cards.

Each servomotor possesses two types of positional sensor; an optical en-
coder which generates a quadrature signal used to drive an up-down counter,
and a potentiometer [Uni85). Each motor’s optical encoder provides a high-
resolution position signal to its respective joint controller card by means of an
up-down counter actuated by the quadrature signal. The potentiometers are
used to determine absolute joint position of the robot arm in order to initialize
the up-down counters. The three major joints of the robot arm, the ‘waist’,
‘shoulder’ and ‘elbow’, possess electromagnetic brakes which support the arm

when power is removed from the servomotors.

6 Degree-of-Freedom
Robotic Manipulator

Arm Cable

PUMA

[1]

N

\ Ribbon Cable

Computer/Controller

Iy

RS-232

§o0oa

I

Teach
Pendant

RS-232

I/O Module
External
Sensors/Devices
RS-232
——
Disk Drive

Text Terminal

Figure 1: The PUMA 560 Industrial Robot, and peripherals.

(CDECLSIII Bus)

g

A

<‘ Unimation Servo Bus

~Z 4 < b < > < >
DE.C LSI'11/73 “A” “B” Dig.ita.l Arm
Microcomputer Joint
Interface Interface Cable
and Controller
Board Board Board
I/0O Boards (1 of 6)
A A A9 [
T Ribbon Cable Control
‘ Signals
Potentiometer
Voltages ,
Joint ‘ (3
Encoder ¥
= Signals
Joint
1/0 Module 16 Amplifier
O Assembly
External (1 of 2)
Sensors/Devices
Currents
to Motors
RS-232 Potentiometer
s}
RS-232 /
RS-232 . l(3')pl»i<(:’nl
/ n er
—— P P
=] J oint
=
= Motor
- . (1 of 6)
—_—— \D/
‘““*ﬂ"‘\
J X -
eac Text Terminal Disk Drive ,
Pendant

Figure 2: Block diagram of the Unimation Control Computer.

1.1 Kruszewski’s Controller

A previous research project expanded on the capabilities of the PUMA equip-
ment purchased by the Robotics Control Group {Kru90]. The the objective
of that project was to replace the Unimation controllers and the DEC LSI-11
with a controller implemented on a 68000 based CPU resident in an exter-
nal VMEbus cardcage. For convenience this controller will be referred to as
Kruszewski’s Controller.

The main components of this controller are devicted in Figure 3. The TU-
TOR CPU card is a Motorola MC68000 based single board computer for the
VMEbus developed by the University of Alberta’s Department of Electrical
Engineering. This card performed all path planning and control functions us-
ing a timer-driven interrupt scheme. The RIOT card (the companion RAM,
I/O and timer card to the TUTOR) was used to provide access to the SUN
3/160 development platform for uploading and downloading software. It also
provided user interaction with the controller and the Datel DVME-601 A/D
Board via a text-only dumb terminal. The AMLine Decoder Board was neces-
sary to convert non-standard address modifier codes generated by the TUTOR
board into codes that the other VMEbus boards could understand.

The Datel DVME-601 A/D Converter sampled the joint potentiometer
voltages and the hardware status-line voltages provided by the PIB. The
DVME-691 ran a simple four-point batch-averaging prefilter on the pot volt-
age signals, and then presented these values along with the status (high or
low) of the three sampled PUMA hardware status lines for use by the TU-
TOR CPU card. The Datel DVME-628 D/A Converter supplied joint control
voltages and an arm power enable signal to the PIB which in turn buffered

these signals and applied them to the proper points in the modified Unimation

A

(—

_Unimation Servo Bus

To "A" Interf: s 1 6 Couﬂinl‘lsﬁon.h Csontrﬁl 6 ~ ‘>
() erface , ntrol Signals ign
Card (LSI-11 is 7 ﬂj
switched out in e D‘ 't'] l ‘ S
this controller) | «” 1gita
S B Joint PUMA Arm
Interface Interface Cable
Board Controller Board Board
(1 of 6)
| | I)
Arm Power 6,/
Joint Hardware Enable 8, sl
Encoder 6 Status 3 Pot. Line A
ignals Lines 6 o
Sien Voltages VMEbus Control
VMEbus DVME-601 DVME-628 ;"“"
.232
Encoder Board A to D Board D to A Board =
I iJ; T RN
{ VMEbus 3| i
JuE ij[ﬁ From
TUTOR AMline TUTOR Joint e
CPU Decoder Board RIOT Board Pots
]]
RS-232 RS-232 From
A Joint eme—————
Ethernet SCsI AB | Encoders
\ Switch|B
HP9000 SUN
3/160 Local |
320 MB RS-232
Fixed Disk

Text Terminal

Figure 3: Kruszewski’s Controller for the PUMA 560.

Control Computer chassis. The VMEbus Encoder Board used the joint en-
coder quadrature signals supplied to it by the PIB to drive up-down counters
containing integer counts representing the robot’s joint angles.

Programs for the controller were compiled on the Department of Electrical
Engineering’s HP9000 computer and then downloaded via Ethernet to the local
SUN 3/160. The programs were then downloaded to the VMEbus system over

9600 baud serial lines. For more detailed information on this project, please

refer to [Kru90].

1.2 Limitations of Kruszewski’s Controller

Kruszewski’s Controller had several limitations which made its use as a test
platform for sophisticated control algorithms difficult at best. While adequate
in processing ability for very simple control algorithms (for example, an inte-
ger arithmetic PD controller), the TUTOR CPU was not capable of providing
the computing power for more complex algorithms. In order to support re-
search into more advanced controller algorithms, it is necessary to increase
the processing power of the controller, and to implement software able to take
advantage of the increased computing capabilities.

Due to the limitations in processing power available in Kruszewski’s Con-
troller, the use of floating-point calculations in conjunction with fast sampling
rates in the controller algorithm was not possible. Because only integer gains
could be used in tuning operations [Kru90}, the controller could not be tuned
using the widest possible control gain range.

Also, Kruszewski’s Controller could not use the Robotics Lab’s local work-
stations for compiling control programs. This meant that the Department of

Electrical Engineering’s HP9000 computer had to be used for all compiling

tasks. The compiled code then had to be downloaded to the local Sun 3/160
workstation via an Ethernet link, and then through a serial interface to the
VMEDbus system.

Modification of the control software to support different control algorithms
involved repeating the complicated compilation and download procedure each
time a different control algorithm was to be implemented and tested. The
source code for the controlier was not written in a consistent, modular fashion,
and consisted of one large, unwieldy file. The declarations of the controller
variables themselves were in a part of this monolithic source quite far removed
from the control code itself, making reading and modification of the source
code difficult.

Kruszewski's Controller contained no provision for making use of the po-
tential of the SUN 3/160 workstation as a graphical front end to the research
system. All user interface operations were performed via a text terminal that
lacked the ability to display plots of logged data, or provide windowed displays

of multiprocessor operations and status.

1.3 Proposed Controller

This project addresses the lack of processing power in Kruszewski’s Controller
by replacing the TUTOR CPU card with two Ironics 1V-3220 MC68020 based
single board computers (SBCs), each with an MC68882 Floating Point Copro-
cessor. These two SBCs, each one possessing more computing power than the
TUTOR CPU, are operated in parallel to provide the processing capabilities
required by sophisticated control algorithms. The floating point coprocessors
speed the floating point calculations used in controller modules, allowing much

higher sampling rates than possible with the TUTOR CPU.

The VMEbus cardcage is linked to the Sun 3/160 workstation by means of
a Bit3 Model 412 VMEbus to VMEbus Adapter. This allows direct high-speed
communication between the host workstation and the real-time VMEbus sys-
tem. The compiler on the workstation is used to compile real-time programs
for the VMEbus system. The compiled code is then downloaded, via the Bit3
link, to the real-time system where it executes. The adapter provides a more
convenient path for interprocessor communication between the host and the
real-time processors than the serial link of Kruszewski’s Controller. This link
also allows the real-time system to use of many of the host workstation’s fea-
tures, a goal not possible with the much slower serial communication used
in Kruszewski’s Controller. The X Window System, which runs on the host
workstation, is used as a multi-window interface to the multiprocessor con-
troller. The graphics capabilities of the workstation are also used to display
plots of logged data from the real-time system.

The simple interrupt driven kernel in Kruszewski’s Controller has been re-
placed with the Chimera II Real-Time Operating System from Carnegie Mel-
lon University. Chimera II provides software libraries and utilities to support
the hardware with a real-time programming environment. Standard real-time
operating system (RTOS) features such as semaphores, lightweight tasks, in-
terprocessor communication, and advanced process scheduling are available.
Chimera II also provides features specially designed for sophisticated robot
controllers such as specialized state variable shared memory segments, task
management functions for dynamic periodic tasks, and a matrix manipulation
library. Chimera Il also utilizes device drivers written in the C programming
language, and library support for reconfigurable real-time systems; valuable
features for a research oriented controller.

All programs are written in the C programming language and extensive use

10

of object oriented programming techniques is made to improve the program-
ming interface for use by robot control researchers. The use of the Chimera 11
operating system enables the bulk of the development operations to be moved
from the HP9000 to the local Robotics Lab workstations.

The new controller, hereafter referred to as the Multiprocessor Robot Con-
troller (MRC), will allow more sophisticated control algorithms to be operated
at much higher sampling rates than was possible with Kruszewski’s Controller.
The MRC is easily able to run a floating-point PID controller at 606 Hz, and
is able to control all six PUMA joints. Kruszewski’s Controller implemented
an integer PD control algorithm for the first three joints of the arm, and ran

at 333 Hz.

1.4 Thesis Outline

In Chapter 2 a literature review of previous research efforts in multiprocessor
robot controllers is given. Chapter 3 describes in detail the overall system de-
sign of the controller. Included in this chapter are the chosen design method,
the statement of system requirements, the data flow diagram, and the task
diagram. Chapter 3 also gives a brief overview of Chimera II, the real-time
operating system chosen to support this project. Chapter 4 describes the
configurations and modifications made to the system hardware. Chapter 5
gives a detailed description of the software solution implemented to satisfy the
system requirements. Chapter 6 presents the results of timing the controller
libraries as well as a test scenario using the MRC as a test platform. Prelimi-
nary tuning of a PID control algorithm is presented, and the behavior of the
controller while servoing the manipulator joints is examined. Conclusions and

suggestions for further extensions to the system are given in Chapter 7.

11

Detailed hardware configuration information may be found in Appendix A.
The source code for the PID module used to obtain the results as well as its
associated software configuration files can be found in Appendix B.

Volume 2 of this work contains information specific to the software com-
ponent of the project and is available from the Department of Electrical Engi-
neering’s Robotics Lab. It contains a detailed description of the operation of
Chimera 11, the Software User’s Guide for the controller software and various
utility programs, and descriptions of the programming interface provided by

the second-level device drivers. A complete source listing of the MRC software

is also included in Volume 2.

12

Chapter 2

Literature Survey

2.1 Introduction

Modern robotics grew from the technologies of telecherics and numerically
controlled machines [GWNOB86]. Telecherics, the field of using remote manip-
ulators !, is used extensively in the handling of hazardous materials. The first
telecheric devices were solely mechanical, but modern remote manipulators of-
ten combine mechanical systems with electronic feedback control [GWNO86).
Numerically controlled (NC) machines utilize numeric input to control their
operations. Early NC machines were programmed with adjustable stops or
cams, punched tape or cards, or magnetic media.

A robot is a mechanical manipulator that is operated by numerical control
methods. The first robotic devices utilized mechanical cams a.nc'l limit switches
for control. Mainframe and minicomputer technology was later applied to
the control of robots, but only in research environments [GWNO86]. The

availability of relatively inexpensive microprocessors in the mid 1970’s allowed

1Remote manipulators are often referred to as teleoperators.

economical implementation of parallel microprocessor control architectures.
Current research in robot controllers includes fields such as multiprocessor
based control systems, parallel programming techniques for robot controllers,

and reconfigurable real-time systems.

This chapter begins with an overview of some of the techniques and con-
cepts that are important in multiprocessor based robot control systems. Tab-
ular comparisons of various efforts in multiprocessor robot controllers are pre-
sented for cases demonstrating coarse-grained task division among processors.
A brief discussion of components and techniques used in realizing each of
these systems balances the tabular comparison. Conclusions on current re-
search directions in the field of coarse-grained multiprocessor robot controllers

are drawn from the surveyed literature.

2.2 Techniques and Concepts Used in Multi-
processor Based Robot Controllers

The overall performance of a digital robot controller, in terms of system stiff-
ness, is to a large extent dependent upon its sampling rate [Kho87]. However,
in a research environment, the control algorithm calculations can become very
computationally intensive when more sophisticated control algorithms are im-
plemented. This correspondingly decreases the maximum achievable sampling
rate, and with it, system performance decreases. A single processor controller
will quickly reach the limits of its ability and require either a reduced sampling
period, use of integer arithmetic [Kru90], or an alternate solution in terms ofa
computing platform. One method of providing the requisite computing power

is through the use of multiprocessing architectures [WKKT86, LS88, Gra89].

14

This type of computing architecture more closely matches the asynckronous
nature of real world problems such as the control of a robot manipulator
[GWMH].

The use of multiple processors implies the need to divide the labor of
controlling the robot among the available CPUs. The division of labor can take
advantage of the parallelism inherent in a robot at different levels. The task
division may occur at the algorithmic level (fine granularity) using pipelined
architectures or systolic processor arrays [LS88, Gra89, Lat85], or the task
division may occur at a coarser level of granularity and use general purpose
microprocessors as computing engines.

In a coarse-grained system, the computational task is divided inte a num-
ber of processes which are allocated to the various CPUs in the system. One
example of such a system, presented by Paul and Zhang in [PZ86], uses general
purpose microprocessors to provide force and motion control for a robot manip-
ulator. Another example of this type of architecture is the Chimera II system
[SKHK89, SSK89, SSK90, SSK92] which uses general purpose microprocessors
supported by a real-time kernel to implement a multiprocessor/multitasking
real-time system.

In order to effectively decompose the task of controlling a robot into pro-
cesses, a model such as the NASA/NBS Standard Reference Model for Teler-
obotic Control System Architecture (NASREM) may be used. The model
presents a standard, hierarchal set of control levels with well-defined inter-
faces [MW90]. Each level is implemented as a set of three, distinct modules;
sensory processing, world modeling, and task decomposition [SSK90]. The
sensory processing module obtains and integrates information about the sys-
tem (i.e. reading data from sensors). The world modeling module organizes

and controls access to a global database which provides information needed by

the control level. The task decomposition module performs a particular func-
tion (depending on the control level) based on data provided by the sensory
processing module and the world modeling module. Six such control levels
are defined for the NASREM standard, from coordinate transform and servo
Jevel tasks to mission planning tasks. Generally, the NASREM standard is
simplified for actual implementations by removing some of the higher control
levels that are not required [MB89)].

Other real-time software design methods exist that may be applied to robot
controllers. One such method is the DARTS (Design Approach for Real-Time
Systems) method [Gom84] which applies transform grouping criteria to a tradi-
tional Data Flow Diagram to produce a set of concurrent tasks with minimized
intertask coupling. This method of design was used to realize the controller
developed for this project. A more detailed description of this method as
applied to this project is provided in Chapter 3.

Coarse grained multiprocessor systems may be classified into two groups:
heterogeneous systems and homogeneous systems. Heterogeneous systems con-
tain processing elements of different types, such as DSPs or CORDIC (trigono-
metric) processors. In this type of system, each processor type is typically
geared to a specific job, such as calculation of inverse dynamics, or genera-
tion of joint control voltages. While the heterogeneous systems tend to ex-
hibit higher performance in terms of throughput, they often suffer from a
clumsy user interface and require special purpose compilers and interface code
[SKHK89], not to mention special hardware support [MWB89].

Homogeneous systems are composed of processors of one type, or at least,
of one family. Homogeneous systems provide a more convenient platform for
implementing interprocessor communication and they require fewer support

resources, in terms of specialized interface hardware, compilers, and inter-

16

face code. The Chimera II system can be classed as a homogeneous system.
Although work is proceeding on supporting heterogeneous processor configu-
rations with this system, the real-time operating system kernel runs on only
one family of microprocessor [SSK90).

A multiprocessor system, be it heterogeneous or homogeneous, requires
some means of interprocessor communication and synchronization. The choice
of communication methods usually lies between shared memory or message
passing. Message passing is the more restrictive method, and also requires
the added overhead of communications protocol [LG88]. Shared memory, since
its speed may approach the maximum speed of the bus for small numbers of
processors, is the preferred method [LS88]. Semaphores are used as synchro-
nization mechanisms, or to pass signals between processes. Semaphores are
also used to provide mutual exclusion in cases where more than one process is
in contention for a resource.

Interprocess and interprocessor communication, semaphores, and task sched-
uling (for instances where multiple real-time tasks may exist on a single CPU)
may be realized in several ways. Some microprocessors, such as the INMOS
T800, provide hardware task schedulers and specialized interprocessor com-
munication mechanisms especially designed for multiprocessor architectures.
Some systems realize the required facilities via a runtime software library of
precompiled functions, such as is the case with the NYMPH system [CFABS6].
The runtime library avoids the overhead of an actual operating system while
still implementing most of the required functionality.

Other multiprocessor systems, such as Chimera II and CONDOR [NSH8S,
NSH89] utilize a real-time operating system to provide certain features re-
quired by the user. These systems support task manipulation, interprocess

and interprocessor communication, and hardware independence through the

17

use of device drivers and libraries. Standard compilers are used to develop
real-time programs, and the user interfaces are reasonably convenient to use.
This provides a sophisticated environment in which to implement real-time
robot control tasks.

The convenience of the real-time multiprocessor operating system does not
come without a price tag however. The operating system requires a certain
amount of CPU time in which to execute its context switches and scheduling
algorithms. High-level languages, while often nearly as fast as assembly code,
do not produce programs which run as fast as hand-coded ones. The use of a
real-time operating system in a multiprocéssing environment usually precludes
a heterogeneous system. The literature surveyed did not indicate any RTOS
that allowed its kernel to be run on multiple processors in a heterogeneous
system. The usual method of supporting special purpose processoré under a
multiprocessor RT'OS is to treat the special purpose processors as slaves to the
CPUs running the real-time kernel.

Certain multiprocessor configurations do not require the services of a real-
time operating system. For example, the multiprocessor system for calculation
of real-time inverse-dynamics described in [WCLL89] is coded completely in
floating-point assembly code with each subtask program ccded as a macro.
Each subtask executes at a certain predetermined time and since the subtasks
are arranged to execute serially on each of the four CPUs, no task scheduling
is necessary, and no real-time operating system is required.

The ability to statically or dynamically reconﬁgu.re a real-time system can
be extremely useful in a research environment. The study of reconfigurable
real-time systems [SVK92] deals in part with this ability. These types of
systems tend to be quite abstracted from their hardware platforms, and make

extensive use of object-oriented programming techniques.

18

2.3 Overview of Coarse-Grained Multiproces-

sor Based Robot Controllers

This section provides a tabular overview of some previous work in multipro-
cessor robot controllers utilizing coarse grained task decomposition. Table 2.1
compares a few multiprocessor robot controllers developed using the hetero-
geneous system model, and Table 2.2 outlines controllers constructed with
homogeneous architectures. The tabular comparison is balanced by a short
discussion of the particular merits of each system including task partitioning
methods, hardware configurations, and Real-Time Operating System (RTOS)
support (if any).

The tables compare hardware components such as the host system (if
present), real-time processors and real-time bus type. The methods used
for IPC (interprocess/interprocessor communication) ~ shared memory (SM),
message passing (MP), or both, are indicated for each system. Real-time sup-
port, either via a RTOS, function libraries, or specialized system hardware
are characterized. The language used for the implementation of real-time pro-
grams is also listed.

The entries in both tables proceed in chronological order of reference ma-
terial used in the literature survey. Entries in the same year are organized
alphabetically by author name. The presence of question marks in a table

entry indicates that the characteristic could not be determined from the liter-

ature reviewed.

2.3.1 Heterogeneous Controllers

The heterogeneous controllers surveyed all exhibit the characteristic of lack-

Ref. Name | Host RT Proc. Bus 1IPC | RT Supp. | Lang. {
88 PS | Sun 3/140 | TMS320C25 | VMEbus SM | Hardware | GNU C
(MWBS89)] CORDIC Private bus | MP | Software | GNU C++
I libraries Assembler
1789 80286 wPD77230 PC Bus SM 7
8086 MP
AndB9] un 3/260 | 680x0 VMEbus | SM | Rl host | C
And90] JIFFE

Table 2.1: Heterogeneous multiprocessor robot controllers.

ing a definable real-time operating system. This can in part be attributed to
the relative difficulty in creating an operating system that would support the
various types of processors, and yet provide the speed necessary for real-time
robot control. In most of the above cases, the need for a real-time executive
is eliminated by the system design itself and the use of special hardware ex-
pressly designed for the task at hand. As the hardware design becomes more
specific, the need for a system executive to administer system resources dimin-
ishes. However, with the use of hardware designed for specific applications, the
flexibility of the system suffers. Applications not well suited for the hardware
platform suffer a loss in efficiency in the final implementation [BWMJ8S]. In
systems where the hardware design is driven by task requirements, tasks must
be distributed to the hardware designed for them.

The Robotics Instruction Processing System‘ (RIPS) utilizes an architec-
ture optimized for the control of a robotic manipulator, at the expense of
efficiency in problems not well suited to the hardware structure [BWMJ8s].
RIPS incorporates CORDIC processors (for trigonometric calculations) and
32.bit ALUs and multipliers in a Robotic Processor which is used to calcu-
Jate the kinematics and dynamics of a manipulator. A TMS320C25 DSP is
utilized as the servo controller to provide high input/output rates (a strength

of DSPs). A second TMS320C25 is used in the I/O module to provide high

20

speed interprocessor communication facilities.

In the RIPS controller, the programming language as well as the selection
of hardware is driven by the requirements of each layer in the system. At the
hardware interface level, where speed is a concern, assembly language is used.
This layer involves reading sensor data, evaluating cortrol laws and outputting
motor torques. At the trajectory generation, inverse kinematics, and inverse
dynamics level the C programming language is used. Programming in the task
planning level is accomplished with C++, an object oriented programming
language.

The system outlined in [TIT89] uses the pPD77230 DSP as a vector/matrix
calculation engine. An 80286 based microcomputer is used as a user interface
platiorm and to provide system timing constants. The DSP handles posi-
tion/force control, coordinate transformation, sensor compensation, and mon-
itoring of manipulator status. An 8086 processor for each manipulator joint
handles joint, velocity or current feedback control and joint status monitoring.

The JIFFE processor is a specialized scalar supercomputer architecture de-
veloped specifically for robot control and is targeted at performing numerical
calculations at an extremely high rate (20 MFLOPS). The JIFFE processor
may be used as either a coprocessor to a real-time host CPU, or used as a
general purpose processor itself. In [And90], three JIFFE processors act as
coprocessors to a real-time host CPU. A control JIFFE performs trajectory
generation, kinematics, force or compliance control, dynamics compensation,
and simple (or advanced) servoing algorithms at a 1 KHz rate [And90]. A
second JIFFE is used to presimulate a motion before its execution to check
for collisions or incompatibilities with the actual manipulator dynamics. The
third JIFFE performs pixel-independent 3-D vision operations. The real-time

host processor performs user interface and high-level task planning functions.

21

Very simple communication protocols based on predefined data transfer direc-
tion and verification of timestamps are used to avoid the use of semaphores.

Programming of the JIFFE processor is accomplished via the C programming

language.

2.3.2 Homogeneous Controllers

The homogeneous controllers reviewed are implemented with either the
Intel 80x86 or the Motorola MC680x0 families of microprocessors. This is
almost certainly due to the general popularity of these microprocessors and
the ready availability of development information and tools for them. The
Motorola family of microprocessors appears to be the most prevalent in the
construction of multiprocessor robot controllers. This might be attributed
to the use of Motorola’s use of memory mapping for device interfaces, as
opposed to Intel’s more complicated I/O port addressing scheme. The notable
exceptions to the use of the Intel or Motorola microprocessors are NYMPH
[CFABS6}, SPARTA [IK88], the Yale XP/DCS system presented in [BWLK89,
WK90], and TUNIS [SG89].

The NYMPH (Not Your average Multiprocessor Hack) system possesses
NSC32010 DSPs intended for raw control computational purposes. The 68010
CPU is actually a Sun 120 computer running V-System software with the
VGTS window system [CFAB86]. The system is programmed in the C pro-
gramming language with runtime libraries used to provide real-time communi-
cation and synchronization support. The NSC32010’s handle all the real-time
computing requirements for high speed floating point calculations, and the
Sun 120 handles the user interface for the system.

SPARTA makes use of multiple IBM Hermes digital signal processors on

22

an IBM PC bus to provide real-time computation and I/O at sample rates
in excess of 10 KHz [IK88]. Program development is accomplished through
the use of the PLH language on an IBM VM/CMS mainframe. An IBM
PC provides user interface and runtime support for the real-time system. No
real-time executive is implemented for this system, however, some common
operating system services are implemented for the DSPs in signal processor
code.

The system presented in [BWLK89] and implemented in [WK90] utilizes
the INMOS T800 transputer as the computing engine in the Yale XP/DCS
dual-board real-time distributed control module. Multiple XP/DCS nodes
may be incorporated into a system using the flexible and reconfigurable serial
interconnection links supported by the T800. A real-time operating system
is not required for this system, as the transputer offers hardware based real-
time scheduling services and the OCCAM parallel programming language.
The use of the unique interprocessor communication links eliminates many of
the problems apparent in the other bus-based multiprocessor systems such as
reconfigurability concerns and bus bandwidth limitations [BWLK89].

TUNIS can support up to ten NSC32016 based single-board computers in
a master/slave relationship. One of the SBCs executes the TUNIS operating
system which presents the user with a Unix-like interface. The remaining SBCs
are managed by the central nucleus and may be used to execute standard Unix
programs or real-time software. The system is programmed in Concurrent
Euclid, which provides the monitor construct for mutual exclusion, and signal
and wait operations for synchronization.

The first implementation of the TUNIS controller used four NSC32016

*Theory and use of monitors is described in [Joe90).

23

SBCs (one master, three slaves) to provide servoing information to a PUMA’s
joint control hardware. The second implementation eliminates all PUMA con-
trol hardware and uses five NSC32016 SBCs to directly control the PUMA
joint motors. One processor runs TUNIS, and 2 second provides for user
functions. The third processor reads the PUMA encoders and calculates the
kinematics. The last two processors split the task of calculating the dynamics
of the PUMA manipulator. One calculates the dynamics for joints 1 to 3 and
servos the PUMA joints, and the other calculates dynamics for joints 4 to 6.

The systems implemented with the Intel line of microprocessors includes
the Robot Force Motion Server (RFMS) [PZ86], the controller presented by
Kossman and Malowany in [KM87], the Robot Controller Test Station [MB89),
and MRTA [A1-90]. The RFMS uses an Intel iSBC 86/30 (8086) with an
8087 floating point coprocessor to supervise the global variables and timing
of the controller. An Intel iSBC 186/51 (80186) interfaces with the VAX
11/785 host via an Ethernet connection. A math processor, powered by an
iSBC 286/12 (80286) with an 80287 math coprocessor, performs dynamics
calculations, Jacobian updates, and matrix calculations. Each joint has an
iSBC 86/30 (8086) with an 8087 coprocessor computing joint trajectories and
joint torques. This controller is driven by interrupts and handshaking protocols
and does not use a real-time operating system. All programming is done in
the C programming language.

The controller presented by Kossman and Ma" wany [KM87] uses two mi-
croprocessors, an Intel iSBC 286/10 (80286) and an Intel iSBC 86/30 (8086),
each with their corresponding floating point coprocessors. The 86/30 is used
solely to communicate between the Multibus controller and the robot’s joint
controller CPUs (dne 8085 CPU per joint). The 286/10 is used solely for path
planning and control functions. Both CPUs run Intel’s iRMX-86 operating

24

system. The 286/10 uses the Robot Control C Library (RCCL) and its un-
derlying Real Time Control system (RTC) to provide a modular, extensible,
and portable robot control and programming environment [KM87). The C
programming language was used, except for some of the RCCL math libraries
which were rewritten in 80286/287 assembler to improve execution speed.

The RCTS is implemented using three Intel microprocessors. An Intel
System 320 (80386) processor is employed for low-level control and sensor pro-
cessing. Two Intel 80286 microprocessors are utilized for higher-level control
and sensor processing. RCTS is organized in a hierarchal manner using a sub-
set (the first three control levels) of the NASREM model. The lower levels of
the hierarchy take precedence over the higher levels, and are therefore used
to drive the system operation. For example, the motor controller module out-
puts a new joint torque at each sample of data from a sensor — the controller
is driven by the sampler. The higher levels of control execute when the lower
levels request new input [MB89]. The RCTS also allows easy replacement of
modules. Each module is identical in structure, command set, status codes,
and internal logic states. The system is supported by the iRMXII real-time
operating system, and all programming is performed in C.

MRTA uses both loosely and tightly coupled interprocessor communication
methods. MRTA is a multiprocessor system comprised of multiple multipro-
cessor modules. Each module is composed of eight 8086 microprocessors (with
attendant 8087 coprocessors) connected to a specialized 8 port bus. The bus
provides access to a shared resource which consists of memory, interrupt rout-
ing, and I/O for process control. Multiple modules of this type can be inter-
connected through member CPUs (at most, each processor may be connected
to two 8 port busses). In this way, the system may be reconfigured to suit

various scenarios. Shared memory is used for communication inside a mod-

25

ule, and intermodule communication is via message passing protocols. Data
integrity is ensured through special arbitration hardware in the multiport bus
and version numbers on all data elements. Task scheduling is achieved through
the use of schedule generation software to generate and assign groups of tasks
to a system’s CPUs.

The system outlined in [DGI86] consists of a 68000 based workstation as
host to multiple 68000 CPUs. The system utilizes a very simple real-time op-
erating system, called ROS, consisting of a multitasking kernel, an event man-
ager (a basic scheduler) and assorted software libraries. ROS also supports the
concept of a device database to provide a measure of hardware independence.
Physical devices are defined in the device database, and the system software
uses this information to determine how the device is to be operated.

Harmony provides a multitasking, multiprocessing environment for real-
time control. Development with Harmony has been accomplished on the Ap-
ple Macintosh, Vax/VMS, Vax/Unix, Wicat, and Sun platforms. Harmony
has been ported to 68000, 68010, and 68020 boards as well as microVAX
11 {GWM+]. Harmony supports the execution and communication between
multiple, conﬁurtent tasks. It may be used with various development tools
including windowed terminal emulators and debugging facilities.

The System for Implementing and Evaluating Robotic Algorithms (SIERA)
atilizes a Multibus based system called the Real Time Servo System (RTSS)
along with a loosely coupled Armstrong processor network [KWW87}. Both
subsystems use MC680x0 family microprocessors, hence its classification as a
' homogeneous system. The hybrid architecture is used to combine the benefits
of tightly and loosely coupled systems. The Real Time Servo System is used
for real-time tasks, and the Armstrong processor array is used for non-real-

time tasks, such as coordinating multiple robots or vision system tasks. A

26

limited form of multitasking is available on the RTSS in the form of up to
two servo loops executing on any given Multibus processor. The servo loops
are scheduled in response to interrupts, with higher priority given to the servo
loop with the higher frequency.

The CONDOR and Chimera II operating systems are very similar in na-
ture. Both use the VMEbus as the backplane for the real-time processors, and
both utilize a Sun 3 workstation (Chimera II may also use a Sun 4) as a non-
real-time host for development and graphical user interface duties. CONDOR
and Chimera II also support the use of a bus to bus adapter to separate the
real-time backplane from the non-real-time host. Filesystem services in both
operating systems are provided by the workstation via the bus to bus adapter
and a server process on the host. Some form of terminal emulation is provided
for each system to facilitate communication between the real-time system and
the host. Standard C libraries are included with each system, including one
to perform matrix and vector calculations — a common requirement in robotic
control systems. Interprocess communication via message passing and hard-
ware independence through the use of Unix-like device drivers are supported
in both systems.

CONDOR supports a maximum of eight Motorola 68020 processors on
the real-time VMEbus. While not expressly a multitasking operating system,
CONDOR does allow the scheduling of multiple servo loops using a fixed-
priority scheduler. CONDOR provides debugging of processes on the slave
CPUs via the emulation of the Unix ptrace() system call. Most Unix debuggers
can be adapted to this system.

Chimera II supports a maximum of 128 single board computers within
the real-time system. Chimera II offers a true multitasking scheduler which

operates on a static/dynamic priority scheme called Maximum Urgency First

27

[SK91]. This scheduler, more complex than the servo loop scheduler in CON-
DOR, allows the use of dynamic tasks and modification of task priorities with
no breakdown in the determinism of the real-time system. A task may be
spawned on a CPU by any other task on that same CPU. Unfortunately, Chi-
mera II lacks all but very rudimentary debugging facilities. The developer may
either use the single-board computer’s monitor, or place printf() state nenis
within the C source code.

Hayati and Venkataraman describe a multiprocessor robot controller in
[HV89] which can accept commands from either a six-axis teleoperator de-
vice or an autonomous planner, or both. This system utilizes 6802C/68881
processors on VMEbus backplanes. A Sun 4/200 runs a modified version of
UNIX OS 3.2 with real-time extensions and is used to calculate the kinematics
and dynamics. The 68020 processors run the VxWorks operating system and
perform servo-level operations at 1 KHz.

The Kumaran architecture, presented in [AGA90] uses six real-time Mo-
torola MVME143 25 MHz 68030,/68882 single-board computers on a VMEbus
to run single-thread real-time processes. Unix Sys V.3 runs on a MVME147
20 MHz 68030/68882 SBC which provides RS-232, Ethernet, and SCSI inter-
faces. A second MVME147 is used to provide fast filesystem service to the
real-time system. In this system, the Unix processor is used to develop the
real-time software and monitor the execution of the rcal-time system via spe-
cial Unix drivers. Multiprocessing and communication primitives are provided
by library routines and Unix drivers. The fast filesystem is used to log data
during the operation of the real-time system. After data collection is complete,

the data is moved to the Unix filesystem for storage and analysis.

28

2.3.3 Concluding Remarks

Through examining the reviewed literature, it is apparent homogeneous sys-
tems tend to be employed in situations requiring more flexibility than their
heterogeneous counterparts. The mapping of tasks onto processors in a homo-
geneous system tends to be characterized by a mapping of computing require-
ments over a range of available computing power instead of onto specifically
designed hardware platforms. For example, contrast the rigid task allocation
criteria for the Robotic Processor in the RIPS system with the criteria for
allocating tasks under Chimera II. The Robotic Processor is intended to fulfill
a narrow range of requirements, namely the calculation of manipulator kine-
matics and dynamics. The Robotic Processor would probably not make a
very efficient platform for execution of a PID control algorithm. Similarly, the
MC680x0 family of microprocessors supported by Chimera I are quite flexible
in their applications, but suffer under the requirements of vector calculation.
The gain in flexibility provided by a homogeneous architecture is offset by
a cost in efficiency. General purpose microprocessors are not optimized for
performance of typical robotic tasks, such as matrix and vector calculation
tasks and high sample rate digital signal processing. The added computa-
tional cost of operating system overhead further reduces the effectiveness of
microprocessors in a real-time multiprocessor configuration.

There appears to be two orthogonal directions of research in multiproces-
sor robot controllers using coarse-grained task division. The first direction,
reviewed here under heterogeneous multiprocessor systems, is engaged in de-
veloping hardware dedicated to and optimized for the tasks inherent in a par-
ticular robot control scenario. These systems are characterized by the use of

custom processors, such as CORDIC or JIFFE, and even the development of

29

VLSTI chips for the real-time solution of inverse kinematic equations [LS87].
Systems of this type tend to be optimized for a particular control method or
family of methods and are not very amenable té radical reconfiguration.

The other direction of research appears to be in the direction of flexible
real-time systems utilizing the parallel processing power of homogeneous mul-
tiprocessor architectures. These systems stress ease of use, reconfigurability,
and hardware independence. Most often, a RTOS is used to provide the first
level of hardware independence, with function libraries providing increasing
levels of abstraction. This field of research concentrates on optimizing the

flexibility of the real-time environment for a wide range of robotic control

~ tasks.

30

Ref. Name Host Processors | Bus IPC | RT Supp. Languages |
[CFABs6] | NYMPH VAX 11/780 | 68010 Multibus SM | Software C
' NSC32016 MP | libraries
w /32081 _
[DGIg6] SM90 68000 VMEbus SM | ROS C
Gé4 FORTRAN
= _ PASCAL
[PZ86] RFMS VAX 11/785 | 8086/87 Multibus SM C
80286/287 _ MP
[GWMT] Harmony Sun 680x0 VMEbus MP | Harmony (o]
Macintosh MicroVaxIl | Nubus
Vax Multibus I
Wicat Multibus II
[TKWW87] | SIERA Sun 3/260 | 68000 Multibus SM | RISS C
Armstrong MP Assembler
processor
[KM&7] VAX 80BE /87 Multibus SM | iRMX-86 | C
80286/287 Assembler
[IK88] SPARTA 1IBM XT Hermes PC bus SM | Lib. for FLH
IBM AT OS fcns. C
NSH88 CONDOR | Sun3 680x0 VMEbus SM [CONDOR | C
[NSH89 w /68881 ‘ MP
BWLK89] IBM AT INMOS Serial MP | Hardware | OCCAM
[WK90] T800 links
HV89) Sun 4/200 68020 VMEbus SM | VxWorks C
w /68881 MP
(MB89} RCTS 80286 Bitbus SM | iRMXII C
80386 MP
[SGa9)] TUNIS NST32016 | Multibus SM | TUNIS Concurrent
w /32081 Euclid
[SKHK89] | Chimerall | Sun3 680x0 VMEbus SM | Chimerall | C
[SSK89) Sun 4 MP
[SSK92]
[SSK90] o
[AGA90] Kumaran 68030 68030 VMEbus SM | Software C
w /68882 w /68882 libraries Assembler
[Al-90] MRTA IBM PC 8086-2 Multiport SM | Pre- 7
w /8087 bus MP | scheduling

Table 2.2: Homogeneous multiprocessor robot controllers

31

Chapter 3

Design Methodology

3.1 System Requirements

In designing the robot controller described in this thesis, it is necessary to
decompose the required functionality of the system into a set of concurrent
tasks complete with the required communication pathways and protocols. It
is then necessary to map this task structure onto the capabilities and features
of the chosen real-time operating system and the supplied hardware platform.

The requirement specifications for the MRC are:

1. The controller must provide a convenient and flexible environment for the
testing and evaluation of control algorithms for the PUMA 560 Industrial
Robot. It must provide a reasonable level of robustness in terms of
error identification and handling. It should be amenable to changes in
system hardware configuration in that minimal effort should be needed

in modifying code to deal with a change in hardware configuration.

2. It should be possible to select different control algorithms for testing

without having to waste time recompiling the controller from scratch.

The system modules should therefore be as independent as possible to
minimize the modules that need to be recompiled upon a major config-

uration change.

3. Function libraries for the interaction of control algorithms with hardware
should insulate the user from the details of using the hardware and allow
the use of floating point values (i.e. radian and voltage measurements)

as an integral part of the control algorithm.

4. Use of a multi-windowed display should be made in order that software
execution on each of the processors may be monitored in a convenient
manner. Utilities such as real-time data logging and a graphical dis-
play of logged data should be present to aid in the evaluation of control

algorithms.

3.2 Design Method

The design method chosen for this project is known as DARTS (Design Ap-
proach for Real-Time Systems) [Gom84]. This method yields a modular system
with minimized intertask coupling and well-defined interfaces. This eases the
interprocess/interprocessor communication overhead, and aids in simplifying
future modiications to the system. The MRC’s task hierarchy was loosely
modeled after that of the NASREM model.

The design process begins with the functional requirements of the system
given in the previous section. A traditional DFD (Data Flow Diagram) rep-
resentation of the systerh is then analyzec to extract the major information
flows and transformations that occur in the real-time system. The DFD is

then structured to indicate the grouping of transforms into tasks based on the

33

following design criteria [Gom84];

¢ Dependency on I/0. A transform needs to be a separate task if its

execution speed is dictated by that of the I/O device with which it

interfaces.

¢ Time-Critical Functions. A transform that is time-critical needs to

run at a high priority and hence as a separate task.

¢ Computational Requirements. A computationally intensive opera-

tion can run as a lower priority task.

¢ Functional Cohesion. Transforms that perform a closely related set
of operations should be grouped together into a single task to cut down

on intertask communication overhead.

e Temporal Cohesion. Transforms that perform their functions at the

same time should be grouped intc the same module.

e Periodic Execution Transforms that need to be executed periodically

should be grouped into separate tasks.

The various tasks must then be mapped onto the available computing
hardware. Constraints imposed by the real-time operating system chosen to

support the multiprocessing requirements of the system must be taken into

consideration as well.

3.3 Data Flow Analysis

The Data Flow Diagram (DFD) for this system is developed as a series of

diagrams, each succeeding level of which describes the system in greater detail

34

than the preceding one. Each bubble in the DFD represents a transformation
performed on information by the system software. The lines represent the
flow of information with the arrows on the lines denoting the direction of flow.
Data stores are represented by two parallel lines, and external entities (such
as users) are mcdeled by blocks.

The first-level DFD is shown in Figure 4. This DFD represents the flow
of data between. all elements of the system, and is the starting point of the
entire design, being derived directly from the system requirements statement.
Commands are accepted from the user, and feedback is provided to the user in
the form of a screen display. The manipulator is actuated via the application
of voltages to the Unimation power amplifier assembly, and the outputs of the
joint encoders, the joint pots, and the amplifier status lines are fed back into
the controller. Data is logged to a user-specified file on the }host workstation
and may be reirieved for display and analysis. Text configuration files are
used to provide easily modified configuration information for key aspects of
the controller.

This initial Data Flow diagram is then reduced into component data flows
and transforms which represent the planned flow of information through the
robot controller. Once the DFD has been expanded to represent the system at
an acceptable level of complexity (usually at the point that transforms begin

to take on discrete and easily realized behaviors) the next stage of the DARTS
design may be applied.

3.4 Task Structuring

The task diagram for the system is developed by applying the transform group-
ing criteria described in Section 3.2 to the final system DFD. This final DFD is

Controller
Configuration File
Controller
State Variable Configuration
Table DVME-601
State Variable Table Configuration Configuration DVME-601
Configuration File Configuration File
Filter -
Robot Home |Home Position S-Record| Local Filter Program
Position File for DVME-601
‘ Control Voltages
Keyboard/Mouse Multiprocessor ‘Joint Encoder Signals PUN; A 560
User Display Based Robot Pot Voltages Robot
Controller
Hardware Status Lines
Postscript AFBFie| AFB’sfor
Laser Printer | Hardcopy of DVME-601
Data Log Plots
Log Data Log Data
In Out
v

Data Log File

Figure 4: The top-level DFD for the MRC.

36

not presented here, as it is derived from the first-level DFD, and the relevant
transforms and data flows are represented by the Task Diagram.

All transforms dealing with acquiring user input, performing error checking
on this input, and displaying system responses to user input are grouped under
the User Interface task in accordance with the Functional Cohesion criterion.

Transforms that receive the validated and preprocessed user commands
and process these inputs into actions of the real-time system are grouped into
the Robot Manager task using the Temporal Cohesion criteria. In this way,
a user’s command will be processed as soon as possible after it has been sent
to the Robot Manager. Since the Robot Manager is responsible for starting
and shutting down the system, it is also made responsible for periodically
examining the state of the software and hardware modules to ensure that
nothing unexpected has happened. The system is shut down gracefully if
problems with either the hardware or software have occurred.

The control algorithm is structured as a separate time-critical task due to
the fact that it must execute at regular intervals without fail. A strong case
for these transforms being grouped as a task come from the Time-Critical and
Periodic Execution transform grouping criteria.

The Motion Generation transforms must execute at a regular interval to
supply the control algorithm with a block of joint setpoints at the setpoint
update rate. These setpoints describe the motion of the manipulator through
space, and are calculated to give a smooth motion from start position to finish,
with all joints completing their motion at the same time. For this reason, these
transforms are grouped together into their own task.

The data logging functions of the system must occur at periodic intervals
that may or may not coincide with other periodic rates elsewhere in the system.

If the system becomes computationally overloaded, it may be necessary to

37

reduce the rate of data logging to balance the load on the system’s processors.
Hence the data logging transforms are grouped into a separate task.

Since the sampling of the robot joint potentiometers and hardware status
lines is performed on a separate CPU card (on the DVME-601 board), these
transforms are grouped together into a separate task.

The symbols used in constructing the task diagram are shown in Figure 5.
A task is denoted by a bubble containing the name of the task. External
entities, such as the user, the robot, the Postscript laser printer, and the
configuration files, are shown as rectangular blocks. Data stores, indicated by
two parallel lines, are used in this project to represent state variable tables
and data log files.

A tightly coupled queue symbol is used in cases where a message from one
task requires a response or acknowledgement from the receiving task. This is
important in cases where it is desirable to see the result of one message before
another is allowed to be sent. A loosely coupled queue is a standard first-
in-first-out buffer, often used in cases where messages are queued up pending
processing by the receiving task. Single element queues are used to model
cases where a variable contains a state or result, periodically updated by one
task, available for use by another task. Software signals are denoted by the
‘lightning bolt’ symbol. Simple data paths, such as the input of a configuration
file, are shown by lines with arrows indicating direction of data flow.

The complete task diagram is shown in Figure 6. This diagram reflects
the software task structure and interprocess communication topology used
in the final implementation of the MRC. This task diagram only indicates
the relationships between the periodic portions of the system software. The

initialization operations, necessarily sequential in nature, are not shown.

38

Tightly Coupled Queue

L

Signal

Data Store

39

External Entity

ol -

all »
Loosely Coupled Queue

> -

> >
Single-Element Queue

Figure 5: Communication and Synchronization Symbols.

USER

Data Log

Log Data Out

Keyboard/Mouse
User

State Variables
Being Logged

Interface

Hardcopy of
Data Log Plots

Postscript
Laser Printer

Controller

Configuration File

State Variabl

Table Config. |State Variable Table

Configuration File

Home
Position

Home Position File

Motion
Request

]
Variable Table

State Vars Out ﬂmu

Motion
Generator

Setpoints

DVME-601
DVME-601 Configuration State Vars In
Configuration File !
|
AFBs for AFB File Filtered Pot |] -
Voltages
DVME-601 Controller oltag >
" Hardware
Filter Status
Local Filter Program |S-Record] Prefilter &
for DVME-601 Joint Control Hardware
2?;":: Voltages Status
Pot Voltages)
PUMA 560
Robot
Hardware Status Signals

Figure 6: Task Diagram for the MRC.

40

3.5 Mapping of Modules to Hardware

The next step is the mapping of the software modules onto the available nard-
ware. Valuable criteria for this stage are the suitability of a particular platform
for a given task, and the minimization of VMEbus bandwidth usage. Band-
width on the VMEbus may be conserved by assigning tasks which communicate
at a high rate to the same RTPU, thereby keeping the communication local
and not loading the VMEbus. |

The reason for choosing the DVME-601 Analog to Digital converter for
the tasks of sampling the robot joint potentiometers and providing a hardware
status code is straightforward. The potentiometer and status line voltages are
sampled directly by this board, and the capability exists for these signals to
be processed by the DVME-601’s onboard MC68010 microprocessor.

The SUN 3/160 is the logical choice for the User Interface Module, since
this module will spend most of its time waiting on the user for input. The
standard features of the SunOS operating system are more than adequate for
this task, and the processor cycles on the RTPUs can therefore be conserved
for more time-critical tasks.

The Controller task is relegated to its own Ironics IV-3220 SBC; the ‘servo’
RTPU. This decision is made because this task needs all the CPU powér it can
acquire. The absence of tasks other than the obligatory Chimera II servo task
management process on this CPU allows more complex control algorithms
to be implemented than if processor time is split among more tasks. The
state variable table is implemented on the same RTPU as the Controller task.
This helps conserve VMEbus bandwidth by not loading the VMEbus with the
Controller task’s state variable table accesses which occur at a rate higher than

any other task in the system.

41

This leaves only the remaining Ironics IV-3220 (the ‘master’ RTPU) to
provide a computing platform for the Motion Generator task, the Data Logging
task, and the Robot Manager task.

3.6 The Real Time Operating System

It is necessary to select a Real-Time Operating System (RTOS) with the abil-
ity to administer the concurrent multiple processes required to implement the
design. It is also desirable for the RT'OS to supply such féatures as inter-
process communication and synchronization, mutual exclusion, a filesystem,
support for custom equipment (such as the VMEbus Encoder board), an easy

to use development environment, and some form of support for multiprocessing

configurations.

The: operating system selected to support the MRC is the Chimera II Real-
Time Programming Environmient created at Carnegie Mellon University. Chi-
mera II is classed as a locel operating system. In other words, it uses another
operating system to provide certain services or features. Chimera II uses the
UNIX operating system running on a host workstation to provide a filesystem
and a development platform for the real-time system.

Chimera II provides a number of useful features and tools for the develop-

ment of sensor-based controls applications [SSK89, SSK92];

s A UNIX workstation provides an advanced programming environment

and filesystem along with the convenience of readily available window

environments.

o Multiple, commercially available general purpose CPUs are supported

along with the requisite interprocessor communication and synchroniza-

42

tion primitives.
o Special purpose processors and I/O devices are easily integrated.

e A multitasking real-time kernel with user definable and selectable real-
time schedulers along with a deadline failure mechanism provides real-

time multitasking.

o A servo task management facility may be used to provide a convenient

platform for applications utilizing multiple periodic processes.

o Reconfigurability is obtained through the use of reconfigurable state vari-

able table facilities and a library for the use of text configuration files.

¢ Standardized interrupt and exception handlers are written in the C pro-

gramming language.

o Access to 1/O devices, special purpose processors, and the host filesystem

is transparent through standard UNIX system calls.

e Hardware independence is achieved through the use of a virtual machine
layer which insulates the application programmer as much as possible

from the details of the hardware.

The features of Chimera II v1.11 are discussed in greater detail in Volume
2 of this project. More detailed information on Chimera II may be found in
[SKHK89, SSK89, SSK90, SK91, SSK92, SSK91, Stea, Steb].

Although Chimera II provides many features useful for a project of this
type, there were several areas in the project where difficulties arose due to
local hardware compatibility problems and deficiencies in Chimera II.

Chimera II supports the use of VMEbus bus extenders such as the Bit3
Models 411, 412, and 413. These adapters are used to isolate the real-time bus

43

from the non-real-time host workstation. It was found that the Model 411 was
not satisfactory for our purposes, since this card would only allow mapping of
A24 (24-bit) address spaces between the real-time and non-real-time busses.
Due to restrictions placed on available me£nory windows in the Sun’s A24
space [Sun89] and available A24 base addresses for the Ironics RTPUs [Iro88],
no more than one Ironics RTPU could be accommodated in the A24 space left
available by Sun. There was no problem using the Model 412 as this uses A32
(32-bit) addressing which provides more than adequate memory space for the
needs of Chimera II.

Chimera II uses the concept of remote devices to enhance its multiprocess-
ing features. Under Chimera II each device is owned by one of the system’s
RTPUs. The remote device feature is meant to allow one RTPU to use a device
owned by another RTPU. Unfortunately, there are a number of bugs in Chi-
mera II v1.11 which render this feature unusable. The first problem involves
the device lookup table which is initialized with an incorrect list of remote
devices. This prevents proper remote device access. The bug was detected,
fixed on the local system, and the patch sent to Carnegie Mellon University.

The second problem, also detected on the local system, involves the address
translation required to convert the pointer information from one RTPU to an
equivalent, accessible form for the second RTPU. This operation does not work
correctly in Chimera II v1.11, and the remote device feature is consequently
unusable. A workaround has been devised for the MRC wherein each RTPU
must own any Chimera II device that it wishes to access. This is not an
optimal solution, as it makes it dificult to implement fast mutual exclusion in
a device driver. Both problems will be fixed in future releases of Chimera.

The state variable table facilities of Chimera II allow the creation of a global

state variable table, sharable between multiple processes. One advantage of

44

the global state variable table approach is that it becomes much easier to
create a controller consisting of replaceable modules. All support and user-
interface software can be written independently of the type of control algorithm
or setpoint generator actually used. The replaceable modules may then be
written with a specific design in mind, and may simply be linked with the pre-
compiled support and user interface routines at compile-time. At run-time, a
state variable table configuration file will tell the system how to set up and
use the state variable table.

The ease of implementing a reconfigurable system with the state variable
table mechanism comes at a cost of increased complexity of the supporting
software. It is nécessa.ry to write the support and user interface software in a
general enough manner that it is able to handle all data types supported by the
state variable tables themselves. This is especially true in cases such as data
loggers or user interface tasks where the task must first attach to an arbitrary
state variable table, and then proceed to process the required variables in the
proper format.

State variable tables resident on the real-time system are not available for
use by processes on the host workstation. If the host were allowed to access
the state variable table on the real-time system, the non-real-time nature of
the UNIX workstation would render the real-time system nondeterministic.
For example, consider the case of a process on the UNIX workstation access-
ing the state variable table and obtain mutual exclusion lock on the data. If
the workstation process was then swapped out before it could release the lock
on the state variable table, the real-time tasks would be left waiting for the
workstation process to be swapped back in to release the state variable table.
This restriction of the use of the state variahle table makes it difficult to imple-

ment a user interface running on the host that allows the user to interactively

45

modify state variable table values.

The MRC employs the Real-Time System Interface (RTSI) library to com-
bat the aforementioned pitfalls in the use of Chimera II’s state variable ta-
ble mechanism. The RTSI library encapsulates much of the complex self-
configuration code and provides extensions to the state variable table mech-
anism allowing access to state variable table data from the host workstation.
This extension is covered in detail in Section 5.4.

The ability to utilize a higher level of debugging for the development phase
of this project would have proved extremely useful. Chimera II has minimal
debugging support in the form of kprintf() or printf() statements, as well as
some memory allocation debugging routines that print out information on the
system memory allocation tables. The user may also use the Ironics IMON
Monitor to debug compiled real-time programs running on the Ironics RTPUs.

The use of source-level debugging packages such as gdb is not supported in

Chimera II.

3.7 Local Configuration of Chimera II

The first step in implementing the design of the robot control system is to suc-
cessfully install and configure Chimera II for use on the Sun 3/160 workstation.
The configuration file /etc/chimera.config, which resides on the host worksta-
tion, specifies the various hardware components of the system, their addresses
in the VMEbus addressing spaces (A16, A24, or A32), and the ownership of
device drivers that are used by the real-time system. The configuration file
for this project is given in full in Appendix A.3. Please refer to Chapter 2
Installation Manual in the Chimera II Program Documentation for a more

detailed description of this file.

46

The configuration file for this system identifies three processors, the Sun
3/160 host as “robo2”, the first Ironics IV-3220 SBC as the “master” RTPU,
and the second Ironics IV-3220 SBC as the “servo” RTPU. The configuration
file also indicates that the host is connected to the real-time VMEbus chassis
holding the RTPUs via a Bit-3 Model 412 VMEbus-to-VMEbus adapter. The
file specifies the addresses of the A/D converter, the D/A converter, and the
VMEDbus Encoder Board. The RTPU ownership of the device drivers for each

of these interface cards is also indicated.

3.8 Assignment of Task Priorities

The Motion Generator, Data Logger, and Controller tasks all utilize Chi-
mera II’s servo task manager, or servo server, to provide real-time execution
management. Please refer to Chapter 6: Reconfigurable Systems in the Chi-
mera Il Program Documentation for a complete description of this facility. In
order to ensure that critical tasks on a RTPU receive the computing resources
they require ahead of less critical tasks on the same RTPU, it is necessary to
assign priorities to tasks executing on the real-time system.

Neither the User Interface task nor the Prefilter and Hardware Status task
require task priorities to be set. The User Interface task executes on the Sun
workstation and therefore does not require real-time scheduling. The Prefilter
and Hardware Status task is the sole task running on the DVME-601 and does
not use the servo server facility, therefore it does not require priorities.

The Robot Manager task is a low priority task which processes messages
from the User Interface in spare CPU cycles on the ‘master’ RTPU. This task
is involved in accepting user input from the non-real-time system, and routing

user requests to the various tasks in the real-time system. These actions can

47

be assigned to a lower priority level, if a slight decrease in response to user
input is acceptable. In this case, since no real-time constraints are applied to
user input, it is judged that this tradeoff is acceptable.

The Controller task, the Motion Generator task, and the Data Logger task
all use the servo server mechanism. These tasks must be assigned scheduler
criticality and user priorities as per the guidelines outlined in [SK91]. Since
the servo server facility uses a subset of the Maximum Urgency First (MUF)
scheduling algorithm ! to implement a Highest Priority First (HPF) scheduling
algorithm, task deadlines need not be specified, and the criticality and user
priorities assigned will compose the scheduli~:, priorities.

The critical set of tasks for this system is composed of the Controller task
and the Motion Generator task. These constitute the set of tasks that must not
fail in a transient overload situation. Assignment of user priority and criticality
to the Controller task is straightforward. This task and the servo server task
are the only processes executing on the ‘servo’ RTPU. The Controller task is
a member of the critical set, and therefore is accorded higher criticality and
user priority than the servo server default value.

The assignments for the tasks on the ‘master’ RTPU are a more complex
case. The Robot Manager task is left to execute at the same criticality and user
priority as the servo server task which executes there. The Motion Generator
task is a member of the critical set and is therefore set to the highest criticality
and user priority on the ‘master’ RTPU. The Data Logging task, while not
a member of the critical set, is still a more important task than the Robot
Manager, and is therefore set to a criticality and user priority between those

of the Robot Manager and the Motion Generator.

This will be upgraded to full MUF in a later versions of Chimera [SSK91].

48

The result of these task criticality and user priority allocations is that on
the ‘servo’ RTPU, the Control Algorithm task will be the last to fail in order
to preserve the generation of valid joint torques for the PUMA manipulator.
The situation on the ‘master’ RTPU has the Motion Generator task failing last
in order to protect the generation of valid setpoints for the Control Algorithm
task. The Robot Manager task will be the first task to miss a deadline, but
this is relatively unimportant since that task only deals with user interface
functions anyway. The Data Logging task is the next to fail after the Robot
Manager in a transient overload of the ‘master’ RTPU.

The user must take care to provide reasonable execution rates for the pro-
cesses involved. If the execution rates are set too high, response of the Robot
Manager begins to slow down to an unacceptable level, and the Data Logger
task begins to miss data samples. The information on missed cycles for the
real-time processes using the servo server facility are easily available from the
user interface (please refer to the Software Users Guide in Volume 2). This
information may then be used to choose appropriate execution rates for the

three servo server tasks.

49

Chapter 4

Controller Hardware

4.1 Introduction

This chapter describes the configuration and modification of existing hard-
ware necessary during the implementation of the MRC. The hardware aspect
of this project involves assembling a hardware platform compatible with the
Chimera II Real-Time Operating System. The hardware must also support the
design decisions made with respect to the requirements specification outlined
in Chapter 3.

A detailed overview of the configuration of the MRC’s hardware compo-
nents can be found in Appendix A. Memory maps for both the Sun 3/160 and
the real-time VMEbus chassis are given, showing the assignments of memory
space in both chassis. The Chimera configuration file used to describe the

hardware setup to the operating system is presented for reference as well.

4.2 Design Issues

The hardware design phase of the project consisted mainly of determining
the configuration of the various hardware components for operation with the
Chimera II RTOS.

The controller hardware is physically divided into two main components,
the RTS (Real-Time System) and the NRTS (Non Real-Time System). The
RTS is used to perform all the time critical tasks such as providing digital
control algorithms for the joint motor amplifiers, performing real-time data
logging, generating the robot’s path, and detecting hardware or software fail-
ures. The NRTS is utilized for tasks that lack hard real-time constraints, such
as accepting input from the user, checking that input for errors, providing a
graphical display of logged data, and providing a development platform and
filesystem to support the Chimera II operating system. The two systems are
connected by the Bit3 VMEbus to VMEbus interface which helps to isolate
the RTS from the NRTS. The block diagram of the system hardware is shown

in Figure 7.

4.3 Non-Real-Time System

The Sun 3/160, as the NRTS platform (also referred to as the host), provides
a large color graphics monitor and NFS access to 1.5 GB of online disk storage
space. This workstation also contains its own local hard disk which is used
for local virtual memory space and basic SunOS system programs. Note that
an Ethernet bridge was installed to isolate the Robotics Lab LAN from the
campus Ethernet backbone. This keeps the lab’s Ethernet traffic, made heavy
by the use of the X Window System, localized so that it will not load the

51

52

To Campus Ethernet
Color Backbone
Monitor I
Ethernet
=
y Ethernet Bridge
Console - Ethernet
75 ME scsI 33123 S—Sﬂ
oy SUN | Dk SUN
3/160 3/160
['RS-232 g::: 2 Real-Time Fileserver
Host
High
Speed RS-232
Link A/B A RS-232
.. B
Switch 4—1”232
PUMA
Bit3 Model 412 IV-3220 IV-3220 cTemﬁl:f-l
Adapter ‘master’ RTPU ‘servo’ RTPU onnection
.30 ! afs
VMEbus >
<‘f j"* = == To Robot
> < & <
VMEbus DVME-628 DVME-601
Encoder Board D to A Board A to D Board
Control I 6%
Joint Arm Power Voltages Pot
Encoder Enable Line Hardware] 3,] Voltages
Signals 6// Status Lines *
6 — N
I]"_-'_-“. R ﬂ

Figure 7: Hardware for the Multiproessor Based Robot Controller

campus backbone.

The second Sun 3/160 shown in Figure 7 is used as a fileserver for the host
workstation. Its large capacity hard drives store the executables and source
files for the real-time system as well as the balance of the SunOS system
program; and files needed for the operation of the UNIX workstation.

The host workstation is also used to provide virtual terminals for accessing
the PUMA RS-232 terminal port, the DVME-601 RS-232 terminal port, and
one of the IV-3220 RS-232 ports. The virtual terminals, created for the MRC
under the X Window System, provide ‘dumb terminal’ emulation for equip-
ment connected to the two workstation serial ports. The terminal program
itself may be invoked to attach a virtual terminal to either port A or port B.

Port A is connected directly to the Unimation Control Computer terminal
port. The virtual terminal program on the Sun workstation provides access to
the VAL-II operating system when the VMEbus controller is switched out and
the PUMA is being used with the stock control computer. Port B is connected
via an A/B switch to either the DVME-601’s serial port or a serial port on
the ‘master’ RTPU. This connection provides access to either the DVME-601
or the IV-3220 onboard monitors through a convenient window on the Sun
workstation.

The Sun 3/160 requires the installation of a Bit3 Model 412 VMEbus to
VMEbus adapter card in order that it may be connected to the Real-Time
VMEDbus via a similar card installed there. The Bit3 cards are configured
in master/slave mode. The master Bit3 card (installed in the Sun backplane)
maps the address spaces defined on the slave (installed in the Peal-Time VME-
bus chassis) into the memory space of the host workstation’s VMEbus. A small
portion of this memory is then mapped into Sun’s Direct Virtual Memory Ac-

cess (DVMA) feature. The DVMA space iz never swapped out by SunOS and

53

can therefore be used for communicating with the Chimera II kernels running
on the Ironics boards [SSK89).

The Bit3 cards may also be equipped with dual-port RAM for use in com-
munications between the two separate VME busses. The MRC has 32KBytes
of dual-port ram on the slave Bit3 card available for use by Chimera II.

Please refer to Appendix A.l for the system memory map and to Ap-
pendix A.2.1 for the local configuration of the Bit3 Model 412’s onboard

jumpers for both the master and slave boards.

4.4 Real-Time System

The RTS is implemented on the external VMEbus chassis. Its hardware com-
ponents consist of the two Ironics 1V-3220 Single Board Computers in con-
junction with the Datel DVME-601 Analog to Digital Converter, the Datel
DVME-628 Digital to Analog Converter, the VMEbus Encoder board, and
the slave Bit3 VMEbus to VMEbus adapter. The RTS is responsible for all
real-time tasks required of the controller such as setpoint generation, rdata log-
ging, and calculation of control voltages for the PUMA joint amplifiers. Please
refer to Appendix A.1 for the memory map of the RTS, and to Appendix A.2
for the local jumper settings for these cards.

The existing controller used the TUTOR board to drive the VMEbus clock
(SYSCLK) at 12 MHz. The Bit3 Model 412 used as system controller for the
Real-Time VMEbus in this project drives SYSCLK at 16 MHz. This increase
in speed requires that the DTACK delay jumper on the VMEbus Encoder
Board be advanced from Position: 9 (no delay) to Position 1 (one clock cycle
delay) to compensate for the higher SYSCLK speed. The delay allows the
VEB’s address decoding chips to settle before the VEB responds to addresses

54

on the VMEbus.

If the DTACK delay is improperly set, the VMEbus may incorrectly re-
spond to addresses presented on the VMEbus address lines. This can result in
erratic behaviour of the VEB, the most apparent of which is sporadic resetting
of the joint encoder counters. This manifests itself as erratic movements of
the PUMA manipulator.

As originally designed, the VEB was inadequate for use with a sophisticated
operating system such as Chimera II. The board could be set to respond to
either of two address modifier codes [VMES2]. The address modifier codes are
used to distinguish between types of memory access. The two codes originally
available (and therefore the two types of memory accesses available) on the

VEB were;
o 0x39 - Standard Non-Privileged Data Access
e 0x3D - Standard Supervisory Data Access

The Chimera 1I kernel uses the Standard Non-Privileged Data Access for user
reads and writes of a device, but it uses the Standard Supervisory Data Access
for initializing the device. Since the VEB could only be set to one or the other
type of access, either reads or writes of the VEB worked correctly, or the i. nel
initialization of the board worked correctly, but not both.

The VEB has been modified so that it accepts accesses in both Standard
Non-Privileged and Standard Supervisory Data Access modes. The VEB
jumper settings as well as the updated schematics of the VMEbus Encoder

Board’s jumper layout and address decoding are giver in Appendix A.2.5.

55

Chapter 5

Controller Software |

5.1 Design Goals

The implementation of software for the MRC consists of realizing the task
structure design developed in the System Design (see Chapter 3). The key

criteria for the software implementation are:

¢ Hardware Independence. The software should use the concepts of
standardized cevice drivers and function libraries to ensure that the code
may be ported to other platforms with a minimum of effort. Hardware
independence also insures that changes in hardware do not automaticaily

r.ean that all levels of code must be rewritten.

o Flexibility. The software must support easy modification of the con-
troller and motion generation algorithms. This requires that modules
not immediately concerned with these two tasks be as independent of
their implementations as possible. In general, the software should not
depend on the actual control algorithms used. All algorithm-specific

informatica should be obtainable from configuration files.

¢ Encapsulation of Data. In order to improve the maintainability of
the system, data and related functions should be encapsulated within

libraries whenever possible.

Hardware indepcndence and data encapsulation are achieved through the
use of libraries and func’ wns to provide levels of abstraction between the appli-
cation programmer and hardware elements such as the A/D and D /A convert-
ers. Functions and associated data structures used for a common purpose are
grouped together into libraries and their administrative details hidden from
outside view. For example, all functions and data structures dealing with
the communication between the Real-Time System and the Non-Real-Time
System are grouped together into the RTSI set of functions.

Flexibility is provided by ensuring that all tasks use well defined interfaces,
and their implementations are as independent as possible from any particu-
lar control algorithm. The state variable table, servo task management, and
configuration file mechanisms of Chimera II are used extensively to achieve
this goal. The state variable table mechanism provides a convenient, recon-
figurable data store of controller state variables. Information on each state
variable is easily obtained by other tasks and is used in self-configuration rou-
tines to ensure that each state variable is used in the correct manner. The
servo task management facility provides simplified control of the controller’s
periodic tasks. Periodic tasks ruay be written in a well-defined manner, using
a framework outlined in Chapter 6: Reconfigurable Systems in the Chimera I
Program Documentation [SSK91]. The configuration files allow the user to
change the operation of the MRC without recompiling the controller source

code.

5.2 . ~ftware Module Desc~iption

The Controller, Motion Generator, and Data Logger tasks are all implemented
using Chimera II's servo server facility. This provides the easiest and most con-
venient method for controlling the execution of these periodic tasks. Intertask
communication is simplified as well, with most real-time intertask communica-
tion taking place via the state variable table mechanism. The remaining tasks
in the system, the User Interface, Robot Manager, and Prefilter and Hardware
Status tasks, do not utilize the servo server mechanism.

The communication link b¢'ween the Robot Manager and the User Inter-
face is implemented with a special purpose set of functions implemented us-
ing interprocess/interprocessor communication facilities of Chimera II. These

functions, the Real-Time System Interface (RTSI) library, are described in
Section 5.4.

5.2.1 User Interface

The user interface for the system is a command-line oriented preprocessor that
may be run either on a plain text terminal, or in a separate window in the
user’s choice of windowing environment. A text based approach is chosen,
since Chimera II provides a command-line parser in the form of the ‘emdi’
library. This library allows a user to easily add and delete commands for
a command-line based interface. Since this system is intended for use in a
research environment, this feature was deemed very valuable. A complete
description of all currently available commands may be found in the Software
User’s Guide in Volume 2.

The user interface employs the RTSI library for all communications be-

tween itself and the Robot Manager task. A client-server relationship exists

58

between the user interface and the real-time system. The user interface sends
messages to the real-time system which services them in the appropriate fash-
ion. All messages sent from the user interface require a reply from the real-time
system to indicate the status of the action. This provides a means of message

queue error detection for both the user interface and the real-time system.

5.2.2 Robot Manager

The Robot Manager task is responsible for the supervision of all other tasks
in the system. It takes care of initialization and shutdown of all parts of the
MRC. All errors are filtered back through the Robot Manager for handling. It
also monitors the robot hardware and software for failures. Since the robot is
automatically shut down on critical errors by the Unimation hardware, mon-
itoring the joint amplifier hardware for errors is performed for informational
purposes only. The Robot Manager monitors the state of the other proc.sszs
through the return values of servo server function calls. The tasks themselves
possess the ability to shut down and flag the servo server upon detection of
an error. The status of the internal memory allocation table is also monitored
by the Robot Manager as a safeguard against memory corruption. Upon de-
tection of an error condition the Robot Manager will proceed with an orderly
shutdown of the real-time system.

The Robot Manager also looks after servicing requests from the user in-
terface. The requests are processed in a first-come first-served basis, and the
applicable information or signals are routed to the appiopriatc tasks.

When the controller is started, the Robot Manager’s initialization sequence
methodically initializes the data structures and other tasks that compose the

controller. The Robot Manager first initializes storage for internal data struc-

59

tures and processes any optional envirgnment variables that have been set.
The User Interface task is then staried on the host workstation via a RTSI
library call, the Controller Configuration file is processed, and the servo server
context is created for the controller.

The Robot Manager then waits for the user i-; <2lect the pre-linked control
algorithm with which to control the robot arm. This selection controls the
default rates for the Motion Generator task, the Data Logger task, and the
Controller task. The State Variable Table Configuration file for the selected
controller is then used to initialize the controller’s state variable table. A RTSI
library call is then used to send relevant information about the state variable
table to the User Interface for error checking purposes.

The Robot Manager then initializes access to the VMEbus Encoder Board
initialization mechanism and the DVME-601’s pot voltages for use in calibra-
tion of the robot arm.

The last step before the Robot Manager enters its message-processing loop
is the initialization of the Controller, Motion Generator, and Data Logger
tasks. Once in the loop, the Robot Manager responds to and acts upon mes-

sages from the user interface.

5.2.3 Motion Generator Task

The Motion Conerator task provides setpoints to the Controller task in order
to realize motion of the rchot manipulator. Two different types of motion
generation were imylemented in this module. The first type of motion, blended
motion, is the type usually associated with robot joint motion. Blended motion
consists of a series of setpoints calcula’e? io move the robot’s individual joints

smoothly from an initial set of joint angles (6o) to a final position (fy) in a

given length of time (¢;). The second type of motion implemented was a very
simple step input to the Controller task. Step motion is simply the application
of a step input of a specified magnitude to the Controller task for use in testing
the response of control algorithms.

In order to specify a motion for this system, a motion block is passed to the
Motion Generator from the Robot Manager. This motion block consists of a
set of goal joint angles (the 8,'s for each of the six PUMA jcints), and a speed
factor (specified as a decimal value from 0 to 1) which is a maximum desired
joint velocity specified as a fraction of the absolute maximum velocity. The
motion block is sent with an attached motion type which specifies the form
the motion will take (currently only joint-interpolated motion and step motion
are implemented). This format is meant to be general enough to characterize
a motion for any type of positional reference motion z¢neration algorithm,
thus isolating the motion generation modulc from the rest of the software, and
making it wholly replaceable.

At the beginning of each motion generation cycle, the Motion Generator
checks an internal flag to see if a move is in progress. If a motion is in progress,
the Motion Generator will proceed to calculate the next set of setpoints for
the joint controller. If not, it will obtain the next motion block and type from
the motion queue.

If the motion block type is a step, the magnitude of the step (contained
within the motion block) is added to the current position of the joint being
stepped. This value is then written to the setpoint state variable, and the
Motion Generator returns to checking the input queue.

If the motion block type is 2 blended move, the Motion Generator must

initialize the calculations that will describe the joint motion. The blended

motion is constrained to having a velocity of zero at the beginning and end of

61

every motion. Each motion in this system is complete unto itself — there is

no blending of queued motion requests.

These design criteria are met by the use of a third order polynomial blend-

ing function [Cra89]:
0(t) = ao + axt + aat® + ast® (5.1)
Differentiating equation 5.1 gives the velocity:
0(t) = a; + 2a,t + 3ast? (5.2)

Applying the velocity constraints at the endpoints, yields the following

system of four equations:

6(0) = 6o=ao (5.3)

8(t;) = 05 =ao+aits+asti+asty (5.4)
6(0) = bp=a,=0 (5.5)

b(t;) = 0y =2ast;+3ast; =0 (5.6)
(5.7)

Using these four equations, one may solve for the four unknowns ao, a1, a2, as:

a = b (5.8)

aq =0 (5.9)
3

a = (05— o) (5.10)
i
2

a3 = “3(0!—00) (511)

In order to apply equation 5.1 to the generation of setpoints for this par-
ticular system, it was necessary to make a few modifications in order to take

into consideratinn maximum allowable joint velocities and accelerations, the

62

fact that the setpoint update function is a discrete function, not a continuous
one, and minimization of CPU load.

For this motion generation algorithm, it is desired that all joints would
ceraplete their movements at the same time, yielding a smooth, fluid motion
of the manipulator. It is also desirable that no joint exceeds the speed set by
the user-supplied speed factor. To accomplish this, it is necessary to calculate
the time it would take each joint to complete its motion given that each joint
must not exceed its specified velocity or maximum allowed acceleration. The

specified maximum velocity for a je'nt is given by:
0.s = Spa.MAx (5.12)

Where Sr is the speed factor contained in the motion block, and Opmax is
the absolute maximum allowed velocity of the joint which is taken as the
Unimation defined joint velocity at VAL-II's SPEED 100 [Uni85).

By differentiating equation 5.2 with respect to time, and setting this i-.
zero, the time at which the maximum velocity of the joint occurs can be found

to be:

b (5.13)

bopax = 9

By substituting 5.13 for ¢ in 5.2 the maximum velocity of the motion (at

time t,,, ,,) is obtained:
: 3
O(turax) = Et_;(of — bo) (5.14)

This maximum velocity must be less than or equal to the user specified
maximum velocity (6s > 0(ty,.x)) for the limit on maximum joint velocity to
be upheld. This enables the time of movement ¢; to be calculated from the

specified maximum velocity (05) and change in angular position (6; — 6o) by

63

substituting the above inequality into equation 5.14:
3
ty > —(07 -6, 5.15
12 2()s(s — o) (5.15)

It is also necessary to take into consideration the maximum allowed ac-
celeration for a desired joint movement. This is especially important in cases
where the speed factor is large and the change in joint angle is small, as the
joint then must undergo large accelerations over a small number of sample
instants, and problems with joint tracking often result. The solution to this
problem is to calculate the maximum acceleration of the move and compare
this to a pre-defined limit (defined in the globalPUMA.h header file listed in
Volume 2).

The acceleration of the joint is given by differentiating equation 5.2 with

respect to time:

6(t) = 2a; + 6ast (5.16)
Substituting in the values of a; and a3:
5 t) 6(6; — 6o)
" — w—— — A ————— T ———————
oMt) = (l 2t1) t} (5.17)

This is the equation of a line which, in the domain of interest ({ = 0 to
t = t;), has a maximum magnitude at ¢ = 0 and ¢ = ¢;. Therefore the
magnitude of the maximum acceleration (since it is the same at beginning and

end) may be written:
' - 6/(0; — 6,

Omax = —I(—’—t}——"—)-l (5.18)

This maximum acceleration magnitude is calculated using the ¢; obtained

from equation 5.15. If the value is larger than that joint’s maximum allowed

acceleration, the value of t; is recalculated using the equation:

ty= 61(8y = Go)l (5.19)
oMAxAllowed

64

Note that this then takes the determination of joint velocity out of the
hands of the user in order to obtain adequate tracking of the joint motion.
The values of G314 4y.u.q fOr the manipulator joints are obtained by estimation
using the Unimation defined maximum acceleration times and joint velocities
at VAL-II's SPEED 100 [Uni85). The values are then fine tuned by trial and
error for the specific joint.

The movement duration is calculated in the above manner for each of the
six joints. The largest t; is chosen to be the ¢; for all joints in the current
move. This ensures that all joints will stop moving at the same time, and no
joint will exceed its specified speed.

The fact that the Motion Generator updates the setpoint every T, seconds
can be used to determine how many cycles of the Motion Generator it will take
to complete the desired motion. The number of cycles required is calculated

by applying the ceiling operation to

=l
Ne =7 (5.20)

By substituting N, for 7 in the motion ejuations, the Motion Generator pro-
duces the desired motion over an integer number of cycles.

To minimize the computational load, the setpoint sequence is calculated
once each setpoint update period during a move in order to spread the load
of computing the setpoint sequence over the total number of update periods.
The first setpoint period bears the heaviest load, as the values of ts, N, and
the coefficients of the polynomial (listed here as b; and b; for the discrete case)
must be calculated. The calculations for the coefficients are performed in the

following manner in order to optimize the operations for speed:

A8 = 07— 8 (5.21)

65

ty = el (5.22)
N, = ceil (%) (5.23)
b = -J%Ao (5.24)
by = _W%Ao (5.25)
The new setpoint is calculated as:
' B(k) = Oo + bok? + bak® (5.26)

where k is an integer counter supplied internally by the Motion Generator.
The updated setpoint is then written to the local copy of the setpoint state
variable and will be copied into the global state variable table at the end of

the present Motion Generator cycle.

5.2.4 Controller Task

It is possible for more than one control algorithm module to be linked to
controller software at compile time. The control algorithm to be used is chosen
upon controller startup from a list indicating all control modules linked into
the controller. This choice determines the configuration of the state variable
table and the Motion Generator module selected. However, only one of the
controller modules may be chosen as the Controller task at any one time.
The controller task is designed as a replaceabie module. Because of the fact
that different control algorithms may require different input information from
the motion generator, the selection of a particular control module on startup
will select that control module’s complementary Motion Generator task as

defined in the controller.cfig file.

66

The control module implemented to test the MRC was a simple PID con-
troller with a position reference supplied by the Motion Generator task via the
state variable table mechanism. This controller also employs the state variable
table to provide dynamically alterable proportional, integral, and derivative
gains for online tuning purposes. Section 6.3 gives a more complete description

of the controller algorithm.

5.2.5 Data Logger Task

The Data Logger module can be dynamically configured from the user interface
to record the values of any of the controller’s state variables stored in the state
variable table. Each sample of the chosen state variable(s) is recorded along
with a timestamp indicating the time the sample was taken.

The sampled data is reccrded into a large (2 MB) buffer on the ‘master’
RTPU. These direct writes to memory allows the speed of the logging to be
maximized and non-essential VMEbus accesses to be minimized. The price of
this performance is a limit on the time window for logging operations deter-
mined by the number of state variables to be logged and the rate the state
variables are sampled. The time limit for each logging operation is calculated
and printed when the Data Logger module is started.

After the logging of data is complete, the entire bufler is dvmped to a wser
specified file on the Sun 3/160’s filesystem in a formai suitable for further
processing by the gnuplot graphics package. A small header is also written
onto the file describing its source and what state variables were sampled. Also
generated at this time is the stub of a gnuplot macro file which can later be
modified to display the data in a specific manner using the gnuplot graphics

package.

67

The Data Logger task is an example of a dynamic task which only comes
into being for a period of time, and is stopped when its usefulness is ended.
This can have adverse effects on a real-time system, as the load on the CPU
increases when this task is started. This can cause real-time tasks to begin to
miss deadlines as the processing power required by the multiple tasks exceeds
that which the CPU is capab'e of supplying.

A failure of the Data Logger task has the effect of leaving holes in the
sampled data should the Data Logger task fail. This is not as disastrous as
it may first appear. Using the timestamp written for each data sample, it
is possible to adjust for the missing data. Usually the missing point(s) are
sim_ * ignored by the graphics package used, and a straight line is used to
approximate their locations. If the Data Logger’s period is so low that it
begins to miss cycles, its period may be increased to reduce the computational
load on the ‘master’ RTPU to ensure that no cycles are missed. However, it is

usually not necessary to sample so fast that the RTPU becomes overloaded.

5.2.6 Prefilter and Hardware Status Task

In order to smooth the sampled voltages from the PUMA'’s joint potentiome-
ters, it is necessary to implement some form of prefiltering on the DVME-601
Analog to Digital Converter’s onboard MC68010 processor. The filtering im-
plemented is similar in form to that in Kruszewski’s Controller; however there
are key differences between the two approaches.

The filter implemented for this project is a four-point moving average filter
with a sampling rate of 1000 Hz. The filter implemented in [Kru90} was a
four-point batch filter also with a sampling rate of 1000 Hz (the sampling rate
is programmed into the DVME-601’s 68681 timer). The new filter produces

68

69

Log-Magnitude Re,§_ponse of Prefilter
: : !

0 ' i i O -3 dB l !
2 20 SRR 8 S S— 7 ST B S
i |l -\ \

_40 e R fovees H s diernnd b e e
° o mIR 0

0 USSR S N S S SO S S S S

0 50 100 150 200 250 300 350 400 450 500
Frequency - Hz

Phasg Response of Pn?ﬁlter

&
A
®
E | :
&
_200 "'E" n" R i i T i "-:“ | -------
0 50 100 150 200 250 300 350 400 450 500

Frequency - Hz
Figure 8: Frequency Response of the Prefilter

a set of smoothed joint voltages once per sample period, while Kruszewski’s
filter produced results once every four samples. The log-magniiude and phase
responses of the new filter are shown in Figure 8. The -3 dB point on this
filter occurs at about 113.7 Haz.

To achieve the four-point average, the filtering program implemenrts the

following difference equation (where y is the output, and z is the inpu.t voltage):

J(8) = z(k)+z(k—1)+:(k—2)+z(k-3) (5.2)

The filtering software implements the division by four using shifts of the
sampled data. When the voltage of an input port is sampled, it is presented
in a signed 12-bit format. This is read as a 16-bit number, with the lower fo- -
bits unused. As each data sample is read, it is immediately divided by four by
shifting the bits to the right two places. The current sarﬁple is then added to
the time-delayed and pre-divided samples stored in a temporary buffer space
and the resuit is placed in the output buffer. The time delay is implemented
by shifting each delayed variable down to the next delay slot at the «..d of
each sample cycle. The oldest delayed variable is discarded. A copy of th.
current, pre-divided, voltage sample is then placed into the z(k — 1) sloi, and
the system is prepared for the next sample period.

The filtering scftware also uses the sampled PUMA status lines (STOPL,
SSRON, and BRKRLS [Kru90j) to drive a state machine that indicates the
current state of the system hardware, as opposed to simply inaicating which
lines are high or low as was done in Kruszewski’s Controller.

The prefiltering program oversamples the status lines and votes on the
sampled values in order to protect against incorrect state transitions due to
differing status line rise/fall times. The voltages on the status lines are sampled
and converted into appropriate binary values (high or low) for each line. These
binary values are then assigned to bit positions in a status code. Five such
status codes are collected. If at any time during the collection of the status
codes, the new status code differs from the previous one, the entire series
is discarded. Once five equal status codes are collected, it is assuined the
state transition of the PUMA'’s hardware staius lines has completed, and the
state machine is allowed to process the state transition. The states that the

hardware may enter are defined in the header file statemach.h which is listed

in Volume 2.

70

5.3 Coafigur .. v Files

The fizxibility of the MRC .s based in its use of text configuration files to
define various onerating parameters. The MRC utilizes four configuration files
to establish associat. .is between different control modules and their respec-
tive motion generator modules, and to set up appropriate state variable iable
configurations, hardware configurations, and robot home pesition values.
The controller’s configuration mechanism uses the reconfiguration library
supplied with Chimera II. These faciiities allow a user to easily specify the
format of the configuration file itself, 2s well as the d»asr structures into which

the configuration information will be written.

5.3.1 Controller Configuration Fiie

The Controller Configuration file is the top-level of syst«in configuration. This
file defines the parameters of ~ll control modules link«d :nto the system. For
a control. module to be available for selection from the user interface, it must
be defi:ied in the Controller Configuration File.

Each control module is defined in the Controller Configuration File by the
following eight fields:

¢ MODULE NAME: The ASCII name of the control module.

¢ MOTION GEN: The ASCII name of the motion generator mo.lule used

by this control module.

e SYVAR TABLE: The name of ihe State Variable Table Confi:-iration Fil»

for this control module.

71

e DVME601 CONFIG: The name of the DVME-601 Configuration File

used by this control module.

e HOME The name of the file contairii. g robot position initialization in-

formation.
o SAMPLE PERIOD: The default sample peri~4 for ihz ~ortroller.

¢ UPDATE PERIOD: The default setpoint update period for the motion

generator.

o LOGGER PERIOD: The default data logging period.

The Contrcller Configuration File used in this project can be found in
Appendix B.2.1. This file defines four control modules; ‘pid’ (a PID controller),
‘pidv’ (a PID controller applying the derivative action to the plant output),
‘pos’ (a proportional controller), and ‘open’ (a module used for opening the
control loop). The first control module in the file is i..> - efauit module upon

startup of the controll” - oftware.

5.3.2 State Variable Table Configuration File

The State Variable Table Configuration File is used to configure the controller’s
state variable table for a particular control module after the user has selected
the desired control module. The operation of the state variable table mecha-
nism, and the associated State Variable Table Configuration File are presented
in Chapter 6 of the Chimera II Program Documentaticn [SSK91].

The State Variable Table Cunfiguration File is used slightly differently in
thi. project than presented in the manual. The ‘DESCRIPTION?’ field in the

State Variable Table Configuration file has been commandeered to provide

72

access permissions to the various classes of state variables that may exist in
the controller. Please refer to Section 5.4 for a more detailed description of
the extensions made to the state variable table mechanism for this project.

The State Variable Table Corfiguration File used for the PID controller in
chis project may be found in Appendix B.2.2.

5.3.3 DVME-601 Configuration File

The DVME-601 Configuration File contains information usczd to operate the
DVME-601 in its task of sampling the PUMA potentiomcter voltages and the

hardware status lines. The following four fields are contained in the file:

¢ FILTER: Name of the Motorola S-Record file containing A /D prefiltering

software.

e INIT 4FB: Name of the Application Function Block file that initializes

the board.

e START AFB: Name of the Application Function Block file that starts

the A/D sampling operation.
o SAMPLING PERIOD: The sampling period for A/D conversions.

The DVME-601 Configuration File used in this project is presented in
Appendix B.2.3. Please refer to the DVME-601 User’s Manual [Dat84a] for
information on Application Function Blocks. For informatior on the DVME-
601 library and extensions implemented by this project to ease the task of
writing Application Function Blocks please refer to the Software Users Guide

in Volume 2 of this viork.

3

5.3.4 Home Position File

The Home Position File is used to supply the information needed by the PUMA
to calibrate the joirt encoder counters on the VMEbus Encoder Board. The file
consists of two lit;««, the first of which defines the home pasition of the robot
in terms of joint angles (in degrees). The second line gives joint potentiometer
v-‘tages measured by the DVME-601 which correspond to the home position.

This file is generated by the makehome utility program and should not be

edited by hand. Please refer to the Software User’s Guide in Volume 2 for a

descripiict, of the makehome utility.

5.4 RTS to NRTS Communication Library

The RTSI (Real-Time System Interface) functions are designed to provide a
communications link between the Real-Time System and the User Interfaze.
The communication link consists of passing typed and automatically sized
messages between the user interface and the real-time system using the Chi-
mera II ressage passing mechanism. Two message queues are established; one
for messages from the user interface to the real-time system, and the other for
messages in the reverse direction. Messages are sent from the user igterfa.ce
requesting some action or data from the real-time system, and the response
is returned by the real-time system upon its completion of the action. Er-
ror checking functionality is implemented for the closely coupled FIFO queue
described in the system design.

The RTSI mechanism also provides for a subset of the state variable table
information held in the real-time system to be available on the host worksta-

tion for use by the user interface. Routines are available which initialize and

encapsnlate the data required for user a. cess to the controller’s state variable
table. The library also provides a means of easily obtaining this data from
within the user interface code for error detection purposes in the user interface
code.

The RTSI library provides basic typed message communication for both
command and status information to be passed between the user interface and
the real-time system. Commands are sent to the re-!-time system in the form
a typed message with or without data. The types of messages available under

RTSI are:

e Commands: such as “turn the robet on”, “move the arm: to this posi-

tion”, or “start logging these =%:i-: variables”.

e Requests: such as “return the current position ci the arm”, or “return

the status of the real-time tasks”.

¢ State Variable Table Info: such as the name, size, type, and value of

a state variable.

The messages are serviced by the Robot Manager task as soon as it is able.

The response to a command may be one of three possibilities;

o The requested action was successfully carried out.

e A non-critical failure occurred in the execution of the function, but the

controller does not need to be shut down.

e A critics) fuiiure has cccurred, and the cont: Jl'<r should be shut down

as soon as possible.

The receipt of an unexpected message is regarded as a failure in the commu-

nications queue and prompts a shutdown of the system. In the case where

L]

5

a command requests that the real-time system supply some information, the
receipt of the typed message containing the data is the signal that all is well.
The RTSI library provides non-real-time extensions to the state variable
table syste:i. It is not possible to attach to the real-time state variable table
from the host workstation, yet certain data about the state variable table
is required by the host for use within the user interface. The solution to
shis dilemma is to use the communication facilities supplied in Chimera II
“Jigh a copy of relevant state variable table information on the host
on.

...e RTSI library extends the idea of the local and global copies of state
variable table information to include the non-real-time system. The real-time
system is used as a server which initializes and updates the state variable
information on the non-real-time system (the client) when required. The real-
time system also accepts requests to modify the global state variable table
when the local non-real-time copy is modificd.

When the user wishes to modify the value of a state variable, the local copy
of the state variable is modified, and a request is sent to the real-time system to
update the global copy of the state variable to the new value. Current values
of the static and dynamic gains are kept on hand for reference by the user
in order that the traffic on the RTSI message queue be kept to a minimum.
It is also possible to declare maximum and minimum values for these gains
in the state variable table configuration file for error checking purposes (see
Chapter 6: Reconfigurable Systems in the Chimera II Program Documentation
[SSK91)).

The information on the state variable table is gathered by the real-time
system at startup (after the controller module to be used has been selected)

and is sent to the user interface via the communications link. The state vari-

76

ables in the table are classified by the user into functionz! rroups using the
"DESCRIPTION=" iield in the state variable table configuration file [SSK91].
An example of this file may be found in Appendix B.2.2. The functional groups

are:

e Controlled Variable: This is {he output of the controlled system (in
this case, the joint angle). This cannot be modified directly by the user,

it can only be recorded via the data logger.

e Reference Variable: This is the system setpoint. All access to this
is through the Motion Genera®.un task, it is not user modifiable. It is

available for inclusion in dat:. .. -ing only.

e Controller Output: The cutput of the control algorithm. This is also

not directly user modifiable by the uszr but may be recorded via data
logging.

e Dynamic Gain: This is a gain that may be modified directly by the
user while the controller is running. The new value will come into effect

at the next cycle of the control algorithm.

e Static Gain: This is also a directly modifiable gain. However, the value
of the variablc iriay not be changed after the controller has been started.
Setting any static gain while the controller is running will have no effect,
until the controller is stopped and then restarted. The advantage of
s.atic gains over dynamic is that access to them by the control algorithm
does not require repeated state variable table accesses. They are copied
into the controller’s local copy of the state variable table before the

controller’s first cycle.

(i

e Parameter: This is a catch-all class for variables such as self-tuning
control algorithm gains which should be included in the state variable

table for logging purposes, but which should not be directly accessible

to the user.

This classification of the state variables allows a certain measure of secu-
rity and organization at the user interface. Often it is convenient to provide
dyramic controller gains that may easily be changed by the user for tuning
purposes. At the same time, there are values i: the state variable table that
must not be modified directly by the user, such as the controller output, or
the gains generated by a self-tuning controller. However, it is still desirable to
Lave all these variables in the same state variable table to simplifv the tasks

of data logging and system reconfiguration.

5.5 Device Libraries

To aid in the implementation of this system and to provide convenient access
to the control hardware, three libraries of functions were developed for the
project. These libraries vtilize object-oriented programming techniques such
as encapsulation to hide the details of the controller’s I/O hardware from
the user, and modularity to provide well defined interfaces to the hardware
[Boo91].

The libraries, libdvme601.a, libdvme628.a, and libenc.a, are intended to
hide the details ot operating the Datel DVME-601 Analog to Digital Converter,
the Datel DVME-628 Digital to Analog Converter, and the VMEbus Encoder
Board respectively. The programming interfaces for the devices are identical

for identical operations (such as initialization, reading, writing, and shutdown),

78

and differ only in the cases where the boards differ in specific capabilities (such
as downloading local programs to the DVME-601).

The libraries for these devices also provide conversion from each board’s
native representations into equivalent floating-point values. The two’s comple-
ment voltage representation of the DVME-628 and DVME-601 are converted
to and from floating point voltage values for the convenience of the user by
the libdvme628.a and libdvme601.a libraries respectively. The integer counts
used by the VMEbus Encoder Board to denote manipulator joint angles are
converted to radians by the libenc.a library.

These libraries conform to the suggested standards outlined in Chapter
5: System’s Manual in the Chimera II Py jrom Docum . tion [SSK91] for
second-level device drivers. Detailed descrij:iiong of the library functionz may

be found in Volume 2 in the Software Users Guide.

5.6 Device Drivers

The software layer responsible for communicating directly with the control
system hardware and hiding details of operating the hardware fron: the user
is the device driver layer. These three software modules are written using
the conventions outlined in Chapter 5: System’s Manual in the Chimera 11
Program Documentation [SSK91].

The device drivers perform board-level initialization of each of the three
major pieces of control I/O bsrdware, the DVME-601 A/D converter, the
DVME-628 D/A converter, and the VMEbus Encoder Board. The drivers
also handle the actual data transfer from Chimera II sofiware running on
the RTPUs to the input or output ports on the interface cards. This function

requires that the device driver software be optimized to run as fast as possible,

9

so as to maximize the sampling frequency of the controller.

The device drivers written for this project use the concept of ‘virtual de-
vices’ [Steb] !. A virtual device is an object composed of a set of associated
physical devices which are treated as a single unit. This enables the number of
instantiations of any particular device driver to be kept at a minimum, while
still allowing the flexibility of modifying which physical devices are assigned
to which task.

For example, the DVME-628 D/A converter board possesses eig: physical
output ports. The interface hardware between the VMEbus Cent: Jller and
the Unimation joint amplifiers designates six of these ports as inguts to the
six rcbot joint amplifiers. Anocher DVME-6.¢ port is used for enstii:e the
Arm Power On switch via software control. The eighth outpui is ne* wsed
at the presen* (in the future this could be the gripper control). If the device
drivers were written so that there was one driver per output port, there would
be seven driver instantiations required for this board alone. If the other tv:
interface cards were also administered in the same manner, a minimum of 19
device drivers in total would be required for a controller. This is very costly
in terms of resource usage on the RTT !Js administering these device drivers.
For instance, a write of six control voltages to the joirt amplifier requires six
separate write() system calls. Using the concept of virtual devices, one driver
is initialized for all six output ports (they are treated as one object), and only
one write() call is required for exactly the same operation.

The virtual devices keep the number of device drivers to a minimum and
group all block accesses for common operations within one system call. The

problem of mutual ex :usion is solved by simply not allowing more than one

1Stewart refers to virtual devices as logical devices.

80

process to obtain access to the same physical ports through a virtual device in
cases where this may cause problems. Devices which are read and not written
(such as the DVME-601 A/D Converter) may be accessed by more than one

process with no concerns over information corruption.

5.6.1 Device Driver for the DVME-601 - dadc.c

This driver is written in such a manner that all board administration tasks
must be performed by the driver with minor number 0. This is done 1o en-
sure that two processes are not able to download Application Function Blocks
(AFBs) at the same time, or independently modify the hoard’s execution
mode.

The driver’s dadc_read() routine reads word size two’s complement values
representing voltages from whatever physical ports are assigned to that par-
ticular virtual device. These values are deposited in a buffer pointed to by
the buffer argument of the read() system call. It is assumed the buier is large
enough to hold all values.

The dadc.write() routine will write either an AFB or a Motorola S-record
into the appropriate place in the DVME-601’s Dual Port Ram. The write
mode must be set to the appropriate type via an ioctl() call before a write of
either type is attempted. The write mode is reset upon the end of a write, so
it must be set again before the next write().

The driver’s ioctl call implements five DVME-601 board leve! operations,
in addition to the requisite assignment of physical ports to virtual devices.

The operations are:

o Set the DVME-C9? . Executive 'on’.

o Set the DVME-601’s Executive 'off’.

81

e Execute the last AFB loaded into the Dual Port Ram.
e Set the writz mode to accept a S-record file.
e Set the write mode to accept an AFB.

The specifics on using the DVME-601 aevice driver may be found in the
header Sle Jade.h listed in Volume 2. The details on operating the DVME-601

may be found in [Dat89a.

5.6.2 Device Driver for the DVME-628 - ddac.c

This is quite : “imple driver, only requiring a simple output routine with no
special board - nctions to be implemented by ioctl().

The ddac_write() routine writes a set of two’s complement voltage repre-
sentations to the output ports assigned to the virtual device being accessed.
The driver’s joctl call only implements the assignment of physical D /A ports

o virtual devices.

Jiore detailed information one the use and operation of this device driver
v v be found by examining the header file ddac.h listed in Volume 2. The
specifirs on operating the DVME-628 may be found in [Dat89b].

5.6.3 Device Driver for the VMEbus Encoder Board -
veb.c

This driver is written in such a manuer that ail board administration tasks
must be performed by the driver with minor number 0. This is done to ensure

that two processes do not try to initialize the encoder counters at the same

time.

82

The unique hardware of the VEB poses certain problems in developing
this driver. In order to access the current joint encoder count, the values
held in the counters must be latched by a write to a specific location in the
VEB memory space. In order to guard against data corruption in the cace of
multiple devices reading tk: joint encoder values, the joint encoder sampling
must be protected with a semaphore internal to the device driver. A local
semaphore is used, since : his iype of Chimera II semaphore is faster than
the more general remote scmaphore which would work across RTPUs. Due to
this, the VEB counters must not be read by drivers owned by different RTPUs.
Regardless of this, until the remote device feature of Chimera II is fixed, it
will not be possible to remotely access the VEB driver from other processors
anyway.

This poses a problem where initialization of the joint encoder counter values
is concerned. In this project, it is desired to have a task on a RTPU other than
the one that owned the VEB driver initialize the counter values. The solution
to this is to have the RTPU on which the initialization task executes own the
VEB driver with minor number 0 (the administration driver). This driver is
initialized as a virtual device with no physical ports. Its only function is to
perform joint encoder counter initializations.

The driver’s veb.read() routine reads word size integef values representing
joint encoder counts from whatever physical joint encoder counters are as-
signed to a particular virtual device. These values are deposited in a buffer
pointed to by the buffer argument of the read() system call. It is assumed the
buffer is large enough to hold all values.

The driver’s ioct] call implements two VEB board level operations along

with the assignment of physical ports to virtual devices function. The opera-

tions are:

83

